WO2019227592A1 - 太阳能系统控制方法及装置、中央控制器、太阳能系统 - Google Patents

太阳能系统控制方法及装置、中央控制器、太阳能系统 Download PDF

Info

Publication number
WO2019227592A1
WO2019227592A1 PCT/CN2018/094497 CN2018094497W WO2019227592A1 WO 2019227592 A1 WO2019227592 A1 WO 2019227592A1 CN 2018094497 W CN2018094497 W CN 2018094497W WO 2019227592 A1 WO2019227592 A1 WO 2019227592A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
junction box
solar
control information
command
Prior art date
Application number
PCT/CN2018/094497
Other languages
English (en)
French (fr)
Inventor
肖亚楠
潘维
李海峰
李洪杰
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Publication of WO2019227592A1 publication Critical patent/WO2019227592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • H02J3/383
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • H02J13/0017
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to, but is not limited to, the field of solar technology, and in particular, to a method and device for controlling a solar system, a central controller, and a solar system.
  • BIPV Building Integrated Photovoltaic
  • BIPV technology usually installs a solar power generation system on the outer surface of the building's envelope structure, and converts solar energy to provide electricity through the solar power generation system.
  • the solar power generation system includes solar modules and junction boxes. Several solar modules are connected in series and parallel. Finally, the junction boxes form a solar power generation system.
  • the present disclosure provides a solar system control method and device, a central controller, and a solar system.
  • the following is an overview of the topics detailed in this article. This summary is not intended to limit the scope of protection of the claims.
  • an embodiment of the present disclosure provides a method for controlling a solar system, the method includes:
  • a control operation corresponding to the component control information is performed on the solar module connected to the junction box.
  • performing a control operation corresponding to the component control information on the solar module connected to the junction box includes:
  • a control operation corresponding to the component control information is performed on the component to be controlled through a junction box associated with the component to be controlled.
  • the component control information includes a component shutdown command, a component closure command, a status query command, or an abnormality detection command for a solar module.
  • the component control information is a component shutdown command; correspondingly, according to the component control information, performing a control operation corresponding to the component control information on a solar module connected to a junction box includes: :
  • the component control information is a component closing command; accordingly, according to the component control information, performing a control operation corresponding to the component control information on the solar module connected to the junction box includes:
  • the component control information is a component shutdown command, and the component shutdown command includes a fire protection identification;
  • the external control system is a fire protection system; accordingly, according to the component control information,
  • the solar module connected to the junction box performs a control operation corresponding to the module control information, including:
  • the method further includes:
  • a shutdown command is sent to all the junction boxes, so that all junction boxes disconnect all solar modules connected to the junction boxes.
  • the component control information is a status query command.
  • performing a control operation corresponding to the component control information on the solar module connected to the junction box includes:
  • the method further includes:
  • the component state data is stored in a local database, and the component state data is uploaded to the external control system.
  • the component control information is an abnormality detection command.
  • performing a control operation corresponding to the component control information on the solar module connected to the junction box includes:
  • the method further includes:
  • the abnormal alarm information When abnormal alarm information is detected, the abnormal alarm information is stored in a local database, and the abnormal alarm information is uploaded to the external control system.
  • the external control system includes a remote control system
  • the method further includes:
  • the method before the receiving component control information sent by an external control system, the method further includes:
  • an embodiment of the present disclosure provides a solar system control device, where the device includes:
  • a receiving module for receiving component control information sent by an external control system
  • the execution control module is configured to perform a control operation corresponding to the component control information on the solar module connected to the junction box according to the component control information.
  • the component control information is a component shutdown command
  • the component shutdown command includes a fire protection identification
  • the external control system is a fire protection system
  • the execution control module includes:
  • a component determining unit configured to determine, according to the fire identification, that the components to be shut down corresponding to the component shut down command are all solar modules;
  • the fire-fighting shutdown unit is used to send a shutdown instruction to all junction boxes, so that all junction boxes disconnect all solar modules connected to each other.
  • an embodiment of the present disclosure provides a central controller including a processor and a memory.
  • the memory stores at least one executable instruction, and the executable instruction is loaded and executed by the processor to implement the foregoing. Operations performed by the solar system control method according to the first aspect or any implementation manner of the first aspect.
  • an embodiment of the present disclosure provides a solar system, including a plurality of solar modules and at least one junction box, each of the junction boxes being connected to at least one of the solar modules; Central controller
  • the central controller is connected to the at least one junction box;
  • the central controller is communicatively connected with an external control system.
  • FIG. 1 is a schematic structural diagram of a solar system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another solar system according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic block diagram of a central controller according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a solar system control method according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a shutdown control of a solar module by a fire protection system according to another embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a solar system control device according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another solar energy system control device according to another embodiment of the present disclosure.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical or communication connections, and the connections may be direct or indirect.
  • the solar power generation system outside the building in BIPV technology cannot realize automatic control of solar modules and junction boxes.
  • the system maintenance and overhaul are completely completed manually, the system maintenance is difficult, and the system safety and reliability are not high.
  • the present disclosure A method and device for controlling a solar energy system, a central controller, and a solar energy system are provided, which will be specifically described below with reference to the embodiments.
  • an embodiment of the present disclosure provides a solar energy system including a plurality of solar modules 10, at least one junction box 13, and a central controller 11; each junction box 13 is connected to at least one solar module 10; A central controller 11 is connected to each junction box 13; the central controller 11 is communicatively connected to an external control system.
  • the solar system shown in FIG. 1 is more suitable for application scenarios with relatively small solar modules, such as a scenario where the number of junction boxes 13 in the solar system is less than 100.
  • the number of junction boxes 13 is correspondingly large. If all junction boxes 13 are directly connected through the central controller 11, the amount of data that the central controller 11 needs to process will be very large, which seriously affects Communication efficiency of the entire system. Therefore, as shown in FIG. 2, in the scenario of a large number of solar modules, the embodiment of the present disclosure adds at least one local gateway 12 to the solar system, and each local gateway 12 is respectively connected to the central controller 11 and at least one junction box 13. .
  • the junction boxes 13 are grouped by the local gateway 12, and the central controller 11 only needs to communicate with a relatively small number of local gateways 12 to realize all junction boxes 13 and Control of all solar modules 10.
  • the embodiment of the present disclosure is mainly described based on the architecture of the solar system shown in FIG. 2, and it is explained that the central controller 11 controls the solar modules through the local gateway 12 and the junction box 13 associated with the solar modules in order.
  • the difference between the solar system shown in FIG. 1 and the solar system shown in FIG. 2 in the module control process lies in that the central controller 11 of the solar system shown in FIG. 1 directly sends a control instruction to the junction box 13, while FIG. 2 shows The central controller 11 of the solar energy system forwards control instructions to the junction box 13 through the local gateway 12.
  • External control systems include remote control systems and local control systems.
  • the remote control system is a system that needs to be connected through the Internet, such as a server cluster 30, a user terminal 40, and the like.
  • the local control system is a built-in system in the place where the solar system is installed, such as a fire protection system 20, a monitoring system, and the like.
  • the server cluster 30 may be composed of multiple physical servers connected by Ethernet, or may be implemented in the form of a cloud server.
  • the fire protection system 20 may be a circuit system in a building site where a solar system is installed to deal with fire problems.
  • the central controller 11 is based on TCP / IP (Transmission Control Protocol / Internet Protocol), MQTT (Message Queuing Telemetry Transport), COAP (Constrained Application Protocol), etc.
  • the protocol communicates with remote control systems such as the server cluster 30 and the user terminal 40, and realizes remote automatic control of the solar energy system through the communication connection between the central controller 11 and remote control systems such as the remote server or the user terminal 40.
  • the central controller 11 communicates with a local control system such as the fire protection system 20 or a monitoring system through an RS-485 bus or a LonWorks bus, and realizes data communication with the local control system such as the fire protection system 20 or a monitoring system.
  • a local control system such as the fire protection system 20 or a monitoring system
  • RS-485 bus or a LonWorks bus a local control system
  • LonWorks bus a local control system
  • all the solar modules 10 included in the solar system are turned off in time through the fire protection system 20 to avoid the high voltage generated by the solar modules 10 integrated into the power grid from causing electric shock to personnel.
  • the central controller 11 communicates with each local gateway 12 through an RS-485 bus or LoRa wireless data transmission technology, and forms a star network structure or a bus network structure with the local gateway 12. .
  • Each junction box 13 is communicatively connected to the local gateway 12, and the communication connection between the junction box 13 and the local gateway 12 can be connected by means such as Zigbee protocol or RS-485 bus.
  • three local gateways 12 are schematically illustrated, and the three local gateways 12 are communicatively connected to two, one, and three junction boxes 13, respectively.
  • the central controller 11 communicates with each junction box 13 through an RS-485 bus or LoRa wireless data transmission technology, and forms a star network structure or a bus network structure with the junction box 13. .
  • Six junction boxes 13 are schematically shown in FIG. 1, and one of the junction boxes 13 is connected to three solar modules 10 connected in series.
  • the central controller 11 is also communicatively connected with the inverter 14, which can implement remote automatic control of the inverter 14 by a remote server or user terminal.
  • the central controller 11 is designed based on embedded Linux, which is small in size, good in stability, and rich in network functions, making it easier to adapt to the on-site network environment and more flexible deployment.
  • junction boxes 13 used in the embodiments of the present disclosure are all intelligent junction boxes, which can receive control instructions issued by the local gateway 12 or the central controller 11 and execute control operations corresponding to the control instructions.
  • the junction box 13 receives a shutdown instruction issued by the local gateway 12 to cut off the electrical connection between the junction box 13 and the associated solar module 10.
  • the communication link between the central controller 11, the local gateway 12, and the junction box circuit 13 and the communication link between the central controller 11 and the inverter 14 are referred to as downlink communication. link.
  • the communication link between the central controller 11 and the junction box circuit 13 and the communication link between the central controller 11 and the inverter 14 are referred to as downlink communication links.
  • the communication link between the central controller 11 and the fire protection system 20, the server cluster 30, the Internet, or the user terminal 40 is referred to as an uplink communication link. Through the downlink communication link and the uplink communication link, a two-way communication connection between the solar system and an external control system is realized.
  • the central controller 11 includes an uplink communication module 111, a downlink communication module 112, a local control module 113, and a data access module 114.
  • the central controller 11 is correspondingly configured with a database
  • the data access module 114 is responsible for storing and acquiring all data in the database.
  • the database can store at least one of a system composition list, a central controller attribute table, a local gateway attribute table, a junction box circuit attribute table, an inverter attribute table, system configuration parameters, component status data, abnormal status information, and operation logs. Species.
  • the system composition list is used to record the equipment identification of the central controller, the local gateway, the junction box circuit, and the inverter, as well as the information about the relationship between these equipment.
  • the database of the central controller 11 does not store the local gateway attribute table, and the device identification of the local gateway and the relationship information between the local gateway and other devices are not recorded in the system composition list.
  • the uplink communication module 111 is mainly responsible for interacting with external control systems such as the fire protection system 20, the server cluster 30, and the user terminal 40, and can interact with other modules inside the central controller 11.
  • the uplink communication module 111 includes an Ethernet communication interface, an RS-485 communication interface adapted to the fire protection system 20, and a communication interface between internal modules, so that any one of the interactions described above can be implemented by means of point-to-point communication.
  • the downlink communication module 112 is mainly responsible for interacting with the local gateway 12, or interacting with the local gateway 12 and the inverter 14, or interacting with the inverter 14, and with the central The other modules inside the controller 11 interact.
  • the downlink communication module 112 includes an RS-485 communication interface, a LoRa communication interface adapted to the local gateway 12, and a communication interface between internal modules, and can implement point-to-point communication and point-to-multipoint communication, such as unicast polling and Repeat broadcast.
  • the downlink communication module 112 is mainly responsible for interacting with the junction box 13 (and / or the inverter 14) and interacting with other modules inside the central controller 11.
  • the downlink communication module 112 includes an RS-485 communication interface, a LoRa communication interface, and a communication interface between internal modules adapted to the junction box 13, and can implement point-to-point communication and point-to-multipoint communication.
  • the local control module 113 is mainly responsible for processing operation instructions from user input devices directly connected to the central controller 11.
  • the user input devices may be buttons, touch screens, keyboards, etc., so that users can manually operate the central controller 11 directly through these user input devices. In order to achieve the required application functions.
  • the solar system shown in FIG. 2 is used as an example for description.
  • the network configuration information is sent to the central controller 11 through an external control system such as a server cluster 30 or a user terminal 40.
  • the network configuration information includes central control configuration information corresponding to the central controller 11.
  • the central control configuration information includes first address information, first network parameter information, and second network parameter information.
  • the first address information includes the number of gateways, the number of junction boxes, the gateway address of each local gateway 12, the junction box address of each junction box 13, and the subordinate relationship information between the local gateway 12 and the junction box 13.
  • the first network parameter information is a network parameter required for networking between the central controller 11 and the local gateway 12, and the second network parameter information is a network parameter required for networking between the local gateway 12 and the junction box 13.
  • the central controller 11 After receiving the above network configuration information, the central controller 11 first completes its initialization process according to the central control configuration information included in the network configuration information.
  • the initialization process of the central controller 11 includes: the central controller 11 parses the above-mentioned first address information into a fixed format and permanently saves it in a local database of the central controller 11; the central controller 11 completes the above-mentioned first network parameter in itself The first network parameter and the second network parameter are parsed into a fixed format, and are permanently maintained in a local database of the central controller 11.
  • the central controller 11 establishes a communication connection with each local gateway 12 after the configuration of the first network parameter is completed. For each local gateway 12, the central controller 11 sends the gateway configuration information corresponding to the local gateway 12 and the terminal box configuration information corresponding to all the junction boxes 13 connected to the local gateway 12 to the local gateway 12.
  • the above-mentioned gateway configuration information includes second address information, third network parameters required for networking between the local gateway 12 and the central controller 11, and groups between all the junction boxes 13 belonging to the local gateway 12 and the local gateway 12.
  • the second address information includes the number of junction boxes subordinate to the local gateway 12 and the junction box address of each junction box subordinate.
  • the local gateway 12 After receiving the gateway configuration information, the local gateway 12 stores the second address information, completes the configuration process of the local gateway 12 according to the third network parameter and the fourth network parameter, and corresponds to each of the subordinate junction boxes 13 The fourth network parameter is sent to the corresponding junction box 13 so that each of the slave junction boxes 13 completes its own configuration process.
  • each local gateway 12 included in the solar energy system For each local gateway 12 included in the solar energy system, the automatic configuration of each local gateway 12 and the automatic configuration of each junction box 13 subordinate to the local gateway 12 are respectively completed in the above manner. After the central controller 11, each local gateway 12, and each junction box 13 have been initialized and configured, the entire solar energy system is automatically networked at the communication level.
  • the specific synchronization process is to send synchronization information to the central controller 11 through an external control system such as the server cluster 30 or the user terminal 40, and the synchronization information includes the system time of the external control system.
  • the central controller 11 After receiving the synchronization information, the central controller 11 adjusts its current system time to the system time included in the synchronization information, and at the same time, the central controller 11 sends the synchronization information to each local gateway 12.
  • the local gateway 12 After receiving the synchronization information, the local gateway 12 sets the local current system time to the system time included in the synchronization information, and at the same time, the local gateway 12 sends the synchronization information to each junction box 13 subordinate to the local gateway 12. After receiving the synchronization information, the junction box 13 sets the local current system time to the system time included in the synchronization information.
