WO2019227378A1 - 电源管理系统、电池、充电器以及无人机 - Google Patents

电源管理系统、电池、充电器以及无人机 Download PDF

Info

Publication number
WO2019227378A1
WO2019227378A1 PCT/CN2018/089220 CN2018089220W WO2019227378A1 WO 2019227378 A1 WO2019227378 A1 WO 2019227378A1 CN 2018089220 W CN2018089220 W CN 2018089220W WO 2019227378 A1 WO2019227378 A1 WO 2019227378A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
pull
controller
battery
temperature measurement
Prior art date
Application number
PCT/CN2018/089220
Other languages
English (en)
French (fr)
Inventor
梁亮
孟德强
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/089220 priority Critical patent/WO2019227378A1/zh
Priority to CN201880031262.0A priority patent/CN110770961A/zh
Publication of WO2019227378A1 publication Critical patent/WO2019227378A1/zh
Priority to US17/105,974 priority patent/US20210083330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4221Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells with battery type recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the invention relates to a power management system, a battery, a charger, and a drone, and belongs to the field of power control.
  • a temperature measurement resistor is also installed in the battery, so the power management system can also read Take the voltage of the temperature measurement resistor to monitor the temperature inside the battery.
  • the power management system needs to be electrically connected to the encryption chip and the temperature measuring resistor of the battery through two connection lines, so as to communicate with the encryption chip through one of the connection lines and read the temperature measurement through the other connection line.
  • the voltage of the resistor has caused the battery to need to set pins for the encryption chip and the temperature measurement resistor that are connected to the communication interface and the temperature measurement interface in the power management system, respectively.
  • the battery has too many parts and its volume is too large.
  • the present invention provides a power management system, a battery, a charger, and a drone.
  • a power management system including: a single communication line, a controller, and a selection control circuit; one end of the communication line is used for communication connection with a battery, and the other end of the communication line is connected with a battery
  • the communication interface and the temperature measurement interface of the controller are both electrically connected; the controller is electrically connected to the selection control circuit for controlling the selection control circuit to switch between the temperature measurement mode and the encrypted authentication mode;
  • the controller reads the voltage of the temperature measurement resistor in the battery through the communication line; when the selection control circuit is switched to the encrypted authentication mode , The controller communicates with an encryption chip in the battery through the communication line.
  • a charger includes: a charging circuit and a power management system; the power management system is electrically connected to the charging circuit and is used to control the charging circuit to an external The battery is charged; the power management system includes: a single communication line, a controller, and a selection control circuit; one end of the communication line is used to communicate with the battery, and the other end of the communication line is connected to the controller's communication interface and The temperature measurement interface is electrically connected; the controller is electrically connected to the selection control circuit for controlling the selection control circuit to switch between the temperature measurement mode and the encrypted authentication mode; wherein, when the selection control circuit is switched When in the temperature measurement mode, the controller reads the voltage of the temperature measurement resistor in the battery through the communication line; when the selection control circuit is switched to the encrypted authentication mode, the controller passes The communication line communicates with an encryption chip in the battery.
  • a drone includes: an on-board controller and a power management system; the power management system includes: a single communication line, a controller, and a selection control circuit; One end of the communication line is used for communication connection with a battery, and the other end of the communication line is electrically connected with a communication interface and a temperature measurement interface of the controller; the controller is electrically connected with the selection control circuit for controlling The selection control circuit switches between a temperature measurement mode and an encrypted authentication mode; wherein when the selection control circuit switches to the temperature measurement mode, the controller reads the content of the battery through the communication line. The voltage of the temperature measuring resistor; when the selection control circuit is switched to the encrypted authentication mode, the controller communicates with the encrypted chip in the battery through the communication line.
  • a battery includes: a case; an electric core provided in the case; an encryption chip provided in the case, and the encryption chip is electrically connected to the battery core.
  • the battery core supplies power to the encryption chip; a temperature measurement resistor is provided in the housing, the temperature measurement resistor is connected in parallel with the encryption chip; and a common pin is connected to the encryption chip and the measurement chip.
  • the temperature resistance is electrically connected; wherein, the common pin is used for communication connection with an external power management system through a single communication line, so that the power management system senses the voltage of the temperature measurement resistance through the communication line and communicates with the temperature resistance.
  • the encryption chip performs communication.
  • a communication connection with the controller of the power management system is achieved through a single communication line, so that when the controller controls When the connected selection control circuit switches between the temperature measurement mode and the encrypted authentication mode, the controller can communicate with the encryption chip through the common pin or read the voltage of the temperature measurement resistor to calculate the internal temperature of the battery. Can reduce the number of battery components, which is conducive to lightweight and miniaturization of the battery.
  • FIG. 1 is a circuit connection diagram of a power management system and a battery according to an embodiment of the present invention
  • FIG. 3 is another implementation manner of a selection control circuit according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram when an external battery is charged using a charger according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of an unmanned aerial vehicle and an onboard battery thereof according to an embodiment of the present invention.
  • Unmanned aerial vehicle 131, airborne controller;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • FIG. 1 is an electrical connection diagram of a battery and a power management system according to this embodiment.
  • a power management system 101 provided in this embodiment includes a single communication line 1015, a controller 1011, and a selection control circuit 1013.
  • one end of the communication line 1015 is used for communication connection with the battery 30, and the other end is electrically connected with the communication interface IO1 and the temperature measurement interface AD of the controller 1011; the controller 1011 is also electrically connected with the selection control circuit 1013 in order to control the The selection control circuit 1013 switches between the temperature measurement mode and the encrypted authentication mode.
  • the controller 1011 controls the selection control circuit 1013 to switch to the temperature measurement mode
  • the controller 1011 can read the voltage of the temperature measurement resistor R1 in the battery 30 through the communication line 1015 to obtain the internal temperature of the battery 30; when the controller 1011 controls When the selection control circuit 1013 is switched to the encrypted authentication mode, the controller 1011 communicates with the encryption chip 301 in the battery 30 through the communication line 1015 to determine whether the battery 30 is the authenticated battery 30.
  • the controller 1011 may be any suitable electronic component such as an integrated circuit, a microcontroller (MCU), or a microprocessor (MPU) in the prior art.
  • MCU microcontroller
  • MPU microprocessor
  • the communication interface IO1 and temperature measurement interface AD provided on the MCU are electrically connected to one end of the communication line 1015, so that the internal temperature of the battery 30 connected to the other end of the communication line 1015 and the encryption in the battery 30 are read through the communication line 1015.
  • the chip 301 performs communication.
  • the communication interface IO1 and the temperature measurement interface AD connected to the communication line 1015 may be integrated as an interface on the MCU, so as to further reduce the wiring complexity in the power management system 101, and also enable the MCU to be connected. More components to achieve more functions.
  • the MCU is also electrically connected to the signal input terminal of the selection control circuit 1013 through a control signal output interface IO2 provided thereon, so as to output a control signal to the selection control circuit 1013 through the control signal output interface IO2, for example, high level, low level Signal or other electrical signal.
