WO2019227307A1 - 地面机器人控制方法及地面机器人 - Google Patents

地面机器人控制方法及地面机器人 Download PDF

Info

Publication number
WO2019227307A1
WO2019227307A1 PCT/CN2018/088851 CN2018088851W WO2019227307A1 WO 2019227307 A1 WO2019227307 A1 WO 2019227307A1 CN 2018088851 W CN2018088851 W CN 2018088851W WO 2019227307 A1 WO2019227307 A1 WO 2019227307A1
Authority
WO
WIPO (PCT)
Prior art keywords
waypoint
information
ground robot
waypoints
preset
Prior art date
Application number
PCT/CN2018/088851
Other languages
English (en)
French (fr)
Inventor
陈超彬
龚鼎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880031254.6A priority Critical patent/CN110637265A/zh
Priority to PCT/CN2018/088851 priority patent/WO2019227307A1/zh
Publication of WO2019227307A1 publication Critical patent/WO2019227307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to the technical field of robots, and in particular, to a method for controlling a ground robot and a ground robot.
  • Ground robots can perform various work tasks under the control of control terminals.
  • Ground robots often work in complex environments. For example, the ground robot moves between more obstacles. Due to the obstruction of the obstacles, the communication between the control terminal and the ground robot may be lost, so that the ground robot will lose control; In some cases, the ground robot moves beyond the user's field of vision, and the user cannot achieve precise control of the ground robot. The above problems reduce the practicality of ground robots.
  • the invention provides a ground robot control method and a ground robot, which are used to improve the intelligence degree of the ground robot.
  • the present invention provides a method for controlling a ground robot, including:
  • waypoint information of multiple waypoints is recorded, and the waypoint information includes position information of the ground robot;
  • a return trajectory is determined according to the waypoint information of the plurality of waypoints, and a return is performed according to the return trajectory.
  • the present invention provides a ground robot, comprising: a processor and a memory for storing computer instructions; the processor running the computer instructions for:
  • waypoint information of multiple waypoints is recorded, and the waypoint information includes position information of the ground robot;
  • a return trajectory is determined according to the waypoint information of the plurality of waypoints, and a return is performed according to the return trajectory.
  • the ground robot control method and the ground robot provided in the embodiments of the present invention record the waypoint information of multiple waypoints during the movement according to the movement control instruction sent by the control terminal, and the waypoint information includes the ground robot's Position information.
  • the return trajectory is determined based on the waypoint information of the multiple waypoints, and the return is performed according to the return trajectories, thereby realizing the automatic return of the ground robot and improving the intelligence of the ground robot. .
  • FIG. 1 is a schematic diagram of an application scenario of a ground robot control method according to an embodiment of the present application
  • Embodiment 1 of a ground robot control method according to an embodiment of the present application
  • FIG. 3A is a schematic diagram of a waypoint for recording waypoint information according to an embodiment of the present application.
  • FIG. 3B- FIG. 3D are schematic diagrams of a return flight trajectory obtained on the basis of FIG. 3A according to an embodiment of the present application;
  • FIG. 4 is a flowchart of a second embodiment of a ground robot control method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a ground robot control method according to an embodiment of the present application.
  • 6A and 6B are schematic diagrams of determining a target waypoint from a plurality of waypoints according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a ground robot according to an embodiment of the present application.
  • a component when a component is called “fixed to” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “connected” to another component, it can be directly connected to another component or a centered component may exist at the same time.
  • FIG. 1 is a schematic diagram of an application scenario of a ground robot control method according to an embodiment of the present application.
  • the application scenario may include: a control terminal 101 and a ground robot 102.
  • the control terminal 101 can be wirelessly connected to the ground robot 102, and the control terminal 101 can control the ground robot 102.
  • the ground robot 102 may be equipped with a photographing device.
  • the photographing device may include a camera or a video camera.
  • the ground robot 102 may further include a gimbal.
  • the photographing device may be connected to the body of the ground robot 102 through the gimbal.
  • the ground robot 101 can adjust the shooting posture of the shooting device by controlling the pan / tilt.
  • the control terminal 101 may specifically be any device capable of controlling a ground robot, such as one or more of a remote controller, a computer, a smart phone, and a wearable device.
  • the ground robot 102 may specifically be any robot capable of moving on the ground, such as a sweeping robot, a chariot robot, and the like.
  • FIG. 2 is a flowchart of Embodiment 1 of a ground robot control method according to an embodiment of the present application.
  • the method in this embodiment may be executed by a ground robot.
  • the method may be executed by a processor of the ground robot, where the processor may be one or more, and the one or more processors work individually or in cooperation.
  • the method in this embodiment may include:
  • Step 201 Receive a movement control instruction sent by a control terminal, and move according to the movement control instruction.
  • the movement control instruction may be specifically used to control the movement of the ground robot, for example, to control the ground robot to move forward 1 meter, move backward 0.5 meter, and the like.
  • the movement control instruction may also control the posture of the ground robot ’s fuselage, such as controlling the ground robot to turn left, right, etc .; and / or, the movement control instruction may also control the ground robot ’s The attitude of the gimbal, such as tilt, rotation, etc .; and / or, the movement control instruction may also control the ground robot to perform actions, such as taking a picture, video, etc.
  • Step 202 During the movement, record waypoint information of multiple waypoints.
  • the waypoint information includes position information of the ground robot.
  • the waypoint information includes position information of the ground robot.
  • the position information may be absolute position information, or may be relative position information relative to a reference point.
  • the satellite positioning device may be, for example, a Global Positioning System (GPS) device, a Real Time Kinematic (RTK) device, or the like.
  • GPS Global Positioning System
  • RTK Real Time Kinematic
  • the ground robot is not equipped with a satellite positioning device, and the position information may be relative position information.
  • the relative position information is a position coordinate in a plane coordinate system with a reference point as an origin, and the reference point may be a position point where the ground robot is located when it is powered on.
  • a ground robot may be configured with an Inertial Measurement Unit (IMU), and confirm the position information of the ground robot, that is, the relative position information, according to the measurement data output by the inertial measurement unit.
  • IMU Inertial Measurement Unit
  • the position information of the ground robot may be determined by fusing the measurement data output by the inertial measurement unit configured by the ground robot and the measurement data output by the encoder configured by the ground robot.
  • the ground robot may be configured with an inertial measurement unit and an encoder, wherein the ground robot may be configured with a wheel, and the encoder may measure an angle of rotation of the wheel.
  • the measurement data output from the inertial measurement unit and the measurement data output from the encoder can be fused to determine the relative position information of the ground robot.
  • the Kalman filter algorithm can be used to output the The measurement data and the measurement data output by the encoder are fused to determine the relative position information of the ground robot.
  • the measurement data output from the satellite positioning device, the measurement data output from the inertial measurement unit and the measurement data output from the encoder can be fused to determine the relative position information of the ground robot.
  • Kalman filtering can be used.
  • the algorithm fuses the measurement data output from the satellite positioning device, the measurement data output from the inertial measurement unit and the measurement data output from the encoder to determine the absolute position information of the ground robot.
  • waypoint information of multiple waypoints can be recorded into a memory.
  • the memory may be a peripheral memory, such as a U disk, a memory card; or the memory may also be a local memory, such as a main memory, and a buffer.
  • the preset trigger condition may be a preset time condition, a preset distance condition, a preset event condition, and the like.
  • waypoint information of multiple waypoints is recorded.
  • the distance between the ground robot and the control terminal, and the distance between the ground robot and the control terminal is greater than or equal to a preset distance threshold, indicating that there may be a communication break between the control terminal and the ground robot.
  • a preset distance threshold indicating that there may be a communication break between the control terminal and the ground robot.
  • waypoint information of multiple waypoints is recorded.
  • the ground robot detects the signal strength of the movement control instruction received from the control terminal, and when it is detected that the signal strength is less than or equal to a preset signal strength threshold, it indicates that between the control terminal and the ground robot There may be a possibility of communication disconnection, or the ground robot may move out of the user's field of vision, and the ground robot begins to record multiple waypoint information.
