WO2019230142A1 - Electrical insulation oil composition - Google Patents

Electrical insulation oil composition Download PDF

Info

Publication number
WO2019230142A1
WO2019230142A1 PCT/JP2019/011176 JP2019011176W WO2019230142A1 WO 2019230142 A1 WO2019230142 A1 WO 2019230142A1 JP 2019011176 W JP2019011176 W JP 2019011176W WO 2019230142 A1 WO2019230142 A1 WO 2019230142A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil composition
insulating oil
electrical insulating
ethylphenyl
mass
Prior art date
Application number
PCT/JP2019/011176
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 亀山
晴菜 福永
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2019230142A1 publication Critical patent/WO2019230142A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation

Definitions

  • the present invention relates to an electrical insulating oil composition.
  • the performance mainly required for the electrical insulating oil includes a high breakdown voltage, a high hydrogen gas absorbency, a low viscosity, and a low melting point.
  • various oil-filled electrical devices oil-impregnated electrical devices
  • capacitors electrical insulating oil having a higher dielectric breakdown voltage is being used.
  • Patent Document 1 discloses a composition containing 1-phenyl-1- (2,4-dimethylphenyl) ethane or 1-phenyl-1- (2,5-dimethylphenyl) ethane as an electrical insulating oil composition. Things are listed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an electrical insulating oil composition capable of achieving a good breakdown voltage in a wide temperature range.
  • the present invention provides an electrical insulating oil composition comprising (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.
  • the electrical insulating oil composition may further contain bis (ethylphenyl) methane and (diethylphenyl) phenylmethane.
  • the content of (ethylphenyl) phenylmethane is 10 to 35% by mass based on the total amount of the electrical insulating oil composition, and the content of 1-ethylphenyl-1-phenylethane is based on the total amount of the electrical insulating oil composition.
  • the content of 1-ethylphenyl-2-phenylethane may be 5 to 30% by mass based on the total amount of the electrical insulating oil composition.
  • the electrical insulating oil composition may have a kinematic viscosity at 40 ° C. of 5 mm 2 / s or less.
  • an electrical insulating oil composition that can achieve a good dielectric breakdown voltage in a wide temperature range.
  • the electrical insulating oil composition according to this embodiment includes (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.
  • the electrical insulating oil composition can achieve a good breakdown voltage in a wide temperature range (for example, ⁇ 50 ° C. to 80 ° C.).
  • the present inventors infer the reason why the electrical insulating oil composition according to the present embodiment has the above-described effects as follows.
  • the conventional electrical insulating oil composition causes solids to precipitate in the oil as the components contained in the electrical insulating oil composition solidify during use. It is conceivable that discharge easily occurs from that portion.
  • a film such as a polypropylene film used as a dielectric between electrodes that is one of the members constituting the capacitor is swollen by the electrical insulating oil composition. It is considered that the mechanical stress and the film density are reduced, and the performance of the capacitor is easily lowered.
  • the electrical insulating oil composition according to this embodiment includes (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.
  • the present inventors infer that the generation of the factors that lower the dielectric breakdown voltage as described above can be suppressed in a well-balanced manner in a low-temperature environment and a high-temperature environment.
  • the specific reason is not necessarily clear, first, since the ratio of the aromatic carbon in a molecule
  • (ethylphenyl) phenylmethane has a particularly low swelling property with respect to a film such as a polypropylene film, and is considered to have been able to effectively suppress a decrease in dielectric breakdown voltage in a high temperature environment.
  • the content of (ethylphenyl) phenylmethane in the electrical insulating oil composition is preferably 10% by mass or more, more preferably 12%, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. It is at least 15% by mass, more preferably at least 15% by mass.
  • the content of (ethylphenyl) phenylmethane in the electrical insulating oil composition is preferably 35% by mass or less, more preferably 33%, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. It is not more than mass%, more preferably not more than 30 mass%.
  • the content of 1-ethylphenyl-1-phenylethane in the electrical insulating oil composition is preferably 20% by mass or more based on the total amount of the electrical insulating oil composition from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 25 mass% or more, More preferably, it is 30 mass% or more.
  • the content of 1-ethylphenyl-1-phenylethane in the electrical insulating oil composition is preferably 60% by mass or less, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 55 mass% or less, More preferably, it is 50 mass% or less.
  • the content of 1-ethylphenyl-2-phenylethane in the electrical insulating oil composition is preferably 5% by mass or more based on the total amount of the electrical insulating oil composition from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 7 mass% or more, More preferably, it is 10 mass% or more.
  • the content of 1-ethylphenyl-2-phenylethane in the electrical insulating oil composition is preferably 30% by mass or less, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 27 mass% or less, More preferably, it is 25 mass% or less.
  • the electrical insulating oil composition according to the present embodiment may further contain other hydrocarbons in addition to the above-described components as long as the effects of the present invention are not significantly impaired.
  • the boiling point of the hydrocarbons may be 220 ° C. or higher, and may be 250 ° C. or higher.
  • the boiling point of the hydrocarbon may be 420 ° C. or lower and may be 350 ° C. or lower.
  • hydrocarbons examples include bis (ethylphenyl) methane, (diethylphenyl) phenylmethane, 1,1-bis (ethylphenyl) ethane, 1-diethylphenyl-1-phenylethane, 1,1-diphenylethane , Bicyclic aromatic compounds such as 1,2-diphenylethane and benzyltoluene, and polycyclic aromatic compounds such as alkylnaphthalene and dibenzyltoluene.
  • the content of other hydrocarbons is not particularly limited, but may be, for example, 65% by mass or less, 50% by mass or less, or 35% by mass or less based on the total amount of the electrical insulating oil composition.
  • the content of other hydrocarbons may be, for example, 0.1% by mass or more, 1% by mass or more, or 5% by mass or more based on the total amount of the electrical insulating oil composition.
  • the method for obtaining each component contained in the electrical insulating oil composition according to this embodiment described above is not particularly limited, and a commercially available product may be used, or the product may be manufactured by itself.
  • the electrical insulating oil composition has a high dielectric loss tangent due to the inclusion of a polar substance such as water, and the insulating performance is lowered. Therefore, it is preferable to use the electrical insulating oil composition after removing polar substances such as water by contacting with the activated clay.
  • the activated clay used at this time is not particularly limited.
  • the shape of the activated clay is not particularly limited, but a molded body is preferable from a practical viewpoint.
  • the electrical insulating oil composition may contain chlorine depending on the production method of each component. Since the chlorine content tends to deteriorate the performance of the electrical insulating oil composition, the deterioration of the performance of the electrical insulating oil composition can be suppressed by suppressing the content of the chlorine content. Since the chlorine content cannot always be removed with the activated clay, the electrical insulating oil composition preferably further contains an epoxy compound as a chlorine trapping agent (chlorine scavenger). In addition, since an epoxy compound will be removed to some extent by making it contact with activated clay, it is desirable to add an epoxy compound after an electrically insulating oil composition is treated with clay.
