WO2019230190A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2019230190A1
WO2019230190A1 PCT/JP2019/015088 JP2019015088W WO2019230190A1 WO 2019230190 A1 WO2019230190 A1 WO 2019230190A1 JP 2019015088 W JP2019015088 W JP 2019015088W WO 2019230190 A1 WO2019230190 A1 WO 2019230190A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
shock absorber
knuckle
housing
imaginary line
Prior art date
Application number
PCT/JP2019/015088
Other languages
French (fr)
Japanese (ja)
Inventor
理一 永尾
浩一 山香
喜裕 山口
孝幸 大野
友樹 菊池
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019230190A1 publication Critical patent/WO2019230190A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/54Arrangements for attachment

Definitions

  • the present invention relates to a shock absorber.
  • the shock absorber used in the McPherson strut suspension of an automobile has a piston provided with a damping valve housed in an inner cylinder, and slides in the inner cylinder along the axial direction.
  • An outer cylinder that forms a reservoir chamber is disposed on the outer peripheral side of the inner cylinder.
  • a recent shock absorber is mainly a double cylinder type having an inner cylinder and an outer cylinder. The front end and bottom end of the inner cylinder and outer cylinder are connected by a rod guide and a bottom valve, respectively.
  • the piston is fixed to the bottom end side of the piston rod that passes through the rod guide, the tip end of the piston rod is connected to the vehicle body side, and the bottom side of the outer cylinder is connected to the knuckle of the wheel.
  • the double-cylinder strut-type shock absorber supports the vehicle body posture with respect to the vehicle body weight and the vehicle body tilt as a vehicle column, and attenuates vibration during driving to improve the riding comfort.
  • the strut type shock absorber supports the vehicle body posture with respect to the vehicle body weight and the vehicle body tilt as a vehicle column, strength is required for the mounting portion with the vehicle body.
  • the knuckle attachment portion provided on the outer periphery of the outer cylinder connected to the wheel knuckle is required to have strength against bending moment.
  • a shock absorber has been proposed in which an outer cylinder is formed in an oval shape to ensure strength (for example, Patent Document 1).
  • JP 2002-89606 A Japanese Patent Laid-Open No. 4-158946
  • Patent Document 1 Although consideration is given to securing the strength of the shock absorber, weight reduction is not considered at all. For this reason, the technique described in Patent Document 1 is unsuitable for improving fuel consumption by reducing the weight of the vehicle body required in recent automobiles.
  • the tensile strength of aluminum alloy material is about one-half that of steel material. For this reason, in order to secure the necessary strength against the lateral force generated in the vehicle interior and exterior direction and the vehicle body longitudinal direction, the outer diameter of the outer cylinder must be increased and the wall thickness increased, and the light weight due to the use of aluminum alloy material The advantage of conversion was lost.
  • An object of the present invention is to provide a shock absorber capable of solving the above-described problems, ensuring strength and reducing the weight.
  • a feature of the present invention is that a shock having a piston, a shock absorbing mechanism having a piston rod connected to the piston, and a cylindrical housing that houses the shock absorbing mechanism.
  • the housing is provided integrally with the housing, and has a pair of knuckle mounting portions protruding in one direction from the outer surface of the housing, and the pair of knuckle mounting portions face the wide surfaces, respectively.
  • the wide surface is provided along the axial direction of the casing, and the casing is configured to knuckle on an imaginary line connecting an intermediate surface between the pair of knuckle mounting portions and a central axis of the casing.
  • the thickness of the housing of the mounting portion side is t a, the thickness of the casing on the opposite side of the knuckle mounting portion with respect to the central axis of the housing in the case of a t c, t a> t the relationship of c Mitsuru There to having to thick portion.
  • the present invention is characterized by a piston, a piston rod connected to the piston, a cylindrical inner cylinder that accommodates the piston and the piston rod, an outer cylinder that accommodates the inner cylinder,
  • the outer cylinder is provided integrally with the outer cylinder, and has a pair of knuckle attachment portions protruding in one direction from the outer surface of the outer cylinder, and the pair of knuckle attachment portions are each wide.
  • the wide surfaces are provided along the axial direction of the outer cylinder, and a line passing through the intermediate point between the opposing surfaces of the pair of knuckle mounting portions and the cross-sectional center point of the inner cylinder is a first imaginary line.
  • the first imaginary line is a line passing through the cross-sectional center point of the inner cylinder rotated about 45 ° clockwise around the cross-sectional center point of the inner cylinder as a second imaginary line, Orthogonal, cross section of the inner cylinder
  • a vehicle body partitioned by the second imaginary line and the third imaginary line is defined as a third imaginary line passing through the center point, and a vehicle body outer side direction partitioned by the second imaginary line and the third imaginary line is defined as a virtual region I.
  • the front side direction is a virtual region II
  • the rear side direction of the vehicle body partitioned by the second virtual line and the third virtual line is a virtual region III
  • the vehicle body inner side partitioned by the second virtual line and the third virtual line
  • the direction is a virtual area IV
  • the minimum plate thickness of the outer cylinder in the virtual area I is t a ′
  • the minimum plate thickness of the outer cylinder in the virtual area IV is t c ′
  • the outer cylinder Has a thick portion that satisfies the relationship of t a ′> t c ′.
  • FIG. 1 is a schematic diagram of a suspension device according to an embodiment of the present invention.
  • 1 is a vertical side view (including a partial vertical cross-sectional view) of a multi-cylinder strut type shock absorber as viewed from the front of a vehicle body according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 1 is a schematic view of a suspension device according to an embodiment of the present invention.
  • FIG. 1 is a view of the vehicle as viewed from the front, and shows a front wheel located on the right side in the traveling direction of the vehicle.
  • the suspension device 100 is disposed between the vehicle body 200 and the wheels 300.
  • the suspension device 100 includes a suspension coil spring 101 and a shock absorber 110 disposed in parallel with the suspension coil spring 101 and between the vehicle body 200 and the wheel 300.
  • the shock absorber 110 includes a cylinder 102 and a piston rod 103. Further, a knuckle attachment portion 104 for connecting to the wheel 300 side is attached to the cylinder 102 of the shock absorber 110.
  • the wheel 300 is attached to the hub 301.
  • the hub 301 is attached to a knuckle 302.
  • a lower arm 303 is disposed below the knuckle 302.
  • One end of the lower arm 303 is connected to the knuckle 302, and the other end of the lower arm 303 is connected to the vehicle body 200.
  • the lower arm 303 suppresses front / rear and left / right forces applied to the wheel 300.
  • the shock absorber 110 according to the present embodiment is disposed so as to incline toward the inside of the vehicle body 200 as the axis of the piston rod 103 is directed upward from below.
  • FIG. 2 is a vertical side view (including a partial vertical cross-sectional view) of a multi-cylinder strut type shock absorber as viewed from the front of the vehicle body according to the embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line AA ′ of FIG.
  • the shock absorber 110 includes an inner cylinder 112 that slidably houses a piston 111 and an outer cylinder 113 that is disposed on the outer peripheral side of the inner cylinder 112.
  • the inner cylinder 112 and the outer cylinder 113 constitute a cylinder 102.
  • One end of a piston rod 103 is connected to the piston 111, and the piston 111 slides along the Y-axis direction in the inner cylinder 112 together with the piston rod 103.
  • the piston 111, the inner cylinder 112, and the piston rod 103 constitute a buffer mechanism.
  • the inner cylinder 112, the outer cylinder 113, and the piston rod 103 are arranged concentrically around the center line 400.
  • a reservoir chamber 114 is formed between the inner cylinder 112 and the outer cylinder 113.
  • An oil seal 115 and a rod guide 116 are provided at the front end of the inner cylinder 112 and the outer cylinder 113 in the Y-axis direction.
  • the distal end side of the outer cylinder 113 is molded with an axial length longer than that of the inner cylinder 112, and the oil seal 115 and the rod guide 116 are stored in this portion.
  • the rod guide 116 is press-fitted and fixed at the tip end in the Y-axis direction of the inner diameter of the inner cylinder 112, fixes the inner cylinder 112 in the outer cylinder 113, and has an opening at the center to guide the piston rod 103.
  • the piston rod 103 is provided so as to protrude from a hole 113 a formed at the tip of the outer cylinder 113.
  • An integrated outer cylinder bottom plate 117 is molded at the bottom in the Y-axis direction.
  • the outer cylinder bottom plate 117 is a bottom surface facing the piston 111. Similar to the distal end side, the axial length of the bottom side of the outer cylinder 113 is longer than the axial length of the inner cylinder 112.
  • a bottom valve 118 is housed in the outer cylinder bottom plate 117 and is press-fitted and fixed to a bottom end portion inside the inner cylinder 112.
  • the oil seal 115, the rod guide 116, the inner cylinder 112, and the bottom valve 118 are caulked and fixed by an outer cylinder tip plate 113b integrated with the Y-axis direction tip of the outer cylinder 113, and the oil seal 115, the rod guide 116, A compressive residual axial force transmitted in the order of the inner cylinder 112, the bottom valve 118, and the outer cylinder bottom plate 117 is applied.
  • the inner cylinder 112 is filled with a liquid (not shown) such as oil
  • the reservoir chamber 114 is filled with a predetermined amount of nitrogen gas (not shown) together with the liquid. Oil and nitrogen gas are sealed with an oil seal 115 fixed by caulking.
  • the outer cylinder 113 functions as a cylindrical housing that houses the buffer mechanism.
  • the piston 111 is coupled to the bottom end of the piston rod 103 in the Y-axis direction.
  • the tip of the piston rod 103 passes through the rod guide 116 and the oil seal 115 and extends to the tip of the outer cylinder 113 in the Y-axis direction, and is coupled to the vehicle body 200 (FIG. 1) via an anti-vibration rubber (not shown). ing.
  • a stabilizer bracket 119 for fastening a stabilizer rod (not shown) is integrally formed on the outer peripheral surface of the outer cylinder 113, and a spring seat 120 for supporting a suspension coil spring 101 (FIG. 1) (not shown) is press-fitted and fixed.
  • a pair of knuckle attachment portions 104 (104a, 104b) that are fastened to the knuckle 302 (FIG. 1) are provided on the outer surface of the outer cylinder 113 on the bottom side.
  • the knuckle attachment portion 104 (104a, 104b) is integrally molded with the outer cylinder 113 so as to be spaced apart in parallel in the X-axis direction and to protrude toward the ⁇ Z-axis direction side (one direction side), that is, toward the outer side of the vehicle body. ing.
  • the knuckle attachment portions 104 (104 a and 104 b) face the wide surfaces, and the wide surfaces are provided along the axial direction of the outer cylinder 113.
  • the knuckle 302 of the wheel 300 is disposed between the knuckle mounting portion 104a and the knuckle mounting portion 104b that are spaced apart in the X-axis direction. Further, a plurality of bolt holes 105 (105a, 105b, 105c, 105d) are provided at locations where the knuckle mounting portion 104a and the knuckle mounting portion 104b are opposed to each other, and the knuckle 302 and the knuckle are bolted into the bolt holes.
  • the attachment portion 104 is fastened, and the shock absorber 110 and the wheel 300 are connected.
  • the piston 111 housed in the inner cylinder 112 separates the inside of the inner cylinder 112 into an upper chamber 121 and a lower chamber 122.
  • the piston 111 is provided with one or more piston orifices 111a, a piston check valve 123, and an extension side damping valve 124.
  • the distribution resistance by doing is generated as a load.
  • the bottom valve 118 is provided with one or more bottom valve orifices 118a, a bottom valve check valve 125, and a compression side damping valve 126.
  • the piston rod 103 strokes in the extending direction (+ Y-axis direction) along the center line 400, the liquid flows into the lower chamber 122 from the reservoir chamber 114 through the bottom valve orifice 118a by the bottom valve check valve 125. Be made.
  • the damping force when the piston rod 103 strokes in the contraction direction ( ⁇ Y axis direction) along the center line 400 is such that when the liquid flows from the lower chamber 122 into the reservoir chamber 114, the bottom valve orifice 118 a and the compression side damping valve 126. Distribution resistance due to passing through is generated as a load.
  • the double-cylinder strut type shock absorber as in the present embodiment needs to secure sufficient strength in the vicinity of the knuckle mounting portion 104 with respect to lateral force (force in the Z direction).
  • lateral force force in the Z direction.
  • automobiles have been required to be lighter in order to improve fuel efficiency in consideration of environmental influences, and it is necessary to ensure both strength and weight reduction. Means for solving this will be described.
  • the relationship of the plate thickness in the radial direction of the outer cylinder 113 will be described with reference to FIG. First, it passes through the stroke center point 400a, which is the center point of the circular section of the inner cylinder 112 (outer cylinder 113), and is the intermediate point (opposite surface) of the distance between the opposed inner sides of the pair of knuckle attachment parts 104 (knuckle attachment parts 104a, 104b).
  • the first virtual line 500 is defined as a virtual line passing through the middle of the first virtual line 500. Further, the first imaginary line 500 passes through the knuckle fastening center point 401b which becomes the knuckle fastening center line 401 passing through the centers of all the bolt holes 105 shown in FIG.
  • a virtual line passing through the stroke center point 400a by rotating clockwise from the first virtual line 500 about the stroke center point 400a by 45 ° is defined as a second virtual line 501.
  • a virtual line orthogonal to the second virtual line 501 and passing through the stroke center point 400a is defined as a third virtual line 502.
  • ta is a thick portion (first thick portion) with respect to t c .
  • the virtual area in the vehicle body outside direction partitioned by the second virtual line 501 and the third virtual line 502 is the virtual area I
  • the virtual area in the vehicle front direction is the virtual area II
  • the virtual area in the vehicle rear direction is virtual.
  • the region is defined as a virtual region III
  • the virtual region in the vehicle body inner direction is defined as a virtual region IV.
  • t a is the plate thickness in the virtual region I
  • t c is the plate thickness in the virtual region IV.
