WO2019225762A1 - Drone system, drone, controller, method for controlling drone system, and control program of drone system - Google Patents

Drone system, drone, controller, method for controlling drone system, and control program of drone system Download PDF

Info

Publication number
WO2019225762A1
WO2019225762A1 PCT/JP2019/020825 JP2019020825W WO2019225762A1 WO 2019225762 A1 WO2019225762 A1 WO 2019225762A1 JP 2019020825 W JP2019020825 W JP 2019020825W WO 2019225762 A1 WO2019225762 A1 WO 2019225762A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
state
state transition
determination unit
transition determination
Prior art date
Application number
PCT/JP2019/020825
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2019570162A priority Critical patent/JP6803592B2/en
Publication of WO2019225762A1 publication Critical patent/WO2019225762A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors

Definitions

  • the present invention relates to a drone system, a flying body (drone), and more particularly to a drone with improved safety, a pilot, a control method for the drone system, and a drone system control program.
  • the drone can know the absolute position of its own aircraft accurately in centimeters during flight. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • a drone that can maintain high safety that is, an unmanned air vehicle can be provided.
  • a drone system is a drone system in which a controller and a drone are connected to each other through a network and operate in cooperation with each other. Have a plurality of states different from each other, the drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone has the condition for each of the plurality of states.
  • a first state transition determination unit that determines whether or not the condition is satisfied
  • the controller includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states. The first state transition determination unit and the second state transition determination unit alternatively perform the determination.
  • the main terminal determination unit further determines which state transition determination unit performs the determination, the main terminal determination unit, when the first state transition determination unit is not in a state where the determination can be performed, It is good also as what determines a 2nd state transition determination part performing the said determination.
  • the second state transition determination unit may perform the determination when the drone is powered off.
  • the second state transition determination unit may perform the determination when a direct or indirect connection between the drone and the controller is disconnected.
  • the drone and the pilot are executing information on the state to which the drone system currently belongs, power on / off information and power capacity of the drone and the pilot, operation history, maintenance history, failure information, and emergency stop. Information on whether or not, the history of emergency stop, the connection state between the pilot and the drone, and the water or the drug injected into the drug tank provided in the drone, the amount and the injection history Of these, at least one piece of information may be transmitted and received.
  • the drone may receive a power capacity of the pilot from the pilot and take a retreat action when the power capacity is a predetermined value or less.
  • the pilot may transmit an emergency stop command to the drone, and the drone may transmit reception information to the pilot indicating that the emergency stop command has been received.
  • a third state in which a base station is connected to at least one of the drone and the pilot through a network, and the base station determines whether the condition is satisfied for each of the plurality of states;
  • a transition determination unit may be provided, and the first state transition determination unit, the second state transition determination unit, and the third state transition determination unit may alternatively perform the determination.
  • the base station executes information on the state to which the drone system currently belongs, as well as on / off information and power capacity of the drone and the base station, operation history, maintenance history, failure information, and emergency stop. Information on whether or not it is in the middle, history of emergency stop, the connection state of the drone, the pilot, and the base station, and the water or medicine injected into the medicine tank provided in the drone Alternatively, at least one piece of information about the amount and the injection history may be transmitted / received to / from the drone and / or the pilot.
  • a farming support cloud is connected to at least one of the drone and the controller through a network, and the farming support cloud determines whether or not the condition is satisfied for each of the plurality of states.
  • a four-state transition determination unit may be provided, and the first state transition determination unit, the second state transition determination unit, and the fourth state transition determination unit may alternatively perform the determination.
  • first state transition determination unit, the second state transition determination unit, the third state transition determination unit, and the fourth state transition determination unit may alternatively perform the determination.
  • a drone according to another aspect of the present invention is a drone connected to a control device and a drone system connected to each other through a network and operating in cooperation with each other, and the drone system includes a plurality of different drones.
  • the drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone satisfies the condition for each of the plurality of states.
  • a first state transition determination unit that determines whether or not the first state transition determination unit includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states;
  • the transition determination unit and the second state transition determination unit alternatively perform the determination.
  • a pilot according to another aspect of the present invention is a pilot connected to a drone and a drone system connected to each other through a network and operating in cooperation with each other, and the drone system includes a plurality of different drones.
  • the drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone satisfies the condition for each of the plurality of states.
  • a first state transition determination unit that determines whether or not the first state transition determination unit includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states;
  • the state transition determination unit and the second state transition determination unit alternatively perform the determination.
  • a drone system control method is a drone system control method in which a controller and a drone are connected to each other through a network and operate in cooperation with each other.
  • the system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition defined for each state, and the control method includes: A first state transition determination step for determining whether or not the condition is satisfied for each state; and a second state transition determination for determining whether or not the controller satisfies the condition for each of the plurality of states
  • the first state transition determination step and the second state transition determination step are alternatively performed.
  • a drone system control program is a drone system control program that is executed by a computer in a drone system in which a controller and a drone are connected to each other through a network and operate in cooperation with each other.
  • the drone system has a plurality of different states, the drone system transitions to another state corresponding to the condition by satisfying a condition defined for each state, and the drone system control program
  • a first state transition determination instruction for determining whether or not the condition is satisfied for each of the plurality of states by the drone; and whether or not the condition is satisfied for each of the plurality of states by the pilot.
  • a second state transition determination instruction for determining, the first state transition determination instruction and the second state transition determination instruction Alternatively causes the computer to execute state transition determination instruction.