  • Examples of the epoxy compound include 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, vinylcyclohexylene epoxide, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6- Examples include alicyclic epoxy compounds such as methylhexane) carboxylate, diglycidyl ether type epoxy compounds of bisphenol A such as phenol novolac type epoxy compounds and orthocresol novolak type epoxy compounds.
  • the content of the epoxy compound is preferably 0.01 to 1.0% by mass, more preferably 0.3 to 0.8% by mass based on the total amount of the electrical insulating oil composition. If the content is 0.01% by mass or more, the effect of trapping chlorine tends to be sufficiently exerted, and if the content is 1.0% by mass or less, the electrical characteristics of the electrical insulating oil composition are hardly adversely affected. .
  • the kinematic viscosity at 40 ° C. of the electrical insulating oil composition according to this embodiment is preferably 5 mm 2 / s or less, more preferably from the viewpoint of more effectively suppressing a decrease in dielectric breakdown voltage due to a decrease in fluidity. Is 4.5 mm 2 / s or less, more preferably 4 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. of the electrical insulating oil composition is preferably 2.5 mm 2 / s or more from the viewpoint of effectively suppressing odor or reduction in flash point.
  • the kinematic viscosity in this specification means the kinematic viscosity measured according to JIS K2283.
  • the electrical insulating oil composition according to the present embodiment is suitably used for oil-impregnated electrical equipment, and particularly suitably used for impregnating an oil-impregnated capacitor using a plastic film as at least a part of an insulating material or a dielectric material. It is done.
  • a polyolefin film such as a polypropylene film and a polyethylene film can be used.
  • a polyolefin film is preferable.
  • a particularly suitable polyolefin film is a polypropylene film.
  • a suitable oil-impregnated capacitor in the present embodiment is obtained by winding a metal foil such as aluminum as a conductor and a plastic film as the insulating material or dielectric material together with other materials such as insulating paper as necessary. It is manufactured by impregnating an electrical insulating oil composition by the method.
  • the oil-impregnated capacitor is a metal-deposited plastic film (metallized film) formed by a method such as vapor deposition of a metal foil as a conductor such as aluminum or zinc on the plastic film as the insulating material or dielectric material. It is also produced by winding together with a plastic film or insulating paper as necessary and impregnating the electric insulating oil composition by a conventional method.
  • the electrical insulating oil composition according to this embodiment has been described above, but the present invention is not limited to the above embodiment.
  • the composition containing each component according to the present embodiment can be used not only as an electrical insulating oil but also as a solvent, a cleaning agent, and the like.
  • Preparation Example 1 Preparation of catalyst
  • Aluminum sulfate, sulfuric acid, n-propylamine, and n-propyl bromide were dissolved in water, and water glass was gradually added to this solution while stirring to prepare a gel slurry as uniform as possible. This was put into an autoclave and crystallized at 160 ° C. for 72 hours with stirring. Crystals were separated by filtration, and washing and filtration were repeated until the washing solution became neutral, whereby zeolite ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of 70 was obtained.
  • a catalyst was prepared by calcining the obtained zeolite in air.
  • Preparation Example 2 Preparation of (ethylphenyl) phenylmethane (EDPM)] 200 ml of hydrogen type ZSM-5 (12 to 14 mesh) obtained by converting the zeolite ZSM-5 obtained in the above Preparation Example 1 into hydrogen type by ion exchange with hydrochloric acid was charged into a reaction vessel having an internal volume of 250 ml and dried. It was dried at 480 ° C. for 3 hours while feeding nitrogen.
  • EDPM ethylphenyl phenylmethane
  • the mixture contained bis (ethylphenyl) methane and (diethylphenyl) phenylmethane (DEDPM) as other components (total content: 15% by mass).
  • Preparation Example 3 Preparation of 1-ethylphenyl-1-phenylethane (1,1-EDPE)]
  • a mixture having a 1,1-EDPE content of 86% by mass was obtained in the same manner as in Preparation Example 2, except that 1,1-diphenylethane was used instead of diphenylmethane.
  • the mixture contained 1,1-bis (ethylphenyl) ethane and 1-diethylphenyl-1-phenylethane (1,1-DEDPE) as other components (total content: 14 masses). %).
  • Preparation Example 4 Preparation of 1-ethylphenyl-2-phenylethane (1,2-EDPE)] Except for using 1,2-diphenylethane in place of diphenylmethane, the same operation as in Preparation Example 2 was performed to obtain 1,2-EDPE.
  • Example 1 The components obtained in Preparation Examples 2 to 4 were mixed to prepare an electrical insulating oil composition having the composition shown in Table 1.
  • Table 1 shows the composition of the electrical insulating oil composition of Example 1 and the kinematic viscosity at 40 ° C.
  • the capacitors used in the test are as follows.
  • As a solid insulator an easily impregnated simultaneous biaxially stretched polypropylene film manufactured by Shin-Etsu Film Co., Ltd. having a thickness of 12.7 ⁇ m (weight method) obtained by a tubular method was used, and an aluminum foil was used as an electrode.
  • As the dielectric material a laminate of two polypropylene film made of Shin-Etsu Film Co., Ltd. having a thickness of 12.7 ⁇ m (weight method) was used. These were wound and laminated according to a conventional method to produce a model capacitor element for oil impregnation.
  • This element has a capacitance of 0.2 to 0.3 ⁇ F.
  • This element was placed in a tin can.
  • the can has a flexible structure so that the insulator can sufficiently cope with shrinkage at a low temperature.
  • the edge part of the electrode was made into the state which was not bent while keeping the slit.
  • a method of connecting from the electrode to the terminal similarly to the method used for the high frequency capacitor, one end of the electrode is wound with a structure protruding from the polypropylene film, and the protruding part is collectively spot-welded with the lead wire.
  • the can-type capacitor thus prepared was vacuum-dried according to a conventional method, and then impregnated with test oil (each electrical insulating oil composition obtained in Example 1 and Comparative Example 1) under the same vacuum and sealed. .
  • test oil each electrical insulating oil composition obtained in Example 1 and Comparative Example 1
  • each test oil was used after being treated with activated clay in advance. That is, 10% by mass of activated clay galeonite # 036 manufactured by Mizusawa Chemical Industry Co., Ltd. was added to the test oil, stirred at a liquid temperature of 25 ° C. for 30 minutes, and then filtered.
  • an epoxy compound (alicyclic epoxy compound, trade name: Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) as a chlorine scavenger is 0.65% by mass based on the total amount of the electrical insulating oil composition.
  • the obtained electrical insulating oil composition was used as impregnation as a test oil.
  • the predetermined temperatures were -50 ° C, -30 ° C, 30 ° C and 80 ° C.
  • the predetermined power application method is a method of increasing the applied voltage stepwise from the potential gradient of 50 v / ⁇ m at a rate of 10 v / ⁇ m every 24 hours. The results are shown in Table 1.
  • V is the applied voltage (v / ⁇ m) at the time of dielectric breakdown
  • S is the increased voltage (v / ⁇ m) every 24 hours
  • T is the process from the increased applied voltage to the breakdown. Each time (minutes) is shown.