  • a fourth imaginary line 503 that passes through the stroke center point 400 a serving as the central axis of the outer cylinder 113 and is orthogonal to the first imaginary line 500 is formed, and the thickness of the outer cylinder 113 on the fourth imaginary line 503 is are you a t b.
  • the plate thickness t b is formed to be thicker than the plate thickness t c (t b > t c ), and the plate thickness t b is the second thick portion.
  • the relationship between the plate thicknesses t a , t b , and t c is t a > t b > t c .
  • the thickness of the outer tube 113 As it goes from the position of the plate thickness t a to the position of the plate thickness t c, the plate thickness is thin (small). Therefore, the minimum plate thickness t b ′′ of the outer cylinder 113 in the virtual region II or the virtual region III is located in the vicinity of the second virtual line 501 and the third virtual line 502. In this embodiment, so that 'do not coincide with (t b ⁇ t b' thickness t b and the minimum thickness t b of the outer cylinder 113 '') sets the sheet thickness t b to match Actually.
  • the relationship is t b ′> t b ′′, and t b ′ is not the minimum plate thickness.
  • t b ′ is the minimum plate thickness
  • the minimum plate thickness t a ′ of the outer cylinder 113 in the virtual area I is thicker than the minimum plate thickness t b ′ of the outer cylinder 113 in the virtual area II or the virtual area III, and the outer cylinder 113 in the virtual area II or the virtual area III.
  • the minimum plate thickness t b ′ is thicker than the minimum plate thickness t c ′ of the outer cylinder 113 in the virtual region IV. That is, the minimum plate thickness in each virtual region has a relationship of t a ′> t b ′> t c ′.
  • the shock absorber 110 shown in FIG. 2 has a load parallel to the longitudinal direction of the vehicle body (X direction) and the vehicle interior / exterior direction (Z) at the tip of the piston rod 103 due to a change in vehicle body posture due to acceleration / deceleration or turning during vehicle travel.
  • the resultant force of the load parallel to (direction) acts on the rod tip in the Y axis direction as a lateral force.
  • the shock absorber 110 is fastened to the knuckle 302 via the knuckle attachment portion 104a and the knuckle attachment portion 104b, and becomes a fixing portion against the lateral force. To do.
  • the reactive force component acting on the knuckle 302 is a component force F bx parallel to the longitudinal direction of the vehicle body (X-axis direction) and a component force F bz parallel to the inside / outside direction of the vehicle body (Z-axis direction).
  • the magnitude and direction of the lateral force component change randomly and momentarily on the shock absorber 110 and act on the rod tip in the Y-axis direction on the stroke center point 400a.
  • the knuckle attachment portion 104a in the Y-axis direction in the vicinity of the line AA ′ shown in FIG. 2 and the outer cylinder 113 in the vicinity of the knuckle attachment portion 104b are the roots of bending deformation and generate high stress, so that they can withstand bending deformation. It is necessary to ensure strength.
  • the minimum thickness t a in each virtual region of virtual area I ⁇ virtual area IV shown in FIG. 3 ', t b', the outer diameter surface of the outer cylinder 113 as the t c ', high stress respectively sigma a, Stress ⁇ b and stress ⁇ c are generated.
  • Distance l c from the point where the stress sigma c is generated to the knuckle fastening central point 401b of the fixed point is longer than the distance l b to the point where the stress sigma b is generated.
  • the stress ⁇ a generation point is closer to the knuckle fastening center point 401b serving as the fixed point than the stress ⁇ b generation point, the stress ⁇ a is more localized than the stress ⁇ b with respect to the lateral force component F tx .
  • the bending moment M tx increases.
  • the stress relative to the lateral force F tz sigma a stress sigma c from the local bending moment M Increased by tz .
  • the lateral force in the longitudinal direction of the vehicle body that is generally applied by acceleration / deceleration during traveling of the vehicle is greater than the lateral force that is applied in the vehicle interior / exterior direction due to a change in the posture of the vehicle body due to steering. Therefore, the stress ⁇ b becomes larger than the stress ⁇ c . Since the shock absorber 110 is configured as described above, the minimum thickness t a ′ of the outer cylinder 113 in the virtual area I is the minimum thickness t b of the outer cylinder 113 in the virtual area II or the virtual area III.
  • the minimum plate thickness t b ' of the outer cylinder 113 in the virtual region II or the virtual region III is thicker than the minimum plate thickness t c 'of the outer tube 113 in the virtual region IV, and thick only in places where strength is required.
  • the static strength and fatigue strength can be satisfied for each of the stress ⁇ a , the stress ⁇ b , and the stress ⁇ c , and the weight can be reduced while suppressing an increase in diameter.
  • the 'minimum thickness t b of the virtual area III' minimum thickness t b of the virtual area II of the same in this embodiment may be configured to plate thickness is different.
  • the inner diameter is the same in the circumferential direction and that the wall thickness is increased in the outer diameter direction because the section modulus increases.
  • the inner diameter direction may be increased, or the inner diameter direction and the outer diameter direction may be increased simultaneously.
  • the minimum plate thickness relationship of the outer cylinder 113 described above is established by a cross-section AA ′ of an arbitrary outer cylinder 113 at least at one place on the + Y axis direction side from the bolt hole 105 (105a, 105b) shown in FIG. It ’s fine. It is preferable that the position closer to the bolt hole 105 (105a, 105b), which is the base of deformation with respect to the lateral force, has the minimum plate thickness relationship of the outer cylinder 113 described above.
  • the thick portion is at least + Y-axis direction (hole 113a side) from the + Y-axis side of the bolt hole 105 (105a, 105b), and from the ⁇ Y-axis side end portion of the stabilizer bracket 119 to the ⁇ Y-axis direction. It is preferable to establish in the range (bottom side).
  • the thick portion is at least + Y-axis direction from the + Y-axis side of the bolt hole 105 (105a, 105b), and -Y from the ⁇ Y-axis side end portion of the spring seat 120. It is preferable to establish it in the axial range.
  • the thick portion is preferably provided from the root of the end portion on the hole 113a side of the knuckle attachment portion 104 to the bolt hole 105 (105a, 105b).
  • the outer cylinder 113 has a uniform cross-sectional shape in the Y-axis direction.
  • the effect of the present embodiment can also be realized as an uneven shape that is thinned continuously or stepwise while establishing the minimum thickness relationship from the + Y-axis side of the bolt hole 105 (105a, 105b) to the tip of the outer cylinder.
  • the thick portion may be formed at least in the + Y-axis direction from the + Y-axis side of the bolt hole 105 (105a, 105b) and from the -Y-axis side end of the stabilizer bracket 119 to the -Y-axis direction. .
  • the shock absorber 110 for a vehicle type that does not have the stabilizer bracket 119 at least the range of the bolt hole 105 (105a, 105b) in the + Y-axis direction from the + Y-axis side and the ⁇ Y-axis direction from the ⁇ Y-axis side end of the spring seat 120
  • the shape may be such that the thick part is formed.
  • an aluminum alloy material is applied as the constituent material of the outer cylinder 113.
  • the constituent material may be a steel material, a magnesium alloy material, a titanium alloy material, a resin material, a carbon-based composite material, or a glass-based composite material.
  • the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, and the spring seat 120 are used in order to make the linear expansion coefficient equal to the thermal deformation caused by the change in the environmental temperature and the heat generation of the liquid at the time of the stroke.
  • the knuckle attachment portion 104a and the knuckle attachment portion 104b are preferably made of the same material.
  • the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, the spring seat 120, the knuckle attachment portion 104a and the knuckle attachment portion 104b may be made of different materials. Further, the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, the spring seat 120, the knuckle attachment portion 104a and the knuckle attachment portion 104b are subjected to surface treatment or heat treatment such as plating or anodized for the purpose of rust prevention or surface hardness improvement. You may do it.
  • the outer cylinder 113 As a manufacturing method of the outer cylinder 113, it is preferable to use gravity casting production as a method of forming a circumferentially uneven thickness shape. As another manufacturing method, die casting, cutting, forging, extrusion, or molding by drawing may be used.
  • the outer cylinder 113 is formed by integrally casting the stabilizer bracket 119, the knuckle attachment portion 104a, and the knuckle attachment portion 104b, thereby improving the product strength and reducing the number of parts by reducing the number of joints.
  • the spring seat 120 is press-fitted and fixed. However, the spring seat 120 may be molded by integral casting, welded or bonded as a separate part, or molded to the outer cylinder 113 by injection molding or the like.
  • the stabilizer bracket 119 may be molded as a separate part by welding, bonding, injection molding or the like on the outer cylinder 113.
  • the knuckle attachment portion 104a and the knuckle attachment portion 104b may also be molded as separate parts by welding, bonding, injection molding or the like on the outer cylinder 113.
  • the shock absorber 110 of the present embodiment is not limited to the above-described one.
  • a type of switching a damping performance by switching a plurality of pistons with an actuator with respect to a road surface input frequency or a type of switching a damping performance with external energy may be a control double cylinder type strut type shock absorber.
  • the shock absorber 110 of this embodiment may be a multi-cylinder strut type shock absorber using air, a magnetic viscous fluid, an electroviscous fluid, or the like as a medium for exerting a damping force.
  • a shock absorber having a piston 111 and a buffer mechanism having a piston rod 103 coupled to the piston 111, and a cylindrical casing (outer cylinder 113) that houses the buffer mechanism,
  • the (outer cylinder 113) is provided integrally with the casing (outer cylinder 113), and has a pair of knuckle attachment portions 104a and 104b protruding in one direction from the outer surface of the casing (outer cylinder 113).
  • the knuckle mounting portions 104a and 104b of the knuckle mounting portions 104a and 104b face the wide surfaces, respectively, and the wide surfaces are provided along the axial direction of the casing (outer cylinder 113).
  • the casing (outer cylinder 113) is attached to a pair of knuckles.
  • the thickness of the casing (outer cylinder 113) on the knuckle mounting part 104a, 104b side on the imaginary line connecting the middle of the opposing surfaces of the sections 104a and 104b and the central axis of the casing (outer cylinder 113) is ta.
  • the casing (outer cylinder 113) has a bottom surface facing the piston 111 and a hole 113a from which the piston rod 103 protrudes, and each of the pair of knuckle mounting portions 104a and 104b.
  • the thick portion is provided closer to the hole 113a than the bolt holes 105a and 105b in the axial direction of the housing (outer cylinder 113).
  • the thick portion is formed at a location where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
  • the housing (outer cylinder 113) has a stabilizer bracket 119 closer to the hole 113a than the knuckle attachment portions 104a and 104b, and the thicker portion is more than the stabilizer bracket 119. Provided on the bottom side.
  • the thick portion is provided from the end side base at the hole 113a side of the knuckle mounting portions 104a and 104b to the bolt holes 105a and 105b.
  • the thickness of the casing (outer cylinder 113) on another virtual line (fourth virtual line 503) orthogonal to the virtual line (first virtual line 500) is set to tb.
  • the body (outer cylinder 113) forms a second thick part where the thickness tb of the casing (outer cylinder 113) satisfies tb> tc.
  • the casing (outer cylinder 113) has a relationship of ta> tb> tc.
  • the thick portion is formed at a place where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
  • the outer cylinder 113 is provided integrally with the outer cylinder 113, and has a pair of knuckle attachment portions 104a and 104b projecting in one direction from the outer surface of the outer cylinder 113, and the pair of knuckle attachments
  • Each of the portions 104a and 104b has a wide surface facing each other, and the wide surface is provided along the axial direction of the outer cylinder 113.
  • the outer cylinder 113 is connected to the intermediate point between the opposing surface of the pair of knuckle mounting portions 104a and 104b.
  • a line passing through the cross-sectional center point of the cylinder 112 is defined as a first imaginary line 500, and the first imaginary line 500 is defined as 4 centering on the cross-sectional center point of the inner cylinder 112.
  • a line passing through the center of the cross section of the inner cylinder 112 rotated clockwise is a second imaginary line 501, a third imaginary line 502 orthogonal to the second imaginary line 501 and passing through the center of the cross section of the inner cylinder 112,
  • the vehicle body outer side direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region I
  • the vehicle body front direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region II.
  • the rear direction of the vehicle body partitioned by the virtual line 501 and the third virtual line 502 is defined as a virtual region III
  • the vehicle interior direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region IV.
  • the outer cylinder 113 is a thick portion that satisfies the relationship ta ′> tc ′. To form.
  • the outer cylinder 113 has a bottom surface to which the piston 111 faces and a hole 113a from which the piston rod 103 projects, and each of the pair of knuckle mounting portions 104a and 104b is opposed to the above.
  • Bolt holes 105a and 105b are provided at the locations where the thickening portions are provided, and the thick portion is provided closer to the holes 113a than the bolt holes 105a and 105b in the axial direction of the outer cylinder 113.
  • the outer cylinder 113 has a stabilizer bracket 119 closer to the hole 113a than the knuckle attachment portions 104a and 104b, and the thick portion is provided on the bottom side of the stabilizer bracket 119. Yes.
  • the thick portion is provided from the root side end on the hole 113a side of the knuckle attachment portions 104a and 104b to the bolt holes 105a and 105b.
  • the outer cylinder 113 is a second that satisfies t b ′> t c ′ when the minimum plate thickness of the outer cylinder 113 in the virtual region II or the virtual region III is t b ′. It has a thick part.
  • the outer cylinder 113 has a relationship of t a ′> t b ′> t c ′.
  • the thick portion is formed at a location where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
  • the minimum plate thicknesses t a ′, t b ′, and t c ′ are obtained in the virtual areas I to IV by the F tX and F tZ that are the lateral force components. While ensuring the strength against the high stress ⁇ a, stress ⁇ b, and stress ⁇ c generated on the outer diameter surface of the outer cylinder 113, it is possible to suppress the size increase and reduce the weight.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention is suitable for a strut type shock absorber that receives a lateral load, but may be a shock absorber used for other types of suspensions.

