WO2019229852A1 - Control planning device, control planning method, and program recording medium - Google Patents
Control planning device, control planning method, and program recording medium Download PDFInfo
- Publication number
- WO2019229852A1 WO2019229852A1 PCT/JP2018/020568 JP2018020568W WO2019229852A1 WO 2019229852 A1 WO2019229852 A1 WO 2019229852A1 JP 2018020568 W JP2018020568 W JP 2018020568W WO 2019229852 A1 WO2019229852 A1 WO 2019229852A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conversion method
- information
- control
- processes
- flow
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 376
- 238000013439 planning Methods 0.000 title claims abstract description 84
- 230000008569 process Effects 0.000 claims abstract description 243
- 238000004364 calculation method Methods 0.000 claims abstract description 131
- 238000006243 chemical reaction Methods 0.000 claims abstract description 123
- 238000012545 processing Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 description 80
- 238000003860 storage Methods 0.000 description 17
- 238000007726 management method Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000010365 information processing Effects 0.000 description 11
- 238000005457 optimization Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012384 transportation and delivery Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000013068 supply chain management Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a control planning apparatus, a control planning method, and a program for calculating a system control plan.
- Resource management systems have been introduced for many operations related to the supply chain, such as manufacturing, assembly, processing, delivery, picking, sorting, and unloading.
- the resource management system is a system that calculates and inputs a work plan, and acquires the progress status of each work through a barcode or a wireless tag in addition to data input / output from other systems.
- the business administrator can check the progress of the business using the resource management system.
- Examples of business management systems include ERP (Enterprise Resource Planning) and SCP (Supply Chain Planning).
- SCE Serialply Chain Management Execution
- WMS Warehouse Management System
- TMS Transport Management System
- supply chain operations span multiple bases, organizations, and countries. For this reason, it is desired that the resource management system introduced in such supply chain operations should be adapted to increase in scale.
- Hierarchical control is one of the methods for optimizing a large-scale resource management system.
- large-scale systems are classified into hierarchies according to the control range, and each hierarchy performs operations and controls according to each. For example, in a system located at a lower level in a hierarchy, control close to real time is performed within a narrow range. On the other hand, in a system positioned higher in the hierarchy, control corresponding to medium- to long-term fluctuations such as performance differences, demand fluctuations, and predictions between lower-level systems is performed over a wide range.
- hierarchical control it is possible to suppress the calculation load required for optimization of a large-scale system.
- Non-Patent Document 1 discloses a technique for efficiently performing hierarchical control.
- the lower system and the upper system perform coordinated control while periodically exchanging information between the layers.
- the host system can perform appropriate control based on the behavior of the lower system without information related to the control rules of the lower system.
- Non-Patent Document 1 In the hierarchical control of related technologies including Non-Patent Document 1, it is assumed that the systems in the same hierarchy operate independently. However, it is difficult to say that the systems such as the supply chain and the factories, logistics, warehouses, and retails that make up the supply chain operate independently according to the flow of goods. Therefore, it is difficult to apply the hierarchical control of the related technology as it is to a system such as a supply chain.
- Patent Document 1 discloses a method for handling the flow of objects between systems in a large-scale system.
- Patent Document 1 discloses a data analysis engine that can be optimized for the entire system by collecting and analyzing data related to the hierarchical structure of the system and the flow between systems. Yes.
- Patent Document 2 discloses a logistics planning system that supports the construction of an optimal logistics network.
- the system of Patent Document 2 generates an objective function indicating an overall cost that is the sum of inventory cost and delivery cost in the entire logistics network, and analyzes the objective function by a predetermined numerical analysis, thereby minimizing the overall cost. Calculate delivery volume and safety stock.
- Patent Document 3 shares production plan information derived from a business plan created by a host system and production result information corresponding to the production plan information, and manages production plan information and production result information.
- a system is disclosed.
- the system of Patent Literature 3 includes a production plan server that manages production plan information, a plurality of process plan servers that manage process plans for each process that constitutes the production plan, and a process that manages configuration information of each process plan server. Connect the management server to the network.
- the production plan server divides the production plan into process plans for each process based on the production plan information and the configuration information, and transmits the divided process plan to the corresponding process plan server.
- Patent Document 4 discloses a processing capacity verification apparatus which is designed and supported to expand the capacity of a bottleneck apparatus that varies in various ways in a semiconductor production line.
- the apparatus of Patent Literature 4 calculates the required number of processes for each production type for each process based on the production plan number information for each production type and the production flow information that defines the production process procedure.
- the device of Patent Document 4 allocates the number of processes until the value obtained by subtracting the required processing time from the operable time is 0 for each production device while converting the required processing number into the required processing time, and the number of products that have been allocated. And classify it into the number of products that could not be assigned.
- Patent Document 1 Since the method of Patent Document 1 is based on the premise of data collection and analysis, it takes time to grasp the hierarchical structure of the system and the flow between systems. Depending on the business condition of the supply chain, the system configuration is changed every few months. For this reason, the technique of Patent Document 1 has a problem that data collection and analysis may not be able to keep up with changes in the system configuration.
- an optimal transportation plan in a physical distribution network can be calculated by numerically analyzing an objective function indicating the overall cost in the entire physical distribution network.
- the system of Patent Document 2 has a problem that a calculation load is applied when calculating the objective function.
- the necessary number of processes for each production type is calculated from production flow information, and the number of processes that can be allocated for each production apparatus number is verified, thereby eliminating the shortage of production apparatus capacity. Solution can be planned.
- the apparatus of Patent Document 4 can verify the process for each process but does not verify the cooperation between the processes, there is a problem that it is difficult to cope with a system configuration change.
- An object of the present invention is to provide a control planning apparatus capable of optimizing a large-scale system while suppressing calculation load and flexibly responding to system introduction / configuration change in order to solve the above-described problems. It is.
- the control planning device connects process state information indicating a state of a plurality of processes and at least two processes forming the system based on topology information indicating connection of a plurality of processes constituting the system.
- a conversion method calculation unit that calculates a first conversion method to be converted into flow information indicating the flow state configured as described above, and based on the first conversion method calculated by the conversion method calculation unit, from the process state information
- a flow information calculation unit that calculates flow information
- a control plan calculation unit that derives a control plan for the system based on the flow information calculated by the flow information calculation unit.
- process state information indicating a state of a plurality of processes is obtained from at least two processes constituting the system based on topology information indicating connection of a plurality of processes constituting the system.
- a first conversion method for converting to flow information indicating the state of a flow configured by connection is calculated, flow information is calculated from the process state information based on the first conversion method, and based on the flow information, Derive a control plan for the system.
- the program according to one aspect of the present invention is based on topology information indicating a connection of a plurality of processes constituting a system, and process state information indicating a state of a plurality of processes is connected to at least two processes constituting the system.
- process state information indicating a state of a plurality of processes is connected to at least two processes constituting the system.
- a process for calculating a first conversion method for converting to flow information indicating the state of the configured flow a process for calculating flow information from the process state information based on the first conversion method, And causing the computer to execute processing for deriving a control plan for the system.
- control planning apparatus capable of optimizing a large-scale system while suppressing calculation load and flexibly responding to system introduction / configuration change.
- control planning apparatus calculates an optimal production control instruction based on the flow of products manufactured through a plurality of processes included in the control plan target range as an example of supply chain business.
- FIG. 1 is a block diagram showing the configuration of the control planning apparatus 10 of the present embodiment.
- the control planning apparatus 10 includes a topology information acquisition unit 11, a conversion method calculation unit 12, a process state information acquisition unit 13, a flow information calculation unit 14, a control plan calculation unit 15, and a control instruction calculation unit 16.
- the topology information acquisition unit 11 acquires topology information that is information related to the connection of a plurality of processes constituting the system. For example, the topology information acquisition unit 11 acquires topology information manually input to the system, or acquires topology information by tracking the flow of a product. In general, when tracking the flow of a product, it is necessary to collect data. However, since the control planning apparatus 10 tracks a flow without necessarily collecting data, data analysis is not performed. Easy. If the process can be properly defined, the topology information acquisition unit 11 can acquire the topology information within a few hours to a day. The topology information acquisition unit 11 outputs the acquired topology information to the conversion method calculation unit 12.
- the conversion method calculation unit 12 acquires topology information from the topology information acquisition unit 11.
- the conversion method calculation unit 12 calculates a first conversion method for the system based on the acquired topology information.
- the conversion method calculation unit 12 outputs the calculated first conversion method to the flow information calculation unit 14.
- the first conversion method is configured by connecting process state information indicating the state of each process in a plurality of processes by connecting at least two processes constituting the system based on topology information related to connection of the plurality of processes. This is a method of converting to flow information indicating the state of the flow.
- the conversion method calculation unit 12 may calculate the first conversion method using an objective index included in the control plan calculated by the control plan calculation unit 15 in addition to the topology information.
- the conversion method calculation unit 12 may calculate the first conversion method using the process state information of the processes constituting the system in addition to the topology information.
- the conversion method calculation unit 12 calculates a second conversion method used by the control instruction calculation unit 16. Similarly to the first conversion method, the conversion method calculation unit 12 calculates the second conversion method based on the topology information. The conversion method calculation unit 12 outputs the calculated second conversion method to the control instruction calculation unit 16.
- the second conversion method is a method for converting flow information into system control instructions.
- the conversion method calculation unit 12 may calculate the second conversion method using an objective index included in the control plan calculated by the control plan calculation unit 15 in addition to the topology information.
- the conversion method calculation unit 12 may calculate the second conversion method by using process state information of processes constituting the system in addition to the topology information.
- the process state information acquisition unit 13 acquires state information (hereinafter referred to as process state information) from each of a plurality of processes included in the control plan target range at a predetermined timing.
- the timing at which the process status information acquisition unit 13 acquires the process status information can be arbitrarily set, such as a predetermined time, a predetermined time interval, or a time when the product passes through each process.
- the timing at which the process state information acquisition unit 13 acquires the process state information is not particularly limited.
- the process state information acquisition unit 13 outputs the acquired process state information to the flow information calculation unit 14.
- the flow information calculation unit 14 acquires the first conversion method from the conversion method calculation unit 12 and acquires process state information from the process state information acquisition unit 13.
- the flow information calculation unit 14 calculates flow information using process state information indicating the states of a plurality of processes based on the first conversion method.
- the control plan calculation unit 15 acquires flow information from the flow information calculation unit 14. The control plan calculation unit 15 derives a control plan using the flow information. The control plan calculation unit 15 outputs the derived control plan to the control instruction calculation unit 16.
- the control instruction calculation unit 16 acquires the second conversion method from the conversion method calculation unit 12 and acquires the control plan from the control plan calculation unit 15.
- the control instruction calculation unit 16 calculates a control instruction using the control plan for each of a plurality of processes included in the control plan target range based on the second conversion method.
- the control instruction calculation unit 16 transmits a control instruction calculated for each of a plurality of processes included in the control plan target range to each process.
- FIG. 2 is a conceptual diagram showing an example of the configuration of the control plan target system 1 of the present embodiment.
- the control plan target system 1 includes a control plan device 10 and a plurality of processes 110 included in the control plan target range 100.
- the plurality of processes 110 includes processes 110-1 to 110-5.
- the control planning apparatus 10 and each of the plurality of processes 110 are connected via a network (not shown) so that data communication can be performed in a wired or wireless manner.
- control planning device 10 corresponds to the upper system
- the plurality of processes 110 correspond to the lower system. That is, the control plan target system 1 is divided into two layers of a higher system (control plan apparatus 10) and a lower system (a plurality of processes 110).
- Process 110 conceptually indicates a specific unit of work.
- the process 110 includes production work such as processing and assembly, inspection work such as operation check and defect check, transportation of parts and manufactured products, warehouse Such operations as warehousing and packing at the time of shipment are included.
- the work associated with each process 110 is performed on manufactured products such as parts and products.
- the flow of manufactured products is different for each manufactured product.
- a case is assumed in which only a part is executed in a different process depending on the type of parts to be assembled.
- arrows connecting the processes 110 indicate a flow of manufactured products (also referred to as a manufacturing flow).
- the manufactured product that arrives at the process 110-1 from outside the control plan target range 100 is sent to the process 110-2 after the work of the process 110-1 is performed.
- the product arrived at the process 110-2 from the process 110-1 is sent to either the process 110-3 or the process 110-4 after the work of the process 110-2 is performed.
- the manufactured product that has arrived at any one of the processes 110-3 and 110-4 from the process 110-2 is sent to the process 110-5 after the work of each process 110 is performed.
- the manufactured product that has arrived at the process 110-5 from either the process 110-3 or the process 110-4 is sent to the outside of the control plan target range 100 after the work of the process 110-5 is performed.
- FIG. 3 is a conceptual diagram for explaining the manufacturing flow 120 inside the control plan target range 100.
- the manufacturing flow 120-1 is a flow that passes through each process 110 in the order of the process 110-1, the process 110-2, the process 110-3, and the process 110-5.
- the manufacturing flow 120-2 is a flow that passes through each process 110 in the order of the process 110-1, the process 110-2, the process 110-4, and the process 110-5.
- Process 110-1, process 110-2, and process 110-5 are processes common to the two manufacturing flows 120.
- the process 110-3 is defined as a process specific to the manufacturing flow 120-1
- the process 110-4 is defined as a process specific to the manufacturing flow 120-2.
- the host system calculates the expected work amount to the lower system (process 110) based on the production plan.
- the host system acquires the actual work amount of the lower system, and controls work resource allocation based on the difference between the expected work amount and the actual work amount.
- the lower system autonomously performs work so as to satisfy the expected work amount by the work resource allocation assigned by the higher system. As a result, the host system can achieve appropriate resource allocation from the work performance information of the lower system without receiving detailed information such as the operation characteristics of the lower system.