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • a drone unmanned aerial vehicle that can maintain high safety even during autonomous flight.
  • FIG. 6 shows an overall conceptual diagram of a system using an embodiment of a drug spraying application of the drone 100 according to the present invention.
  • the drone system 500 is a system in which a drone 100, a controller 401, a base station 404, and a farming support cloud 405 are connected to each other through a network (NW) and operate in cooperation with each other. is there.
  • NW network
  • all the components may be directly connected to each other, or each component is directly connected to at least one component and separated via the directly connected component.
  • the structure indirectly connected with the component of (2) may be sufficient.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency controller with an emergency stop function may be used (the emergency controller is a dedicated device with a large emergency stop button, etc. so that a quick response can be taken in an emergency.
  • the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming support cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming support cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth state of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (invasion route) from the arrival / departure point 406 to the target farm field 403 may be stored in advance in the farming support cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • aircraft in general having a plurality of rotor blades or flying means.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • the drone 100 sprays the medicine stored in the medicine tank 104 from the air toward the bottom toward the field.
  • the drone 100 that performs aerial spraying, it is possible to spray the medicine more precisely on the field than when sprayed from the ground by a ground sprayer or the user. Therefore, unlike the case where it is sprayed from the ground, it is not sprayed over the area in the field and can be sprayed uniformly. Therefore, the medicine stored in the medicine tank 104 is a medicine having a high concentration, for example, about 10 times that of the medicine sprayed from the ground.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming support cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis sensor 505 is means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration).
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves. These sensors may be selected according to drone cost targets and performance requirements.
  • a gyro sensor for measuring the inclination of the aircraft
  • a wind sensor for measuring wind force
  • these sensors are preferably duplexed or multiplexed.
  • the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor.
  • a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, building, human body, standing tree, bird, or other drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • the drug discharge control system included in the drone 100 is provided in an agricultural machine for spraying medicine, particularly in the drug spraying drone 100 in this example, and controls the medicine discharge with high precision. Detects abnormal discharge.
  • the medicine discharge abnormality actually occurs, and in addition to a state where a medicine exceeding a specified value is being discharged, such a medicine discharging abnormality occurs.
  • the medicine tank 104 is a tank for storing the medicine to be sprayed.
  • the medicine tank 104 is provided with an openable / closable lid for filling medicine or taking out medicines stored.
  • An open / close sensor 104a capable of detecting an open / close state is attached to the openable / closable lid.
  • the open / close sensor 104a can be constituted by, for example, a magnet attached to the lid and a sensor attached to the main body and sensing the magnetic force and contact of the magnet. Thereby, the open / closed state of the lid is determined, the user can recognize the open / closed state of the lid, and the situation where the medicine is sprayed while the lid is open can be prevented.
  • the medicine tank 104 is provided with a medicine type discrimination sensor 104b.
  • the medicine type discrimination sensor 104b can discriminate the type of medicine stored in the medicine tank 104.
  • the medicine type discrimination sensor 104b is constituted by, for example, a device capable of measuring the viscosity, conductivity, or pH of the medicine in the medicine tank 104, and the value of each measured item and the reference value for each medicine And the type of medicine can be determined.
  • a cartridge type drug tank is used as the drug tank 104, an IC or the like in which the drug type data is recorded is attached to the cartridge type drug tank.
  • the type of medicine can be determined.
  • the particle size of the drug varies depending on the type. If a drug with a particle size smaller than the drug intended to be sprayed is accidentally sprayed, drift (scattering of the drug other than the target) will occur. , Adhesion) is high and cannot be overlooked.
  • the medicine tank 104 is provided with a liquid shortage sensor 511 for detecting the liquid shortage of the medicine.
  • the medicine when the medicine runs out, it includes not only the case where the medicine runs out, but also the case where the amount of medicine falls below a predetermined amount, and detects the running out of medicine according to an arbitrarily set amount. Can do.
  • a medicine transpiration detection function and a temperature / humidity measurement function in the medicine tank 104 may be provided in the medicine tank 104 so that the medicine is managed in an appropriate state.
  • the pump 106 discharges the medicine stored in the medicine tank 104 downstream, and each medicine nozzle 103-1, 103-2, via the medicine hose 105-1, 105-2, 105-3, 105-4, Send to 103-3, 103-4.
  • the medicine is delivered from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4.
  • the medicine is delivered along this delivery path. Is referred to as the downstream direction, and the opposite direction may be referred to as the upstream direction.
  • a part of the medicine is sent again from the medicine tank 104 to the medicine tank 104 through the three-way valve 122.
  • the three-way valve 122 side is referred to as a downstream direction
  • the medicine tank 104 side is referred to as an upstream direction. Yes.
  • the expansion tank 131 is a tank for temporarily storing the medicine sent from the three-way valve 122 and returning it to the medicine tank 104.
  • the path from the three-way valve 122 to the drug tank 104 via the expansion tank 131 is a path for removing (defoaming) water in the drug tank 104 or bubbles in the drug. By circulating this path and temporarily storing it in the expansion tank 131, it is possible to defoam water or chemicals.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 deliver the drug only in a certain direction and in the direction opposite to the certain direction. This is a valve for preventing the inflow, that is, the back flow.
  • the check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 are provided from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3.
  • 103-4 plays a role of a blocking mechanism that blocks the discharge of the drug, and if it can play a role of blocking the discharge of the drug, the other mechanism such as an electromagnetic valve is used as the blocking mechanism You can also
  • the check valve 121-1 is provided between the drug tank 104 and the pump 106, in the vicinity of the drug discharge port provided in the drug tank 104, and the check valve 121-2 is provided with the three-way valve 122 and the drug.