Abstract

The purpose of the present invention is to provide a shock absorber which ensures provision of strength and which can be made light-weight. In the present invention, a tubular outer cylinder 113 for housing a damping mechanism has a pair of knuckle attachment parts 104a, 104b protruding in one direction from the exterior surface of the outer cylinder 113 and being provided integrally with the outer cylinder 113. The knuckle attachment parts 104a, 104b have respective wide-width surfaces facing each other, and the wide-width surfaces are provided along the axial direction of the outer cylinder 113. When the thickness of the outer cylinder 113 on the sides of the knuckle attachment parts 104a, 104b on a virtual line connecting the central axis of the outer cylinder 113 and the middle point between the two facing surfaces of the knuckle attachment parts 104a, 104b is defined as ta, and the thickness of the outer cylinder 113 on the opposite sides of the knuckle attachment parts 104a, 104b across the central axis of the outer cylinder 113 is defined as tc, the outer cylinder 113 is configured to have a thick wall part that satisfies the relation: ta>tc.

Description

ショックアブゾーバShock absorber
 本発明は、ショックアブゾーバに関する。 The present invention relates to a shock absorber.
 自動車のマクファーソンストラット型サスペンションに用いられるショックアブゾーバは、減衰弁を備えたピストンが内筒に収納され、内筒の筒中を軸方向に沿って摺動している。内筒の外周側には、リザーバ室を形成する外筒が配置される。近年のショックアブソーバは、内筒と外筒を備えた複筒式が主流となっている。内筒と外筒の先端部と底端部はそれぞれロッドガイドと底部バルブによって結合されている。また、ピストンはロッドガイドを貫通するピストンロッドの底端側に固定されており、ピストンロッドの先端が車体側と接続され、外筒の底部側が車輪のナックルに接続されている。複筒型のストラット式ショックアブゾーバは車柱として車体自重と車体の傾きに対する車体姿勢を支持し、走行時の振動減衰を行い、乗り心地を向上させている。 The shock absorber used in the McPherson strut suspension of an automobile has a piston provided with a damping valve housed in an inner cylinder, and slides in the inner cylinder along the axial direction. An outer cylinder that forms a reservoir chamber is disposed on the outer peripheral side of the inner cylinder. A recent shock absorber is mainly a double cylinder type having an inner cylinder and an outer cylinder. The front end and bottom end of the inner cylinder and outer cylinder are connected by a rod guide and a bottom valve, respectively. The piston is fixed to the bottom end side of the piston rod that passes through the rod guide, the tip end of the piston rod is connected to the vehicle body side, and the bottom side of the outer cylinder is connected to the knuckle of the wheel. The double-cylinder strut-type shock absorber supports the vehicle body posture with respect to the vehicle body weight and the vehicle body tilt as a vehicle column, and attenuates vibration during driving to improve the riding comfort.
 ストラット式ショックアブゾーバは、車柱として車体自重と車体の傾きに対する車体姿勢を支持するので、車体との取付け部には強度が要求される。特に車輪のナックルと接続される外筒に外周に設けたナックル取付け部は、曲げモーメントに対する強度が要求される。上記のような要求に対し、例えば外筒を楕円形に形成して強度を確保したショックアブソーバが提案されている(例えば特許文献1)。 Since the strut type shock absorber supports the vehicle body posture with respect to the vehicle body weight and the vehicle body tilt as a vehicle column, strength is required for the mounting portion with the vehicle body. In particular, the knuckle attachment portion provided on the outer periphery of the outer cylinder connected to the wheel knuckle is required to have strength against bending moment. In response to the above requirements, for example, a shock absorber has been proposed in which an outer cylinder is formed in an oval shape to ensure strength (for example, Patent Document 1).
 一方で近年の自動車には環境影響を鑑みた燃費改善のために軽量化が求められている。この要求に対し、外筒をアルミニュウム等の軽金属で形成したショックアブソーバが提案されている(例えば、特許文献2)。 On the other hand, recent automobiles are required to be lighter in order to improve fuel efficiency in consideration of environmental impact. In response to this requirement, a shock absorber in which the outer cylinder is formed of a light metal such as aluminum has been proposed (for example, Patent Document 2).
特開2002-89606号公報JP 2002-89606 A 特開平4-158946号公報Japanese Patent Laid-Open No. 4-158946
 特許文献1に記載の技術においては、ショックアブソーバの強度を確保する点については考慮されているものの、軽量化については全く考慮されていなかった。このため、特許文献1に記載の技術においては、近年の自動車に求められる車体軽量化による燃費向上には不向きであった。 In the technology described in Patent Document 1, although consideration is given to securing the strength of the shock absorber, weight reduction is not considered at all. For this reason, the technique described in Patent Document 1 is unsuitable for improving fuel consumption by reducing the weight of the vehicle body required in recent automobiles.
 また、特許文献2に記載の技術においては、軽量化については考慮されているが、車体と車輪との取付けにあたっての強度確保については不十分であった。 Further, in the technique described in Patent Document 2, although weight reduction is taken into consideration, the strength securing at the time of mounting the vehicle body and the wheel is insufficient.
 アルミニウム合金材の引張強度は、鉄鋼材に対して約2分の1である。このため車体内外方向と車体前後方向に発生する横力に対して必要な強度を確保するためには、外筒の外径拡大や厚肉化が必要となり、アルミニウム合金材を用いたことによる軽量化の利点が失われてしまうものであった。 The tensile strength of aluminum alloy material is about one-half that of steel material. For this reason, in order to secure the necessary strength against the lateral force generated in the vehicle interior and exterior direction and the vehicle body longitudinal direction, the outer diameter of the outer cylinder must be increased and the wall thickness increased, and the light weight due to the use of aluminum alloy material The advantage of conversion was lost.
 本発明の目的は上記課題を解決し、強度を確保すると共に、軽量化を図ることのできるショックアブゾーバを提供することにある。 An object of the present invention is to provide a shock absorber capable of solving the above-described problems, ensuring strength and reducing the weight.
 上記目的を達成するために本発明の特徴とするところは、ピストンと、前記ピストンに連結されたピストンロッドとを有する緩衝機構と、前記緩衝機構を収容する筒状の筐体と、を有するショックアブソーバにおいて、前記筐体は、前記筐体と一体に設けられ、前記筐体外面から一方向側に突出した一対のナックル取付け部を有し、前記一対のナックル取付け部は、それぞれ幅広面を対向させ、前記幅広面が前記筐体の軸方向に沿って設けられており、前記筐体は、前記一対のナックル取付け部の対向面中間と前記筐体の中心軸とを結ぶ仮想線上における前記ナックル取付け部側の前記筐体の厚さをtとし、前記筐体の中心軸に対して前記ナックル取付け部の反対側における前記筐体の厚さをtとした場合に、t>tの関係を満たす肉厚部を有することにある。 In order to achieve the above object, a feature of the present invention is that a shock having a piston, a shock absorbing mechanism having a piston rod connected to the piston, and a cylindrical housing that houses the shock absorbing mechanism. In the absorber, the housing is provided integrally with the housing, and has a pair of knuckle mounting portions protruding in one direction from the outer surface of the housing, and the pair of knuckle mounting portions face the wide surfaces, respectively. The wide surface is provided along the axial direction of the casing, and the casing is configured to knuckle on an imaginary line connecting an intermediate surface between the pair of knuckle mounting portions and a central axis of the casing. the thickness of the housing of the mounting portion side is t a, the thickness of the casing on the opposite side of the knuckle mounting portion with respect to the central axis of the housing in the case of a t c, t a> t the relationship of c Mitsuru There to having to thick portion.
 また、本発明の特徴とするところは、ピストンと、前記ピストンに連結されたピストンロッドと、前記ピストン及び前記ピストンロッドを収容する筒状の内筒と、前記内筒を収容する外筒と、を有するショックアブソーバにおいて、前記外筒は、前記外筒と一体に設けられ、前記外筒外面から一方向側に突出した一対のナックル取付け部を有し、前記一対のナックル取付け部は、それぞれ幅広面を対向させ、前記幅広面が前記外筒の軸方向に沿って設けられており、前記一対のナックル取付け部の対向面中間点と前記内筒の断面中心点を通る線を第1仮想線とし、前記第1仮想線を、前記内筒の断面中心点を中心として45°時計回りに回転させた前記内筒の断面中心点を通る線を第2仮想線とし、前記第2仮想線に直交し、前記内筒の断面中心点を通る第3仮想線とし、前記第2仮想線と前記第3仮想線に仕切られた車体外側方向を仮想領域Iとし、前記第2仮想線と前記第3仮想線に仕切られた車体前側方向を仮想領域IIとし、前記第2仮想線と前記第3仮想線に仕切られた車体後側方向を仮想領域IIIとし、前記第2仮想線と前記第3仮想線に仕切られた車体内側方向を仮想領域IVとし、前記仮想領域I内の前記外筒の最小板厚をt’とし、前記仮想領域IVの前記外筒の最小板厚をt’とした場合に、前記外筒は、t’>t’の関係を満たす肉厚部を有することにある。 Further, the present invention is characterized by a piston, a piston rod connected to the piston, a cylindrical inner cylinder that accommodates the piston and the piston rod, an outer cylinder that accommodates the inner cylinder, The outer cylinder is provided integrally with the outer cylinder, and has a pair of knuckle attachment portions protruding in one direction from the outer surface of the outer cylinder, and the pair of knuckle attachment portions are each wide. The wide surfaces are provided along the axial direction of the outer cylinder, and a line passing through the intermediate point between the opposing surfaces of the pair of knuckle mounting portions and the cross-sectional center point of the inner cylinder is a first imaginary line. The first imaginary line is a line passing through the cross-sectional center point of the inner cylinder rotated about 45 ° clockwise around the cross-sectional center point of the inner cylinder as a second imaginary line, Orthogonal, cross section of the inner cylinder A vehicle body partitioned by the second imaginary line and the third imaginary line is defined as a third imaginary line passing through the center point, and a vehicle body outer side direction partitioned by the second imaginary line and the third imaginary line is defined as a virtual region I. The front side direction is a virtual region II, the rear side direction of the vehicle body partitioned by the second virtual line and the third virtual line is a virtual region III, and the vehicle body inner side partitioned by the second virtual line and the third virtual line When the direction is a virtual area IV, the minimum plate thickness of the outer cylinder in the virtual area I is t a ′, and the minimum plate thickness of the outer cylinder in the virtual area IV is t c ′, the outer cylinder Has a thick portion that satisfies the relationship of t a ′> t c ′.
 本発明によれば、強度を確保すると共に、軽量化を図ることのできるショックアブゾーバを提供することができる。 According to the present invention, it is possible to provide a shock absorber capable of ensuring strength and reducing weight.
本発明の実施例に係るサスペンション装置の模式図である。1 is a schematic diagram of a suspension device according to an embodiment of the present invention. 本発明の実施例に係る車体前方向から見た複筒型のストラット式ショックアブゾーバの縦側面図(一部縦断面図を含む)である。1 is a vertical side view (including a partial vertical cross-sectional view) of a multi-cylinder strut type shock absorber as viewed from the front of a vehicle body according to an embodiment of the present invention. 図2のA-A´断面図である。FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.
 以下、本発明に係るショックアブソーバの実施例を図面に基づいて説明する。本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。 Hereinafter, embodiments of the shock absorber according to the present invention will be described with reference to the drawings. The present invention is not limited to the following examples, and includes various modifications and applications within the scope of the technical concept of the present invention.
 本実施例では4輪自動車に適用した場合を例に挙げ、説明する。また、本実施例ではショックアブソーバとして、複筒型のストラット式ショックアブソーバを用いた例で説明する。本実施例の説明においては、図2及び図3の左下に記載した座標軸に従い、X方向、Y方向、Z方向とし、矢印の方向を正(+)、反矢印の方向を負(-)と表現する。 In this embodiment, a case where the present invention is applied to a four-wheeled vehicle will be described as an example. In the present embodiment, an example in which a multi-cylinder strut type shock absorber is used as the shock absorber will be described. In the description of this embodiment, according to the coordinate axes described in the lower left of FIGS. 2 and 3, the X direction, the Y direction, and the Z direction are set, the arrow direction is positive (+), and the counter arrow direction is negative (−). Express.
 図1は本発明の実施例に係るサスペンション装置の模式図である。図1は車両を前方から見た図であり、車両の進行方向右側に位置する前側車輪を示している。 FIG. 1 is a schematic view of a suspension device according to an embodiment of the present invention. FIG. 1 is a view of the vehicle as viewed from the front, and shows a front wheel located on the right side in the traveling direction of the vehicle.
 図1において、サスペンション装置100は車体200と車輪300との間に配置されている。サスペンション装置100は、懸架コイルスプリング101と、懸架コイルスプリング101と並列になって車体200と車輪300との間に配置されたショックアブソーバ110とから構成されている。ショックアブソーバ110はシリンダ102と、ピストンロッド103を備えている。また、ショックアブソーバ110のシリンダ102には車輪300側と接続するためのナックル取付け部104が取り付けられている。 In FIG. 1, the suspension device 100 is disposed between the vehicle body 200 and the wheels 300. The suspension device 100 includes a suspension coil spring 101 and a shock absorber 110 disposed in parallel with the suspension coil spring 101 and between the vehicle body 200 and the wheel 300. The shock absorber 110 includes a cylinder 102 and a piston rod 103. Further, a knuckle attachment portion 104 for connecting to the wheel 300 side is attached to the cylinder 102 of the shock absorber 110.
 車輪300はハブ301に取り付けられている。ハブ301にはナックル302に取り付けられており、このナックル302にショックアブソーバ110のナックル取付け部104を固定することにより、車体200と車輪300がショックアブソーバ110を介して接続される。また、ナックル302の下側にはロアアーム303が配置されている。ロアアーム303の一端はナックル302に接続され、ロアアーム303の他端は車体200に接続されている。ロアアーム303は車輪300に加わる前後左右の力を抑制する。本実施例のショックアブソーバ110は、ピストンロッド103の軸が下方から上方に向かうに従い、車体200の内側に傾くように傾斜して配置されている。 The wheel 300 is attached to the hub 301. The hub 301 is attached to a knuckle 302. By fixing the knuckle attachment portion 104 of the shock absorber 110 to the knuckle 302, the vehicle body 200 and the wheel 300 are connected via the shock absorber 110. A lower arm 303 is disposed below the knuckle 302. One end of the lower arm 303 is connected to the knuckle 302, and the other end of the lower arm 303 is connected to the vehicle body 200. The lower arm 303 suppresses front / rear and left / right forces applied to the wheel 300. The shock absorber 110 according to the present embodiment is disposed so as to incline toward the inside of the vehicle body 200 as the axis of the piston rod 103 is directed upward from below.
 次に本実施例に関するショックアブソーバ110の構成について、図2及び図3を用いて説明する。図2は、本発明の実施例に係る車体前方向から見た複筒型のストラット式ショックアブゾーバの縦側面図(一部縦断面図を含む)である。図3は、図2のA-A´断面図である。 Next, the configuration of the shock absorber 110 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a vertical side view (including a partial vertical cross-sectional view) of a multi-cylinder strut type shock absorber as viewed from the front of the vehicle body according to the embodiment of the present invention. 3 is a cross-sectional view taken along the line AA ′ of FIG.