  • the above networking configuration process is different in that the network configuration information includes central control configuration information corresponding to the central controller 11 and terminal box configuration information corresponding to each junction box 13, and central control configuration information It includes network parameters required for networking between the central controller 11 and the junction box 13.
  • the central controller 11 completes its own initialization process according to the central control configuration information, and directly sends the terminal box configuration information corresponding to each terminal box 13 to each terminal box 13 so that each terminal box 13 completes its own configuration process.
  • the central controller 11 sends synchronization information to each junction box 13.
  • the junction box 13 sets the local current system time to the system time included in the synchronization information.
  • the solar system can be automatically controlled by an external control system.
  • the external control system sends component control information to the central controller 11.
  • the central controller 11 receives the component control information, it performs corresponding control operations on the solar module 10, the junction box 13, and other equipment included in the solar system according to the component control information.
  • the above component control information includes a component shutdown command, a component closure command, a status query command, or an abnormality detection command.
  • the component control information is the component shutdown command
  • the solar system provided by the embodiments of the present disclosure can be applied to BIPV buildings. If the solar system still maintains power supply in the event of an earthquake or a building fire, the risk of electric shock is likely to occur. In order to avoid this danger, the fire protection system 20 sends a component shutdown command to the central controller 11 when detecting a dangerous situation such as an earthquake or a fire.
  • the component shutdown command includes a fire prevention logo, which may be a preset predetermined character. Or equipment identification for fire control equipment in fire protection systems. After the central controller 11 receives the module shutdown command and recognizes the fire-fighting identification included in the module shutdown command, it determines that the modules to be shut down corresponding to the module shutdown command are all solar modules 10.
  • the central controller 11 sends a shutdown instruction to each local gateway 12.
  • Each local gateway 12 forwards the shutdown instruction to all the junction boxes 13 connected to it, and all the junction boxes 13 receiving the shutdown instruction disconnect all the solar modules 10 to which it is connected.
  • the central controller 11 sends a shutdown command to each junction box 13, and all the junction boxes 13 receiving the shutdown instruction disconnect all the solar modules 10 connected to it.
  • the embodiment of the present disclosure can also set the execution priority of the component shutdown command from the fire protection system 20 to the highest, so as to immediately disconnect all solar modules 10 when receiving the component shutdown command from the fire protection system 20, effectively avoiding an earthquake or Dangerous situations such as electricity leakage or electric shock of the solar system occur in fires and other situations.
  • the user may send a component shutdown command to the central controller 11 through a remote device such as a server or the user terminal 40.
  • the component shutdown command includes the component address of the component to be turned off, and the component to be turned off is the solar module 10 to be turned off.
  • the solar system includes the local gateway 12
  • the component address includes the interface address of the solar module 10 connected to the junction box to which the solar module 10 belongs, the address of the junction box to which it belongs, and the gateway address of the local gateway to which the junction box is connected.
  • the central controller 11 After the central controller 11 receives the component shutdown command, it determines, according to the component address contained in the component shutdown command, the component to be shut down corresponding to the component shutdown command, the junction box 13 connected to the component to be shut down, and Determine the local gateway 12 to which the junction box 13 is connected.
  • the central controller 11 sends a shutdown instruction to the determined local gateway 12, and the shutdown instruction carries the interface address of the component to be shut down and the determined junction box 13.
  • the local gateway 12 forwards the shutdown instruction to the junction box 13 connected to the component to be shut down.
  • the junction box 13 disconnects the electrical connection between the junction box 13 and the component to be shut down according to the interface address carried by the shutdown instruction.
  • the above component address includes the interface address of the solar module 10 connected to the junction box to which the solar module 10 belongs and the address of the junction box to which it belongs.
  • the central controller 11 sends a shutdown instruction to the junction box 13 to which the to-be-closed component belongs according to the address of the junction box to which the to-be-closed component belongs.
  • all or a part of the solar modules 10 included in the solar system can be remotely turned off through a remote device such as a server or a user terminal 40.
  • a remote device such as a server or a user terminal 40.
  • the scale of the solar module 10 to be turned off can be controlled according to demand.
  • the solar module 10 is switched off and controlled by a local switch-off button set locally on the central controller 11.
  • the central controller 11 is locally provided with a local shutdown button. In an emergency disaster situation such as a fire or an earthquake, the user can also press the local shutdown button to control the shutdown of the solar module 10.
  • the central controller 11 monitors the local shutdown button in real time. When a component shutdown event triggered by the local shutdown button is detected, it is determined that the components to be shut down corresponding to the component shutdown event are all solar modules 10. Similar to the shutdown of the control components of the fire protection system 20, when the solar system includes local gateways 12, the central controller 11 sends a shutdown command to each of the junction boxes 13 connected to each local gateway 12 through each local gateway 12, so that All the junction boxes 13 disconnect all the solar modules 10 to which they are connected. When the solar system does not include the local gateway 12, the central controller 11 sends a shutdown command to each junction box 13, and all the junction boxes 13 receiving the shutdown instruction disconnect all the solar modules 10 connected to it.
  • the response priority of the component shutdown event triggered by the local shutdown button is also set to the highest, so that when the component shutdown event triggered by the local shutdown button is detected, all solar modules 10 are immediately disconnected, effectively avoiding earthquakes or Dangerous situations such as electricity leakage or electric shock of the solar system occur in fires and other situations.
  • Component control information is the component closing command
  • the central controller 11 Each time the shutdown control is performed, the central controller 11 records the module address of the shutdown solar module 10 and uploads the module address of the shutdown solar module 10 to an external control system such as a server or a user terminal 40.
  • the solar module 10 needs to be turned off after an earthquake, fire, or maintenance, the user can send a component closing command to the central controller 11 through an external control system such as a server or user terminal 40.
  • the component closing command includes the components to be closed.
  • Module address the connected solar module 10 needs to be restored when the module is to be closed.
  • the solar system includes the local gateway 12, the component address includes the interface address of the solar module 10 connected to the junction box to which the solar module 10 belongs, the address of the junction box to which it belongs, and the gateway address of the local gateway to which the junction box is connected.
  • the central controller 11 After the central controller 11 receives the component closing command, it determines, according to the component address contained in the component closing command, the component to be closed corresponding to the component closing command, the junction box 13 to which the component to be closed belongs, and the connection to the determined junction box 13 Of the local gateway 12.
  • the central controller 11 sends a closing instruction to the determined local gateway 12, and the closing instruction carries the interface address of the component to be closed and the determined junction box 13.
  • the local gateway 12 forwards the closing instruction to the junction box 13 to which the component to be closed belongs.
  • the junction box 13 After receiving the closing instruction, the junction box 13 connects the electrical connection between the junction box 13 and the component to be closed according to the interface address carried by the closing instruction to restore the normal operation of the solar system and reduce the loss of power generation.
  • the above component address includes the interface address of the solar module 10 connected to the junction box to which the solar module 10 belongs and the address of the junction box to which it belongs.
  • the central controller 11 sends a closing instruction to the junction box 13 to which the to-be-closed component belongs according to the address of the junction box to which the to-be-closed component belongs, and the junction box 13 connects to the solar module 10 to be-closed.
  • all solar modules 10, some solar modules 10, or a single solar module 10 included in the solar system can be remotely closed through an external control system such as a server or a user terminal 40.
  • an external control system such as a server or a user terminal 40.
  • the scale of the closed solar module 10 can be controlled according to demand.
  • the component status data includes at least one of a component voltage, a component current, a junction box board temperature, and a component open / closed state.
  • the junction box 13 can obtain the module status data corresponding to the solar module 10 connected to the junction box 13 and send the acquired module status data to the local gateway 12 or the central controller 11 connected to the junction box 13 After receiving the component status data, the component status data is stored.
  • the user may send a status query command to the central controller 11 through an external control system such as a server or a user terminal 40.
  • the status query command includes the component address of the component to be queried, and the component to be queried is the solar module 10 whose component status data is required.
  • the solar system includes the local gateway 12, after receiving the status query command, the central controller 11 determines the component to be queried corresponding to the status query command, the junction box 13 to which the component to be queried, and the component address included in the status query command, and
  • the local gateway 12 connected to the determined junction box 13 sends a query instruction to the junction box 13 to which the component to be queried via the determined local gateway 12, and the query instruction carries the interface address of the component to be queried and the determined junction box 13.
  • the junction box 13 After receiving the query instruction, the junction box 13 obtains the component status data of the component to be queried according to the interface address contained in the query instruction, and sends the component status data to the local gateway 12 described above.
  • the local gateway 12 stores the component status data and uploads the component status data to the central controller 11.
  • the central controller 11 determines, according to the component address included in the status query command, the component to be queried corresponding to the status query command and the junction box 13 to which the component to be queried belongs. , Sending a query instruction to the junction box 13 to which the component to be queried belongs, and the query instruction carries the interface address of the component to be queried and the determined junction box 13.
  • the junction box 13 After receiving the query instruction, the junction box 13 obtains the component status data of the component to be queried according to the interface address contained in the query instruction, and sends the component status data to the central controller 11. After receiving the component status data, the central controller 11 sends the component status data to an external control system.
  • the component state data of any solar module 10 in the solar system can be remotely queried through an external control system such as the server cluster 30 or the user terminal 40.
  • the central controller 11 may also periodically from each local gateway
  • the module status data of the solar module 10 belonging to each local gateway 12 is acquired at 12 locations, the acquired module status data is stored in a local database, and the module status data is uploaded to an external control system.
  • the central controller 11 may also periodically obtain the component state data of the solar modules 10 from each junction box 13, and store and upload the module status data to an external control system.
  • the central controller 11 may acquire data from each local gateway 12 or each junction box 13 in a polling manner, and the data acquisition cycle may be flexibly configured according to requirements.
  • the central controller 11 reacquires the data of the local gateway 12 or the junction box 13 and generates an exception report, and uploads the exception report to the outside Control System.
  • the central controller 11 may also periodically query the backlog of historical data at each local gateway 12, and upload the queryed historical data to an external control system. For example, query once a day or once a week.
  • the automatic acquisition of module status data is achieved, which facilitates the maintenance of the solar system, without the need for personnel to test the status data of the solar module 10 on site, which improves maintenance efficiency and reduces maintenance costs.
  • Component control information is anomaly detection command
  • the central controller 11 is communicatively connected to an external control system such as the server cluster 30 or the user terminal 40, the user can remotely detect the solar module 10 included in the solar system through the external control system such as the server or the user terminal 40.
  • the user sends an abnormality detection command to the central controller 11 through an external control system such as a server or a user terminal 40.
  • the abnormality detection command includes the component address of the component to be detected, and the component to be detected is the solar module 10 that needs to perform abnormality detection.
  • the central controller 11 determines the component to be detected corresponding to the abnormality detection command and the junction box 13 to which the component to be detected belongs according to the component address contained in the abnormality detection command.
  • a local gateway 12 connected to the associated junction box 13.
  • the determined local gateway 12 sends a detection instruction to the terminal box 13 to which the component to be detected belongs, and the detection instruction carries the interface address of the component to be detected and the terminal box 13 to which it belongs.
  • the junction box 13 After receiving the detection instruction, the junction box 13 performs abnormal detection on the component to be detected, including but not limited to detecting the voltage, current, and open / closed state of the component to be detected.
  • the junction box 13 sends the obtained abnormality detection result to the local gateway 12 described above.
  • the local gateway 12 uploads the abnormality detection result to the central controller 11.
  • the central controller 11 determines the component to be detected corresponding to the abnormality detection command and the junction box 13 to which the component to be detected belongs according to the component address contained in the abnormality detection command. .
  • a detection instruction is sent to the junction box 13 to which the component to be detected belongs, and the detection instruction carries the interface address of the component to be detected and the junction box 13 to which it belongs.
  • the junction box 13 After receiving the detection instruction, the junction box 13 performs abnormality detection on the component to be detected, and sends the obtained abnormality detection result to the central controller 11.
  • the central controller 11 After receiving the abnormality detection result, the central controller 11 sends the abnormality detection result to the
  • an abnormality detection can be performed on any solar module 10 in the solar energy system through an external control system such as a server or a user terminal 40.
  • the central controller 11 may also periodically perform a solar module 10 associated with each local gateway 12. Perform abnormal detection; when abnormal alarm information is detected, store the abnormal alarm information in a local database and upload the abnormal alarm information to an external control system.
  • the central controller 11 also performs periodic abnormality detection on the local gateway 12, the junction box 13, and the solar module 10, and performs an abnormal self-test on the central controller 11 itself, and reports the detected abnormal alarm information to external control.
  • abnormal alarm information can include error information, prompt information, illegal operation information, etc.
  • the central controller 11 may also periodically perform an abnormality detection on each junction box 13 and the solar module 10 connected to each junction box 13, and periodically perform an abnormal self-inspection. The detected abnormal alarm information is reported to the external control system.
  • the server may push the abnormal alarm information to the user terminal 40, so that maintenance personnel can obtain the abnormal alarm information in time.
  • the central controller 11 can also be provided with an alarm device such as an alarm bell or an indicator light, so that when the central controller 11 detects an abnormal alarm message, a local audible alarm or an indicator light is turned on, and the abnormality can also be displayed through the local display device. Alarm information, so that local maintenance personnel can learn the abnormal alarm information.
  • Component control information is equipment maintenance command
  • remote maintenance control can be performed through an external control system.
  • the newly replaced local gateways 12 or junction boxes 13 can be automatically configured through an external control system.
  • the device maintenance command is sent to the central controller 11 through an external control system such as the user terminal 40 or the server.
  • the device maintenance command includes the gateway address and gateway configuration of the newly replaced local gateway 12. information.
  • the central controller 11 sends the gateway configuration information to the newly replaced local gateway 12 according to the gateway address included in the device maintenance command.
  • the newly replaced local gateway 12 completes the automatic configuration according to the gateway configuration information.
  • the equipment maintenance command is sent to the central controller 11 through an external control system such as the user terminal 40 or the server.
  • the equipment maintenance command includes the junction box address and wiring of the newly replaced junction box 13. Box configuration information.
  • the central controller 11 determines the local gateway 12 to which the junction box 13 belongs according to the junction box address included in the equipment maintenance command, and sends the junction box configuration information to the determined local gateway 12.
  • the local gateway 12 sends the terminal box configuration information to the newly replaced terminal box 13.
  • the newly replaced junction box 13 completes automatic configuration according to the junction box configuration information.
  • the central controller 11 Since the central controller 11 is connected to a remote control system such as the user terminal 40 or the server cluster 30 through the Internet, the solar system also has network risks such as being hacked or attacked by a network virus. In order to deal with these network risks, a network switch button is set locally on the central controller 11. When a network risk occurs, the user can press the network switch button to cut off the communication connection between the solar system and the remote control system to prevent the solar system from being exposed to the network. The purpose of risk attack. The central controller 11 monitors the network switching button in real time; when the remote cut-off event triggered by the network switching button is detected, the communication connection with the remote control system is disconnected. When the network risk is eliminated, the user can press the network switch button again to restore the communication connection between the solar system and the remote control system.
  • the central controller 11 detects the remote enable event triggered by the network switching button, the communication connection with the remote control system is restored.
  • Local / remote control switching function is set by setting the network switching button, avoiding network risks to invade the solar system through the remote control system, and improving the security and stability of the solar system.
  • the central controller 11 communicates with the server cluster 30 through the Internet, and can automatically complete identity authentication on the server to ensure normal communication with the server.
  • the data may be encrypted before data transmission.