  • the nozzles 103-1, 103-2, 103-3, 103-4 are provided, and check valves 121-4, 121-5, 121-6, 121-7 are provided to discharge the medicine 103a- 1, 103 a-2, 103 a-3, and 103 a-4, and a check valve 121-3 is provided between the three-way valve 122 and the expansion tank 131.
  • the check valve 121-1 controls the medicine sent out from the medicine tank 104 in the downstream direction so that it cannot flow back to the medicine tank 104.
  • the check valve 121-2 controls the medicine sent from the pump 106 in the downstream direction so that it cannot flow back to the pump 106.
  • the check valve 121-3 controls the medicine sent from the three-way valve 122 to be sent in the upstream direction where the expansion tank 131 is present, so that the check valve 121-3 cannot flow back to the three-way valve 122.
  • the check valves 121-4, 121-5, 121-6, 121-7 can block the discharge of medicine from the discharge ports 103a-1, 103a-2, 103a-3, 103a-4. I have to.
  • check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 such as swing type, lift type, and wafer type, are used. It is not limited to a specific one. Regardless of this example, more check valves may be provided in appropriate locations than in this example.
  • the three-way valve 122 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, A branch point of a path connected to 103-4 and a path connected from the pump 106 to the drug tank 104 via the expansion tank 131 is configured, and the drug is sent to each path according to the switching operation.
  • the three-way valve 122 is, for example, a three-way solenoid valve.
  • the path leading from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, 103-4 causes the drug to be discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4. It is a route for spraying medicine.
  • the path leading from the pump 106 to the drug tank 104 via the expansion tank 131 is a path for removing (defoaming) bubbles in the drug.
  • the flow sensor 510 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and is sent to the drug nozzles 103-1, 103-2, 103-3, 103-4. Measure the drug flow rate. Based on the flow rate of the medicine measured by the flow sensor 510, the amount of the medicine spread on the field 403 can be grasped.
  • the pressure sensors 111-1 and 111-2 are provided at the discharge port of the drug and measure the discharge pressure of the drug discharged from the drug nozzles 103-1, 103-2, 103-3, and 103-4 to the outside.
  • the pressure sensors 111-1 and 111-2 are provided on the downstream side of the pump 106, and measure the discharge pressure of the medicine discharged downstream.
  • the pump sensor 106a measures the number of rotations of the rotor that sucks the drug from the drug tank 104 and discharges it downstream in the pump 106. By measuring the number of rotations of the rotor of the pump 106 by the pump sensor 106a, the amount of the medicine delivered by the pump 106 can be grasped, and an abnormal discharge such as excessive discharge of the medicine can be determined, or the discharge of the medicine Can be controlled.
  • the nozzle type discrimination sensors 114-1, 114-2, 114-3, 114-4 discriminate the types of the drug nozzles 103-1, 103-2, 103-3, 103-4 attached to the drug discharge ports. be able to. Due to the difference in particle diameter for each sprayed drug, the drug nozzles 103-1, 103-2, 103-3, and 103-4 are usually used in accordance with the drug. Therefore, by determining whether the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are appropriate, it is possible to prevent the wrong medicine from being sprayed.
  • a mechanism for fitting or engaging with the drug nozzles 103-1, 103-2, 103-3, 103-4 is provided at the discharge port, and the drug nozzles 103-1, 103-2, 103 are provided.
  • -3, 103-4 is a mechanism that fits or engages with the spout-side fitting or engagement mechanism, and includes a plurality of drug nozzles 103-1, 103-2, 103-3, 103-4 A differently shaped mechanism is provided for each.
  • the medicine nozzles 103-1, 103-2, 103-3, 103-4 are attached to the discharge ports, different shapes are identified for the medicine nozzles 103-1, 103-2, 103-3, 103-4. By doing so, the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 can be determined.
  • a discharge port with a cock for discharging medicine stored in the path to the outside (Indicated as “DRAIN” in FIG. 6).
  • DRAIN a discharge port with a cock for discharging medicine stored in the path to the outside
  • water is injected into the drug tank 104 in the process of refilling the drug tank 104 with the drug, particularly in the water injection standby state (S31) and the air bleeding standby state (S32) described later.
  • Each sensor relating to the drug that is, the liquid shortage sensor 511, the pressure sensors 511-1 and 511-2, and the flow rate sensor 510 included in the drug discharge system operate similarly when the drug tank 104 is filled with water.
  • the medicine type discrimination sensor 104b can discriminate that the medicine tank 104 contains water.
  • the drone system 500 in which the drone 100, the pilot 401, the base station 404, and the farming support cloud 405 are connected to each other and operate in cooperation with each other, the connection between one of the components and the other components is cut off, It is desirable that the state of the drone system 500 can be maintained and the operation as the drone system can be continued smoothly even when the power of such components is turned off.
  • the drone system 500 has a plurality of different states.
  • the drone system 500 transitions to another state corresponding to the condition by satisfying the condition determined for each state.
  • the “state of the drone system 500” is a concept indicating that the conditions for transitioning to another state are different from each other, and each state may be configured independently of each other in the software system configuration. May be configured in the same system configuration.
  • the drone system 500 belongs to a certain state, the drone system 500 performs an operation determined for each state. If the condition determined for each state is not satisfied, the drone system 500 remains in that state.
  • there may be a plurality of conditions to be determined and there may be a state that can transition to a plurality of states.