 ショックアブソーバ110は、ピストン111を摺動自在に収容する内筒112と、この内筒112の外周側に配置された外筒113を備えている。内筒112と外筒113によりシリンダ102を構成している。ピストン111にはピストンロッド103の一端が連結され、ピストン111はピストンロッド103と共に、内筒112内をY軸方向に沿って摺動する。本実施例では、ピストン111、内筒112、ピストンロッド103により、緩衝機構を構成している。 The shock absorber 110 includes an inner cylinder 112 that slidably houses a piston 111 and an outer cylinder 113 that is disposed on the outer peripheral side of the inner cylinder 112. The inner cylinder 112 and the outer cylinder 113 constitute a cylinder 102. One end of a piston rod 103 is connected to the piston 111, and the piston 111 slides along the Y-axis direction in the inner cylinder 112 together with the piston rod 103. In this embodiment, the piston 111, the inner cylinder 112, and the piston rod 103 constitute a buffer mechanism.
 内筒112、外筒113、ピストンロッド103は、中心線400を中心として同心に配置されている。内筒112と外筒113の間にはリザーバ室114が形成されている。 The inner cylinder 112, the outer cylinder 113, and the piston rod 103 are arranged concentrically around the center line 400. A reservoir chamber 114 is formed between the inner cylinder 112 and the outer cylinder 113.
 この内筒112と外筒113のY軸方向の先端部には、オイルシール115とロッドガイド116が設けられている。外筒113の先端側は、軸長が内筒112の軸長よりも長く成型され、この部分にオイルシール115とロッドガイド116が格納される。ロッドガイド116は内筒112の内径のY軸方向先端部に圧入固定され、内筒112を外筒113内に固定すると共に、中央部に開口を有しピストンロッド103を案内する。ピストンロッド103は外筒113の先端部に形成された孔113aから突出するように設けられている。Y軸方向の底部には一体化された外筒底板117が成型されている。外筒底板117はピストン111と対向する底面となる。先端側と同様に、外筒113の底部側の軸長は、内筒112の軸長よりも長い。外筒底板117には底部バルブ118が格納され、内筒112の内側の底端部に圧入固定される。オイルシール115、ロッドガイド116、内筒112、底部バルブ118は外筒113のY軸方向の先端部に一体化された外筒先端板113bで加締め固定され、オイルシール115、ロッドガイド116、内筒112、底部バルブ118、外筒底板117の順番に伝達する圧縮残留軸力が付与される。このとき、内筒112内には、オイル等の図示しない液体が充填されており、リザーバ室114には液体と共に所定量の図示しない窒素ガスが封入されている。オイルと窒素ガスはかしめ固定されたオイルシール115で封止される。外筒113は、緩衝機構を収容する筒状の筐体として機能している。 An oil seal 115 and a rod guide 116 are provided at the front end of the inner cylinder 112 and the outer cylinder 113 in the Y-axis direction. The distal end side of the outer cylinder 113 is molded with an axial length longer than that of the inner cylinder 112, and the oil seal 115 and the rod guide 116 are stored in this portion. The rod guide 116 is press-fitted and fixed at the tip end in the Y-axis direction of the inner diameter of the inner cylinder 112, fixes the inner cylinder 112 in the outer cylinder 113, and has an opening at the center to guide the piston rod 103. The piston rod 103 is provided so as to protrude from a hole 113 a formed at the tip of the outer cylinder 113. An integrated outer cylinder bottom plate 117 is molded at the bottom in the Y-axis direction. The outer cylinder bottom plate 117 is a bottom surface facing the piston 111. Similar to the distal end side, the axial length of the bottom side of the outer cylinder 113 is longer than the axial length of the inner cylinder 112. A bottom valve 118 is housed in the outer cylinder bottom plate 117 and is press-fitted and fixed to a bottom end portion inside the inner cylinder 112. The oil seal 115, the rod guide 116, the inner cylinder 112, and the bottom valve 118 are caulked and fixed by an outer cylinder tip plate 113b integrated with the Y-axis direction tip of the outer cylinder 113, and the oil seal 115, the rod guide 116, A compressive residual axial force transmitted in the order of the inner cylinder 112, the bottom valve 118, and the outer cylinder bottom plate 117 is applied. At this time, the inner cylinder 112 is filled with a liquid (not shown) such as oil, and the reservoir chamber 114 is filled with a predetermined amount of nitrogen gas (not shown) together with the liquid. Oil and nitrogen gas are sealed with an oil seal 115 fixed by caulking. The outer cylinder 113 functions as a cylindrical housing that houses the buffer mechanism.
 ピストン111は、ピストンロッド103のY軸方向の底端部に結合される。ピストンロッド103の先端部は、ロッドガイド116とオイルシール115を貫通して外筒113のY軸方向の先端部に延出し、図示しない防振ゴムを介して車体200(図1)に結合されている。 The piston 111 is coupled to the bottom end of the piston rod 103 in the Y-axis direction. The tip of the piston rod 103 passes through the rod guide 116 and the oil seal 115 and extends to the tip of the outer cylinder 113 in the Y-axis direction, and is coupled to the vehicle body 200 (FIG. 1) via an anti-vibration rubber (not shown). ing.
 外筒113の外周表面には図示しないスタビライザーロッドを締結するスタビブラケット119が一体成型され、図示しない懸架コイルスプリング101(図1)を支持するスプリングシート120が圧入固定されている。外筒113の底部側の外面にはナックル302(図1)と締結される一対のナックル取付け部104(104a,104b)が備えられている。ナックル取付け部104(104a,104b)はX軸方向に並んで離間すると共に、-Z軸方向側(一方向側)、すなわち車体外方向に向かってに突出するように外筒113に一体成型されている。ナックル取付け部104(104a,104b)は、それぞれ幅広面を対向させ、これら幅広面が外筒113の軸方向に沿って設けられている。 A stabilizer bracket 119 for fastening a stabilizer rod (not shown) is integrally formed on the outer peripheral surface of the outer cylinder 113, and a spring seat 120 for supporting a suspension coil spring 101 (FIG. 1) (not shown) is press-fitted and fixed. A pair of knuckle attachment portions 104 (104a, 104b) that are fastened to the knuckle 302 (FIG. 1) are provided on the outer surface of the outer cylinder 113 on the bottom side. The knuckle attachment portion 104 (104a, 104b) is integrally molded with the outer cylinder 113 so as to be spaced apart in parallel in the X-axis direction and to protrude toward the −Z-axis direction side (one direction side), that is, toward the outer side of the vehicle body. ing. The knuckle attachment portions 104 (104 a and 104 b) face the wide surfaces, and the wide surfaces are provided along the axial direction of the outer cylinder 113.
 X軸方向に離間して配置されたナックル取付け部104aとナックル取付け部104bの間には、車輪300のナックル302が配置されている。また、ナックル取付け部104aとナックル取付け部104bの対向する箇所には、複数のボルト穴105(105a,105b,105c,105d)が設けられ、これらボルト穴に挿入されたボルトにより、ナックル302とナックル取付け部104が締結され、ショックアブソーバ110と車輪300が連結される。 The knuckle 302 of the wheel 300 is disposed between the knuckle mounting portion 104a and the knuckle mounting portion 104b that are spaced apart in the X-axis direction. Further, a plurality of bolt holes 105 (105a, 105b, 105c, 105d) are provided at locations where the knuckle mounting portion 104a and the knuckle mounting portion 104b are opposed to each other, and the knuckle 302 and the knuckle are bolted into the bolt holes. The attachment portion 104 is fastened, and the shock absorber 110 and the wheel 300 are connected.
 内筒112内に収納されたピストン111は、内筒112の内部を上部室121と下部室122とに隔てている。ピストン111には、一箇所以上のピストンオリフィス111aと、ピストンチェック弁123と、伸び側減衰弁124と、が設けられる。 The piston 111 housed in the inner cylinder 112 separates the inside of the inner cylinder 112 into an upper chamber 121 and a lower chamber 122. The piston 111 is provided with one or more piston orifices 111a, a piston check valve 123, and an extension side damping valve 124.
 ピストンロッド103が中心線400に沿って伸び方向(+Y軸方向)にストロークした時の減衰力は、液体が上部室121から下部室122に流入する時にピストンオリフィス111aと伸び側減衰弁124を通過することによる流通抵抗が負荷となり生み出される。 The damping force when the piston rod 103 strokes along the center line 400 in the extension direction (+ Y-axis direction) passes through the piston orifice 111a and the extension side damping valve 124 when the liquid flows from the upper chamber 121 into the lower chamber 122. The distribution resistance by doing is generated as a load.
 ピストンロッド103が中心線400に沿って縮み方向(-Y軸方向)にストロークした時には、液体はピストンチェック弁123により、下部室122からピストンオリフィス111aを通って上部室121へ流入させられる。 When the piston rod 103 strokes along the center line 400 in the contraction direction (−Y-axis direction), the liquid is caused to flow from the lower chamber 122 through the piston orifice 111a into the upper chamber 121 by the piston check valve 123.
 底部バルブ118には、一箇所以上の底部バルブオリフィス118aと、底部バルブチェック弁125と、縮み側減衰弁126が設けられる。ピストンロッド103が中心線400に沿って伸び方向(+Y軸方向)にストロークした時には、液体は底部バルブチェック弁125により、リザーバ室114から底部バルブオリフィス118aを通って下部室122への液体を流入させられる。 The bottom valve 118 is provided with one or more bottom valve orifices 118a, a bottom valve check valve 125, and a compression side damping valve 126. When the piston rod 103 strokes in the extending direction (+ Y-axis direction) along the center line 400, the liquid flows into the lower chamber 122 from the reservoir chamber 114 through the bottom valve orifice 118a by the bottom valve check valve 125. Be made.
 ピストンロッド103が中心線400に沿って縮み方向(-Y軸方向)にストロークした時の減衰力は、液体が下部室122からリザーバ室114に流入する時に底部バルブオリフィス118aと縮み側減衰弁126を通過することによる流通抵抗が負荷となり生み出される。 The damping force when the piston rod 103 strokes in the contraction direction (−Y axis direction) along the center line 400 is such that when the liquid flows from the lower chamber 122 into the reservoir chamber 114, the bottom valve orifice 118 a and the compression side damping valve 126. Distribution resistance due to passing through is generated as a load.
 従って、ピストンロッド103が中心線400に沿って伸び方向(+Y軸方向)にストロークする時には、ピストン111のピストンオリフィス111aと伸び側減衰弁124で減衰力を発生すると同時に、ピストンロッド103の退出分の液体が底部バルブ118の底部バルブチェック弁125を通してリザーバ室114から下部室122内に補充され、逆にピストンロッド103が中心線400に沿って縮み方向(-Y軸方向)にストロークするときには、上部室121と下部室122が導通すると同時に、下部室122からリザーバ室114に液体が流入して底部バルブ118の底部バルブオリフィス118aと縮み側減衰弁126で減衰力を発生する。 Therefore, when the piston rod 103 strokes in the extending direction (+ Y-axis direction) along the center line 400, a damping force is generated by the piston orifice 111a of the piston 111 and the extension side damping valve 124, and at the same time, the piston rod 103 is retracted. Is replenished from the reservoir chamber 114 into the lower chamber 122 through the bottom valve check valve 125 of the bottom valve 118, and conversely, when the piston rod 103 strokes in the contraction direction (−Y-axis direction) along the center line 400, At the same time as the upper chamber 121 and the lower chamber 122 become conductive, liquid flows from the lower chamber 122 into the reservoir chamber 114, and a damping force is generated by the bottom valve orifice 118 a of the bottom valve 118 and the compression side damping valve 126.
 本実施例のような複筒型のストラット式ショックアブソーバは、横力(Z方向の力)に対して、ナックル取付け部104近辺において充分な強度を確保する必要がある。また、近年、自動車には環境影響を鑑みた燃費改善のために軽量化が求められており、強度の確保と軽量化の両立が必要である。これを解決するための手段について説明する。 The double-cylinder strut type shock absorber as in the present embodiment needs to secure sufficient strength in the vicinity of the knuckle mounting portion 104 with respect to lateral force (force in the Z direction). In recent years, automobiles have been required to be lighter in order to improve fuel efficiency in consideration of environmental influences, and it is necessary to ensure both strength and weight reduction. Means for solving this will be described.
 図3を用いて外筒113の径方向の板厚の関係について説明する。まず、内筒112(外筒113)の断面円形の中心点となるストローク中心点400aを通り、一対のナックル取付け部104(ナックル取付け部104a,104b)の対向内側間距離の中間点(対向面の中間)を通る仮想線を第1仮想線500と定義する。また、この第1仮想線500は、図2に示した全てのボルト穴105の中心を通るナックル締結中心線401となるナックル締結中心点401bを通っている。第1仮想線500からストローク中心点400aを中心として45°時計回りに回転させ、ストローク中心点400aを通る仮想線を第2仮想線501と定義する。この第2仮想線501に直交し、ストローク中心点400aを通る仮想線を第3仮想線502と定義する。 The relationship of the plate thickness in the radial direction of the outer cylinder 113 will be described with reference to FIG. First, it passes through the stroke center point 400a, which is the center point of the circular section of the inner cylinder 112 (outer cylinder 113), and is the intermediate point (opposite surface) of the distance between the opposed inner sides of the pair of knuckle attachment parts 104 ( knuckle attachment parts 104a, 104b). The first virtual line 500 is defined as a virtual line passing through the middle of the first virtual line 500. Further, the first imaginary line 500 passes through the knuckle fastening center point 401b which becomes the knuckle fastening center line 401 passing through the centers of all the bolt holes 105 shown in FIG. A virtual line passing through the stroke center point 400a by rotating clockwise from the first virtual line 500 about the stroke center point 400a by 45 ° is defined as a second virtual line 501. A virtual line orthogonal to the second virtual line 501 and passing through the stroke center point 400a is defined as a third virtual line 502.
 一対のナックル取付け部104a,104bの対向面中間と外筒113の中心軸となるストローク中心点400aとを結ぶ線、すなわち、第1仮想線500上におけるナックル取付け部104側の外筒113の板厚をtとし、ストローク中心点400aに対してナックル取付け部104と反対側の外筒113の板厚をtとしたとき、t>tの関係を満たしている。換言すると、tはtに対して肉厚部(第一の肉厚部)となっている。 A line connecting the middle of the opposing surfaces of the pair of knuckle attachment portions 104a and 104b and the stroke center point 400a serving as the central axis of the outer cylinder 113, that is, the plate of the outer cylinder 113 on the knuckle attachment portion 104 side on the first imaginary line 500 the thickness and t a, when the thickness of the outer tube 113 opposite to the knuckle mounting portion 104 with respect to the stroke center point 400a and the t c, satisfy the relationship of t a> t c. In other words, ta is a thick portion (first thick portion) with respect to t c .
 また、本実施例では、第2仮想線501と第3仮想線502に仕切られた車体外側方向の仮想領域を仮想領域I、車体前側方向の仮想領域を仮想領域II、車体後側方向の仮想領域を仮想領域III、車体内側方向の仮想領域を仮想領域IV、とそれぞれ定義する。tは仮想領域I内の板厚であり、tは仮想領域IV内の板厚である。そして、本実施例においては、第1仮想線500上にあるtとtは、それぞれ最小板厚t’と最小板厚t’になっている(t=t’,t=t’)。 Further, in the present embodiment, the virtual area in the vehicle body outside direction partitioned by the second virtual line 501 and the third virtual line 502 is the virtual area I, the virtual area in the vehicle front direction is the virtual area II, and the virtual area in the vehicle rear direction is virtual. The region is defined as a virtual region III, and the virtual region in the vehicle body inner direction is defined as a virtual region IV. t a is the plate thickness in the virtual region I, and t c is the plate thickness in the virtual region IV. Then, in the present embodiment, the t a and t c overlying first imaginary line 500, have become 'minimum thickness t c and' minimum thickness t a respective (t a = t a ', t c = t c ').
 また、仮想領域II又は仮想領域IIIにおける外筒113の板厚をtと定義する。本実施例では、外筒113の中心軸となるストローク中心点400aを通り、第1仮想線500上と直交する第4仮想線503とし、この第4仮想線503上における外筒113の板厚をtとしている。この第4仮想線503は第2仮想線501から時計回り方向に45°(θ1=45°)だけ回転させた位置にある。板厚tは板厚tよりも厚く形成されており(t>t)、板厚tは第二の肉厚部となっている。上記において、板厚t、t、tの関係はt>t>tとなる。 Also defines the thickness of the outer cylinder 113 in the virtual area II or virtual area III and t b. In the present embodiment, a fourth imaginary line 503 that passes through the stroke center point 400 a serving as the central axis of the outer cylinder 113 and is orthogonal to the first imaginary line 500 is formed, and the thickness of the outer cylinder 113 on the fourth imaginary line 503 is are you a t b. The fourth imaginary line 503 is at a position rotated from the second imaginary line 501 by 45 ° (θ1 = 45 °) in the clockwise direction. The plate thickness t b is formed to be thicker than the plate thickness t c (t b > t c ), and the plate thickness t b is the second thick portion. In the above, the relationship between the plate thicknesses t a , t b , and t c is t a > t b > t c .