  • a control signal for example, high level, low level Signal or other electrical signal.
  • the control signal output from the MCU to the signal input terminal of the selection control circuit 1013 is simply referred to as an enable signal.
  • the MCU outputs an enable signal to the control signal input terminal of the selection control circuit 1013 through the control signal output interface IO2, thereby controlling the selection control circuit 1013 to switch between the temperature measurement mode and the encrypted authentication mode. For example, when the MCU sends an enable signal to the selection control circuit 1013, the selection control circuit 1013 switches from the encrypted authentication mode to the temperature measurement mode; when the MCU stops sending the enable signal to the selection control circuit 1013, the selection control circuit 1013 Switch from temperature measurement mode to encrypted authentication mode.
  • the selection control circuit 1013 may use a pull-up circuit, a pull-down circuit, or any other suitable circuit.
  • the selection control circuit 1013 may include two pull-up circuits, one end of which is electrically connected to the pull-up power supply VDD, and the other end of which is electrically connected to the above-mentioned communication line 1015.
  • the MCU controls the on / off of these two pull-up circuits to switch between the temperature measurement mode and the encrypted authentication mode.
  • the control circuit 1013 is selected to switch from the encrypted authentication mode to the temperature measurement mode, so that the controller 1011 can read the internal test of the battery 30 through the communication line 1015 The divided voltage of the temperature resistor R1 in order to obtain the internal temperature of the battery 30.
  • the selection control circuit 1013 is selected. The temperature measurement mode is switched to the encrypted authentication mode, so that the controller 1011 can communicate with the encrypted chip 301 in the battery 30 through the communication line 1015, so as to determine whether the battery 30 is the authenticated battery 30.
  • the communication line 1015 may be any cable capable of transmitting electrical signals used in the prior art.
  • a multi-core wire may be selected as the communication line 1015, thereby facilitating the electrical connection of the communication line 1015 with an MCU that separately sets the communication interface IO1 and the temperature measurement interface AD.
  • a single-core wire may be selected as the communication line 1015 so as to be electrically connected to the MCU that integrates the communication interface IO1 and the temperature measurement interface AD.
  • a single core wire can also be used to reduce the space occupied by the communication line 1015.
  • a multi-core cable can also be used to improve the signal transmission quality.
  • this embodiment further provides a battery 30, which includes a case, one or more battery cells, an encryption chip 301, and a temperature measuring resistor R1.
  • the battery cell, the encryption chip 301, and the temperature measurement resistor R1 are all arranged inside the casing, and the battery cell is electrically connected to the encryption chip 301 to supply power to the encryption chip 301.
  • the encryption chip 301 is also connected in parallel with the temperature measurement resistor R1 It is connected and communicated with the power management system 101 through a common pin provided on the casing, so that the power management system 101 senses the voltage of the temperature resistance R1 through the communication line 1015 and communicates with the encryption chip 301.
  • the battery 30 may further include a capacitor C1, which is connected in parallel with the encryption chip 301 and the temperature measuring resistor R1 to protect one of the encryption chip 301, the resistor, the battery core, and other electronic components in the battery 30 Or more.
  • the common pins of the encryption chip 301 and the temperature measuring resistor R1 in the battery 30 are electrically connected with the communication line 1015 in the power management system 101, so that when the controller 1011 can select the control circuit 1013 for temperature measurement through control Switch between mode and encrypted authentication mode so that the divided voltage of the temperature measurement resistor R1 is provided to the temperature measurement interface AD of the controller 1011 through the communication line 1015 electrically connected to the shared pin, and
  • the connected communication line 1015 provides a communication channel for the encryption chip 301 in the battery 30 and the communication interface IO1 of the controller 1011.
  • the communication between the encryption chip 301 and the controller 1011 through the communication line 1015 may be unidirectional or bidirectional.
  • only the encryption chip 301 may communicate through The line 1015 sends a signal to the controller 1011, but in other examples, the encryption chip 301 and the controller 1011 can both send a signal to the other party through the communication line 1015.
  • the controller 1011 sends out a control signal (for example, the control signal output interface IO2 of the MCU sends a high Level or low level signal) to control the selection control circuit 1013 to switch from the temperature measurement mode to the encrypted authentication mode, so that the encrypted chip 301 of the battery 30 and the controller 1011 communicate with each other through the communication line 1015 of the power management system 101.
  • a control signal for example, the control signal output interface IO2 of the MCU sends a high Level or low level signal
  • the encryption chip 301 in the battery 30 sends the authentication code of the battery 30 to the controller 1011 on its own initiative or at the request of the controller 1011, or it can also Send one or more other parameters at the same time (such as the model of the battery 30, rated power, current remaining power, rated charging voltage, rated discharge voltage, etc.), so that the controller 1011 can determine the current and power management based on the received authentication code Whether the battery 30 electrically connected to the system 101 is a certified battery 30 (that is, can receive the battery 30), and can further control the charging / discharging process of the battery 30 according to the parameters of the received battery 30, so as to maximize the use of the battery 30 power.
  • controller 1011 of the power management system 101 may accept all the authentication codes and other parameter information at one time, or may receive the authentication codes and other parameter information separately in multiple times.
  • the sending of the authentication code and other parameter information by the battery 30 may also be completed one or more times.
  • the power management system 101 provided in this embodiment is provided with a controller 1011 and a selection control circuit 1013 controlled by the controller 1011 to switch between a temperature measurement mode and an encrypted authentication mode, so that a single communication line 1015 and a battery can be used.
  • 30 performs a communication connection, and the controller 1011 controls the selection control circuit 1013 according to needs to implement a temperature measurement and encrypted authentication function of the battery 30.
  • the battery 30 adapted by the power management system 101 provided in this embodiment only needs the encryption chip 301 and the temperature measuring resistor R1 to have a common pin to be connected to the communication line 1015 of the power management system 101, so that it can be Reducing the number of components inside the battery 30 is beneficial to the miniaturization and lightweight design of the battery 30.
  • the encryption chip 301 and the temperature measuring resistor R1 have a common pin, and the common pin can be electrically connected to the controller 1011 of the power management system 101 through a single communication line 1015. Together, so that under the control of the controller 1011, the selection control circuit 1013 of the power management system 101 can switch between the temperature measurement mode and the encrypted authentication mode to enable the controller 1011 to implement reading and measurement through the shared pin, respectively.
  • the battery 30 of this embodiment shares a pin with the encryption chip 301 and the temperature measuring resistor R1 to communicate with the controller 1011 of the power management system 101 through a single communication line 1015 in the power management system 101
  • the connection reduces the number of external pins of the battery 30, which is beneficial to the miniaturization and lightweight design of the battery 30.
  • FIG. 2 and FIG. 3 are implementations of two selection control circuits provided by this embodiment.
  • the selection control circuit 1013 may generally include a pull-up resistor and a switch.
  • the input terminal of the pull-up resistor is electrically connected to the pull-up power supply VDD, and its output terminal is electrically connected to the communication line 1015.
  • the control signal input terminal of the switch is electrically connected to the control signal output terminal of the controller 1011, and its output terminal is connected to The pull-up resistor is electrically connected.
  • the switch can be selected from one or more of a diode, a transistor, and a field effect transistor. For example, FIG. 2 and FIG.
  • FIG. 3 show a specific example of selecting a field effect transistor such as a MOS transistor S1 as the switch.
  • a field effect transistor such as a MOS transistor S1
  • a single diode, triode, or other field-effect transistor can be selected as the switch according to the actual needs, and the same or different switching components can be selected according to the actual circuit needs.
  • the circuit acts as a switch.