- FIG. 4 is a flowchart for explaining the calculation of the conversion method by the control planning apparatus 10.
- the conversion method depends on the topology information. Therefore, for example, the control planning apparatus 10 calculates a conversion method every time a change occurs in the topology information.
- the control planning apparatus 10 will be described as the main subject of operation.
- control planning device 10 calculates topology information using the topology information acquisition unit 11 (step S111).
- control planning device 10 uses the conversion method calculation unit 12 to calculate the first and second conversion methods based on the acquired topology information (step S112).
- the control planning apparatus 10 sets the first conversion method in the flow information calculation unit 14 and sets the second conversion method in the control instruction calculation unit 16 (step S113).
- process unit information is converted into manufacturing flow unit information based on a conversion method. Since the number of manufacturing flows is smaller than the number of processes, information can be compressed by this conversion.
- the conversion method calculation unit 12 calculates a conversion matrix T 1 shown in the following Equation 1 as the first conversion method.
- each row corresponds to any manufacturing flow 120 and each column corresponds to any process 110.
- the first line corresponds to the manufacturing flow 120-1
- the second line corresponds to the manufacturing flow 120-2.
- the first column corresponds to the process 110-1
- the second column corresponds to the process 110-2
- the third column corresponds to the process 110-3
- the fourth column corresponds to the process 110-4
- the fifth column corresponds to process 110-5.
- the conversion method calculation unit 12 derives a conversion matrix T 1 that is the first conversion method in the following procedure.
- the conversion method calculation unit 12 sets 1 for the process 110 that passes through and 0 for the process 110 that does not pass for each manufacturing flow 120.
- the matrix of Equation 2 is obtained.
- the conversion method calculation unit 12 divides the elements in each row by the sum of the elements in each row (for each manufacturing flow 120), and removes the elements in each column by the sum of the elements in each column (for each process 110).
- the sum of the elements in each row corresponds to the number of processes through the manufacturing flow 120. For this reason, by dividing by the sum of the elements in each row, it is possible to obtain an average of work results of all processes constituting the manufacturing flow 120.
- the sum of the elements in each column corresponds to the number of manufacturing flows 120 associated with the process 110. For this reason, by further dividing by the sum of the elements in each column, it is possible to consider the influence of the work performance of the process 110 on the manufacturing flow 120.
- Equation 2 the sum of the elements in the first row is 4, and the sum of the elements in the second row is 4.
- the sum of the elements in the first column is 2, the sum of the elements in the second column is 2, the sum of the elements in the third column is 1, and the sum of the elements in the fourth column is 1.
- the sum of the elements in the fifth column is 2.
- the element “1” in the first row and the first column is divided by “4” that is the sum of the elements in the first row, and further divided by “2” that is the sum of the elements in the first column. .
- the element in the first row and first column is “0.125”.
- the conversion scheme calculating section 12 uses the information about the manufacturing flow shown in FIGS. 2 and 3 as topology information, for calculating the transformation matrix T 2 shown in Equation 3 below as a second conversion method.
- each row corresponds to any process 110 and each column corresponds to any manufacturing flow 120.
- the first line corresponds to the process 110-1
- the second line corresponds to the process 110-2
- the third line corresponds to the process 110-3
- the fourth line corresponds to the process 110-4.
- the fifth line corresponds to the process 110-5.
- the first column corresponds to the manufacturing flow 120-1
- the second column corresponds to the manufacturing flow 120-2.
- the transformation matrix T 2 can be derived as a transposed matrix of Equation 2.
- FIG. 5 is a flowchart for explaining the operation of the control planning apparatus 10.
- the control plan / instruction depends mainly on the process state of each process 110. Therefore, for example, the control planning apparatus 10 drafts / instructs a control plan at a frequency of every several minutes to several tens of minutes.
- the control planning apparatus 10 calculates the conversion method shown in FIG. 4 prior to the planning / instruction calculation of the control plan shown in FIG.
- the control planning apparatus 10 uses the process status information acquisition unit 13 to acquire process status information from a plurality of processes 110 included in the control plan target range 100 (step S121).
- FIG. 6 is a process status information table 111 that summarizes the process status information acquired by the process status information acquisition unit 13.
- the process status information table 111 stores the latest number of work results as the status information of each process 110.
- control planning device 10 uses the flow information calculation unit 14 to calculate flow information from the acquired process state information of each process 110 based on the first conversion method set in advance (step S122). ).
- FIG. 7 is a flow information table 141 that summarizes the flow information calculated by the flow information calculation unit 14.
- the flow information table 141 stores work results for each manufacturing flow 120 unit.
- the flow information is p
- the vector representation of the process state information of each process 110 is x (Formula 4). Note that x shown in Expression 4 is calculated from the process state information table 111 shown in FIG.
- the flow information calculation unit 14 calculates the product of the conversion matrix T 1 as the first conversion method and the process state information x of each process 110 as the flow information p (Formula 5).
- the flow information table 141 in FIG. 7 shows values obtained by rounding down the third decimal place of the numerical value calculated by Expression 5.
- control plan apparatus 10 uses the control plan calculation unit 15 to derive a control plan based on the flow information calculated by the flow information calculation unit 14 (step S123).
- FIG. 8 is a control plan information table 151 in which the control plan information derived by the control plan calculation unit 15 is collected.
- 35 is set as the required number of operations in the manufacturing flow 120-1 and 69 is set as the required number of operations in the manufacturing flow 120-2 as control objectives (also referred to as objective indexes).
- the required number of operations can be used as a target index when the conversion method calculation unit 12 calculates the first and second conversion methods.
- FIG. 9 is a control plan information table 152 in which another example of the control plan information derived by the control plan calculation unit 15 is collected.
- the number of predicted necessary operations predicted by some method is added. For example, an estimated value of work performance at the next work timing predicted according to the time change of each manufacturing flow 120 is set as the number of work required for prediction.
- the number of work required for prediction may be calculated by an inductive method or may be calculated by a deductive method, and the calculation method is not particularly limited. Moreover, you may set the arbitrary value between the latest work performance in each process 110 and required work number to the prediction required work number.
- control planning apparatus 10 uses the control instruction calculation unit 16 to calculate a control instruction from the control plan derived by the control plan calculation unit 15 based on the second conversion method set in advance (step S124). ).
- the control instruction calculation unit 16 calculates a control instruction for each process 110 included in the control plan target range 100.
- FIG. 10 is a control instruction information table 161 in which the control instruction information calculated by the control instruction calculation unit 16 is collected.
- the control instruction calculation unit 16 calculates the required number of tasks for each process 110 as a control instruction.
- the increase / decrease of work resources may be further included.
- the control instruction calculation unit 16 calculates the required number of tasks x t for each process 110 using the following Equation 6. However, y is a vector representation of control plan information. Note that the control plan information is the required number of operations in FIGS.
- control instruction calculation unit 16 calculates the product of the conversion matrix T 2 that is the second conversion method and the vector y of the control plan information as the required work number x t .
- control instruction calculation unit 16 calculates the increase / decrease in work resources by obtaining the difference between the latest work record acquired and the required number of works. That is, the control instruction calculation unit 16 calculates information including information based on a comparison between the process state information of the process 110 configuring the system and the control instruction corresponding to the process state information in the control instruction.
- control instruction information table 161 in FIG. 10 in the process 110-3, the number of required work is small with respect to the work results. On the other hand, in the process 110-4, the required number of operations is large with respect to the operation results. In general, based on the idea of constraint theory in production management, production efficiency is maximized in a state where the production volume of each process is equal for each manufacturing flow. Therefore, the control instruction calculation unit 16 generates a control instruction that decreases the number of processes 110-3 and increases the number of processes 110-4.
- control instruction calculation unit 16 transmits the generated control instruction to each process 110 (step S125).
- the control planning apparatus of the present embodiment acquires the connection state of a plurality of processes as topology information, and flows the state information collected from each process using the conversion method generated based on the topology information. Convert to information. According to the present embodiment, information is appropriately compressed through this processing, so that the amount of information to be handled at the time of deriving the control plan can be reduced, and the calculation load can be suppressed.
- control planning apparatus of the present embodiment uses a manufacturing flow as topology information
- the manufacturing flow can be acquired relatively easily. Therefore, according to the present embodiment, it is possible to easily cope with a configuration change such as introduction of a new product or change of a production line. Therefore, according to the present embodiment, the configuration change can be dealt with in a short period of time, and the calculation load can be suppressed.
- control planning apparatus of the present embodiment can make a control plan by collecting work performance information from each process.
- the system can be optimized without using information regarding detailed operations of each process. This is because the optimization of the individual operation of each process is handled by each process side, and the control planning apparatus focuses on the optimization of points related to the nodule of a plurality of processes and resource allocation.
- the upper system and the lower system each determine a range to be optimized, and only the information necessary for each optimization range is exchanged to use detailed information of the lower system. Optimization calculations can be performed without
- the method of the present embodiment can be applied not only to the two layers of the upper system (control planning device) and the lower system (process) but also to a multistage configuration.
- the control planning apparatus of this embodiment may be regarded as a lower system, and a new control planning apparatus may be added as a higher system.
- the process of this embodiment may be regarded as a higher system, and more detailed elements for executing the process as a lower system may be added. If comprised in this way, since it is possible to calculate a wider range of optimization from a small amount of information even for a larger-scale system, the calculation load can be further suppressed.
- the control planning apparatus of the present embodiment may use other information in addition to the topology information in the calculation of the first and second conversion methods.
- the control planning apparatus when calculating the first and second conversion methods, includes a control purpose (also referred to as an objective index) included in the control plan calculated by the control plan calculation unit. ) Information (also referred to as control purpose information).
- the control planning apparatus designs a production plan for each process and control of allocated resources for control purposes. Based on the idea of constraint theory in production management, the production efficiency is maximized in the state where the production volume of each process is equal for each manufacturing flow. Therefore, the control planning apparatus according to the present embodiment determines the second conversion method so that the same amount is produced in each process for each manufacturing flow. If the first conversion method and the second conversion method are calculated using the control purpose information, information conversion according to the control purpose can be performed, so that the optimization accuracy can be improved.
- control planning apparatus of the present embodiment may be configured to change the conversion matrix in the first and second conversion methods based on the state information of each process. For example, for a process common to a plurality of manufacturing flows, the ratio of each manufacturing flow is determined based on the ratio of state information (number of work results) obtained from a process used only in a single manufacturing flow. Also good. Then, since the flow information corresponding to each manufacturing flow can be acquired more accurately, the optimization accuracy can be improved.
- control planning apparatus is a superordinate concept of the control planning apparatus of the first embodiment.
- FIG. 11 is a block diagram showing the configuration of the control planning device 20 of the present embodiment.
- the control planning apparatus 20 includes a conversion method calculation unit 22, a flow information calculation unit 24, and a control plan calculation unit 25.
- the conversion method calculation unit 22 calculates a first conversion method related to the system based on topology information that is information related to connection of a plurality of processes constituting the system.
- the flow information calculation unit 24 calculates flow information from process state information indicating the states of a plurality of processes based on the first conversion method calculated by the conversion method calculation unit 22.
- the control plan calculation unit 25 derives a control plan based on the flow information calculated by the flow information calculation unit 24.
- the control planning apparatus of this embodiment includes a conversion method calculation unit, a flow information calculation unit, and a control plan calculation unit.
- the conversion method calculation unit calculates a first conversion method for converting process state information into flow information based on topology information related to the connection of a plurality of processes constituting the system.
- the process status information indicates the status of a plurality of processes, and the flow information indicates the status of a flow connecting at least two processes constituting the system.
- the flow information calculation unit calculates flow information from the process state information based on the first conversion method calculated by the conversion method calculation unit.
- the control plan calculation unit derives a system control plan based on the flow information calculated by the flow information calculation unit.
- control planning apparatus acquires the connection state of a plurality of processes as topology information, and uses the conversion method generated based on the topology information to display the state information collected from each process as flow information. Convert to According to the control planning apparatus of the present embodiment, information is appropriately compressed through this series of processes, so that it is possible to reduce the amount of information to be handled when deriving the control plan and to suppress the calculation load.
- the conversion method calculation unit calculates a first conversion method for converting each work result of a plurality of processes into a work result of a combination (flow) of at least two processes.
- the flow information calculation unit calculates the flow information by converting the work results of each of the plurality of processes into the work results of a combination (flow) of at least two processes based on the first conversion method.
- control planning apparatus of the present embodiment by performing scalable hierarchical control from information that can be collected at the time of system introduction, the introduction and configuration of the system while suppressing the calculation load for optimization of a large-scale system. Can respond to changes.
- the hardware configuration for realizing the control planning apparatus according to each embodiment will be described by taking the information processing apparatus 90 of FIG. 12 as an example.
- the information processing apparatus 90 of FIG. 12 is a configuration example for executing the processing of the control planning apparatus of each embodiment, and does not limit the scope of the present invention.
- the information processing apparatus 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96.
- the interface is abbreviated as I / F (Interface).
- the processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via a bus 99 so that data communication is possible.
- the processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96.
- the processor 91 expands the program stored in the auxiliary storage device 93 or the like in the main storage device 92, and executes the expanded program.
- a configuration using a software program installed in the information processing apparatus 90 may be adopted.
- the processor 91 executes processing by the control planning apparatus according to the present embodiment.
- the main storage device 92 has an area where the program is expanded.
- the main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a nonvolatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured and added as the main storage device 92.
- DRAM Dynamic Random Access Memory
- MRAM Magnetic Random Access Memory
- the auxiliary storage device 93 stores various data.
- the auxiliary storage device 93 is configured by a local disk such as a hard disk or a flash memory. Note that various data may be stored in the main storage device 92, and the auxiliary storage device 93 may be omitted.
- the input / output interface 95 is an interface for connecting the information processing apparatus 90 and peripheral devices.
- the communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards or specifications.