 本実施例において、外筒113の板厚は、板厚tの位置から板厚tの位置に向かうに従い、板厚が薄く(小さく)なっている。このため、仮想領域II又は仮想領域IIIにおける外筒113の最小板厚t’’は、第2仮想線501,第3仮想線502の近傍に位置している。本実施例では、外筒113の板厚tと最小板厚t’’とは一致していない(t≠t’’)が、一致するように板厚tを設定するようにしても良い。本実施例では、t’> t’’の関係となっており、t’は最小板厚となっていないが、説明の便宜上、t’を最小板厚とし、板厚tと最小板厚t’が一致している(t=t’)と仮定し以下説明する。 In the present embodiment, the thickness of the outer tube 113, as it goes from the position of the plate thickness t a to the position of the plate thickness t c, the plate thickness is thin (small). Therefore, the minimum plate thickness t b ″ of the outer cylinder 113 in the virtual region II or the virtual region III is located in the vicinity of the second virtual line 501 and the third virtual line 502. In this embodiment, so that 'do not coincide with (t b ≠ t b' thickness t b and the minimum thickness t b of the outer cylinder 113 '') sets the sheet thickness t b to match Anyway. In this embodiment, the relationship is t b ′> t b ″, and t b ′ is not the minimum plate thickness. However, for convenience of explanation, t b ′ is the minimum plate thickness, and the plate thickness t b Assuming that the minimum plate thickness t b ′ matches (t b = t b ′), the following description will be given.
 仮想領域I内における外筒113の最小板厚t’は、仮想領域II又は仮想領域IIIにおける外筒113の最小板厚t’より厚く、仮想領域II又は仮想領域IIIにおける外筒113の最小板厚t’は、仮想領域IVの外筒113の最小板厚t’より厚くしている。すなわち、各仮想領域における最小板厚は、t’>t’>t’の関係にある。 The minimum plate thickness t a ′ of the outer cylinder 113 in the virtual area I is thicker than the minimum plate thickness t b ′ of the outer cylinder 113 in the virtual area II or the virtual area III, and the outer cylinder 113 in the virtual area II or the virtual area III. The minimum plate thickness t b ′ is thicker than the minimum plate thickness t c ′ of the outer cylinder 113 in the virtual region IV. That is, the minimum plate thickness in each virtual region has a relationship of t a ′> t b ′> t c ′.
 図2に示すショックアブソーバ110には、車両走行中の加減速や転舵による車体姿勢の変化により、ピストンロッド103の先端部に車体前後方向(X方向)に平行な荷重と車体内外方向(Z方向)に平行な荷重の合力が横力としてY軸方向のロッド先端部に作用する。ショックアブソーバ110はナックル302にナックル取付け部104aとナックル取付け部104bを介して締結され、横力に対する固定部となり,ナックル取付け部104aとナックル取付け部104b及び近辺の外筒113には反力が作用する。 The shock absorber 110 shown in FIG. 2 has a load parallel to the longitudinal direction of the vehicle body (X direction) and the vehicle interior / exterior direction (Z) at the tip of the piston rod 103 due to a change in vehicle body posture due to acceleration / deceleration or turning during vehicle travel. The resultant force of the load parallel to (direction) acts on the rod tip in the Y axis direction as a lateral force. The shock absorber 110 is fastened to the knuckle 302 via the knuckle attachment portion 104a and the knuckle attachment portion 104b, and becomes a fixing portion against the lateral force. To do.
 図3に示すように、作用する横力の分力はそれぞれ、車体前後方向(X軸方向)に平行な分力Ftxと車体内外方向(Z軸方向)に平行な分力Ftzとなる。ナックル302に作用する反力の分力は車体前後方向(X軸方向)に平行な分力Fbxと車体内外方向(Z軸方向)に平行な分力Fbzとなる。車体走行時にショックアブソーバ110には、横力分力の大きさと方向及が時々刻々とランダムに変化してストローク中心点400a上のY軸方向のロッド先端部に作用する。各分力の作用によりショックアブソーバ110には曲げ変形が発生する。図2に示したA-A’線近辺のY軸方向のナックル取付け部104aとナックル取付け部104b近辺の外筒113は、曲げ変形の根元となり、高い応力が発生するため、曲げ変形に耐え得る強度を確保する必要がある。 As shown in FIG. 3, the parallel component force F tz in each component of the lateral force, the vehicle body longitudinal direction (X axis direction) force component F tx parallel to the vehicle body and out direction (Z axis direction) acting . The reactive force component acting on the knuckle 302 is a component force F bx parallel to the longitudinal direction of the vehicle body (X-axis direction) and a component force F bz parallel to the inside / outside direction of the vehicle body (Z-axis direction). When the vehicle travels, the magnitude and direction of the lateral force component change randomly and momentarily on the shock absorber 110 and act on the rod tip in the Y-axis direction on the stroke center point 400a. Bending deformation occurs in the shock absorber 110 by the action of each component force. The knuckle attachment portion 104a in the Y-axis direction in the vicinity of the line AA ′ shown in FIG. 2 and the outer cylinder 113 in the vicinity of the knuckle attachment portion 104b are the roots of bending deformation and generate high stress, so that they can withstand bending deformation. It is necessary to ensure strength.
 特に、図3に示した仮想領域I~仮想領域IVの各仮想領域で最小板厚t’,t’,t’となる外筒113の外径表面では、それぞれ高い応力σ、応力σ、応力σが発生する。横力分力となるFtxとFtzが作用するストローク中心点400aと、反力分力となるFbXとFbZが作用するナックル締結中心点401bとの間では、Z軸方向に距離lのずれが生じている。したがって、ナックル取付け部104aとナックル取付け部104b及び近辺の外筒113には図2に示す車体内外方向の横力分力Ftzによる局所的な曲げモーメントMtzと、図3に示す車体前後方向の横力分力Ftxによる局所的な曲げモーメントMtxが発生する。 In particular, the minimum thickness t a in each virtual region of virtual area I ~ virtual area IV shown in FIG. 3 ', t b', the outer diameter surface of the outer cylinder 113 as the t c ', high stress respectively sigma a, Stress σ b and stress σ c are generated. A distance l in the Z-axis direction between the stroke center point 400a at which F tx and F tz acting as the lateral force components act and the knuckle fastening center point 401b at which F bX and F bZ acting as the reaction force components act. There is a deviation of b . Therefore, a local bending moment M tz by the lateral force component force F tz of the vehicle inner and outer directions shown in FIG. 2 in the knuckle mounting portion 104a and the knuckle mounting portion 104b and the outer cylinder 113 in the vicinity of, the longitudinal direction of the vehicle body shown in FIG. 3 A local bending moment M tx is generated due to the lateral force component force F tx .
 また、固定点となるナックル締結中心点401bから応力σが発生する点までの距離lは、応力σが発生する点までの距離lに対して短い。応力σが発生する点から固定点となるナックル締結中心点401bまでの距離lは、応力σが発生する点までの距離lに対して長い。従って、応力σの発生点は固定点となるナックル締結中心点401bに対して応力σの発生点より近いため、横力分力Ftxに対して応力σは応力σより局所的な曲げモーメントMtx分大きくなる。応力σの発生点は固定点となるナックル締結中心点401bに対して応力σの発生点より近いため、横力Ftzに対して応力σは応力σより局所的な曲げモーメントMtz分大きくなる。 The distance l a from the knuckle fastening central point 401b of the fixed point to a point where stress sigma a is generated, shorter than the distance l b to the point where the stress sigma b is generated. Distance l c from the point where the stress sigma c is generated to the knuckle fastening central point 401b of the fixed point is longer than the distance l b to the point where the stress sigma b is generated. Therefore, since the stress σ a generation point is closer to the knuckle fastening center point 401b serving as the fixed point than the stress σ b generation point, the stress σ a is more localized than the stress σ b with respect to the lateral force component F tx . The bending moment M tx increases. For generation point of stress sigma a is closer than the originating point of the stress sigma c relative to the knuckle fastening central point 401b of the fixed point, the stress relative to the lateral force F tz sigma a stress sigma c from the local bending moment M Increased by tz .
 また、一般的に車両走行中の加減速により作用する車体前後方向の横力の方が、転舵による車体姿勢の変化により車体内外方向に作用する横力より大きい。そのため、応力σは応力σより大きくなる。ショックアブソーバ110は以上のような構成とするため、仮想領域I内の外筒113の最小板厚t’は、仮想領域II又は仮想領域IIIの外筒113の板厚の最小板厚t’より厚く、仮想領域II又は仮想領域IIIの外筒113の最小板厚t’は、仮想領域IVの外筒113の最小板厚t’より厚くし、強度が必要な箇所のみ厚肉化することにより、応力σ、応力σ、応力σそれぞれに対して静強度と疲労強度を満足させ、大径化を抑制しつつ、軽量化できる。 Further, the lateral force in the longitudinal direction of the vehicle body that is generally applied by acceleration / deceleration during traveling of the vehicle is greater than the lateral force that is applied in the vehicle interior / exterior direction due to a change in the posture of the vehicle body due to steering. Therefore, the stress σ b becomes larger than the stress σ c . Since the shock absorber 110 is configured as described above, the minimum thickness t a ′ of the outer cylinder 113 in the virtual area I is the minimum thickness t b of the outer cylinder 113 in the virtual area II or the virtual area III. 'Thicker, the minimum plate thickness t b ' of the outer cylinder 113 in the virtual region II or the virtual region III is thicker than the minimum plate thickness t c 'of the outer tube 113 in the virtual region IV, and thick only in places where strength is required. As a result, the static strength and fatigue strength can be satisfied for each of the stress σ a , the stress σ b , and the stress σ c , and the weight can be reduced while suppressing an increase in diameter.
 なお、本実施例では仮想領域IIの最小板厚t’と仮想領域IIIの最小板厚t’を同一としたが、板厚が異なるように構成しても良い。また、外筒113において、内径は周方向で同一径とし、外径方向に厚肉化した方が、断面係数が大きくなるため、好ましい。なお、本実施例では内径方向への厚肉化や、内径方向と外径方向を同時に厚肉化するようにしても良い。 Although the 'minimum thickness t b of the virtual area III' minimum thickness t b of the virtual area II of the same in this embodiment, may be configured to plate thickness is different. Further, in the outer cylinder 113, it is preferable that the inner diameter is the same in the circumferential direction and that the wall thickness is increased in the outer diameter direction because the section modulus increases. In the present embodiment, the inner diameter direction may be increased, or the inner diameter direction and the outer diameter direction may be increased simultaneously.
 前記した外筒113の最小板厚関係は、図1に示したボルト穴105(105a,105b)より+Y軸方向側の少なくとも一箇所以上の任意の外筒113の断面A-A´で成立すれば良い。横力に対する変形の根元となるボルト穴105(105a,105b)に近い位置程、前記した外筒113の最小板厚関係とすることが好ましい。具体的には、肉厚部は少なくともボルト穴105(105a,105b)の+Y軸側より+Y軸方向(孔113a側)であって、スタビブラケット119の-Y軸側端部より-Y軸方向の範囲(底面側)で成立させることが好ましい。スタビブラケット119が存在しない車種向けのショックアブソーバ110については、肉厚部は少なくともボルト穴105(105a,105b)の+Y軸側より+Y軸方向、スプリングシート120の-Y軸側端部より-Y軸方向の範囲で成立させることが好ましい。また、肉厚部はナックル取付け部104の孔113a側端部の付け根からボルト穴105(105a,105b)にかけて設けると良い。 The minimum plate thickness relationship of the outer cylinder 113 described above is established by a cross-section AA ′ of an arbitrary outer cylinder 113 at least at one place on the + Y axis direction side from the bolt hole 105 (105a, 105b) shown in FIG. It ’s fine. It is preferable that the position closer to the bolt hole 105 (105a, 105b), which is the base of deformation with respect to the lateral force, has the minimum plate thickness relationship of the outer cylinder 113 described above. Specifically, the thick portion is at least + Y-axis direction (hole 113a side) from the + Y-axis side of the bolt hole 105 (105a, 105b), and from the −Y-axis side end portion of the stabilizer bracket 119 to the −Y-axis direction. It is preferable to establish in the range (bottom side). For the shock absorber 110 for a vehicle type that does not have the stabilizer bracket 119, the thick portion is at least + Y-axis direction from the + Y-axis side of the bolt hole 105 (105a, 105b), and -Y from the −Y-axis side end portion of the spring seat 120. It is preferable to establish it in the axial range. The thick portion is preferably provided from the root of the end portion on the hole 113a side of the knuckle attachment portion 104 to the bolt hole 105 (105a, 105b).
 本実施例では外筒113のY軸方向の断面形状は一様とした。ただし、ボルト穴105(105a,105b)の+Y軸側から外筒の先端部にかけて前記最小板厚関係を成立させながら、連続的や段階的に薄肉化する偏肉形状としても本実施例の効果を得ることができる。少なくともボルト穴105(105a,105b)の+Y軸側より+Y軸方向、スタビブラケット119の-Y軸側端部より-Y軸方向の範囲で肉厚部が形成されるような形状とすれば良い。スタビブラケット119が存在しない車種向けのショックアブソーバ110については、少なくともボルト穴105(105a,105b)の+Y軸側より+Y軸方向、スプリングシート120の-Y軸側端部より-Y軸方向の範囲で肉厚部が形成されるような形状とすればよい。 In this embodiment, the outer cylinder 113 has a uniform cross-sectional shape in the Y-axis direction. However, the effect of the present embodiment can also be realized as an uneven shape that is thinned continuously or stepwise while establishing the minimum thickness relationship from the + Y-axis side of the bolt hole 105 (105a, 105b) to the tip of the outer cylinder. Can be obtained. The thick portion may be formed at least in the + Y-axis direction from the + Y-axis side of the bolt hole 105 (105a, 105b) and from the -Y-axis side end of the stabilizer bracket 119 to the -Y-axis direction. . With respect to the shock absorber 110 for a vehicle type that does not have the stabilizer bracket 119, at least the range of the bolt hole 105 (105a, 105b) in the + Y-axis direction from the + Y-axis side and the −Y-axis direction from the −Y-axis side end of the spring seat 120 The shape may be such that the thick part is formed.
 また、本実施例では、外筒113の構成材料はアルミニウム合金材を適用した。構成材料はアルミニウム合金材に代えて、鉄鋼材、マグネシウム合金材、チタニウム合金材、樹脂材、炭素系複合材、ガラス系複合材を用いるようにしても良い。ただし、環境温度の変化やストローク時の液体の発熱による熱変形に対して線膨張係数を同等とし、同等の熱変形量とするため、内筒112、外筒113、スタビブラケット119、スプリングシート120、ナックル取付け部104aとナックル取付け部104bは同種材で構成した方が好ましい。なお、本実施例では、内筒112、外筒113、スタビブラケット119、スプリングシート120、ナックル取付け部104aとナックル取付け部104bを異種材で構成するようにしても良い。さらに、内筒112、外筒113、スタビブラケット119、スプリングシート120、ナックル取付け部104aとナックル取付け部104bは、防錆や表面硬度向上を目的としたメッキ、アルマイト等の表面処理や熱処理を施すようにしても良い。 In this embodiment, an aluminum alloy material is applied as the constituent material of the outer cylinder 113. Instead of the aluminum alloy material, the constituent material may be a steel material, a magnesium alloy material, a titanium alloy material, a resin material, a carbon-based composite material, or a glass-based composite material. However, the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, and the spring seat 120 are used in order to make the linear expansion coefficient equal to the thermal deformation caused by the change in the environmental temperature and the heat generation of the liquid at the time of the stroke. The knuckle attachment portion 104a and the knuckle attachment portion 104b are preferably made of the same material. In this embodiment, the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, the spring seat 120, the knuckle attachment portion 104a and the knuckle attachment portion 104b may be made of different materials. Further, the inner cylinder 112, the outer cylinder 113, the stabilizer bracket 119, the spring seat 120, the knuckle attachment portion 104a and the knuckle attachment portion 104b are subjected to surface treatment or heat treatment such as plating or anodized for the purpose of rust prevention or surface hardness improvement. You may do it.