  • the switch can selectively change the resistance value of the pull-up resistor according to the control signal output from the controller 1011, so that the selection control circuit 1013 can switch between the temperature measurement mode and the encrypted authentication mode.
  • the controller 1011 outputs a control signal to the changeover switch, so that the resistance value of the pull-up resistor can be changed between the first resistance value and the second resistance value under the action of the changeover switch, thereby changing the temperature measurement in the battery 30
  • the controller 1011 controls the work of the switch The state is such that the control signal required to select the control circuit 1013 to enter the temperature measurement mode and the encrypted authentication mode is determined. Therefore, when the controller 1011 sends a switching signal, the temperature measurement interface corresponding to the signal can also be directly activated. AD or communication interface IO1.
  • the controller 1011 when the controller 1011 sends a control signal that causes the selection control circuit 1013 to enter the encrypted authentication mode from the temperature measurement mode, the controller 1011 simultaneously sends a control signal to activate the communication interface IO1, so that the encryption chip 301 and the controller 1011 Ability to communicate.
  • the controller 1011 when the controller 1011 sends a signal that causes the selection control circuit 1013 to enter the temperature measurement mode from the encrypted authentication mode, the controller 1011 simultaneously sends a control signal to activate the temperature measurement interface AD, so that the temperature measurement interface AD can read
  • the divided voltage of the temperature measuring resistor R1 is measured in the battery 30, and then the controller 1011 can calculate the temperature of the temperature measuring resistor R1 (equivalent to the temperature inside the battery 30) according to the characteristics of the temperature sensitive resistor.
  • the pull-up resistor includes a first pull-up resistor R2 and a second pull-up resistor R3, and a switch (MOS transistor S1 in the figure) is connected in series with the second pull-up resistor R3. The latter circuit is then connected in parallel with the first pull-up resistor R2.
  • the control signal input by the controller 1011 is used to control the opening and closing of the MOS transistor S1.
  • the resistance of the first pull-up resistor R2 and the second pull-up resistor R3 in parallel is a resistance of the pull-up resistor.
  • the resistance value of the first pull-up resistor R2 is used as a resistance value of the pull-up resistor alone.
  • the selection control circuit 1013 when the resistance value of the pull-up resistor is equal to the resistance value of the first pull-up resistor R2, that is, when the MOS transistor S1 is turned off, the selection control circuit 1013 is in a temperature measurement mode. At this time, the temperature measurement interface AD of the controller 1011 can read the divided voltage of the temperature measurement resistor R1 through the communication line 1015, thereby calculating the temperature in the battery 30. Correspondingly, when the resistance of the pull-up resistor is equal to the resistance of the first pull-up resistor R2 and the second pull-up resistor R3 in parallel, that is, when the MOS transistor S1 is closed, the selection control circuit 1013 is in a cryptographic authentication mode. At this time, the communication interface IO1 of the controller 1011 can communicate with the encryption chip 301 through the communication line 1015.
  • the pull-up resistor also includes a first pull-up resistor R2 and a second pull-up resistor R3, a switch (the MOS transistor S1 in the figure) and a second pull-up resistor.
  • the circuit in parallel with R3 is then connected in series with the first pull-up resistor R2.
  • the control signal input by the controller 1011 is used to control the opening and closing of the MOS transistor S1, so when the MOS transistor S1 is turned off, the resistance of the first pull-up resistor R2 and the second pull-up resistor R3 in series is one of the pull-up resistors. Resistance value, and when the MOS transistor S1 is closed, the resistance value of the first pull-up resistor R2 is used as a resistance value of the pull-up resistor alone.
  • the selection control The circuit 1013 when the resistance of the pull-up resistor is equal to the sum of the resistances of the first pull-up resistor R2 and the second pull-up resistor R3, that is, when the MOS transistor S1 is turned off, the selection control The circuit 1013 is in a temperature measurement mode. At this time, the temperature measurement interface AD of the controller 1011 can read the divided voltage of the temperature measurement resistor R1 through the communication line 1015, thereby calculating the temperature in the battery 30. Correspondingly, when the resistance value of the pull-up resistor is equal to the resistance value of the first pull-up resistor R2, that is, when the MOS transistor S1 is closed, the selection control circuit 1013 is in a cryptographic authentication mode. At this time, the communication interface IO1 of the controller 1011 can communicate with the encryption chip 301 through the communication line 1015.
  • MOS transistor S1 may use a diode. Or triodes, or other FETs.
  • the controller 1011 may optionally be configured to periodically output a control signal to the selection control circuit 1013 (for example, to a switch).
  • a periodic cycle is performed between the temperature measurement mode and the encrypted authentication mode.
  • the controller 1011 may take a few seconds, tens of seconds, minutes, or any other time as a cycle.
  • the controller 1011 measures the temperature in the primary battery 30 through the control selection control circuit 1013, and communicates with the encryption chip. 301 performs a communication. It can be understood that the time for the controller 1011 to measure the internal temperature of the battery 30 and the time for communicating with the encryption chip 301 in one cycle may be the same or different, and may be specifically set according to actual needs.
  • the above-mentioned communication line 1015 can also be used to supply power to the encryption chip 301, so that the wiring inside the battery 30 for supplying power to the encryption chip 301 by the battery core can be eliminated, so as to reduce the difficulty of internal wiring of the battery 30, and further reduce the battery. 30 weight and reduce the volume of the battery 30.
  • FIG. 4 is a schematic circuit diagram when the charger 11 is used to charge the external battery 31. As shown in FIG. 4, this embodiment further provides a charger 11.
  • the charger 11 includes a charging circuit 111 and a power management system 101.
  • the power management system 101 is the same as the above embodiment, and is electrically connected to the charging circuit 111 for controlling the charging circuit 111 to charge the external battery 30.
  • the charging circuit 111 may be any charging circuit 111 used in the prior art, and details are not described herein again.
  • the controller 1011 in the power management system 101 switches to the encrypted authentication mode by controlling the selection control circuit 1013, thereby authenticating the external battery 31. It is determined whether the external battery 31 is a certified battery 30. When the controller 1011 determines that the external battery 31 is a certified suitable battery 30, the controller 1011 turns on the charging circuit 111 to charge the external battery 31 through the mains 50; when the controller 1011 determines the external battery 31 The controller 1011 will not turn on the charging circuit 111 when it is a proper battery 30 that has not been certified, so that the external battery 31 cannot be charged by the charger 11.
  • the power management system 101 and the charging circuit 111 are integrated to achieve miniaturization of the charger 11.
  • FIG. 5 is a schematic circuit diagram of the drone 13 and the onboard battery 33 mounted on it.
  • the drone 13 provided in this embodiment includes an on-board controller 131 and a power management system 101.
  • the power management system 101 is the same as the power management system 101 in the foregoing embodiment, and specific reference may be made to the foregoing embodiment;
  • the on-board controller 131 may be at least one of a PTZ controller 1011 and a flight controller 1011.
  • the on-board controller 131 and the power management system 101 may be integrated together to reduce the volume of the drone 13 and achieve the purpose of miniaturization thereof.
  • the controller 1011 in the power management system 101 of the drone 13 controls the selection control circuit 1013 to switch to the encrypted authentication mode to Communicate with the encryption chip 301 of the on-board battery 33 to determine whether the on-board battery 33 is an authenticated battery 30 that is allowed to be mounted on the drone 13.
  • the power management system 101 determines that the on-board battery 33 installed on the drone 13 is a certified battery 30, the power management system 101 electrically connects the load battery 30 and the on-board controller 131 to pass the on-board
  • the battery 33 supplies power to the onboard controller 131, so that the onboard controller 131 can normally control the flight of the drone 13 or control the work of the PTZ; and when the power management system 101 considers that the onboard battery 33 is illegal without certification,
  • the power management system 101 controls the onboard battery 33 to fail to supply power to the onboard controller 131 to protect the safety of the onboard controller 131.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电源管理系统,包括:单根通信线、控制器以及选择控制电路;所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。本发明的电源管理系统仅需要与其适配的电池内的加密芯片和测温电阻具有一个共用引脚即可,从而可以减少电池的零部件数量,有利于电池的轻量化和小型化。本发明还提供一种电池、充电器及无人机。

