WO2019230441A1 - Photoresponsive cell fixing agent - Google Patents

Photoresponsive cell fixing agent Download PDF

Info

Publication number
WO2019230441A1
WO2019230441A1 PCT/JP2019/019632 JP2019019632W WO2019230441A1 WO 2019230441 A1 WO2019230441 A1 WO 2019230441A1 JP 2019019632 W JP2019019632 W JP 2019019632W WO 2019230441 A1 WO2019230441 A1 WO 2019230441A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
chain
fixing agent
photoresponsive
substrate
Prior art date
Application number
PCT/JP2019/019632
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 山口
森 泉田
岡本 晃充
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2019230441A1 publication Critical patent/WO2019230441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/02Linear peptides containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a photoresponsive cell fixing agent having excellent cell fixing power, a cell immobilization substrate having a surface modified with the photoresponsive cell fixing agent, and a cell recovery method using the substrate. .
  • cells can be fixed and arranged at a desired location by stimulation, and cell processing such as phenotype and other cell analysis and gene transfer can be performed. After that, only the target cell location is stimulated exhaustively, so that only the cells with the target phenotype or the target processed cells are selectively detached at the single cell level and selected. Is possible.
  • Substrate surfaces and substrate surface preparation techniques that can selectively fix and detach cells by external stimulation can be broadly classified into the following four types depending on the type of stimulation used: (1) Technology using photoresponsive materials, (2) Technology using a thermally responsive material, (3) Technology using an electrically responsive material, (4) Technology using a material that responds to other stimuli such as addition of chemicals and biomolecules.
  • All of the external stimuli used in (2) to (4) have low spatial resolution, and it is difficult to give stimuli only to a single cell, and therefore cannot be used for operation at the single cell level.
  • light which is an external stimulus used in (1), has an advantage that it has a high spatial resolution and can irradiate only a single cell.
  • any cell can be manipulated regardless of cell adhesion by using a compound in which polyethylene glycol (PEG) and lipid are linked via a photodegradable linker.
  • PEG polyethylene glycol
  • a photoinactive type and a photoactive type cell fixing agent have been reported (Non-patent Document 1).
  • the cell immobilization agent can be used only once for immobilization or detachment by light stimulation, and it is not possible to operate repeatedly by switching between immobilization and detachment of cells. It wasn't.
  • the present invention can selectively and reversibly control cell immobilization and detachment by light stimulation regardless of the target cell type, and can be used repeatedly and continuously. It is an object of the present invention to develop a photoresponsive cell fixing agent that can be used.
  • the present inventor has made a hydrophobic / hydrophilic hydrophilic group by photoisomerization as a side chain to a linker site that connects a hydrophobic site capable of binding to a target cell and a hydrophilic site.
  • a molecule having a branched linker into which a structure that can change is used by selectively irradiating light of a specific wavelength, arbitrary cells are selectively fixed on the substrate and irradiated with light of another wavelength.
  • the target cells can be repeatedly fixed and detached by alternately irradiating light of two wavelengths, and the present invention has been completed.
  • a photoresponsive cell immobilizing agent for immobilizing a predetermined target cell on a substrate, a hydrophobic chain capable of interacting with the target cell, and a monomolecular film on the surface of the substrate It has a hydrophilic chain that can be arranged, and a branched linker chain that connects the hydrophobic chain and the hydrophilic chain.
  • the side chain of the branched linker chain is isomerized by light irradiation and changes from hydrophobic to hydrophilic.
  • the amount of change in the logarithmic value (logP) of the distribution coefficient due to the isomerization of the photoisomerization site is 0.5 or more (where the distribution coefficient includes the hydrophobic chain (a) and the branched linker)
  • a calculated value of the partition coefficient in the region consisting of the chain (c)) the photoresponsive cell fixing agent according to ⁇ 1>above; ⁇ 3>
  • the photoresponsive cell fixing agent according to the above ⁇ 2>, wherein a logarithmic value (logP) of a partition coefficient in a more hydrophobic isomer before and after isomerization of the photoisomerization site is 10 or more.
  • the present invention provides: ⁇ 14> A cell immobilization substrate having a surface modified with the photoresponsive cell immobilizing agent according to any one of ⁇ 1> to ⁇ 13>.
  • the invention provides: ⁇ 15> (i) irradiating the cell immobilization substrate according to ⁇ 14> above with light of a specific wavelength, and converting the photoisomerization site into a hydrophilic isomer structure; (Ii) a step of bringing a solution containing predetermined target cells into contact with the substrate for cell immobilization, and immobilizing the target cells on the substrate for cell immobilization; and (iii) the substrate for cell immobilization. Is irradiated with light having a wavelength different from that in the step (i), and the photoisomerization site is converted into a hydrophobic isomer structure, whereby the immobilized target cells are removed from the cell immobilization substrate.
  • a cell recovery method comprising: ⁇ 16> The method for recovering cells according to the above ⁇ 15>, comprising repeating the steps (i) to (iii) a plurality of times; ⁇ 17> The cell collection according to ⁇ 15> or ⁇ 16>, wherein the light irradiated in the step (i) is ultraviolet light; and the light irradiated in the step (iii) is visible light A method is provided.
  • the photoresponsive cell immobilizing agent of the present invention by reversibly changing the hydrophobicity and hydrophilicity by the structural change of the photoisomerization site by light irradiation, it is possible to stimulate light regardless of the target cell type. Can be selectively controlled at the single cell level. Then, the optical responsive cell immobilization / detachment process can be repeatedly and continuously performed by optical switching in which two wavelengths of light are alternately irradiated.
  • the present invention is a new and powerful method for quickly and accurately selecting only the target cells from a large number of cells, it can be used in basic research in the field of cell biology, antibody selection in pharmaceutical companies, and discovery research for drug discovery targets. Can be expected to be widely applied.
  • FIG. 1 is a schematic diagram showing the overall structure of the photoresponsive cell fixing agent of the present invention.
  • FIG. 2 is a graph showing the cell immobilization density accompanying light irradiation for the substrate modified with the photoresponsive cell fixing agent of the present invention.
  • A Compound 1,
  • B Compound 1b
  • c Compound 1c
  • d Compound 1d
  • e Compound 1e
  • FIG. 3 is a graph showing changes in cell immobilization density when a substrate modified with the photoresponsive cell immobilization agent (compound 1d) of the present invention is irradiated with visible light after cell immobilization.
  • FIG. 1 is a schematic diagram showing the overall structure of the photoresponsive cell fixing agent of the present invention.
  • FIG. 2 is a graph showing the cell immobilization density accompanying light irradiation for the substrate modified with the photoresponsive cell fixing agent of the present invention.
  • A Compound 1,
  • c Compound 1c
  • d Compound 1d
  • e Compound 1e
  • FIG. 4 is a graph showing the number of cell immobilization during the repeated operations of cell immobilization and detachment by light irradiation for a substrate modified with the photoresponsive cell immobilizing agent (compound 1d) of the present invention.
  • FIG. 5 is a fluorescence microscopic image of cells on the surface irradiated with ultraviolet light and visible light, respectively, on a substrate modified with the photoresponsive cell fixing agent (compound 1d) of the present invention.
  • FIG. 6 shows the number of cell immobilizations when various operations are performed on cells modified with a light-responsive cell immobilization agent (compound 1d) of the present invention by repeatedly repeating cell immobilization and detachment by light irradiation.
  • FIG. 7 shows the same time as the survival rate (Released) of the cells immobilized on the substrate modified with the photoresponsive cell fixing agent (compound 1d) of the present invention and then removed by irradiation with visible light. It is a graph which shows the survival rate (Pos. Ctrl.) Of a control cell in PBS.
  • the photoresponsive cell fixing agent of the present invention comprises: (A) a hydrophobic chain having a function of interacting with a target cell and binding to the cell; (B) a hydrophilic chain that can be arranged in the form of a monomolecular film on the surface of the substrate, and (c) a branch having a branched structure with a side chain as a linker for connecting the hydrophobic chain and the hydrophilic chain. And a photoisomerization site (d) which can be isomerized by irradiation with light and change from hydrophobic to hydrophilic in the side chain of the branched linker chain.
  • FIG. 1 shows the entire structure of the photoresponsive cell fixing agent of the present invention.
  • a covalent bond such as an amide bond, an ester bond, an ether bond, a thioether bond, a carbamate bond, a thiocarbamate bond, a triazole bond, or a urea bond can be used.
  • the photoisomerization site (side chain) in the branched linker chain (c) is connected to the branched linker chain (its main chain) by an amide bond.
  • the photoresponsive cell fixing agent of the present invention typically modifies the substrate surface by binding to the substrate surface directly or via a coating layer described later at the end of the hydrophilic chain (b). Used.
  • the photoresponsive cell fixing agent is preferably arranged in the form of a monolayer on the surface of the substrate.
  • the hydrophobic chain (a) can be bound to and captured by the target cell by an interaction such as a hydrophobic interaction. Thereby, a target cell can be fixed to the specific area
  • the photoisomerization site (d) in the side chain of the branched linker chain (c) is structurally changed by photoisomerization, and its hydrophobicity
  • the target cells can be selectively separated from the surface of the substrate and recovered.
  • the photoisomerization site (d) can be returned to the original structure by re-photoisomerization, and cell immobilization and separation / recovery can be performed. It becomes possible to carry out repeatedly.
  • the “cell” can include an animal cell, a plant cell, an insect cell, a prokaryotic cell, a fungal cell, and the like, and generally does not adhere or extend to the surface of a carrier such as a culture instrument, and is in a suspended or precipitated state.
  • a carrier such as a culture instrument
  • Proliferating “floating cells” (eg, blood cells) and “adherent cells” that adhere to and spread on the carrier surface are dispersed from the carrier with an appropriate dispersant such as EDTA-trypsin or dispase, and suspended temporarily. (For example, fibroblasts detached from the carrier with EDTA solution) and cells adhered to the carrier.
  • living organisms having a phospholipid bilayer on the surface such as liposomes, exosomes, bacteria, viruses, organelles, plant cells from which the cell walls have been removed (protoplasts).
  • a substance having lipid such as lipid-coated particles can also be immobilized.
  • the hydrophobic chain (a) in the photoresponsive cell fixing agent of the present invention is a site for binding with target cells and capturing the target cells.
  • a non-covalent interaction such as a hydrophobic interaction can be used.
  • the hydrophobic chain (a) can bind to a target cell by a hydrophobic interaction with a lipid moiety in a cell membrane or the like that is a lipid bilayer membrane.
  • the hydrophobic chain (a) is not particularly limited as long as it can bind to the target cell by hydrophobic interaction, but may be a saturated or unsaturated hydrocarbon chain which may have a substituent.
  • hydrocarbon chains include, for example, C 7-30 alkyl groups (preferably C 7-22 alkyl groups), C 6-14 aryl groups, C 6-14 aryl C 7-30 alkyl groups (preferably C 7 6-14 aryl C 7-22 alkyl group) and C 7-30 alkyl C 6-14 aryl group (preferably C 6-14 aryl C 7-22 alkyl group).
  • adjacent carbon atoms may be connected by 1 to 3 unsaturated bonds, C 7-30 alkyl group, and adjacent carbon atoms may be connected by 1 to 3 unsaturated bonds.
  • a C 7-22 alkyl group, or a C 11-22 alkyl group in which adjacent carbon atoms may be linked by 1 to 3 unsaturated bonds, or 1 to 3 unsaturated bonds in adjacent carbon atoms It may be a C 16-18 alkyl group which may be linked.
  • the hydrophobic chain (a) is a hexadecyl group, a heptadecyl group, an octadecyl (stearyl) group, a cis-9-hexadecenyl (palmitoleyl) group, a cis-8-heptadecenyl group, a trans-8-heptadecenyl group, a trans -9-octadecenyl (elaidyl) group, cis-9-octadecenyl (oleyl) group, cis, cis-9,12-octadecadienyl (linolenyl) group, (9E, 12E, 15E) -octadec-9,12 It can be a 15-trienyl (eridolinolenyl) group.
  • an oleyl group that is a part of the phospholipid constituting the cell membrane is
  • the hydrophilic chain (b) is preferably composed of a hydrophilic polymer.
  • hydrophilic polymers include polyalkylene glycol, polyvinyl alcohol, polyacrylic acid, polypeptides, polyacrylamide, and polysaccharides such as dextran, or polymers and copolymers of glycolic acid derivatives, lactic acid derivatives, and p-dioxane derivatives. Etc. can be used.
  • the polyalkylene glycol is preferably a polymer of oxyalkylene units having 2 to 4 carbon atoms, and those having an average polymerization number of 2 to 500 (preferably 45 to 500) can be used.
  • the hydrophilic polymer is preferably a biocompatible polymer, and more preferably polyethylene glycol (PEG).
  • the hydrophilic chain (b) may further have an arbitrary substituent.
  • the hydrophilic chain (b) has a functional group for linking to the surface of the base material by a covalent bond or the like (on the side opposite to the bonding position with the branched linker chain (c) in FIG. 1). It is preferable to have it at the terminal.
  • a terminal functional group for example, those shown below can be used (in the formula, the arrow represents the point of attachment to the hydrophilic chain (b)).
  • an active ester group such as N-hydroxysuccinimide (NHS), a carboxyl group, a silanol group, a disulfide group, or a thiol group can be used as the terminal functional group.
  • NHS N-hydroxysuccinimide
  • a carboxyl group e.g., a carboxyl group
  • a silanol group e.g., a silanol group
  • a disulfide group e.g., a thiol group
  • thiol group e.g., N-hydroxysuccinimide (NHS), a carboxyl group, a silanol group, a disulfide group, or a thiol group
  • an active ester group such as N-hydroxysuccinimide (NHS), a carboxyl group, a silanol group, a disulfide group, or a thiol group
  • an active ester group such as N-hydroxy
  • the branched linker chain (c) is arranged between the hydrophobic chain (a) and the hydrophilic chain (b) and connects them, and in addition, photoisomerization as a side chain. It is a branched structure having a site (d).
  • Linkage between the hydrophobic chain (a) and the hydrophilic chain (b) is, for example, shared amide bond, ester bond, ether bond, thioether bond, carbamate bond, thiocarbamate bond, triazole bond, urea bond, etc. Bonding can be used.
  • the connection between the hydrophobic chain (a) and the branched linker chain (c) and the connection between the hydrophilic chain (b) and the branched linker chain (c) may be the same different bonding modes. It can be a different binding mode.
  • the material constituting the branched linker chain (c) is not particularly limited as long as it can link the hydrophobic chain (a) and the hydrophilic chain (b). It has a repeating structure.
  • an amino acid residue capable of introducing a branch such as lysine, aspartic acid, glutamic acid, cysteine, serine, threonine, tyrosine, or a repeating structure thereof is preferable.
  • a lysine residue or a repeating structure thereof is particularly preferred.
  • materials constituting the branched linker chain (c) include trihydric alcohols such as glycerol; benzenetriols such as hydroxyquinol and benzenetricarboxylic acids; benzenetriamines; 4-aminosalicylic acid, etc.
  • trihydric alcohols such as glycerol
  • benzenetriols such as hydroxyquinol and benzenetricarboxylic acids
  • benzenetriamines 4-aminosalicylic acid, etc.
  • a benzene ring having three or more reactive functional groups can also be used.
  • a hydrophilic polymer can be used in the same manner as the hydrophilic chain (b).
  • the photoisomerization site (d) is present in the side chain of the branched linker chain (c) and has a chemical structure that can change from hydrophobic to hydrophilic by changing the structure by isomerization by light irradiation.
  • irradiation with light of a specific wavelength causes a reversible structural change caused by opening and closing of a cyclic structure, thereby changing the hydrophobicity of the chemical structure.
  • reversible causes a structural change such as ring opening (first isomerization reaction) by irradiation with light of a specific wavelength, and thereafter, light having a wavelength different from the specific wavelength.
  • a structural change occurs by re-irradiating or heating, and it is possible to return to the original closed ring structure.
  • the photoisomerization site (d) is subjected to the first isomerization reaction by irradiation with ultraviolet light, and then the second isomerization reaction is performed by irradiation with visible light or heating. It has a chemical structure that occurs.
  • log P logarithmic value of the distribution coefficient in the region excluding the hydrophilic chain (b) in the agent.
  • log P is a logarithmic value of the 1-octanol / water partition coefficient (P) of the compound, and the partition when the compound is dissolved as a solute in the two-liquid solvent system of 1-octanol and water.
  • log P is an index of hydrophobicity (lipophilicity). The larger the value, the more hydrophobic, and the smaller the value, the more hydrophilic.
  • an actual measured value or a calculated value of logP may be used. However, when there is an actual measured value, it is preferable to use the actual measured value.
  • the calculated value of logP is calculated by, for example, Hansch, Leo's fragment approach (A. Leo, Comprehensive Medicinal h Chemistry, Vol. , Eds., P.
  • the hydrophobic chain (a) When the logP is changed by photoisomerization of the photoisomerization site (d) in the photoresponsive cell fixing agent of the present invention to form a hydrophilic isomer structure, the hydrophobic chain (a)
  • the target cell when it can be immobilized in the cell, on the other hand, when it becomes a hydrophobic isomer structure, it becomes possible to control the operation of the target cell detaching from the photoresponsive cell fixing agent. . This is because, when the photoisomerization site (d) has a hydrophobic structure, the regions of the hydrophobic chain (a) are densely packed together to inhibit the interaction with the target cell.
  • the degree of freedom of the region of the hydrophobic chain (a) is increased, and it is considered that the interaction with the target cell occurs and can be immobilized.
  • the amount of change in the logarithmic value (logP) of the distribution coefficient in the region consisting of the hydrophobic chain (a) and the branched linker chain (c) due to isomerization of the photoisomerization site (d) is 0. .5 or more is preferable.
  • the amount of change is more preferably 0.8 or more, and particularly preferably 1.0 or more.
  • the logarithmic value (logP) of the partition coefficient in the surface has a hydrophobicity of 10 or more. That is, it is preferable that the logarithmic value (logP) of the partition coefficient of the isomer having higher hydrophobicity before and after the isomerization of the photoisomerization site (d) is 10 or more. More preferably, the logarithmic value (log P) of the partition coefficient of the more hydrophobic isomer is in the range of 10.5 to 11.0.
  • the photoresponsive cell fixing agent of the present invention has a change in logarithmic value (logP) of the partition coefficient due to isomerization of the photoisomerization site (d) of 0.5 or more; and
  • the logarithmic value (logP) of the partition coefficient in the case of a more hydrophobic isomer before and after the isomerization of the photoisomerization site (d) can be 10 or more.
  • Preferable examples that can be used as the photoisomerization site (d) that can provide such characteristics include, but are not limited to, those containing the structure of spiropyran or a derivative thereof. .
  • spiropyran has a relatively high hydrophobicity in the case of the closed ring structure on the left side of the formula, but the spiro ring portion is opened by a photoopening reaction upon irradiation with ultraviolet rays, and the open on the right side of the formula. It becomes a ring structure.
  • the ring-opened structure has an intramolecular charge by electrolysis and has hydrophilicity.
  • the hydrophobicity / hydrophilicity can be controlled by irradiation with light of a specific wavelength.
  • the photoisomerization site (d) preferably has a spiropyran-like structure represented by the following formula (I).
  • R 1 is a hydrogen atom or an alkyl group
  • R 2 is a C 1 -C 20 alkylene group
  • R A , R B , and R C may be the same or different and are each independently And a hydrogen atom, an alkyl group, an alkoxy group, or a nitro group
  • * is a binding moiety to the branched linker chain.
  • R 1 is preferably a hydrogen atom or a C 1 -C 6 alkyl group, preferably a hydrogen atom.
  • R 2 is preferably a C 5 to C 20 , more preferably a C 5 or C 6 linear alkylene group.
  • at least one of R A , R B , and R C is preferably a nitro group, and R C is more preferably a nitro group.
  • the “alkyl or alkyl group” may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited.
  • the number of carbon atoms is 1 to 20 (C 1-20 )
  • the number of carbons is 1 to 15 (C 1 to 15 )
  • the number of carbon atoms is 1 to 10 (C 1 to 10).
  • the alkyl group may have one or more arbitrary substituents.
  • C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included.
  • substituents examples include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these.
  • the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
  • alkylene is a divalent group consisting of a linear or branched saturated hydrocarbon, such as methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1 -Methyltrimethylene, 2-methyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1 -Diethyltrimethylene, 1,2-diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrime Len, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-d
  • a functional group when a functional group is defined as “may be substituted”, the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more When they have a substituent, they may be the same or different.
  • the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxy group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
  • photoresponsive cell fixing agent of the present invention include compounds having the following structures.
  • Sp represents the photoisomerization site (d); m is a natural number of 1 to 5; and n is a natural number of 50 to 500.
  • the compound comprises an oleyl group as the hydrophobic chain (a); a polyethylene glycol chain as the hydrophilic chain (b); a lysine residue as the branched linker chain (c); and a hydrophilic chain for binding to the substrate.
  • (B) has N-hydroxysuccinimide at the terminal.
  • m is 1 or 2.
  • Sp is preferably spiropyran or a derivative thereof, more preferably a structure represented by the above formula (I).
  • the present invention also relates to a cell immobilization substrate having a surface modified with the above-mentioned photoresponsive cell immobilization agent.
  • the surface structure of the cell immobilization substrate is obtained by binding a photoresponsive cell immobilizing agent directly to the substrate surface at the end of the hydrophilic chain (b) or via a coating layer described later. is there.
  • the photoresponsive cell fixing agent is preferably arranged in the form of a monolayer on the surface of the substrate.
  • the material and shape of the base material modified by the photoresponsive cell fixing agent are not particularly limited, and various appropriate base materials can be selected depending on the application.
  • the shape of the base material to be modified may be a substrate (plate or film, such as a glass slide, dish, microplate, microarray substrate, etc.), Colloidal), fibrous structures, tubes, containers (eg test tubes and vials).
  • Materials for the base material to be modified include glass; cement; ceramics or fine ceramics such as ceramics; polymer resins such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, and polymethyl methacrylate; biomaterials such as polypeptides and proteins; silicon; Examples include activated carbon; porous glass; porous ceramics; porous silicon; porous activated carbon; non-woven fabric; filter paper; membrane filter; Since the surface of the base material to be modified introduces amino groups, carboxyl groups, hydroxy groups, etc., it can be coated with a polymer such as polycation or treated with a silane coupling agent having a substituent introduced onto the surface of the base material. It may be applied or a reactive functional group may be introduced by plasma treatment.
  • the photoresponsive cell fixing agent may be modified by directly bonding to the substrate surface, or a coating layer is provided on the substrate surface, and the photoresponsive cell fixing agent is provided on the surface of the coating layer. Surface modification can also be performed by bonding.
  • a coating layer for example, collagen, bovine serum albumin (BSA), 3-aminopropyltriethoxysilane (APTES), or ovalbumin can be used.
  • the present invention provides a cell sorting technique for immobilizing and selectively recovering target cells using a cell immobilization substrate surface-modified with a photoresponsive cell immobilization agent.
  • the cell recovery method of the present invention includes the following steps: (I) irradiating the cell-immobilizing substrate surface-modified with the photoresponsive cell fixing agent of the present invention with light of a specific wavelength, and converting the photoisomerization site into a hydrophilic isomer structure; (Ii) a step of bringing a solution containing predetermined target cells into contact with the substrate for cell immobilization, and immobilizing the target cells on the substrate for cell immobilization; and (iii) the substrate for cell immobilization.
  • step (i) irradiation with light of a specific wavelength such as ultraviolet light is performed to isomerize the photoisomerization site, thereby increasing hydrophilicity and the target cell by the hydrophobic chain in the photoresponsive cell fixing agent. It is in a state where it can be fixed. For example, a ring-opened state having an intramolecular charge in the spiropyran structure corresponds to this.
  • a specific wavelength such as ultraviolet light
  • step (iii) irradiation of light such as visible light causes the photoisomerization site to have a hydrophobic structure, thereby eliminating the immobilization of the target cell by the hydrophobic chain. Can be selectively recovered at the single cell level.
  • the closed ring state in the spiropyran structure corresponds to this.
  • the photoresponsive cell fixing agent having the hydrophobic structure in the step (iii) can be re-irradiated with the light by re-irradiating the photoresponsive cell fixing agent, the following repetitive operation is performed. Can do. If the photoisomerization site has a spiropyran structure, the light irradiated in the step (i) is ultraviolet light; the light irradiated in the step (iii) is visible light. Is preferred.
  • a cell immobilization substrate can be installed in the microchannel.
  • a flux can be imparted to the surface of the substrate, and the target cells separated from the cell immobilization substrate can be recovered.
  • the target cells are continuously immobilized and recovered only by light irradiation without special treatment of the cell immobilization substrate itself. It becomes possible.
  • p-Butylaniline, 7-bromoheptanoic acid, 2-hydroxy-5-nitrobenzaldehyde, N ⁇ -Boc-L-lysine, N-hydroxysuccinimide (NHS), triethylamine (TEA), tin (II) chloride N, N ' -Diisopropylcarbodiimide (DIC), sodium iodide and hydrochloric acid were obtained from Wako Pure Chemical Industries. Normal PEG lipid (Oleyl-PEG-NHS, Sunbright OE-040CS) and bifunctional polyethylene glycol (H 2 N-PEG-COOH, Sunbright PA-034HC) were obtained from NOF. Trifluoroacetic acid (TFA) was obtained from Watanabe Chemical Industry. Dehydrated TEA was prepared by distillation.
  • Ba / F3 murine IL-3-dependent pro-B cell line K562 human erythroleukemia, Jurkat human T-cell leukemia and HeLa human epithelial cancer were obtained from RIKEN BioResource Center.
  • Enhanced green fluorescent protein (EGFP) -expressing Ba / F3 cells were prepared according to the literature.
  • RPMI-1640 medium was obtained from Wako Pure Chemical.
  • Fetal bovine serum is from Thermo Fisher Scientific.
  • Mouse interleukin (IL) -3,0.25% trypsin / EDTA solution and Dulbecco's modified Eagle medium were obtained from Gibco BRL. Penicillin / streptomycin and trypan blue staining solutions were obtained from Nacalai Tesque.
  • Collagen was obtained from Nitta Gelatin.
  • CalceinAM was obtained from Dojin Research Laboratory.
  • PBS- was purchased from Nissui Pharmaceutical.
  • Tetko et al., ALOGPS 2.1 (Tetko, IV; Gasteiger, J .; Todeschini, R .; Mauri, A .; Livingstone, D .; Ertl, P .; Palyulin, VA; Radchenko, EV Zefirov, NS; Makarenko, AS; et al. J. Comput. Aided. Mol. Des. 2005, 19 (6), 453-463).
  • Table 2 The results are shown in Table 2 below.
  • the log P value is greatly reduced by isomerization from the closed state (Closed form) to the open state (Open form), that is, the compound changes from hydrophobic to hydrophilic.
  • the difference in the log P value between the closed state (Closed form) and the open state (Open form) is 1.0 or more, and it was found that the hydrophobicity can be greatly changed by photoisomerization.
  • the log P value in the closed state (Closed form) is 10.00 or more, and has an appropriate hydrophobicity that does not inhibit the hydrophobic interaction with cells in the oleyl chain region (hydrophobic chain). I understood.
  • Substrate preparation The surface of a glass substrate was modified with a photoresponsive cell fixing agent by the following procedure.
  • the cells were washed once with 1 ml of TrisHCl (50 mM, pH 7.5), then 5 times with 2 ml of MQ, and allowed to stand in 1 ml of PBS-.
  • the cells prepared in (1) were immobilized on a substrate by the following procedure. After irradiating the dish surface with PBS (360 nm or 520 nm, 10 min) in PBS-, remove PBS-, add 200 ⁇ l of cell suspension and gently shake. The mixture was allowed to stand at room temperature for 10 min. After washing 3 times with 1.5 ml PBS-, 1.5 ml PBS- was added.
  • Cell preparation 5-1 Thaw, culture, and freeze cells The thawed serum-containing medium was warmed in a 37 ° C thermostatic bath, and the frozen cells were thawed in the thermostatic bath until some ice remained. As soon as it was completely dissolved, it was transferred to a 15 ml tube and diluted with 9 ml of medium. The supernatant was removed by centrifugation (190 G, 3 min, hereinafter the same), and the suspension was resuspended in 10 ml of medium and spread on a 100 mm dish. Cultivation Basically culturing in an incubator (37 ° C, 5% CO 2 ). The medium composition is as follows.
  • eGFP expression Ba / F3 RPMI (10% FBS), 1 ng / ml IL3 Passage Ba / F3 is only diluted with basic fresh medium. Frozen cells are collected in a 15 ml tube, washed once with clean medium, suspended in Cell Banker, dispensed in 0.5 or 1 ml aliquots, and stored at -80 ° C. Long-term storage samples were stored in liquid nitrogen.
  • the left side shows the result after ultraviolet irradiation (Open form), and the right side shows the result after visible light irradiation (closed form).
  • the number of cells was manually counted from an image taken with a confocal microscope.
  • the cells were fixed relatively strongly on the surface of the spiropyran derivative ring-opened by irradiation with ultraviolet light (360 nm), and conversely on the surface closed by irradiation with visible light (520 nm). It was observed that the cells were relatively weakly fixed. In particular, it was found that in the substrate using the compound 1d having the most excellent switching ability, the cells are fixed by irradiation with ultraviolet light, but the cells are not substantially fixed by irradiation with visible light. By optimizing the chemical structure of such a light-switching cell fixing agent, it was demonstrated that a surface capable of switching the cell fixing force can be obtained by irradiating light of different wavelengths.
  • Example 7 Immobilization with other cells
  • the Ba / F3 cells used in Example 1 were floating cells, but the same experiment was performed to show that other floating cells could be similarly reversibly immobilized (compound 1d was used).
  • the cells used were K562 cells and Jurkat cells, both of which are human leukemia-derived cell lines. Experiments were also performed on suspended adherent cells (HeLa cells (human cervical cancer-derived cell line)). The obtained results are shown in FIG. 6 ((a) K562 cells (b) Jurkat cells (c) HeLa cells). In the figure, “off” is the cell immobilization density after irradiation with visible light, and “on” is the cell immobilization density after ultraviolet irradiation. From the result of FIG. 6, it was demonstrated that reversible cell immobilization can be achieved for various cells by using the photoresponsive cell fixing agent of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[Problem] The present invention addresses the problem of developing a photoresponsive cell fixing agent that can be used repeatedly and continuously, and can selectively and reversibly control the fixing and releasing of cells by photostimulation, regardless of the targeted cell type. [Solution] A photoresponsive cell fixing agent for fixing prescribed target cells on a substrate, said photoresponsive cell fixing agent being characterized by having a hydrophobic chain that can interact with the target cells, a hydrophilic chain that can be arranged in a monomolecular film shape on a surface of the substrate, and a branched linker chain that links the hydrophobic chain and the hydrophilic chain, wherein the photoresponsive cell fixing agent has, on a side chain of the branched linker chain, a photoisomerization site that is isomerized by light irradiation and can change from hydrophobic to hydrophilic.