- the input / output interface 95 and the communication interface 96 may be shared as an interface connected to an external device.
- the information processing apparatus 90 may be configured to connect input devices such as a keyboard, a mouse, and a touch panel as necessary. These input devices are used for inputting information and settings. Note that when a touch panel is used as an input device, the display screen of the display device may be configured to also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
- the information processing apparatus 90 may be provided with a display device for displaying information.
- the information processing device 90 is preferably provided with a display control device (not shown) for controlling display of the display device.
- the display device may be connected to the information processing apparatus 90 via the input / output interface 95.
- the information processing apparatus 90 may be provided with a disk drive as necessary.
- the disk drive is connected to the bus 99.
- the disk drive mediates reading of data programs from the recording medium, writing of processing results of the information processing apparatus 90 to the recording medium, and the like between the processor 91 and a recording medium (program recording medium) (not shown).
- the recording medium can be realized by an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
- the recording medium may be realized by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card, a magnetic recording medium such as a flexible disk, or other recording media.
- USB Universal Serial Bus
- SD Secure Digital
- the above is an example of a hardware configuration for enabling the control planning apparatus according to each embodiment of the present invention.
- the hardware configuration in FIG. 12 is an example of a hardware configuration for executing the arithmetic processing of the control planning apparatus according to each embodiment, and does not limit the scope of the present invention.
- a program that causes a computer to execute processing related to the control planning apparatus according to each embodiment is also included in the scope of the present invention.
- a program recording medium recording the program according to each embodiment is also included in the scope of the present invention.
- the components of the control planning device of each embodiment can be arbitrarily combined.
- the components of the control planning device of each embodiment may be realized by software or a circuit.
- a program for realizing all or part of the functions of the control planning apparatus of each embodiment may be recorded on a computer-readable recording medium. Processing related to each embodiment may be performed by causing a computer system to read and execute a program recorded on the recording medium.
- the computer system includes hardware such as an operation system and peripheral devices.
- the computer-readable recording medium includes a storage device such as a magneto-optical disk, a ROM (Read Only Memory), a portable medium such as a nonvolatile semiconductor memory, and a hard disk built in the computer system.
- a computer-readable recording medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line Including.
- computer-readable recording media include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or client.
- the above-described program may be for realizing a part of the functions of the control planning device of each embodiment, and the above-described functions can be realized in combination with a program already recorded in the computer system. It may be a thing.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
A control planning device provided with: a conversion method calculation unit that, in order to optimize a large-scale system while suppressing a calculation load and easily responding to system introduction and configuration change, calculates a first conversion method pertaining to the system on the basis of topology information that indicates the linking of a plurality of processes constituting the system; a flow information calculation unit for calculating flow information from process state information that indicates the states of the plurality of processes on the basis of the first conversion method calculated by the conversion method calculation unit; and a control plan calculation unit for deriving a control plan of the system on the basis of the flow information calculated by the flow information calculation unit.
Description
本発明は、システムの制御計画を算出する制御計画装置、制御計画方法、およびプログラムに関する。
The present invention relates to a control planning apparatus, a control planning method, and a program for calculating a system control plan.
製造や組み立て、加工、納入、ピッキング、振分け、搬出といったサプライチェーンに関わる業務の多くに、資源管理システムが導入されている。資源管理システムは、作業計画を計算・入力し、各々の業務の進捗状況を、他システムからのデータ入出力のほか、バーコードや無線タグを通じて取得するシステムである。業務管理者は、資源管理システムを用いて業務の進捗を確認できる。業務管理システムの一例として、ERP(Enterprise Resource Planning)やSCP(Supply Chain Planning)が挙げられる。また、SCE(Supply Chain Execution)や、WMS(Warehouse Management System)、TMS(Transport Management System)なども業務管理システムの一例として挙げられる。
Resource management systems have been introduced for many operations related to the supply chain, such as manufacturing, assembly, processing, delivery, picking, sorting, and unloading. The resource management system is a system that calculates and inputs a work plan, and acquires the progress status of each work through a barcode or a wireless tag in addition to data input / output from other systems. The business administrator can check the progress of the business using the resource management system. Examples of business management systems include ERP (Enterprise Resource Planning) and SCP (Supply Chain Planning). SCE (Supply Chain Management Execution), WMS (Warehouse Management System), TMS (Transport Management System), and the like are also examples of business management systems.
一般に、サプライチェーン業務は、複数の拠点や組織、国にまたがる。そのため、そのようなサプライチェーン業務に導入される資源管理システムについても大規模化に対応することが望まれる。
In general, supply chain operations span multiple bases, organizations, and countries. For this reason, it is desired that the resource management system introduced in such supply chain operations should be adapted to increase in scale.
大規模化された資源管理システムを最適化する手法の一つとして、階層制御がある。階層制御では、制御範囲に応じて大規模システムを階層に分類し、各階層が各々に応じた動作および制御を行う。例えば、階層内で下位に位置するシステムでは、狭い範囲内でリアルタイムに近い制御を行う。それに対し、階層内で上位に位置するシステムでは、広い範囲に対して、下位のシステム間の性能の差異や需要変動、予測といった中長期変動に対応する制御を行う。階層制御を行うことによって、大規模システムの最適化にかかる計算負荷を抑制できる。
Hierarchical control is one of the methods for optimizing a large-scale resource management system. In hierarchical control, large-scale systems are classified into hierarchies according to the control range, and each hierarchy performs operations and controls according to each. For example, in a system located at a lower level in a hierarchy, control close to real time is performed within a narrow range. On the other hand, in a system positioned higher in the hierarchy, control corresponding to medium- to long-term fluctuations such as performance differences, demand fluctuations, and predictions between lower-level systems is performed over a wide range. By performing hierarchical control, it is possible to suppress the calculation load required for optimization of a large-scale system.
非特許文献1には、階層制御を効率的に行う手法が開示されている。非特許文献1の手法においては、各階層間において、下位システムと上位システムとが定期的に情報交換しながら協調的な制御を行う。非特許文献1の手法において、上位システムは、下位システムの制御ルールに関わる情報が無くても、下位システムの挙動に基づいて適切な制御を行うことができる。
Non-Patent Document 1 discloses a technique for efficiently performing hierarchical control. In the method of Non-Patent Document 1, the lower system and the upper system perform coordinated control while periodically exchanging information between the layers. In the method of Non-Patent Document 1, the host system can perform appropriate control based on the behavior of the lower system without information related to the control rules of the lower system.
非特許文献1を含めた関連技術の階層制御では、同一階層となるシステム間が独立に動作することが前提となる。しかしながら、サプライチェーンをはじめ、サプライチェーンを構成する工場や物流、倉庫、小売といったシステムは、物の流れに応じて業務が発生するため、システム間が独立に動作するとは言いがたい。そのため、関連技術の階層制御を、そのままサプライチェーンなどのシステムに適用することは難しい。
In the hierarchical control of related technologies including Non-Patent Document 1, it is assumed that the systems in the same hierarchy operate independently. However, it is difficult to say that the systems such as the supply chain and the factories, logistics, warehouses, and retails that make up the supply chain operate independently according to the flow of goods. Therefore, it is difficult to apply the hierarchical control of the related technology as it is to a system such as a supply chain.
特許文献1には、大規模システムにおけるシステム間での物の流れを取り扱う方法が開示されている。特許文献1には、プラントシステムの制御を対象とし、システムの階層構造やシステム間のフローに関するデータを収集・分析することで、システム全体での最適化を達成可能なデータ分析エンジンについて開示されている。
Patent Document 1 discloses a method for handling the flow of objects between systems in a large-scale system. Patent Document 1 discloses a data analysis engine that can be optimized for the entire system by collecting and analyzing data related to the hierarchical structure of the system and the flow between systems. Yes.
特許文献2には、最適な物流ネットワークの構築を支援する物流計画システムについて開示されている。特許文献2のシステムは、物流ネットワーク全体における在庫コストおよび配送コストの和である全体コストを示す目的関数を生成し、その目的関数を所定の数値解析により解析することによって、全体コストを最小にする配送量および安全在庫を算出する。
Patent Document 2 discloses a logistics planning system that supports the construction of an optimal logistics network. The system of Patent Document 2 generates an objective function indicating an overall cost that is the sum of inventory cost and delivery cost in the entire logistics network, and analyzes the objective function by a predetermined numerical analysis, thereby minimizing the overall cost. Calculate delivery volume and safety stock.
特許文献3には、上位システムで作成される事業計画から導出される生産計画の情報や該生産計画の情報に対応する生産実績の情報を共有し、生産計画の情報および生産実績の情報を管理するシステムについて開示されている。特許文献3のシステムは、生産計画の情報を管理する生産計画サーバと、生産計画を構成する工程ごとの工程計画を管理する複数の工程計画サーバと、各工程計画サーバの構成情報を管理する工程管理サーバとをネットワークに接続する。生産計画サーバは、生産計画の情報および構成情報に基づいて、生産計画を工程ごとの工程計画に分割し、分割された工程計画を対応する工程計画サーバへ送信する。
Patent Document 3 shares production plan information derived from a business plan created by a host system and production result information corresponding to the production plan information, and manages production plan information and production result information. A system is disclosed. The system of Patent Literature 3 includes a production plan server that manages production plan information, a plurality of process plan servers that manage process plans for each process that constitutes the production plan, and a process that manages configuration information of each process plan server. Connect the management server to the network. The production plan server divides the production plan into process plans for each process based on the production plan information and the configuration information, and transmits the divided process plan to the corresponding process plan server.
特許文献4には、半導体生産ラインにおいて、多様に変動するボトルネック装置の能力を拡大するために立案し、支援を行う処理能力検証装置について開示されている。特許文献4の装置は、生産品種ごとの生産計画数情報および生産工程手順を規定した生産フロー情報により生産品種ごと必要処理数を工程ごとに算出する。特許文献4の装置は、必要処理数を必要処理時間に換算しながら、生産装置号機ごとに稼動可能時間から必要処理時間を引いた値が0となるまで処理数を割り当て、割り当て完了した製品数と割り当てできなかった製品数に分類する。
Patent Document 4 discloses a processing capacity verification apparatus which is designed and supported to expand the capacity of a bottleneck apparatus that varies in various ways in a semiconductor production line. The apparatus of Patent Literature 4 calculates the required number of processes for each production type for each process based on the production plan number information for each production type and the production flow information that defines the production process procedure. The device of Patent Document 4 allocates the number of processes until the value obtained by subtracting the required processing time from the operable time is 0 for each production device while converting the required processing number into the required processing time, and the number of products that have been allocated. And classify it into the number of products that could not be assigned.
特許文献1の手法は、データの収集および分析が前提となるため、システムの階層構造やシステム間のフローを把握するまでに時間を要する。サプライチェーンの業態によっては、システム構成の変更が数か月単位で行われる。そのため、特許文献1の手法には、データの収集および分析がシステム構成の変更に追い付かない可能性があるという問題点があった。
Since the method of Patent Document 1 is based on the premise of data collection and analysis, it takes time to grasp the hierarchical structure of the system and the flow between systems. Depending on the business condition of the supply chain, the system configuration is changed every few months. For this reason, the technique of Patent Document 1 has a problem that data collection and analysis may not be able to keep up with changes in the system configuration.
特許文献2のシステムによれば、物流ネットワーク全体における全体コストを示す目的関数を数値解析することによって、物流ネットワークにおける最適な輸送計画を算出できる。しかしながら、特許文献2のシステムには、目的関数を算出する際に計算負荷がかかるという問題点があった。
According to the system of Patent Document 2, an optimal transportation plan in a physical distribution network can be calculated by numerically analyzing an objective function indicating the overall cost in the entire physical distribution network. However, the system of Patent Document 2 has a problem that a calculation load is applied when calculating the objective function.
特許文献3のシステムによれば、一括して作成された生産計画を工程ごとに分割するため、各工程に必要な情報のみ該当工程に送信すればよいので、通信負荷を減らし、生産計画サーバ側に必要な工程ごとの情報蓄積容量を減らすことができる。しかしながら、特許文献3のシステムには、工程間の連携については考慮していないため、システムの構成変更に対応しにくいという問題点があった。
According to the system of Patent Document 3, since a production plan created in a batch is divided for each process, only information necessary for each process needs to be transmitted to the corresponding process, so the communication load is reduced and the production plan server side It is possible to reduce the information storage capacity required for each process. However, the system of Patent Document 3 has a problem that it is difficult to cope with a change in the system configuration because it does not consider the cooperation between processes.
特許文献4の装置によれば、生産フロー情報により生産品種ごと工程ごとの必要処理数を算出し、生産装置号機ごとに割り当て可能な処理数を検証することによって、生産装置能力不足を解消するための解決策を立案することができる。しかしながら、特許文献4の装置には、工程ごとの処理については検証できるものの、工程間の連携については検証していないため、システムの構成変更に対応しにくいという問題点があった。
According to the apparatus of Patent Document 4, the necessary number of processes for each production type is calculated from production flow information, and the number of processes that can be allocated for each production apparatus number is verified, thereby eliminating the shortage of production apparatus capacity. Solution can be planned. However, although the apparatus of Patent Document 4 can verify the process for each process but does not verify the cooperation between the processes, there is a problem that it is difficult to cope with a system configuration change.
本発明の目的は、上述した課題を解決するために、計算負荷を抑制し、システム導入・構成変更に柔軟に対応しながら、大規模システムを最適化することができる制御計画装置を提供することである。
An object of the present invention is to provide a control planning apparatus capable of optimizing a large-scale system while suppressing calculation load and flexibly responding to system introduction / configuration change in order to solve the above-described problems. It is.