Abstract

This electrical insulation oil composition includes (ethylphenyl)phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.

Description

電気絶縁油組成物Electrical insulating oil composition
 本発明は、電気絶縁油組成物に関する。 The present invention relates to an electrical insulating oil composition.
 電気絶縁油に対して主に求められる性能は、絶縁破壊電圧が高いことをはじめ、水素ガス吸収性が高いこと、粘度が低いこと、更に融点が低いこと等が挙げられる。近年、コンデンサをはじめとする各種油入電気機器(油含浸電気機器)が世界中で使用されるに当たり、より絶縁破壊電圧の高い電気絶縁油が使用されつつある。 The performance mainly required for the electrical insulating oil includes a high breakdown voltage, a high hydrogen gas absorbency, a low viscosity, and a low melting point. In recent years, when various oil-filled electrical devices (oil-impregnated electrical devices) including capacitors are used all over the world, electrical insulating oil having a higher dielectric breakdown voltage is being used.
 1-フェニル-1-キシリルエタン及び1-エチルフェニル-1-フェニルエタンは、その製造が容易であり、絶縁破壊電圧が比較的高く、誘電損失が小さい、融点が低い等の優れた特性を有していることから、電気絶縁油として広く用いられている。例えば、特許文献1には、電気絶縁油組成物として、1-フェニル-1-(2,4-ジメチルフェニル)エタン又は1-フェニル-1-(2,5-ジメチルフェニル)エタンを含有する組成物が記載されている。 1-Phenyl-1-xylylethane and 1-ethylphenyl-1-phenylethane are easy to manufacture and have excellent characteristics such as relatively high dielectric breakdown voltage, low dielectric loss, and low melting point. Therefore, it is widely used as an electrical insulating oil. For example, Patent Document 1 discloses a composition containing 1-phenyl-1- (2,4-dimethylphenyl) ethane or 1-phenyl-1- (2,5-dimethylphenyl) ethane as an electrical insulating oil composition. Things are listed.
特開昭57-50708号公報JP-A-57-50708
 近年、世界経済の発展に伴って、油含浸電気機器には、これまで使用されていなかった地域(例えば、極低温の地域等)での使用が求められ、それに対応できるような低温特性に優れた電気絶縁油の検討が進められている。また、屋外に設置させることの多い産業用電気機器の場合、その使用形態ゆえに高温における特性も重要である。しかしながら、上述したような従来の電気絶縁油組成物は、温度領域によってはその絶縁破壊電圧が必ずしも満足できるものではなかった。 In recent years, with the development of the world economy, oil-impregnated electrical equipment is required to be used in areas that have not been used so far (for example, extremely low temperature areas) and has excellent low-temperature characteristics that can cope with it. Electric insulation oil is being studied. In addition, in the case of industrial electrical equipment that is often installed outdoors, characteristics at high temperatures are also important because of its usage. However, the conventional electrical insulating oil composition as described above does not always satisfy the dielectric breakdown voltage depending on the temperature range.
 本発明は、このような実情に鑑みてなされたものであり、広範な温度領域において良好な絶縁破壊電圧を達成し得る電気絶縁油組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an electrical insulating oil composition capable of achieving a good breakdown voltage in a wide temperature range.
 本発明は、(エチルフェニル)フェニルメタンと、1-エチルフェニル-1-フェニルエタンと、1-エチルフェニル-2-フェニルエタンと、を含む電気絶縁油組成物を提供する。 The present invention provides an electrical insulating oil composition comprising (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.
 電気絶縁油組成物は、ビス(エチルフェニル)メタン及び(ジエチルフェニル)フェニルメタンを更に含んでいてもよい。 The electrical insulating oil composition may further contain bis (ethylphenyl) methane and (diethylphenyl) phenylmethane.
 電気絶縁油組成物は、1,1-ビス(エチルフェニル)エタン及び1-ジエチルフェニル-1-フェニルエタンを更に含んでいてもよい。 The electrical insulating oil composition may further contain 1,1-bis (ethylphenyl) ethane and 1-diethylphenyl-1-phenylethane.
 (エチルフェニル)フェニルメタンの含有量は、電気絶縁油組成物全量を基準として10~35質量%であり、1-エチルフェニル-1-フェニルエタンの含有量は、電気絶縁油組成物全量を基準として、20~60質量%であり、1-エチルフェニル-2-フェニルエタンの含有量は、電気絶縁油組成物全量を基準として、5~30質量%であってもよい。 The content of (ethylphenyl) phenylmethane is 10 to 35% by mass based on the total amount of the electrical insulating oil composition, and the content of 1-ethylphenyl-1-phenylethane is based on the total amount of the electrical insulating oil composition. The content of 1-ethylphenyl-2-phenylethane may be 5 to 30% by mass based on the total amount of the electrical insulating oil composition.
 電気絶縁油組成物は、エポキシ化合物を、電気絶縁油組成物全量を基準として0.01~1.0質量%含んでいてもよい。 The electrical insulating oil composition may contain an epoxy compound in an amount of 0.01 to 1.0% by mass based on the total amount of the electrical insulating oil composition.
 電気絶縁油組成物は、40℃における動粘度が5mm/s以下であってもよい。 The electrical insulating oil composition may have a kinematic viscosity at 40 ° C. of 5 mm 2 / s or less.
 本発明によれば、広範な温度領域において良好な絶縁破壊電圧を達成し得る電気絶縁油組成物を提供することができる。 According to the present invention, it is possible to provide an electrical insulating oil composition that can achieve a good dielectric breakdown voltage in a wide temperature range.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本実施形態に係る電気絶縁油組成物は、(エチルフェニル)フェニルメタンと、1-エチルフェニル-1-フェニルエタンと、1-エチルフェニル-2-フェニルエタンと、を含む。上記電気絶縁油組成物は、広範な温度領域(例えば、-50℃~80℃)において良好な絶縁破壊電圧を達成し得る。 The electrical insulating oil composition according to this embodiment includes (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane. The electrical insulating oil composition can achieve a good breakdown voltage in a wide temperature range (for example, −50 ° C. to 80 ° C.).
 本実施形態に係る電気絶縁油組成物が上記のような効果を奏する理由を、本発明者等は以下のように推察する。まず、従来の電気絶縁油組成物が、低温環境下において絶縁破壊電圧を低下させる原因として、使用の際に電気絶縁油組成物に含まれる成分が凝固することで油中に固形物が析出し、その部分から放電が発生しやすくなることが考えられる。一方で、高温環境下においては、コンデンサを構成する部材の一つである電極間の誘電体として使用されるポリプロピレンフィルム等のフィルムが、電気絶縁油組成物により膨潤することに起因して、フィルムの機械的ストレスの上昇やフィルム密度の低下が発生し、コンデンサの性能低下が起こりやすくなると考えられる。 The present inventors infer the reason why the electrical insulating oil composition according to the present embodiment has the above-described effects as follows. First, as a cause of lowering the dielectric breakdown voltage in a low temperature environment, the conventional electrical insulating oil composition causes solids to precipitate in the oil as the components contained in the electrical insulating oil composition solidify during use. It is conceivable that discharge easily occurs from that portion. On the other hand, in a high temperature environment, a film such as a polypropylene film used as a dielectric between electrodes that is one of the members constituting the capacitor is swollen by the electrical insulating oil composition. It is considered that the mechanical stress and the film density are reduced, and the performance of the capacitor is easily lowered.