Description

光応答性細胞固定化剤Photoresponsive cell fixing agent
 本発明は、細胞固定化力に優れた光応答性細胞固定化剤、当該光応答性細胞固定化剤により修飾した表面を有する細胞固定化用基材、及び当該基材を用いる細胞回収方法に関する。 The present invention relates to a photoresponsive cell fixing agent having excellent cell fixing power, a cell immobilization substrate having a surface modified with the photoresponsive cell fixing agent, and a cell recovery method using the substrate. .
 近年、特定の細胞を一細胞ごとに操作する技術は、再生医療や一細胞解析の発展に伴って大きな注目を集めている。そのような単一細胞を操作するための技術としては、例えばマイクロマニピュレーター等を使用する機械的手法が汎用されているが、一度に多数の細胞を扱えないという欠点を持つ。そのため、外部刺激によって細胞を選択的に固定化および脱離できる刺激応答性表面を有する基板の開発が、ハイスループットに細胞を操作できる技術として期待されている。 In recent years, techniques for manipulating specific cells one by one have attracted a great deal of attention with the development of regenerative medicine and single cell analysis. As a technique for manipulating such a single cell, for example, a mechanical method using a micromanipulator or the like is widely used, but it has a drawback that a large number of cells cannot be handled at one time. Therefore, the development of a substrate having a stimulus-responsive surface that can selectively immobilize and detach cells by external stimulation is expected as a technique that can manipulate cells with high throughput.
 典型的には、このような刺激応答性基板を用いる技術では、刺激によって望みの場所に細胞を固定して並べ、表現型などの一細胞解析や遺伝子導入などの細胞加工を施すことができる。その後、目的とする細胞の位置にのみ網羅的に刺激を与えることで、目的とする表現型の細胞や目的の加工がされた細胞のみを一細胞レベルで選択的に脱離させて選別することが可能となる。 Typically, in such a technique using a stimulus-responsive substrate, cells can be fixed and arranged at a desired location by stimulation, and cell processing such as phenotype and other cell analysis and gene transfer can be performed. After that, only the target cell location is stimulated exhaustively, so that only the cells with the target phenotype or the target processed cells are selectively detached at the single cell level and selected. Is possible.
 さらに、刺激応答性の表面を有する基板を用いる手法の利点としては、従来の機械的手法と比較して、細胞を同時に並列処理することが圧倒的に簡便に行うことができるという点が挙げられる。また、このような基板表面をデバイスに組み込むことで、再生医療用細胞の高速大量自動調製が可能となり、或いは迅速かつ網羅的な自動一細胞診断が可能となるものと期待される。それゆえ、デバイス内で外部刺激に応じて繰り返し個々の細胞を固定および脱離できる基板表面の開発が求められている。 Furthermore, as an advantage of the technique using a substrate having a stimulus-responsive surface, it can be overwhelmingly simple to perform parallel processing of cells simultaneously as compared with a conventional mechanical technique. . Moreover, by incorporating such a substrate surface into the device, it is expected that high-speed and large-scale automatic preparation of cells for regenerative medicine will be possible, or quick and comprehensive automatic single-cell diagnosis will be possible. Therefore, there is a need for the development of a substrate surface that can repeatedly fix and detach individual cells in response to external stimuli within the device.
 外部刺激によって細胞を選択的に固定および脱離できる基板表面および基板表面作成技術は、利用する刺激の種類によって、以下の4つに大別できる:(1)光応答性の材料を用いる技術、(2)熱応答性の材料を用いる技術、(3)電気応答性の材料を用いる技術、(4)化学薬品や生体分子の添加などその他の刺激に応答する材料を用いる技術。ここで、(2)~(4)で用いられる外部刺激は、いずれも空間分解能が低く、単一細胞のみに刺激を与えることが困難であるため、一細胞レベルでの操作に用いることはできない。これに対し、(1)で用いられる外部刺激である光は、空間分解能が高く、単一細胞のみに照射することが可能であるという利点がある。したがって、上記の一細胞レベルでの操作が可能であり、かつ反復的な細胞固定化を可能とする光応答性基板表面の作成技術への応用が試みられている。しかし、光刺激を用いる既存の技術は接着性細胞にしか応用できず、細胞操作の主な対象となる懸濁状態の細胞や浮遊細胞を取り扱うことは出来ないという課題があった。 Substrate surfaces and substrate surface preparation techniques that can selectively fix and detach cells by external stimulation can be broadly classified into the following four types depending on the type of stimulation used: (1) Technology using photoresponsive materials, (2) Technology using a thermally responsive material, (3) Technology using an electrically responsive material, (4) Technology using a material that responds to other stimuli such as addition of chemicals and biomolecules. Here, all of the external stimuli used in (2) to (4) have low spatial resolution, and it is difficult to give stimuli only to a single cell, and therefore cannot be used for operation at the single cell level. . On the other hand, light, which is an external stimulus used in (1), has an advantage that it has a high spatial resolution and can irradiate only a single cell. Therefore, an application to a technique for producing a light-responsive substrate surface that can be manipulated at the level of one cell as described above and that allows repeated cell immobilization has been attempted. However, the existing technique using light stimulation can be applied only to adherent cells, and there is a problem that it cannot handle suspended cells and suspended cells, which are the main targets of cell manipulation.
 一方で、本願発明者らの研究グループでは、光分解性リンカーを介してポリエチレングリコール(PEG)と脂質とを連結させた化合物を用いることで、細胞の接着性に関わらず任意の細胞を操作できる光不活性型および光活性型の細胞固定化剤を報告している(非特許文献1)。しかしながら、当該細胞固定化剤では、光刺激による固定又は脱離のいずれか一度のみ用いることができるものであって、細胞の固定化と脱離を切り替えて反復継続的に操作することは実現できていなかった。 On the other hand, in the research group of the present inventors, any cell can be manipulated regardless of cell adhesion by using a compound in which polyethylene glycol (PEG) and lipid are linked via a photodegradable linker. A photoinactive type and a photoactive type cell fixing agent have been reported (Non-patent Document 1). However, the cell immobilization agent can be used only once for immobilization or detachment by light stimulation, and it is not possible to operate repeatedly by switching between immobilization and detachment of cells. It wasn't.
 かかる従来技術における課題に鑑み、本発明は、標的とする細胞種を問わず、光刺激により細胞の固定化と脱離を選択的かつ可逆的に制御することができ、反復継続的に用いることが可能な光応答性細胞固定化剤を開発することを課題とするものである。 In view of the problems in the prior art, the present invention can selectively and reversibly control cell immobilization and detachment by light stimulation regardless of the target cell type, and can be used repeatedly and continuously. It is an object of the present invention to develop a photoresponsive cell fixing agent that can be used.
 本発明者は、上記課題を解決するべく鋭意検討を行った結果、標的細胞と結合し得る疎水性部位と親水性部位を連結するリンカー部位に、側鎖として光異性化によって疎水性・親水性が変化し得る構造を導入した分岐型リンカーを有する分子を用いることで、特定波長の光を照射することによって任意の細胞を基板上に選択的に固定し、かつ別の波長の光を照射することによって選択的に取り外すことができ、これにより、二波長の光を交互に照射することによって標的細胞を繰り返し固定および脱離し得ることを見出し、本発明を完成するに至ったものである。 As a result of intensive studies to solve the above problems, the present inventor has made a hydrophobic / hydrophilic hydrophilic group by photoisomerization as a side chain to a linker site that connects a hydrophobic site capable of binding to a target cell and a hydrophilic site. By using a molecule having a branched linker into which a structure that can change is used, by selectively irradiating light of a specific wavelength, arbitrary cells are selectively fixed on the substrate and irradiated with light of another wavelength. Thus, it has been found that the target cells can be repeatedly fixed and detached by alternately irradiating light of two wavelengths, and the present invention has been completed.
 すなわち、本発明は、一態様において、
<1>所定の標的細胞を基材上に固定するための光応答性細胞固定化剤であって、前記標的細胞と相互作用し得る疎水性鎖、前記基材の表面に単分子膜状に配列し得る親水性鎖、及び前記疎水性鎖と親水性鎖を連結する分岐型リンカー鎖を有し、前記分岐型リンカー鎖の側鎖に、光照射によって異性化し、疎水性から親水性に変化し得る光異性化部位を有することを特徴とする該光応答性細胞固定化剤;
<2>前記光異性化部位の異性化による分配係数の対数値(logP)の変化量が、0.5以上である(ここで、当該分配係数は、疎水性鎖(a)と分岐型リンカー鎖(c)よりなる領域における分配係数の計算値である。)、上記<1>に記載に光応答性細胞固定化剤;
<3>前記光異性化部位の異性化前後における、より疎水性の高い異性体における分配係数の対数値(logP)が10以上である、上記<2>に記載に光応答性細胞固定化剤;
<4>前記光異性化部位が、スピロピラン又はその誘導体の構造を含む、上記<1>に記載の光応答性細胞固定化剤;
<5>前記光異性化部位が、以下の式(I)で表される構造を有する、上記<1>に記載の光応答性細胞固定化剤
Figure JPOXMLDOC01-appb-C000003