  • step 203 when a preset return condition is satisfied, a return trajectory is determined according to the waypoint information of the plurality of waypoints, and a return is performed according to the return trajectory.
  • the preset return-to-home condition can be understood as any condition that requires the ground robot to automatically return to home, for example, it can be a movement distance greater than 100 meters, or a movement time greater than 2 hours.
  • the ground robot may automatically return to the home by the control terminal, or the ground robot may return to the home automatically; or, the ground robot may return to the home automatically by other equipment besides the control terminal and the ground robot.
  • a return home trajectory may be determined according to the waypoint information of all the waypoints in the multiple waypoints. At this time, the return home trajectory may be determined by the waypoint information of the multiple waypoints; or, A return home trajectory is determined according to the waypoint information of a part of the multiple waypoints. At this time, the return home trajectory may be determined by the waypoint information of the part of the waypoints.
  • the return trajectory may be determined by fitting according to the route information of the multiple waypoints.
  • the ground robot can return according to the return flight track in the following way: in the first step, the ground robot moves from a5 to a4; in the second step, the ground robot moves from a4 to a3; in the third step, the ground robot moves from a3 to a2; fourth In step, the ground robot moves from a2 to a1.
  • the return trajectory may be determined by fitting according to the route information of some of the waypoints (for example, waypoints a1, a3, and a5).
  • the ground robot can return home according to the return flight track in the following way: in the first step, the ground robot moves from a5 to a3; in the second step, the ground robot moves from a3 to a1.
  • the return trajectory may be determined by fitting according to the route information of some of the waypoints (for example, waypoints a2, a4, and a5).
  • the ground robot can return home according to the return flight track in the following way: in the first step, the ground robot moves from a5 to a4; in the second step, the ground robot moves from a4 to a2.
  • a1 in FIG. 3B and FIG. 3C and a2 in FIG. 3D can be understood as the end points of the return flight.
  • waypoint information of multiple waypoints is recorded, and the waypoint information includes the position information of the ground robot, and the preset return conditions are met.
  • a return home trajectory is determined according to the waypoint information of the multiple waypoints, and a return home based on the return home trajectory realizes the automatic return of the ground robot and improves the intelligence of the ground robot.
  • the method for controlling a ground robot provided in this embodiment does not limit that a satellite positioning device must be installed on the ground robot, thereby avoiding the problem that the satellite positioning device must be installed to realize automatic return, which is costly or cannot provide an automatic return function.
  • FIG. 4 is a flowchart of a second embodiment of a ground robot control method according to an embodiment of the present application. Based on the embodiment shown in FIG. 2, this embodiment mainly describes a specific implementation manner. As shown in FIG. 4, the method in this embodiment may include:
  • Step 401 Receive a movement control instruction sent by a control terminal, and move according to the movement control instruction.
  • step 401 is similar to step 201, and details are not described herein again.
  • Step 402 During the movement, record waypoint information of multiple waypoints.
  • step 402 may specifically include: during the movement, recording waypoint information of multiple waypoints at preset time intervals. For example, during the movement, the waypoint information of the waypoint is recorded every 5 seconds.
  • step 403 may specifically include: during the movement, recording waypoint information of multiple waypoints at preset distance intervals. For example, during the movement, the waypoint information of the waypoint is recorded every 2 meters. It should be noted that the shorter the preset time interval and the preset distance interval, the higher the frequency of recording, the greater the number of recorded waypoints, and the higher the accuracy that can be provided.
  • the waypoint information may be stored in a storage area of the memory.
  • the newly added waypoint information may overwrite the earliest recorded waypoint information.
  • the waypoint information includes position information of the ground robot, and the return path can be determined by fitting according to the position information in the waypoint information of the multiple waypoints. Because the movement control instruction can also control the attitude of the ground robot body, the attitude of the gimbal, and perform actions.
  • the waypoint information may further include one or more of attitude information of the ground robot body, attitude information of the ground robot head, and movement information of the ground robot performing an action.
  • the waypoint information includes the attitude information of the ground robot body, so that the ground robot can control the attitude of the ground robot body according to the waypoint information during the automatic return of the ground robot.
  • the waypoint information includes the attitude information of the ground robot's gimbal, so that the ground robot can control the attitude of the ground robot's gimbal according to the waypoint information during the return of the ground robot.
  • the waypoint information includes movement information of the ground robot performing actions, so that the ground robot can control the ground robot to perform actions according to the waypoint information during the automatic return of the ground robot.
  • the ground robot can obtain the coordinates A ( B, C, D) of the four waypoints in the plane rectangular coordinate system with O as the origin by using the inertial measurement unit and the encoder, respectively.
  • the attitude ⁇ may be a ground robot, wherein the ⁇ may be the angle between the head and the ground Y-axis coordinate system of the robot. It can be understood immediately that ⁇ can also be determined by the angle between the front of the ground robot and the X axis of the coordinate system.
  • the ground robot may also record environmental information during the movement.
  • the environmental information may include obstacle information and / or marker information.
  • the environmental information may be obtained through an environmental sensor, where the environmental sensor may include one or more of a vision sensor, a lidar, an ultrasonic sensor, and a TOF sensor.
  • the obstacle information may specifically be one or more of coordinates of the obstacle in a plane coordinate system whose reference point is a coordinate origin, an image of the obstacle, and a distance between the ground robot and the obstacle.
  • the marker information may specifically be one or more of the coordinates of the marker in a plane coordinate system with the reference point as the coordinate origin, the number of calibration objects, the image of the obstacle, and the distance between the ground robot and the obstacle.
  • the marker may be, for example, an object having a specific identifier, such as a floor tile, and the marker information may be, for example, the width of the floor tile.
  • the method in this embodiment may further include: correcting position information in waypoint information of the plurality of waypoints according to the environment information.
  • determining the returning trajectory according to the waypoint information of the multiple waypoints may specifically include determining the returning trajectory according to the corrected multiple waypoint information. For example, assuming that the width of the floor tile is known to be 70 cm, it is determined by the camera that the distance between two adjacent waypoints has passed the width of a floor tile. However, the position between the two adjacent waypoints is used to determine the distance between the two waypoints. The distance is 60 cm. Therefore, the position information of the next one of the two adjacent waypoints can be corrected based on the known floor tile width of 70 cm and the distance between the two waypoints.
  • step 403 when the preset return flight condition is satisfied, at least two target waypoints meeting the preset waypoint requirements are determined from the plurality of waypoints.
  • the preset return flight conditions include: disconnecting communication with the control terminal, and / or receiving an automatic return flight command sent by the control terminal.
  • the communication between the ground robot and the control terminal is disconnected, which is opposite to the communication connection between the ground robot and the control terminal.
  • the ground robot and the control terminal are communicatively connected, communication can be performed between the ground robot and the control terminal.
  • the ground robot can receive a movement control command or an automatic return command sent by the control terminal.
  • communication between the ground robot and the control terminal is disconnected, communication cannot be performed between the ground robot and the control terminal.
  • the ground robot cannot receive a signal sent by the control terminal, such as the movement control instruction.
  • the preset return condition that is disconnected from the control terminal can be applied to, for example, the following two scenarios: Scenario 1.
  • Scenario 1 In an indoor environment, the ground robot moves to a corner, and there are multiple walls separated from the control terminal. Due to the obstruction of the wall, the mobile control instruction cannot reach the ground robot, and when the communication between the ground robot and the control terminal is disconnected, the ground robot is automatically returned.
  • Scenario 2 The ground robot moves too far away from the control terminal. When the mobile control command sent by the control terminal reaches the ground robot, the signal strength is too small to be parsed, and when the communication between the ground robot and the control terminal is disconnected, the ground robot is triggered to return home automatically.