Description

电源管理系统、电池、充电器以及无人机 技术领域
本发明涉及一种电源管理系统、电池、充电器以及无人机,属于电源控制领域。
背景技术
随着科技和经济的发展,人们在日常生活和工业生产中使用越来越多的可移动电子设备,这些可移动电子设备通常都会安装电池,从而通过电池来为电子设备提供电力。但是,由于市面上具有多种多样规格和样式的电池,如果将不合适的电池安装到可移动电子设备上,或者使用充电器对不合适的电池进行充电,就极易造成可移动电子设备或者充电器的损坏,因此,一般电池内会内置有加密芯片,可移动电子设备或者充电器上的电源管理系统通过与该加密芯片进行通信来确认当前电池是否为经过认证的可被接收的电池。此外,由于电池需要工作在一个温度范围以内,过低或者过高的温度都会影响电池的使用寿命,甚至造成电池爆炸,故而在电池内还安装有测温电阻,从而电源管理系统还可以通过读取测温电阻的电压来监控电池内部的温度。在现有技术中电源管理系统需要通过两根连接线分别与电池的加密芯片和测温电阻电连接,以便通过其中一根连接线与加密芯片进行通信并通过另一根连接线读取测温电阻的电压。但是,这就造成了电池需要为加密芯片和测温电阻分别设置与电源管理系统中的通信接口和测温接口连接的引脚,从而造成电池的部件数量过多,使得其体积偏大。
发明内容
为了解决现有技术中存在的上述或其他潜在问题,本发明提供一种电源管理系统、电池、充电器以及无人机。
根据本发明的一些实施例,提供一种电源管理系统,包括:单根通信线、控制器以及选择控制电路;所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
根据本发明的一些实施例,提供一种充电器,所述充电器包括:充电电路以及电源管理系统;所述电源管理系统与所述充电电路电连接,用于控制所述充电电路给外部的电池进行充电;所述电源管理系统包括:单根通信线、控制器以及选择控制电路;所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
根据本发明的一些实施例,提供一种无人机,所述无人机包括:机载控制器以及电源管理系统;所述电源管理系统包括:单根通信线、控制器以及选择控制电路;所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
根据本发明的一些实施例,提供一种电池,所述电池包括:壳体;电芯,设于壳体内;加密芯片,设于所述壳体内,所述加密芯片与所述电芯电连接,所述电芯为所述加密芯片供电;测温电阻,设于所述壳体内,所述测温电阻 与所述加密芯片并联连接;以及共用引脚,与所述加密芯片以及所述测温电阻电连接;其中,所述共用引脚用于通过单根通信线与外部的电源管理系统通信连接,使得所述电源管理系统通过所述通信线感测所述测温电阻的电压以及与所述加密芯片进行通信。
根据本发明实施例的方案,通过为电池内的加密芯片和测温电阻设置共用引脚来实现与电源管理系统的控制器之间通过单根通信线进行通信连接,从而当控制器控制与其电连接的选择控制电路在测温模式和加密认证模式之间进行切换时,该控制器可以分别通过共用引脚与加密芯片进行通信或者读取测温电阻的电压以计算得到电池内部的温度,从而可以减少电池的零部件数量,有利于电池的轻量化和小型化。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1为本发明实施例提供的电源管理系统及电池的电路连接图;
图2为本发明实施例提供的选择控制电路的一种可实现方式;
图3为本发明实施例提供的选择控制电路的另一种可实现方式;
图4为本发明实施例提供的使用充电器为外部电池充电时的电路图;
图5为本发明实施例提供的无人机及其机载电池的电路图。
图中:
101、电源管理系统;           1011、控制器;
1015、通信线;                103、充电电路;
30、电池;                    301、加密芯片;
11、充电器;                  111、充电电路;
31、外部电池;                50、市电;
13、无人机;                  131、机载控制器;
33、机载电池。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
图1为本实施例提供的电池与电源管理系统的电连接图。如图1所示,本实施例提供的一种电源管理系统101包括:单根通信线1015、控制器1011以及选择控制电路1013。其中,通信线1015的一端用于与电池30通信连接、另一端则与控制器1011的通信接口IO1和测温接口AD均电连接;控制器1011还与选择控制电路1013电连接,以便控制该选择控制电路1013在测温模式和加密认证模式之间进行切换。当控制器1011控制选择控制电路1013切换到测温模式时,控制器1011可以通过上述通信线1015读取电池30内的测温电阻R1的电压以便获得电池30的内部温度;当控制器1011控制选择控制电路1013切换到加密认证模式时,控制器1011通过上述通信线1015与电池30内的加密芯片301进行通信以便确定该电池30是否为经过认证的电池30。
在本实施例中,控制器1011可以是现有技术中集成电路、单片机(MCU)或者微处理器(MPU)等任意合适的电子部件。以下将以MCU作为控制器1011举例对本实施例的方案进行描述,集成电路或者MPU等其他电子部件则可以直接或者经过简单变换后对下述MCU进行替换,这些替换依然属于本实施例的保护范围。
MCU上设置的通信接口IO1和测温接口AD与通信线1015的一端电连接,以便通过该通信线1015读取连接在该通信线1015另一端的电池30的内部温度以及与电池30中的加密芯片301进行通信。当然,在一些示例中,与通信线1015连接的通信接口IO1和测温接口AD可以集成为MCU上的一个接口,以便进一步降低电源管理系统101内的布线复杂度,而且也可以使得MCU能够连接更多的元器件,从而实现更多的功能。
MCU还通过其上设置的一个控制信号输出接口IO2与选择控制电路1013的信号输入端电连接,以便通过该控制信号输出接口IO2向选择控制电路1013输出控制信号,例如高电平、低电平信号或者其他电信号。以下将MCU输出给选择控制电路1013信号输入端的控制信号简称为使能信号。
在工作时,MCU通过上述控制信号输出接口IO2向选择控制电路1013的控制信号输入端输出使能信号,从而控制该选择控制电路1013在测温模式和加密认证模式之间进行切换。例如,当MCU向选择控制电路1013发出使能信号时,该选择控制电路1013从加密认证模式切换到测温模式;当MCU停止向选择控制电路1013发出使能信号时,则该选择控制电路1013从测温模式切换到加密认证模式。