本発明の一態様の制御計画装置は、システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数のプロセスの状態を示すプロセス状態情報を、システムを構成する少なくとも二つのプロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出する変換方式算出部と、変換方式算出部によって算出された第1の変換方式に基づいて、プロセス状態情報からフロー情報を算出するフロー情報算出部と、フロー情報算出部によって算出されたフロー情報に基づいて、システムの制御計画を導出する制御計画算出部と、を備える。
The control planning device according to one aspect of the present invention connects process state information indicating a state of a plurality of processes and at least two processes forming the system based on topology information indicating connection of a plurality of processes constituting the system. A conversion method calculation unit that calculates a first conversion method to be converted into flow information indicating the flow state configured as described above, and based on the first conversion method calculated by the conversion method calculation unit, from the process state information A flow information calculation unit that calculates flow information; and a control plan calculation unit that derives a control plan for the system based on the flow information calculated by the flow information calculation unit.
本発明の一態様の制御計画方法においては、システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数のプロセスの状態を示すプロセス状態情報を、システムを構成する少なくとも二つのプロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出し、第1の変換方式に基づいて、プロセス状態情報からフロー情報を算出し、フロー情報に基づいて、システムの制御計画を導出する。
In the control planning method according to one aspect of the present invention, process state information indicating a state of a plurality of processes is obtained from at least two processes constituting the system based on topology information indicating connection of a plurality of processes constituting the system. A first conversion method for converting to flow information indicating the state of a flow configured by connection is calculated, flow information is calculated from the process state information based on the first conversion method, and based on the flow information, Derive a control plan for the system.
本発明の一態様のプログラムは、システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数のプロセスの状態を示すプロセス状態情報を、システムを構成する少なくとも二つのプロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出する処理と、第1の変換方式に基づいて、プロセス状態情報からフロー情報を算出する処理と、フロー情報に基づいて、システムの制御計画を導出する処理とをコンピュータに実行させる。
The program according to one aspect of the present invention is based on topology information indicating a connection of a plurality of processes constituting a system, and process state information indicating a state of a plurality of processes is connected to at least two processes constituting the system. Based on the flow information, a process for calculating a first conversion method for converting to flow information indicating the state of the configured flow, a process for calculating flow information from the process state information based on the first conversion method, And causing the computer to execute processing for deriving a control plan for the system.
本発明によれば、計算負荷を抑制し、システム導入・構成変更に柔軟に対応しながら、大規模システムを最適化することができる制御計画装置を提供することが可能になる。
According to the present invention, it is possible to provide a control planning apparatus capable of optimizing a large-scale system while suppressing calculation load and flexibly responding to system introduction / configuration change.
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。また、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following. In addition, in all the drawings used for description of the following embodiments, the same reference numerals are given to the same parts unless there is a particular reason. In the following embodiments, repeated description of similar configurations and operations may be omitted. Moreover, the direction of the arrow in the drawing shows an example, and does not limit the direction of the signal between the blocks.
(第1の実施形態)
まず、本発明の第1の実施形態に係る制御計画装置について図面を参照しながら説明する。本実施形態の制御計画装置は、サプライチェーン業務の一例として、制御計画対象範囲に含まれる複数のプロセスを経て製造される製品のフローをもとに最適な生産制御指示を算出する。 (First embodiment)
First, a control planning apparatus according to a first embodiment of the present invention will be described with reference to the drawings. The control planning apparatus of the present embodiment calculates an optimal production control instruction based on the flow of products manufactured through a plurality of processes included in the control plan target range as an example of supply chain business.
まず、本発明の第1の実施形態に係る制御計画装置について図面を参照しながら説明する。本実施形態の制御計画装置は、サプライチェーン業務の一例として、制御計画対象範囲に含まれる複数のプロセスを経て製造される製品のフローをもとに最適な生産制御指示を算出する。 (First embodiment)
First, a control planning apparatus according to a first embodiment of the present invention will be described with reference to the drawings. The control planning apparatus of the present embodiment calculates an optimal production control instruction based on the flow of products manufactured through a plurality of processes included in the control plan target range as an example of supply chain business.
(構成)
図1は、本実施形態の制御計画装置10の構成を示すブロック図である。制御計画装置10は、トポロジ情報取得部11、変換方式算出部12、プロセス状態情報取得部13、フロー情報算出部14、制御計画算出部15、および制御指示算出部16を備える。 (Constitution)
FIG. 1 is a block diagram showing the configuration of thecontrol planning apparatus 10 of the present embodiment. The control planning apparatus 10 includes a topology information acquisition unit 11, a conversion method calculation unit 12, a process state information acquisition unit 13, a flow information calculation unit 14, a control plan calculation unit 15, and a control instruction calculation unit 16.
図1は、本実施形態の制御計画装置10の構成を示すブロック図である。制御計画装置10は、トポロジ情報取得部11、変換方式算出部12、プロセス状態情報取得部13、フロー情報算出部14、制御計画算出部15、および制御指示算出部16を備える。 (Constitution)
FIG. 1 is a block diagram showing the configuration of the
トポロジ情報取得部11は、システムを構成する複数のプロセスの連結に関わる情報であるトポロジ情報を取得する。例えば、トポロジ情報取得部11は、システムに手動で入力されるトポロジ情報を取得したり、製造物のフローを追跡することによってトポロジ情報を取得したりする。なお、一般的に、製造物のフローを追跡する際には、データの収集が必要であるが、制御計画装置10は、必ずしもデータの収集は行わずにフローを追跡するため、データの分析は容易である。プロセスを適切に定義できていれば、トポロジ情報取得部11は、数時間から1日程度でトポロジ情報を取得できる。トポロジ情報取得部11は、取得したトポロジ情報を変換方式算出部12に出力する。
The topology information acquisition unit 11 acquires topology information that is information related to the connection of a plurality of processes constituting the system. For example, the topology information acquisition unit 11 acquires topology information manually input to the system, or acquires topology information by tracking the flow of a product. In general, when tracking the flow of a product, it is necessary to collect data. However, since the control planning apparatus 10 tracks a flow without necessarily collecting data, data analysis is not performed. Easy. If the process can be properly defined, the topology information acquisition unit 11 can acquire the topology information within a few hours to a day. The topology information acquisition unit 11 outputs the acquired topology information to the conversion method calculation unit 12.
変換方式算出部12は、トポロジ情報取得部11からトポロジ情報を取得する。変換方式算出部12は、取得したトポロジ情報に基づいて、そのシステムに関する第1の変換方式を算出する。変換方式算出部12は、算出した第1の変換方式をフロー情報算出部14に出力する。
The conversion method calculation unit 12 acquires topology information from the topology information acquisition unit 11. The conversion method calculation unit 12 calculates a first conversion method for the system based on the acquired topology information. The conversion method calculation unit 12 outputs the calculated first conversion method to the flow information calculation unit 14.
第1の変換方式は、複数のプロセスの連結に関わるトポロジ情報に基づいて、複数のプロセスにおける各プロセスの状態を示すプロセス状態情報を、システムを構成する少なくとも二つのプロセスを連結して構成されるフローの状態を示すフロー情報に変換する方式である。例えば、変換方式算出部12は、トポロジ情報に加えて、制御計画算出部15が算出する制御計画に含まれる目的指標を用いて第1の変換方式を算出してもよい。例えば、変換方式算出部12は、トポロジ情報に加えて、システムを構成するプロセスのプロセス状態情報を用いて第1の変換方式を算出してもよい。
The first conversion method is configured by connecting process state information indicating the state of each process in a plurality of processes by connecting at least two processes constituting the system based on topology information related to connection of the plurality of processes. This is a method of converting to flow information indicating the state of the flow. For example, the conversion method calculation unit 12 may calculate the first conversion method using an objective index included in the control plan calculated by the control plan calculation unit 15 in addition to the topology information. For example, the conversion method calculation unit 12 may calculate the first conversion method using the process state information of the processes constituting the system in addition to the topology information.
また、変換方式算出部12は、制御指示算出部16が用いる第2の変換方式を算出する。変換方式算出部12は、第1の変換方式と同様に、トポロジ情報に基づいて第2の変換方式を算出する。変換方式算出部12は、算出した第2の変換方式を制御指示算出部16に出力する。
Also, the conversion method calculation unit 12 calculates a second conversion method used by the control instruction calculation unit 16. Similarly to the first conversion method, the conversion method calculation unit 12 calculates the second conversion method based on the topology information. The conversion method calculation unit 12 outputs the calculated second conversion method to the control instruction calculation unit 16.
第2の変換方式は、フロー情報をシステムの制御指示に変換する方式である。例えば、変換方式算出部12は、トポロジ情報に加えて、制御計画算出部15が算出する制御計画に含まれる目的指標を用いて第2の変換方式を算出してもよい。例えば、変換方式算出部12は、トポロジ情報に加えて、システムを構成するプロセスのプロセス状態情報を用いて第2の変換方式を算出してもよい。
The second conversion method is a method for converting flow information into system control instructions. For example, the conversion method calculation unit 12 may calculate the second conversion method using an objective index included in the control plan calculated by the control plan calculation unit 15 in addition to the topology information. For example, the conversion method calculation unit 12 may calculate the second conversion method by using process state information of processes constituting the system in addition to the topology information.
プロセス状態情報取得部13は、制御計画対象範囲に含まれる複数のプロセスのそれぞれから状態情報(以下、プロセス状態情報と呼ぶ)を所定のタイミングで取得する。プロセス状態情報取得部13がプロセス状態情報を取得するタイミングは、所定の時刻や、所定の時間間隔、製品が各プロセスを通過する時点など任意に設定できる。なお、プロセス状態情報取得部13がプロセス状態情報を取得するタイミングには、特に限定を加えない。プロセス状態情報取得部13は、取得したプロセス状態情報をフロー情報算出部14に出力する。
The process state information acquisition unit 13 acquires state information (hereinafter referred to as process state information) from each of a plurality of processes included in the control plan target range at a predetermined timing. The timing at which the process status information acquisition unit 13 acquires the process status information can be arbitrarily set, such as a predetermined time, a predetermined time interval, or a time when the product passes through each process. The timing at which the process state information acquisition unit 13 acquires the process state information is not particularly limited. The process state information acquisition unit 13 outputs the acquired process state information to the flow information calculation unit 14.
フロー情報算出部14は、変換方式算出部12から第1の変換方式を取得し、プロセス状態情報取得部13からプロセス状態情報を取得する。フロー情報算出部14は、第1の変換方式に基づいて、複数のプロセスの状態を示すプロセス状態情報を用いてフロー情報を算出する。
The flow information calculation unit 14 acquires the first conversion method from the conversion method calculation unit 12 and acquires process state information from the process state information acquisition unit 13. The flow information calculation unit 14 calculates flow information using process state information indicating the states of a plurality of processes based on the first conversion method.
制御計画算出部15は、フロー情報算出部14からフロー情報を取得する。制御計画算出部15は、フロー情報を用いて制御計画を導出する。制御計画算出部15は、導出した制御計画を制御指示算出部16に出力する。
The control plan calculation unit 15 acquires flow information from the flow information calculation unit 14. The control plan calculation unit 15 derives a control plan using the flow information. The control plan calculation unit 15 outputs the derived control plan to the control instruction calculation unit 16.
制御指示算出部16は、変換方式算出部12から第2の変換方式を取得し、制御計画算出部15から制御計画を取得する。制御指示算出部16は、制御計画対象範囲に含まれる複数のプロセスごとに、第2の変換方式に基づいて、制御計画を用いて制御指示を算出する。制御指示算出部16は、制御計画対象範囲に含まれる複数のプロセスごとに算出した制御指示をそれぞれのプロセスに送信する。
The control instruction calculation unit 16 acquires the second conversion method from the conversion method calculation unit 12 and acquires the control plan from the control plan calculation unit 15. The control instruction calculation unit 16 calculates a control instruction using the control plan for each of a plurality of processes included in the control plan target range based on the second conversion method. The control instruction calculation unit 16 transmits a control instruction calculated for each of a plurality of processes included in the control plan target range to each process.
〔生産計画対象システム〕
次に、本実施形態の制御計画対象システムについて図面を参照しながら説明する。図2は、本実施形態の制御計画対象システム1の構成の一例を示す概念図である。制御計画対象システム1は、制御計画装置10と、制御計画対象範囲100に含まれる複数のプロセス110とによって構成される。複数のプロセス110は、プロセス110-1~5を含む。例えば、制御計画装置10と、複数のプロセス110のそれぞれとは、図示しないネットワークを介して有線または無線でデータ通信可能に接続される。 [Production planning target system]
Next, the control plan object system of this embodiment is demonstrated, referring drawings. FIG. 2 is a conceptual diagram showing an example of the configuration of the controlplan target system 1 of the present embodiment. The control plan target system 1 includes a control plan device 10 and a plurality of processes 110 included in the control plan target range 100. The plurality of processes 110 includes processes 110-1 to 110-5. For example, the control planning apparatus 10 and each of the plurality of processes 110 are connected via a network (not shown) so that data communication can be performed in a wired or wireless manner.
次に、本実施形態の制御計画対象システムについて図面を参照しながら説明する。図2は、本実施形態の制御計画対象システム1の構成の一例を示す概念図である。制御計画対象システム1は、制御計画装置10と、制御計画対象範囲100に含まれる複数のプロセス110とによって構成される。複数のプロセス110は、プロセス110-1~5を含む。例えば、制御計画装置10と、複数のプロセス110のそれぞれとは、図示しないネットワークを介して有線または無線でデータ通信可能に接続される。 [Production planning target system]
Next, the control plan object system of this embodiment is demonstrated, referring drawings. FIG. 2 is a conceptual diagram showing an example of the configuration of the control
図2において、制御計画装置10が上位システム、複数のプロセス110が下位システムに相当する。すなわち、制御計画対象システム1は、上位システム(制御計画装置10)と下位システム(複数のプロセス110)の2層の階層に分割される。
In FIG. 2, the control planning device 10 corresponds to the upper system, and the plurality of processes 110 correspond to the lower system. That is, the control plan target system 1 is divided into two layers of a higher system (control plan apparatus 10) and a lower system (a plurality of processes 110).