  • the ground robot can perform the signal strength of the control terminal during the movement. Monitoring. When in the S3 area, the ground robot determines that the signal sent by the control terminal cannot be searched, that is, when it determines that the communication with the control terminal is disconnected, it returns to home.
  • the automatic return flight instruction is determined by a control terminal detecting a user's return flight instruction operation, and the control terminal sends the automatic return flight instruction to a ground robot, and the ground robot returns to the home according to the return flight track when receiving the instruction .
  • the compliance with the preset waypoint requirements includes: a distance from an adjacent previous waypoint is greater than or equal to the preset distance; and / or, a connection with an adjacent previous waypoint The included angle between the line and the adjacent next waypoint is greater than or equal to the first preset angle; and / or, the line between the and the adjacent previous waypoint and the adjacent The included angle between the lines between the next waypoints is less than or equal to the second preset angle.
  • a plurality of waypoints include waypoint a1, waypoint b1, waypoint c1, and waypoint d1, and a distance L1 between waypoint b1 and an adjacent previous waypoint a1 is less than a preset Distance, the distance L2 between the waypoint c1 and the adjacent previous waypoint b1, and the distance L3 between the waypoint d1 and the adjacent previous waypoint c1 are all greater than the preset distance, then from the waypoint a1-
  • the target waypoint determined in waypoint d1 may include at least waypoint c1 and waypoint d1, and in some cases, the target waypoint also includes waypoint a1.
  • a plurality of waypoints include waypoint a2, waypoint b2, waypoint c2, waypoint d2, and waypoint e2.
  • the line Z1 between the waypoint b2 and the adjacent previous waypoint a2, the line Z2 between the waypoint b2 and the adjacent next waypoint c2, and the angle ⁇ abc between Z1 and Z2 is smaller than the first A preset angle; the line Z2 between the waypoint c2 and the adjacent previous waypoint b2, the line Z3 between the waypoint c2 and the adjacent next waypoint d2, the clip between Z2 and Z3
  • the angle ⁇ bcd is larger than the first preset angle; the line Z3 between the waypoint d2 and the adjacent previous waypoint c2, and the line Z3 between the waypoint d2 and the waypoint e2.
  • the target waypoint determined from waypoint a2-waypoint e2 may include at least waypoint c2 and waypoint d2. In some embodiments, the target waypoint further includes Waypoint a2 and / or waypoint e2.
  • a plurality of waypoints include waypoint a2, waypoint b2, waypoint c2, waypoint d2, and waypoint e2.
  • the line Z1 between the waypoint b2 and the adjacent previous waypoint a2, the line Z2 between the waypoint b2 and the adjacent next waypoint c2, and the angle ⁇ abc between Z1 and Z2 is smaller than the first Two preset angles; the line Z2 between waypoint c2 and the next previous waypoint b2, the line Z3 between waypoint c2 and the next next waypoint d2, the clip between Z2 and Z3
  • the angle ⁇ bcd is smaller than the second preset angle; the line Z3 between the waypoint d2 and the adjacent previous waypoint c2, and the clip between the line Z3, 3 and Z4 between the waypoint d2 and the waypoint e2 If the angle ⁇ cde is greater than the second preset angle, the target waypoint determined from waypoint a2-waypoint e
  • the included angle between the two wires in this embodiment only refers to the included angle formed by the two wires of limited length, and not the two wires.
  • the included angle may be greater than or equal to 0 ° and less than or equal to 180 °.
  • Step 404 Determine a return home trajectory according to the waypoint information of the at least two target waypoints, and return home according to the return home trajectories.
  • the method in this embodiment may further include: during a return flight, searching for a signal sent by the control terminal, for example, during the return flight.
  • the ground robot searches for the mobile control instructions sent by the control terminal and re-establishes communication with the control terminal.
  • the ground robot will return to a position communicatively connected with the control terminal.
  • the ground robot can receive a movement control instruction of the control terminal.
  • the method in this embodiment may further include: receiving a return-to-home instruction sent by the control terminal, and suspending returning according to the return-to-home instruction; or Receiving a return home cancellation instruction sent by the control terminal, and canceling the return home according to the cancellation return home instruction.
  • the ground robot suspends the home return according to the suspension home return instruction sent by the control terminal, or cancels the home return instruction to cancel the home return, improving the flexibility of the ground robot home control.
  • waypoint information of multiple waypoints is recorded, and the waypoint information includes the position information of the ground robot, and the preset return conditions are met.
  • the return home trajectory is determined based on some of the recorded waypoints that meet the preset waypoint requirements, so that the return home trajectory is basically consistent with the navigation trajectory, the number of return home steps is reduced, and the return of the ground robot is simplified process.
  • FIG. 7 is a schematic structural diagram of a ground robot according to an embodiment of the present application.
  • the ground robot 70 provided in this embodiment may include a processor 701 and a memory 702 for storing computer instructions, and the processor 701 runs the computer instructions;
  • the processor 701 is configured to:
  • waypoint information of multiple waypoints is recorded, and the waypoint information includes position information of the ground robot;
  • a return trajectory is determined according to the waypoint information of the plurality of waypoints, and a return is performed according to the return trajectory.
  • the processor 701 determines the return flight trajectory according to the waypoint information of the multiple waypoints
  • the processor 701 is specifically configured to:
  • a return flight trajectory is determined according to the waypoint information of the at least two target waypoints.
  • the compliance with the preset waypoint requirements includes:
  • the distance to the adjacent previous waypoint is greater than or equal to the preset distance; and / or, the connection to the adjacent previous waypoint and the connection to the adjacent next waypoint
  • the included angle between them is greater than or equal to the first preset angle; and / or the included angle between the line with the adjacent previous waypoint and the line with the adjacent next waypoint Less than or equal to the second preset angle.
  • the preset return home condition includes: disconnecting communication with the control terminal; or receiving an automatic return home instruction sent by the control terminal.
  • the processor 701 is further configured to search for a signal sent by the control terminal during a return journey.
  • processor 701 when the processor 701 records the waypoint information of multiple waypoints during the movement, it is specifically used to:
  • the waypoint information of multiple waypoints is recorded according to a preset time interval or a preset distance interval.
  • processor 701 when the processor 701 records the waypoint information of multiple waypoints during the movement, it is specifically used to:
  • the processor 701 when the processor 701 records the waypoint information of multiple waypoints when a preset trigger condition is met, it is specifically used to:
  • waypoint information of multiple waypoints is recorded.
  • the processor 701 when the processor 701 records the waypoint information of multiple waypoints when a preset trigger condition is met, it is specifically used to:
  • the processor 701 is further configured to: during the movement, record environmental information, where the environmental information includes obstacle information and / or marker information.
  • the processor 701 is further configured to correct position information in the waypoint information of the multiple waypoints according to the environment information;
  • the processor 701 determines the return flight trajectory according to the waypoint information of the multiple waypoints, the processor 701 is specifically configured to:
  • a returning trajectory is determined according to the corrected plurality of waypoint information.
  • the position information is determined by fusing the measurement data output from the inertial measurement unit configured on the ground robot and the measurement data output from an encoder configured on the ground robot.
  • the waypoint information further includes one or more of attitude information of the ground robot body, attitude information of the ground robot head, and movement information of the ground robot performing actions.
  • the ground robot provided in this embodiment may further include a sensor, and the sensor is configured to acquire the waypoint information.
  • the processor 701 When the processor 701 records waypoint information of multiple waypoints, it is specifically configured to: obtain waypoint information of multiple waypoints from the sensor, and record the waypoint information to the memory 702.
  • ground robot provided in this embodiment may be used to implement the technical solutions of the foregoing method embodiments, and the implementation principles and technical effects thereof are similar to the method embodiments, and details are not described herein again.
  • a person of ordinary skill in the art may understand that all or part of the steps of implementing the foregoing method embodiments may be implemented by a program instructing related hardware.
  • the aforementioned program may be stored in a computer-readable storage medium.
  • the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种地面机器人控制方法及地面机器人。该方法包括:接收控制终端发送的移动控制指令,并根据该移动控制指令移动;在移动的过程中,记录多个航点的航点信息,该航点信息包括地面机器人的位置信息;当满足预设返航条件时,根据多个航点的航点信息,确定返航轨迹,并根据返航轨迹返航。该控制方法提高了地面机器人的智能化程度。该地面机器人(70)包括:处理器(701)以及用于存储计算机指令的存储器(702),处理器(701)运行计算机指令,并按照相应的控制方法确定返航轨迹和返航。