选择控制电路1013可以采用上拉电路、下拉电路或者其他任意合适的电路。例如,在一些示例中,选择控制电路1013可以包括两个上拉电路,这两个上拉电路的一端与上拉电源VDD电连接,另一端与上述通信线1015电连接。MCU通过控制这两个上拉电路的通/断以便在测温模式和加密认证模式之间进行切换。比如,当其中一个上拉电路导通并且另一个上拉电路断开时,则选择控制电路1013从加密认证模式切换到测温模式,从而控制器1011可以通过通信线1015读取电池30内测温电阻R1的分压, 以便获取该电池30的内部温度;当这两个上拉电路的通断状态在控制器1011的控制下变换为与上述通断状态相反时,则该选择控制电路1013又从测温模式切换到加密认证模式,从而控制器1011可以通过通信线1015与电池30内的加密芯片301进行通信,以便确定该电池30是否为经过认证的电池30。
此外,在本实施例中,通信线1015可以是现有技术中使用的能够传递电信号的任意线缆。例如,在一些示例中,可以选择多芯线作为通信线1015,从而方便该通信线1015与将通信接口IO1和测温接口AD单独设置的MCU电连接。又如,在另一些示例中,可以选择单芯线作为通信线1015,以便与将通信接口IO1和测温接口AD集成在一起的MCU电连接。可以理解,当MCU用于与通信线1015电连接的通信接口IO1和测温接口AD单独设置时同样可以采用单芯线来降低通信线1015的占用空间,而当MCU用于与通信线1015电连接的通信接口IO1和测温接口AD集成在一起时也可以采用多芯线来提高信号传输质量。
继续参考图1,本实施例还提供一种电池30,其包括壳体、一个或者多个电芯、加密芯片301、测温电阻R1。其中,电芯、加密芯片301以及测温电阻R1均设置在壳体的内部,并且电芯与加密芯片301电连接以便为加密芯片301供电,同时,该加密芯片301还与测温电阻R1并联连接、并通过设置在壳体上的一个共用引脚通与上述电源管理系统101通信连接,以使电源管理系统101通过该通信线1015感测测温电阻R1的电压以及与加密芯片301进行通信。可选地,电池30还可以包括电容C1,该电容C1与加密芯片301和测温电阻R1均并联连接,以保护加密芯片301、电阻、电芯以及电池30内其他电子元器件中的一种或者多种。
在使用时,将电池30中加密芯片301和测温电阻R1的共用引脚与电源管理系统101中的通信线1015电连接在一起,从而当控制器1011可以通过控制选择控制电路1013在测温模式和加密认证模式之间切换,以便通过与该共用引脚电连接的通信线1015将测温电阻R1分的分压提供给控制器1011的测温接口AD、以及通过与该共用引脚电连接的通信线1015为电池30内的加密芯片301和控制器1011的通信接口IO1提供通信通道。 当然,在本实施例中,加密芯片301和控制器1011之间通过通信线1015进行的通信可以是单向的也可以是双向的,例如,在一些示例中,可以是仅加密芯片301通过通信线1015向控制器1011发送信号,而在另一些示例中,则可以是加密芯片301和控制器1011均可以通过通信线1015向对方发送信号。
具体来说,当电池30中加密芯片301和测温电阻R1的共用引脚与电源控制系统的通信线1015实现电连接后,控制器1011发出控制信号(例如MCU的控制信号输出接口IO2发出高电平或者低电平信号)以控制选择控制电路1013从测温模式切换到加密认证模式,从而使得电池30的加密芯片301和控制器1011之间通过电源管理系统101的通信线1015进行通信。例如,当电池30与电源管理系统101通过通信线1015实现电连接后,电池30内的加密芯片301主动或者在控制器1011的请求下向控制器1011发送该电池30的认证代码,或者还可以同时发送一个或者多个其他的参数(例如电池30的型号、额定电量、当前剩余电量、额定充电电压、额定放电电压等),从而控制器1011可以根据接收到的认证代码判断出当前与电源管理系统101电连接的电池30是否为经过认证的电池30(也即可接受电池30),并可以进一步根据接收到的电池30的参数控制电池30的充电/放电过程,以便最大限度的利用该电池30的电量。可以理解的,电源管理系统101的控制器1011可以一次接受所有的认证代码和其他参数信息,也可以分多次分别接受上述认证代码和其他参数信息。相应的,电池30对认证代码和其他参数信息的发送也可以通过一次或者多次完成。
本实施例提供的电源管理系统101通过设置控制器1011以及由控制器1011进行控制以便在测温模式和加密认证模式之间进行切换的选择控制电路1013,从而可以使用单根通信线1015与电池30进行通信连接,并根据需要由控制器1011对选择控制电路1013进行控制以实现对电池30的测温和加密认证功能。基于此可知,本实施例提供的电源管理系统101所适配的电池30仅需要加密芯片301和测温电阻R1具有一个共用引脚与该电源管理系统101的通信线1015连接即可,从而可以减少电池30内部的零部件数量,有利于电池30的小型化和轻量化设计。
同时,本实施例提供的电池30,其内的加密芯片301和测温电阻R1具有共用引脚,并且该共用引脚可以与电源管理系统101的控制器1011通过单根通信线1015电连接在一起,从而在控制器1011的控制下,电源管理系统101的选择控制电路1013可以通过在测温模式和加密认证模式之间切换,来使得控制器1011能够通过该共用引脚分别实现读取测温电阻R1电压以及与加密芯片301通信的双重功能。由上所述可知,本实施例的电池30通过将加密芯片301和测温电阻R1共用一个引脚,以便通过电源管理系统101中的单根通信线1015与电源管理系统101的控制器1011通信连接,使得电池30对外的引脚数量得到减少,有利于电池30的小型化和轻量化设计。
图2和图3为本实施例提供的两种选择控制电路的可实现方式。如图2和图3所示,在一些示例中,选择控制电路1013总体上可以包括:上拉电阻和切换开关。其中,上拉电阻的输入端与上拉电源VDD电连接,其输出端与通信线1015电连接;切换开关的控制信号输入端与控制器1011的控制信号输出端电连接,其输出端则与上拉电阻电连接。切换开关则可以选择二极管、三极管、场效应管中的一种或者多种,例如,图2和图3中示出了选择MOS管S1这种场效应管作为切换开关的具体示例。但是,应当理解,在其他一些示例中,可以根据实际需要选择单个二极管、三极管或者其他场效应管作为切换开关,也可以根据实际电路需要选择相同或者不同的开关部件经串联、并联后得到的开关电路作为切换开关。
在工作时,该切换开关能够根据控制器1011输出的控制信号,选择性地改变该上拉电阻的阻值,以使选择控制电路1013在上述测温模式和加密认证模式之间进行切换。具体来说,控制器1011通过输出控制信号给切换开关,从而上拉电阻的阻值能够在切换开关的作用下在第一阻值和第二阻值之间改变,进而改变电池30内测温电阻R1的分压。由于测温电阻R1在选择控制电路1013的控制下会出现两个不同的分压,因此,当测温电阻R1的分压为某一个数值或者是某一个数值范围内时,可以激活控制器1011通过通信接口IO1与加密芯片301进行通信、或者通过测温接口AD读取测温电阻R1的分压以得到电池30的内部温度。可以理解,由 于电路是预先设计好的,因此,选择控制电路1013处于测温模式和加密认证模式时电池30内部的测温电阻R1的分压也是确定的,故而控制器1011控制切换开关的工作状态以使选择控制电路1013进入测温模式和加密认证模式时所需要的控制信号也就是确定的,所以,当控制器1011发送切换信号时,也可以直接激活与该信号相对应的测温接口AD或者通信接口IO1。