 これに対し、本実施形態に係る電気絶縁油組成物は、(エチルフェニル)フェニルメタンと、1-エチルフェニル-1-フェニルエタンと、1-エチルフェニル-2-フェニルエタンと、を含むことで、低温環境下及び高温環境下において、上述したような絶縁破壊電圧を低下させる要因の発生をバランスよく抑制することができたためと、本発明者等は推察する。具体的な理由は必ずしも明らかではないが、まず、上述した3成分ともに、分子中の芳香族炭素の比率が比較的高いため、水素ガス吸収性が高く、耐電圧特性に優れると考えられる。そして、上記3成分を含むことで、凝固点降下が起こり、低温環境下において電気絶縁油組成物に含まれる成分の凝固を効果的に抑制できたと推察する。また、(エチルフェニル)フェニルメタンは、特にポリプロピレンフィルム等のフィルムに対する膨潤性が小さく、高温環境下において絶縁破壊電圧の低下を効果的に抑制することができたと考えられる。 In contrast, the electrical insulating oil composition according to this embodiment includes (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane. The present inventors infer that the generation of the factors that lower the dielectric breakdown voltage as described above can be suppressed in a well-balanced manner in a low-temperature environment and a high-temperature environment. Although the specific reason is not necessarily clear, first, since the ratio of the aromatic carbon in a molecule | numerator is comparatively high, it is thought that hydrogen gas absorptivity is high and it is excellent in a withstand voltage characteristic first. And it is guessed that freezing point depression occurred by including the above-mentioned three components, and solidification of the component contained in an electric insulating oil composition was able to be controlled effectively under a low temperature environment. In addition, (ethylphenyl) phenylmethane has a particularly low swelling property with respect to a film such as a polypropylene film, and is considered to have been able to effectively suppress a decrease in dielectric breakdown voltage in a high temperature environment.
 電気絶縁油組成物における(エチルフェニル)フェニルメタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは10質量%以上、より好ましくは12質量%以上、更に好ましくは15質量%以上である。電気絶縁油組成物における(エチルフェニル)フェニルメタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは35質量%以下、より好ましくは33質量%以下、更に好ましくは30質量%以下である。 The content of (ethylphenyl) phenylmethane in the electrical insulating oil composition is preferably 10% by mass or more, more preferably 12%, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. It is at least 15% by mass, more preferably at least 15% by mass. The content of (ethylphenyl) phenylmethane in the electrical insulating oil composition is preferably 35% by mass or less, more preferably 33%, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. It is not more than mass%, more preferably not more than 30 mass%.
 電気絶縁油組成物における1-エチルフェニル-1-フェニルエタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは20質量%以上、より好ましくは25質量%以上、更に好ましくは30質量%以上である。電気絶縁油組成物における1-エチルフェニル-1-フェニルエタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。 The content of 1-ethylphenyl-1-phenylethane in the electrical insulating oil composition is preferably 20% by mass or more based on the total amount of the electrical insulating oil composition from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 25 mass% or more, More preferably, it is 30 mass% or more. The content of 1-ethylphenyl-1-phenylethane in the electrical insulating oil composition is preferably 60% by mass or less, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 55 mass% or less, More preferably, it is 50 mass% or less.
 電気絶縁油組成物における1-エチルフェニル-2-フェニルエタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは5質量%以上、より好ましくは7質量%以上、更に好ましくは10質量%以上である。電気絶縁油組成物における1-エチルフェニル-2-フェニルエタンの含有量は、更に良好な絶縁破壊電圧を達成する観点から、電気絶縁油組成物全量を基準として、好ましくは30質量%以下、より好ましくは27質量%以下、更に好ましくは25質量%以下である。 The content of 1-ethylphenyl-2-phenylethane in the electrical insulating oil composition is preferably 5% by mass or more based on the total amount of the electrical insulating oil composition from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 7 mass% or more, More preferably, it is 10 mass% or more. The content of 1-ethylphenyl-2-phenylethane in the electrical insulating oil composition is preferably 30% by mass or less, based on the total amount of the electrical insulating oil composition, from the viewpoint of achieving a better dielectric breakdown voltage. Preferably it is 27 mass% or less, More preferably, it is 25 mass% or less.
 本実施形態に係る電気絶縁油組成物は、本発明の効果を著しく阻害しない範囲において、上述した各成分以外に、他の炭化水素を更に含んでいてもよい。このような他の炭化水素を更に含む場合、当該炭化水素の沸点が220℃以上であってよく、250℃以上であってよい。また、当該炭化水素の沸点が420℃以下であってよく、350℃以下であってよい。 The electrical insulating oil composition according to the present embodiment may further contain other hydrocarbons in addition to the above-described components as long as the effects of the present invention are not significantly impaired. When such other hydrocarbons are further included, the boiling point of the hydrocarbons may be 220 ° C. or higher, and may be 250 ° C. or higher. Moreover, the boiling point of the hydrocarbon may be 420 ° C. or lower and may be 350 ° C. or lower.
 他の炭化水素としては、例えば、ビス(エチルフェニル)メタン、(ジエチルフェニル)フェニルメタン、1,1-ビス(エチルフェニル)エタン、1-ジエチルフェニル-1-フェニルエタン、1,1-ジフェニルエタン、1,2-ジフェニルエタン、ベンジルトルエン等の2環の芳香族化合物、アルキルナフタレン、ジベンジルトルエン等の多環芳香族化合物などが挙げられる。 Examples of other hydrocarbons include bis (ethylphenyl) methane, (diethylphenyl) phenylmethane, 1,1-bis (ethylphenyl) ethane, 1-diethylphenyl-1-phenylethane, 1,1-diphenylethane , Bicyclic aromatic compounds such as 1,2-diphenylethane and benzyltoluene, and polycyclic aromatic compounds such as alkylnaphthalene and dibenzyltoluene.
 他の炭化水素の含有量は特に制限されないが、電気絶縁油組成物全量を基準として、例えば65質量%以下、50質量%以下、又は35質量%以下であってよい。他の炭化水素の含有量は、電気絶縁油組成物全量を基準として、例えば0.1質量%以上、1質量%以上、又は5質量%以上であってよい。 The content of other hydrocarbons is not particularly limited, but may be, for example, 65% by mass or less, 50% by mass or less, or 35% by mass or less based on the total amount of the electrical insulating oil composition. The content of other hydrocarbons may be, for example, 0.1% by mass or more, 1% by mass or more, or 5% by mass or more based on the total amount of the electrical insulating oil composition.
 上述した本実施形態に係る電気絶縁油組成物に含まれる各成分の入手方法には特に制限はなく、市販品を用いてもよいし、自ら製造してもよい。 The method for obtaining each component contained in the electrical insulating oil composition according to this embodiment described above is not particularly limited, and a commercially available product may be used, or the product may be manufactured by itself.
 電気絶縁油組成物は、水等の極性物質の含有により誘電正接が高くなり、絶縁性能が低下する。そのため、電気絶縁油組成物は、活性白土と接触させて水等の極性物質を除去したうえで使用することが好ましい。このときに使用する活性白土は、特に限定されない。活性白土の形状としては、特に限定されないが、実用上の観点から成型体の方が好ましい。 The electrical insulating oil composition has a high dielectric loss tangent due to the inclusion of a polar substance such as water, and the insulating performance is lowered. Therefore, it is preferable to use the electrical insulating oil composition after removing polar substances such as water by contacting with the activated clay. The activated clay used at this time is not particularly limited. The shape of the activated clay is not particularly limited, but a molded body is preferable from a practical viewpoint.
 電気絶縁油組成物は、各成分の製造方法によっては塩素分が含まれる場合がある。塩素分は電気絶縁油組成物の性能を悪化させる傾向があるため、塩素分の含有量を抑えることで電気絶縁油組成物の性能の悪化を抑制することができる。塩素分については必ずしも上記活性白土で除去できないため、電気絶縁油組成物は、塩素トラップ剤(塩素捕獲剤)としてエポキシ化合物を更に含むことが好ましい。なお、エポキシ化合物は、活性白土と接触させることによってある程度除去されてしまうことから、電気絶縁油組成物が白土処理された後にエポキシ化合物を添加することが望ましい。 The electrical insulating oil composition may contain chlorine depending on the production method of each component. Since the chlorine content tends to deteriorate the performance of the electrical insulating oil composition, the deterioration of the performance of the electrical insulating oil composition can be suppressed by suppressing the content of the chlorine content. Since the chlorine content cannot always be removed with the activated clay, the electrical insulating oil composition preferably further contains an epoxy compound as a chlorine trapping agent (chlorine scavenger). In addition, since an epoxy compound will be removed to some extent by making it contact with activated clay, it is desirable to add an epoxy compound after an electrically insulating oil composition is treated with clay.