Description

地面机器人控制方法及地面机器人 技术领域
本发明涉及机器人技术领域,尤其涉及一种地面机器人控制方法及地面机器人。
背景技术
随着地面机器人技术的不断发展,地面机器人的应用越来越广泛,地面机器人可以在控制终端的控制下执行各种工作任务。
地面机器人往往在复杂的环境中工作,例如地面机器人在较多的障碍物之间移动,由于障碍物的遮挡,控制终端和地面机器人之间的通信可能会丢失,这样地面机器人会失去控制;某些情况中,地面机器人运动至用户的视野之外,用户无法实现对地面机器人的精准控制。上述问题,降低了地面机器人的实用性。
发明内容
本发明提供一种地面机器人控制方法及地面机器人,用于提高地面机器人的智能化程度。
第一方面,本发明提供一种地面机器人控制方法,包括:
接收控制终端发送的移动控制指令,并根据所述移动控制指令移动;
在移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息;
当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
第二方面,本发明提供一种地面机器人,包括:处理器以及用于存储计算机指令的存储器;所述处理器运行所述计算机指令,用于:
接收控制终端发送的移动控制指令,并根据所述移动控制指令移动;
在移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息;
当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
本发明实施例提供的地面机器人控制方法及地面机器人,通过在根据控制终端发送的移动控制指令移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息,在满足预设返航条件时,根据所述多个航点的航点信息确定返航轨迹,并根据所述返航轨迹返航,实现了地面机器人的自动返航,提高了地面机器人的智能化程度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的地面机器人控制方法的应用场景示意图;
图2为本申请实施例提供的地面机器人控制方法实施例一的流程图;
图3A为本申请实施例提供的记录航点信息的航点的示意图;
图3B-图3D为本申请实施例提供的在图3A的基础上得到的返航轨迹的示意图;
图4为本申请实施例提供的地面机器人控制方法实施例二的流程图;
图5为本申请实施例提供的地面机器人控制方法的示意图;
图6A和图6B为本申请实施例提供的从多个航点中确定目标航点的示意图;
图7为本申请实施例提供的地面机器人的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一 个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本申请实施例提供的地面机器人控制方法的应用场景示意图。如图1所示,该应用场景可以包括:控制终端101和地面机器人102。其中,控制终端101可以与地面机器人102无线通讯连接,控制终端101可以对地面机器人102进行控制。其中地面机器人102上可以配置拍摄装置,其中,所述拍摄装置可以包括照相机或者摄影机等,另外,地面机器人102还可以包括云台,其中,拍摄装置可以通过云台连接到地面机器人102的机身上,地面机器人101通过控制云台就可以调整拍摄装置的拍摄姿态。控制终端101具体可以为任何能够用于对地面机器人进行控制的设备,例如遥控器、电脑、智能手机、穿戴式设备中的一种或多种。地面机器人102具体可以为任何能够在地面上移动的机器人,例如扫地机器人、战车机器人等。
图2为本申请实施例提供的地面机器人控制方法实施例一的流程图。本实施例的方法可以由地面机器人执行,具体地,所述方法可以由地面机器人的处理器执行,其中,所述处理器可以为一个或多个,一个或多个处理器单独或协同地工作以执行所述控制方法。如图2所示,本实施例的方法可以包括:
步骤201,接收控制终端发送的移动控制指令,并根据所述移动控制指令移动。
本步骤中,所述移动控制指令具体可以用于控制所述地面机器人移动,例如控制地面机器人前进1米、后退0.5米等。可选的,所述移动控制指令还可以控制所述地面机器人的机身的姿态,例如控制地面机器人左转、右转等;和/或,所述移动控制指令还可以控制所述地面机器人的云台的姿态,例如倾斜、旋转等;和/或,所述移动控制指令还可以控制所述地面机器人执行 动作,例如拍照、摄像等。
步骤202,在移动的过程中,记录多个航点的航点信息。所述航点信息包括所述地面机器人的位置信息。
本步骤中,所述航点信息包括所述地面机器人的位置信息。可选的,所述位置信息可以绝对位置信息,或者也可以为相对于参考点的相对位置信息。当为绝对位置信息时,可以通过经纬度表示,可以通过卫星定位装置确定。其中,卫星定位装置例如可以为全球定位系统(Global Positioning System,GPS)装置、实时动态定位(Real Time Kinematic,RTK)装置等。在某些情况中,地面机器人没有配置卫星定位装置,所述位置信息可以为相对位置信息。其中,所述相对位置信息是在以参考点为原点的平面坐标系下的位置坐标,其中,所述参考点可以为地面机器人上电时所处的位置点。例如,现有技术中,地面机器人可以配置惯性测量单元(Inertial Measurement Unit,IMU),并根据惯性测量单元输出的测量数据来确认地面机器人的位置信息,即相对位置信息。
本发明实施例中,地面机器人的位置信息,可以根据地面机器人配置的惯性测量单元输出测量数据和地面机器人配置的编码器输出的测量数据融合确定。具体地,地面机器人可以配置有惯性测量单元和编码器,其中,地面机器人可以配置车轮,编码器可以测量车轮转动的角度。当地面机器人没有配置卫星定位装置时,可以将惯性测量单元输出的测量数据和编码器输出的测量数据融合以确定地面机器人的相对位置信息,例如,可以通过卡尔曼滤波算法将惯性测量单元输出的测量数据和编码器输出的测量数据融合以确定地面机器人的相对位置信息。当地面机器人配置卫星定位装置时,可以将卫星定位装置输出的测量数据、惯性测量单元输出的测量数据和编码器输出的测量数据融合以确定地面机器人的相对位置信息,例如,可以通过卡尔曼滤波算法将卫星定位装置输出的测量数据、惯性测量单元输出的测量数据和编码器输出的测量数据融合以确定地面机器人的绝对位置信息。
可选的,可以将多个航点的航点信息记录到存储器中。其中,所述存储器可以为外设存储器,例如U盘、存储卡;或者,所述存储器也可以为本地存储器,例如主存储器,缓存(buffer)。
在地面机器人移动的过程中,当满足预设触发条件时,记录多个航点的 航点信息。当不满足预设触发条件时,不记录航点的航点信息。通过这种方式,可以有效地节省地面机器人的存储空间。可选的,所述预设触发条件可以为预设时间条件、预设距离条件、预设事件条件等。
例如,当检测到与控制终端之间的距离大于或等于预设距离阈值时,记录多个航点的航点信息。具体地,在移动的过程中,地面机器人检测与控制终端之间的距离,当地面机器人与控制终端之间的距离大于或等于预设距离阈值,说明控制终端与地面机器人之间可能存在通讯断开的可能性,或者地面机器人可能移动至用户的视野之外,地面机器人开始记录多个航点信息。
再例如,当检测到从控制终端接收到的移动控制指令的信号强度小于或等于预设信号强度阈值时,记录多个航点的航点信息。具体地,在移动的过程中,地面机器人检测从控制终端接收到的移动控制指令的信号强度,当检测到所述信号强度小于或等于预设信号强度阈值时,说明控制终端与地面机器人之间可能存在通讯断开的可能性,或者地面机器人可能移动至用户的视野之外,地面机器人开始记录多个航点信息。
需要说明的是,地面机器人持续移动的过程,以及地面机器人移动与静止交替的过程,均可以理解为移动机器人移动的过程。