(式中、Rは、水素原子又はアルキル基であり;Rは、C~C20アルキレン基であり;R、R、及びRは、同一でも異なっていてもよく、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はニトロ基であり;*は、前記分岐型リンカー鎖への結合部分である。);
<6>Rが、C又はC直鎖アルキレン基であり;Rが、ニトロ基である、上記<5>に記載の光応答性細胞固定化剤;
<7>前記疎水性鎖が、置換基を有していてもよい飽和又は不飽和の炭化水素鎖である、上記<1>~<6>のいずれかに記載の光応答性細胞固定化剤;
<8>前記親水性鎖が、親水性ポリマーを含む、上記<1>~<7>のいずれかに記載の光応答性細胞固定化剤;
<9>前記親水性ポリマーが、ポリアルキレングリコールである、上記<8>に記載の光応答性細胞固定化剤;
<10>前記分岐型リンカー鎖が、アミノ酸残基又はその繰り返し構造を有する、上記<1>~<9>のいずれかに記載の光応答性細胞固定化剤;
<11>前記光異性化部位が、アミド結合によって前記分岐型リンカー鎖に連結している、上記<1>~<10>のいずれかに記載の光応答性細胞固定化剤;
<12>前記親水性鎖の末端に、前記基材の表面と共有結合により結合し得る置換基を有する、上記<1>~<11>のいずれかに記載の光応答性細胞固定化剤;及び
<13>以下の構造を有する、上記<1>に記載の光応答性細胞固定化剤
Figure JPOXMLDOC01-appb-C000004
(式中、Spは、前記光異性化部位を表し;mは、1~5の自然数であり;nは、50~500の自然数である。)
を提供するものである。
That is, the present invention in one aspect,
<1> A photoresponsive cell immobilizing agent for immobilizing a predetermined target cell on a substrate, a hydrophobic chain capable of interacting with the target cell, and a monomolecular film on the surface of the substrate It has a hydrophilic chain that can be arranged, and a branched linker chain that connects the hydrophobic chain and the hydrophilic chain. The side chain of the branched linker chain is isomerized by light irradiation and changes from hydrophobic to hydrophilic. A photoresponsive cell fixing agent characterized by having a photoisomerization site capable of
<2> The amount of change in the logarithmic value (logP) of the distribution coefficient due to the isomerization of the photoisomerization site is 0.5 or more (where the distribution coefficient includes the hydrophobic chain (a) and the branched linker) A calculated value of the partition coefficient in the region consisting of the chain (c)), the photoresponsive cell fixing agent according to <1>above;
<3> The photoresponsive cell fixing agent according to the above <2>, wherein a logarithmic value (logP) of a partition coefficient in a more hydrophobic isomer before and after isomerization of the photoisomerization site is 10 or more. ;
<4> The photoresponsive cell fixing agent according to <1>, wherein the photoisomerization site includes a structure of spiropyran or a derivative thereof;
<5> The photoresponsive cell fixing agent according to <1>, wherein the photoisomerization site has a structure represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 is a hydrogen atom or an alkyl group; R 2 is a C 1 to C 20 alkylene group; R A , R B , and R C may be the same or different; Independently a hydrogen atom, an alkyl group, an alkoxy group, or a nitro group; * is a binding moiety to the branched linker chain);
<6> The photoresponsive cell fixing agent according to <5>, wherein R 2 is a C 5 or C 6 linear alkylene group; and R C is a nitro group;
<7> The photoresponsive cell fixing agent according to any one of the above <1> to <6>, wherein the hydrophobic chain is a saturated or unsaturated hydrocarbon chain which may have a substituent. ;
<8> The photoresponsive cell fixing agent according to any one of <1> to <7>, wherein the hydrophilic chain includes a hydrophilic polymer;
<9> The photoresponsive cell fixing agent according to <8>, wherein the hydrophilic polymer is polyalkylene glycol;
<10> The photoresponsive cell fixing agent according to any one of the above <1> to <9>, wherein the branched linker chain has an amino acid residue or a repeating structure thereof;
<11> The photoresponsive cell fixing agent according to any one of <1> to <10>, wherein the photoisomerization site is linked to the branched linker chain through an amide bond;
<12> The photoresponsive cell fixing agent according to any one of the above <1> to <11>, which has a substituent capable of being covalently bonded to the surface of the base material at the end of the hydrophilic chain; And <13> the photoresponsive cell fixing agent according to <1>, which has the following structure:
Figure JPOXMLDOC01-appb-C000004
(In the formula, Sp represents the photoisomerization site; m is a natural number of 1 to 5; and n is a natural number of 50 to 500.)
Is to provide.
 また、別の態様において、本発明は、
<14>上記<1>~<13>のいずれかに記載の光応答性細胞固定化剤によって修飾された表面を有する、細胞固定化用基材
を提供するものである。
In another aspect, the present invention provides:
<14> A cell immobilization substrate having a surface modified with the photoresponsive cell immobilizing agent according to any one of <1> to <13>.
 さらなる態様において、本発明は、
<15>(i)上記<14>に記載の細胞固定化用基材に特定波長の光を照射し、前記光異性化部位を親水性の異性体構造に変換する工程、
(ii)前記細胞固定化用基材に所定の標的細胞を含む溶液を接触させ、前記細胞固定化用基材に前記標的細胞を固定化する工程、及び
(iii)前記細胞固定化用基材に前記工程(i)とは異なる波長の光を照射し、前記光異性化部位を疎水性の異性体構造に変換することで、前記固定化された標的細胞を前記細胞固定化用基材から分離・回収する工程、
を含む、細胞回収方法;
<16>前記工程(i)~(iii)を複数回繰り返すことを含む、上記<15>に記載の細胞の回収方法;
<17>前記工程(i)において照射される光が、紫外光であり;前記工程(iii)において照射される光が、可視光である、上記<15>又は<16>に記載の細胞回収方法を提供するものである。
In a further aspect, the invention provides:
<15> (i) irradiating the cell immobilization substrate according to <14> above with light of a specific wavelength, and converting the photoisomerization site into a hydrophilic isomer structure;
(Ii) a step of bringing a solution containing predetermined target cells into contact with the substrate for cell immobilization, and immobilizing the target cells on the substrate for cell immobilization; and (iii) the substrate for cell immobilization. Is irradiated with light having a wavelength different from that in the step (i), and the photoisomerization site is converted into a hydrophobic isomer structure, whereby the immobilized target cells are removed from the cell immobilization substrate. Separation / recovery process,
A cell recovery method comprising:
<16> The method for recovering cells according to the above <15>, comprising repeating the steps (i) to (iii) a plurality of times;
<17> The cell collection according to <15> or <16>, wherein the light irradiated in the step (i) is ultraviolet light; and the light irradiated in the step (iii) is visible light A method is provided.
 本発明の光応答性細胞固定化剤によれば、光照射による光異性化部位の構造変化により疎水性及び親水性を可逆的に変化させることで、標的とする細胞種を問わず、光刺激による細胞の固定化と脱離を一細胞レベルで選択的に制御することができる。そして、二波長の光を交互に照射する光スイッチングによって、かかる光応答性の細胞の固定化・脱離の工程を繰り返し反復継続的に行うことが可能となる。 According to the photoresponsive cell immobilizing agent of the present invention, by reversibly changing the hydrophobicity and hydrophilicity by the structural change of the photoisomerization site by light irradiation, it is possible to stimulate light regardless of the target cell type. Can be selectively controlled at the single cell level. Then, the optical responsive cell immobilization / detachment process can be repeatedly and continuously performed by optical switching in which two wavelengths of light are alternately irradiated.
 本発明は、多数の細胞から迅速に、かつ正確に目的の細胞のみを選別する新しい強力な手法になるため、細胞生物学分野の基礎研究や製薬企業における抗体選択や創薬ターゲットの探索研究において、幅広く応用されることが期待できる。 Since the present invention is a new and powerful method for quickly and accurately selecting only the target cells from a large number of cells, it can be used in basic research in the field of cell biology, antibody selection in pharmaceutical companies, and discovery research for drug discovery targets. Can be expected to be widely applied.
図1は、本発明の光応答性細胞固定化剤の全体構造を示す模式図である。FIG. 1 is a schematic diagram showing the overall structure of the photoresponsive cell fixing agent of the present invention. 図2は、本発明の光応答性細胞固定化剤を修飾した基板について、光照射に伴う細胞固定化密度を示すグラフである。(a)化合物1、(b)化合物1b、(c)化合物1c、(d)化合物1d、及び(e)化合物1e。FIG. 2 is a graph showing the cell immobilization density accompanying light irradiation for the substrate modified with the photoresponsive cell fixing agent of the present invention. (A) Compound 1, (b) Compound 1b, (c) Compound 1c, (d) Compound 1d, and (e) Compound 1e. 図3は、本発明の光応答性細胞固定化剤(化合物1d)を修飾した基板について、細胞固定化後に可視光を照射した場合の細胞固定化密度の変化を示すグラフである。FIG. 3 is a graph showing changes in cell immobilization density when a substrate modified with the photoresponsive cell immobilization agent (compound 1d) of the present invention is irradiated with visible light after cell immobilization. 図4は、本発明の光応答性細胞固定化剤(化合物1d)を修飾した基板について、光照射による細胞の固定と脱離の繰り返し操作時の細胞固定化数を示すグラフである。FIG. 4 is a graph showing the number of cell immobilization during the repeated operations of cell immobilization and detachment by light irradiation for a substrate modified with the photoresponsive cell immobilizing agent (compound 1d) of the present invention. 図5は、本発明の光応答性細胞固定化剤(化合物1d)を修飾した基板について、紫外光と可視光をそれぞれ照射した表面上での細胞の蛍光顕微鏡像である。FIG. 5 is a fluorescence microscopic image of cells on the surface irradiated with ultraviolet light and visible light, respectively, on a substrate modified with the photoresponsive cell fixing agent (compound 1d) of the present invention. 図6は、本発明の光応答性細胞固定化剤(化合物1d)を修飾した基板について、光照射による細胞の固定と脱離の繰り返し操作を様々な細胞で行った際の細胞固定化数を示すグラフである(off: 可視光照射後、on: 紫外光照射後)。(a)K562細胞、(b)Jurkat細胞、(c)HeLa細胞。FIG. 6 shows the number of cell immobilizations when various operations are performed on cells modified with a light-responsive cell immobilization agent (compound 1d) of the present invention by repeatedly repeating cell immobilization and detachment by light irradiation. (Off: after irradiation with visible light, on: after irradiation with ultraviolet light). (A) K562 cells, (b) Jurkat cells, (c) HeLa cells. 図7は、本発明の光応答性細胞固定化剤(化合物1d)を修飾した基板上に細胞を固定し、その後、可視光の照射によって取り外した細胞の生存率(Released)と、同じ時間、PBS中においたコントロールの細胞の生存率(Pos. Ctrl.)を示すグラフである。FIG. 7 shows the same time as the survival rate (Released) of the cells immobilized on the substrate modified with the photoresponsive cell fixing agent (compound 1d) of the present invention and then removed by irradiation with visible light. It is a graph which shows the survival rate (Pos. Ctrl.) Of a control cell in PBS.
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
1.光応答性細胞固定化剤
 本発明の光応答性細胞固定化剤は、
(a)標的細胞と相互作用して当該細胞と結合する機能を有する疎水性鎖、
(b)基材の表面に単分子膜状に配列し得る親水性鎖、及び
(c)これら疎水性鎖と親水性鎖を連結するためのリンカーとして、側鎖を備えた分岐構造を有する分岐型リンカー鎖を有し、さらに、当該分岐型リンカー鎖の側鎖に、光照射によって異性化し、疎水性から親水性に変化し得る光異性化部位(d)を有することを特徴とする。
1. Photoresponsive cell fixing agent The photoresponsive cell fixing agent of the present invention comprises:
(A) a hydrophobic chain having a function of interacting with a target cell and binding to the cell;
(B) a hydrophilic chain that can be arranged in the form of a monomolecular film on the surface of the substrate, and (c) a branch having a branched structure with a side chain as a linker for connecting the hydrophobic chain and the hydrophilic chain. And a photoisomerization site (d) which can be isomerized by irradiation with light and change from hydrophobic to hydrophilic in the side chain of the branched linker chain.
 本発明の光応答性細胞固定化剤の全体構造を図1に示す。各部位の連結は、例えば、アミド結合やエステル結合、エーテル結合、チオエーテル結合、カルバメート結合、チオカルバメート結合、トリアゾール結合、尿素結合等の共有結合を用いることができる。なお、分岐型リンカー鎖(c)における光異性化部位(側鎖)は、アミド結合によって前記分岐型リンカー鎖(の主鎖)に連結していることが好ましい。 FIG. 1 shows the entire structure of the photoresponsive cell fixing agent of the present invention. For the connection of each site, for example, a covalent bond such as an amide bond, an ester bond, an ether bond, a thioether bond, a carbamate bond, a thiocarbamate bond, a triazole bond, or a urea bond can be used. In addition, it is preferable that the photoisomerization site (side chain) in the branched linker chain (c) is connected to the branched linker chain (its main chain) by an amide bond.
 本発明の光応答性細胞固定化剤は、典型的には、親水性鎖(b)の末端で基材表面に直接或いは後述の被覆層を介して結合することで、基材表面を修飾して用いられる。この場合、光応答性細胞固定化剤は、好ましくは、基材の表面に単分子膜状に配列される。一方、疏水性鎖(a)は、疎水性相互作用等の相互作用によって標的細胞と結合・捕捉することができる。これにより、基材表面の特定領域に標的細胞を固定化することができる。また、基材表面における所望の領域に特定波長の光照射を行うことで、分岐型リンカー鎖(c)の側鎖における光異性化部位(d)を光異性化によって構造変化させ、その疎水性を変化させることにより、標的細胞を基材表面から選択的に分離し、回収することができる。さらに、再度、基材表面に特定波長の光照射を行うことで、再度の光異性化により光異性化部位(d)を当初の構造に戻すことができ、細胞の固定化と分離・回収を繰り返し実施することが可能となる。 The photoresponsive cell fixing agent of the present invention typically modifies the substrate surface by binding to the substrate surface directly or via a coating layer described later at the end of the hydrophilic chain (b). Used. In this case, the photoresponsive cell fixing agent is preferably arranged in the form of a monolayer on the surface of the substrate. On the other hand, the hydrophobic chain (a) can be bound to and captured by the target cell by an interaction such as a hydrophobic interaction. Thereby, a target cell can be fixed to the specific area | region of the base-material surface. In addition, by irradiating a desired region on the surface of the substrate with light of a specific wavelength, the photoisomerization site (d) in the side chain of the branched linker chain (c) is structurally changed by photoisomerization, and its hydrophobicity By changing, the target cells can be selectively separated from the surface of the substrate and recovered. Furthermore, by irradiating the substrate surface with light of a specific wavelength again, the photoisomerization site (d) can be returned to the original structure by re-photoisomerization, and cell immobilization and separation / recovery can be performed. It becomes possible to carry out repeatedly.
 ここで、「細胞」には、動物細胞、植物細胞、昆虫細胞、原核細胞、真菌細胞などを含むことができ、一般に培養器具等の担体表面に接着・伸展せず、懸濁または沈殿状態で増殖する「浮遊細胞」と呼ばれるもの(例えば血球細胞)や、担体表面に接着・伸展する「接着細胞」をEDTA-トリプシン、ディスパーゼ等の適当な分散剤で担体から分散させ、一時的に浮遊させたもの(例えばEDTA液で担体から剥離した線維芽細胞)、および担体に接着した状態の細胞を含む。また、リポソーム、エキソソーム、細菌、ウィルス、オルガネラ、細胞壁を除去した植物細胞(プロトプラスト)等の表面にリン脂質二重膜を有する生命体も含まれる。また、本発明の光応答性細胞固定化剤によれば、これら以外にも、脂質コート粒子など脂質を有する物質を固定化することもできる。 Here, the “cell” can include an animal cell, a plant cell, an insect cell, a prokaryotic cell, a fungal cell, and the like, and generally does not adhere or extend to the surface of a carrier such as a culture instrument, and is in a suspended or precipitated state. Proliferating “floating cells” (eg, blood cells) and “adherent cells” that adhere to and spread on the carrier surface are dispersed from the carrier with an appropriate dispersant such as EDTA-trypsin or dispase, and suspended temporarily. (For example, fibroblasts detached from the carrier with EDTA solution) and cells adhered to the carrier. Also included are living organisms having a phospholipid bilayer on the surface, such as liposomes, exosomes, bacteria, viruses, organelles, plant cells from which the cell walls have been removed (protoplasts). In addition, according to the photoresponsive cell fixing agent of the present invention, a substance having lipid such as lipid-coated particles can also be immobilized.
 本発明の光応答性細胞固定化剤における疎水性鎖(a)は、標的細胞と相互作用により結合し、当該標的細胞を捕捉するための部位である。かかる相互作用としては、疎水性相互作用等の非共有結合的な相互作用を用いることができる。具体的には、疎水性鎖(a)は、脂質二分子膜である細胞膜等における脂質部分との疎水性相互作用によって標的細胞と結合することができる。 The hydrophobic chain (a) in the photoresponsive cell fixing agent of the present invention is a site for binding with target cells and capturing the target cells. As such an interaction, a non-covalent interaction such as a hydrophobic interaction can be used. Specifically, the hydrophobic chain (a) can bind to a target cell by a hydrophobic interaction with a lipid moiety in a cell membrane or the like that is a lipid bilayer membrane.
 疎水性鎖(a)は、疎水性相互作用により標的細胞に結合できるものである限り特に限定されないが、置換基を有していてもよい飽和又は不飽和の炭化水素鎖であることができる。かかる炭化水素鎖の例示としては、例えば、C7-30アルキル基(好ましくはC7-22アルキル基)、C6-14アリール基、C6-14アリールC7-30アルキル基(好ましくはC6-14アリールC7-22アルキル基)、及びC7-30アルキルC6-14アリール基(好ましくはC6-14アリールC7-22アルキル基)などが挙げられる。好ましくは、隣接する炭素原子が1~3個の不飽和結合によって連結されていてもよいC7-30アルキル基、隣接する炭素原子が1~3個の不飽和結合によって連結されていてもよいC7-22アルキル基、又は隣接する炭素原子が1~3個の不飽和結合によって連結されていてもよいC11-22アルキル基、又は隣接する炭素原子が1~3個の不飽和結合によって連結されていてもよいC16-18アルキル基であることができる。より好ましくは、疎水性鎖(a)は、ヘキサデシル基、ヘプタデシル基、オクタデシル(ステアリル)基、シス-9-ヘキサデセニル(パルミトレイル)基、シス-8-ヘプタデセニル基、トランス-8-ヘプタデセニル基、トランス-9-オクタデセニル(エライジル)基、シス-9-オクタデセニル(オレイル)基、シス,シス-9,12-オクタデカジエニル(リノレニル)基、(9E,12E,15E)-オクタデカ-9,12,15-トリエニル(エライドリノレニル)基であることができる。特に、細胞膜を構成するリン脂質の一部であるオレイル基が好ましい。さらに、これらの疎水性鎖は、任意の置換基で置換されていてもよく、またN、S、O等のヘテロ原子を含んでもよい。 The hydrophobic chain (a) is not particularly limited as long as it can bind to the target cell by hydrophobic interaction, but may be a saturated or unsaturated hydrocarbon chain which may have a substituent. Examples of such hydrocarbon chains include, for example, C 7-30 alkyl groups (preferably C 7-22 alkyl groups), C 6-14 aryl groups, C 6-14 aryl C 7-30 alkyl groups (preferably C 7 6-14 aryl C 7-22 alkyl group) and C 7-30 alkyl C 6-14 aryl group (preferably C 6-14 aryl C 7-22 alkyl group). Preferably, adjacent carbon atoms may be connected by 1 to 3 unsaturated bonds, C 7-30 alkyl group, and adjacent carbon atoms may be connected by 1 to 3 unsaturated bonds. A C 7-22 alkyl group, or a C 11-22 alkyl group in which adjacent carbon atoms may be linked by 1 to 3 unsaturated bonds, or 1 to 3 unsaturated bonds in adjacent carbon atoms It may be a C 16-18 alkyl group which may be linked. More preferably, the hydrophobic chain (a) is a hexadecyl group, a heptadecyl group, an octadecyl (stearyl) group, a cis-9-hexadecenyl (palmitoleyl) group, a cis-8-heptadecenyl group, a trans-8-heptadecenyl group, a trans -9-octadecenyl (elaidyl) group, cis-9-octadecenyl (oleyl) group, cis, cis-9,12-octadecadienyl (linolenyl) group, (9E, 12E, 15E) -octadec-9,12 It can be a 15-trienyl (eridolinolenyl) group. In particular, an oleyl group that is a part of the phospholipid constituting the cell membrane is preferable. Furthermore, these hydrophobic chains may be substituted with an arbitrary substituent, and may contain heteroatoms such as N, S, and O.