 エポキシ化合物としては、例えば、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、ビニルシクロヘキセンジエポキサイド、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルヘキサン)カルボキシレート等の脂環式エポキシ化合物、フェノールノボラック型エポキシ化合物、オルソクレゾールノボラック型エポキシ化合物等のビスフェノールAのジグリシジルエーテル型エポキシ化合物などが例示される。エポキシ化合物の含有量は、電気絶縁油組成物全量を基準として0.01~1.0質量%であることが好ましく、0.3~0.8質量%であることがより好ましい。含有量が0.01質量%以上であれば塩素分をトラップする効果が充分に発揮される傾向があり、1.0質量%以下であれば電気絶縁油組成物の電気特性に悪影響を及ぼしにくい。 Examples of the epoxy compound include 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, vinylcyclohexylene epoxide, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6- Examples include alicyclic epoxy compounds such as methylhexane) carboxylate, diglycidyl ether type epoxy compounds of bisphenol A such as phenol novolac type epoxy compounds and orthocresol novolak type epoxy compounds. The content of the epoxy compound is preferably 0.01 to 1.0% by mass, more preferably 0.3 to 0.8% by mass based on the total amount of the electrical insulating oil composition. If the content is 0.01% by mass or more, the effect of trapping chlorine tends to be sufficiently exerted, and if the content is 1.0% by mass or less, the electrical characteristics of the electrical insulating oil composition are hardly adversely affected. .
 本実施形態に係る電気絶縁油組成物の40℃における動粘度は、流動性の低下による絶縁破壊電圧の低下をより効果的に抑制する観点から、好ましくは5mm/s以下であり、より好ましくは4.5mm/s以下であり、更に好ましくは4mm/s以下である。電気絶縁油組成物の40℃における動粘度は、臭気又は引火点の低下を効果的に抑制する観点から、2.5mm/s以上であることが好ましい。本明細書における動粘度は、JIS K 2283に準拠して測定される動粘度を意味する。 The kinematic viscosity at 40 ° C. of the electrical insulating oil composition according to this embodiment is preferably 5 mm 2 / s or less, more preferably from the viewpoint of more effectively suppressing a decrease in dielectric breakdown voltage due to a decrease in fluidity. Is 4.5 mm 2 / s or less, more preferably 4 mm 2 / s or less. The kinematic viscosity at 40 ° C. of the electrical insulating oil composition is preferably 2.5 mm 2 / s or more from the viewpoint of effectively suppressing odor or reduction in flash point. The kinematic viscosity in this specification means the kinematic viscosity measured according to JIS K2283.
 本実施形態に係る電気絶縁油組成物は、油含浸電気機器に好適に用いられ、特にプラスチックフィルムを絶縁材料又は誘電体材料の少なくとも一部に使用した油含浸コンデンサに含浸させるために好適に用いられる。 The electrical insulating oil composition according to the present embodiment is suitably used for oil-impregnated electrical equipment, and particularly suitably used for impregnating an oil-impregnated capacitor using a plastic film as at least a part of an insulating material or a dielectric material. It is done.
 プラスチックフィルムとしては、ポリエステルフィルム、ポリフッ化ビニリデンフィルム等の他、ポリプロピレンフィルム、ポリエチレンフィルム等のポリオレフィンフィルムなどを用いることができるが、それらの中でもポリオレフィンフィルムが好適である。特に好適なポリオレフィンフィルムは、ポリプロピレンフィルムである。 As the plastic film, in addition to a polyester film, a polyvinylidene fluoride film, and the like, a polyolefin film such as a polypropylene film and a polyethylene film can be used. Among these, a polyolefin film is preferable. A particularly suitable polyolefin film is a polypropylene film.
 本実施形態において好適な油含浸コンデンサは、導体としてアルミニウム等の金属箔と、上記絶縁材料又は誘電体材料としてのプラスチックフィルムとを、必要に応じて絶縁紙等の他の材料とともに巻回し、常法により電気絶縁油組成物を含浸させることにより製造される。あるいは、油含浸コンデンサは、上記絶縁材料又は誘電体材料としてのプラスチックフィルム上に、アルミニウム、亜鉛等の導体としての金属箔を蒸着などの方法により形成した金属蒸着プラスチックフィルム(メタライズド・フィルム)を、必要に応じてプラスチックフィルム又は絶縁紙とともに巻回し、常法により電気絶縁油組成物を含浸させることによっても製造される。 A suitable oil-impregnated capacitor in the present embodiment is obtained by winding a metal foil such as aluminum as a conductor and a plastic film as the insulating material or dielectric material together with other materials such as insulating paper as necessary. It is manufactured by impregnating an electrical insulating oil composition by the method. Alternatively, the oil-impregnated capacitor is a metal-deposited plastic film (metallized film) formed by a method such as vapor deposition of a metal foil as a conductor such as aluminum or zinc on the plastic film as the insulating material or dielectric material. It is also produced by winding together with a plastic film or insulating paper as necessary and impregnating the electric insulating oil composition by a conventional method.
 以上、本実施形態に係る電気絶縁油組成物について説明したが、本発明は、上記実施形態に何ら限定されることはない。例えば、本実施形態に係る各成分を含む組成物は、電気絶縁油としてだけでなく、溶剤、洗浄剤等としても用いることができる。 The electrical insulating oil composition according to this embodiment has been described above, but the present invention is not limited to the above embodiment. For example, the composition containing each component according to the present embodiment can be used not only as an electrical insulating oil but also as a solvent, a cleaning agent, and the like.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[調製例1:触媒の調製]
 硫酸アルミニウム、硫酸、n-プロピルアミン、n-プロピルブロマイドを水に溶解させ、この溶液に水ガラスを撹拌しながら徐々に加え、できるだけ均一なゲル状スラリーを調製した。これをオートクレーブに入れ、撹拌しながら160℃で72時間かけて結晶化させた。結晶を濾別し、水洗液が中性になるまで水洗及び濾過を繰り返すことにより、SiO/Alモル比が70のゼオライトZSM-5を得た。得られたゼオライトを空気中で焼成することにより触媒を調製した。
[Preparation Example 1: Preparation of catalyst]
Aluminum sulfate, sulfuric acid, n-propylamine, and n-propyl bromide were dissolved in water, and water glass was gradually added to this solution while stirring to prepare a gel slurry as uniform as possible. This was put into an autoclave and crystallized at 160 ° C. for 72 hours with stirring. Crystals were separated by filtration, and washing and filtration were repeated until the washing solution became neutral, whereby zeolite ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of 70 was obtained. A catalyst was prepared by calcining the obtained zeolite in air.
[調製例2:(エチルフェニル)フェニルメタン(EDPM)の調製]
 上記調製例1で得られたゼオライトZSM-5を塩酸でイオン交換させることにより水素型に変換した水素型ZSM-5(12~14メッシュ)200mlを、内容積250mlの反応容器に充填し、乾燥窒素を送りながら480℃で3時間乾燥した。
[Preparation Example 2: Preparation of (ethylphenyl) phenylmethane (EDPM)]
200 ml of hydrogen type ZSM-5 (12 to 14 mesh) obtained by converting the zeolite ZSM-5 obtained in the above Preparation Example 1 into hydrogen type by ion exchange with hydrochloric acid was charged into a reaction vessel having an internal volume of 250 ml and dried. It was dried at 480 ° C. for 3 hours while feeding nitrogen.
 反応温度270℃、圧力20気圧(窒素雰囲気下)、LHSV=1.0にて、エチルベンゼン及びジフェニルメタンの混合液(モル比;エチルベンゼン:ジフェニルメタン=2:1)を通油し、通油された反応液を蒸留することにより、EDPMの含有量が85質量%である混合物を得た。なお、当該混合物には他の成分として、ビス(エチルフェニル)メタン及び(ジエチルフェニル)フェニルメタン(DEDPM)が含まれていた(合計含有量:15質量%)。 A reaction mixture of ethylbenzene and diphenylmethane (molar ratio; ethylbenzene: diphenylmethane = 2: 1) was passed through at a reaction temperature of 270 ° C., a pressure of 20 atmospheres (under a nitrogen atmosphere), and LHSV = 1.0. By distilling the liquid, a mixture having an EDPM content of 85% by mass was obtained. The mixture contained bis (ethylphenyl) methane and (diethylphenyl) phenylmethane (DEDPM) as other components (total content: 15% by mass).