步骤203,当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
本步骤中,所述预设返航条件可以理解为需要触发地面机器人自动返航的任意条件,例如可以为移动距离大于100米,或者移动时长大于2小时等。可选的,可以由控制终端触发地面机器人自动返航,或者,也可以由地面机器人触发自动返航;或者,还可以由除控制终端以及地面机器人之外的其他设备触发地面机器人自动返航。
可选的,可以根据所述多个航点中所有航点的航点信息,确定返航轨迹,此时所述返航航迹可以由所述多个航点的航点信息确定;或者,也可以根据所述多个航点中部分航点的航点信息,确定返航轨迹,此时所述返航轨迹可以由所述部分航点的航点信息确定。
例如,如图3A所示,假设地面机器人根据控制终端沿箭头方向所示的移动路径移动的过程中,记录了a1、a2、a3、a4和a5,5个航点的航点信息,则根据这5个航点的航点信息确定的返航轨迹可以如图3B-图3D所示。
其中,对于图3B所示的返航轨迹,所述返航轨迹可以根据所述多个航点的航线信息来拟合确定。地面机器人可以通过如下方式根据返航航迹返航:第一步,地面机器人由a5移动至a4;第二步,地面机器人由a4移动至a3;第三步,地面机器人由a3移动至a2;第四步,地面机器人由a2移动至a1。
对于图3C所示的返航轨迹,所述返航轨迹可以根据所述多个航点中部分航点(例如航点a1、a3和a5)的航线信息来拟合确定。地面机器人可以通过如下方式根据返航航迹返航:第一步,地面机器人由a5移动至a3;第二步,地面机器人由a3移动至a1。
对于图3D所示的返航轨迹,所述返航轨迹可以根据所述多个航点中部分航点(例如航点a2、a4和a5)的航线信息来拟合确定。地面机器人可以通过如下方式根据返航航迹返航:第一步,地面机器人由a5移动至a4;第二步,地面机器人由a4移动至a2。
可以看出,组成返航航线的航点数目越多,地面机器人根据返航轨迹返航时,移动的步数越多,返航过程越复杂。
需要说明的是,图3B和图3C中的a1以及图3D中的a2可以理解为返航的终点。
本实施例中,通过在根据控制终端发送的移动控制指令移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息,在满足预设返航条件时,根据所述多个航点的航点信息确定返航轨迹,并根据所述返航轨迹返航,实现了地面机器人的自动返航,提高了地面机器人的智能化程度。并且,本实施例提供的地面机器人控制方法并不限定地面机器人上必须安装卫星定位装置,从而避免了必须安装卫星定位装置才能实现自动返航时,成本较大或无法提供自动返航功能的问题。
图4为本申请实施例提供的地面机器人控制方法实施例二的流程图。本实施例在上述图2所示实施例的基础上,主要描述了一种具体实现方式。如图4所示,本实施例的方法可以包括:
步骤401,接收控制终端发送的移动控制指令,并根据所述移动控制指令移动。
需要说明的是,步骤401与步骤201类似,在此不再赘述。
步骤402,在移动的过程中,记录多个航点的航点信息。
本步骤中,可选的,步骤402具体可以包括:在移动的过程中,按照预设时间间隔,记录多个航点的航点信息。例如,在移动的过程中,每隔5秒,记录一次航点的航点信息。或者,步骤403具体可以包括:在移动的过程中,按照预设距离间隔,记录多个航点的航点信息。例如,在移动的过程中,每隔2米,记录一次航点的航点信息。需要说明的是,预设时间间隔、预设距离间隔越短,则记录的频率越高,记录的航点的数量越多,可提供的精度越高。
可选的,航点信息可以保存在存储器的存储区域中,在存储区域已满的情况下,新增的航点信息可以将最早记录的航点信息覆盖。
所述航点信息包括所述地面机器人的位置信息,所述返航轨迹可以根据所述多个航点的航点信息中的位置信息来拟合确定。由于所述移动控制指令还可以控制所述地面机器人机身的姿态、云台的姿态,执行动作等。可选的,所述航点信息还可以包括所述地面机器人机身的姿态信息、所述地面机器人云台的姿态信息、所述地面机器人执行动作的动作信息中的一种或多种。其中,航点信息包括地面机器人机身的姿态信息,使得地面机器人自动返航的过程中,可以根据航点信息控制地面机器人的机身的姿态。航点信息包括地面机器人云台的姿态信息,使得地面机器人返航的过程中,可以根据航点信息控制地面机器人的云台的姿态。航点信息包括所述地面机器人执行动作的动作信息,使得地面机器人自动返航的过程中,可以根据航点信息控制地面机器人执行动作。
如图5所示,在移动过程中,地面机器人可以通过惯性测量单元和编码器,分别获得A、B、C、D四个航点在以O为坐标原点的平面直角坐标系的坐标A (x 1,y 11),B (x 2,y 22),C (x 3,y 33),D(x 4,y 44),其中,所述x和y表示地面机器人的位置信息,所述 θ可以为地面机器人的姿态,其中,所述θ可以为地面机器人的机头与坐标系Y轴之间的夹角。可以立即理解的是,所述θ也可以通过地面机器人的正前方与坐标系X轴之间的夹角。
可选的,在移动过程中,地面机器人还可以记录环境信息。可选的,所述环境信息可以包括障碍物信息和/或标记物信息。所述环境信息可以通过环境传感器获取,其中,环境传感器可以包括视觉传感器、激光雷达、超声波传感器、TOF传感器中的一种或多种。所述障碍物信息具体可以为 障碍物在参考点为坐标原点的平面坐标系下的坐标、障碍物的图像和地面机器人与障碍物之间的距离中的一种或多种。所述标记物信息具体可以为标记物在参考点为坐标原点的平面坐标系下的坐标、标定物的数量、障碍物的图像和地面机器人与障碍物之间的距离中的一种或多种。其中,所述标记物例如可以为具有特定标识的物体,例如地砖,所述标记物信息例如可以为地砖宽度。
进一步可选的,本实施例的方法还可以包括:根据所述环境信息对所述多个航点的航点信息中的位置信息进行修正。相应的,所述根据所述多个航点的航点信息确定返航轨迹,具体可以包括:根据所述修正后的多个航点信息确定返航轨迹。例如,假设已知地砖宽度为70厘米,通过摄像头确定相邻的两个航点之间经过了一块地砖宽度的距离,然而根据相邻的两个航点的位置信息确定两个航点之间的距离为60厘米,因此,可以根据已知地砖宽度70厘米,以及两个航点之间的距离60厘米,对相邻两个航点中后一个航点的位置信息进行修正。
步骤403,当满足预设返航条件时,从所述多个航点中确定至少两个符合预设航点要求的目标航点。
本步骤中,可选的,所述预设返航条件包括:与所述控制终端通讯断开,和/或,接收到控制终端发送的自动返航指令。需要说明的是,地面机器人与控制终端通讯断开,与地面机器人与控制终端通讯连接相对。当地面机器人与控制终端通讯连接时,地面机器人与控制终端之间能够进行通信,例如,地面机器人可以接收控制终端发送的移动控制命令或自动返航指令。当地面机器人与控制终端通讯断开时,地面机器人与控制终端之间无法进行通信,例如,地面机器人接收不到控制终端发送的信号,例如所述移动控制指令。
其中,与控制终端通信断开的预设返航条件,例如可以应用于如下两种场景:场景1,在室内环境中,当地面机器人移动至拐角,并与控制终端之间相隔多个墙体,由于墙体的遮挡,移动控制指令不能到达地面机器人,导致地面机器人与控制终端之间的通讯断开时,触发地面机器人自动返航。场景2,当地面机器人移动至距离控制终端太远,控制终端发送的移动控制指令到达地面机器人时信号强度太小而无法解析,导致地面机器人与控制终端通讯断开时,触发地面机器人自动返航。
如图5所示,假设控制终端S发送的信号(例如移动控制指令)覆盖范围为S1至S2区域,S3区域为无信号区域,则地面机器人在移动过程中,可以对控制终端的信号强度进行监控,当处于S3区域时,地面机器人确定搜索不到控制终端发送的信号,即确定与控制终端之间的通讯断开时,触发返航。