  • the external control system may also send the encrypted data to the central controller 11, and the central controller 11 performs the decryption operation after receiving the encrypted data. This can improve the security of data during data transmission, further prevent network risks from invading the solar system through external control systems, and improve the security and stability of the solar system.
  • the central controller 11 is further provided with a display device locally for displaying system status information, alarm information, log information, version information, and the like.
  • the system status information includes statistical information such as the number of gateways, the number of junction boxes, the online / offline status of the gateway / junction box, and the off / closed state of the components.
  • the central controller 11 has a separate design of the display module, which can be selected according to requirements. Whether to load or not, and the central controller 1 is provided with a status display lamp for displaying the operating status of the central controller 11.
  • the local database set in the central controller 11 is used to store component status data, abnormal alarm information, log information, system parameter information, etc.
  • the design of the database can save the limited storage resources of the central controller 11 based on the embedded design.
  • the addition of the field index can improve the database query speed and make the user query experience better.
  • the solar system is connected to an external control system through the central controller 11, and remote configuration, synchronization, networking, and maintenance of each component device included in the solar system is implemented through an external control system such as a user terminal 40 or a server.
  • an external control system such as a user terminal 40 or a server.
  • the central controller 11 and the fire protection system 20 are communicatively connected. When an accident such as a fire or an earthquake occurs, the fire protection system 20 is used to control and shut down the solar modules 10 included in the solar system, so as to prevent high voltage of the solar system from causing electric shock to personnel and improving solar products Safety performance.
  • FIG. 1 or 2 Another embodiment of the present disclosure provides a method for controlling a solar system.
  • the solar system on which the control method is based is shown in FIG. 1 or 2, and the execution body of the method is the central controller 11 included in the solar system provided in the first embodiment.
  • the method specifically includes the following steps:
  • Step 101 The central controller 11 receives component control information sent by an external control system.
  • the external control system includes a remote control system and a local control system.
  • the remote control system is a system that needs to be connected through the Internet, such as a server cluster 30, a user terminal 40, and the like.
  • the local control system is a built-in system in the place where the solar system is installed, such as a fire protection system 20, a monitoring system, and the like.
  • the server cluster 30 may be composed of multiple physical servers connected by Ethernet, or may be implemented in the form of a cloud server.
  • the component control information may be a component shutdown command, a component closure command, a status query command, an abnormality detection command, and the like.
  • Step 102 The central controller 11 performs a control operation corresponding to the component control information on the solar module 10 connected to the junction box 13 according to the component control information.
  • This step can specifically perform the control operation through the following two sub-steps A1 and A2, including:
  • A1 The central controller 11 analyzes the component control information to determine the component to be controlled corresponding to the component control information.
  • the above component control information includes the component address of the component to be controlled.
  • the above component address includes the interface address of the solar module 10 connected to the junction box to which it belongs, the address of the junction box to which it belongs, and the junction box connection.
  • the gateway address of your local gateway When the solar system does not include the local gateway 12, and when the component control information comes from the fire protection system 20, the component control information also includes a fire protection logo, which may be a preset predetermined character or the fire control equipment in the fire protection system. Equipment Identity.
  • the central controller 11 After receiving the component control information, the central controller 11 analyzes the component control information. If the component control information is parsed to include the fire protection identification, it determines that the component to be controlled is all the solar modules 10. If it is determined that the component control information does not include the fire protection identification, the component to be controlled corresponding to the component control information and the junction box 13 connected to the component to be controlled are determined according to the component address included in the component control information. If the solar system includes a local gateway 12, the local gateway 12 connected to the junction box 13 determined above is also determined according to the component address.
  • A2 The central controller 11 performs a control operation corresponding to the component control information of the component to be controlled through the junction box 13 connected to the component to be controlled.
  • the central controller 11 sends a control instruction to the determined local gateway 12, and the control instruction carries the interface address of the component to be controlled and the determined junction box 13.
  • the local gateway 12 forwards the control instruction to the junction box 13 to which the component to be controlled belongs. After receiving the control instruction, the junction box 13 performs a corresponding control operation on the control component according to the interface address carried by the control instruction.
  • the central controller 11 sends a control instruction to the above-mentioned determined junction box 13, and the control instruction carries the interface address of the component to be controlled and the determined junction box 13. After receiving the control instruction, the junction box 13 performs a corresponding control operation on the control component according to the interface address carried by the control instruction.
  • the component control information is a component shutdown command, a component closure command, a status query command, an abnormality detection command, and the like.
  • the central controller 11 determines the module to be shut down corresponding to the module shutdown command according to the module shut down command.
  • the solar system includes the local gateway 12, the local gateway 12 is associated with the module to be shut down.
  • a shutdown command is sent to the junction box 13 connected to the component to be shut down, so that the junction box 13 is disconnected from the component to be shut down.
  • the solar system does not include the local gateway 12, it directly sends a shutdown command to the junction box 13 connected to the component to be shut down, so that the junction box 13 disconnects the connection to the component to be shut down.
  • the component shutdown command may come from the fire protection system 20, the user terminal 40, or the server cluster 30, etc.
  • the scenario where the component shutdown command comes from the fire protection system 20 is described in detail below:
  • the fire protection system 20 usually sends a component shutdown command to the central controller 11 when a disaster such as a fire or an earthquake occurs, the high voltage of the solar system in a disaster such as a fire or an earthquake can easily cause an electric shock or aggravate the disaster.
  • the execution priority of the component shutdown command issued is set to the highest priority, and the components to be shut down corresponding to the component shutdown command issued by the fire protection system 20 are all solar modules 10 included in the solar system.
  • the shutdown control of the solar module 10 by the fire protection system 20 is implemented through the following steps 201-203, which specifically include:
  • Step 201 The central controller 11 receives a component shutdown command from the fire protection system 20.
  • Step 202 The central controller 11 determines that the to-be-turned-off components corresponding to the module shutdown command are all solar modules 10 according to the fire protection identification included in the module shutdown command.
  • Step 203 The central controller 11 sends a shutdown command to all the junction boxes 13, so that all the junction boxes 13 disconnect all the solar modules 10 connected to them.
  • the central controller 11 sends a shutdown instruction to all the junction boxes 13 connected to each local gateway 12 through each local gateway, so that all the junction boxes 13 disconnect all connected ones.
  • Solar module 10 When the solar system does not include the local gateway 12, the central controller 11 directly sends a shutdown command to all the junction boxes 13, so that all the junction boxes 13 disconnect all the solar modules 10 connected to them.
  • the above-mentioned shutdown control of the fire protection system 20 can effectively avoid dangerous situations such as electricity leakage or electric shock of the solar system in the event of an earthquake or fire.
  • the source of the component shutdown command is a remote control system such as the user terminal 40, the server cluster 30, and when the component control information is the component closure command, status query command, abnormality detection command, networking configuration, synchronization command, equipment maintenance command, etc.
  • the control method of the solar module 10 by the central controller 11 is the same as the control method described in the first embodiment, and details are not described herein again.
  • the solar system is connected to an external control system through the central controller 11, and remote configuration systems such as the user terminal 40 or the server cluster 30 are used to remotely configure, synchronize, network, and maintain the components and devices included in the solar system.
  • remote configuration systems such as the user terminal 40 or the server cluster 30 are used to remotely configure, synchronize, network, and maintain the components and devices included in the solar system.
  • Etc. to achieve remote control and remote monitoring of solar systems in BIPV buildings, and enhance the safety, stability and reliability of solar systems. Automatically obtain component status data and remotely perform abnormality detection, reducing on-site maintenance inspections of personnel, and avoiding safety risks such as personnel falling from heights or getting an electric shock.
  • the central controller 11 and the fire protection system 20 are communicatively connected. When an accident such as a fire or an earthquake occurs, the fire protection system 20 is used to control and shut down the solar modules 10 included in the solar system, so as to prevent high voltage of the solar system from causing electric shock to personnel and improving solar products. Safety performance.
  • an embodiment of the present disclosure provides a solar system control apparatus, which is configured to execute the control method provided by the second embodiment.
  • the device specifically includes:
  • a receiving module 30, configured to receive component control information sent by an external control system
  • the execution control module 31 is configured to perform a control operation corresponding to the component control information on the solar module 10 connected to the junction box 13 according to the component control information.
  • the execution control module 31 is configured to analyze component control information to determine a component to be controlled corresponding to the component control information; and perform a control operation corresponding to the component control information by the component to be controlled through the junction box 13 associated with the component to be controlled.
  • the component control information includes a component shutdown command, a component closure command, a status query command, or an abnormality detection command for the solar module.
  • the execution control module 31 is configured to determine the component to be shut down corresponding to the component shutdown command according to the component shutdown command; send a shutdown instruction to the junction box connected to the component to be shut down 13 to disconnect the junction box 13 from the component to be shut down.
  • the execution control module 31 includes:
  • a component determining unit 311, configured to determine, according to the fire protection identification, that the components to be turned off corresponding to the component shutdown command are all solar modules 10;
  • the fire-fighting shutdown unit 312 is configured to send a shutdown instruction to all the junction boxes 13 so that all the junction boxes 13 disconnect all the solar modules 10 connected to each of them.
  • the device further includes a key-off module for real-time monitoring of the local-off key; when a component-off event triggered by the local-off key is detected, a shutdown command is sent to all wiring Box 13 so that all the junction boxes 13 disconnect all the solar modules 10 to which they are connected.
  • the execution control module 31 is configured to determine the component to be closed corresponding to the component closing command according to the component closing command; and send the closing instruction to the junction box 13 to which the component to be closed belongs, so that the junction box 13 Switch on the connection to the component to be closed.
  • the execution control module 31 is used to determine the component to be queried corresponding to the status query command according to the status query command; to obtain the component status corresponding to the component to be queried from the junction box 13 associated with the component to be queried. Data; sends component status data to external control systems.
  • the device further includes a data acquisition module for periodically acquiring component status data from each junction box 13; storing the component status data in a local database, and uploading the component status data to an external control system.
  • the execution control module 31 is configured to determine the component to be detected corresponding to the abnormality detection command according to the abnormality detection command; and send a detection instruction to the junction box 13 connected to the component to be detected so that the wiring
  • the box 13 performs abnormality detection on the component to be detected; obtains the abnormality detection result from the junction box 13 connected to the component to be detected, and sends the abnormality detection result to an external control system.
  • the device also includes an abnormality inspection module for periodically detecting abnormality of the solar module 10 connected to each junction box 13; when abnormality alarm information is detected, the abnormality alarm information is stored in a local database, and The abnormal alarm information is uploaded to the external control system.
  • the external control system includes a remote control system
  • the device further includes a network switching module for real-time monitoring of the network switching key; when a remote cut-off event triggered by the network switching key is detected, disconnecting from the remote The communication connection between the control systems; when the remote enable event triggered by the network switch button is detected, the communication connection with the remote control system is restored.
  • the device further includes: a configuration synchronization module, configured to receive network configuration information and synchronization information sent by an external control system; perform network configuration according to the network configuration information; and synchronize with the external control system according to the synchronization information.
  • a configuration synchronization module configured to receive network configuration information and synchronization information sent by an external control system; perform network configuration according to the network configuration information; and synchronize with the external control system according to the synchronization information.
  • the central controller 11 when the solar system includes the local gateway 12, the central controller 11 sends control commands to the junction box 13 through the local gateway 12. When the solar system does not include the local gateway 12, the central controller 11 directly sends a control command to the junction box 13.
  • the above-mentioned network configuration module is configured to establish a communication connection with the local gateway 12 according to the network configuration information; the gateway configuration information corresponding to the local gateway 12 and the local gateway are parsed from the network configuration information. 12 The junction box configuration information corresponding to the junction box 13 connected to the 12; sends the gateway configuration information and the junction box configuration information to the local gateway 12.
  • the solar energy system control device may have a corresponding specific structure and work flow as described in the solar energy system control method in the first embodiment, and specific details are not described herein again.
  • the solar energy system is connected to an external control system through the control device, and the remote control systems such as the user terminal 40 or the server cluster 30 are used to remotely configure, synchronize, network, and maintain each component device included in the solar energy system.
  • the remote control systems such as the user terminal 40 or the server cluster 30 are used to remotely configure, synchronize, network, and maintain each component device included in the solar energy system.
  • Etc. to achieve remote control and remote monitoring of solar systems in BIPV buildings, and enhance the safety, stability and reliability of solar systems. Automatically obtain component status data and remotely perform abnormality detection, reducing on-site maintenance inspections of personnel, and avoiding safety risks such as personnel falling from heights or getting an electric shock.
  • control device is communicatively connected to the fire protection system 20, and when the fire or an earthquake occurs, the fire protection system 20 is used to control and shut down the solar modules 10 included in the solar system, so as to avoid high voltage of the solar system causing electric shock to personnel and improve the solar product Safety performance.
  • the memory stores at least one executable instruction, and the executable instruction is loaded and executed by the processor to implement the first embodiment.
  • the operations performed by the control method of the solar system are implemented through a central controller to remotely configure, synchronize, network, and maintain the various components and equipment included in the solar system, to achieve remote control and remote monitoring of solar systems in BIPV buildings, and enhance solar energy.
  • System security, stability and reliability Automatically obtain component status data and remotely perform abnormality detection, reducing on-site maintenance inspections of personnel, and avoiding safety risks such as personnel falling from heights or getting an electric shock.
  • the central controller is communicatively connected to the fire protection system 20, and when the fire or an earthquake occurs, the fire control system 20 is used to control and shut down the solar modules 10 included in the solar system, so as to avoid the high voltage of the solar system from causing electric shock to personnel and improving solar products Safety performance.
  • the processor may include a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processing device (DSPD), and a programmable A logic device (PLD), a field programmable gate array (FPGA), a controller, a microcontroller, or multiple integrated circuits for controlling program execution.
  • CPU general-purpose central processing unit
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable A logic device
  • FPGA field programmable gate array
  • controller a microcontroller, or multiple integrated circuits for controlling program execution.
  • Memory may include read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random, Access Memory, RAM) or other types of information that can store information and instructions
  • Dynamic storage devices can also include electrically erasable and programmable read-only memory (Electrically Programmable Read-Only Memory (EEPROM)), compact discs (Compact Disc Read-Only Memory (CD-ROM)) or other optical disc storage, optical disc storage ( (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other media, but not limited to this.
  • the memory can be set independently or integrated with the processor.
  • Another embodiment of the present disclosure provides a computer storage medium for storing computer software instructions for the solar system control method provided by the first embodiment, which includes a program designed to execute the control method embodiment described above. .
  • the control method provided in the first embodiment can be implemented, remote configuration, synchronization, networking, and maintenance of the solar system can be realized, and the safety, stability, and reliability of the solar system can be enhanced. Automatically obtain component status data and remotely perform abnormality detection, reducing on-site maintenance inspections of personnel, and avoiding safety risks such as personnel falling from heights or getting an electric shock.
  • the central controller is communicatively connected to the fire protection system 20, and when the fire or an earthquake occurs, the fire control system 20 is used to control and shut down the solar modules 10 included in the solar system, so as to avoid the high voltage of the solar system from causing electric shock to personnel and improving solar products. Safety performance.