  • the safety of the entire drone system 500 may be threatened. Since the state of the drone system 500 is correctly determined and the operation is regulated according to the determination, the drone 100 is not allowed to fly or the medicine is not sprayed when the condition is not satisfied. That is, the drone system 500 can be operated safely. In particular, the drone 100 can fly safely and spray the medicine.
  • the drone 100 includes a first state transmission unit 111, a first state reception unit 112, a first state transition determination unit 113, a first main terminal determination unit 114, and a first state storage unit. 115.
  • the pilot 401, the base station 404, and the farming support cloud 405 include the first state transmission unit 111, the first state reception unit 112, the first state transition determination unit 113, the first main terminal determination unit 114, and the first Each has a configuration corresponding to the state storage unit 115. That is, the controller 401 includes a second state transmission unit 411, a second state reception unit 412, a second state transition determination unit 413, a second main terminal determination unit 414, and a second state storage unit 415.
  • the base station 404 includes a third state transmission unit 441, a third state reception unit 442, a third state reception unit 443, a third main terminal determination unit 444, and a third state storage unit 445.
  • the farming support cloud 405 includes a fourth state transmission unit 451, a fourth state reception unit 452, a fourth state transition determination unit 453, a fourth main terminal determination unit 454, and a fourth state storage unit 455.
  • the first to fourth state transmitting units 111, 411, 441, and 451 are connected to the information on the state to which the drone system 500 currently belongs, and the terminal information indicating the states of the terminals of the drone 100, the pilot 401, and the base station 404, respectively. It is a functional unit that transmits to a component.
  • the other components here are the drone 100, the pilot 401, the base station 404, or the farming support cloud 405.
  • the terminal information is numerical values indicating, for example, power on / off information of the drone 100, the pilot 401, and the base station 404, and the power capacity of each.
  • the terminal information refers to the connection state between each component, the operation history and maintenance history of each component, the failure information of each component, information on whether or not an emergency stop is being performed, and an emergency stop. It may include the history, the amount of water or medicine injected into the medicine tank 104, the amount thereof, the injection history, and the like.
  • the first to fourth state transmission units 111, 411, 441, and 451 may transmit cloud information indicating the status of the farming support cloud 405 to other components.
  • the cloud information may include, for example, a history in which information stored in the farming support cloud 405 is updated, that is, the last update date and time, information on the terminal that performed the update, and the like.
  • the first to fourth status receiving units 112, 412, 442, and 452 include information on the status to which the drone system 500 currently belongs, and terminal information indicating the status of the drone 100, the pilot 401, and the base station 404. It is a functional unit that receives from the first to fourth state transmission units 111, 411, 441, 451. Further, the first to fourth state receiving units 112, 412, 442, and 452 may receive cloud information from other components.
  • the base station 404 transmits the state to which the drone system 500 currently belongs to at least one of the drone 100 and the controller 401. Further, the base station 404 receives the state to which the drone system 500 currently belongs from at least one of the drone 100 and the pilot 401.
  • the base station 404 has at least one connection state selected from the connection state between the pilot 401 and the base station 404, the connection state between the drone 100 and the base station 404, and the connection state between the pilot 401 and the drone 100. Receive from at least one of the pilots 401.
  • the base station 404 may transmit and receive the connection state between each component and the farming support cloud 405 with at least one other component.
  • each component grasps each other's terminal information and cloud information of other components connected in the drone system 500 be able to. In other words, each component can maintain the state of the drone system 500 and smoothly continue operation as the drone system 500 even when any component is out of cooperation.
  • the controller 401 always grasps the terminal information and the cloud information
  • the user 402 can always grasp the state of the drone system 500.
  • the first to fourth state transition determination units 113, 413, 443, and 453 are functional units that recognize a state to which the drone system 500 currently belongs and determine whether or not a condition for transitioning from the current state to another state is satisfied. is there.
  • the first to fourth state transition determination units 113, 413, 443, and 453 can make a determination regarding the same condition, and each state transition determination unit can operate as an alternative to another state transition determination unit.
  • a component having a state transition determination unit that determines a state transition is also referred to as a “main terminal”. According to this configuration, even when one of the components is turned off, or when the connection between any of the components is disconnected and the operation as the main terminal is not possible, another component is The state transition can be determined as the main terminal, and the state of the drone system 500 can be transitioned.
  • the first to fourth main terminal determining units 114, 414, 444, and 454 are functional units that determine which component is the main terminal based on information received by the first to fourth state receiving units 112, 412, 442, and 452. A priority is determined in advance which component is the main terminal, that is, which of the first to fourth state transition determination units 111, 411, 441, and 451 determines the state transition. Specifically, when the power of each component is turned on and all the components are coordinated, the drone 100 becomes the main terminal. If the drone 100 is powered off or disconnected from each component of the drone 100 and cannot operate as a main terminal, the first to fourth main terminal determining units 114, 414, 444, and 454 determine the controller 401 Becomes the main terminal.
  • the priority order is an example, and when the drone 100 cannot operate as the main terminal, the base station 404 or the farming support cloud 405 may be the main terminal.
  • the priority order may be fixed or may vary. For example, the priority may vary depending on the state to which the drone system 500 currently belongs.
  • the main terminal determination unit is provided in each component. According to this configuration, the main terminal can be determined even when any component is disconnected and uncoordinated. When all the components are operating in cooperation, it is sufficient that any one of the main terminal determination units determines the main terminal.