可以看出,通过与所述控制终端通讯断开作为预设返航条件,可以解决在复杂环境中地面机器人丢失控制终端的信号但操作员不便接近已通信断开机器人时易丢失或损坏对面机器人的问题,提升了地面机器人在复杂环境下的灵活性与安全性。
可选的,所述自动返航指令为控制终端检测用户的返航指示操作确定的,控制终端将所述自动返航指令发送给地面机器人,地面机器人在收到所述指令时,根据所述返航轨迹返航。
可以看出,通过接收到自动返航指令作为预设返航条件,可以提升地面机器人的操作灵活性。
可选的,所述符合预设航点要求包括:与相邻的上一个航点之间的距离大于或等于预设距离;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角大于或等于第一预设角度;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角小于或等于第二预设角度。
例如,如图6A所示,假设多个航点包括航点a1、航点b1、航点c1和航点d1,航点b1与相邻的上一个航点a1之间的距离L1小于预设距离,航点c1与相邻的上一个航点b1之间的距离L2,以及航点d1与相邻的上一个航点c1之间的距离L3均大于预设距离,则从航点a1-航点d1中确定的目标航点可以至少包括航点c1和航点d1,在某些情况中,目标航点还包括航点a1。
又例如,如图6B所示,假设多个航点包括航点a2、航点b2、航点c2、航点d2和航点e2。航点b2与相邻的上一个航点a2之间的连线Z1,航点b2和相邻的下一个航点c2之间的连线Z2,Z1和Z2之间的夹角θ abc小于第一预设角度;航点c2与相邻的上一个航点b2之间的连线Z2,航点c2和相邻的下一个航点d2之间的连线Z3,Z2和Z3之间的夹角θ bcd大于第一预设角度;航点d2与相邻的上一个航点c2之间的连线Z3,航点d2和航点e2之间的连 线Z3,3和Z4之间的夹角θ cde大于第一预设角度,则从航点a2-航点e2中确定的目标航点可以至少包括航点c2和航点d2,在某些实施例中,所述目标航点还包括航点a2和/或航点e2。
又例如,如图6B所示,假设多个航点包括航点a2、航点b2、航点c2、航点d2和航点e2。航点b2与相邻的上一个航点a2之间的连线Z1,航点b2和相邻的下一个航点c2之间的连线Z2,Z1和Z2之间的夹角θ abc小于第二预设角度;航点c2与相邻的上一个航点b2之间的连线Z2,航点c2和相邻的下一个航点d2之间的连线Z3,Z2和Z3之间的夹角θ bcd小于第二预设角度;航点d2与相邻的上一个航点c2之间的连线Z3,航点d2和航点e2之间的连线Z3,3和Z4之间的夹角θ cde大于第二预设角度,则从航点a2-航点e2中确定的目标航点可以至少包括航点b2和航点c2,在某些实施例中,所述目标航点还包括航点a2和/或航点e2。
需要说明的是,如图6A和图6B所示,本实施例中两个连线之间的夹角仅是指两个有限长度的连线所形成的夹角,并不是指两个连线中一个连线与另一个连线的延长线所形成的夹角。其中,所述夹角可以大于或等于0°,且小于或等于180°。
步骤404,根据所述至少两个目标航点的航点信息确定返航轨迹,并根据所述返航轨迹返航。
本步骤中,可选的,当地面机器人与所述控制终端通讯断开时,本实施例的方法还可以包括:在返航的过程中,搜索所述控制终端发送的信号,例如,在返航的过程中,地面机器人会搜索控制终端发送的移动控制指令,重新建立与控制终端之间的通讯。在某些情况中,地面机器人会返航至与所述控制终端通讯连接的位置。这里,通过返航至与所述控制终端通讯连接的位置,使得地面机器人可以接收控制终端的移动控制指令。
可选的,在所述地面机器人根据所述返航轨迹返航的过程中,本实施例的方法还可以包括:接收所述控制终端发送的暂停返航指令,并根据所述暂停返航指令暂停返航;或者,接收所述控制终端发送的取消返航指令,并根据所述取消返航指令取消返航。这里,通过地面机器人根据控制终端发送的暂停返航指令暂停返航,或者取消返航指令取消返航,提高了地面机器人返航控制的灵活性。
本实施例中,通过在根据控制终端发送的移动控制指令移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息,在满足预设返航条件时,从所述多个航点中确定至少两个符合预设航点要求的目标航点,根据所述至少两个目标航点的航点信息确定返航轨迹,并根据所述返航轨迹返航,实现了基于记录的所有航点中满足预设航点要求的部分航点确定返航轨迹并返航,从而能够确保返航轨迹与航行轨迹基本一致的前提下,减少返航的步数,简化地面机器人的返航过程。
图7为本申请实施例提供的地面机器人的结构示意图。如图7所示,本实施例提供的地面机器人70可以包括处理器701以及用于存储计算机指令的存储器702,处理器701运行所述计算机指令;
其中,处理器701,用于:
接收控制终端发送的移动控制指令,并根据所述移动控制指令移动;
在移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息;
当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
可选的,处理器701根据所述多个航点的航点信息,确定返航轨迹时,具体用于:
从所述多个航点中确定至少两个符合预设航点要求的目标航点;
根据所述至少两个目标航点的航点信息确定返航轨迹。
可选的,所述符合预设航点要求包括:
与相邻的上一个航点之间的距离大于或等于预设距离;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角大于或等于第一预设角度;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角小于或等于第二预设角度。
可选的,所述预设返航条件包括:与所述控制终端通讯断开;或者,接收控制终端发送的自动返航指令。
可选的,当与所述控制终端通讯断开时,处理器701,还用于在返航的过程中,搜索所述控制终端发送的信号。
可选的,处理器701在移动的过程中,记录多个航点的航点信息时,具 体用于:
在移动的过程中,按照预设时间间隔或预设距离间隔记录多个航点的航点信息。
或者,处理器701在移动的过程中,记录多个航点的航点信息时,具体用于:
在移动的过程中,当满足预设触发条件时,记录多个航点的航点信息。
可选的,处理器701当满足预设触发条件时,记录多个航点的航点信息时,具体用于:
当检测到与所述控制终端之间的距离大于或等于预设距离阈值时,记录多个航点的航点信息。
可选的,处理器701当满足预设触发条件时,记录多个航点的航点信息时,具体用于:
当检测到从所述控制终端接收到的所述移动控制指令的信号强度小于或等于预设信号强度阈值时,记录多个航点的航点信息。
可选的,处理器701,还用于:在移动的过程中,记录环境信息,所述环境信息包括障碍物信息和/或标记物信息。
可选的,处理器701,还用于根据所述环境信息对所述多个航点的航点信息中的位置信息进行修正;
处理器701根据所述多个航点的航点信息确定返航轨迹时,具体用于:
根据所述修正后的多个航点信息确定返航轨迹。
可选的,所述位置信息是根据所述地面机器人上配置的惯性测量单元输出测量数据和所述地面机器人上配置的编码器输出的测量数据融合确定的。
可选的,所述航点信息还包括所述地面机器人机身的姿态信息、所述地面机器人云台的姿态信息、所述地面机器人执行动作的动作信息中的一种或多种。
可选的,本实施例提供的地面机器人还可以包括:传感器,所述传感器用于获取所述航点信息。
处理器701记录多个航点的航点信息时,具体用于:从所述传感器获取多个航点的航点信息,并记录到存储器702。
本实施例提供的地面机器人,可以用于执行前述方法实施例的技术方案, 其实现原理和技术效果与方法实施例类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (27)