Abstract

本公开提供一种太阳能系统控制方法及装置、中央控制器、太阳能系统。所述方法包括:中央控制器接收外部控制系统发送的组件控制信息;根据组件控制信息,对接线盒所连接的太阳能组件执行组件控制信息对应的控制操作。

Description

太阳能系统控制方法及装置、中央控制器、太阳能系统 技术领域
本公开涉及但不限于太阳能技术领域,尤其是一种太阳能系统控制方法及装置、中央控制器、太阳能系统。
背景技术
BIPV(Building Integrated Photovoltaic,光伏建筑一体化)是一种将太阳能发电产品集成到建筑上的技术,利用太阳能组件在建筑上集成太阳能幕墙、采光屋顶等。
当前,BIPV技术通常是在建筑的围护结构外表面安装太阳能发电系统,通过太阳能发电系统转换太阳能来提供电力。其中,太阳能发电系统包括太阳能组件及接线盒,若干太阳能组件通过串并联连接,最终通过接线盒汇聚形成太阳能发电系统。
但上述太阳能发电系统维护及检修完全依靠人工完成,系统维护困难,且系统安全性及可靠性不高。
发明内容
本公开提供一种太阳能系统控制方法及装置、中央控制器、太阳能系统。以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开实施例提供了一种太阳能系统控制方法,所述方法包括:
接收外部控制系统发送的组件控制信息;
根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作。
在一种可能的实现方式中,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
解析所述组件控制信息,确定所述组件控制信息对应的待控制组件;
通过与所述待控制组件关联的接线盒对所述待控制组件执行所述组件控制信息对应的控制操作。
在一种可能的实现方式中,所述组件控制信息包括:对太阳能组件的组件关断命令、组件闭合命令、状态查询命令或异常检测命令。
在一种可能的实现方式中,所述组件控制信息为组件关断命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
根据所述组件关断命令,确定所述组件关断命令对应的待关断组件;
发送关断指令给与所述待关断组件连接的接线盒,以使该接线盒断开与所述待关断组件之间的连接;
或者,所述组件控制信息为组件闭合命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
根据所述组件闭合命令,确定所述组件闭合命令对应的待闭合组件;
发送闭合指令给所述待闭合组件所属的接线盒,以使该接线盒接通与所述待闭合组件之间的连接。
在一种可能的实现方式中,所述组件控制信息为组件关断命令,所述组件关断命令包含消防标识;所述外部控制系统为消防系统;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
根据所述消防标识,确定所述组件关断命令对应的待关断组件为全部太阳能组件;
发送关断指令给所有接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
在一种可能的实现方式中,所述方法还包括:
对本地关断按键进行实时监测;
当监测到所述本地关断按键触发的组件关断事件时,发送关断指令给所有 接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
在一种可能的实现方式中,所述组件控制信息为状态查询命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
根据所述状态查询命令,确定所述状态查询命令对应的待查询组件;
从与所述待查询组件关联的接线盒获取所述待查询组件对应的组件状态数据;
发送所述组件状态数据给所述外部控制系统。
在一种可能的实现方式中,所述方法还包括:
周期性地从每个接线盒处获取组件状态数据;
将所述组件状态数据存储在本地数据库,并将所述组件状态数据上传给所述外部控制系统。
在一种可能的实现方式中,所述组件控制信息为异常检测命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
根据所述异常检测命令,确定所述异常检测命令对应的待检测组件;
发送检测指令给与所述待检测组件连接的接线盒,以使该接线盒对所述待检测组件进行异常检测;
从所述待检测组件连接的所述接线盒获取异常检测结果,并将所述异常检测结果发送给所述外部控制系统。
在一种可能的实现方式中,所述方法还包括:
周期性地对与每个接线盒连接的太阳能组件进行异常检测;
当检测到异常报警信息时,将所述异常报警信息存储在本地数据库中,并将所述异常报警信息上传给所述外部控制系统。
在一种可能的实现方式中,所述外部控制系统包括远程控制系统,所述方法还包括:
对网络切换按键进行实时监测;
当监测到所述网络切换按键触发的远程切断事件时,断开与所述远程控制系统之间的通信连接;
当监测到所述网络切换按键触发的远程启用事件时,恢复与所述远程控制系统之间的通信连接。
在一种可能的实现方式中,所述接收外部控制系统发送的组件控制信息之前,还包括:
接收所述外部控制系统发送的网络配置信息和同步信息;
根据所述网络配置信息进行组网配置;
根据所述同步信息与所述外部控制系统进行同步。
第二方面,本公开实施例提供了一种太阳能系统控制装置,所述装置包括:
接收模块,用于接收外部控制系统发送的组件控制信息;
执行控制模块,用于根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作。
在一种可能的实现方式中,所述组件控制信息为组件关断命令,所述组件关断命令包含消防标识;所述外部控制系统为消防系统;相应地,所述执行控制模块包括:
组件确定单元,用于根据所述消防标识,确定所述组件关断命令对应的待关断组件为全部太阳能组件;
消防关断单元,用于发送关断指令给所有接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
第三方面,本公开实施例提供了一种中央控制器,包括处理器和存储器,所述存储器中存储有至少一条可执行指令,所述可执行指令由所述处理器加载并执行以实现上述第一方面或第一方面的任意一种实现方式所述的太阳能系统控制方法所执行的操作。
第四方面,本公开实施例提供了一种太阳能系统,包括多个太阳能组件和至少一个接线盒,每个所述接线盒与至少一个所述太阳能组件连接;还包括上述第三方面所述的中央控制器;
所述中央控制器与所述至少一个接线盒连接;
所述中央控制器与外部控制系统通信连接。
在阅读上述概述并理解了附图和详细描述后,可以明白本公开保护范围涵盖的其他方面。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,这些附图的合理变型也都涵盖在本公开的保护范围中。
图1是本公开一实施例所提供的一种太阳能系统的结构示意图;
图2是本公开一实施例所提供的另一种太阳能系统的结构示意图;
图3是本公开一实施例所提供的一种中央控制器的模块示意图;
图4是本公开另一实施例所提供的一种太阳能系统控制方法的流程示意图;
图5是本公开另一实施例所提供的消防系统对太阳能组件进行关断控制的流程示意图;
图6是本公开再一实施例所提供的一种太阳能系统控制装置的结构示意图;
图7是本公开再一实施例所提供的另一种太阳能系统控制装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。 “连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性连接或通讯连接,且该连接可以是直接的或间接的。
当前,BIPV技术中建筑外围的太阳能发电系统无法实现对太阳能组件及接线盒的自动控制,系统维护及检修完全依靠人工完成,系统维护困难,系统安全性及可靠性不高,基于此,本公开提供一种太阳能系统控制方法及装置、中央控制器、太阳能系统,下面结合实施例进行具体说明。
参见图1,本公开一实施例提供了一种太阳能系统,该太阳能系统包括多个太阳能组件10、至少一个接线盒13和中央控制器11;每个接线盒13与至少一个太阳能组件10连接;中央控制器11与每个接线盒13连接;中央控制器11与外部控制系统通信连接。
相对于太阳能组件数量庞大的应用场景,图1所示的太阳能系统更适用于太阳能组件规模相对较小的应用场景,比如太阳能系统中接线盒13的数量小于100的场景。在太阳能组件数量庞大的场景下,接线盒13的数量相应也很大,若通过中央控制器11直接连接所有接线盒13的话,中央控制器11所需处理的数据量会非常大,从而严重影响整个系统的通信效率。因此如图2所示,在太阳能组件数量庞大的场景下,本公开实施例在太阳能系统中增设了至少一个本地网关12,每个本地网关12分别与中央控制器11及至少一个接线盒13连接。在太阳能系统中接线盒13的数量很大时,通过本地网关12对接线盒13进行分组,中央控制器11只需与数量相对较少的本地网关12进行通信即可实现对所有接线盒13及所有太阳能组件10的控制。
本公开实施例中主要以图2所示的太阳能系统的架构为基础进行阐述,说明中央控制器11依次通过与太阳能组件关联的本地网关12及接线盒13实现对太阳能组件的控制。图1所示的太阳能系统与图2所示的太阳能系统在组件控制过程上的区别在于,图1所示的太阳能系统中央控制器11直接将控制指令发送给接线盒13,而图2所示的太阳能系统中央控制器11通过本地网关12将控制指令转发给接线盒13。
外部控制系统包括远程控制系统和本地控制系统。其中,远程控制系统为需要通过互联网连接的系统,如服务器集群30、用户终端40等。本地控制系统为安装该太阳能系统的场所内自带的系统,如消防系统20、监控系统等。服务器集群30可以是由以太网连接的多个物理服务器组成,也可以是以云端服务 器的形式来实现。消防系统20可以是安装太阳能系统的建筑场所内用来处理火灾问题的电路系统。
其中,中央控制器11通过互联网,基于TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/因特网互联协议)、MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)、COAP(Constrained Application Protocol)等协议与服务器集群30及用户终端40等远程控制系统通信连接,通过中央控制器11与远程服务器或用户终端40等远程控制系统之间的通信连接,实现对太阳能系统的远程自动控制。
中央控制器11通过RS-485总线或者Lon Works总线与消防系统20或监控系统等本地控制系统通信连接,实现与消防系统20或监控系统等本地控制系统之间的数据通信,从而在发生火灾或地震灾害等情况时通过消防系统20及时关断太阳能系统包括的所有太阳能组件10,避免并入电网的太阳能组件10产生的高电压造成人员触电。
在图2所示的太阳能系统中,中央控制器11通过RS-485总线或者LoRa无线数据传输技术与每个本地网关12通信连接,与本地网关12之间形成星型网络结构或者总线型网络结构。每个接线盒13均与本地网关12通信连接,接线盒13与本地网关12之间的通信连接可以采用基于Zigbee协议或RS-485总线等方式连接。图2中示意性地画出了三个本地网关12,这三个本地网关12分别与两个、一个和三个接线盒13通信连接。
在图1所示的太阳能系统中,中央控制器11通过RS-485总线或者LoRa无线数据传输技术与每个接线盒13通信连接,与接线盒13之间形成星型网络结构或者总线型网络结构。图1中示意性地画出了六个接线盒13,以及其中一个接线盒13与三个串联的太阳能组件10连接。
另外,如图1和2中所示中央控制器11还与逆变器14通信连接,能够实现远程服务器或用户终端对逆变器14进行远程自动控制。中央控制器11是基于嵌入式Linux设计的,体积小,稳定性好,具备丰富的网络功能,更容易适应现场网络环境,部署更加灵活。
本公开实施例采用的接线盒13均为智能接线盒,能够接收本地网关12或中央控制器11下发的控制指令,并执行控制指令对应的控制操作。例如,接线盒13接收本地网关12下发的关断指令,切断该接线盒13与相关联的太阳能组件10之间的电连接。
在图2所示的太阳能系统中,将中央控制器11、本地网关12、接线盒电路13之间的通信链路以及中央控制器11与逆变器14之间的通信链路称为下行通信链路。在图1所示的太阳能系统中,将中央控制器11、接线盒电路13之间的通信链路以及中央控制器11与逆变器14之间的通信链路称为下行通信链路。图1和图2所示的太阳能系统中均将中央控制器11与消防系统20、服务器集群30、互联网或者用户终端40之间的通信链路称为上行通信链路。通过下行通信链路及上行通信链路,实现了太阳能系统与外部控制系统的双向通信连接。
如图3所示的中央控制器11的结构框图,该中央控制器11包括上行链路通信模块111、下行链路通信模块112、本地控制模块113和数据存取模块114。
在一个示例中,中央控制器11对应配置有数据库,上述数据存取模块114负责该数据库内所有数据的存储和获取。该数据库内可以存储系统组成列表、中央控制器属性表、本地网关属性表、接线盒电路属性表、逆变器属性表、系统配置参数、组件状态数据、异常状态信息、操作日志中的至少一种。其中,系统组成列表用于记录中央控制器、本地网关、接线盒电路和逆变器等设备的设备标识,以及记录这些设备之间的关系的信息。当太阳能系统中不包含本地网关12时中央控制器11的数据库中不存储本地网关属性表,且系统组成列表中不记录本地网关的设备标识及本地网关与其他设备之间的关系信息。