 親水性鎖(b)は、好ましくは、親水性ポリマーにより構成される。かかる親水性ポリマーとしては、ポリアルキレングリコール、ポリビニルアルコール、ポリアクリル酸、ポリペプチド、ポリアクリルアミド、およびデキストラン等の多糖類、あるいはグリコール酸誘導体や乳酸誘導体、p-ジオキサン誘導体の重合体や共重合体等を用いることができる。ポリアルキレングリコールとしては、好ましくは炭素数2~4のオキシアルキレン単位の重合体であり、その平均重合数が2~500(好ましくは、45~500)の範囲であるものを用いることができる。当該親水性ポリマーは、生体適合性のポリマーであることが好ましく、ポリエチレングリコール(PEG)であることがより好ましい。親水性鎖(b)は、さらに任意の置換基を有していてもよい。 The hydrophilic chain (b) is preferably composed of a hydrophilic polymer. Examples of such hydrophilic polymers include polyalkylene glycol, polyvinyl alcohol, polyacrylic acid, polypeptides, polyacrylamide, and polysaccharides such as dextran, or polymers and copolymers of glycolic acid derivatives, lactic acid derivatives, and p-dioxane derivatives. Etc. can be used. The polyalkylene glycol is preferably a polymer of oxyalkylene units having 2 to 4 carbon atoms, and those having an average polymerization number of 2 to 500 (preferably 45 to 500) can be used. The hydrophilic polymer is preferably a biocompatible polymer, and more preferably polyethylene glycol (PEG). The hydrophilic chain (b) may further have an arbitrary substituent.
 親水性鎖(b)は、上述のように、共有結合等により基材表面に連結するための官能基をその末端(図1における分岐型リンカー鎖(c)との結合位置とは反対側の末端)に有することが好ましい。そのような末端の官能基としては、例えば、以下に示すものを用いることができる(式中、矢印は親水性鎖(b)への結合点を表している)。
Figure JPOXMLDOC01-appb-C000005
As described above, the hydrophilic chain (b) has a functional group for linking to the surface of the base material by a covalent bond or the like (on the side opposite to the bonding position with the branched linker chain (c) in FIG. 1). It is preferable to have it at the terminal. As such a terminal functional group, for example, those shown below can be used (in the formula, the arrow represents the point of attachment to the hydrophilic chain (b)).
Figure JPOXMLDOC01-appb-C000005
 好ましくは、末端の官能基は、N-ヒドロキシスクシンイミド(NHS)等の活性エステル基、カルボキシル基、シラノール基、ジスルフィド基、又はチオール基を用いることができる。後述のように、基材表面にコラーゲン等の被覆層を用いる場合には、これら被覆層と結合し得る官能基を用いることができ、例えば、コラーゲン被覆層の場合には、コラーゲン中のアミノ基と共有結合し得る活性エステル基が好ましく、特にNHS基を有することが好ましい。 Preferably, an active ester group such as N-hydroxysuccinimide (NHS), a carboxyl group, a silanol group, a disulfide group, or a thiol group can be used as the terminal functional group. As will be described later, when a coating layer such as collagen is used on the substrate surface, functional groups capable of binding to these coating layers can be used. For example, in the case of a collagen coating layer, an amino group in collagen is used. An active ester group that can be covalently bonded to the olefin group is preferable, and an NHS group is particularly preferable.
 分岐型リンカー鎖(c)は、上述のように、疎水性鎖(a)と親水性鎖(b)との間に配置され、これらを連結するとともに、それに加えて、側鎖として光異性化部位(d)を有する分岐型の構造であることを特徴とする。疎水性鎖(a)及び親水性鎖(b)との連結は、いずれも、例えば、アミド結合やエステル結合、エーテル結合、チオエーテル結合、カルバメート結合、チオカルバメート結合、トリアゾール結合、尿素結合等の共有結合を用いることができる。なお、疎水性鎖(a)と分岐型リンカー鎖(c)との連結、及び、親水性鎖(b)と分岐型リンカー鎖(c)との連結は、同一の異なる結合様式であってもよいし、異なる結合様式であることもできる。 As described above, the branched linker chain (c) is arranged between the hydrophobic chain (a) and the hydrophilic chain (b) and connects them, and in addition, photoisomerization as a side chain. It is a branched structure having a site (d). Linkage between the hydrophobic chain (a) and the hydrophilic chain (b) is, for example, shared amide bond, ester bond, ether bond, thioether bond, carbamate bond, thiocarbamate bond, triazole bond, urea bond, etc. Bonding can be used. The connection between the hydrophobic chain (a) and the branched linker chain (c) and the connection between the hydrophilic chain (b) and the branched linker chain (c) may be the same different bonding modes. It can be a different binding mode.
 分岐型リンカー鎖(c)を構成する材料は、疎水性鎖(a)と親水性鎖(b)を連結し得るものであれば特に制限されることはないが、好ましくは、アミノ酸残基又はその繰り返し構造を有する。例えば、リシン、アスパラギン酸、グルタミン酸、システイン、セリン、スレオニン、チロシンなどの分岐を導入可能なアミノ酸残基又はその繰り返し構造であることが好ましい。リシン残基又はその繰り返し構造が特に好ましい。或いは、これらアミノ酸残基以外にも、分岐型リンカー鎖(c)を構成する材料として、グリセロールなどの3価アルコール;ヒドロキシキノールなどのベンゼントリオールやベンゼントリカルボン酸;ベンゼントリアミン;4-アミノサリチル酸などの3つ以上の反応性官能基を有するベンゼン環を用いることもできる。場合によっては、親水性鎖(b)と同様に、親水性ポリマーを用いることもできる。 The material constituting the branched linker chain (c) is not particularly limited as long as it can link the hydrophobic chain (a) and the hydrophilic chain (b). It has a repeating structure. For example, an amino acid residue capable of introducing a branch such as lysine, aspartic acid, glutamic acid, cysteine, serine, threonine, tyrosine, or a repeating structure thereof is preferable. A lysine residue or a repeating structure thereof is particularly preferred. Alternatively, in addition to these amino acid residues, materials constituting the branched linker chain (c) include trihydric alcohols such as glycerol; benzenetriols such as hydroxyquinol and benzenetricarboxylic acids; benzenetriamines; 4-aminosalicylic acid, etc. A benzene ring having three or more reactive functional groups can also be used. In some cases, a hydrophilic polymer can be used in the same manner as the hydrophilic chain (b).
 光異性化部位(d)は、上記分岐型リンカー鎖(c)の側鎖に存在し、光照射による異性化によって構造変化をすることで、疎水性から親水性に変化し得る化学構造を有するものである。典型的には、かかる光異性化としては、特定波長の光の照射によって、環状構造が開環・閉環することによる可逆的な構造変化を生じさせ、これにより、当該化学構造の疎水性に変化を生じさせる場合を挙げることができる。ここで、「可逆的な」とは、特定波長の光の照射により開環等の構造変化(1回目の異性化反応)を生じさせるが、その後、さらに、当該特定波長とは異なる波長の光を再度照射すること又は熱を加えることによって構造変化(2回目の異性化反応)が発生し、当初の閉環構造に復帰することが可能であることを意味する。典型的な例としては、光異性化部位(d)は、紫外線の照射により1回目の異性化反応が起こり、その後、可視光を照射すること又は熱を加えることにより2回目の異性化反応が起こるような化学構造を有する。 The photoisomerization site (d) is present in the side chain of the branched linker chain (c) and has a chemical structure that can change from hydrophobic to hydrophilic by changing the structure by isomerization by light irradiation. Is. Typically, in such photoisomerization, irradiation with light of a specific wavelength causes a reversible structural change caused by opening and closing of a cyclic structure, thereby changing the hydrophobicity of the chemical structure. Can be mentioned. Here, “reversible” causes a structural change such as ring opening (first isomerization reaction) by irradiation with light of a specific wavelength, and thereafter, light having a wavelength different from the specific wavelength. It is meant that a structural change (second isomerization reaction) occurs by re-irradiating or heating, and it is possible to return to the original closed ring structure. As a typical example, the photoisomerization site (d) is subjected to the first isomerization reaction by irradiation with ultraviolet light, and then the second isomerization reaction is performed by irradiation with visible light or heating. It has a chemical structure that occurs.
 光異性化部位(d)の光異性化により、疎水性鎖(a)と分岐型リンカー鎖(c)(光異性化部位(d)を含む)よりなる領域(すなわち、光応答性細胞固定化剤における親水性鎖(b)を除く領域)における分配係数の対数値(logP)が当該光異性化の前後において一定量変化することが望ましい。ここで、「logP」とは、化合物の1-オクタノール/水の分配係数(P)の対数値であり、1-オクタノールと水の2液相の溶媒系に化合物が溶質として溶け込んだときの分配平衡において、それぞれの溶媒中での溶質の平衡濃度の比を意味し、底10に対する対数の形で一般的に示される。このlogPは疎水性(親油性)の指標であり、この値が大きいほど疎水的であり、値が小さいほど親水的である。本発明においては、logPの実測値又は計算値のいずれを用いてもよいが、実測値がある場合には実測値を用いることが好ましい。なお、logPの計算値は、例えば、Hansch,Leoのフラグメントアプローチ(A.Leo, Comprehensive Medicinal Chemistry, Vol.4, C.Hansch, P.G.Sammens, J.B.Taylor and C.A.Ramsden,Eds., p.295, Pergamon Press, 1990)により、プログラム“CLOGP”(Daylight Chemical Information Systems, Inc.)により算出され得ることが知られている。また、計算プログラムALOGPS 2.1(Tetko, I. V.ら、 J. Comput. Aided. Mol. Des.、 2005、 19 (6)、 453‐463)を用いてlogPの計算値を算出することもできる。 By photoisomerization of the photoisomerization site (d), a region consisting of a hydrophobic chain (a) and a branched linker chain (c) (including the photoisomerization site (d)) (that is, photoresponsive cell immobilization) It is desirable that the logarithmic value (log P) of the distribution coefficient in the region excluding the hydrophilic chain (b) in the agent is changed by a certain amount before and after the photoisomerization. Here, “log P” is a logarithmic value of the 1-octanol / water partition coefficient (P) of the compound, and the partition when the compound is dissolved as a solute in the two-liquid solvent system of 1-octanol and water. In equilibrium, it means the ratio of the equilibrium concentration of solutes in each solvent and is generally indicated in logarithmic form relative to the base 10. This log P is an index of hydrophobicity (lipophilicity). The larger the value, the more hydrophobic, and the smaller the value, the more hydrophilic. In the present invention, either an actual measured value or a calculated value of logP may be used. However, when there is an actual measured value, it is preferable to use the actual measured value. Note that the calculated value of logP is calculated by, for example, Hansch, Leo's fragment approach (A. Leo, Comprehensive Medicinal h Chemistry, Vol. , Eds., P. 295, Pergamon Press, 1990), it is known that the program “CLOGP” (Daylight Chemical f Information y Systems, Inc.) can be calculated. Also, calculate the calculated value of logP using the calculation program ALOGPS 2.1 (Tetko, I. V. et al., J. Comput. Aided Mol. Des., 2005, 19 (6),) 453-463). You can also.
 本発明の光応答性細胞固定化剤における光異性化部位(d)の光異性化によってかかるlogPが変化することにより、親水性の異性体構造となった場合には、疎水性鎖(a)において標的細胞が固定化され得る状態となり、一方、疎水性の異性体構造となった場合には、当該標的細胞が光応答性細胞固定化剤から離脱するという操作を制御することが可能となる。これは、光異性化部位(d)が疎水性構造の場合には、疎水性鎖(a)の領域が互い密集して標的細胞との相互作用が阻害されるが、一方、光異性化部位(d)が親水性構造となった場合には、疎水性鎖(a)の領域の自由度が高まり、標的細胞との相互作用が生じ、固定化することができることによるものと考えられる。かかる制御の観点から、光異性化部位(d)の異性化による、疎水性鎖(a)と分岐型リンカー鎖(c)よりなる領域における分配係数の対数値(logP)の変化量が、0.5以上であることが好ましい。当該変化量は、より好ましくは、0.8以上、特に好ましくは、1.0以上である。 When the logP is changed by photoisomerization of the photoisomerization site (d) in the photoresponsive cell fixing agent of the present invention to form a hydrophilic isomer structure, the hydrophobic chain (a) On the other hand, when the target cell can be immobilized in the cell, on the other hand, when it becomes a hydrophobic isomer structure, it becomes possible to control the operation of the target cell detaching from the photoresponsive cell fixing agent. . This is because, when the photoisomerization site (d) has a hydrophobic structure, the regions of the hydrophobic chain (a) are densely packed together to inhibit the interaction with the target cell. When (d) has a hydrophilic structure, the degree of freedom of the region of the hydrophobic chain (a) is increased, and it is considered that the interaction with the target cell occurs and can be immobilized. From the viewpoint of such control, the amount of change in the logarithmic value (logP) of the distribution coefficient in the region consisting of the hydrophobic chain (a) and the branched linker chain (c) due to isomerization of the photoisomerization site (d) is 0. .5 or more is preferable. The amount of change is more preferably 0.8 or more, and particularly preferably 1.0 or more.
 さらに、疎水性鎖(a)における標的細胞の固定化を効果的に行うという観点から、疎水性の異性体構造をとる場合、疎水性鎖(a)と分岐型リンカー鎖(c)よりなる領域における分配係数の対数値(logP)が10以上の疎水性を有することが好ましい。すなわち、光異性化部位(d)の異性化前後における、より疎水性の高い異性体の分配係数の対数値(logP)が10以上であることが好ましい。より好ましくは、当該より疎水性の高い異性体の分配係数の対数値(logP)が、10.5~11.0の範囲である。 Furthermore, from the viewpoint of effectively immobilizing target cells in the hydrophobic chain (a), a region consisting of the hydrophobic chain (a) and the branched linker chain (c) when taking a hydrophobic isomer structure It is preferable that the logarithmic value (logP) of the partition coefficient in the surface has a hydrophobicity of 10 or more. That is, it is preferable that the logarithmic value (logP) of the partition coefficient of the isomer having higher hydrophobicity before and after the isomerization of the photoisomerization site (d) is 10 or more. More preferably, the logarithmic value (log P) of the partition coefficient of the more hydrophobic isomer is in the range of 10.5 to 11.0.
 したがって、好ましい態様では、本発明の光応答性細胞固定化剤は、光異性化部位(d)の異性化による分配係数の対数値(logP)の変化量が、0.5以上であり;かつ、光異性化部位(d)の異性化前後における、より疎水性の高い異性体の場合の分配係数の対数値(logP)が10以上であることができる。 Therefore, in a preferred embodiment, the photoresponsive cell fixing agent of the present invention has a change in logarithmic value (logP) of the partition coefficient due to isomerization of the photoisomerization site (d) of 0.5 or more; and The logarithmic value (logP) of the partition coefficient in the case of a more hydrophobic isomer before and after the isomerization of the photoisomerization site (d) can be 10 or more.
 このような特性を提供し得る光異性化部位(d)として用いることが可能な好ましい例としては、これらに限定されるものではないが、スピロピラン又はその誘導体の構造を含むものを挙げることができる。スピロピランは、以下の式に示すように、式左の閉環構造の場合には比較的高い疎水性を有するが、紫外線の照射によりスピロ環部分が光開環反応により開環し、式右の開環構造となる。当該開環構造では、電化分離により分子内チャージを有し、親水性を有するものとなる。一方で、開環構造に可視光を照射(又は熱を付加)することで、再度閉環構造に戻すことができる。すなわち、特定波長の光照射により、その疎水性・親水性を制御することができるものである。
Figure JPOXMLDOC01-appb-C000006
Preferable examples that can be used as the photoisomerization site (d) that can provide such characteristics include, but are not limited to, those containing the structure of spiropyran or a derivative thereof. . As shown in the following formula, spiropyran has a relatively high hydrophobicity in the case of the closed ring structure on the left side of the formula, but the spiro ring portion is opened by a photoopening reaction upon irradiation with ultraviolet rays, and the open on the right side of the formula. It becomes a ring structure. The ring-opened structure has an intramolecular charge by electrolysis and has hydrophilicity. On the other hand, by irradiating visible light (or adding heat) to the ring-opened structure, the ring-closed structure can be restored again. That is, the hydrophobicity / hydrophilicity can be controlled by irradiation with light of a specific wavelength.
Figure JPOXMLDOC01-appb-C000006
 より具体的には、光異性化部位(d)は、以下の式(I)で表されるスピロピラン様構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000007
More specifically, the photoisomerization site (d) preferably has a spiropyran-like structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000007
 式中、Rは、水素原子又はアルキル基であり;Rは、C~C20アルキレン基であり;R、R、及びRは、同一でも異なっていてもよく、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はニトロ基であり;*は、前記分岐型リンカー鎖への結合部分である。 In which R 1 is a hydrogen atom or an alkyl group; R 2 is a C 1 -C 20 alkylene group; R A , R B , and R C may be the same or different and are each independently And a hydrogen atom, an alkyl group, an alkoxy group, or a nitro group; * is a binding moiety to the branched linker chain.
 Rは、好ましくは、水素原子又はC~Cアルキル基であり、好ましくは水素原子である。適切な疎水性に調整する観点から、Rは、好ましくは、C5~C20、より好ましくは、C又はC直鎖アルキレン基である。同様に、R、R、及びRのうち、少なくとも1つがニトロ基であることが好ましく、Rがニトロ基であることがより好ましい。当該ニトロ基を有することにより、光異性化による開環構造が安定化し、また、光異性化の量子収率も良好なものとすることができる。 R 1 is preferably a hydrogen atom or a C 1 -C 6 alkyl group, preferably a hydrogen atom. From the viewpoint of adjusting to appropriate hydrophobicity, R 2 is preferably a C 5 to C 20 , more preferably a C 5 or C 6 linear alkylene group. Similarly, at least one of R A , R B , and R C is preferably a nitro group, and R C is more preferably a nitro group. By having the nitro group, the ring-opening structure by photoisomerization is stabilized, and the quantum yield of photoisomerization can be improved.
 本明細書中において、「アルキル又はアルキル基」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数1~15個(C1~15)、炭素数1~10個(C1~10)である。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコキシ基、アリールアルキル基など)のアルキル部分についても同様である。 In the present specification, the “alkyl or alkyl group” may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited. For example, the number of carbon atoms is 1 to 20 (C 1-20 ), the number of carbons is 1 to 15 (C 1 to 15 ), and the number of carbon atoms is 1 to 10 (C 1 to 10). ). In this specification, the alkyl group may have one or more arbitrary substituents. For example, C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included. Examples of the substituent include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
 本明細書中において、「アルキレン」とは、直鎖状または分枝状の飽和炭化水素からなる二価の基であり、例えば、メチレン、1-メチルメチレン、1,1-ジメチルメチレン、エチレン、1-メチルエチレン、1-エチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、1,1-ジエチルエチレン、1,2-ジエチルエチレン、1-エチル-2-メチルエチレン、トリメチレン、1-メチルトリメチレン、2-メチルトリメチレン、1,1-ジメチルトリメチレン、1,2-ジメチルトリメチレン、2,2-ジメチルトリメチレン、1-エチルトリメチレン、2-エチルトリメチレン、1,1-ジエチルトリメチレン、1,2-ジエチルトリメチレン、2,2-ジエチルトリメチレン、2-エチル-2-メチルトリメチレン、テトラメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1,1-ジメチルテトラメチレン、1,2-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、2,2-ジ-n-プロピルトリメチレン等が挙げられる。 In the present specification, “alkylene” is a divalent group consisting of a linear or branched saturated hydrocarbon, such as methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1 -Methyltrimethylene, 2-methyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1 -Diethyltrimethylene, 1,2-diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrime Len, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-dimethyltetramethylene, 2,2-dimethyltetramethylene, 2,2-di-n-propyl Trimethylene and the like.
 本明細書中において用いられる「アミド又はアミド基」とは、RNR’CO-(R=アルキルの場合、アルキルアミノカルボニル-)およびRCONR’-(R=アルキルの場合、アルキルカルボニルアミノ-)の両方を含む。 As used herein, “amide or amide group” refers to both RNR′CO— (in the case of R = alkyl, alkylaminocarbonyl-) and RCONR′— (in the case of R = alkyl, alkylcarbonylamino-). including.
 本明細書中において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシ基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as “may be substituted”, the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more When they have a substituent, they may be the same or different. Examples of the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxy group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
 本発明の光応答性細胞固定化剤の具体例としては、以下の構造を有する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the photoresponsive cell fixing agent of the present invention include compounds having the following structures.
Figure JPOXMLDOC01-appb-C000008