プロセス110は、特定の作業の単位を概念的に示すものである。例えば、制御計画対象システム1を工場に適用することを想定すると、プロセス110には、加工・組立といった生産作業や、動作チェックや不具合チェックなどの検査作業、部品・製造品の輸送のほか、倉庫への入庫、出荷時の梱包といった作業が含まれる。図2の例では、各プロセス110に対応付けられる作業は、部品や製品などの製造品を対象に行われる。また、図2の例では、製造品の流れは製造品種ごとに異なるものと仮定する。例えば、図2の例では、組み立てる部品種別の違いによって、一部だけを別のプロセスで実施するといったケースを想定する。
Process 110 conceptually indicates a specific unit of work. For example, assuming that the control planning target system 1 is applied to a factory, the process 110 includes production work such as processing and assembly, inspection work such as operation check and defect check, transportation of parts and manufactured products, warehouse Such operations as warehousing and packing at the time of shipment are included. In the example of FIG. 2, the work associated with each process 110 is performed on manufactured products such as parts and products. In the example of FIG. 2, it is assumed that the flow of manufactured products is different for each manufactured product. For example, in the example of FIG. 2, a case is assumed in which only a part is executed in a different process depending on the type of parts to be assembled.
図2において、プロセス110の間を結ぶ矢印は、製造品の流れ(製造フローとも呼ぶ)を示す。制御計画対象範囲100の外部からプロセス110-1に到着した製造品は、プロセス110-1の作業が行われた後にプロセス110-2に送られる。プロセス110-1からプロセス110-2に到着した製造品は、プロセス110-2の作業が行われた後にプロセス110-3およびプロセス110-4のいずれかに送られる。プロセス110-2からプロセス110-3およびプロセス110-4のいずれかに到着した製造品は、各プロセス110の作業が行われた後にプロセス110-5に送られる。プロセス110-3およびプロセス110-4のいずれかからプロセス110-5に到着した製造品は、プロセス110-5の作業が行われた後に制御計画対象範囲100の外部に送られる。
2, arrows connecting the processes 110 indicate a flow of manufactured products (also referred to as a manufacturing flow). The manufactured product that arrives at the process 110-1 from outside the control plan target range 100 is sent to the process 110-2 after the work of the process 110-1 is performed. The product arrived at the process 110-2 from the process 110-1 is sent to either the process 110-3 or the process 110-4 after the work of the process 110-2 is performed. The manufactured product that has arrived at any one of the processes 110-3 and 110-4 from the process 110-2 is sent to the process 110-5 after the work of each process 110 is performed. The manufactured product that has arrived at the process 110-5 from either the process 110-3 or the process 110-4 is sent to the outside of the control plan target range 100 after the work of the process 110-5 is performed.
図3は、制御計画対象範囲100の内部における製造フロー120について説明するための概念図である。図3の例では、二つの製造フロー120がある。製造フロー120-1は、プロセス110-1、プロセス110-2、プロセス110-3、プロセス110-5の順で各プロセス110を通過するフローである。製造フロー120-2は、プロセス110-1、プロセス110-2、プロセス110-4、プロセス110-5の順で各プロセス110を通過するフローである。
FIG. 3 is a conceptual diagram for explaining the manufacturing flow 120 inside the control plan target range 100. In the example of FIG. 3, there are two manufacturing flows 120. The manufacturing flow 120-1 is a flow that passes through each process 110 in the order of the process 110-1, the process 110-2, the process 110-3, and the process 110-5. The manufacturing flow 120-2 is a flow that passes through each process 110 in the order of the process 110-1, the process 110-2, the process 110-4, and the process 110-5.
プロセス110-1、プロセス110-2、およびプロセス110-5は、二つの製造フロー120に共通のプロセスである。それに対し、プロセス110-3は製造フロー120-1に固有のプロセスとして規定され、プロセス110-4は製造フロー120-2に固有のプロセスとして規定される。
Process 110-1, process 110-2, and process 110-5 are processes common to the two manufacturing flows 120. On the other hand, the process 110-3 is defined as a process specific to the manufacturing flow 120-1, and the process 110-4 is defined as a process specific to the manufacturing flow 120-2.
(動作)
次に、図2の制御計画対象システム1に関して、制御計画装置10の動作について図面を参照しながら説明する。 (Operation)
Next, regarding the controlplan target system 1 in FIG. 2, the operation of the control plan apparatus 10 will be described with reference to the drawings.
次に、図2の制御計画対象システム1に関して、制御計画装置10の動作について図面を参照しながら説明する。 (Operation)
Next, regarding the control
上位システム(制御計画装置10)は、生産計画に基づいて下位システム(プロセス110)への期待作業量を算出する。上位システムは、下位システムの実績作業量を取得し、期待作業量と実績作業量との差異に基づいて作業リソース割り当てを制御する。下位システムは、上位システムから割り当てられた作業リソース割り当てで期待作業量を満足するように自律的に作業を行う。これにより、上位システムは、下位システムの動作特性といった詳細情報を受信せずに、下位システムの作業実績情報から適切なリソース割り当てを達成することができる。
The host system (control planning device 10) calculates the expected work amount to the lower system (process 110) based on the production plan. The host system acquires the actual work amount of the lower system, and controls work resource allocation based on the difference between the expected work amount and the actual work amount. The lower system autonomously performs work so as to satisfy the expected work amount by the work resource allocation assigned by the higher system. As a result, the host system can achieve appropriate resource allocation from the work performance information of the lower system without receiving detailed information such as the operation characteristics of the lower system.
〔変換方式の算出〕
ここで、制御計画装置10による変換方式の算出について図面を参照しながら説明する。図4は、制御計画装置10による変換方式の算出について説明するためのフローチャートである。変換方式はトポロジ情報に依存する。そのため、制御計画装置10は、例えば、トポロジ情報に変更が発生するたびに変換方式を算出する。なお、図4のフローチャートに沿った説明においては、制御計画装置10を動作の主体として説明する。 [Calculation of conversion method]
Here, calculation of the conversion method by thecontrol planning apparatus 10 will be described with reference to the drawings. FIG. 4 is a flowchart for explaining the calculation of the conversion method by the control planning apparatus 10. The conversion method depends on the topology information. Therefore, for example, the control planning apparatus 10 calculates a conversion method every time a change occurs in the topology information. In the description along the flowchart of FIG. 4, the control planning apparatus 10 will be described as the main subject of operation.
ここで、制御計画装置10による変換方式の算出について図面を参照しながら説明する。図4は、制御計画装置10による変換方式の算出について説明するためのフローチャートである。変換方式はトポロジ情報に依存する。そのため、制御計画装置10は、例えば、トポロジ情報に変更が発生するたびに変換方式を算出する。なお、図4のフローチャートに沿った説明においては、制御計画装置10を動作の主体として説明する。 [Calculation of conversion method]
Here, calculation of the conversion method by the
図4において、まず、制御計画装置10は、トポロジ情報取得部11を用いて、トポロジ情報を算出する(ステップS111)。
In FIG. 4, first, the control planning device 10 calculates topology information using the topology information acquisition unit 11 (step S111).
次に、制御計画装置10は、変換方式算出部12を用いて、取得したトポロジ情報に基づいて第1および第2の変換方式を算出する(ステップS112)。
Next, the control planning device 10 uses the conversion method calculation unit 12 to calculate the first and second conversion methods based on the acquired topology information (step S112).
そして、制御計画装置10は、フロー情報算出部14に第1の変換方式を設定し、制御指示算出部16に第2の変換方式を設定する(ステップS113)。
The control planning apparatus 10 sets the first conversion method in the flow information calculation unit 14 and sets the second conversion method in the control instruction calculation unit 16 (step S113).
以上が、制御計画装置10による変換方式の算出についての説明である。
The above is the description of the calculation of the conversion method by the control planning device 10.
ここで、具体的な変換方式の算出方法について説明する。本実施形態では、変換方式に基づいて、プロセス単位の情報を製造フロー単位の情報に変換する。プロセス数よりも製造フロー数の方が少なくなるため、本変換によって情報を圧縮することができる。
Here, a specific conversion method calculation method will be described. In the present embodiment, process unit information is converted into manufacturing flow unit information based on a conversion method. Since the number of manufacturing flows is smaller than the number of processes, information can be compressed by this conversion.
変換方式算出部12は、図2および図3に示す製造フローに関する情報をトポロジ情報として収集すると、以下の式1に示す変換行列T1を第1の変換方式として算出する。
When the information related to the manufacturing flow shown in FIGS. 2 and 3 is collected as topology information, the conversionmethod calculation unit 12 calculates a conversion matrix T 1 shown in the following Equation 1 as the first conversion method.
When the information related to the manufacturing flow shown in FIGS. 2 and 3 is collected as topology information, the conversion
式1の変換行列T1においては、各行がいずれかの製造フロー120に対応し、各列がいずれかのプロセス110に対応する。図3に当てはめると、1行目が製造フロー120-1に対応し、2行目が製造フロー120-2に対応する。また、1列目がプロセス110-1に対応し、2列目がプロセス110-2に対応し、3列目がプロセス110-3に対応し、4列目がプロセス110-4に対応し、5列目がプロセス110-5に対応する。
In the transformation matrix T 1 of Equation 1, each row corresponds to any manufacturing flow 120 and each column corresponds to any process 110. When applied to FIG. 3, the first line corresponds to the manufacturing flow 120-1, and the second line corresponds to the manufacturing flow 120-2. The first column corresponds to the process 110-1, the second column corresponds to the process 110-2, the third column corresponds to the process 110-3, the fourth column corresponds to the process 110-4, The fifth column corresponds to process 110-5.
変換方式算出部12は、以下の手順で第1の変換方式である変換行列T1を導出する。
The conversion method calculation unit 12 derives a conversion matrix T 1 that is the first conversion method in the following procedure.
まず、変換方式算出部12は、製造フロー120ごとに、経由するプロセス110を1、経由しないプロセス110を0に設定する。図3の例では、式2の行列が得られる。
First, the conversionmethod calculation unit 12 sets 1 for the process 110 that passes through and 0 for the process 110 that does not pass for each manufacturing flow 120. In the example of FIG. 3, the matrix of Equation 2 is obtained.
First, the conversion
式2において、製造フロー120-1(1行目)ではプロセス110-4(4列目)を通過しないため、1行4列目に0が設定される。同様に、製造フロー120-2(2行目)ではプロセス110-3(3列目)を通過しないため、2行3列目に0が設定される。
In Expression 2, since the manufacturing flow 120-1 (first row) does not pass the process 110-4 (fourth column), 0 is set in the first row and fourth column. Similarly, in the manufacturing flow 120-2 (second row), since the process 110-3 (third column) is not passed, 0 is set in the second row and third column.
次に、変換方式算出部12は、各行(製造フロー120ごと)の要素の和で各行の要素を除し、各列(プロセス110ごと)の要素の和で各列の要素を除する。各行の要素の和は、製造フロー120の経由するプロセス数に相当する。このため、各行の要素の和で除することにより、製造フロー120を構成する全プロセスの作業実績の平均を取得することができる。また、各列の要素の和は、プロセス110に関連する製造フロー120の数に相当する。このため、各列の要素の和でさらに除することにより、プロセス110の作業実績が製造フロー120に与える影響を考慮することができる。
Next, the conversion method calculation unit 12 divides the elements in each row by the sum of the elements in each row (for each manufacturing flow 120), and removes the elements in each column by the sum of the elements in each column (for each process 110). The sum of the elements in each row corresponds to the number of processes through the manufacturing flow 120. For this reason, by dividing by the sum of the elements in each row, it is possible to obtain an average of work results of all processes constituting the manufacturing flow 120. The sum of the elements in each column corresponds to the number of manufacturing flows 120 associated with the process 110. For this reason, by further dividing by the sum of the elements in each column, it is possible to consider the influence of the work performance of the process 110 on the manufacturing flow 120.
式2の場合、1行目の要素の和は4であり、2行目の要素の和は4である。また、1列目の要素の和は2であり、2列目の要素の和は2であり、3列目の要素の和は1であり、4列目の要素の和は1であり、5列目の要素の和は2である。例えば、式2において、1行1列目の要素「1」は、第1行の要素の和である「4」で除し、さらに第1列の要素の和である「2」で除する。その結果、1行1列目の要素は「0.125」となる。この計算を全ての要素に対して行うと、式1の変換行列T1が得られる。
In the case of Equation 2, the sum of the elements in the first row is 4, and the sum of the elements in the second row is 4. The sum of the elements in the first column is 2, the sum of the elements in the second column is 2, the sum of the elements in the third column is 1, and the sum of the elements in the fourth column is 1. The sum of the elements in the fifth column is 2. For example, in Expression 2, the element “1” in the first row and the first column is divided by “4” that is the sum of the elements in the first row, and further divided by “2” that is the sum of the elements in the first column. . As a result, the element in the first row and first column is “0.125”. When this calculation is performed for all elements, the transformation matrix T 1 of Equation 1 is obtained.
また、変換方式算出部12は、図2および図3に示す製造フローに関する情報をトポロジ情報として用いて、以下の式3に示す変換行列T2を第2の変換方式として算出する。
The conversionscheme calculating section 12 uses the information about the manufacturing flow shown in FIGS. 2 and 3 as topology information, for calculating the transformation matrix T 2 shown in Equation 3 below as a second conversion method.