上行链路通信模块111主要负责与消防系统20、服务器集群30和用户终端40等外部控制系统进行交互,并能够与中央控制器11内部的其他模块进行交互。上行链路通信模块111包括以太网通信接口、适配于消防系统20的RS-485通信接口以及内部模块间的通信接口,从而可以利用点对点通信的方式实现上述任意一种交互。
在图2所示的太阳能系统中,下行链路通信模块112主要负责与本地网关12进行交互,或者与本地网关12及逆变器14进行交互,或者与逆变器14进行交互,并与中央控制器11内部的其他模块进行交互。在下行链路通信模块112包括适配于本地网关12的RS-485通信接口、LoRa通信接口以及内部模块间的通信接口,并可以实现点对点通信和点对多点通信,例如单播轮询和重复广播。在图1所示的太阳能系统中,下行链路通信模块112主要负责与接线盒13(和/或逆变器14)进行交互,并与中央控制器11内部的其他模块进行交互。且下行链路通信模块112包括适配于接线盒13的RS-485通信接口、LoRa通信接口以及内部模块间的通信接口,并可以实现点对点通信和点对多点通信。
本地控制模块113主要负责处理来自与中央控制器11直接相连的用户输入设备的操作指令,用户输入设备可以是按钮、触摸屏、键盘等,使得用户可以直接通过这些用户输入设备手动操作中央控制器11以实现所需要的应用功能。
太阳能系统在BIPV建筑上安装完成后,需要对太阳能系统进行参数设置及网络设置等初始化配置。以图2所示的太阳能系统为例进行说明,通过服务器集群30或用户终端40等外部控制系统发送网络配置信息给中央控制器11,该网络配置信息包括中央控制器11对应的中控配置信息、各个本地网关12对应的网关配置信息以及各个接线盒13对应的接线盒配置信息。其中,中控配置信息包括第一地址信息、第一网络参数信息及第二网络参数信息。第一地址信息包括太阳能系统包含的网关数量、接线盒数量、每个本地网关12的网关地址、每个接线盒13的接线盒地址以及本地网关12与接线盒13之间的从属关系信息。上述第一网络参数信息为中央控制器11与本地网关12之间组网所需的网络参数,第二网络参数信息为本地网关12与接线盒13之间组网所需的网络参数。
中央控制器11接收到上述网络配置信息后,首先根据网络配置信息包括的中控配置信息完成自身的初始化过程。中央控制器11的初始化过程包括:中央控制器11将上述第一地址信息解析为固定格式,并永久保存于中央控制器11的本地数据库中;中央控制器11在其自身完成上述第一网络参数的配置,然后将第一网络参数及第二网络参数解析为固定格式,并永久保持于中央控制器11的本地数据库中。
中央控制器11完成上述第一网络参数的配置后建立起与每个本地网关12之间的通信连接。对于每个本地网关12,中央控制器11将本地网关12对应的网关配置信息及与该本地网关12连接的所有接线盒13对应的接线盒配置信息发送给该本地网关12。上述网关配置信息包括第二地址信息、该本地网关12与中央控制器11之间组网所需的第三网络参数、从属于该本地网关12的所有接线盒13与该本地网关12之间组网所需的第四网络参数。其中,第二地址信息包括从属于该本地网关12的接线盒数量以及从属的每个接线盒的接线盒地址。该本地网关12接收到上述网关配置信息后存储上述第二地址信息,根据上述第三网络参数及第四网络参数完成该本地网关12自身的配置过程,并将从属的每个接线盒13对应的第四网络参数发送给对应的接线盒13,以使从属的每个接线盒13完成自身的配置过程。
对于太阳能系统包括的每个本地网关12,都通过上述方式分别完成每个本地网关12的自动配置及从属于本地网关12的每个接线盒13的自动配置。当中央控制器11、每个本地网关12及每个接线盒13均完成初始化配置后,整个太阳能系统在通信层面上实现了自动组网。
在太阳能系统的初始化过程中还需要对接线盒13、本地网关12、中央控制器11与外部控制系统进行时间同步。具体同步过程为,通过服务器集群30或用户终端40等外部控制系统发送同步信息给中央控制器11,该同步信息包括外部控制系统的系统时间。中央控制器11接收到该同步信息后将自身的当前系统时间调节为该同步信息包含的系统时间,同时中央控制器11将该同步信息下发给每个本地网关12。本地网关12接收到该同步信息后将本地当前系统时间设置为该同步信息包含的系统时间,同时本地网关12将该同步信息发送给从属于该本地网关12的每个接线盒13。接线盒13接收到该同步信息后将本地当前系统时间设置为该同步信息包含的系统时间。通过上述同步过程实现了所有接线盒13、所有本地网关12、中央控制器11及外部控制系统之间的时间同步。
通过上述太阳能系统的初始化配置过程实现太阳能系统的自动配置、自动组网及自动同步,使本地网关12、接线盒13进行组网进入工作状态,避免人工现场参数配置及网络设置,实现了远程参数的初始化配置,解决大规模部署太阳能组件10的问题,提高了太阳能系统的装配自动化及装配效率。
对于图1所示的太阳能系统,上述组网配置过程的不同之处在于网络配置信息中包括中央控制器11对应的中控配置信息以及各个接线盒13对应的接线盒配置信息,中控配置信息中包括中央控制器11与接线盒13之间组网所需的网络参数。中央控制器11根据中控配置信息完成自身的初始化过程,并直接将各个接线盒13对应的接线盒配置信息分别发送给各个接线盒13,以使各个接线盒13完成自身的配置过程。对于同步过程,中央控制器11完成自身系统时间同步的同时,中央控制器11将同步信息下发给每个接线盒13。接线盒13接收到该同步信息后将本地当前系统时间设置为该同步信息包含的系统时间。通过上述同步过程实现了所有接线盒13及中央控制器11与外部控制系统之间的时间同步。
完成太阳能系统的初始化之后就可以通过外部控制系统对太阳能系统进行自动控制。外部控制系统发送组件控制信息给中央控制器11,中央控制器11接收到该组件控制信息后,根据该组件控制信息对太阳能系统包括的太阳能组 件10、接线盒13等设备进行相应的控制操作。上述组件控制信息包括组件关断命令、组件闭合命令、状态查询命令或异常检测命令等。下面以组件控制信息分别为不同控制命令的情况为例进行具体说明,包括:
1、组件控制信息为组件关断命令
(1)外部控制系统为消防系统20时对太阳能组件10的关断控制。
本公开实施例提供的太阳能系统可应用于BIPV建筑上,当发生地震或建筑发生火灾等情况时若太阳能系统仍保持供电,则容易发生人员触电危险。为了避免这种危险发生,消防系统20在检测到地震或火灾等险情时发送组件关断命令给中央控制器11,该组件关断命令包含消防标识,该消防标识可以为预先约定的预设字符或消防系统中消防控制设备的设备标识。中央控制器11接收到该组件关断命令,并识别出该组件关断命令包含的消防标识后,确定该组件关断命令对应的待关断组件为全部太阳能组件10。当太阳能系统包含本地网关12时,中央控制器11向每个本地网关12发送关断指令。每个本地网关12均将该关断指令转发给自身所连接的所有接线盒13,所有接收到该关断指令的接线盒13均断开其所连接的所有太阳能组件10。当太阳能系统不包含本地网关12时,中央控制器11向每个接线盒13发送关断指令,所有接收到该关断指令的接线盒13均断开其所连接的所有太阳能组件10。
本公开实施例还可以将来自消防系统20的组件关断命令的执行优先级设置为最高,以便在接收到来自消防系统20的组件关断命令时立即断开所有太阳能组件10,有效避免地震或火灾等情况下太阳能系统发生漏电或人员触电等危险情况。
(2)外部控制系统为服务器或用户终端40等远程设备时对太阳能组件10的关断控制。
在太阳能系统维护或建筑表面施工等场景下,存在需要关断全部或部分太阳能组件10的情况。在这些场景下用户可以通过服务器或用户终端40等远程设备发送组件关断命令给中央控制器11。该组件关断命令中包含待关断组件的组件地址,待关断组件即为需关断的太阳能组件10。当太阳能系统包括本地网关12时,组件地址包含太阳能组件10与其所属的接线盒连接的接口地址、其所属的接线盒地址及该接线盒连接的本地网关的网关地址。中央控制器11接收到该组件关断命令后,根据该组件关断命令包含的组件地址,确定出该组件关断命令对应的待关断组件、与待关断组件连接的接线盒13以及与确定的接线盒 13连接的本地网关12。中央控制器11向确定的本地网关12发送关断指令,在该关断指令中携带待关断组件与确定的接线盒13连接的接口地址。该本地网关12将该关断指令转发给与待关断组件连接的接线盒13。该接线盒13接收到该关断指令后,根据该关断指令携带的接口地址断开其与待关断组件之间的电连接。当太阳能系统不包含本地网关12时,上述组件地址包含太阳能组件10与其所属的接线盒连接的接口地址及其所属的接线盒地址。中央控制器11根据待关断组件所属的接线盒地址向待关断组件所属的接线盒13发送关断指令,该接线盒13断开与该待关断的太阳能组件10之间的连接。
按照上述控制方式,通过服务器或用户终端40等远程设备可以远程关断太阳能系统包括的全部太阳能组件10或部分太阳能组件10。实际应用中可根据需求来控制关断的太阳能组件10的规模。
(3)通过中央控制器11本地设置的本地关断按键对太阳能组件10进行关断控制。
中央控制器11本地设置有本地关断按键,在发生火灾或地震等紧急灾害场景下,也可以由用户按下本地关断按键来控制太阳能组件10的关断。中央控制器11对本地关断按键进行实时监测,当监测到本地关断按键触发的组件关断事件时,确定该组件关断事件对应的待关断组件为全部太阳能组件10。与消防系统20控制组件关断相似,当太阳能系统包含本地网关12时,中央控制器11分别通过每个本地网关12发送关断指令给与每个本地网关12连接的所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。当太阳能系统不包含本地网关12时,中央控制器11向每个接线盒13发送关断指令,所有接收到该关断指令的接线盒13均断开其所连接的所有太阳能组件10。
同样地,也将本地关断按键触发的组件关断事件的响应优先级设置为最高,以便在监测到本地关断按键触发的组件关断事件时立即断开所有太阳能组件10,有效避免地震或火灾等情况下太阳能系统发生漏电或人员触电等危险情况。
2、组件控制信息为组件闭合命令
每次进行上述关断控制时中央控制器11都记录关断的太阳能组件10的组件地址,并将关断的太阳能组件10的组件地址上传给服务器或用户终端40等外部控制系统。当地震、火灾或维护检修等需关断太阳能组件10的情况结束后,用户可通过服务器或用户终端40等外部控制系统发送组件闭合命令给中央控制器11,该组件闭合命令包括待闭合组件的组件地址,待闭合组件即需恢复连 接的太阳能组件10。当太阳能系统包含本地网关12时,组件地址包含太阳能组件10与其所属的接线盒连接的接口地址、其所属的接线盒地址及该接线盒连接的本地网关的网关地址。中央控制器11接收到该组件闭合命令后,根据该组件闭合命令包含的组件地址,确定出该组件闭合命令对应的待闭合组件、待闭合组件所属的接线盒13以及与确定的接线盒13连接的本地网关12。中央控制器11向确定的本地网关12发送闭合指令,在该闭合指令中携带待闭合组件与确定的接线盒13连接的接口地址。该本地网关12将该闭合指令转发给待闭合组件所属的接线盒13。该接线盒13接收到该闭合指令后,根据该闭合指令携带的接口地址接通其与待闭合组件之间的电连接,以恢复太阳能系统的正常工作,减少发电量的损失。当太阳能系统不包含本地网关12时,上述组件地址包含太阳能组件10与其所属的接线盒连接的接口地址及其所属的接线盒地址。中央控制器11根据待闭合组件所属的接线盒地址向待闭合组件所属的接线盒13发送闭合指令,该接线盒13接通与该待闭合的太阳能组件10之间的连接。
按照上述控制方式,通过服务器或用户终端40等外部控制系统可以远程闭合太阳能系统包括的全部太阳能组件10、部分太阳能组件10或单个太阳能组件10。实际应用中可根据需求来控制闭合的太阳能组件10的规模。
3、组件状态数据的查询控制
组件状态数据包括组件电压、组件电流、接线盒板卡温度、组件断开/闭合状态中的至少一种。接线盒13可以获取与其连接的太阳能组件10对应的组件状态数据,并将获取的组件状态数据发送给与该接线盒13连接的本地网关12或中央控制器11,本地网关12或中央控制器11接收到组件状态数据后存储该组件状态数据。
用户可以通过服务器或用户终端40等外部控制系统发送状态查询命令给中央控制器11,该状态查询命令包括待查询组件的组件地址,待查询组件即为需查询组件状态数据的太阳能组件10。当太阳能系统包括本地网关12时,中央控制器11接收到该状态查询命令后,根据该状态查询命令包括的组件地址,确定状态查询命令对应的待查询组件、待查询组件所属的接线盒13以及与确定的接线盒13连接的本地网关12,通过确定的本地网关12发送查询指令给待查询组件所属的接线盒13,该查询指令携带待查询组件与确定的接线盒13连接的接口地址。接线盒13接收到该查询指令后,根据该查询指令包含的接口地址获取待查询组件的组件状态数据,将该组件状态数据发送给上述本地网关12。 本地网关12存储该组件状态数据,并将该组件状态数据上传给中央控制器11。当太阳能系统不包括本地网关12时,中央控制器11接收到该状态查询命令后,根据该状态查询命令包括的组件地址,确定状态查询命令对应的待查询组件、待查询组件所属的接线盒13,发送查询指令给待查询组件所属的接线盒13,该查询指令携带待查询组件与确定的接线盒13连接的接口地址。接线盒13接收到该查询指令后,根据该查询指令包含的接口地址获取待查询组件的组件状态数据,将该组件状态数据发送给中央控制器11。中央控制器11接收到组件状态数据后发送该组件状态数据给外部控制系统。
按照上述查询控制方式,通过服务器集群30或用户终端40等外部控制系统可以远程查询太阳能系统中任意太阳能组件10的组件状态数据。