  1. 一种地面机器人控制方法,其特征在于,包括:
    接收控制终端发送的移动控制指令,并根据所述移动控制指令移动;
    在移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息;
    当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多个航点的航点信息,确定返航轨迹,包括:
    从所述多个航点中确定至少两个符合预设航点要求的目标航点;
    根据所述至少两个目标航点的航点信息确定返航轨迹。
  3. 根据权利要求2所述的方法,其特征在于,所述符合预设航点要求包括:
    与相邻的上一个航点之间的距离大于或等于预设距离;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角大于或等于第一预设角度;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角小于或等于第二预设角度。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述满足预设返航条件包括:与所述控制终端通讯断开;或者,接收到所述控制终端发送的自动返航指令。
  5. 根据权利要求4所述的方法,其特征在于,当与所述控制终端通讯断开时,所述方法还包括:
    在返航的过程中,搜索所述控制终端发送的信号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述在移动的过程中,记录多个航点的航点信息,包括:
    在移动的过程中,按照预设时间间隔或预设距离间隔记录多个航点的航点信息。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述在移动的过程中,记录多个航点的航点信息,包括:
    在移动的过程中,当满足预设触发条件时,记录多个航点的航点信息。
  8. 根据权利要求7所述的方法,其特征在于,所述当满足预设触发条件时,记录多个航点的航点信息,包括:
    当检测到与所述控制终端之间的距离大于或等于预设距离阈值时,记录多个航点的航点信息。
  9. 根据权利要求7所述的方法,其特征在于,所述当满足预设触发条件时,记录多个航点的航点信息,包括:
    当检测到从所述控制终端接收到的所述移动控制指令的信号强度小于或等于预设信号强度阈值时,记录多个航点的航点信息。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    在移动的过程中,记录环境信息,所述环境信息包括障碍物信息和/或标记物信息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述环境信息对所述多个航点的航点信息中的位置信息进行修正;
    所述根据所述多个航点的航点信息确定返航轨迹,包括:
    根据所述修正后的多个航点信息确定返航轨迹。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述位置信息是根据所述地面机器人上配置的惯性测量单元输出测量数据和所述地面机器人上配置的编码器输出的测量数据融合确定的。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述航点信息还包括所述地面机器人机身的姿态信息、所述地面机器人云台的姿态信息、所述地面机器人执行动作的动作信息中的一种或多种。
  14. 一种地面机器人,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,运行所述计算机指令,用于:
    接收控制终端发送的移动控制指令,并根据所述移动控制指令移动;
    在移动的过程中,记录多个航点的航点信息,所述航点信息包括所述地面机器人的位置信息;
    当满足预设返航条件时,根据所述多个航点的航点信息,确定返航轨迹,并根据所述返航轨迹返航。
  15. 根据权利要求14所述的地面机器人,其特征在于,所述处理器根据所述多个航点的航点信息,确定返航轨迹时,具体用于:
    从所述多个航点中确定至少两个符合预设航点要求的目标航点;
    根据所述至少两个目标航点的航点信息确定返航轨迹。
  16. 根据权利要求15所述的地面机器人,其特征在于,所述符合预设航点要求包括:
    与相邻的上一个航点之间的距离大于或等于预设距离;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角大于或等于第一预设角度;和/或,与相邻的上一个航点之间的连线和与相邻的下一个航点之间的连线之间的夹角小于或等于第二预设角度。
  17. 根据权利要求14-16任一项所述的地面机器人,其特征在于,所述预设返航条件包括:与所述控制终端通讯断开;或者,接收到所述控制终端发送的自动返航指令。
  18. 根据权利要求17所述的地面机器人,其特征在于,当与所述控制终端通讯断开时,所述处理器,还用于在返航的过程中,搜索所述控制终端发送的信号。
  19. 根据权利要求14-18任一项所述的地面机器人,其特征在于,所述处理器在移动的过程中,记录多个航点的航点信息时,具体用于:
    在移动的过程中,按照预设时间间隔或预设距离间隔记录多个航点的航点信息。
  20. 根据权利要求14-18任一项所述的地面机器人,其特征在于,所述处理器在移动的过程中,记录多个航点的航点信息时,具体用于:
    在移动的过程中,当满足预设触发条件时,记录多个航点的航点信息。
  21. 根据权利要求20所述的地面机器人,其特征在于,所述处理器当满足预设触发条件时,记录多个航点的航点信息时,具体用于:
    当检测到与所述控制终端之间的距离大于或等于预设距离阈值时,记录多个航点的航点信息。
  22. 根据权利要求20所述的地面机器人,其特征在于,所述处理器当满足预设触发条件时,记录多个航点的航点信息时,具体用于:
    当检测到从所述控制终端接收到的所述移动控制指令的信号强度小于或 等于预设信号强度阈值时,记录多个航点的航点信息。
  23. 根据权利要求14-22任一项所述的地面机器人,其特征在于,所述处理器,还用于:在移动的过程中,记录环境信息,所述环境信息包括障碍物信息和/或标记物信息。
  24. 根据权利要求23所述的地面机器人,其特征在于,所述处理器,还用于根据所述环境信息对所述多个航点的航点信息中的位置信息进行修正;
    所述处理器根据所述多个航点的航点信息确定返航轨迹时,具体用于:
    根据所述修正后的多个航点信息确定返航轨迹。
  25. 根据权利要求14-24任一项所述的地面机器人,其特征在于,所述位置信息是根据所述地面机器人上配置的惯性测量单元输出测量数据和所述地面机器人上配置的编码器输出的测量数据融合确定的。
  26. 根据权利要求14-25任一项所述的地面机器人,其特征在于,所述航点信息还包括所述地面机器人机身的姿态信息、所述地面机器人云台的姿态信息、所述地面机器人执行动作的动作信息中的一种或多种。
  27. 一种可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序,当可移动平台的至少一个处理器执行所述计算机程序时,可移动平台执行权利要求1-13任一项所述的方法。
PCT/CN2018/088851 2018-05-29 2018-05-29 地面机器人控制方法及地面机器人 WO2019227307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880031254.6A CN110637265A (zh) 2018-05-29 2018-05-29 地面机器人控制方法及地面机器人
PCT/CN2018/088851 WO2019227307A1 (zh) 2018-05-29 2018-05-29 地面机器人控制方法及地面机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088851 WO2019227307A1 (zh) 2018-05-29 2018-05-29 地面机器人控制方法及地面机器人