 式中、Spは、前記光異性化部位(d)を表し;mは、1~5の自然数であり;nは、50~500の自然数である。当該化合物は、疎水性鎖(a)としてオレイル基;親水性鎖(b)としてポリエチレングリコール鎖;分岐型リンカー鎖(c)として、リシン残基;及び基材との結合のために親水性鎖(b)の末端にN-ヒドロキシスクシンイミドを有している。好ましくは、mは、1又は2である。また、Spは、好ましくは、スピロピラン又はその誘導体であり、より好ましくは上記式(I)で表される構造である。 In the formula, Sp represents the photoisomerization site (d); m is a natural number of 1 to 5; and n is a natural number of 50 to 500. The compound comprises an oleyl group as the hydrophobic chain (a); a polyethylene glycol chain as the hydrophilic chain (b); a lysine residue as the branched linker chain (c); and a hydrophilic chain for binding to the substrate. (B) has N-hydroxysuccinimide at the terminal. Preferably, m is 1 or 2. In addition, Sp is preferably spiropyran or a derivative thereof, more preferably a structure represented by the above formula (I).
2.細胞固定化用基材及び製造方法
 本発明は、また、上記光応答性細胞固定化剤によって修飾された表面を有する細胞固定化用基材にも関する。当該細胞固定化用基材の表面構造は、上述のとおり、光応答性細胞固定化剤が親水性鎖(b)の末端で基材表面に直接或いは後述の被覆層を介して結合したものである。光応答性細胞固定化剤は、好ましくは、基材の表面に単分子膜状に配列される。
2. The present invention also relates to a cell immobilization substrate having a surface modified with the above-mentioned photoresponsive cell immobilization agent. As described above, the surface structure of the cell immobilization substrate is obtained by binding a photoresponsive cell immobilizing agent directly to the substrate surface at the end of the hydrophilic chain (b) or via a coating layer described later. is there. The photoresponsive cell fixing agent is preferably arranged in the form of a monolayer on the surface of the substrate.
 光応答性細胞固定化剤によって修飾される基材の材質や形状等は特に限定されず、その用途等に応じて適当な基材を種々選択することができる。例えば、修飾対象の基材の形状は、基板状(プレート状又はフィルム状のもの、例えばスライドガラス、ディッシュ、マイクロプレート、マイクロアレイ用基板等)であっても、担体(例えばビーズなどの粒子状やコロイド状のもの)、繊維状構造物、管、容器(例えば試験管及びバイアル)であってもよい。修飾対象基材の材質としては、ガラス;セメント;陶磁器等のセラミックスもしくはファインセラミックス;ポリエチレンテレフタレート、酢酸セルロース、ポリカーボネート、ポリスチレン及びポリメチルメタクリレートなどのポリマー樹脂;ポリペプチド及びタンパク質などの生体材料;シリコン;活性炭;多孔質ガラス;多孔質セラミックス;多孔質シリコン;多孔質活性炭;不織布;濾紙;メンブレンフィルター;金などの導電性材料、などが挙げられる。修飾対象基材の表面は、アミノ基、カルボキシル基、ヒドロキシ基などを導入するため、ポリ陽イオンなどのポリマーによる被覆処理、あるいは基材表面への導入置換基を有するシランカップリング剤による処理が施されていてもよいし、あるいはプラズマ処理により反応性官能基が導入されていてもよい。 The material and shape of the base material modified by the photoresponsive cell fixing agent are not particularly limited, and various appropriate base materials can be selected depending on the application. For example, the shape of the base material to be modified may be a substrate (plate or film, such as a glass slide, dish, microplate, microarray substrate, etc.), Colloidal), fibrous structures, tubes, containers (eg test tubes and vials). Materials for the base material to be modified include glass; cement; ceramics or fine ceramics such as ceramics; polymer resins such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, and polymethyl methacrylate; biomaterials such as polypeptides and proteins; silicon; Examples include activated carbon; porous glass; porous ceramics; porous silicon; porous activated carbon; non-woven fabric; filter paper; membrane filter; Since the surface of the base material to be modified introduces amino groups, carboxyl groups, hydroxy groups, etc., it can be coated with a polymer such as polycation or treated with a silane coupling agent having a substituent introduced onto the surface of the base material. It may be applied or a reactive functional group may be introduced by plasma treatment.
 光応答性細胞固定化剤は、基材表面と直接結合することで修飾されてもよいし、或いは、基材表面に被覆層を設け、当該被覆層の表面に光応答性細胞固定化剤を結合させて表面修飾を行うこともできる。かかる被覆層としては、例えば、コラーゲンやウシ血清アルブミン(BSA)、3-アミノプロピルトリエトキシシラン(APTES)、卵白アルブミンを用いることができる。 The photoresponsive cell fixing agent may be modified by directly bonding to the substrate surface, or a coating layer is provided on the substrate surface, and the photoresponsive cell fixing agent is provided on the surface of the coating layer. Surface modification can also be performed by bonding. As such a coating layer, for example, collagen, bovine serum albumin (BSA), 3-aminopropyltriethoxysilane (APTES), or ovalbumin can be used.
3.細胞の固定化及び回収方法
 さらに、本発明は、光応答性細胞固定化剤により表面修飾した細胞固定化用基材を用いて、標的細胞を固定化し、選択的に回収する細胞選別技術にも関する。本発明の細胞の回収方法は、以下の工程を含む、
(i)本発明の光応答性細胞固定化剤により表面修飾した細胞固定化用基材に特定波長の光を照射し、前記光異性化部位を親水性の異性体構造に変換する工程、
(ii)前記細胞固定化用基材に所定の標的細胞を含む溶液を接触させ、前記細胞固定化用基材に前記標的細胞を固定化する工程、及び
(iii)前記細胞固定化用基材に前記工程(i)とは異なる波長の光を照射し、前記光異性化部位を疎水性の異性体構造に変換することで、前記固定化された標的細胞を前記細胞固定化用基材から分離・回収する工程。
3. Cell immobilization and recovery method Further, the present invention provides a cell sorting technique for immobilizing and selectively recovering target cells using a cell immobilization substrate surface-modified with a photoresponsive cell immobilization agent. Related. The cell recovery method of the present invention includes the following steps:
(I) irradiating the cell-immobilizing substrate surface-modified with the photoresponsive cell fixing agent of the present invention with light of a specific wavelength, and converting the photoisomerization site into a hydrophilic isomer structure;
(Ii) a step of bringing a solution containing predetermined target cells into contact with the substrate for cell immobilization, and immobilizing the target cells on the substrate for cell immobilization; and (iii) the substrate for cell immobilization. Is irradiated with light having a wavelength different from that in the step (i), and the photoisomerization site is converted into a hydrophobic isomer structure, whereby the immobilized target cells are removed from the cell immobilization substrate. Separation / recovery process.
 工程(i)では、紫外光などの特定波長の光を照射し、光異性化部位を異性化することで、親水性を高めて、光応答性細胞固定化剤における疎水性鎖による標的細胞の固定化を行い得る状態とするものである。例えば、上記スピロピラン構造における分子内電荷を有する開環状態がこれに該当する。 In the step (i), irradiation with light of a specific wavelength such as ultraviolet light is performed to isomerize the photoisomerization site, thereby increasing hydrophilicity and the target cell by the hydrophobic chain in the photoresponsive cell fixing agent. It is in a state where it can be fixed. For example, a ring-opened state having an intramolecular charge in the spiropyran structure corresponds to this.
 一方、工程(iii)では、可視光などの光を照射することで、光異性化部位を疎水性構造とすることで、疎水性鎖による標的細胞の固定化が解消され、これにより、標的細胞を1細胞レベルで選択的に回収することができる。例えば、上記スピロピラン構造における閉環状態がこれに該当する。 On the other hand, in step (iii), irradiation of light such as visible light causes the photoisomerization site to have a hydrophobic structure, thereby eliminating the immobilization of the target cell by the hydrophobic chain. Can be selectively recovered at the single cell level. For example, the closed ring state in the spiropyran structure corresponds to this.
 工程(iii)の疎水性構造となった光応答性細胞固定化剤に、再度光照射を行うことで、を再度工程(i)の状態に戻すことができるため、後述の繰り返し操作を行うことができる。なお、光異性化部位がスピロピラン構造を有するものである場合には、前記工程(i)において照射される光は紫外光であり;前記工程(iii)において照射される光は可視光であることが好ましい。 Since the photoresponsive cell fixing agent having the hydrophobic structure in the step (iii) can be re-irradiated with the light by re-irradiating the photoresponsive cell fixing agent, the following repetitive operation is performed. Can do. If the photoisomerization site has a spiropyran structure, the light irradiated in the step (i) is ultraviolet light; the light irradiated in the step (iii) is visible light. Is preferred.
 典型的には、当該方法を行う場として、細胞固定化用基材をマイクロ流路内に設置することができる。この場合、工程(iii)において、基材表面に流束を付与し、細胞固定化用基材から分離された標的細胞を回収することができる。 Typically, as a place for performing the method, a cell immobilization substrate can be installed in the microchannel. In this case, in the step (iii), a flux can be imparted to the surface of the substrate, and the target cells separated from the cell immobilization substrate can be recovered.
 上記工程(i)~(iii)を複数回繰り返すことにより、細胞固定化用基材自体に特段の処理を行うことなく、光の照射のみによって、継続的に標的細胞の固定化と回収を行うことが可能となる。 By repeating the above steps (i) to (iii) a plurality of times, the target cells are continuously immobilized and recovered only by light irradiation without special treatment of the cell immobilization substrate itself. It becomes possible.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
1.試薬及び装置等
[装置等]
 特に明記しない限り、本実施例で用いた化学物質は分析等級であり、さらに精製することなく使用した。 2,3,3-トリメチルインドレニン、6-ブロモヘキサン酸、5-ブロモ吉草酸、オレイン酸、3-ヨードプロピオン酸、亜硝酸ナトリウム、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC)、3-メチル-2-ブタノン(MIPK)およびN、N'-ジシクロヘキシルカルボジイミド(DCC)は、東京化成工業から入手した。p-ブチルアニリン、7-ブロモヘプタン酸、2-ヒドロキシ-5-ニトロベンズアルデヒド、Nα-Boc-L-リシン、N-ヒドロキシスクシンイミド(NHS)、トリエチルアミン(TEA)、塩化スズ(II) N、N'-ジイソプロピルカルボジイミド(DIC)、ヨウ化ナトリウムおよび塩酸は、和光純薬工業から入手した。Normal PEG脂質(Oleyl-PEG-NHS、Sunbright OE-040CS)および二官能化ポリエチレングリコール(H2N-PEG-COOH、Sunbright PA-034HC)は、日油から入手した。トリフルオロ酢酸(TFA)は、渡辺化学工業から入手した。脱水TEAは蒸留により調製した。
1. Reagents and equipment, etc.
[Equipment etc.]
Unless otherwise stated, the chemicals used in this example were analytical grade and were used without further purification. 2,3,3-trimethylindolenine, 6-bromohexanoic acid, 5-bromovaleric acid, oleic acid, 3-iodopropionic acid, sodium nitrite, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride Salt (EDC), 3-methyl-2-butanone (MIPK) and N, N′-dicyclohexylcarbodiimide (DCC) were obtained from Tokyo Chemical Industry. p-Butylaniline, 7-bromoheptanoic acid, 2-hydroxy-5-nitrobenzaldehyde, Nα-Boc-L-lysine, N-hydroxysuccinimide (NHS), triethylamine (TEA), tin (II) chloride N, N ' -Diisopropylcarbodiimide (DIC), sodium iodide and hydrochloric acid were obtained from Wako Pure Chemical Industries. Normal PEG lipid (Oleyl-PEG-NHS, Sunbright OE-040CS) and bifunctional polyethylene glycol (H 2 N-PEG-COOH, Sunbright PA-034HC) were obtained from NOF. Trifluoroacetic acid (TFA) was obtained from Watanabe Chemical Industry. Dehydrated TEA was prepared by distillation.
[装置]
 カラムクロマトグラフィーは、シリカゲル(関東化学)(60N球状、40~50μm)を用いて行った。 TLCは、シリカゲル(60、F254)(Merck社)で被覆したガラス支持プレート上で行った。 NMRの化学シフトは、内部基準としてテトラメチルシラン(TMS)を用い、ppmで示す。 NMRスペクトルは、Avance 600(600MHz、Bruker)を用いた。ESI質量スペクトルは、micrOTOF II(Bruker社)を用いた。MALDI-TOFスペクトルは、マイクロフレックス(Bruker)(マトリックス:ジスラノールおよびNaCl)を用いた。
[apparatus]
Column chromatography was performed using silica gel (Kanto Chemical) (60N sphere, 40-50 μm). TLC was performed on glass support plates coated with silica gel (60, F254) (Merck). NMR chemical shifts are given in ppm using tetramethylsilane (TMS) as an internal reference. For the NMR spectrum, Avance 600 (600 MHz, Bruker) was used. For ESI mass spectrum, micrOTOF II (Bruker) was used. For MALDI-TOF spectra, Microflex (matrix: disranol and NaCl) was used.
[細胞培養等]
 Ba / F3ネズミIL-3依存性プロB細胞株、K562ヒト赤白血病、JurkatヒトT細胞白血病およびHeLaヒト上皮癌は、理研バイオリソースセンターから入手した。強化緑色蛍光タンパク質(EGFP)発現Ba / F3細胞は、文献に従い調製した。RPMI-1640培地は和光純薬から入手した。胎児ウシ血清は、Thermo Fisher Scientific社製である。マウスインターロイキン(IL)-3,0.25%トリプシン/ EDTA溶液およびダルベッコ変法イーグル培地は、Gibco BRL社から入手した。ペニシリン/ストレプトマイシンおよびトリパンブルー染色溶液はナカライテスク社から入手した。コラーゲンは、新田ゼラチン社から入手した。CalceinAMは、同仁研究所から入手した。PBS-は、日水製薬社から購入した。
[Cell culture, etc.]
Ba / F3 murine IL-3-dependent pro-B cell line, K562 human erythroleukemia, Jurkat human T-cell leukemia and HeLa human epithelial cancer were obtained from RIKEN BioResource Center. Enhanced green fluorescent protein (EGFP) -expressing Ba / F3 cells were prepared according to the literature. RPMI-1640 medium was obtained from Wako Pure Chemical. Fetal bovine serum is from Thermo Fisher Scientific. Mouse interleukin (IL) -3,0.25% trypsin / EDTA solution and Dulbecco's modified Eagle medium were obtained from Gibco BRL. Penicillin / streptomycin and trypan blue staining solutions were obtained from Nacalai Tesque. Collagen was obtained from Nitta Gelatin. CalceinAM was obtained from Dojin Research Laboratory. PBS- was purchased from Nissui Pharmaceutical.
2.光応答性細胞固定化剤の合成
 以下のスキームにより、本発明の光応答性細胞固定化剤である化合物1の合成を行った。
2. Synthesis of Photoresponsive Cell Fixing Agent Compound 1 which is a photoresponsive cell fixing agent of the present invention was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
2-1. 化合物2の合成
 オレイン酸(340μl)、EDC(612.5mg)およびNHS(167.7mg)を無水ジクロロメタン(DCM)に溶解し、o / nで反応させた。シリカカラム(DCM)で精製して、化合物2を透明油状物として得た(354.3mg、88%)。
TLC (DCM) Rf: 0.55 (in iodine)
ESI-MS (m/z): [M+Na+] calculated 334.08; observed 334.06.
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.24 (m, 20H), 1.60 (quint, 2H), 1.98 (q, 4H), 2.64 (t, 2H), 2.80 (s, 4H), 5.32 (t, 2H).
2-1. Synthesis of Compound 2 Oleic acid (340 μl), EDC (612.5 mg) and NHS (167.7 mg) were dissolved in anhydrous dichloromethane (DCM) and reacted at o / n. Purification on a silica column (DCM) gave compound 2 as a clear oil (354.3 mg, 88%).
TLC (DCM) Rf: 0.55 (in iodine)
ESI-MS (m / z): [M + Na + ] calculated 334.08; observed 334.06.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.24 (m, 20H), 1.60 (quint, 2H), 1.98 (q, 4H), 2.64 (t, 2H) , 2.80 (s, 4H), 5.32 (t, 2H).
2-2. 化合物3の合成
 化合物2(98.6mg)、Nα-Boc-L-リシン(83.5mg)および無水TEA(50μl)を無水DCMに溶解し、o / nで反応させた。反応混合物を最初にEtOAcおよび水(pH2)で抽出し、次いでシリカカラム(DCM / MeOH = 10/1)により化合物3を黄色固体として得た(126.3mg、95%)。
TLC (DCM) Rf: 0.65 (in iodine)
ESI-MS (m/z): [M+Na+] calculated 533.39; observed 533.43. 
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (m, 24H), 1.37 (s, 9H), 1.45 (t, 2H), 1.53 (br, 2H), 1.97 (q, 4H), 2.01 (t, 2H), 2.99 (q, 2H), 3.80 (m, 1H), 5.32 (q, 2H), 7.02 (d, 1H), 7.73 (t, 1H), 12.41 (br, 1H).
2-2. Synthesis of Compound 3 Compound 2 (98.6 mg), Nα-Boc-L-lysine (83.5 mg) and anhydrous TEA (50 μl) were dissolved in anhydrous DCM and reacted at o / n. The reaction mixture was first extracted with EtOAc and water (pH 2), then silica column (DCM / MeOH = 10/1) gave compound 3 as a yellow solid (126.3 mg, 95%).
TLC (DCM) Rf: 0.65 (in iodine)
ESI-MS (m / z): [M + Na + ] calculated 533.39; observed 533.43.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (m, 24H), 1.37 (s, 9H), 1.45 (t, 2H), 1.53 (br, 2H) , 1.97 (q, 4H), 2.01 (t, 2H), 2.99 (q, 2H), 3.80 (m, 1H), 5.32 (q, 2H), 7.02 (d, 1H), 7.73 (t, 1H), 12.41 (br, 1H).
2-3. 化合物4の合成
 化合物3(126mg)、EDC(292.1mg)およびNHS(73.8mg)を無水DCMに溶解し、o / nで反応させた。シリカカラム(DCM /アセトン= 5/1)により、化合物4を白色固体として得た(122.6mg、82%)。
TLC (DCM/MeOH = 5/1) Rf: 0.6 (in iodine)
ESI-MS (m/z): [M+Na+] calculated 630.40; observed 630.36. 
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 22H), 1.38 (s, 11H), 1.46 (quint, 2H), 1.98 (br, 2H), 2.02 (m, 6H), 2.80 (br, 4H), 3.00 (q, 2H), 4.29 (br, 1H), 5.32 (quint, 2H), 7.58 (d, 1H), 7.74 (t, 1H).
2-3. Synthesis of Compound 4 Compound 3 (126 mg), EDC (292.1 mg) and NHS (73.8 mg) were dissolved in anhydrous DCM and reacted at o / n. Silica column (DCM / acetone = 5/1) gave compound 4 as a white solid (122.6 mg, 82%).
TLC (DCM / MeOH = 5/1) Rf: 0.6 (in iodine)
ESI-MS (m / z): [M + Na +] calculated 630.40; observed 630.36.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 22H), 1.38 (s, 11H), 1.46 (quint, 2H), 1.98 (br, 2H) , 2.02 (m, 6H), 2.80 (br, 4H), 3.00 (q, 2H), 4.29 (br, 1H), 5.32 (quint, 2H), 7.58 (d, 1H), 7.74 (t, 1H).
2-4. 化合物5の合成
 化合物4(578.7mg)、PA-034HC(1.5g)および無水TEA(200μl)を無水DCMに溶解し、2日間反応させた。 反応混合物を濃縮し、氷冷エーテル中に滴下した。得られた沈殿物を遠心分離(15kG、10分、-10℃)を用いて収集し、次いで水に溶解した。 副生成物を透析(MWCO = 2kDa)で除去し、凍結乾燥により化合物5を白色固体(1.6226g、95%)として得た。
TLC (DCM/MeOH = 8/1) Rf: 0.25 (in iodine)
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.14 (br, 24H), 1.37 (s, 9H), 1.46 (m, 6H), 1.60 (quint, 2H), 1.98 (m, 6H), 2.19 (t, 2H), 2.80 (br, 2H), 2.98 (m, 2H), 3.50 (s, approx. 300H), 3.62 (t, 2H), 3.79 (br, 1H), 5.32 (t, 2H), 6.72 (d, 1H), 7.72 (t, 1H), 7.76 (t, 1H), 11.99 (br, 1H).
2-4. Synthesis of Compound 5 Compound 4 (578.7 mg), PA-034HC (1.5 g) and anhydrous TEA (200 μl) were dissolved in anhydrous DCM and reacted for 2 days. The reaction mixture was concentrated and added dropwise to ice-cold ether. The resulting precipitate was collected using centrifugation (15 kG, 10 min, −10 ° C.) and then dissolved in water. The by-product was removed by dialysis (MWCO = 2 kDa) and lyophilized to give compound 5 as a white solid (1.6226 g, 95%).
TLC (DCM / MeOH = 8/1) Rf: 0.25 (in iodine)
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.14 (br, 24H), 1.37 (s, 9H), 1.46 (m, 6H), 1.60 (quint, 2H) , 1.98 (m, 6H), 2.19 (t, 2H), 2.80 (br, 2H), 2.98 (m, 2H), 3.50 (s, approx. 300H), 3.62 (t, 2H), 3.79 (br, 1H ), 5.32 (t, 2H), 6.72 (d, 1H), 7.72 (t, 1H), 7.76 (t, 1H), 11.99 (br, 1H).
2-5. 化合物8の合成
 2,3,3-トリメチルインドレニン(化合物7)(3ml、18.727mmol)および3-ヨードプロパン酸(4.5086g、22.546mmol)を無水2-ブタノン30mlに溶解し、Ar雰囲気下で4日間加熱還流した。冷却後、得られた沈殿物を濾過により集め、EtOAcで洗浄して化合物8を淡褐色粉末として得た(3.5439g、82%)。
TLC (DCM/MeOH = 10/1) Rf: 0.05 (in UV)
ESI-MS (m/z): [M+] found 232.13; observed 232.25.
1H-NMR (600 MHz, DMSO-d6, TMS): δ 1.52 (s, 6H), 2.85 (s, 3H), 2.97 (t, 2H), 4.64 (t, 2H), 7.61 (d, 2H), 7.83 (d, 1H), 7.99 (d, 1H).
2-5. Synthesis of Compound 8 2,3,3-Trimethylindolenine (Compound 7) (3 ml, 18.727 mmol) and 3-iodopropanoic acid (4.5086 g, 22.546 mmol) were dissolved in 30 ml of anhydrous 2-butanone, The mixture was heated to reflux for 4 days under an Ar atmosphere. After cooling, the resulting precipitate was collected by filtration and washed with EtOAc to give compound 8 as a light brown powder (3.5439 g, 82%).
TLC (DCM / MeOH = 10/1) Rf: 0.05 (in UV)
ESI-MS (m / z): [M + ] found 232.13; observed 232.25.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 1.52 (s, 6H), 2.85 (s, 3H), 2.97 (t, 2H), 4.64 (t, 2H), 7.61 (d, 2H) , 7.83 (d, 1H), 7.99 (d, 1H).
2-6. 化合物9の合成
 化合物8(511.2mg)、2-ヒドロキシ-5-ニトロ-ベンズアルデヒド(372.2mg)およびTEA(300μl)を無水2-ブタノン5mlに溶解し、3時間加熱還流した。冷却した後、反応混合物を最初にDCM /水で抽出し、次いでシリカカラム精製(DCM / MeOH = 15 / 1~1 / 1,1%トリエチルアミン)により赤褐色の固体(590.5mg、74%)として化合物9を得た。
TLC (DCM/MeOH = 10/1) Rf: 0.45 (in UV)
ESI-MS (m/z): [M+H+] calculated 381.14; observed 381.28.
1H-NMR (600 MHz, DMSO-d6, TMS): δ 1.07 (s, 3H), 1.18 (s, 3H), 2.46 (m, 1H), 2.55 (m, 1H), 3.35 (m, 1H), 3.48 (m, 1H), 6.00 (d, 1H), 6.67 (d, 1H), 6.80 (t, 1H), 6.87 (d, 1H), 7.12 (m, 2H), 7.20 (d, 1H), 7.99 (dd, 1H), 8.22 (d, 1H), 12.24 (br, 1H).