[調製例3:1-エチルフェニル-1-フェニルエタン(1,1-EDPE)の調製]
 ジフェニルメタンの代わりに、1,1-ジフェニルエタンを用いた以外は、調製例2と同様の操作を行い、1,1-EDPEの含有量が86質量%である混合物を得た。なお、当該混合物には他の成分として、1,1-ビス(エチルフェニル)エタン及び1-ジエチルフェニル-1-フェニルエタン(1,1-DEDPE)が含まれていた(合計含有量:14質量%)。
[Preparation Example 3: Preparation of 1-ethylphenyl-1-phenylethane (1,1-EDPE)]
A mixture having a 1,1-EDPE content of 86% by mass was obtained in the same manner as in Preparation Example 2, except that 1,1-diphenylethane was used instead of diphenylmethane. The mixture contained 1,1-bis (ethylphenyl) ethane and 1-diethylphenyl-1-phenylethane (1,1-DEDPE) as other components (total content: 14 masses). %).
[調製例4:1-エチルフェニル-2-フェニルエタン(1,2-EDPE)の調製]
 ジフェニルメタンの代わりに、1,2-ジフェニルエタンを用いた以外は、調製例2と同様の操作を行い、1,2-EDPEを得た。
[Preparation Example 4: Preparation of 1-ethylphenyl-2-phenylethane (1,2-EDPE)]
Except for using 1,2-diphenylethane in place of diphenylmethane, the same operation as in Preparation Example 2 was performed to obtain 1,2-EDPE.
(実施例1)
 上記調製例2~4で得られた各成分を混合し、表1に示す組成を有する電気絶縁油組成物を調製した。実施例1の電気絶縁油組成物の組成及び40℃における動粘度を表1に示す。
Example 1
The components obtained in Preparation Examples 2 to 4 were mixed to prepare an electrical insulating oil composition having the composition shown in Table 1. Table 1 shows the composition of the electrical insulating oil composition of Example 1 and the kinematic viscosity at 40 ° C.
(比較例1)
 特開昭53-135959号公報に記載の方法に従ってスチレンと混合キシレンとのアラルキル化を行い、1,1-EDPEの含有量が30質量%であり、1-フェニル-1-キシリルエタン(PXE)の含有量が70質量%である電気絶縁油組成物を得た。比較例1の電気絶縁油組成物の組成及び40℃における動粘度を表1に示す。
(Comparative Example 1)
Aralkylation of styrene and mixed xylene was carried out according to the method described in JP-A-53-135959, the content of 1,1-EDPE was 30% by mass, and 1-phenyl-1-xylylethane (PXE) An electrical insulating oil composition having a content of 70% by mass was obtained. Table 1 shows the composition of the electrical insulating oil composition of Comparative Example 1 and the kinematic viscosity at 40 ° C.
<モデルコンデンサによる試験油(電気絶縁油組成物)の評価>
 試験に用いたコンデンサは次のとおりである。固体絶縁体として、チューブラー法で得られた厚み12.7μm(重量法)の信越フィルム(株)製の易含浸タイプ同時二軸延伸ポリプロピレンフィルムを使用し、電極としてアルミニウム箔を使用した。また、誘電体としては、厚み12.7μm(重量法)の信越フィルム(株)製のインフレーション法ポリプロピレンフィルムを2枚重ねたものを使用した。これらを常法に従って、巻回、積層することにより、油含浸用のモデルコンデンサ素子を作製した。
<Evaluation of test oil (electrical insulating oil composition) with model capacitor>
The capacitors used in the test are as follows. As a solid insulator, an easily impregnated simultaneous biaxially stretched polypropylene film manufactured by Shin-Etsu Film Co., Ltd. having a thickness of 12.7 μm (weight method) obtained by a tubular method was used, and an aluminum foil was used as an electrode. Moreover, as the dielectric material, a laminate of two polypropylene film made of Shin-Etsu Film Co., Ltd. having a thickness of 12.7 μm (weight method) was used. These were wound and laminated according to a conventional method to produce a model capacitor element for oil impregnation.
 この素子は0.2~0.3μFの静電容量を有している。この素子をブリキ製の缶に入れた。缶は絶縁体が低温で収縮したときに充分に対応できるように柔軟な構造にした。また、電極の端部はスリットしたままで折り曲げていない状態とした。電極から端子までを結線する方法として、高周波用コンデンサに用いられる方法と同じく、電極の一端をそれぞれポリプロピレンフィルムからはみ出した構造で巻き、はみ出した部分をまとめてリード線とスポット溶接する構造にした。 This element has a capacitance of 0.2 to 0.3 μF. This element was placed in a tin can. The can has a flexible structure so that the insulator can sufficiently cope with shrinkage at a low temperature. Moreover, the edge part of the electrode was made into the state which was not bent while keeping the slit. As a method of connecting from the electrode to the terminal, similarly to the method used for the high frequency capacitor, one end of the electrode is wound with a structure protruding from the polypropylene film, and the protruding part is collectively spot-welded with the lead wire.
 このようにして準備した缶型コンデンサを、常法に従って真空乾燥した後、同じ真空下で試験油(実施例1及び比較例1で得られた各電気絶縁油組成物)を含浸し、封口した。なお、含浸にあたっては各試験油を予め活性白土で処理してから用いた。すなわち、水澤化学工業(株)製の活性白土ガレオナイト#036を試験油に10質量%添加し、液温25℃で30分間撹拌した後、濾過した。濾過後、塩素捕獲剤としてエポキシ化合物(脂環式エポキシ化合物、商品名:セロキサイド2021P、ダイセル化学工業(株)製)を、電気絶縁油組成物全量を基準として0.65質量%となるように添加し、得られた電気絶縁油組成物を試験油として、含浸に用いた。 The can-type capacitor thus prepared was vacuum-dried according to a conventional method, and then impregnated with test oil (each electrical insulating oil composition obtained in Example 1 and Comparative Example 1) under the same vacuum and sealed. . In the impregnation, each test oil was used after being treated with activated clay in advance. That is, 10% by mass of activated clay galeonite # 036 manufactured by Mizusawa Chemical Industry Co., Ltd. was added to the test oil, stirred at a liquid temperature of 25 ° C. for 30 minutes, and then filtered. After filtration, an epoxy compound (alicyclic epoxy compound, trade name: Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) as a chlorine scavenger is 0.65% by mass based on the total amount of the electrical insulating oil composition. The obtained electrical insulating oil composition was used as impregnation as a test oil.
 次に、コンデンサ内部での含浸状況を均一にして安定化するために、恒温槽中、80℃で2昼夜熱処理を施した。その後、コンデンサを室温で5日間静置した後、AC1270V(50V/μmに相当)にて30℃の恒温槽で16時間課電処理をした後に試験に供した。これを予備課電と称する。 Next, in order to make the impregnation state inside the capacitor uniform and stable, heat treatment was performed for 2 days and nights at 80 ° C. in a thermostatic bath. Thereafter, the capacitor was allowed to stand at room temperature for 5 days, and then subjected to a voltage application treatment for 16 hours in a constant temperature bath at 30 ° C. with AC 1270 V (corresponding to 50 V / μm) and then subjected to the test. This is referred to as preliminary charging.
 次に、これら油含浸コンデンサを所定の温度下で所定の課電方法で交流電圧を課電して、コンデンサが絶縁破壊を起こした電圧と時間から下記式(1)により絶縁破壊電圧を求めた。なお、所定の温度は、-50℃、-30℃、30℃及び80℃とした。所定の課電方法とは、電位傾度50v/μmから、24時間ごとに10v/μmの割合で段階的に課電電圧を上昇させる方法である。結果を表1に示す。 Next, an alternating voltage was applied to these oil-impregnated capacitors at a predetermined temperature by a predetermined charging method, and a dielectric breakdown voltage was obtained from the voltage and time at which the capacitor caused dielectric breakdown by the following formula (1). . The predetermined temperatures were -50 ° C, -30 ° C, 30 ° C and 80 ° C. The predetermined power application method is a method of increasing the applied voltage stepwise from the potential gradient of 50 v / μm at a rate of 10 v / μm every 24 hours. The results are shown in Table 1.
 絶縁破壊電圧(v/μm)=V+s×(T/1440)    ・・・(1) Dielectric breakdown voltage (v / μm) = V + s × (T / 1440) (1)
 式(1)中、Vは絶縁破壊時の課電電圧(v/μm)を、Sは24時間ごとの上昇電圧(v/μm)を、Tは課電電圧上昇後、絶縁破壊までの経過時間(分)をそれぞれ示す。 In formula (1), V is the applied voltage (v / μm) at the time of dielectric breakdown, S is the increased voltage (v / μm) every 24 hours, and T is the process from the increased applied voltage to the breakdown. Each time (minutes) is shown.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