Publications (1)

Publication Number Publication Date
WO2019227307A1 true WO2019227307A1 (zh) 2019-12-05

Family

ID=68697724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088851 WO2019227307A1 (zh) 2018-05-29 2018-05-29 地面机器人控制方法及地面机器人

Country Status (2)

Country Link
CN (1) CN110637265A (zh)
WO (1) WO2019227307A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614670A (zh) * 2020-02-28 2021-11-05 深圳市大疆创新科技有限公司 无人机的返航控制方法和设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320467A (ja) * 1998-05-08 1999-11-24 Marusan Seiyaku Kk 遠隔操作型作業用ロボット
US20040210346A1 (en) * 2003-04-15 2004-10-21 Samsung Electronics Co., Ltd. Method and apparatus for allowing mobile robot to return to docking station
CN103507067A (zh) * 2012-06-15 2014-01-15 华硕电脑股份有限公司 机器人装置以及导引机器人返回基站的方法
US20150190925A1 (en) * 2014-01-07 2015-07-09 Irobot Corporation Remotely Operating a Mobile Robot
CN205608520U (zh) * 2016-04-27 2016-09-28 河北德普电器有限公司 一种机器人电量检测自动返航系统
CN106826821A (zh) * 2017-01-16 2017-06-13 深圳前海勇艺达机器人有限公司 基于图像视觉引导的机器人自动返回充电的方法和系统
CN107030695A (zh) * 2017-04-19 2017-08-11 广州视源电子科技股份有限公司 机器人返回原点运动控制方法和系统
CN107414837A (zh) * 2017-09-13 2017-12-01 上海伟世通汽车电子系统有限公司 工业机器人非正常停机后安全自动回原位的方法及其系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202471085U (zh) * 2011-07-17 2012-10-03 张杰夫 一种导航装置
CN107783550A (zh) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 控制无人机返航的方法及装置
CN106976099A (zh) * 2017-06-07 2017-07-25 杭州派尼澳电子科技有限公司 一种电磁循迹的智能机器人送餐系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320467A (ja) * 1998-05-08 1999-11-24 Marusan Seiyaku Kk 遠隔操作型作業用ロボット
US20040210346A1 (en) * 2003-04-15 2004-10-21 Samsung Electronics Co., Ltd. Method and apparatus for allowing mobile robot to return to docking station
CN103507067A (zh) * 2012-06-15 2014-01-15 华硕电脑股份有限公司 机器人装置以及导引机器人返回基站的方法
US20150190925A1 (en) * 2014-01-07 2015-07-09 Irobot Corporation Remotely Operating a Mobile Robot
CN205608520U (zh) * 2016-04-27 2016-09-28 河北德普电器有限公司 一种机器人电量检测自动返航系统
CN106826821A (zh) * 2017-01-16 2017-06-13 深圳前海勇艺达机器人有限公司 基于图像视觉引导的机器人自动返回充电的方法和系统
CN107030695A (zh) * 2017-04-19 2017-08-11 广州视源电子科技股份有限公司 机器人返回原点运动控制方法和系统
CN107414837A (zh) * 2017-09-13 2017-12-01 上海伟世通汽车电子系统有限公司 工业机器人非正常停机后安全自动回原位的方法及其系统

Also Published As

Publication number Publication date
CN110637265A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US10165233B2 (en) Information processing method, electronic device and computer storage medium
US8315794B1 (en) Method and system for GPS-denied navigation of unmanned aerial vehicles
EP1926007B1 (en) Method and system for navigation of an unmanned aerial vehicle in an urban environment
CA3107374C (en) Systems and methods for autonomous machine tracking and localization of mobile objects
EP2972462B1 (en) Digital tethering for tracking with autonomous aerial robot
CN107478220B (zh) 无人机室内导航方法、装置、无人机及存储介质
US7725260B2 (en) Image-augmented inertial navigation system (IAINS) and method
WO2019100353A1 (zh) 一种任务执行方法、移动装置、系统及存储介质
US20170229023A1 (en) Communication link accessibility aware navigation
CN103175524A (zh) 一种无标识环境下基于视觉的飞行器位置与姿态确定方法
Achtelik et al. Sfly: Swarm of micro flying robots
US20120158237A1 (en) Unmanned apparatus and method of driving the same
JP6934116B1 (ja) 航空機の飛行制御を行う制御装置、及び制御方法
WO2019227307A1 (zh) 地面机器人控制方法及地面机器人
Li et al. Combined RGBD-inertial based state estimation for MAV in GPS-denied indoor environments
CN111580530B (zh) 一种定位方法、装置、自主移动设备及介质
JP7351609B2 (ja) 経路探索装置及びプログラム
CN113795803A (zh) 无人飞行器的飞行辅助方法、设备、芯片、系统及介质
KR101911353B1 (ko) Gnss 신호 손실시 자율 비행 방법 및 이를 위한 무인 비행체
CN113014658B (zh) 设备控制及装置、电子设备、存储介质
KR101835262B1 (ko) 교란에 대한 방어 기능을 구비한 무인 항공기 및 그 제어 방법
WO2016048238A1 (en) Method and apparatus for navigation of a robotic device
US20220334594A1 (en) Information processing system, information processing apparatus, and information processing program
CN114581603A (zh) 一种无人机建模方法及装置
Rydell et al. Chameleon v2: Improved imaging-inertial indoor navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920683

Country of ref document: EP

Kind code of ref document: A1