The conversion
第2の変換方式として算出される変換行列T2において、各行がいずれかのプロセス110に対応し、各列がいずれかの製造フロー120に対応する。図3に当てはめると、1行目がプロセス110-1に対応し、2行目がプロセス110-2に対応し、3行目がプロセス110-3に対応し、4行目がプロセス110-4に対応し、5行目がプロセス110-5に対応する。また、1列目が製造フロー120-1に対応し、2列目が製造フロー120-2に対応する。変換行列T2は、式2の転置行列として導出することができる。
In the transformation matrix T 2 calculated as the second transformation method, each row corresponds to any process 110 and each column corresponds to any manufacturing flow 120. 3, the first line corresponds to the process 110-1, the second line corresponds to the process 110-2, the third line corresponds to the process 110-3, and the fourth line corresponds to the process 110-4. The fifth line corresponds to the process 110-5. The first column corresponds to the manufacturing flow 120-1, and the second column corresponds to the manufacturing flow 120-2. The transformation matrix T 2 can be derived as a transposed matrix of Equation 2.
以上が、変換方式の算出方法についての説明である。
This completes the description of the conversion method calculation method.
〔全体動作〕
次に、制御計画装置10が各プロセス110のプロセス状態情報を収集してから制御計画を立案・指示するまでの一連の流れについて図面を参照しながら説明する。図5は、制御計画装置10の動作について説明するためのフローチャートである。制御計画・指示は、各プロセス110のプロセス状態に主に依存する。そのため、制御計画装置10は、例えば、数分から数十分ごとの頻度で制御計画の立案・指示を実施する。なお、制御計画装置10は、図5に示す制御計画の立案・指示の算出に先立って、図4に示す変換方式の算出を実施する。 [Overall operation]
Next, a series of flow from when thecontrol planning apparatus 10 collects process state information of each process 110 to when a control plan is formulated / instructed will be described with reference to the drawings. FIG. 5 is a flowchart for explaining the operation of the control planning apparatus 10. The control plan / instruction depends mainly on the process state of each process 110. Therefore, for example, the control planning apparatus 10 drafts / instructs a control plan at a frequency of every several minutes to several tens of minutes. The control planning apparatus 10 calculates the conversion method shown in FIG. 4 prior to the planning / instruction calculation of the control plan shown in FIG.
次に、制御計画装置10が各プロセス110のプロセス状態情報を収集してから制御計画を立案・指示するまでの一連の流れについて図面を参照しながら説明する。図5は、制御計画装置10の動作について説明するためのフローチャートである。制御計画・指示は、各プロセス110のプロセス状態に主に依存する。そのため、制御計画装置10は、例えば、数分から数十分ごとの頻度で制御計画の立案・指示を実施する。なお、制御計画装置10は、図5に示す制御計画の立案・指示の算出に先立って、図4に示す変換方式の算出を実施する。 [Overall operation]
Next, a series of flow from when the
図5において、まず、制御計画装置10は、プロセス状態情報取得部13を用いて、制御計画対象範囲100に含まれる複数のプロセス110からプロセス状態情報を取得する(ステップS121)。
In FIG. 5, first, the control planning apparatus 10 uses the process status information acquisition unit 13 to acquire process status information from a plurality of processes 110 included in the control plan target range 100 (step S121).
図6は、プロセス状態情報取得部13が取得するプロセス状態情報をまとめたプロセス状態情報テーブル111である。プロセス状態情報テーブル111には、各プロセス110の状態情報として、直近の作業実績数が格納される。
FIG. 6 is a process status information table 111 that summarizes the process status information acquired by the process status information acquisition unit 13. The process status information table 111 stores the latest number of work results as the status information of each process 110.
次に、制御計画装置10は、フロー情報算出部14を用いて、事前に設定された第1の変換方式に基づいて、取得した各プロセス110のプロセス状態情報からフロー情報を算出する(ステップS122)。
Next, the control planning device 10 uses the flow information calculation unit 14 to calculate flow information from the acquired process state information of each process 110 based on the first conversion method set in advance (step S122). ).
図7は、フロー情報算出部14が算出するフロー情報をまとめたフロー情報テーブル141である。フロー情報テーブル141には、製造フロー120単位での作業実績が格納される。ここで、フロー情報をpとし、各プロセス110のプロセス状態情報のベクトル表現をxとする(式4)。なお、式4で示すxは、図6に示すプロセス状態情報テーブル111から算出する。
FIG. 7 is a flow information table 141 that summarizes the flow information calculated by the flowinformation calculation unit 14. The flow information table 141 stores work results for each manufacturing flow 120 unit. Here, the flow information is p, and the vector representation of the process state information of each process 110 is x (Formula 4). Note that x shown in Expression 4 is calculated from the process state information table 111 shown in FIG.
FIG. 7 is a flow information table 141 that summarizes the flow information calculated by the flow
例えば、フロー情報算出部14は、第1の変換方式である変換行列T1と、各プロセス110のプロセス状態情報xとの積をフロー情報pとして算出する(式5)。なお、図7のフロー情報テーブル141には、式5で算出される数値の小数点以下第3位を切り捨てた値を示す。
For example, the flowinformation calculation unit 14 calculates the product of the conversion matrix T 1 as the first conversion method and the process state information x of each process 110 as the flow information p (Formula 5). Note that the flow information table 141 in FIG. 7 shows values obtained by rounding down the third decimal place of the numerical value calculated by Expression 5.
For example, the flow
次に、制御計画装置10は、制御計画算出部15を用いて、フロー情報算出部14によって算出されたフロー情報に基づいて制御計画を導出する(ステップS123)。
Next, the control plan apparatus 10 uses the control plan calculation unit 15 to derive a control plan based on the flow information calculated by the flow information calculation unit 14 (step S123).
図8は、制御計画算出部15が導出する制御計画情報をまとめた制御計画情報テーブル151である。図8には、制御目的(目的指標とも呼ぶ)として、製造フロー120-1の必要作業数に35が設定され、製造フロー120-2の必要作業数に69が設定されている。必要作業数は、変換方式算出部12が第1および第2の変換方式を算出する際の目的指標として用いることができる。
FIG. 8 is a control plan information table 151 in which the control plan information derived by the control plan calculation unit 15 is collected. In FIG. 8, 35 is set as the required number of operations in the manufacturing flow 120-1 and 69 is set as the required number of operations in the manufacturing flow 120-2 as control objectives (also referred to as objective indexes). The required number of operations can be used as a target index when the conversion method calculation unit 12 calculates the first and second conversion methods.
図9は、制御計画算出部15が導出する制御計画情報の別の一例をまとめた制御計画情報テーブル152である。図9の制御計画情報テーブル152には、何らかの手法によって予測される予測必要作業数が追加されている。例えば、予測必要作業数には、各製造フロー120の時間変化に応じて予測される次の作業タイミングにおける作業実績の推定値が設定される。予測必要作業数は、帰納的な手法で算出されてもよいし、演繹的な手法で算出されてもよく、算出方法には特に限定を加えない。また、予測必要作業数には、各プロセス110における直近の作業実績と必要作業数との間の任意の値を設定してもよい。
FIG. 9 is a control plan information table 152 in which another example of the control plan information derived by the control plan calculation unit 15 is collected. In the control plan information table 152 of FIG. 9, the number of predicted necessary operations predicted by some method is added. For example, an estimated value of work performance at the next work timing predicted according to the time change of each manufacturing flow 120 is set as the number of work required for prediction. The number of work required for prediction may be calculated by an inductive method or may be calculated by a deductive method, and the calculation method is not particularly limited. Moreover, you may set the arbitrary value between the latest work performance in each process 110 and required work number to the prediction required work number.
そして、制御計画装置10は、制御指示算出部16を用いて、事前に設定された第2の変換方式に基づいて、制御計画算出部15が導出した制御計画から制御指示を算出する(ステップS124)。なお、制御指示算出部16は、制御計画対象範囲100に含まれるプロセス110ごとに制御指示を算出する。
Then, the control planning apparatus 10 uses the control instruction calculation unit 16 to calculate a control instruction from the control plan derived by the control plan calculation unit 15 based on the second conversion method set in advance (step S124). ). The control instruction calculation unit 16 calculates a control instruction for each process 110 included in the control plan target range 100.
図10は、制御指示算出部16が算出する制御指示情報をまとめた制御指示情報テーブル161である。制御指示算出部16は、各プロセス110への必要作業数を制御指示として算出する。また、図10のように、直近の作業実績と必要作業数との乖離が大きい場合には、作業リソースの増減をさらに含めてもよい。
FIG. 10 is a control instruction information table 161 in which the control instruction information calculated by the control instruction calculation unit 16 is collected. The control instruction calculation unit 16 calculates the required number of tasks for each process 110 as a control instruction. In addition, as shown in FIG. 10, when the difference between the latest work record and the required number of work is large, the increase / decrease of work resources may be further included.
制御指示算出部16は、以下の式6を用いて各プロセス110の必要作業数xtを算出する。ただし、yは、制御計画情報のベクトル表現である。なお、制御計画情報は、図8や図9の必要作業数である。
The controlinstruction calculation unit 16 calculates the required number of tasks x t for each process 110 using the following Equation 6. However, y is a vector representation of control plan information. Note that the control plan information is the required number of operations in FIGS.
The control
すなわち、制御指示算出部16は、第2の変換方式である変換行列T2と、制御計画情報のベクトルyとの積を必要作業数xtとして算出する。
That is, the control instruction calculation unit 16 calculates the product of the conversion matrix T 2 that is the second conversion method and the vector y of the control plan information as the required work number x t .
また、制御指示算出部16は、直近に取得した作業実績と必要作業数との差異を求めることによって作業リソースの増減を算出する。すなわち、制御指示算出部16は、システムを構成するプロセス110のプロセス状態情報と、プロセス状態情報に対応する制御指示との比較に基づいた情報を制御指示に含めて算出する。
Also, the control instruction calculation unit 16 calculates the increase / decrease in work resources by obtaining the difference between the latest work record acquired and the required number of works. That is, the control instruction calculation unit 16 calculates information including information based on a comparison between the process state information of the process 110 configuring the system and the control instruction corresponding to the process state information in the control instruction.
図10の制御指示情報テーブル161を参照すると、プロセス110-3においては、作業実績に対して必要作業数が少ない。一方、プロセス110-4においては、作業実績に対して必要作業数が多い。一般に、生産管理における制約理論の考えに基づくと、製造フローそれぞれについて各プロセスの生産量を等しくする状態において生産効率が最大になる。そのため、制御指示算出部16は、プロセス110-3に対しては減員、プロセス110-4に対しては増員するという制御指示を生成する。
Referring to the control instruction information table 161 in FIG. 10, in the process 110-3, the number of required work is small with respect to the work results. On the other hand, in the process 110-4, the required number of operations is large with respect to the operation results. In general, based on the idea of constraint theory in production management, production efficiency is maximized in a state where the production volume of each process is equal for each manufacturing flow. Therefore, the control instruction calculation unit 16 generates a control instruction that decreases the number of processes 110-3 and increases the number of processes 110-4.
そして、制御指示算出部16は、生成した制御指示を各プロセス110に送信する(ステップS125)。
Then, the control instruction calculation unit 16 transmits the generated control instruction to each process 110 (step S125).
以上が、制御計画装置10の動作についての説明である。
The above is the description of the operation of the control planning device 10.
以上のように、本実施形態の制御計画装置は、複数のプロセスの連結状態をトポロジ情報として取得し、トポロジ情報に基づいて生成された変換方式を用いて各プロセスから収集された状態情報をフロー情報に変換する。本実施形態によれば、この処理を通じて情報が適切に圧縮されるため、制御計画の導出時において取り扱うべき情報量を削減でき、計算負荷を抑制することができる。
As described above, the control planning apparatus of the present embodiment acquires the connection state of a plurality of processes as topology information, and flows the state information collected from each process using the conversion method generated based on the topology information. Convert to information. According to the present embodiment, information is appropriately compressed through this processing, so that the amount of information to be handled at the time of deriving the control plan can be reduced, and the calculation load can be suppressed.
さらに、本実施形態の制御計画装置は、トポロジ情報として製造フローを用いているが、製造フローは比較的容易に取得することができる。そのため、本実施形態によれば、新たな製品の導入や製造ライン変更といった構成変更に容易に対応することができる。よって、本実施形態によれば、構成変更に短期間で対応でき、計算負荷を抑制することができる。
Furthermore, although the control planning apparatus of the present embodiment uses a manufacturing flow as topology information, the manufacturing flow can be acquired relatively easily. Therefore, according to the present embodiment, it is possible to easily cope with a configuration change such as introduction of a new product or change of a production line. Therefore, according to the present embodiment, the configuration change can be dealt with in a short period of time, and the calculation load can be suppressed.
すなわち、本実施形態によれば、計算負荷を抑制し、システム導入・構成変更に容易に対応しながら、大規模システムを最適化することができる。
That is, according to this embodiment, it is possible to optimize a large-scale system while suppressing a calculation load and easily responding to system introduction / configuration change.
また、本実施形態の制御計画装置は、各プロセスから作業実績情報を収集することで制御計画を立案することができる。言い換えれば、本実施形態によれば、各プロセスの詳細な動作に関する情報を用いずにシステムの最適化を行うことができる。なぜならば、各々のプロセスの個別動作の最適化については各々のプロセス側にて対応し、制御計画装置は複数のプロセスの結節やリソース配分に関わる点の最適化に焦点を当てるためである。
Also, the control planning apparatus of the present embodiment can make a control plan by collecting work performance information from each process. In other words, according to the present embodiment, the system can be optimized without using information regarding detailed operations of each process. This is because the optimization of the individual operation of each process is handled by each process side, and the control planning apparatus focuses on the optimization of points related to the nodule of a plurality of processes and resource allocation.