Claims (6)

  1.  (エチルフェニル)フェニルメタンと、1-エチルフェニル-1-フェニルエタンと、1-エチルフェニル-2-フェニルエタンと、を含む電気絶縁油組成物。 An electrically insulating oil composition comprising (ethylphenyl) phenylmethane, 1-ethylphenyl-1-phenylethane, and 1-ethylphenyl-2-phenylethane.
  2.  ビス(エチルフェニル)メタン及び(ジエチルフェニル)フェニルメタンを更に含む、請求項1に記載の電気絶縁油組成物。 The electrical insulating oil composition according to claim 1, further comprising bis (ethylphenyl) methane and (diethylphenyl) phenylmethane.
  3.  1,1-ビス(エチルフェニル)エタン及び1-ジエチルフェニル-1-フェニルエタンを更に含む、請求項1又は2に記載の電気絶縁油組成物。 The electrical insulating oil composition according to claim 1 or 2, further comprising 1,1-bis (ethylphenyl) ethane and 1-diethylphenyl-1-phenylethane.
  4.  前記(エチルフェニル)フェニルメタンの含有量が、電気絶縁油組成物全量を基準として10~35質量%であり、前記1-エチルフェニル-1-フェニルエタンの含有量が、電気絶縁油組成物全量を基準として20~60質量%であり、前記1-エチルフェニル-2-フェニルエタンの含有量が、電気絶縁油組成物全量を基準として5~30質量%である、請求項1~3のいずれか一項に記載の電気絶縁油組成物。 The content of (ethylphenyl) phenylmethane is 10 to 35% by mass based on the total amount of the electrical insulating oil composition, and the content of 1-ethylphenyl-1-phenylethane is the total amount of the electrical insulating oil composition. The content of 1-ethylphenyl-2-phenylethane is 5 to 30% by mass based on the total amount of the electrical insulating oil composition, based on The electrical insulating oil composition according to claim 1.
  5.  エポキシ化合物を、電気絶縁油組成物全量を基準として0.01~1.0質量%含む、請求項1~4のいずれか一項に記載の電気絶縁油組成物。 The electrical insulating oil composition according to any one of claims 1 to 4, comprising an epoxy compound in an amount of 0.01 to 1.0 mass% based on the total amount of the electrical insulating oil composition.
  6.  40℃における動粘度が5mm/s以下である、請求項1~5のいずれか一項に記載の電気絶縁油組成物。 The electrically insulating oil composition according to any one of claims 1 to 5, wherein the kinematic viscosity at 40 ° C is 5 mm 2 / s or less.
PCT/JP2019/011176 2018-05-30 2019-03-18 Electrical insulation oil composition WO2019230142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103631A JP7068043B2 (en) 2018-05-30 2018-05-30 Electrical insulating oil composition
JP2018-103631 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230142A1 true WO2019230142A1 (en) 2019-12-05