  • the first main terminal determination unit provided in the drone 100 114 may determine that the drone 100 is the main terminal.
  • the second main terminal determination unit 114 determines that the controller 401 becomes the main terminal based on the information to that effect.
  • the first to fourth state storage units 115, 415, 445, and 455 are functional units that store terminal information indicating the state to which the drone system 500 currently belongs and the states of the drone 100, the controller 401, and the base station 404.
  • the first state storage unit 115 may further store cloud information indicating the status of the farming support cloud 405.
  • the first to fourth state storage units 115, 415, 445, and 455 are at least partially configured by a nonvolatile storage area, for example, a nonvolatile memory. According to this configuration, information can be stored even when the power of each component is turned off. Since failure information and maintenance history are carried over when the power is turned on again, repairs and maintenance can be performed reliably even for failures and abnormalities that occur before the power is turned off. It can be used safely.
  • the drone 100 includes a water injection detection unit 31, an air bleeding detection unit 32, and a full tank detection unit 33 as a configuration for managing the injection of the drug into the drug tank 104.
  • the water injection detection unit 31 is a functional unit that detects that water has been injected into the chemical tank 104.
  • the air bleeding detection unit 32 is a functional unit that detects that the air bleeding operation for causing the air inside the drug tank 104 to flow out of the drug tank 104 is completed.
  • the air bleeding detection unit 32 performs air in the path from the medicine tank 104 to the three-way valve 122 in FIG. 6 (hereinafter also referred to as “upstream path”). Detect that the removal is complete.
  • the air bleeding detection unit 32 passes the path from the three-way valve 122 to the drug nozzles 103-1 to 4 in FIG. It is also referred to as “route”.) It is detected that air bleeding has been completed.
  • the air bleeding detection unit 32 detects air bleeding in the upstream path based on the rotational speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-1 and the flow sensor 510. Detect that the air bleeding operation is complete. In the downstream path, specifically, the air bleeding detection unit 32 sets the value of the pressure sensor 111-1 and the value of the flow rate sensor 510 according to the rotation speed of the pump 106 when the air bleeding operation is completed. At least one value is stored as a reference value. The air bleeding detection unit 32 compares a reference value corresponding to the number of rotations of the pump 106 with an actual measurement value of at least one of pressure and flow rate. When the difference is within the predetermined range, the air bleeding detection unit 32 detects that the air bleeding operation is completed.
  • the air bleeding detection unit 32 detects air bleeding in the downstream path based on the rotation speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-2 and the flow rate sensor 510. Detecting that the air bleeding operation is complete.
  • the air bleeding detection unit 32 stores the value of the pressure sensor 111-2 corresponding to the rotation speed of the pump 106 and the value of the flow rate sensor 510 as a reference value when the air bleeding operation is completed. Then, the completion of the air bleeding operation is detected in comparison with the actually measured value. Further, the value of the pressure sensor 111-1 may also be used for air bleeding detection in the downstream path.
  • the values of the pressure sensors 111-1 and 111-2 and the value of the flow sensor 510 differ according to the number of rotations of the pump 106 depending on the path through which the three-way valve 122 is open.
  • the air bleeding detection unit 32 determines a reference value to be compared with the actual measurement value based on information on which path the three-way valve 122 is open.
  • the full tank detection unit 33 is a functional unit that detects that the medicine tank 104 has been replenished with medicine.
  • the drone 100 has a flight start command receiving unit 51 as a configuration for diagnosing whether the conditions for the drone 100 to fly safely and perform drug spraying are ready before takeoff, A plan confirmation unit 52, a drone determination unit 53, and an external environment determination unit 54 are provided.
  • the flight start command receiving unit 51 is a functional unit that receives a flight start command input from the user 402.
  • the flight start command is a command transmitted from the controller 401 to the drone 100. Since the flight start command is a command for transmitting the intention of the user 402 to the drone 100, the flight start command is transmitted to the drone 100 with the operation of the user 402 as a starting point.
  • the flight plan confirmation unit 52 is a functional unit that confirms whether or not the drone 100 normally holds information related to the flight plan of the drone 100.
  • the flight plan includes, for example, the position of a field where chemicals are sprayed during flight, and the flight route in the field.
  • the flight plan is information registered in advance in the drone 100 and can be appropriately rewritten. Further, the flight route included in the flight plan is automatically calculated based on the designated position of the field.
  • the flight route may be uniquely calculated based on the position of the field, or may be a different flight route that is calculated every time a flight plan is formulated in consideration of other conditions. Also good.
  • the drone determination unit 53 is a functional unit that determines that each configuration of the drone 100 itself is operating within a normal range.
  • the components included in the drone 100 are, for example, the battery 502, the motor 102, various sensors, and the like.
  • the external environment determination unit 54 is a functional unit that mainly determines whether the external environment of the drone 100 is an environment suitable for the flight of the drone 100.
  • the external environment includes, for example, the presence / absence of disturbance that interferes with radio waves connecting each component, GPS reception sensitivity, temperature, and the like.
  • the drone system 500 includes a stop state (S0), an initial check state (S1), a medicine preparation standby state (S2), and a medicine preparation state ( S3), start-of-flight standby state (S4), take-off diagnosis state (S5), flight dispersion state (S6), standby state after landing (S7), maintenance state (S8), and shutdown state (S9) And can take.
  • the stop state (S0) is a state in which the power of the drone 100, the pilot 401, and the base station 404 is turned off.
  • the drone system 500 transitions to the initial check state (S1).