除通过外部控制系统向中央控制器11下发状态查询命令来获取太阳能组件10的组件状态数据外,在图2所示的太阳能系统中,中央控制器11还可以周期性地从每个本地网关12处获取从属于各个本地网关12的太阳能组件10的组件状态数据,将获取的组件状态数据存储在本地数据库,并将组件状态数据上传给外部控制系统。在图1所示的太阳能系统中,中央控制器11还可以周期性地从各个接线盒13处获取太阳能组件10的组件状态数据,并进行存储以及上传给外部控制系统。在本公开实施例中,中央控制器11可采用轮询的方式从每个本地网关12或每个接线盒13处获取数据,数据获取周期可根据需求灵活配置。若轮询过程中某本地网关12或某接线盒13的数据获取失败,则中央控制器11重新获取该本地网关12或该接线盒13的数据,并生成异常报告,将该异常报告上传给外部控制系统。另外,在图2所示的太阳能系统中,中央控制器11还可以周期性地查询各个本地网关12处积压的历史数据,将查询到的历史数据上传给外部控制系统。例如,每天查询一次或每周查询一次等。通过外部控制系统与中央控制器11的通信连接,实现组件状态数据的自动获取,便于太阳能系统的维护,无需人员现场检测太阳能组件10的状态数据,提高了维护效率,降低了维护成本。
4、组件控制信息为异常检测命令
由于中央控制器11与服务器集群30或用户终端40等外部控制系统通信连接,因此用户可以通过服务器或用户终端40等外部控制系统对太阳能系统包括的太阳能组件10进行远程异常检测。
用户通过服务器或用户终端40等外部控制系统发送异常检测命令给中央 控制器11,该异常检测命令包括待检测组件的组件地址,待检测组件即为需进行异常检测的太阳能组件10。在图2所示的太阳能系统中,中央控制器11接收到该异常检测命令后,根据该异常检测命令包含的组件地址,确定异常检测命令对应的待检测组件、待检测组件所属的接线盒13以及与所属的接线盒13连接的本地网关12。通过确定的本地网关12发送检测指令给待检测组件所属的接线盒13,该检测指令携带待检测组件与所属的接线盒13连接的接口地址。接线盒13接收到该检测指令后对该待检测组件进行异常检测,包括但不限于对待检测组件的电压、电流及断开/闭合状态等进行检测。接线盒13将得到的异常检测结果发送给上述本地网关12。本地网关12将该异常检测结果上传给中央控制器11。在图1所示的太阳能系统中,中央控制器11接收到该异常检测命令后,根据该异常检测命令包含的组件地址,确定异常检测命令对应的待检测组件及待检测组件所属的接线盒13。发送检测指令给待检测组件所属的接线盒13,该检测指令携带待检测组件与所属的接线盒13连接的接口地址。接线盒13接收到该检测指令后对该待检测组件进行异常检测,并将得到的异常检测结果发送给中央控制器11。中央控制器11接收到异常检测结果后发送该异常检测结果给外部控制系统。
按照上述异常检测控制方式,通过服务器或用户终端40等外部控制系统可以对太阳能系统中任意太阳能组件10实施异常检测。
除通过外部控制系统向中央控制器11下发异常检测命令来异常检测外,在图2所示太阳能系统中,中央控制器11还可以周期性地对与每个本地网关12关联的太阳能组件10进行异常检测;当检测到异常报警信息时,将该异常报警信息存储在本地数据库中,并将异常报警信息上传给外部控制系统。另外,中央控制器11也对本地网关12、接线盒13及太阳能组件10进行周期性地异常检测,以及对中央控制器11自身进行异常自检,并将检测到的异常报警信息上报给外部控制系统,异常报警信息可以包括错误信息、提示信息、非法操作信息等。在图1所示的太阳能系统中,中央控制器11还可以周期性地对每个接线盒13以及与每个接线盒13连接的太阳能组件10进行异常检测,以及周期性地异常自检,将检测到的异常报警信息上报给外部控制系统。
若中央控制器11将异常报警信息上报给服务器,服务器可以将该异常报警信息推送给用户终端40,以便于维护人员及时获知该异常报警信息。中央控制器11本地也可设置警铃或指示灯等报警装置,以便在中央控制器11检测到异 常报警信息时通过本地声音报警,或通过点亮指示灯报警,还可通过本地显示设备显示异常报警信息,以使本地维护人员获知该异常报警信息。
通过上述异常检测控制能够检测出太阳能组件10、本地网关12、接线盒13以及中央控制器11自身的各种异常情况,无需人工现场检测,避免BIPV系统组件现场检测出现高处坠落或触电等人员安全风险,降低了系统检测的工作量、检测难度和复杂度,且检测效率更高,实时性更强。
5、组件控制信息为设备维护命令
当太阳能系统中发生添加新的本地网关12、添加新的接线盒13、删除本地网关12、删除接线盒13、更新配置参数等系统维护操作时,可以通过外部控制系统进行远程维护控制。例如,当太阳能系统中某些本地网关12或接线盒13出现故障被更换后,可通过外部控制系统对新换上的本地网关12或接线盒13进行自动配置。
当新换上的设备为本地网关12时,通过用户终端40或服务器等外部控制系统发送设备维护命令给中央控制器11,该设备维护命令包括新换上的本地网关12的网关地址及网关配置信息。中央控制器11根据该设备维护命令包括的网关地址,将网关配置信息发送给新换上的本地网关12。新换上的本地网关12根据该网关配置信息完成自动配置。
当新换上的设备为接线盒13时,通过用户终端40或服务器等外部控制系统发送设备维护命令给中央控制器11,该设备维护命令包括新换上的接线盒13的接线盒地址及接线盒配置信息。中央控制器11根据该设备维护命令包括的接线盒地址,确定该接线盒13所属的本地网关12,将接线盒配置信息发送给确定的本地网关12。该本地网关12将该接线盒配置信息发送给新换上的接线盒13。新换上的接线盒13根据该接线盒配置信息完成自动配置。
上述仅示意性地列出几种控制功能,但外部控制系统对太阳能系统包括的太阳能组件10、接线盒13、本地网关12及中央控制器11的远程控制并不仅限于此。
由于中央控制器11通过互联网连接到用户终端40或服务器集群30等远程控制系统,因此太阳能系统也存在遭受黑客攻击或网络病毒侵袭等网络风险。为了应对这些网络风险,在中央控制器11本地设置了网络切换按键,当出现网络风险时用户可以按下网络切换按键以切断太阳能系统与远程控制系统之间的通信连接,达到防止太阳能系统遭受网络风险侵袭的目的。中央控制器11对网 络切换按键进行实时监测;当监测到网络切换按键触发的远程切断事件时,断开与远程控制系统之间的通信连接。当网络风险消除后用户可以再次按下网络切换按键,以恢复太阳能系统与远程控制系统之间的通信连接。当中央控制器11监测到网络切换按键触发的远程启用事件时,恢复与远程控制系统之间的通信连接。通过设置网络切换按键实现本地/远程控制的切换功能,避免网络风险透过远程控制系统侵袭太阳能系统,提高太阳能系统的安全性及稳定性。
中央控制器11通过互联网与服务器集群30通信连接,能够自动在服务器完成身份认证,以确保与服务器之间的正常通信。另外,中央控制器11在通过互联网向服务器集群30或用户终端40发送数据之前,可以先对数据进行加密,再进行数据传输。相应地,外部控制系统也可发送加密数据给中央控制器11,中央控制器11接收到加密数据后先进行解密操作。如此能够提高数据传输过程中数据的安全性,进一步避免网络风险透过外部控制系统侵袭太阳能系统,提高太阳能系统的安全性及稳定性。
在本公开实施例中,中央控制器11本地还设置有显示设备,用于显示系统状态信息、报警信息、日志信息、版本信息等。其中,系统状态信息包括网关数量、接线盒数量、网关/接线盒在线或离线状态、组件关断/闭合状态等统计信息。在中央控制器11中显示模块分离式设计,能够依据需求选择是否加载,且在中央控制器1配置有状态显示灯,用于显示中央控制器11的运行状态。
中央控制器11中设置的本地数据库用于存储组件状态数据、异常报警信息、日志信息、系统参数信息等,该数据库的设计能够节省基于嵌入式设计的中央控制器11有限的存储资源,通过有效的字段索引添加,能够提高数据库查询速度,使用户查询体验更佳。
本公开实施例通过中央控制器11将太阳能系统与外部控制系统连接起来,通过用户终端40或服务器等外部控制系统实现对太阳能系统包括的各组件设备进行远程配置、同步、组网、维护等,实现BIPV建筑中太阳能系统的远程控制和远程监控,增强太阳能系统的安全性、稳定性和可靠性。自动获取组件状态数据以及远程进行异常检测,减少人员的现场维护检查,避免人员登高坠落或触电等安全风险问题。而且中央控制器11与消防系统20通信连接,在火灾或地震等意外情况发生时通过消防系统20控制关断太阳能系统包括的太阳能组件10,避免太阳能系统的高电压造成人员触电伤害,提升太阳能产品的安全性能。
本公开另一实施例提供了一种太阳能系统控制方法。该控制方法所基于的太阳能系统如图1或2所示,该方法的执行主体为上述第一实施例所提供的太阳能系统包括的中央控制器11。如图4所示,该方法具体包括以下步骤:
步骤101:中央控制器11接收外部控制系统发送的组件控制信息。
上述外部控制系统包括远程控制系统和本地控制系统。其中,远程控制系统为需要通过互联网连接的系统,如服务器集群30、用户终端40等。本地控制系统为安装该太阳能系统的场所内自带的系统,如消防系统20、监控系统等。服务器集群30可以是由以太网连接的多个物理服务器组成,也可以是以云端服务器的形式来实现。组件控制信息可以为组件关断命令、组件闭合命令、状态查询命令、异常检测命令等。
步骤102:中央控制器11根据组件控制信息,对接线盒13所连接的太阳能组件10执行组件控制信息对应的控制操作。
本步骤具体可通过如下A1和A2两个子步骤来执行控制操作,包括:
A1:中央控制器11解析该组件控制信息,确定该组件控制信息对应的待控制组件。
上述组件控制信息中包括待控制组件的组件地址,当太阳能系统包括本地网关12时,上述组件地址包含太阳能组件10与其所属的接线盒连接的接口地址、其所属的接线盒地址及该接线盒连接的本地网关的网关地址。当太阳能系统不包括本地网关12时,当该组件控制信息来自消防系统20时,该组件控制信息中还包括消防标识,该消防标识可以为预先约定的预设字符或消防系统中消防控制设备的设备标识。
中央控制器11接收到该组件控制信息后,解析组件控制信息,若解析出该组件控制信息包含消防标识,则确定待控制组件为全部太阳能组件10。若确定组件控制信息中不包含消防标识,则根据组件控制信息包括的组件地址确定组件控制信息对应的待控制组件、与待控制组件连接的接线盒13。若太阳能系统包括本地网关12,还根据组件地址确定与上述确定的接线盒13连接的本地网关12。
A2:中央控制器11通过与待控制组件连接的接线盒13对待控制组件执行组件控制信息对应的控制操作。
当太阳能系统包括本地网关12时,中央控制器11向上述确定的本地网关12发送控制指令,在该控制指令中携带待控制组件与确定的接线盒13连接的接口地址。该本地网关12将该控制指令转发给待控制组件所属的接线盒13。该接线盒13接收到该控制指令后,根据该控制指令携带的接口地址对待控制组件执行相应控制操作。当太阳能系统不包括本地网关12时,中央控制器11向上述确定的接线盒13发送控制指令,在该控制指令中携带待控制组件与确定的接线盒13连接的接口地址。该接线盒13接收到该控制指令后,根据该控制指令携带的接口地址对待控制组件执行相应控制操作。
在本公开实施例中,组件控制信息为组件关断命令、组件闭合命令、状态查询命令、异常检测命令等。
下面对组件控制信息为组件关断命令的情况进行具体说明:
当中央控制器11接收到组件关断命令时,根据组件关断命令,确定组件关断命令对应的待关断组件;太阳能系统包括本地网关12时,通过与待关断组件关联的本地网关12发送关断指令给与待关断组件连接的接线盒13,以使该接线盒13断开与待关断组件之间的连接。太阳能系统不包括本地网关12时,直接发送关断指令给与待关断组件连接的接线盒13,以使该接线盒13断开与待关断组件之间的连接。
另外,组件关断命令可能来源于消防系统20、用户终端40或服务器集群30等,下面对组件关断命令来自于消防系统20的场景进行具体说明:
由于通常出现火灾或地震等灾情时消防系统20才会发送组件关断命令给中央控制器11,火灾或地震等灾情下太阳能系统的高电压易造成人员触电或加重灾情,因此将消防系统20下发的组件关断命令的执行优先级设置为最高优先级,且预先设置消防系统20下发的组件关断命令对应的待关断组件为太阳能系统包含的全部太阳能组件10。如图5所示,通过如下步骤201-203的操作实现消防系统20对太阳能组件10的关断控制,具体包括:
步骤201:中央控制器11接收来自消防系统20的组件关断命令。
步骤202:中央控制器11根据组件关断命令包含的消防标识,确定出组件关断命令对应的待关断组件为全部太阳能组件10。
步骤203:中央控制器11发送关断指令给所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。
当太阳能系统包括本地网关12时,中央控制器11分别通过每个本地网关 发送关断指令给与每个本地网关12连接的所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。当太阳能系统不包括本地网关12时,中央控制器11直接发送关断指令给所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。
通过消防系统20的上述关断控制能够有效避免地震或火灾等情况下太阳能系统发生漏电或人员触电等危险情况。
当组件关断命令的来源为用户终端40、服务器集群30等远程控制系统,以及当组件控制信息为组件闭合命令、状态查询命令、异常检测命令、组网配置、同步命令、设备维护命令等情况时,通过中央控制器11对太阳能组件10的控制方式与第一实施例中所述的控制方式相同,在此不再赘述。