このように、本実施形態によれば、上位システムと下位システムとで最適化すべき範囲をそれぞれ定め、それぞれの最適化範囲に必要な情報のみをやりとりすることで、下位システムの詳細な情報を利用せずとも最適化計算を行うことができる。
As described above, according to the present embodiment, the upper system and the lower system each determine a range to be optimized, and only the information necessary for each optimization range is exchanged to use detailed information of the lower system. Optimization calculations can be performed without
本実施形態では、各プロセスが同一の組織に属することを想定していたが、製造サプライチェーンといったより大規模なシステムへの適用においては、協調関係にありながら異なる組織間での連携・最適化が要求される。一般に、組織の外に出すことができる情報には限りがあり、全体最適化の障害になりうる。このような状況であっても、本実施形態によれば、必要最低限の情報のやりとりでシステム全体の最適化を図ることができる。
In this embodiment, it is assumed that each process belongs to the same organization. However, in application to a larger system such as a manufacturing supply chain, cooperation and optimization between different organizations in a cooperative relationship. Is required. In general, there is a limit to the information that can be released outside the organization, which can be an obstacle to global optimization. Even in such a situation, according to the present embodiment, it is possible to optimize the entire system by exchanging the minimum necessary information.
また、本実施形態の手法は、上位システム(制御計画装置)と下位システム(プロセス)との2層のみならず、多段構成にも適用できる。例えば、本実施形態の制御計画装置を下位システムとみなし、さらに上位システムとして新たな制御計画装置を加えるように構成してもよい。また、本実施形態のプロセスを上位システムとみなし、さらに下位システムとしてプロセスを実行するより詳細な要素を加えるように構成してもよい。このように構成すれば、より大規模なシステムに対しても、少量の情報からより広範囲の最適化を計算することができるため、計算負荷をさらに抑制することができる。
Further, the method of the present embodiment can be applied not only to the two layers of the upper system (control planning device) and the lower system (process) but also to a multistage configuration. For example, the control planning apparatus of this embodiment may be regarded as a lower system, and a new control planning apparatus may be added as a higher system. Further, the process of this embodiment may be regarded as a higher system, and more detailed elements for executing the process as a lower system may be added. If comprised in this way, since it is possible to calculate a wider range of optimization from a small amount of information even for a larger-scale system, the calculation load can be further suppressed.
本実施形態の制御計画装置は、第1および第2の変換方式の算出において、トポロジ情報に加えて他の情報を用いてもよい。
The control planning apparatus of the present embodiment may use other information in addition to the topology information in the calculation of the first and second conversion methods.
例えば、本実施形態の制御計画装置は、第1および第2の変換方式を算出する際に、トポロジ情報に加えて、制御計画算出部が算出する制御計画に含まれる制御目的(目的指標とも呼ぶ)に関する情報(制御目的情報とも呼ぶ)を用いてもよい。例えば、本実施形態の制御計画装置は、各プロセスの生産計画立案および割当リソースの制御を制御目的として設計する。生産管理における制約理論の考えに基づくと、製造フローそれぞれについて各プロセスの生産量を等しくする状態において生産効率が最大になる。そのため、本実施形態の制御計画装置は、製造フローごとに各プロセスに同一量を生産させる計画になるように第2の変換方式を定める。制御目的情報を用いて第1および第2の変換方式を算出するように構成すれば、制御目的に応じた情報変換を施すことができるため、最適化の精度を向上させることができる。
For example, when calculating the first and second conversion methods, the control planning apparatus according to the present embodiment, in addition to the topology information, includes a control purpose (also referred to as an objective index) included in the control plan calculated by the control plan calculation unit. ) Information (also referred to as control purpose information). For example, the control planning apparatus according to the present embodiment designs a production plan for each process and control of allocated resources for control purposes. Based on the idea of constraint theory in production management, the production efficiency is maximized in the state where the production volume of each process is equal for each manufacturing flow. Therefore, the control planning apparatus according to the present embodiment determines the second conversion method so that the same amount is produced in each process for each manufacturing flow. If the first conversion method and the second conversion method are calculated using the control purpose information, information conversion according to the control purpose can be performed, so that the optimization accuracy can be improved.
また、本実施形態の制御計画装置は、各プロセスの状態情報に基づいて、第1および第2の変換方式における変換行列を変更するように構成してもよい。例えば、複数の製造フローで共通のプロセスについては、単一の製造フローのみで用いられるプロセスから得られる状態情報(作業実績数)の割合に基づいて、各製造フローの割合を決定するようにしてもよい。そうすれば、各製造フローに対応するフロー情報をより正確に取得できるようになるため、最適化の精度を向上させることができる。
Further, the control planning apparatus of the present embodiment may be configured to change the conversion matrix in the first and second conversion methods based on the state information of each process. For example, for a process common to a plurality of manufacturing flows, the ratio of each manufacturing flow is determined based on the ratio of state information (number of work results) obtained from a process used only in a single manufacturing flow. Also good. Then, since the flow information corresponding to each manufacturing flow can be acquired more accurately, the optimization accuracy can be improved.
(第2の実施形態)
次に、本発明の第2の実施形態に係る制御計画装置について図面を参照しながら説明する。本実施形態の制御計画装置は、第1の実施形態の制御計画装置を上位概念化したものである。 (Second Embodiment)
Next, a control planning apparatus according to a second embodiment of the present invention will be described with reference to the drawings. The control planning apparatus of the present embodiment is a superordinate concept of the control planning apparatus of the first embodiment.
次に、本発明の第2の実施形態に係る制御計画装置について図面を参照しながら説明する。本実施形態の制御計画装置は、第1の実施形態の制御計画装置を上位概念化したものである。 (Second Embodiment)
Next, a control planning apparatus according to a second embodiment of the present invention will be described with reference to the drawings. The control planning apparatus of the present embodiment is a superordinate concept of the control planning apparatus of the first embodiment.
図11は、本実施形態の制御計画装置20の構成を示すブロック図である。図11のように、制御計画装置20は、変換方式算出部22、フロー情報算出部24、および制御計画算出部25を備える。
FIG. 11 is a block diagram showing the configuration of the control planning device 20 of the present embodiment. As shown in FIG. 11, the control planning apparatus 20 includes a conversion method calculation unit 22, a flow information calculation unit 24, and a control plan calculation unit 25.
変換方式算出部22は、システムを構成する複数のプロセスの連結に関わる情報であるトポロジ情報に基づいて、そのシステムに関する第1の変換方式を算出する。
The conversion method calculation unit 22 calculates a first conversion method related to the system based on topology information that is information related to connection of a plurality of processes constituting the system.
フロー情報算出部24は、変換方式算出部22によって算出された第1の変換方式に基づいて、複数のプロセスの状態を示すプロセス状態情報からフロー情報を算出する。
The flow information calculation unit 24 calculates flow information from process state information indicating the states of a plurality of processes based on the first conversion method calculated by the conversion method calculation unit 22.
制御計画算出部25は、フロー情報算出部24によって算出されたフロー情報に基づいて制御計画を導出する。
The control plan calculation unit 25 derives a control plan based on the flow information calculated by the flow information calculation unit 24.
以上のように、本実施形態の制御計画装置は、変換方式算出部、フロー情報算出部、および制御計画算出部を備える。変換方式算出部は、システムを構成する複数のプロセスの連結に関わるトポロジ情報に基づいて、プロセス状態情報をフロー情報に変換する第1の変換方式を算出する。なお、プロセス状態情報は、複数のプロセスの状態を示し、フロー情報は、システムを構成する少なくとも二つのプロセスを連結したフローの状態を示す。フロー情報算出部は、変換方式算出部によって算出された第1の変換方式に基づいて、プロセス状態情報からフロー情報を算出する。制御計画算出部は、フロー情報算出部によって算出されたフロー情報に基づいて、システムの制御計画を導出する。
As described above, the control planning apparatus of this embodiment includes a conversion method calculation unit, a flow information calculation unit, and a control plan calculation unit. The conversion method calculation unit calculates a first conversion method for converting process state information into flow information based on topology information related to the connection of a plurality of processes constituting the system. The process status information indicates the status of a plurality of processes, and the flow information indicates the status of a flow connecting at least two processes constituting the system. The flow information calculation unit calculates flow information from the process state information based on the first conversion method calculated by the conversion method calculation unit. The control plan calculation unit derives a system control plan based on the flow information calculated by the flow information calculation unit.
すなわち、本実施形態の制御計画装置は、複数のプロセスの連結状態をトポロジ情報として取得し、そのトポロジ情報に基づいて生成された変換方式を用いて、各プロセスから収集された状態情報をフロー情報に変換する。本実施形態の制御計画装置によれば、この一連の処理を通じて情報が適切に圧縮されるため、制御計画の導出時において取り扱うべき情報量を削減できるとともに、計算負荷を抑制できる。
That is, the control planning apparatus according to the present embodiment acquires the connection state of a plurality of processes as topology information, and uses the conversion method generated based on the topology information to display the state information collected from each process as flow information. Convert to According to the control planning apparatus of the present embodiment, information is appropriately compressed through this series of processes, so that it is possible to reduce the amount of information to be handled when deriving the control plan and to suppress the calculation load.
例えば、変換方式算出部は、複数のプロセスのそれぞれの作業実績を少なくとも二つのプロセスの組合せ(フロー)の作業実績に変換する第1の変換方式を算出する。フロー情報算出部は、第1の変換方式に基づいて、複数のプロセスのそれぞれの作業実績を少なくとも二つのプロセスの組合せ(フロー)の作業実績に変換してフロー情報を算出する。
For example, the conversion method calculation unit calculates a first conversion method for converting each work result of a plurality of processes into a work result of a combination (flow) of at least two processes. The flow information calculation unit calculates the flow information by converting the work results of each of the plurality of processes into the work results of a combination (flow) of at least two processes based on the first conversion method.
すなわち、本実施形態の制御計画装置によれば、システム導入時に収集可能な情報からスケーラブルな階層制御を行うことによって、大規模システムの最適化にかかる計算負荷を抑制しつつ、システムの導入および構成変更に対応できる。
That is, according to the control planning apparatus of the present embodiment, by performing scalable hierarchical control from information that can be collected at the time of system introduction, the introduction and configuration of the system while suppressing the calculation load for optimization of a large-scale system. Can respond to changes.
(ハードウェア)
ここで、各実施形態に係る制御計画装置を実現するハードウェア構成について、図12の情報処理装置90を一例として挙げて説明する。なお、図12の情報処理装置90は、各実施形態の制御計画装置の処理を実行するための構成例であって、本発明の範囲を限定するものではない。 (hardware)
Here, the hardware configuration for realizing the control planning apparatus according to each embodiment will be described by taking theinformation processing apparatus 90 of FIG. 12 as an example. Note that the information processing apparatus 90 of FIG. 12 is a configuration example for executing the processing of the control planning apparatus of each embodiment, and does not limit the scope of the present invention.
ここで、各実施形態に係る制御計画装置を実現するハードウェア構成について、図12の情報処理装置90を一例として挙げて説明する。なお、図12の情報処理装置90は、各実施形態の制御計画装置の処理を実行するための構成例であって、本発明の範囲を限定するものではない。 (hardware)
Here, the hardware configuration for realizing the control planning apparatus according to each embodiment will be described by taking the
図12のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95および通信インターフェース96を備える。図12においては、インターフェースをI/F(Interface)と略して表記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95および通信インターフェース96は、バス99を介して互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
As shown in FIG. 12, the information processing apparatus 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96. In FIG. 12, the interface is abbreviated as I / F (Interface). The processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via a bus 99 so that data communication is possible. The processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96.
プロセッサ91は、補助記憶装置93等に格納されたプログラムを主記憶装置92に展開し、展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御計画装置による処理を実行する。
The processor 91 expands the program stored in the auxiliary storage device 93 or the like in the main storage device 92, and executes the expanded program. In the present embodiment, a configuration using a software program installed in the information processing apparatus 90 may be adopted. The processor 91 executes processing by the control planning apparatus according to the present embodiment.
主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリとすればよい。また、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリを主記憶装置92として構成・追加してもよい。
The main storage device 92 has an area where the program is expanded. The main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a nonvolatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured and added as the main storage device 92.
補助記憶装置93は、種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって構成される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
The auxiliary storage device 93 stores various data. The auxiliary storage device 93 is configured by a local disk such as a hard disk or a flash memory. Note that various data may be stored in the main storage device 92, and the auxiliary storage device 93 may be omitted.
入出力インターフェース95は、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
The input / output interface 95 is an interface for connecting the information processing apparatus 90 and peripheral devices. The communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards or specifications. The input / output interface 95 and the communication interface 96 may be shared as an interface connected to an external device.
情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器を接続するように構成してもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成とすればよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
The information processing apparatus 90 may be configured to connect input devices such as a keyboard, a mouse, and a touch panel as necessary. These input devices are used for inputting information and settings. Note that when a touch panel is used as an input device, the display screen of the display device may be configured to also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
Further, the information processing apparatus 90 may be provided with a display device for displaying information. When the display device is provided, the information processing device 90 is preferably provided with a display control device (not shown) for controlling display of the display device. The display device may be connected to the information processing apparatus 90 via the input / output interface 95.
また、情報処理装置90には、必要に応じて、ディスクドライブを備え付けてもよい。ディスクドライブは、バス99に接続される。ディスクドライブは、プロセッサ91と図示しない記録媒体(プログラム記録媒体)との間で、記録媒体からのデータ・プログラムの読み出し、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。また、記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体や、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現してもよい。
Further, the information processing apparatus 90 may be provided with a disk drive as necessary. The disk drive is connected to the bus 99. The disk drive mediates reading of data programs from the recording medium, writing of processing results of the information processing apparatus 90 to the recording medium, and the like between the processor 91 and a recording medium (program recording medium) (not shown). The recording medium can be realized by an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). The recording medium may be realized by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card, a magnetic recording medium such as a flexible disk, or other recording media.