  • the power of each component may be manually turned on by the user 402, or the power of other components is turned on by operating one component of the user 402. You may come to become.
  • the drone 100 and the base station 404 may be turned on when the user 402 turns on the power of the controller 401 and starts a dedicated application.
  • the initial check state (S1) is a state in which after each component is activated, it is confirmed whether or not each component is operating normally. In the initial check state, for example, it is confirmed whether or not each component is powered on, and whether or not communication between the components is normally performed. When it is confirmed that all the predetermined confirmation items are normal, the drone system 500 transitions to the medicine preparation standby state (S2).
  • the medicine preparation standby state (S2) is a state in which the user 402 waits for a command to start injecting medicine into the medicine tank 104 of the drone 100, that is, a medicine injection start instruction is input. It is.
  • the drone system 500 transitions to the medicine preparation state (S3).
  • the drug preparation state (S3) is a state in which the drone system 500 belongs while the user 402 is injecting the drug into the drug tank 104.
  • the medicine preparation state (S3) includes a water injection standby state (S31), an air bleeding standby state (S32), and a medicine standby state (S33).
  • the water injection standby state (S31) is a state in which water can be injected into the medicine tank 104.
  • the water injection standby state (S31) is a state in which a transition from the medicine preparation standby state (S2) is made based on a medicine injection start command from the user.
  • the drone system 500 transitions to the air bleeding standby state (S32).
  • the drone system 500 may transition to the air bleeding standby state (S32) on the condition that the lid of the water injection port of the medicine tank 104 is locked by an appropriate lock mechanism.
  • the air bleeding standby state (S32) is a state in which the pump 106 is driven to perform air bleeding and wait for air to escape from the inside of the medicine tank 104 and the route from the medicine tank 104 to the medicine nozzles 103-1 to 104-3. .
  • the air bleeding standby state (S32) further includes an upstream air bleeding standby state (S32-1) and a downstream air bleeding standby state (S32-2).
  • the three-way valve 122 is opened to the expansion tank 131 side.
  • the air existing in the drug tank 104 and in the upstream path is circulated through this path and temporarily stored in the expansion tank 131 and removed by driving the pump 106.
  • the air bleeding detection unit 32 detects the completion of the air bleeding operation in the upstream path, the drone system 500 transitions to the downstream air bleeding standby state (S32-2).
  • the three-way valve 122 is opened to the drug nozzles 103-1 to 4-3 side. Air existing mainly in the downstream path is pushed by the moving water by driving the pump 106 and is discharged from the nozzle 103 to the outside of the medicine tank 104. That is, air removal from the medicine tank 104 in the downstream path is performed.
  • the air bleeding detection unit 32 detects the completion of the air bleeding operation, the drone system 500 transitions to the medicine standby state (S33).
  • the medicine standby state (S33) is a state where the lid of the water inlet is unlocked and the medicine can be injected from the water inlet.
  • the drone system 500 transitions to the flight start standby state (S4).
  • the flight start standby state (S4) is a state in which a flight start command from the user 402 can be input.
  • the flight start command is a command that prompts the user 402 to take off the drone 100.
  • the drone system 500 shifts to a take-off diagnosis state (S5) for performing a take-off diagnosis required before the drone 100 takes off.
  • the take-off diagnosis state (S5) is a state in which the drone system 500 belongs while diagnosing whether the conditions for the drone 100 to fly safely and perform the chemical spraying are in place before the drone 100 takes off.
  • the takeoff diagnosis state (S5) includes a drone determination state (S51), a flight plan confirmation state (S52), and an external environment determination state (S53).
  • the drone determination state (S51) is a state to which the drone system 500 belongs while it is determined by the drone determination unit 53 that each configuration of the drone 100 itself is operating within a normal range.
  • the drone determination unit 53 determines that each component is operating within a normal range, the drone system 500 transitions to the external environment determination state (S53).
  • S53 the external environment determination state
  • a message to that effect is displayed on the controller 401, and a transition is made to a standby state (S7) after landing.
  • the flight plan confirmation state (S52) is a state in which the drone system 500 belongs while the flight plan confirmation unit 52 confirms whether or not the drone 100 normally holds information on the flight plan of the drone 100.
  • the drone system 500 transitions to the external environment determination state (S53). If the information regarding the flight plan is not normally held, the drone system 500 performs an operation of obtaining information regarding the flight plan. This operation may be received from the farming support cloud 405, for example.
  • the user 402 is notified through the controller 401 to prompt the determination.
  • the external environment determination state (S53) is a state to which the drone system 500 belongs while it is determined by the external environment determination unit 54 whether or not the external environment of the drone 100 is an environment suitable for the flight of the drone 100.
  • the drone system 500 takes off and transitions to the flight dispersion state (S6).
  • Having a take-off diagnosis state (S5) immediately after take-off command and immediately before take-off makes it possible to reliably detect abnormalities that occur during other operations such as drug injection. High safety can be ensured as compared with the configuration that performs the above and the configuration that does not perform the diagnosis.
  • the drone 100 stands by while landing. In addition, a message to that effect is displayed on the controller 401. Since the external environment is a factor that fluctuates rapidly in a short time, it is preferable to wait for the external environment to be in a state suitable for flight, instead of transitioning to another state.
  • the drone system 500 may prompt the user 402 for confirmation in the takeoff diagnosis state (S5) and input information indicating that the user 402 has confirmed as one condition of the state transition.