本公开实施例通过中央控制器11将太阳能系统与外部控制系统连接起来,通过用户终端40或服务器集群30等远程控制系统实现对太阳能系统包括的各组件设备进行远程配置、同步、组网、维护等,实现BIPV建筑中太阳能系统的远程控制和远程监控,增强太阳能系统的安全性、稳定性和可靠性。自动获取组件状态数据以及远程进行异常检测,减少人员的现场维护检查,避免人员登高坠落或触电等安全风险问题。而且中央控制器11与消防系统20通信连接,在火灾或地震等意外情况发生时通过消防系统20控制关断太阳能系统包括的太阳能组件10,避免太阳能系统的高电压造成人员触电伤害,提升太阳能产品的安全性能。
如图6所示,本公开一实施例提供了一种太阳能系统控制装置,该装置用于执行上述第二实施例所提供的控制方法。该装置具体包括:
接收模块30,用于接收外部控制系统发送的组件控制信息;
执行控制模块31,用于根据组件控制信息,对接线盒13所连接的太阳能组件10执行组件控制信息对应的控制操作。
上述执行控制模块31,用于解析组件控制信息,确定组件控制信息对应的待控制组件;通过与待控制组件关联的接线盒13对待控制组件执行组件控制信息对应的控制操作。
在本公开实施例中,组件控制信息包括:对太阳能组件的组件关断命令、组件闭合命令、状态查询命令或异常检测命令。
当组件控制信息为组件关断命令时,执行控制模块31,用于根据组件关断 命令,确定组件关断命令对应的待关断组件;发送关断指令给与待关断组件连接的接线盒13,以使该接线盒13断开与待关断组件之间的连接。
当外部控制系统为消防系统时,上述组件关断命令包含消防标识;相应地,如图7所示,执行控制模块31包括:
组件确定单元311,用于根据消防标识,确定组件关断命令对应的待关断组件为全部太阳能组件10;
消防关断单元312,用于发送关断指令给所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。
在本公开实施例中,该装置还包括:按键关断模块,用于对本地关断按键进行实时监测;当监测到本地关断按键触发的组件关断事件时,发送关断指令给所有接线盒13,以使所有接线盒13断开各自所连接的所有太阳能组件10。
当组件控制信息为组件闭合命令时,执行控制模块31,用于根据组件闭合命令,确定组件闭合命令对应的待闭合组件;发送闭合指令给待闭合组件所属的接线盒13,以使该接线盒13接通与待闭合组件之间的连接。
当组件控制信息为状态查询命令时,执行控制模块31,用于根据状态查询命令,确定状态查询命令对应的待查询组件;从与待查询组件关联的接线盒13获取待查询组件对应的组件状态数据;发送组件状态数据给外部控制系统。
在本公开实施例中,该装置还包括数据获取模块,用于周期性地从每个接线盒13处获取组件状态数据;将组件状态数据存储在本地数据库,并将组件状态数据上传给外部控制系统。
当组件控制信息为异常检测命令时,执行控制模块31,用于根据异常检测命令,确定异常检测命令对应的待检测组件;发送检测指令给与待检测组件连接的接线盒13,以使该接线盒13对待检测组件进行异常检测;从待检测组件连接的接线盒13获取异常检测结果,并将异常检测结果发送给外部控制系统。
该装置还包括异常巡检模块,用于周期性地对与每个接线盒13连接的太阳能组件10进行异常检测;当检测到异常报警信息时,将异常报警信息存储在本地数据库中,并将异常报警信息上传给外部控制系统。
在本公开实施例中,外部控制系统包括远程控制系统,该装置还包括网络切换模块,用于对网络切换按键进行实时监测;当监测到网络切换按键触发的远程切断事件时,断开与远程控制系统之间的通信连接;当监测到网络切换按键触发的远程启用事件时,恢复与远程控制系统之间的通信连接。
该装置还包括:配置同步模块,用于接收外部控制系统发送的网络配置信息和同步信息;根据网络配置信息进行组网配置;根据同步信息与外部控制系统进行同步。
在本公开实施例中,当太阳能系统包括本地网关12时,中央控制器11均通过本地网关12发送控制命令给接线盒13。当太阳能系统不包括本地网关12时,中央控制器11直接发送控制命令给接线盒13。
当太阳能系统包括本地网关12时,上述网络配置模块,用于根据网络配置信息建立与本地网关12之间的通信连接;从网络配置信息中解析出本地网关12对应的网关配置信息以及与本地网关12连接的接线盒13对应的接线盒配置信息;将网关配置信息及接线盒配置信息发送给本地网关12。
应理解的是,太阳能系统控制装置可以按照第一实施例中太阳能系统控制方法所述的那样具有相应的具体结构和工作流程,具体细节在此不再赘述。
本公开实施例中通过该控制装置将太阳能系统与外部控制系统连接起来,通过用户终端40或服务器集群30等远程控制系统实现对太阳能系统包括的各组件设备进行远程配置、同步、组网、维护等,实现BIPV建筑中太阳能系统的远程控制和远程监控,增强太阳能系统的安全性、稳定性和可靠性。自动获取组件状态数据以及远程进行异常检测,减少人员的现场维护检查,避免人员登高坠落或触电等安全风险问题。而且该控制装置与消防系统20通信连接,在火灾或地震等意外情况发生时通过消防系统20控制关断太阳能系统包括的太阳能组件10,避免太阳能系统的高电压造成人员触电伤害,提升太阳能产品的安全性能。
本公开另一实施例提供了一种中央控制器,包括处理器和存储器,该存储器中存储有至少一条可执行指令,可执行指令由上述处理器加载并执行以实现上述第一实施例所提供的太阳能系统控制方法所执行的操作,通过中央控制器实现对太阳能系统包括的各组件设备进行远程配置、同步、组网、维护等,实现BIPV建筑中太阳能系统的远程控制和远程监控,增强太阳能系统的安全性、稳定性和可靠性。自动获取组件状态数据以及远程进行异常检测,减少人员的现场维护检查,避免人员登高坠落或触电等安全风险问题。而且该中央控制器与消防系统20通信连接,在火灾或地震等意外情况发生时通过消防系统20控制关断太阳能系统包括的太阳能组件10,避免太阳能系统的高电压造成人员触 电伤害,提升太阳能产品的安全性能。
其中,处理器可以包括通用中央处理器(CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器,或者多个用于控制程序执行的集成电路。存储器可以包括只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以包括电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立设置的,也可以和处理器集成在一起。
本公开另一实施例提供了一种计算机存储介质,用于储存为上述第一实施例所提供的太阳能系统控制方法所用的计算机软件指令,其包含用于执行上述控制方法实施例所设计的程序。通过执行存储的程序,可以实现第一实施例提供的控制方法,实现太阳能系统的远程配置、同步、组网、维护等,增强太阳能系统的安全性、稳定性和可靠性。自动获取组件状态数据以及远程进行异常检测,减少人员的现场维护检查,避免人员登高坠落或触电等安全风险问题。而且该中央控制器与消防系统20通信连接,在火灾或地震等意外情况发生时通过消防系统20控制关断太阳能系统包括的太阳能组件10,避免太阳能系统的高电压造成人员触电伤害,提升太阳能产品的安全性能。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种太阳能系统控制方法,所述方法包括:
    接收外部控制系统发送的组件控制信息;
    根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作。
  2. 根据权利要求1所述的方法,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    解析所述组件控制信息,确定所述组件控制信息对应的待控制组件;
    通过与所述待控制组件关联的接线盒对所述待控制组件执行所述组件控制信息对应的控制操作。
  3. 根据权利要求1或2所述的方法,所述组件控制信息包括:对太阳能组件的组件关断命令、组件闭合命令、状态查询命令或异常检测命令。
  4. 根据权利要求3所述的方法,所述组件控制信息为组件关断命令;根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    根据所述组件关断命令,确定所述组件关断命令对应的待关断组件;
    发送关断指令给与所述待关断组件连接的接线盒,以使该接线盒断开与所述待关断组件之间的连接;
    或者,所述组件控制信息为组件闭合命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    根据所述组件闭合命令,确定所述组件闭合命令对应的待闭合组件;
    发送闭合指令给所述待闭合组件所属的接线盒,以使该接线盒接通与所述待闭合组件之间的连接。
  5. 根据权利要求4所述的方法,所述组件控制信息为组件关断命令,所述组件关断命令包含消防标识;所述外部控制系统为消防系统;相应地,根据所 述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    根据所述消防标识,确定所述组件关断命令对应的待关断组件为全部太阳能组件;
    发送关断指令给所有接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
  6. 根据权利要求1-5任一项所述的方法,所述方法还包括:
    对本地关断按键进行实时监测;
    当监测到所述本地关断按键触发的组件关断事件时,发送关断指令给所有接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
  7. 根据权利要求3所述的方法,所述组件控制信息为状态查询命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    根据所述状态查询命令,确定所述状态查询命令对应的待查询组件;
    从与所述待查询组件关联的接线盒获取所述待查询组件对应的组件状态数据;
    发送所述组件状态数据给所述外部控制系统。
  8. 根据权利要求1-7任一项所述的方法,所述方法还包括:
    周期性地从每个接线盒处获取组件状态数据;
    将所述组件状态数据存储在本地数据库,并将所述组件状态数据上传给所述外部控制系统。
  9. 根据权利要求3所述的方法,所述组件控制信息为异常检测命令;相应地,根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作,包括:
    根据所述异常检测命令,确定所述异常检测命令对应的待检测组件;
    发送检测指令给与所述待检测组件连接的接线盒,以使该接线盒对所述待检测组件进行异常检测;
    从所述待检测组件连接的所述接线盒获取异常检测结果,并将所述异常检测结果发送给所述外部控制系统。
  10. 根据权利要求1-9任一项所述的方法,所述方法还包括:
    周期性地对与每个接线盒连接的太阳能组件进行异常检测;
    当检测到异常报警信息时,将所述异常报警信息存储在本地数据库中,并将所述异常报警信息上传给所述外部控制系统。
  11. 根据权利要求1所述的方法,所述外部控制系统包括远程控制系统,所述方法还包括:
    对网络切换按键进行实时监测;
    当监测到所述网络切换按键触发的远程切断事件时,断开与所述远程控制系统之间的通信连接;
    当监测到所述网络切换按键触发的远程启用事件时,恢复与所述远程控制系统之间的通信连接。
  12. 根据权利要求1-11任一项所述的方法,所述接收外部控制系统发送的组件控制信息之前,还包括:
    接收所述外部控制系统发送的网络配置信息和同步信息;
    根据所述网络配置信息进行组网配置;
    根据所述同步信息与所述外部控制系统进行同步。
  13. 一种太阳能系统控制装置,所述装置包括:
    接收模块,用于接收外部控制系统发送的组件控制信息;
    执行控制模块,用于根据所述组件控制信息,对接线盒所连接的太阳能组件执行所述组件控制信息对应的控制操作。
  14. 根据权利要求13所述的装置,所述组件控制信息为组件关断命令,所述组件关断命令包含消防标识;所述外部控制系统为消防系统;相应地,所述执行控制模块包括:
    组件确定单元,用于根据所述消防标识,确定所述组件关断命令对应的待关断组件为全部太阳能组件;
    消防关断单元,用于发送关断指令给所有接线盒,以使所有接线盒断开各自所连接的所有太阳能组件。
  15. 一种中央控制器,包括处理器和存储器,所述存储器中存储有至少一条可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至12中任一项所述的太阳能系统控制方法所执行的操作。
  16. 一种太阳能系统,包括多个太阳能组件和至少一个接线盒,每个所述接线盒与至少一个所述太阳能组件连接;还包括权利要求15所述的中央控制器;
    所述中央控制器与所述至少一个接线盒连接;
    所述中央控制器与外部控制系统通信连接。
PCT/CN2018/094497 2018-06-01 2018-07-04 太阳能系统控制方法及装置、中央控制器、太阳能系统 WO2019227592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810557032.XA CN108667075A (zh) 2018-06-01 2018-06-01 太阳能系统控制方法及装置、中央控制器、太阳能系统
CN201810557032.X 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019227592A1 true WO2019227592A1 (zh) 2019-12-05