 外筒113の製造方法としては、重力鋳造製作を利用することが、円周方向の偏肉形状を成型する工法として好ましい。その他の製造方法としては、ダイカスト、切削、鍛造、押出や引抜による成型を用いるようにしても良い。本実施例では、外筒113はスタビブラケット119、ナックル取付け部104aとナックル取付け部104bを一体鋳造成型とし、結合部位の削減による製品強度の向上と部品点数の削減を図った。また、本実施例では、スプリングシート120については、圧入固定としているが、一体鋳造による成型や、別部品として溶接や接着、外筒113に射出成型等でモールドするようにしても良い。また、スタビブラケット119を別部品として溶接や接着、外筒113に射出成型等でモールドするようにしても良い。ナックル取付け部104aとナックル取付け部104bについても、別部品として溶接や接着、外筒113に射出成型等でモールドするようにしても良い。 As a manufacturing method of the outer cylinder 113, it is preferable to use gravity casting production as a method of forming a circumferentially uneven thickness shape. As another manufacturing method, die casting, cutting, forging, extrusion, or molding by drawing may be used. In the present embodiment, the outer cylinder 113 is formed by integrally casting the stabilizer bracket 119, the knuckle attachment portion 104a, and the knuckle attachment portion 104b, thereby improving the product strength and reducing the number of parts by reducing the number of joints. In this embodiment, the spring seat 120 is press-fitted and fixed. However, the spring seat 120 may be molded by integral casting, welded or bonded as a separate part, or molded to the outer cylinder 113 by injection molding or the like. Alternatively, the stabilizer bracket 119 may be molded as a separate part by welding, bonding, injection molding or the like on the outer cylinder 113. The knuckle attachment portion 104a and the knuckle attachment portion 104b may also be molded as separate parts by welding, bonding, injection molding or the like on the outer cylinder 113.
 本実施例のショックアブソーバ110は上述したものに限るものではなく、例えば路面入力周波数に対して複数のピストンをアクチュエータで切り替えて減衰性能を切り替える形式や、外部からのエネルギで減衰性能を切り替える型式の制御複筒型のストラット式ショックアブゾーバであっても良い。また、本実施例のショックアブソーバ110は、減衰力を発揮させる媒体として、空気、磁性粘性流体、電気粘性流体等を用いた複筒型のストラット式ショックアブゾーバであっても良い。また、単筒型ストラット式ショックアブゾーバやピストンロッドをナックル側に締結する倒立型の単筒式又は複筒型ストラット式ショックアブゾーバであっても良い。
(本実施例の効果)
 本実施例では、ピストン111と、ピストン111に連結されたピストンロッド103とを有する緩衝機構と、緩衝機構を収容する筒状の筐体(外筒113)と、を有するショックアブソーバにおいて、筐体(外筒113)は、筐体(外筒113)と一体に設けられ、筐体(外筒113)外面から一方向側に突出した一対のナックル取付け部104a、104bを有しており、一対のナックル取付け部104a、104bは、それぞれ幅広面を対向させ、幅広面が筐体(外筒113)の軸方向に沿って設けられており、筐体(外筒113)は、一対のナックル取付け部104a、104bの対向面中間と筐体(外筒113)の中心軸とを結ぶ仮想線上におけるナックル取付け部104a、104b側の筐体(外筒113)の厚さをtaとし、筐体(外筒113)の中心軸に対してナックル取付け部104a、104bの反対側における筐体(外筒113)の厚さをtcとした場合に、ta>tcの関係を満たす肉厚部を形成するようにしている。
The shock absorber 110 of the present embodiment is not limited to the above-described one. For example, a type of switching a damping performance by switching a plurality of pistons with an actuator with respect to a road surface input frequency or a type of switching a damping performance with external energy. It may be a control double cylinder type strut type shock absorber. Further, the shock absorber 110 of this embodiment may be a multi-cylinder strut type shock absorber using air, a magnetic viscous fluid, an electroviscous fluid, or the like as a medium for exerting a damping force. Further, it may be a single cylinder strut type shock absorber or an inverted single cylinder type or double cylinder type strut type shock absorber that fastens a piston rod to the knuckle side.
(Effect of this embodiment)
In the present embodiment, a shock absorber having a piston 111 and a buffer mechanism having a piston rod 103 coupled to the piston 111, and a cylindrical casing (outer cylinder 113) that houses the buffer mechanism, The (outer cylinder 113) is provided integrally with the casing (outer cylinder 113), and has a pair of knuckle attachment portions 104a and 104b protruding in one direction from the outer surface of the casing (outer cylinder 113). The knuckle mounting portions 104a and 104b of the knuckle mounting portions 104a and 104b face the wide surfaces, respectively, and the wide surfaces are provided along the axial direction of the casing (outer cylinder 113). The casing (outer cylinder 113) is attached to a pair of knuckles. The thickness of the casing (outer cylinder 113) on the knuckle mounting part 104a, 104b side on the imaginary line connecting the middle of the opposing surfaces of the sections 104a and 104b and the central axis of the casing (outer cylinder 113) is ta. When the thickness of the casing (outer cylinder 113) on the opposite side of the knuckle attachment portions 104a and 104b with respect to the central axis of the body (outer cylinder 113) is tc, a thick portion that satisfies the relationship ta> tc Try to form.
 本実施例によれば、強度を確保すると共に、軽量化を図ることのできるショックアブゾーバを提供することができる。 According to the present embodiment, it is possible to provide a shock absorber capable of ensuring strength and reducing the weight.
 また、本実施例は上記に加え、筐体(外筒113)は、ピストン111が対向する底面と、ピストンロッド103が突出する孔113aを有し、一対のナックル取付け部104a、104bのそれぞれには、対向する箇所にボルト穴105a,105bが設けられ、肉厚部は、筐体(外筒113)の軸方向においてボルト穴105a,105bよりも孔113a側に設けるようにした。 In addition to the above, in this embodiment, the casing (outer cylinder 113) has a bottom surface facing the piston 111 and a hole 113a from which the piston rod 103 protrudes, and each of the pair of knuckle mounting portions 104a and 104b. Are provided with bolt holes 105a and 105b at opposite positions, and the thick portion is provided closer to the hole 113a than the bolt holes 105a and 105b in the axial direction of the housing (outer cylinder 113).
 本実施例によれば、強度が要求される箇所に肉厚部を形成するようにしているので、必要以上に筐体(外筒113)の厚みを厚くすることが無く、軽量化を図ることができる。 According to the present embodiment, since the thick portion is formed at a location where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
 また、本実施例は上記に加え、筐体(外筒113)は、ナックル取付け部104a、104bよりも孔113a側にスタビブラケット119を有しており、肉厚部は、スタビブラケット119よりも底面側に設けるようにした。 In addition to the above, in this embodiment, the housing (outer cylinder 113) has a stabilizer bracket 119 closer to the hole 113a than the knuckle attachment portions 104a and 104b, and the thicker portion is more than the stabilizer bracket 119. Provided on the bottom side.
 また、本実施例は上記に加え、肉厚部は、ナックル取付け部104a、104bの孔113a側の端部側付け根からボルト穴105a,105bにかけて設けるようにした。 Further, in addition to the above, in the present embodiment, the thick portion is provided from the end side base at the hole 113a side of the knuckle mounting portions 104a and 104b to the bolt holes 105a and 105b.
 また、本実施例は上記に加え、仮想線(第1仮想線500)と直交する他の仮想線(第4仮想線503)上における筐体(外筒113)の板厚をtbとし、筐体(外筒113)は、筐体(外筒113)の厚さtbがtb>tcとなる第二の肉厚部を形成するようにしている。 In addition to the above, in this embodiment, the thickness of the casing (outer cylinder 113) on another virtual line (fourth virtual line 503) orthogonal to the virtual line (first virtual line 500) is set to tb. The body (outer cylinder 113) forms a second thick part where the thickness tb of the casing (outer cylinder 113) satisfies tb> tc.
 また、本実施例は上記に加え、筐体(外筒113)は、ta>tb>tcの関係いとなるようにした。 Further, in addition to the above, in this embodiment, the casing (outer cylinder 113) has a relationship of ta> tb> tc.
 本実施例によれば、強度が要求される箇所に肉厚部を形成するようにしているので、必要以上に筐体(外筒113)の厚みを厚くすることが無く、軽量化を図ることができる。 According to the present embodiment, since the thick portion is formed at a place where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
 さらに、本実施例では、ピストン111と、ピストン111に連結されたピストンロッド103と、ピストン111及びピストンロッド103を収容する筒状の内筒112と、内筒112を収容する外筒113と、を有するショックアブソーバにおいて、外筒113は、外筒113と一体に設けられ、外筒113外面から一方向側に突出した一対のナックル取付け部104a、104bを有しており、前記一対のナックル取付け部104a、104bは、それぞれ幅広面を対向させ、幅広面が外筒113の軸方向に沿って設けられており、外筒113は、一対のナックル取付け部104a、104bの対向面中間点と内筒112の断面中心点を通る線を第1仮想線500とし、第1仮想線500を、内筒112の断面中心点を中心として45°時計回りに回転させた内筒112の断面中心点を通る線を第2仮想線501とし、第2仮想線501に直交し、内筒112の断面中心点を通る第3仮想線502とし、第2仮想線501と第3仮想線502に仕切られた車体外側方向を仮想領域Iとし、第2仮想線501と第3仮想線502に仕切られた車体前側方向を仮想領域IIとし、第2仮想線501と第3仮想線502に仕切られた車体後側方向を仮想領域IIIとし、第2仮想線501と第3仮想線502に仕切られた車体内側方向を仮想領域IVとし、仮想領域I内の外筒113の最小板厚をta’とし、仮想領域IVの外筒113の最小板厚をtc’とした場合に、外筒113は、ta’>tc’の関係を満たす肉厚部を形成するようにしている。 Further, in this embodiment, the piston 111, the piston rod 103 connected to the piston 111, the cylindrical inner cylinder 112 that accommodates the piston 111 and the piston rod 103, the outer cylinder 113 that accommodates the inner cylinder 112, The outer cylinder 113 is provided integrally with the outer cylinder 113, and has a pair of knuckle attachment portions 104a and 104b projecting in one direction from the outer surface of the outer cylinder 113, and the pair of knuckle attachments Each of the portions 104a and 104b has a wide surface facing each other, and the wide surface is provided along the axial direction of the outer cylinder 113. The outer cylinder 113 is connected to the intermediate point between the opposing surface of the pair of knuckle mounting portions 104a and 104b. A line passing through the cross-sectional center point of the cylinder 112 is defined as a first imaginary line 500, and the first imaginary line 500 is defined as 4 centering on the cross-sectional center point of the inner cylinder 112. A line passing through the center of the cross section of the inner cylinder 112 rotated clockwise is a second imaginary line 501, a third imaginary line 502 orthogonal to the second imaginary line 501 and passing through the center of the cross section of the inner cylinder 112, The vehicle body outer side direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region I, and the vehicle body front direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region II. The rear direction of the vehicle body partitioned by the virtual line 501 and the third virtual line 502 is defined as a virtual region III, and the vehicle interior direction partitioned by the second virtual line 501 and the third virtual line 502 is defined as a virtual region IV. When the minimum plate thickness of the inner cylinder 113 is ta ′ and the minimum plate thickness of the outer cylinder 113 in the virtual region IV is tc ′, the outer cylinder 113 is a thick portion that satisfies the relationship ta ′> tc ′. To form.
 本実施例によれば、強度を確保すると共に、軽量化を図ることのできるショックアブゾーバを提供することができる。 According to the present embodiment, it is possible to provide a shock absorber capable of ensuring strength and reducing the weight.
 また、本実施例は上記に加え、外筒113は、ピストン111が対向する底面と、前記ピストンロッド103が突出する孔113aを有し、一対のナックル取付け部104a、104bのそれぞれには、対向する箇所にボルト穴105a,105bが設けられ、肉厚部は、外筒113の軸方向においてボルト穴105a,105bよりも孔113a側に設けるようにした。 In addition to the above, the outer cylinder 113 has a bottom surface to which the piston 111 faces and a hole 113a from which the piston rod 103 projects, and each of the pair of knuckle mounting portions 104a and 104b is opposed to the above. Bolt holes 105a and 105b are provided at the locations where the thickening portions are provided, and the thick portion is provided closer to the holes 113a than the bolt holes 105a and 105b in the axial direction of the outer cylinder 113.
 また、本実施例は上記に加え、外筒113は、ナックル取付け部104a、104bよりも孔113a側にスタビブラケット119を有し、肉厚部は、スタビブラケット119よりも底面側に設けられている。 In addition to the above, in this embodiment, the outer cylinder 113 has a stabilizer bracket 119 closer to the hole 113a than the knuckle attachment portions 104a and 104b, and the thick portion is provided on the bottom side of the stabilizer bracket 119. Yes.
 また、本実施例は上記に加え、肉厚部は、ナックル取付け部104a、104bの孔113a側の端部側付け根からボルト穴105a,105bにかけて設けられている。 Further, in addition to the above, in the present embodiment, the thick portion is provided from the root side end on the hole 113a side of the knuckle attachment portions 104a and 104b to the bolt holes 105a and 105b.
 また、本実施例は上記に加え、外筒113は、仮想領域II又は仮想領域IIIの外筒113の最小板厚をt’とした場合、t’>t’となる第二の肉厚部を有している。 Further, in addition to the above, in the present embodiment, the outer cylinder 113 is a second that satisfies t b ′> t c ′ when the minimum plate thickness of the outer cylinder 113 in the virtual region II or the virtual region III is t b ′. It has a thick part.
 また、本実施例は上記に加え、外筒113は、t’>t’>t’となる関係を有している。 In addition to the above, in the present embodiment, the outer cylinder 113 has a relationship of t a ′> t b ′> t c ′.
 本実施例によれば、強度が要求される箇所に肉厚部を形成するようにしているので、必要以上に筐体(外筒113)の厚みを厚くすることが無く、軽量化を図ることができる。 According to the present embodiment, since the thick portion is formed at a location where strength is required, the thickness of the housing (outer cylinder 113) is not increased more than necessary, and the weight can be reduced. Can do.
 加えて、本実施例によれば、横力分力となるFtXとFtZにより仮想領域I~仮想領域IVの各仮想領域で最小板厚t’,t’,t’となる外筒113の外径表面で発生する高い応力σa、応力σb、応力σc、のそれぞれに対して強度を確保しつつ、大形化を抑制して軽量化することができる。 In addition, according to the present embodiment, the minimum plate thicknesses t a ′, t b ′, and t c ′ are obtained in the virtual areas I to IV by the F tX and F tZ that are the lateral force components. While ensuring the strength against the high stress σa, stress σb, and stress σc generated on the outer diameter surface of the outer cylinder 113, it is possible to suppress the size increase and reduce the weight.
 本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 なお、本発明は、横荷重の入るストラット式ショックアブソーバに好適であるが、他の形式のサスペンションに用いられるショックアブソーバであってもよい。 The present invention is suitable for a strut type shock absorber that receives a lateral load, but may be a shock absorber used for other types of suspensions.
 100…サスペンション装置、102…シリンダ、103…ピストンロッド、104…ナックル取付け部、104a…ナックル取付け部、104b…ナックル取付け部、105…ボルト穴、105…ボルト穴、105b…ボルト穴、105c…ボルト穴、105d…ボルト穴、110…ショックアブソーバ、111…ピストン、112…内筒、113…外筒、113a…孔、119…スタビブラケット、200…車体、300…車輪、302…ナックル、400…中心線、401…ナックル締結中心線、500…第1仮想線、501…第2仮想線、502…第3仮想線、503…仮想線 DESCRIPTION OF SYMBOLS 100 ... Suspension apparatus, 102 ... Cylinder, 103 ... Piston rod, 104 ... Knuckle attaching part, 104a ... Knuckle attaching part, 104b ... Knuckle attaching part, 105 ... Bolt hole, 105 ... Bolt hole, 105b ... Bolt hole, 105c ... Bolt Hole, 105d ... Bolt hole, 110 ... Shock absorber, 111 ... Piston, 112 ... Inner cylinder, 113 ... Outer cylinder, 113a ... Hole, 119 ... Stabilizer bracket, 200 ... Car body, 300 ... Wheel, 302 ... Knuckle, 400 ... Center 401, knuckle fastening center line, 500 ... first imaginary line, 501 ... second imaginary line, 502 ... third imaginary line, 503 ... imaginary line