  • the drone system 500 may check the power capacity of the emergency pilot in the takeoff diagnosis state (S5). This is because when the power supply capacity of the emergency pilot is less than or equal to a predetermined value, an emergency stop command cannot be transmitted in the flight dispersion state (S6), which may impair safety. When the power capacity of the emergency pilot is below a predetermined level, the fact is displayed on the pilot 401 and the user 402 is urged to take measures such as replacing the battery of the emergency pilot. The same applies to the power supply capacity of the pilot 401 itself.
  • the flying spraying state (S6) is a state where the drone system 500 belongs while the drone 100 is flying and spraying the medicine on the field. When drone 100 lands, it changes to the standby state (S7) after landing.
  • the evacuation action includes, for example, “emergency return” in which the user immediately moves to a predetermined return point on the shortest route.
  • the predetermined return point is a point previously stored in the flight control unit 23, for example, a departure / arrival point 406.
  • the landing point 406 is, for example, a land point where the user 402 can approach the drone 100. The user 402 can check the drone 100 that has reached the landing point 406, or manually carry it to another location. can do.
  • the evacuation action includes landing action.
  • “Landing operation” means “normal landing” that performs normal landing operation, “emergency landing” that descends and landers faster than normal landing, and all drones are stopped and the drone 100 is moved downward from the spot Including “Emergency stop” to drop.
  • “Emergency Landing” not only landing at the same point as when performing normal landing while descending faster than normal landing and performing the same posture control as normal, but also the accuracy of posture control This includes the action to establish landing while the posture is slightly broken. As a specific example, the number of rotations of all the motors can be decreased slowly and evenly so that landing can be made while accurately descending although not directly below.
  • the drone 100 receives the power capacity of the pilot 401 from the pilot 401 at least in the flight spraying state (S6).
  • the drone 100 takes evacuation action when the power supply capacity of the controller 401 is equal to or less than a predetermined value.
  • the power supply capacity of the pilot 401 is reduced, it is not possible to transmit a command related to the flight of the user 402 to the drone 100, and it is difficult to fly the drone 100 safely. Therefore, when the power supply capacity of the controller 401 is low, the drone 100 may be caused to take a retreat action even when the capacity of the battery 502 of the drone 100 is sufficient.
  • the drone 100 should be evacuated.
  • the drone system 500 When the drone system 500 receives an emergency stop command from the controller 401 or the emergency controller, the drone system 500 transits to an emergency stop state (S11).
  • the drone system 500 receives the emergency stop command and transmits reception information indicating that the emergency stop command has been entered to the emergency stop state (S11).
  • the user 402 can know from the display on the controller 401 that the drone system 500 has transitioned to the emergency stop state (S11) as intended by the user 402.
  • the landing standby state (S7) is a state to which the drone system 500 belongs while preparing for switching work after landing.
  • the post-landing standby state (S7) is a state in which a transition can be made to a plurality of states based on an operation command from the user 402 when the drone 100 is landing.
  • the drone system 500 In the standby state after landing (S7), when receiving an operation command for switching the field for spraying medicine from the user 402, the drone system 500 enters the flight start standby state (S4) via the designated field switching route (D). Transition.
  • the drone system 500 Upon receiving an operation command for performing maintenance from the user 402 in the standby state after landing (S7), the drone system 500 transitions to the maintenance state (S8).
  • the drone system 500 transitions to a medicine preparation standby state (S2).
  • the drone system 500 having the standby state (S7) after landing even when the drone 100 that has finished spraying the drug on one field continues to spray the drug to another field or refills the drug, Can be migrated to.
  • the flight start standby state without passing through other states such as the shutdown state (S9), stop state (S0), initial check state (S1)) ( Direct transition to S4) and drug ready standby state (S2).
  • the maintenance state (S8) is a state in which the drone system 500 belongs while the drone 100 is performing maintenance of the drone 100 itself.
  • the maintenance includes an operation of automatically cleaning the outer casing of the drone 100, for example.
  • the drone system 500 transitions to the shutdown state (S9).
  • the drone system 500 belongs until the drone 100, the pilot 401, and the base station 404 are disconnected from each other and the power of the drone 100, the pilot 401, and the base station 404 is shut down. It is.
  • the shutdown state (S9) includes a drone shutdown state (S91) and another terminal shutdown state (S92).
  • the drone shutdown state (S91) is a state where the drone system 500 belongs until the drone 100 is shut down, that is, the preparation necessary for turning off the power is performed and the drone 100 is shut down.
  • the drone 100 stores the information stored in the first state storage unit 115 in the nonvolatile storage unit.
  • the drone 100 transmits the information stored in the first state storage unit 115 to the farming support cloud 405 by the first state transmission unit 111.
  • the drone 100 releases the connection with the pilot 401 and the base station 404, and releases the cooperation with each component. And drone 100 is shut down.
  • the drone system 500 transitions to the other terminal shutdown state (S92).
  • the drone 100 is the main terminal
  • the main terminal shifts to another component, for example, the controller 401 when the drone 100 is shut down.
  • the pilot 401 may be determined as the main terminal by the first main terminal determination unit 114 before the drone 100 is shut down.
  • the second main terminal determination unit 414 may detect that the drone 100 is powered off and determine the controller 401 as the main terminal.
  • the other terminal shutdown state (S92) is a state to which the drone system 500 belongs until the controller 401 and the base station 404 are shut down.
  • the pilot 401 and the base station 404 may transmit the information stored in the second and third state storage units 415 and 445 to the farming support cloud 405 by the second and third state transmission units 411 and 441, respectively. Good.
  • the drone system 500 stops. That is, the drone system 500 transitions to the stop state (S0).