举例来说,当控制器1011发出使选择控制电路1013由测温模式进入加密认证模式的控制信号时,控制器1011同时发送一控制信号以激活通信接口IO1,从而使得加密芯片301和控制器1011能够进行通信。同理的,当控制器1011发出使选择控制电路1013由加密认证模式进入测温模式的信号时,控制器1011同时发送一控制信号以激活测温接口AD,从而使得测温接口AD能够读取到电池30内测温电阻R1的分压,继而控制器1011能够根据温敏电阻的特性计算出该测温电阻R1的温度(相当于电池30内部的温度)。
参考图2,在一些可选的实施方式中,上拉电阻包括有第一上拉电阻R2和第二上拉电阻R3,切换开关(图中为MOS管S1)与第二上拉电阻R3串联后的电路再与第一上拉电阻R2并联。控制器1011输入的控制信号用于控制MOS管S1的开闭,从而当MOS管S1闭合时,第一上拉电阻R2和第二上拉电阻R3并联后的阻值为上拉电阻的一个阻值,而当MOS管S1断开时,第一上拉电阻R2的阻值单独作为上拉电阻的一个阻值。
在一些可选的具体示例中,当上拉电阻的阻值等于第一上拉电阻R2的阻值时,也即,MOS管S1断开时,该选择控制电路1013处于测温模式。此时,控制器1011的测温接口AD能够通过通信线1015读取到测温电阻R1的分压,从而计算出电池30内的温度。相应的,当上拉电阻的阻值等于第一上拉电阻R2和第二上拉电阻R3并联后的阻值时,也即,MOS管S1闭合时,该选择控制电路1013处于加密认证模式。此时,控制器1011的通信接口IO1能够通过通信线1015与加密芯片301进行通信。
参考图3,在另一些可选的实施方式中,上拉电阻也包括有第一上拉电阻R2和第二上拉电阻R3,切换开关(图中为MOS管S1)与第二上拉 电阻R3并联后的电路再与第一上拉电阻R2串联。控制器1011输入的控制信号用于控制MOS管S1的开闭,从而当MOS管S1断开时,第一上拉电阻R2和第二上拉电阻R3串联后的阻值为上拉电阻的一个阻值,而当MOS管S1闭合时,第一上拉电阻R2的阻值单独作为上拉电阻的一个阻值。
在一些可选的具体示例中,当上拉电阻的阻值等于第一上拉电阻R2和第二上拉电阻R3的阻值之和时,也即,MOS管S1断开时,该选择控制电路1013处于测温模式。此时,控制器1011的测温接口AD能够通过通信线1015读取到测温电阻R1的分压,从而计算出电池30内的温度。相应的,当上拉电阻的阻值等于第一上拉电阻R2的阻值时,也即,MOS管S1闭合时,该选择控制电路1013处于加密认证模式。此时,控制器1011的通信接口IO1能够通过通信线1015与加密芯片301进行通信。
应当理解,虽然以上根据图2和图3中的两种选择控制电路1013的可实现方式中切换开关使用的是单个的MOS管S1,但本领域技术人员能够想到,该MOS管S1可以使用二极管、三极管、其他场效应管中的一个或者多个进行替换。
进一步,为了在实际工作中满足不断获取电池30参数和温度的需求,在本实施例中,还可选的使控制器1011周期性的向选择控制电路1013(例如向切换开关)输出控制信号,以在上述测温模式和加密认证模式之间进行周期性循环。例如,控制器1011可以以几秒、几十秒、几分钟或者任意其他时间为一个周期,在这个周期内控制器1011分别通过控制选择控制电路1013测定一次电池30内的温度、并与加密芯片301进行一次通信。可以理解,控制器1011在一个周期内测定电池30内部温度的时间和与加密芯片301进行通信的时间可以相同、也可以不同,具体可以根据实际需要进行设置。
进一步,上述通信线1015还可以用于为加密芯片301供电,从而可以取消电池30内部用于由电芯为加密芯片301供电的布线,以便降低电池30内部布线的难度,而且还能进一步降低电池30的重量和减小电池30的体积。
图4为使用充电器11为外部电池31进行充电时的电路示意图。如图4所示,本实施例还提供一种充电器11,该充电器11包括充电电路111以及电源管理系统101。其中,电源管理系统101与上述实施例相同,其与充电电路111电连接,用于控制充电电路111给外部的电池30进行充电。在本实施例中,充电电路111可以是先有技术中使用的任意充电电路111,在此不再赘述。
在工作时,当外部电池31通过充电器11与市电50实现电连接时,电源管理系统101中的控制器1011通过控制选择控制电路1013切换到加密认证模式,从而对外部电池31进行认证,以确定该外部电池31是否为经过认证的电池30。当控制器1011确定该外部电池31为经过认证的合适电池30时,控制器1011将充电电路111导通,以通过市电50为该外部电池31进行充电;当控制器1011确定该外部电池31为没有经过认证的合适电池30时,控制器1011将不会导通充电电路111,从而该外部电池31无法通过充电器11进行充电。
可选的,电源管理系统101和充电电路111集成在一起,以实现充电器11的小型化。
图5为无人机13与其安装的机载电池33的电路示意图。如图5所示,本实施例提供的无人机13包括机载控制器131和电源管理系统101。具体的,电源管理系统101与上述实施例中的电源管理系统101相同,具体可以参见上述实施例;机载控制器131则可以是云台控制器1011和飞行控制器1011中的至少一种。在本实施例中,机载控制器131和电源管理系统101可以集成在一起,以降低无人机13的体积,实现其小型化的目的。
当无人机13开始工作时或者将机载电池33安装到该无人机13上时,无人机13的电源管理系统101中的控制器1011控制选择控制电路1013切换到加密认证模式,以与机载电池33的加密芯片301进行通信,从而确定该机载电池33是否为允许安装到该无人机13上的经过认证的电池30。当电源管理系统101确定安装到该无人机13上的机载电池33为经过认证的电池30时,则电源管理系统101将加载电池30与机载控制器131电连接,以便通过该机载电池33为机载控制器131供电,从而使得机载控制 器131能够正常的控制无人机13飞行或者控制云台工作;而当电源管理系统101认为该机载电池33为没有经过认证的非法电池30时,则电源管理系统101控制该机载电池33无法向机载控制器131供电,以保护机载控制器131的安全。
最后,尽管已经在这些实施例的上下文中描述了与本技术的某些实施例相关联的优点,但是其他实施例也可以包括这样的优点,并且并非所有实施例都详细描述了本发明的所有优点,由实施例中的技术特征所客观带来的优点均应视为本发明区别于现有技术的优点,均属于本发明的保护范围。