Claims (12)

  1.  ピストンと、前記ピストンに連結されたピストンロッドとを有する緩衝機構と、
    前記緩衝機構を収容する筒状の筐体と、を有するショックアブソーバにおいて、
     前記筐体は、前記筐体と一体に設けられ、前記筐体外面から一方向側に突出した一対のナックル取付け部を有し、
     前記一対のナックル取付け部は、それぞれ幅広面を対向させ、前記幅広面が前記筐体の軸方向に沿って設けられており、
     前記筐体は、
     前記一対のナックル取付け部の対向面中間と前記筐体の中心軸とを結ぶ仮想線上における前記ナックル取付け部側の前記筐体の厚さをtとし、
     前記筐体の中心軸に対して前記ナックル取付け部の反対側における前記筐体の厚さをtとした場合に、t>tの関係を満たす肉厚部を有することを特徴とするショックアブソーバ。
    A buffer mechanism having a piston and a piston rod coupled to the piston;
    In a shock absorber having a cylindrical housing that houses the buffer mechanism,
    The housing is provided integrally with the housing, and has a pair of knuckle attachment portions protruding in one direction from the outer surface of the housing,
    The pair of knuckle attachment portions are opposed to the wide surfaces, and the wide surfaces are provided along the axial direction of the housing.
    The housing is
    The thickness of the knuckle mounting portion of the housing on the virtual line connecting the center axis of the housing and the facing surface intermediate of said pair of knuckle mounting portion and t a,
    It has a thick portion that satisfies a relationship of t a > t c , where t c is the thickness of the case on the opposite side of the knuckle mounting portion with respect to the central axis of the case. shock absorber.
  2.  請求項1において、
     前記筐体は、前記ピストンが対向する底面と、前記ピストンロッドが突出する孔を有し、
     前記一対のナックル取付け部のそれぞれには、対向する箇所にボルト穴が設けられ、
     前記肉厚部は、前記筐体の軸方向において前記ボルト穴よりも前記孔側に設けられたことを特徴とするショックアブソーバ。
    In claim 1,
    The housing has a bottom surface facing the piston, and a hole from which the piston rod protrudes,
    Each of the pair of knuckle attachment portions is provided with a bolt hole at an opposite location,
    The shock absorber according to claim 1, wherein the thick portion is provided closer to the hole than the bolt hole in the axial direction of the housing.
  3.  請求項2において、
     前記筐体は、前記ナックル取付け部よりも前記孔側にスタビブラケットを有し、
     前記肉厚部は、前記スタビブラケットよりも前記底面側に設けられたことを特徴とするショックアブソーバ。
    In claim 2,
    The housing has a stabilizer bracket on the hole side from the knuckle attachment portion,
    The shock absorber according to claim 1, wherein the thick portion is provided closer to the bottom surface than the stabilizer bracket.
  4.  請求項3において、
     前記肉厚部は、前記ナックル取付け部の前記孔側の端部側付け根から前記ボルト穴にかけて設けられたことを特徴とするショックアブソーバ。
    In claim 3,
    The shock absorber according to claim 1, wherein the thick portion is provided from an end portion side base of the knuckle attachment portion to the bolt hole.
  5.  請求項4において、
     前記仮想線と直交する他の仮想線上における前記筐体の板厚をtとし、
     前記筐体は、前記筐体の厚さtがt>tとなる第二の肉厚部を有することを特徴とするショックアブソーバ。
    In claim 4,
    The thickness of the casing on another virtual line orthogonal to the virtual line is t b ,
    The shock absorber according to claim 1, wherein the housing has a second thick portion where a thickness t b of the housing satisfies t b > t c .
  6.  請求項5において、
     前記筐体は、t>t>tとなることを特徴とするショックアブソーバ。
    In claim 5,
    The shock absorber according to claim 1, wherein the casing satisfies t a > t b > t c .
  7.  ピストンと、前記ピストンに連結されたピストンロッドと、
     前記ピストン及び前記ピストンロッドを収容する筒状の内筒と、前記内筒を収容する外筒と、を有するショックアブソーバにおいて、
     前記外筒は、前記外筒と一体に設けられ、前記外筒外面から一方向側に突出した一対のナックル取付け部を有し、
     前記一対のナックル取付け部は、それぞれ幅広面を対向させ、前記幅広面が前記外筒の軸方向に沿って設けられており、
     前記一対のナックル取付け部の対向面中間点と前記内筒の断面中心点を通る線を第1仮想線とし、
     前記第1仮想線を、前記内筒の断面中心点を中心として45°時計回りに回転させた前記内筒の断面中心点を通る線を第2仮想線とし、
     前記第2仮想線に直交し、前記内筒の断面中心点を通る第3仮想線とし、
     前記第2仮想線と前記第3仮想線に仕切られた車体外側方向を仮想領域Iとし、
     前記第2仮想線と前記第3仮想線に仕切られた車体前側方向を仮想領域IIとし、
     前記第2仮想線と前記第3仮想線に仕切られた車体後側方向を仮想領域IIIとし、
     前記第2仮想線と前記第3仮想線に仕切られた車体内側方向を仮想領域IVとし、
     前記仮想領域I内の前記外筒の最小板厚をt’とし、前記仮想領域IVの前記外筒の最小板厚をt’とした場合に、
     前記外筒は、t’>t’の関係を満たす肉厚部を有することを特徴とするショックアブソーバ。
    A piston and a piston rod coupled to the piston;
    In a shock absorber having a cylindrical inner cylinder that accommodates the piston and the piston rod, and an outer cylinder that accommodates the inner cylinder,
    The outer cylinder is provided integrally with the outer cylinder, and has a pair of knuckle attachment portions protruding in one direction from the outer surface of the outer cylinder,
    The pair of knuckle attachment portions are opposed to the wide surfaces, and the wide surfaces are provided along the axial direction of the outer cylinder,
    A line passing through the opposing surface midpoint of the pair of knuckle attachment portions and the cross-sectional center point of the inner cylinder is a first imaginary line
    The first imaginary line is a line passing through the cross-sectional center point of the inner cylinder rotated 45 ° clockwise around the cross-sectional center point of the inner cylinder as a second imaginary line,
    A third imaginary line orthogonal to the second imaginary line and passing through the cross-sectional center point of the inner cylinder,
    A vehicle body outside direction partitioned by the second imaginary line and the third imaginary line is a virtual area I,
    The vehicle front side direction partitioned by the second imaginary line and the third imaginary line is defined as a virtual area II,
    The vehicle body rear side direction partitioned by the second imaginary line and the third imaginary line is a virtual region III,
    A vehicle body inner side direction divided by the second imaginary line and the third imaginary line is defined as a virtual area IV,
    When the minimum plate thickness of the outer cylinder in the virtual region I is t a ′, and the minimum plate thickness of the outer cylinder in the virtual region IV is t c ′,
    The shock absorber according to claim 1, wherein the outer cylinder has a thick portion that satisfies a relationship of t a '> t c '.
  8.  請求項7において、
     前記外筒は、前記ピストンが対向する底面と、前記ピストンロッドが突出する孔を有し、
     前記一対のナックル取付け部のそれぞれには、対向する箇所にボルト穴が設けられ、
     前記肉厚部は、前記外筒の軸方向において前記ボルト穴よりも前記孔側に設けられたことを特徴とするショックアブソーバ。
    In claim 7,
    The outer cylinder has a bottom surface facing the piston, and a hole from which the piston rod protrudes,
    Each of the pair of knuckle attachment portions is provided with a bolt hole at an opposite location,
    The shock absorber according to claim 1, wherein the thick portion is provided closer to the hole than the bolt hole in the axial direction of the outer cylinder.
  9. 請求項8において、
     前記外筒は、前記ナックル取付け部よりも前記孔側にスタビブラケットを有し、
     前記肉厚部は、前記スタビブラケットよりも前記底面側に設けられたことを特徴とするショックアブソーバ。
    In claim 8,
    The outer cylinder has a stabilizer bracket on the hole side from the knuckle attachment portion,
    The shock absorber according to claim 1, wherein the thick portion is provided closer to the bottom surface than the stabilizer bracket.
  10.  請求項9において、
     前記肉厚部は、前記ナックル取付け部の前記孔側の端部側付け根から前記ボルト穴にかけて設けられたことを特徴とするショックアブソーバ。
    In claim 9,
    The shock absorber according to claim 1, wherein the thick portion is provided from an end portion side base of the knuckle attachment portion to the bolt hole.
  11.  請求項10において、
     前記外筒は、前記仮想領域II又は前記仮想領域IIIの前記外筒113の最小板厚をt’とした場合、t’>t’となる第二の肉厚部を有することを特徴とするショックアブソーバ。
    In claim 10,
    The outer cylinder has a second thick portion where t b ′> t c ′, where t b ′ is the minimum plate thickness of the outer cylinder 113 in the virtual area II or the virtual area III. A characteristic shock absorber.
  12.  請求項11において、
     前記外筒は、t’>t’>t’となることを特徴とするショックアブソーバ。
    In claim 11,
    The outer cylinder is a shock absorber, characterized in that a t a '> t b'> t c '.
PCT/JP2019/015088 2018-05-31 2019-04-05 Shock absorber WO2019230190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104661 2018-05-31
JP2018104661A JP6994434B2 (en) 2018-05-31 2018-05-31 Shock absorber