2-6. Synthesis of Compound 9 Compound 8 (511.2 mg), 2-hydroxy-5-nitro-benzaldehyde (372.2 mg) and TEA (300 μl) were dissolved in 5 ml of anhydrous 2-butanone and heated to reflux for 3 hours. After cooling, the reaction mixture was first extracted with DCM / water and then compounded as a reddish brown solid (590.5 mg, 74%) by silica column purification (DCM / MeOH = 15/1 to 1/1/1% triethylamine) 9 was obtained.
TLC (DCM / MeOH = 10/1) Rf: 0.45 (in UV)
ESI-MS (m / z): [M + H + ] calculated 381.14; observed 381.28.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 1.07 (s, 3H), 1.18 (s, 3H), 2.46 (m, 1H), 2.55 (m, 1H), 3.35 (m, 1H) , 3.48 (m, 1H), 6.00 (d, 1H), 6.67 (d, 1H), 6.80 (t, 1H), 6.87 (d, 1H), 7.12 (m, 2H), 7.20 (d, 1H), 7.99 (dd, 1H), 8.22 (d, 1H), 12.24 (br, 1H).
2-7. 化合物10の合成
 化合物9(220.7mg、0.512mmol)、EDC(311.5mg、1.625mmol)およびNHS(119.9mg、1.041mmol)を無水DCM 5mlに溶解し、Ar雰囲気下で2時間撹拌した。反応混合物をDCM /水(pH7)で抽出し、MgSO4で乾燥して化合物10を褐色固体として得た(245.0mg、99%)。
TLC (EtOAc) Rf: 0.85 (in UV)
ESI-MS (m/z): [M+H+] calculated 478.16; observed 478.30.
1H-NMR (600 MHz, DMSO-d6, TMS): δ 1.16 (s, 3H), 1.24 (s, 3H), 2.86 (br, 4H), 3.00 (m, 1H), 3.14 (m, 1H), 3.50 (m, 1H), 3.64 (m, 1H), 6.10 (d, 1H), 6.83 (d, 1H), 6.91 (t, 1H), 6.96 (d, 1H), 7.21 (m, 2H), 7.27 (d, 1H), 8.05 (dd, 1H), 8.28 (d, 1H).
2-7. Synthesis of Compound 10 Compound 9 (220.7 mg, 0.512 mmol), EDC (311.5 mg, 1.625 mmol) and NHS (119.9 mg, 1.041 mmol) are dissolved in 5 ml of anhydrous DCM and stirred for 2 hours under Ar atmosphere. did. The reaction mixture was extracted with DCM / water (pH 7) and dried over MgSO4 to give compound 10 as a brown solid (245.0 mg, 99%).
TLC (EtOAc) Rf: 0.85 (in UV)
ESI-MS (m / z): [M + H + ] calculated 478.16; observed 478.30.
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 1.16 (s, 3H), 1.24 (s, 3H), 2.86 (br, 4H), 3.00 (m, 1H), 3.14 (m, 1H) , 3.50 (m, 1H), 3.64 (m, 1H), 6.10 (d, 1H), 6.83 (d, 1H), 6.91 (t, 1H), 6.96 (d, 1H), 7.21 (m, 2H), 7.27 (d, 1H), 8.05 (dd, 1H), 8.28 (d, 1H).
2-8. 化合物6の合成
 化合物5(58.7mg、0.01508mmol)を2mlのDCMと1mlのTFAの混合物に溶解し、15分間撹拌した。濃縮および真空乾燥により、化合物6を白色油状物として得た(TFAとの混合物として得られた)。反応混合物をさらに精製することなく次の反応に使用した。
TLC (DCM/MeOH = 8/1) Rf: 0.15 (in ninhydrin)
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.24 (br, 24H), 1.38 (q, 2H), 1.47 (m, 6H), 1.69 (br, 4H), 1.98 (q, 6H), 2.19 (t, 2H), 3.00 (br, 2H), 3.50 (s, approx. 300H), 5.32 (t, 2H), 7.87 (br, 1H), 8.28 (br, 3H), 8.62 (br, 1H), 10.34 (br, 1H).
2-8. Synthesis of Compound 6 Compound 5 (58.7 mg, 0.01508 mmol) was dissolved in a mixture of 2 ml DCM and 1 ml TFA and stirred for 15 minutes. Concentration and vacuum drying gave compound 6 as a white oil (obtained as a mixture with TFA). The reaction mixture was used in the next reaction without further purification.
TLC (DCM / MeOH = 8/1) Rf: 0.15 (in ninhydrin)
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.24 (br, 24H), 1.38 (q, 2H), 1.47 (m, 6H), 1.69 (br, 4H) , 1.98 (q, 6H), 2.19 (t, 2H), 3.00 (br, 2H), 3.50 (s, approx. 300H), 5.32 (t, 2H), 7.87 (br, 1H), 8.28 (br, 3H ), 8.62 (br, 1H), 10.34 (br, 1H).
2-9. 化合物11の合成
 化合物10(48.0mg、0.101mmol)、化合物6(98.7mg、0.0115mmol)および無水TEA(200μl、1.4366mmol)を無水DCM 5mlに溶解し、Ar雰囲気下で3日間撹拌した。反応混合物を濃縮し、氷冷エーテル中に滴下した。得られた沈殿物を遠心分離(15kG、10分、-10℃)を用いて収集し、次いで水に溶解した。副生成物を透析(MWCO = 2kDa)により除去し、凍結乾燥により化合物11を褐色固体として得た(43.5mg、92%)。
TLC (DCM/MeOH=5/1) Rf: 0.7 (in UV)
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 26H), 1.28 (t, 4H), 1.47 (m, 8H), 1.60 (m, 2H), 1.97 (m, 6H), 2.18 (t, 2H), 3.06 (br, 4H), 3.50 (s, approx. 300H), 3.62 (s, 2H), 4.02 (m, 2H), 5.31 (t, 2H), 6.00 (br, 1H), 6.66~8.21 (br, 10H), 11.98 (br, 1H). 
2-9. Synthesis of Compound 11 Compound 10 (48.0 mg, 0.101 mmol), Compound 6 (98.7 mg, 0.0115 mmol) and anhydrous TEA (200 μl, 1.4366 mmol) were dissolved in 5 ml of anhydrous DCM and allowed to stand for 3 days under an Ar atmosphere. Stir. The reaction mixture was concentrated and added dropwise to ice-cold ether. The resulting precipitate was collected using centrifugation (15 kG, 10 min, −10 ° C.) and then dissolved in water. The by-product was removed by dialysis (MWCO = 2 kDa) and lyophilized to give compound 11 as a brown solid (43.5 mg, 92%).
TLC (DCM / MeOH = 5/1) Rf: 0.7 (in UV)
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 26H), 1.28 (t, 4H), 1.47 (m, 8H), 1.60 (m, 2H) , 1.97 (m, 6H), 2.18 (t, 2H), 3.06 (br, 4H), 3.50 (s, approx. 300H), 3.62 (s, 2H), 4.02 (m, 2H), 5.31 (t, 2H ), 6.00 (br, 1H), 6.66 to 8.21 (br, 10H), 11.98 (br, 1H).
2-10. 化合物1の合成
 化合物11(12.7mg、0.0031mmol)、DIC(50μl、0.3229mmol)およびNHS(6.5mg、0.0564mmol)を5mlの無水DCMに溶解し、Ar雰囲気下で2日間撹拌した。反応混合物を濃縮し、氷冷エーテル中に滴下した。得られた沈殿物を遠心分離(15kG、10分、-10℃)を用いて回収し、真空中で乾燥させて化合物1を橙色固体として得た(12.1mg、93%)。
TLC (DCM/MeOH=8/1) Rf: 0.3 (in UV)
1H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 26H), 1.37 (t, 4H), 1.45 (m, 4H), 1.51 (m, 2H), 1.61 (m, 4H), 1.97 (m, 6H), 2.66 (t, 2H), 2.81 (br, 4H), 2.92 (br, 4H), 3.50 (s, approx. 300H), 4.06 (m, 2H), 5.31 (t, 2H), 6.01~8.52 (m, 11H).
2-10. Synthesis of Compound 1 Compound 11 (12.7 mg, 0.0031 mmol), DIC (50 μl, 0.3229 mmol) and NHS (6.5 mg, 0.0564 mmol) are dissolved in 5 ml of anhydrous DCM and stirred for 2 days under Ar atmosphere. did. The reaction mixture was concentrated and added dropwise to ice-cold ether. The resulting precipitate was collected using centrifugation (15 kG, 10 minutes, −10 ° C.) and dried in vacuo to give compound 1 as an orange solid (12.1 mg, 93%).
TLC (DCM / MeOH = 8/1) Rf: 0.3 (in UV)
1 H-NMR (600 MHz, DMSO-d6, TMS): δ 0.85 (t, 3H), 1.23 (br, 26H), 1.37 (t, 4H), 1.45 (m, 4H), 1.51 (m, 2H) , 1.61 (m, 4H), 1.97 (m, 6H), 2.66 (t, 2H), 2.81 (br, 4H), 2.92 (br, 4H), 3.50 (s, approx. 300H), 4.06 (m, 2H ), 5.31 (t, 2H), 6.01 to 8.52 (m, 11H).
 化合物1と同様の反応を用いて、スピロピラン部位におけるRとRの置換基が異なる以下の表1に示す化合物群1a~1eをそれぞれ合成した。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-T000011
Using a reaction similar to that of Compound 1, Compound Groups 1a to 1e shown in Table 1 below, in which the substituents of R 1 and R 2 at the spiropyran moiety are different, were respectively synthesized.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-T000011
3.光異性化に伴うlogPの変化量 の検証
 上記2.で合成した本発明の光応答性細胞固定化剤である化合物群について、光異性化によるスピロピラン部分の構造変化に伴う、疎水性鎖と分岐型リンカー鎖よりなる領域における分配係数の対数値(logP)の理論値を計算した。当該計算はIgor V. Tetko等の計算プログラムALOGPS 2.1(Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; et al. J. Comput. Aided. Mol. Des. 2005, 19 (6), 453‐463)によって行った。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000012
3. 2. Verification of change in log P due to photoisomerization The logarithmic value of the partition coefficient (logP) in the region consisting of a hydrophobic chain and a branched linker chain accompanying the structural change of the spiropyran moiety due to photoisomerization of the compound group that is the photoresponsive cell fixing agent of the present invention synthesized in (1). ) Was calculated. The calculation is performed by Igor V. Tetko et al., ALOGPS 2.1 (Tetko, IV; Gasteiger, J .; Todeschini, R .; Mauri, A .; Livingstone, D .; Ertl, P .; Palyulin, VA; Radchenko, EV Zefirov, NS; Makarenko, AS; et al. J. Comput. Aided. Mol. Des. 2005, 19 (6), 453-463). The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000012
 その結果、いずれの化合物も、閉環状態(Closed form)から開環状態(Open form)に異性化することによって、logP値が大きく減少する、すなわち、疎水性から親水性に変化することが分かった。その変化量についても、閉環状態(Closed form)と開環状態(Open form)におけるlogP値の差が1.0以上あり、光異性化によって疎水性が大きく変化し得ることが分かった。また、閉環状態(Closed form)のlogP値が、いずれも10.00以上であり、オレイル鎖領域(疎水性鎖)における細胞との疎水性相互作用を阻害しない程度の適切な疎水性を有することが分かった。 As a result, it was found that the log P value is greatly reduced by isomerization from the closed state (Closed form) to the open state (Open form), that is, the compound changes from hydrophobic to hydrophilic. . Regarding the amount of change, the difference in the log P value between the closed state (Closed form) and the open state (Open form) is 1.0 or more, and it was found that the hydrophobicity can be greatly changed by photoisomerization. In addition, the log P value in the closed state (Closed form) is 10.00 or more, and has an appropriate hydrophobicity that does not inhibit the hydrophobic interaction with cells in the oleyl chain region (hydrophobic chain). I understood.
4. 基板調製
 以下の手順で光応答性細胞固定化剤によるガラス基板の表面修飾を行った。
4. Substrate preparation The surface of a glass substrate was modified with a photoresponsive cell fixing agent by the following procedure.
4-1. 基板の光応答性細胞固定化剤による修飾
 直径35 mmのガラスボトムディッシュを使用した。コラーゲン溶液(3 mg/ml)をMQ (pH 3)で10倍希釈して0.3 mg/mlに調整し、各ディッシュに1 mlずつ加えて、室温で一晩静置した。2 mlのMQで3回洗浄した後、余剰のMQをピペットマンで取り除き、水滴が表面から完全になくなるまで風乾した。光応答性細胞固定化剤のストック(10 mM in DMSO)をPBSで目的濃度に希釈し、ポジコンのサンプルを一点、光応答性細胞固定化剤のサンプルを対角線上に二点、ネガコンとしてPBS-を一点の計四点、各ディッシュ上に0.3 μlずつスポットした。37 °Cで1時間インキュベートした後、まず1 mlのTrisHCl (50 mM, pH7.5)で1回、ついで2 mlのMQで5回洗浄し、1 mlのPBS-中で静置した。
4-1. Modification of substrate with photoresponsive cell fixing agent A glass bottom dish having a diameter of 35 mm was used. A collagen solution (3 mg / ml) was diluted 10-fold with MQ (pH 3) to adjust to 0.3 mg / ml, 1 ml was added to each dish, and allowed to stand at room temperature overnight. After washing 3 times with 2 ml of MQ, excess MQ was removed with a pipetman and air-dried until water droplets disappeared completely from the surface. Dilute the stock of photoresponsive cell fixing agent (10 mM in DMSO) to the desired concentration with PBS, one sample of positive control, two samples of photoresponsive cell fixing agent on the diagonal, PBS- as negative control A total of four spots were spotted on each dish at 0.3 μl. After incubating at 37 ° C. for 1 hour, the cells were washed once with 1 ml of TrisHCl (50 mM, pH 7.5), then 5 times with 2 ml of MQ, and allowed to stand in 1 ml of PBS-.
4-2. 修飾基板への細胞の固定化
 後述の5.で調製した細胞を以下の手順により基板に固定化した。PBS-中でディッシュ表面に対して光照射機で光照射(360 nm or 520 nm, 10 min)を行った後、PBS-を除き、200 μlの細胞懸濁液を加えて軽くゆすった後に、室温で10 min静置した。1.5 mlのPBS-で3回洗浄した後、1.5 mlのPBS-を加えた。
4-2. Immobilization of cells on the modified substrate The cells prepared in (1) were immobilized on a substrate by the following procedure. After irradiating the dish surface with PBS (360 nm or 520 nm, 10 min) in PBS-, remove PBS-, add 200 μl of cell suspension and gently shake. The mixture was allowed to stand at room temperature for 10 min. After washing 3 times with 1.5 ml PBS-, 1.5 ml PBS- was added.
5.細胞調製
5-1.細胞の解凍・培養・凍結
解凍
 血清入り培地を37 °C恒温槽で温めておき、冷凍していた細胞を恒温槽で氷が少し残るくらいまで溶かした。溶けきったらすぐに全量を15 mlチューブに移し、9 mlの培地で希釈した。遠心(190 G, 3 min, 以下同)して上清を除き、10 mlの培地に再懸濁して100 mmディッシュにまいた。
培養
 基本的にインキュベーター中で培養(37 °C, 5 % CO2)。培地組成は以下の通り。
eGFP発現Ba/F3: RPMI (10 % FBS), 1 ng/ml IL3
継代
 Ba/F3は、基本新しい培地で希釈するだけである。
凍結 細胞を15 mlチューブに回収し、一度きれいな培地で洗った後、Cell Bankerに懸濁させて0.5 or 1 mlずつ分注し、-80 °Cで保管する。長期保管サンプルは液体窒素中で保管した。
5. Cell preparation 5-1. Thaw, culture, and freeze cells
The thawed serum-containing medium was warmed in a 37 ° C thermostatic bath, and the frozen cells were thawed in the thermostatic bath until some ice remained. As soon as it was completely dissolved, it was transferred to a 15 ml tube and diluted with 9 ml of medium. The supernatant was removed by centrifugation (190 G, 3 min, hereinafter the same), and the suspension was resuspended in 10 ml of medium and spread on a 100 mm dish.
Cultivation Basically culturing in an incubator (37 ° C, 5% CO 2 ). The medium composition is as follows.
eGFP expression Ba / F3: RPMI (10% FBS), 1 ng / ml IL3
Passage Ba / F3 is only diluted with basic fresh medium.
Frozen cells are collected in a 15 ml tube, washed once with clean medium, suspended in Cell Banker, dispensed in 0.5 or 1 ml aliquots, and stored at -80 ° C. Long-term storage samples were stored in liquid nitrogen.
5-2. 細胞固定に向けた細胞の前処理
 Ba/F3を遠心(100 G, 3 min, 以下同)で回収後、10 ml PBS-で二度洗浄し、3×106 cell/mlになるようにPBS-に再懸濁した。
5-2. Pretreatment of cells for cell fixation Ba / F3 was collected by centrifugation (100 G, 3 min, hereinafter the same), then washed twice with 10 ml PBS- to 3 × 10 6 cells / ml. It was resuspended in PBS-.
6.細胞固定力(光スイッチング)評価
 次いで、光応答性細胞固定化剤で修飾した基板を用いて、光照射に伴う細胞固定化能を評価した。
6). Cell fixing force (light switching) evaluation Next, the cell fixing ability accompanying light irradiation was evaluated using a substrate modified with a photoresponsive cell fixing agent.
6-1. PEG脂質の細胞固定力評価
 上記2.で合成した本発明に係る光応答性細胞固定化剤を修飾した基板に対して、スピロピランの開環と閉環を促す波長域の光を照射後に細胞懸濁液(マウスproB細胞BaF3株)を作用させることによって、細胞固定化力の変化を観察した。化合物1、1b、1c、1d、及び1eについて得られた結果をそれぞれ図2(a)~(e)に示す。縦軸は基板に固定化された細胞数を示し、横軸は光応答性細胞固定化剤の濃度である。同じ濃度において左側が紫外線照射後(Open form)であり、右側が可視光照射後(closed form)の場合の結果を示している。なお、細胞数は、共焦点顕微鏡により撮像した画像から手動で計数した。
6-1. Evaluation of Cell Fixation Strength of PEG Lipid 2. Cell suspension (mouse proB cell BaF3 strain) acts on the substrate modified with the photoresponsive cell immobilization agent according to the present invention synthesized in step 3 after irradiation with light in a wavelength range that promotes the opening and closing of spiropyran. As a result, changes in cell fixing force were observed. The results obtained for compounds 1, 1b, 1c, 1d, and 1e are shown in FIGS. 2 (a) to 2 (e), respectively. The vertical axis represents the number of cells immobilized on the substrate, and the horizontal axis represents the concentration of the photoresponsive cell fixing agent. At the same concentration, the left side shows the result after ultraviolet irradiation (Open form), and the right side shows the result after visible light irradiation (closed form). The number of cells was manually counted from an image taken with a confocal microscope.
 その結果、紫外光(360 nm)を照射してスピロピラン誘導体を開環させた表面には比較的強く細胞が固定され、逆に、可視光(520 nm)を照射して閉環させた表面には比較的弱く細胞が固定されることが観測された。特に、最も優れたスイッチング能を有する化合物1dを用いた基板では、紫外光照射によって細胞が固定されるが、可視光照射によってほぼ細胞が固定されない状態となることが分かった。このような光切替型細胞固定化剤の化学構造の最適化により、異なる波長の光を照射することによって、細胞固定化力をスイッチングできる表面が得られることが実証された。 As a result, the cells were fixed relatively strongly on the surface of the spiropyran derivative ring-opened by irradiation with ultraviolet light (360 nm), and conversely on the surface closed by irradiation with visible light (520 nm). It was observed that the cells were relatively weakly fixed. In particular, it was found that in the substrate using the compound 1d having the most excellent switching ability, the cells are fixed by irradiation with ultraviolet light, but the cells are not substantially fixed by irradiation with visible light. By optimizing the chemical structure of such a light-switching cell fixing agent, it was demonstrated that a surface capable of switching the cell fixing force can be obtained by irradiating light of different wavelengths.
6-2.繰り返し測定の検証
 閉環状態にある化合物1d修飾表面を紫外光照射で開環状態にすることによって、一度、基板表面上に細胞を固定したうえ、連続して可視光を照射することによって固定した細胞を脱離することが可能であることを確認した(図3)。
6-2. Verification of repeated measurement By making the ring-opened state of compound 1d-modified surface in a closed ring state by irradiation with ultraviolet light, cells are once fixed on the substrate surface and continuously irradiated with visible light. It was confirmed that the fixed cells can be detached by (FIG. 3).
 また、紫外光と可視光とを繰り返し交互に照射することによって、可逆的に細胞の固定と脱離が繰り返し行えることを確認した(図4)。さらに、図5に示すように、光の照射を基板上の特定領域に行うことで、この切り替え工程を、高い空間解像度で行うことができることも確認した。 In addition, it was confirmed that cell fixation and detachment could be repeated reversibly by repeatedly irradiating ultraviolet light and visible light alternately (FIG. 4). Furthermore, as shown in FIG. 5, it was confirmed that this switching step can be performed with high spatial resolution by performing light irradiation on a specific region on the substrate.
7.他の細胞を用いた固定化
 上記6.で用いたBa/F3細胞は浮遊細胞であるが、以外の浮遊細胞でも同様に可逆的な固定化可能であることを示すために同様の実験を行った(化合物1dを用いた)。用いた細胞は、K562細胞、Jurkat細胞であり、共にヒト白血病由来細胞株である。また、懸濁状態の接着細胞(HeLa細胞(ヒト子宮頸がん由来細胞株))についても、実験を行った。得られた結果を図6に示す((a)K562細胞(b)Jurkat細胞(c)HeLa細胞)。図中の「off」は、可視光照射後の細胞固定化密度であり、「on」は、紫外線照射後の細胞固定化密度である。図6の結果から、本発明の光応答性細胞固定化剤を用いることで、種々の細胞に対して、可逆的な細胞固定化ができることが実証された。
7. Immobilization with other cells The Ba / F3 cells used in Example 1 were floating cells, but the same experiment was performed to show that other floating cells could be similarly reversibly immobilized (compound 1d was used). The cells used were K562 cells and Jurkat cells, both of which are human leukemia-derived cell lines. Experiments were also performed on suspended adherent cells (HeLa cells (human cervical cancer-derived cell line)). The obtained results are shown in FIG. 6 ((a) K562 cells (b) Jurkat cells (c) HeLa cells). In the figure, “off” is the cell immobilization density after irradiation with visible light, and “on” is the cell immobilization density after ultraviolet irradiation. From the result of FIG. 6, it was demonstrated that reversible cell immobilization can be achieved for various cells by using the photoresponsive cell fixing agent of the present invention.
8.細胞毒性の検証
 基板上に一度固定し、その後、可視光の照射によって取り外した細胞の生存率(Released)と、同じ時間、PBS中においたコントロールの細胞の生存率(Pos. Ctrl.)を比較した結果を図7に示す(化合物1dを用いた)。その結果、「基板上に一度固定し、その後、基板上から取り外す」という作業が、細胞に対して毒性を持たないことが確認された。
8. Cytotoxicity verification The cell viability (Released) once fixed on the substrate and then removed by irradiation with visible light, and the viability of control cells in PBS for the same time (Pos. Ctrl.) The results of comparison are shown in FIG. 7 (compound 1d was used). As a result, it was confirmed that the operation of “fixing once on the substrate and then removing it from the substrate” has no toxicity to the cells.