Family

ID=63642856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094497 WO2019227592A1 (zh) 2018-06-01 2018-07-04 太阳能系统控制方法及装置、中央控制器、太阳能系统

Country Status (7)

Country Link
US (1) US20190372352A1 (zh)
EP (1) EP3576159A1 (zh)
JP (1) JP2019213439A (zh)
KR (1) KR20190137665A (zh)
CN (1) CN108667075A (zh)
AU (1) AU2018236743A1 (zh)
WO (1) WO2019227592A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111127854A (zh) * 2019-12-05 2020-05-08 浙江工业大学 一种基于双环境感知与智能化处理的消防系统
CN111465036A (zh) * 2019-12-05 2020-07-28 浙江工业大学 一种基于LoRa星状网轮询嵌套组网的消防数据传输方法
CN112202881B (zh) * 2020-09-29 2023-11-03 国网信息通信产业集团有限公司 物联网设备组网系统及其组网方法
CN112509304A (zh) * 2020-11-30 2021-03-16 沪东重机有限公司 智能无线远程控制器
CN112787912A (zh) * 2021-01-18 2021-05-11 上海瑟度能源科技有限公司 光伏发电系统用通信网关
CN113098928A (zh) * 2021-03-17 2021-07-09 广州蓝蕊电子有限公司 一种太阳能充电的远距离云管理方法及系统
CN113606801A (zh) * 2021-07-02 2021-11-05 国能智深控制技术有限公司 一种镜场控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038345A (ja) * 2011-08-10 2013-02-21 Toshiba Corp 太陽光発電システム
CN202854569U (zh) * 2012-09-07 2013-04-03 南京优阳光伏技术有限公司 一种太阳能光伏组件级监控系统
CN103296112A (zh) * 2012-03-05 2013-09-11 上海捷波通信科技有限公司 太阳能电池组件接线盒及智能监测系统
CN104767478A (zh) * 2015-03-18 2015-07-08 江苏九鼎光伏系统有限公司 光伏系统灾难控制方法及安全接线盒
CN106899077A (zh) * 2017-03-01 2017-06-27 深圳硕日新能源科技有限公司 一种智能家用太阳能控制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816870B2 (en) * 2009-03-31 2014-08-26 Pvt Solar, Inc. Healthy home graphical user interface method and device
DE102009021975A1 (de) * 2009-05-19 2010-12-02 Hista Elektro-Anlagenbau Gmbh System zur Steuerung der Sonnenstandsnachführung
US8502129B2 (en) * 2010-02-16 2013-08-06 Western Gas And Electric, Inc. Integrated remotely controlled photovoltaic system
US8774974B2 (en) * 2011-07-15 2014-07-08 First Solar, Inc. Real-time photovoltaic power plant control system
JP2013197217A (ja) * 2012-03-16 2013-09-30 Toshiba Corp 太陽電池発電システム及びその状態監視方法
AT514384B1 (de) * 2013-05-16 2019-07-15 Fronius Int Gmbh Wechselrichter mit Programmierschnittstelle
CN103441703A (zh) * 2013-08-12 2013-12-11 苏州市职业大学 带参数测量和无线传输的智能光伏接线盒
JP6478470B2 (ja) * 2014-03-20 2019-03-06 株式会社竹中工務店 出力制御装置
CN105305954B (zh) * 2015-11-05 2017-09-15 安徽长远绿色能源有限公司 一种具有隔离通信功能的光伏组件及接线盒
JP6767822B2 (ja) * 2016-09-15 2020-10-14 田淵電機株式会社 電源ライン緊急遮断装置および電源ライン緊急遮断システム
CN207234383U (zh) * 2017-09-29 2018-04-13 杭州普沃晟科技有限公司 一种具有火灾监控及自动关断功能的光伏系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038345A (ja) * 2011-08-10 2013-02-21 Toshiba Corp 太陽光発電システム
CN103296112A (zh) * 2012-03-05 2013-09-11 上海捷波通信科技有限公司 太阳能电池组件接线盒及智能监测系统
CN202854569U (zh) * 2012-09-07 2013-04-03 南京优阳光伏技术有限公司 一种太阳能光伏组件级监控系统
CN104767478A (zh) * 2015-03-18 2015-07-08 江苏九鼎光伏系统有限公司 光伏系统灾难控制方法及安全接线盒
CN106899077A (zh) * 2017-03-01 2017-06-27 深圳硕日新能源科技有限公司 一种智能家用太阳能控制系统

Also Published As

Publication number Publication date
KR20190137665A (ko) 2019-12-11
JP2019213439A (ja) 2019-12-12
US20190372352A1 (en) 2019-12-05
EP3576159A1 (en) 2019-12-04
CN108667075A (zh) 2018-10-16
AU2018236743A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019227592A1 (zh) 太阳能系统控制方法及装置、中央控制器、太阳能系统
CN101923344B (zh) 一种远程电源控制系统及其控制方法
Adriansyah et al. Design of small smart home system based on Arduino
EP2901231B1 (en) Automatic local electric management system
US9874869B2 (en) Information controller, information control system, and information control method
CN104898533A (zh) 机房监控方法、装置及系统
US20100306559A1 (en) Power-manager configuration upload and download method and system for network managers
US10364799B1 (en) Secure windfarm power production during a SCADA system offline mode
CN201774318U (zh) 一种远程电源控制系统装置
CN103064382A (zh) 基于arm架构的opc嵌入式远程数据采集系统及方法
WO2006047583A2 (en) A system for rapid remote management of equipment
CN109992028A (zh) 一种基于监控系统的户外光伏小室环境设备及其联动控制方法
CN109743365B (zh) 监控输电线路的方法、装置及系统
CN106651119A (zh) 一种智慧酒店的工程安防决策系统
WO2020135530A1 (zh) 具有失电保护机制的人机接口系统及分布式控制系统
US10084610B2 (en) Control apparatus and control method
CN116405520A (zh) 互联互通智能处理服务系统及方法
CN110609533A (zh) 一种scada数据采集系统的安全架构
Lestari et al. Application of home light control system using Arduino with mobile based Wifi media
KR102406905B1 (ko) 산업 IoT 플랫폼을 이용한 엣지 컴퓨팅 기반 HMI 시스템
KR101970523B1 (ko) 설비 관제 시스템 및 이의 운전 방법
KR101030986B1 (ko) It 기반의 전력기기 스마트 제어시스템
CN108696592A (zh) 一种基于mdc的联动控制方法、系统及系统的设计方法
CN114742382A (zh) 一种配电房智能保护系统、方法及存储介质
CN102819253A (zh) 基于3g网络的牙科气路远程诊断监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18920879

Country of ref document: EP

Kind code of ref document: A1