Publications (1)

Publication Number Publication Date
WO2019230190A1 true WO2019230190A1 (en) 2019-12-05

Family

ID=68696930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015088 WO2019230190A1 (en) 2018-05-31 2019-04-05 Shock absorber

Country Status (2)

Country Link
JP (1) JP6994434B2 (en)
WO (1) WO2019230190A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022050065A1 (en) * 2020-09-04 2022-03-10

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716641U (en) * 1980-07-04 1982-01-28
JPH04158946A (en) * 1990-10-23 1992-06-02 Atsugi Unisia Corp Manufacture of reservor tube for hydraulic shock absorber
JP2004197847A (en) * 2002-12-18 2004-07-15 Showa Corp Knuckle bracket structure of hydraulic buffer
JP2013181579A (en) * 2012-02-29 2013-09-12 Kyb Co Ltd Shock absorber
JP2013199947A (en) * 2012-03-23 2013-10-03 Kyb Co Ltd Suspension device and method of machining outer tube of suspension device
WO2014129543A1 (en) * 2013-02-20 2014-08-28 プジョー シトロエン オートモビル エスアー Shock absorber
JP2016061314A (en) * 2014-09-16 2016-04-25 Kyb株式会社 Damper
JP2016183698A (en) * 2015-03-25 2016-10-20 株式会社ショーワ Bracket and suspension device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716641U (en) * 1980-07-04 1982-01-28
JPH04158946A (en) * 1990-10-23 1992-06-02 Atsugi Unisia Corp Manufacture of reservor tube for hydraulic shock absorber
JP2004197847A (en) * 2002-12-18 2004-07-15 Showa Corp Knuckle bracket structure of hydraulic buffer
JP2013181579A (en) * 2012-02-29 2013-09-12 Kyb Co Ltd Shock absorber
JP2013199947A (en) * 2012-03-23 2013-10-03 Kyb Co Ltd Suspension device and method of machining outer tube of suspension device
WO2014129543A1 (en) * 2013-02-20 2014-08-28 プジョー シトロエン オートモビル エスアー Shock absorber
JP2016061314A (en) * 2014-09-16 2016-04-25 Kyb株式会社 Damper
JP2016183698A (en) * 2015-03-25 2016-10-20 株式会社ショーワ Bracket and suspension device

Also Published As

Publication number Publication date
JP6994434B2 (en) 2022-01-14
JP2019210951A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US8167325B2 (en) Control arm of multilink suspension system for vehicle
US7735909B2 (en) Body reinforcement device for a vehicle
US20220088983A1 (en) Cylinder device
WO2015005472A1 (en) Vibration damping device for vehicle body
WO2019230190A1 (en) Shock absorber
JP2001180245A (en) Suspension for vehicle
CN111434498A (en) Structural member and method of manufacturing the same
JP6971910B2 (en) Knuckle for vehicles
CN207972523U (en) A kind of damped suspension structure
JP2017155915A (en) Suspension device
EP3297860B1 (en) Link assembly for longitudinal arm vehicle suspension
JP6789874B2 (en) Vehicle shock absorber
US20050127587A1 (en) Hydraulic shock absorbing apparatus of vehicle
US10576813B2 (en) Mounting bracket for a vehicle component and method of forming
CN219277167U (en) Swing arm for electric car
US20050109570A1 (en) Shock absorber with one-piece fixing component
CN215059100U (en) Shock absorber of wide light bus
CN220227630U (en) Aluminum structure for high-precision automobile shock absorber
JPH0791479A (en) Buffer
JP6550197B1 (en) Front fork
JPH07259915A (en) Suspension device of wheel
JP2004003547A (en) Bracket mounting structure of cylinder device
JP2020037285A (en) Vehicle body frame reinforcement unit
CN115773327A (en) Composite bushing, automobile suspension and automobile
CN112440638A (en) 1500 Mpa-grade anti-fatigue electric taxi torsion beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810647

Country of ref document: EP

Kind code of ref document: A1