Claims (17)

  1.  所定の標的細胞を基材上に固定するための光応答性細胞固定化剤であって、
    前記標的細胞と相互作用し得る疎水性鎖、
    前記基材の表面に単分子膜状に配列し得る親水性鎖、及び
    前記疎水性鎖と親水性鎖を連結する分岐型リンカー鎖を有し、
     前記分岐型リンカー鎖の側鎖に、光照射によって異性化し、疎水性から親水性に変化し得る光異性化部位を有することを特徴とする該光応答性細胞固定化剤。
    A photoresponsive cell fixing agent for fixing a predetermined target cell on a substrate,
    A hydrophobic chain capable of interacting with the target cell;
    A hydrophilic chain that can be arranged in the form of a monomolecular film on the surface of the substrate, and a branched linker chain that connects the hydrophobic chain and the hydrophilic chain;
    The photoresponsive cell immobilizing agent characterized in that a side chain of the branched linker chain has a photoisomerization site which can be isomerized by light irradiation and change from hydrophobic to hydrophilic.
  2.  前記光異性化部位の異性化による分配係数の対数値(logP)の変化量が、0.5以上である(ここで、当該分配係数は、疎水性鎖(a)と分岐型リンカー鎖(c)よりなる領域における分配係数の計算値である。)、請求項1に記載に光応答性細胞固定化剤。 The amount of change in the logarithmic value (logP) of the distribution coefficient due to the isomerization of the photoisomerization site is 0.5 or more (where the distribution coefficient includes the hydrophobic chain (a) and the branched linker chain (c ), And the photoresponsive cell fixing agent according to claim 1.
  3.  前記光異性化部位の異性化前後における、より疎水性の高い異性体における前記分配係数の対数値(logP)が10以上である、請求項2に記載に光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to claim 2, wherein the logarithmic value (log P) of the partition coefficient in the more hydrophobic isomer before and after isomerization of the photoisomerization site is 10 or more.
  4.  前記光異性化部位が、スピロピラン又はその誘導体の構造を含む、請求項1に記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to claim 1, wherein the photoisomerization site contains a structure of spiropyran or a derivative thereof.
  5.  前記光異性化部位が、以下の式(I)で表される構造を有する、請求項1に記載の光応答性細胞固定化剤。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、水素原子又はアルキル基であり;Rは、C~C20アルキレン基であり;R、R、及びRは、同一でも異なっていてもよく、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はニトロ基であり;*は、前記分岐型リンカー鎖への結合部分である。)
    The photoresponsive cell fixing agent according to claim 1, wherein the photoisomerization site has a structure represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 is a hydrogen atom or an alkyl group; R 2 is a C 1 to C 20 alkylene group; R A , R B , and R C may be the same or different; Independently, a hydrogen atom, an alkyl group, an alkoxy group, or a nitro group; * is a binding moiety to the branched linker chain.)
  6.  Rが、C又はC直鎖アルキレン基であり;Rが、ニトロ基である、請求項5に記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to claim 5, wherein R 2 is a C 5 or C 6 linear alkylene group; and R C is a nitro group.
  7.  前記疎水性鎖が、置換基を有していてもよい飽和又は不飽和の炭化水素鎖である、請求項1~6のいずれかに記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to any one of claims 1 to 6, wherein the hydrophobic chain is a saturated or unsaturated hydrocarbon chain which may have a substituent.
  8.  前記親水性鎖が、親水性ポリマーを含む、請求項1~7のいずれかに記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to any one of claims 1 to 7, wherein the hydrophilic chain comprises a hydrophilic polymer.
  9.  前記親水性ポリマーが、ポリアルキレングリコールである、請求項8に記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to claim 8, wherein the hydrophilic polymer is polyalkylene glycol.
  10.  前記分岐型リンカー鎖が、アミノ酸残基又はその繰り返し構造を有する、請求項1~9のいずれかに記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to any one of claims 1 to 9, wherein the branched linker chain has an amino acid residue or a repeating structure thereof.
  11.  前記光異性化部位が、アミド結合によって前記分岐型リンカー鎖に連結している、請求項1~10のいずれかに記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to any one of claims 1 to 10, wherein the photoisomerization site is linked to the branched linker chain through an amide bond.
  12.  前記親水性鎖の末端に、前記基材の表面と共有結合により結合し得る置換基を有する、請求項1~11のいずれかに記載の光応答性細胞固定化剤。 The photoresponsive cell fixing agent according to any one of claims 1 to 11, which has a substituent capable of being covalently bonded to the surface of the substrate at the end of the hydrophilic chain.
  13.  以下の構造を有する、請求項1に記載の光応答性細胞固定化剤。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Spは、前記光異性化部位を表し;mは、1~5の自然数であり;nは、50~500の自然数である。)
    The photoresponsive cell fixing agent according to claim 1, which has the following structure.
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, Sp represents the photoisomerization site; m is a natural number of 1 to 5; and n is a natural number of 50 to 500.)
  14.  請求項1~13のいずれかに記載の光応答性細胞固定化剤によって修飾された表面を有する、細胞固定化用基材。 A cell immobilization substrate having a surface modified with the photoresponsive cell immobilization agent according to any one of claims 1 to 13.
  15. (i)請求項14に記載の細胞固定化用基材に特定波長の光を照射し、前記光異性化部位を親水性の異性体構造に変換する工程、
    (ii)前記細胞固定化用基材に所定の標的細胞を含む溶液を接触させ、前記細胞固定化用基材に前記標的細胞を固定化する工程、及び
    (iii)前記細胞固定化用基材に前記工程(i)とは異なる波長の光を照射し、前記光異性化部位を疎水性の異性体構造に変換することで、前記固定化された標的細胞を前記細胞固定化用基材から分離・回収する工程、
    を含む、細胞回収方法。
    (I) irradiating the cell-immobilizing substrate according to claim 14 with light of a specific wavelength, and converting the photoisomerization site into a hydrophilic isomer structure;
    (Ii) a step of bringing a solution containing predetermined target cells into contact with the substrate for cell immobilization, and immobilizing the target cells on the substrate for cell immobilization; and (iii) the substrate for cell immobilization. Is irradiated with light having a wavelength different from that in the step (i), and the photoisomerization site is converted into a hydrophobic isomer structure, whereby the immobilized target cells are removed from the cell immobilization substrate. Separation / recovery process,
    A cell recovery method comprising:
  16.  前記工程(i)~(iii)を複数回繰り返すことを含む、請求項15に記載の細胞の回収方法。 The method for recovering cells according to claim 15, comprising repeating the steps (i) to (iii) a plurality of times.
  17.  前記工程(i)において照射される光が、紫外光であり;前記工程(iii)において照射される光が、可視光である、請求項15又は16に記載の細胞回収方法。 The cell collection method according to claim 15 or 16, wherein the light irradiated in the step (i) is ultraviolet light; and the light irradiated in the step (iii) is visible light.
PCT/JP2019/019632 2018-05-31 2019-05-17 Photoresponsive cell fixing agent WO2019230441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105068A JP7236126B2 (en) 2018-05-31 2018-05-31 Photoresponsive cell fixative
JP2018-105068 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230441A1 true WO2019230441A1 (en) 2019-12-05