Claims (36)

  1. 一种电源管理系统,其特征在于,包括:单根通信线、控制器以及选择控制电路;
    所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;
    所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,
    当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;
    当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
  2. 根据权利要求1所述的电源管理系统,其特征在于,所述选择控制电路包括:上拉电阻和切换开关,所述上拉电阻与所述通信线连接,所述切换开关能够选择性的改变所述上拉电阻的阻值,以使所述选择控制电路在所述测温模式和加密认证模式之间进行切换。
  3. 根据权利要求2所述的电源管理系统,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻串联后的电路与所述第一上拉电阻并联。
  4. 根据权利要求2所述的电源管理系统,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻并联后的电路与所述第一上拉电阻串联。
  5. 根据权利要求2至4任一项所述的电源管理系统,其特征在于,所述切换开关包括二极管、三极管、场效应管中的至少一种。
  6. 根据权利要求5所述的电源管理系统,其特征在于,所述场效应管为MOS管。
  7. 根据权利要求2至4任一项所述的电源管理系统,其特征在于,所述切换开关的控制信号输入端用于与所述控制器的控制信号输出接口连接。
  8. 根据权利要求1至4任一项所述的电源管理系统,其特征在于,所述控制器周期性的输出控制信号,以在所述测温模式和加密认证模式之间进行周期性循环。
  9. 根据权利要求1至4任一项所述的电源管理系统,其特征在于,所述通信线还用于向所述加密芯片供电。
  10. 根据权利要求1至4任一项所述的电源管理系统,其特征在于,所述测温接口和通信接口集成为一个共用接口。
  11. 一种充电器,其特征在于,所述充电器包括:充电电路以及电源管理系统;
    所述电源管理系统与所述充电电路电连接,用于控制所述充电电路给外部的电池进行充电;
    所述电源管理系统包括:单根通信线、控制器以及选择控制电路;
    所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;
    所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,
    当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;
    当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
  12. 根据权利要求11所述的充电器,其特征在于,所述选择控制电路包括:上拉电阻和切换开关,所述上拉电阻与所述通信线连接,所述切换开关能够选择性的改变所述上拉电阻的阻值,以使所述选择控制电路在所述测温模式和加密认证模式之间进行切换。
  13. 根据权利要求12所述的充电器,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻串联后的电路与所述第一上拉电阻并联。
  14. 根据权利要求12所述的充电器,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻并联后的电路与所述第一上拉电阻串联。
  15. 根据权利要求12至14任一项所述的充电器,其特征在于,所述切换开关包括二极管、三极管、场效应管中的至少一种。
  16. 根据权利要求15所述的充电器,其特征在于,所述场效应管为MOS 管。
  17. 根据权利要求12至14任一项所述的充电器,其特征在于,所述切换开关的控制信号输入端用于与所述控制器的控制信号输出接口连接。
  18. 根据权利要求11至14任一项所述的充电器,其特征在于,所述控制器周期性的输出控制信号,以在所述测温模式和加密认证模式之间进行周期性循环。
  19. 根据权利要求11至14任一项所述的充电器,其特征在于,所述通信线还用于向所述加密芯片供电。
  20. 根据权利要求11至14任一项所述的充电器,其特征在于,所述测温接口和通信接口集成为一个共用接口。
  21. 根据权利要求11至14任一项所述的充电器,其特征在于,所述电源管理系统和所述充电电路集成在一起。
  22. 一种无人机,其特征在于,所述无人机包括:机载控制器以及电源管理系统;
    所述电源管理系统包括:单根通信线、控制器以及选择控制电路;
    所述通信线的一端用于与电池通信连接,所述通信线的另一端与控制器的通信接口和测温接口均电连接;
    所述控制器与所述选择控制电路电连接,用于控制所述选择控制电路在测温模式及加密认证模式之间进行切换;其中,
    当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述电池内的测温电阻的电压;
    当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述电池内的加密芯片进行通信。
  23. 根据权利要求22所述的无人机,其特征在于,所述选择控制电路包括:上拉电阻和切换开关,所述上拉电阻与所述通信线连接,所述切换开关能够选择性的改变所述上拉电阻的阻值,以使所述选择控制电路在所述测温模式和加密认证模式之间进行切换。
  24. 根据权利要求23所述的无人机,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻串联后的电路与所述第一上拉电阻并联。
  25. 根据权利要求23所述的无人机,其特征在于,所述上拉电阻包括:第一上拉电阻和第二上拉电阻,所述切换开关与所述第二上拉电阻并联后的电路与所述第一上拉电阻串联。
  26. 根据权利要求23至25任一项所述的无人机,其特征在于,所述切换开关包括二极管、三极管、场效应管中的至少一种。
  27. 根据权利要求26所述的无人机,其特征在于,所述场效应管为MOS管。
  28. 根据权利要求23至25任一项所述的无人机,其特征在于,所述切换开关的控制信号输入端用于与所述控制器的控制信号输出接口连接。
  29. 根据权利要求22至25任一项所述的无人机,其特征在于,所述控制器周期性的输出控制信号,以在所述测温模式和加密认证模式之间进行周期性循环。
  30. 根据权利要求22至25任一项所述的无人机,其特征在于,所述通信线还用于向所述加密芯片供电。
  31. 根据权利要求22至25任一项所述的无人机,其特征在于,所述测温接口和通信接口集成为一个共用接口。
  32. 根据权利要求22至25任一项所述的无人机,其特征在于,所述电源管理系统和所述机载控制器集成在一起。
  33. 根据权利要求22至25任一项所述的无人机,其特征在于,所述机载控制器包括如下至少一种:云台控制器,飞行控制器。
  34. 一种电池,其特征在于,所述电池包括:
    壳体;
    电芯,设于壳体内;
    加密芯片,设于所述壳体内,所述加密芯片与所述电芯电连接,所述电芯为所述加密芯片供电;
    测温电阻,设于所述壳体内,所述测温电阻与所述加密芯片并联连接;以及
    共用引脚,与所述加密芯片以及所述测温电阻电连接;
    其中,所述共用引脚用于通过单根通信线与外部的电源管理系统通信连接,使得所述电源管理系统通过所述通信线感测所述测温电阻的电压以及与 所述加密芯片进行通信。
  35. 根据权利要求34所述的电池,其特征在于,所述电源管理系统包括:控制器以及选择控制电路;
    所述共用引脚通过所述通信线与所述控制器的通信接口和测温接口电连接;
    所述选择控制电路,用于选择性地在测温模式和加密认证模式之间切换;
    当所述选择控制电路切换到所述测温模式时,所述控制器通过所述通信线读取所述测温电阻的电压;
    当所述选择控制电路切换到所述加密认证模式时,所述控制器通过所述通信线与所述加密芯片进行通信。
  36. 根据权利要求34或35所述的电池,其特征在于,所述电池还包括有电容,所述电容与所述加密芯片和测温电阻均并联连接。
PCT/CN2018/089220 2018-05-31 2018-05-31 电源管理系统、电池、充电器以及无人机 WO2019227378A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/089220 WO2019227378A1 (zh) 2018-05-31 2018-05-31 电源管理系统、电池、充电器以及无人机
CN201880031262.0A CN110770961A (zh) 2018-05-31 2018-05-31 电源管理系统、电池、充电器以及无人机
US17/105,974 US20210083330A1 (en) 2018-05-31 2020-11-27 Power supply management system, battery, charger, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089220 WO2019227378A1 (zh) 2018-05-31 2018-05-31 电源管理系统、电池、充电器以及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/105,974 Continuation US20210083330A1 (en) 2018-05-31 2020-11-27 Power supply management system, battery, charger, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019227378A1 true WO2019227378A1 (zh) 2019-12-05