Family

ID=68696904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011176 WO2019230142A1 (en) 2018-05-30 2019-03-18 Electrical insulation oil composition

Country Status (2)

Country Link
JP (1) JP7068043B2 (en)
WO (1) WO2019230142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072254B2 (en) * 2019-11-18 2022-05-20 株式会社ニューギン Pachinko machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226332A (en) * 1994-02-09 1995-08-22 Nippon Petrochem Co Ltd Metallized polypropylene film capacitor
JP2002265967A (en) * 2000-12-20 2002-09-18 Toshiba Corp Insulating oil in which x-ray tube is immersed, and x-ray tube device
JP2002363585A (en) * 2001-06-06 2002-12-18 Idemitsu Kosan Co Ltd Lubricating oil base oil composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226332A (en) * 1994-02-09 1995-08-22 Nippon Petrochem Co Ltd Metallized polypropylene film capacitor
JP2002265967A (en) * 2000-12-20 2002-09-18 Toshiba Corp Insulating oil in which x-ray tube is immersed, and x-ray tube device
JP2002363585A (en) * 2001-06-06 2002-12-18 Idemitsu Kosan Co Ltd Lubricating oil base oil composition

Also Published As

Publication number Publication date
JP7068043B2 (en) 2022-05-16
JP2019207826A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2012169372A1 (en) Electrically insulating oil composition having excellent low-temperature properties
TW200919511A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
WO2009052410A1 (en) Dielectric fluid for improved capacitor performance
JP5993936B2 (en) Capacitor oil with excellent performance over a wide temperature range
JPWO2013115372A1 (en) Electrical insulating oil composition with excellent performance over a wide temperature range
WO2019230142A1 (en) Electrical insulation oil composition
JPS6364213A (en) Insulating oil composition
WO2002084673A1 (en) Dielectric fluid
US3424957A (en) Electrical capacitor and dielectric material therefor
JP6240444B2 (en) Electrical insulating oil composition and oil-impregnated electrical equipment
EP0172537B1 (en) New electrical insulating oil and oil-filled electrical appliances
JP6454395B2 (en) Electrical insulating oil composition and oil-impregnated electrical equipment
US2050587A (en) Electrolytic condenser
WO2013141227A1 (en) Electrical insulating oil composition
JP2528290B2 (en) Electrical insulating oil composition
BR112016004999B1 (en) COMPOSITION OF ELECTRICALLY INSULATING OIL, AND ELECTRIC EQUIPMENT IMPREGNATED WITH OIL
JPS61171005A (en) Capacitor
JP2001291636A (en) Incombustible capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812088

Country of ref document: EP

Kind code of ref document: A1