Family

ID=68698111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019632 WO2019230441A1 (en) 2018-05-31 2019-05-17 Photoresponsive cell fixing agent

Country Status (2)

Country Link
JP (1) JP7236126B2 (en)
WO (1) WO2019230441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117680A1 (en) * 2019-12-09 2021-06-17 国立大学法人 東京大学 Biological substance immobilization material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158327A1 (en) * 2015-03-30 2016-10-06 国立大学法人 東京大学 Compound for fixing lipid membrane-containing composition, base material modified by compound, method for patterning lipid membrane-containing composition on base material, and method for isolating lipid membrane-containing composition on base material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158327A1 (en) * 2015-03-30 2016-10-06 国立大学法人 東京大学 Compound for fixing lipid membrane-containing composition, base material modified by compound, method for patterning lipid membrane-containing composition on base material, and method for isolating lipid membrane-containing composition on base material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRIEKE, C. ET AL.: "Light-controlled tools", ANGEW. CHEM. INT. ED., vol. 51, no. 34, 2012, pages 8446 - 8476, XP055160738, DOI: 10.1002/anie.201202134 *
HE, DI ET AL.: "A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran- conjugated amphiphilic block copolymer", ACTA BIOMATERIALIA, vol. 51, 2017, pages 101 - 111, XP029943185, DOI: 10.1016/j.actbio.2017.01.049 *
TADA, YUICHI ET AL.: "Development of a photoresponsive cell culture surface: regional enhancement of living- cell adhesion induced by local light irradiation", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 100, no. 1, 26 January 2006 (2006-01-26) - 5 April 2006 (2006-04-05), pages 495 - 499, XP055662472 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117680A1 (en) * 2019-12-09 2021-06-17 国立大学法人 東京大学 Biological substance immobilization material

Also Published As

Publication number Publication date
JP2019208381A (en) 2019-12-12
JP7236126B2 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP3098545B2 (en) Fluorescence detection method for nucleic acids and cytoskeletal components using bis-dication arylfurans
JP2021036051A (en) Polymer bodipy pigment and method for using the same
JP2024023192A (en) Water soluble polymeric dyes having pendant chromophores
KR20230159629A (en) Water-soluble polymeric dyes
US10472521B2 (en) Photostable fluorescent polymeric tandem dyes including luminescent metal complexes
JPH11505554A (en) Photochemical immobilization of ligands using quinones
JP2010508295A5 (en)
US20200048469A1 (en) Polymeric tandem dyes having pendant narrow emission acceptor
US20230152306A1 (en) Nanoparticles for sensing use and production method for same
Yu et al. Synthesis of an AIE-active fluorogen and its application in cell imaging
WO2005049565A1 (en) N-sulfonyldicarboximide containing tethering compounds
WO2019230441A1 (en) Photoresponsive cell fixing agent
JP6901714B2 (en) A compound for immobilizing a lipid film-containing material, a base material modified with the compound, a method for patterning the lipid film-containing material on the base material, and a method for isolating the lipid film-containing material on the base material.
US20170044372A1 (en) Cell tracking reagents and their methods of use
US20150316543A1 (en) Methods and reagents for the detection of biomolecules using luminescence
Yu et al. Fc-specific and covalent conjugation of a fluorescent protein to a native antibody through a photoconjugation strategy for fabrication of a novel photostable fluorescent antibody
WO2020262617A1 (en) Cell fusion-accelerating agent
JP7205910B2 (en) Photodegradable cell fixative
TWI468469B (en) Dyes and methods of marking biological materials
US20130281656A1 (en) Methods for labeling a substrate having a plurality of thiol groups attached thereto
WO2010113974A1 (en) Device for assaying selectively binding substance and agent for immobilizing polypeptide
WO2021117680A1 (en) Biological substance immobilization material
US11639342B2 (en) 1,3-dipolar cycloadditions, and Staudinger ligations for conjugating biomolecules using click chemistry
JP2024147738A (en) Polymeric tandem dyes with pendant narrow-emitting acceptors
CN112341411B (en) Rofecoxib-like derivative, organic fluorescent dye skeleton prepared from same and application of organic fluorescent dye skeleton

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811070

Country of ref document: EP

Kind code of ref document: A1