Family

ID=68697755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089220 WO2019227378A1 (zh) 2018-05-31 2018-05-31 电源管理系统、电池、充电器以及无人机

Country Status (3)

Country Link
US (1) US20210083330A1 (zh)
CN (1) CN110770961A (zh)
WO (1) WO2019227378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433775B1 (en) * 2019-07-03 2022-09-06 Hivespot, Inc. Aircraft charging unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953354B (zh) * 2021-02-23 2023-03-24 绍兴光大芯业微电子有限公司 实现故障指示引脚和复位功能引脚复用的电路结构
US11654787B1 (en) * 2022-05-24 2023-05-23 Beta Air, Llc Electric charging station for an electric vehicle and a method for its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203086169U (zh) * 2012-12-11 2013-07-24 南京威阳科技有限公司 一种具有智能监控及防盗功能的光伏电池板
US20140026155A1 (en) * 2009-06-29 2014-01-23 David Valin Apparatus for managing, storage, securing, delivering, and tracking energy and communication transactions
CN106972595A (zh) * 2017-05-26 2017-07-21 深圳市乐迪电子有限公司 无人机锂聚合物动力电池组混合充电系统
CN107452989A (zh) * 2017-03-20 2017-12-08 亿航智能设备(广州)有限公司 电池管理系统及具有其的飞行控制系统和飞行器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438054B2 (en) * 2013-05-01 2016-09-06 Apple Inc. Battery charger integrated circuit chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026155A1 (en) * 2009-06-29 2014-01-23 David Valin Apparatus for managing, storage, securing, delivering, and tracking energy and communication transactions
CN203086169U (zh) * 2012-12-11 2013-07-24 南京威阳科技有限公司 一种具有智能监控及防盗功能的光伏电池板
CN107452989A (zh) * 2017-03-20 2017-12-08 亿航智能设备(广州)有限公司 电池管理系统及具有其的飞行控制系统和飞行器
CN106972595A (zh) * 2017-05-26 2017-07-21 深圳市乐迪电子有限公司 无人机锂聚合物动力电池组混合充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433775B1 (en) * 2019-07-03 2022-09-06 Hivespot, Inc. Aircraft charging unit

Also Published As

Publication number Publication date
CN110770961A (zh) 2020-02-07
US20210083330A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN100449860C (zh) 数据认证电路、电池组件和携带型电子设备
US20200072177A1 (en) Multifunctional Battery Booster
US20210083330A1 (en) Power supply management system, battery, charger, and unmanned aerial vehicle
JP6838879B2 (ja) 受電装置およびその制御回路、電子機器、給電システムの動作方法
US5621301A (en) Connecting multiple batteries to battery powered devices
US7868486B2 (en) Power supply having source determination circuitry utilized to disable battery charging circuitry in powered device
JP5177196B2 (ja) 電池セル監視用集積回路
US20070013341A1 (en) Battery pack
US20060047983A1 (en) Multiple source/multiple device connector
US20130162196A1 (en) Charger
US20090302801A1 (en) Charging system and vehicle and charge controller for the charging system
US20130113417A1 (en) Charge control device and charge control method
US20050099156A1 (en) Battery determination system for battery-powered devices
US8952653B2 (en) Intelligent eco-friendly starter battery
KR102458525B1 (ko) 체결 인식 기능을 갖춘 배터리 팩
US11605841B2 (en) Battery equalizing apparatus and method, and unmanned aerial vehicle
CN208272060U (zh) 电源管理系统、电池、充电器以及无人机
CN105226754B (zh) 电池充放电控制电路及其控制方法
US20130103878A1 (en) Universal usb charger
CN105098890A (zh) 充电数据线及充电器
US20190237829A1 (en) Smart battery system for low temperature engine start
US20190237821A1 (en) Low temperature engine start method for smart battery
WO2020196173A1 (ja) 半導体集積回路
US20060178171A1 (en) Audio/charging module and electronic system and porable electronic device thereof
CN205039588U (zh) 电池充放电控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920755

Country of ref document: EP

Kind code of ref document: A1