以上が、本発明の各実施形態に係る制御計画装置を可能とするためのハードウェア構成の一例である。なお、図12のハードウェア構成は、各実施形態に係る制御計画装置の演算処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御計画装置に関する処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。
The above is an example of a hardware configuration for enabling the control planning apparatus according to each embodiment of the present invention. The hardware configuration in FIG. 12 is an example of a hardware configuration for executing the arithmetic processing of the control planning apparatus according to each embodiment, and does not limit the scope of the present invention. A program that causes a computer to execute processing related to the control planning apparatus according to each embodiment is also included in the scope of the present invention. Furthermore, a program recording medium recording the program according to each embodiment is also included in the scope of the present invention.
各実施形態の制御計画装置の構成要素は、任意に組み合わせることができる。また、各実施形態の制御計画装置の構成要素は、ソフトウェアによって実現してもよいし、回路によって実現してもよい。
The components of the control planning device of each embodiment can be arbitrarily combined. In addition, the components of the control planning device of each embodiment may be realized by software or a circuit.
各実施形態の制御計画装置の全部又は一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録してもよい。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませて実行することによって、各実施形態に関する処理を行ってもよい。例えば、コンピュータシステムは、オペレーションシステムや周辺機器等のハードウェアを含む。例えば、コンピュータ読み取り可能な記録媒体は、光磁気ディスクやROM(Read Only Memory)、不揮発性半導体メモリ等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置を含む。例えば、コンピュータ読み取り可能な記録媒体は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するものを含む。例えば、コンピュータ読み取り可能な記録媒体は、サーバやクライアントとなるコンピュータシステムの内部の揮発性メモリのように、一定時間プログラムを保持するものを含む。また、上述のプログラムは、各実施形態の制御計画装置の機能の一部を実現するためのものであってもよく、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
A program for realizing all or part of the functions of the control planning apparatus of each embodiment may be recorded on a computer-readable recording medium. Processing related to each embodiment may be performed by causing a computer system to read and execute a program recorded on the recording medium. For example, the computer system includes hardware such as an operation system and peripheral devices. For example, the computer-readable recording medium includes a storage device such as a magneto-optical disk, a ROM (Read Only Memory), a portable medium such as a nonvolatile semiconductor memory, and a hard disk built in the computer system. For example, a computer-readable recording medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line Including. For example, computer-readable recording media include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or client. Further, the above-described program may be for realizing a part of the functions of the control planning device of each embodiment, and the above-described functions can be realized in combination with a program already recorded in the computer system. It may be a thing.
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
1 制御計画対象システム
10、20 制御計画装置
11 トポロジ情報取得部
12、22 変換方式算出部
13 プロセス状態情報取得部
14、24 フロー情報算出部
15、25 制御計画算出部
16 制御指示算出部 DESCRIPTION OFSYMBOLS 1 Control plan object system 10, 20 Control plan apparatus 11 Topology information acquisition part 12, 22 Conversion method calculation part 13 Process state information acquisition part 14, 24 Flow information calculation part 15, 25 Control plan calculation part 16 Control instruction calculation part
10、20 制御計画装置
11 トポロジ情報取得部
12、22 変換方式算出部
13 プロセス状態情報取得部
14、24 フロー情報算出部
15、25 制御計画算出部
16 制御指示算出部 DESCRIPTION OF
Claims (10)
- システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数の前記プロセスの状態を示すプロセス状態情報を、前記システムを構成する少なくとも二つの前記プロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出する変換方式算出手段と、
前記変換方式算出手段によって算出された前記第1の変換方式に基づいて、前記プロセス状態情報から前記フロー情報を算出するフロー情報算出手段と、
前記フロー情報算出手段によって算出された前記フロー情報に基づいて、前記システムの制御計画を導出する制御計画算出手段と、を備える制御計画装置。 Based on the topology information indicating the connection of a plurality of processes constituting the system, the process state information indicating the states of the plurality of processes, and the state of the flow configured by linking at least two processes constituting the system Conversion method calculating means for calculating a first conversion method for converting into flow information indicating:
Flow information calculating means for calculating the flow information from the process state information based on the first conversion method calculated by the conversion method calculating means;
A control plan apparatus comprising: control plan calculation means for deriving a control plan for the system based on the flow information calculated by the flow information calculation means. - 前記変換方式算出手段は、
前記トポロジ情報に加えて、前記制御計画算出手段が導出する前記制御計画に含まれる目的指標を用いて前記第1の変換方式を算出する請求項1に記載の制御計画装置。 The conversion method calculation means includes
The control planning apparatus according to claim 1, wherein the first conversion method is calculated using an objective index included in the control plan derived by the control plan calculation unit in addition to the topology information. - 前記変換方式算出手段は、
前記トポロジ情報に加えて、前記システムを構成する前記プロセスの前記プロセス状態情報を用いて前記第1の変換方式を算出する請求項1または2に記載の制御計画装置。 The conversion method calculation means includes
The control planning apparatus according to claim 1, wherein the first conversion method is calculated using the process state information of the processes constituting the system in addition to the topology information. - 前記フロー情報を前記システムへの制御指示に変換する第2の変換方式に基づいて、前記フロー情報から前記システムへの制御指示を算出する制御指示算出手段を備え、
前記変換方式算出手段は、
前記トポロジ情報を用いて前記第2の変換方式を算出する請求項1乃至3のいずれか一項に記載の制御計画装置。 Control instruction calculation means for calculating a control instruction to the system from the flow information based on a second conversion method for converting the flow information to a control instruction to the system,
The conversion method calculation means includes
The control planning device according to claim 1, wherein the second conversion method is calculated using the topology information. - 前記変換方式算出手段は、
前記トポロジ情報に加えて、前記制御計画算出手段が導出する前記制御計画の目的指標を用いて前記第2の変換方式を算出する請求項4に記載の制御計画装置。 The conversion method calculation means includes
The control plan apparatus according to claim 4, wherein the second conversion method is calculated using an objective index of the control plan derived by the control plan calculation unit in addition to the topology information. - 前記変換方式算出手段は、
前記トポロジ情報に加えて、前記システムを構成する前記プロセスの前記プロセス状態情報を用いて前記第2の変換方式を算出する請求項4または5に記載の制御計画装置。 The conversion method calculation means includes
The control plan apparatus according to claim 4 or 5, wherein the second conversion method is calculated using the process state information of the processes constituting the system in addition to the topology information. - 前記制御指示算出手段は、
前記システムを構成する前記プロセスの前記プロセス状態情報と、前記プロセス状態情報に対応する前記制御指示との比較に基づいた情報を前記制御指示に含めて算出する請求項4乃至6のいずれか一項に記載の制御計画装置。 The control instruction calculation means includes
The calculation based on a comparison between the process status information of the process constituting the system and the control instruction corresponding to the process status information is included in the control instruction. The control planning device described in 1. - 複数の前記プロセスのそれぞれから前記プロセス状態情報を取得し、取得した前記プロセス状態情報を前記変換方式算出手段に出力するプロセス状態情報取得手段を備え、
前記プロセス状態情報取得手段は、
複数の前記プロセスのそれぞれの作業実績を前記プロセス状態情報として取得し、
前記変換方式算出手段は、
複数の前記プロセスのそれぞれの作業実績を少なくとも二つの前記プロセスの組合せの作業実績に変換する前記第1の変換方式を算出し、
前記フロー情報算出手段は、
前記第1の変換方式に基づいて、複数の前記プロセスのそれぞれの作業実績を少なくとも二つの前記プロセスの組合せの作業実績に変換して前記フロー情報を算出する請求項1乃至7のいずれか一項に記載の制御計画装置。 The process status information acquisition means for acquiring the process status information from each of the plurality of processes, and outputting the acquired process status information to the conversion method calculation means,
The process state information acquisition means includes:
Acquire each work result of the plurality of processes as the process status information,
The conversion method calculation means includes
Calculating the first conversion method for converting the work performance of each of the plurality of processes into the work performance of a combination of at least two of the processes;
The flow information calculation means includes
8. The flow information is calculated by converting each work result of a plurality of the processes into a work result of a combination of at least two processes based on the first conversion method. The control planning device described in 1. - システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数の前記プロセスの状態を示すプロセス状態情報を、前記システムを構成する少なくとも二つの前記プロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出し、
前記第1の変換方式に基づいて、前記プロセス状態情報から前記フロー情報を算出し、
前記フロー情報に基づいて、前記システムの制御計画を導出する制御計画方法。 Based on the topology information indicating the connection of a plurality of processes constituting the system, the process state information indicating the states of the plurality of processes, and the state of the flow configured by linking at least two processes constituting the system Calculating a first conversion method for converting into flow information indicating
Based on the first conversion method, calculating the flow information from the process state information,
A control planning method for deriving a control plan for the system based on the flow information. - システムを構成する複数のプロセスの連結を示すトポロジ情報に基づいて、複数の前記プロセスの状態を示すプロセス状態情報を、前記システムを構成する少なくとも二つの前記プロセスを連結して構成されるフローの状態を示すフロー情報に変換する第1の変換方式を算出する処理と、
前記第1の変換方式に基づいて、前記プロセス状態情報から前記フロー情報を算出する処理と、
前記フロー情報に基づいて、前記システムの制御計画を導出する処理とをコンピュータに実行させるプログラムが記録されたプログラム記録媒体。 Based on the topology information indicating the connection of a plurality of processes constituting the system, the process state information indicating the states of the plurality of processes, and the state of the flow configured by linking at least two processes constituting the system A process of calculating a first conversion method for converting into flow information indicating
A process of calculating the flow information from the process state information based on the first conversion method;
A program recording medium recorded with a program for causing a computer to execute processing for deriving a control plan of the system based on the flow information.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/020568 WO2019229852A1 (en) | 2018-05-29 | 2018-05-29 | Control planning device, control planning method, and program recording medium |
JP2020522435A JP6969681B2 (en) | 2018-05-29 | 2018-05-29 | Control planning equipment, control planning methods, and programs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/020568 WO2019229852A1 (en) | 2018-05-29 | 2018-05-29 | Control planning device, control planning method, and program recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019229852A1 true WO2019229852A1 (en) | 2019-12-05 |
Family
ID=68697902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020568 WO2019229852A1 (en) | 2018-05-29 | 2018-05-29 | Control planning device, control planning method, and program recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6969681B2 (en) |
WO (1) | WO2019229852A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05192852A (en) * | 1992-01-17 | 1993-08-03 | Nippon Steel Corp | Production adjusting device |
JP2003162309A (en) * | 2001-11-22 | 2003-06-06 | Hitachi Ltd | Manufacturing method of worked products, manufacturing equipment and program for manufacture |
JP2005228128A (en) * | 2004-02-13 | 2005-08-25 | Jfe Steel Kk | Production scheduling method, device and computer program |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107122876A (en) * | 2012-07-05 | 2017-09-01 | 弗莱克斯电子有限责任公司 | Method and system for controlling supply chain |
-
2018
- 2018-05-29 JP JP2020522435A patent/JP6969681B2/en active Active
- 2018-05-29 WO PCT/JP2018/020568 patent/WO2019229852A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05192852A (en) * | 1992-01-17 | 1993-08-03 | Nippon Steel Corp | Production adjusting device |
JP2003162309A (en) * | 2001-11-22 | 2003-06-06 | Hitachi Ltd | Manufacturing method of worked products, manufacturing equipment and program for manufacture |
JP2005228128A (en) * | 2004-02-13 | 2005-08-25 | Jfe Steel Kk | Production scheduling method, device and computer program |
Also Published As
Publication number | Publication date |
---|---|
JP6969681B2 (en) | 2021-11-24 |
JPWO2019229852A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | The internet of things for smart manufacturing: A review | |
Bumblauskas et al. | Smart Maintenance Decision Support Systems (SMDSS) based on corporate big data analytics | |
Guo et al. | Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach | |
Egilmez et al. | Stochastic cellular manufacturing system design subject to maximum acceptable risk level | |
KR102042318B1 (en) | Smart Factory Layout Design Method and System | |
Onggo et al. | Combining symbiotic simulation systems with enterprise data storage systems for real-time decision-making | |
CN101990659A (en) | Systems and methods for correlating meta-data model representations and asset-logic model representations | |
Aktunc et al. | Inventory control through ABC/XYZ analysis | |
Schlüter et al. | Supply chain process oriented technology-framework for Industry 4.0 | |
Wang et al. | Supply chain monitoring using principal component analysis | |
Oliveira et al. | Industry focused in data collection: How industry 4.0 is handled by big data | |
Gallego-García et al. | Development of a maintenance and spare parts distribution model for increasing aircraft efficiency | |
Chan et al. | Generation of synthetic manufacturing datasets for machine learning using discrete-event simulation | |
Mudassar et al. | Digital twin-based smart manufacturing system for project-based organizations: A conceptual framework | |
JP6848979B2 (en) | Area reservation device, area reservation method, and area reservation program | |
Zuhr et al. | An approach for target-oriented process analysis for the implementation of Digital Process Optimization Twins in the field of intralogistics | |
Dolgui et al. | Expected trends in production networks for mass personalization in the cloud technology era | |
WO2019229852A1 (en) | Control planning device, control planning method, and program recording medium | |
Müller et al. | Consideration of redundancies in the configuration of automated flow lines | |
Lin | An integrated digital twin simulation and scheduling system under cyber-physical digital twin environment | |
Pekarčíková et al. | The Potential of Using the Internet of Things Instead of Manufacturing Intelligence Systems in Modern Production | |
Nishal et al. | Digital Supply Chain Paradigm | |
Vieira et al. | Are simulation tools ready for big data? Computational experiments with supply chain models developed in simio | |
Wu et al. | Establishing a Novel Algorithm for Highly Responsive Storage Space Allocation Based on NAR and Improved NSGA‐III | |
JPWO2017175302A1 (en) | Optimization system and optimization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18920838 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020522435 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18920838 Country of ref document: EP Kind code of ref document: A1 |