  • the drone system 500 When it is detected that the battery capacity of the drone 100 is less than the specified value in the drug preparation state (S3) or takeoff diagnosis state (S5), the drone system 500 will stop after landing via the battery dead route (C). Transition to the standby state (S7). When the battery capacity is below a predetermined level in the standby state after landing (S7), the drone system 500 shifts to the shutdown state (S9), and the battery 502 becomes replaceable.
  • the drone system 500 prepares the medicine through the medicine out route (B). Transition to the standby state (S2).
  • the transition to the medicine preparation standby state (S2) may be made before takeoff. it can.
  • the medicine tank 104 is sufficiently filled in the medicine preparation state (S3), there is a high possibility that the medicine is depleted in the flying spray state (S6) of the drone 100.
  • the drone 100 is landed from the flight spraying state (S6), transitions to the standby state (S7) after landing, and then transitions to the medicine preparation standby state (S2).
  • the drone system 500 can detect a medicine out and can transition from two different states to the medicine preparation standby state (S2), the drone system 500 performs a redundant state transition even when the medicine runs out. It is possible to smoothly transition to the next state without any problem.
  • the drone system in which the drone, the controller, the base station, and the farming support cloud are connected to each other and operate in cooperation with each other, the connection between any of the components and the other components is cut off, Even when the power of any component is turned off, the state of the drone system can be maintained and the operation as the drone system can be continued smoothly.
  • the agricultural chemical spraying drone has been described as an example, but the technical idea of the present invention is not limited to this and can be applied to all drones. This is particularly useful for drones that perform autonomous flight.
  • the drone system according to the present invention can provide a drone system that can maintain high safety even during autonomous flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Catching Or Destruction (AREA)
  • Traffic Control Systems (AREA)

Abstract

[Problem] To provide a highly-safe drone. [Solution] A drone system 500 that operates in mutual cooperation of a controller 401 and a drone 100 that are connected to each other via a network (NW). The drone system has a plurality of states different from one another, and the drone system satisfies a condition set for each state to thereby transit to other state corresponding to the condition. The drone comprises a first state transition determination unit 113 for determining whether or not a condition is satisfied for each of the plurality of states. The controller comprises a second state transition determination unit 413 that determines whether or not a condition is satisfied for each of the plurality of states. The first state transition determination unit and the second state transition determination unit perform determination alternatively.

Description

ドローンシステム、ドローン、操縦器、ドローンシステムの制御方法、および、ドローンシステム制御プログラムDRONE SYSTEM, DRONE, CONTROLLER, DRONE SYSTEM CONTROL METHOD, AND DRONE SYSTEM CONTROL PROGRAM
本願発明は、ドローンシステム、飛行体(ドローン)、特に、安全性を高めたドローン、操縦器、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。 The present invention relates to a drone system, a flying body (drone), and more particularly to a drone with improved safety, a pilot, a control method for the drone system, and a drone system control program.
一般にドローンと呼ばれる小型無人ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 Applications of small unmanned helicopters (multicopters) generally called drones are progressing. One of the important application fields is spraying of chemicals such as agricultural chemicals and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In Japan, where the farmland is small compared to the West, it is often appropriate to use drones rather than manned airplanes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic-Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With the technology such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Time Kinematic-Global Positioning System), the drone can know the absolute position of its own aircraft accurately in centimeters during flight. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flying drones for spraying agricultural chemicals. A drone loaded with drugs weighs several tens of kilograms, which can have serious consequences in the event of an accident such as falling on a person. Moreover, since the operator of the drone is usually not an expert, a foolproof mechanism is necessary, but this has not been sufficiently considered. Until now, drone safety technology that presupposes maneuvering by humans has existed (for example, Patent Document 2), but it addresses the safety issues specific to autonomous flight drones, especially for agricultural chemical spraying There was no technology to do this.
特許公開公報 特開2001-120151Patent Publication Gazette Japanese Patent Laid-Open No. 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP, 2017-163265, A
自律飛行時であっても、高い安全性を維持できるドローン、すなわち無人飛行体を提供することができる。 Even during autonomous flight, a drone that can maintain high safety, that is, an unmanned air vehicle can be provided.
 上記目的を達成するため、本発明の一の観点に係るドローンシステムは、操縦器と、ドローンと、がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムであって、前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う。 In order to achieve the above object, a drone system according to an aspect of the present invention is a drone system in which a controller and a drone are connected to each other through a network and operate in cooperation with each other. Have a plurality of states different from each other, the drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone has the condition for each of the plurality of states. A first state transition determination unit that determines whether or not the condition is satisfied, and the controller includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states. The first state transition determination unit and the second state transition determination unit alternatively perform the determination.
 また、いずれの状態遷移判定部が前記判定を行うかを決定する主端末決定部をさらに有し、前記主端末決定部は、前記第1状態遷移判定部が前記判定をできる状態にないとき、第2状態遷移判定部が前記判定を行うことを決定するものとしてもよい。 Further, the main terminal determination unit further determines which state transition determination unit performs the determination, the main terminal determination unit, when the first state transition determination unit is not in a state where the determination can be performed, It is good also as what determines a 2nd state transition determination part performing the said determination.
 また、前記第2状態遷移判定部は、前記ドローンの電源がオフになっているときに、前記判定を行うものとしてもよい。 Also, the second state transition determination unit may perform the determination when the drone is powered off.
 また、前記第2状態遷移判定部は、前記ドローンと前記操縦器の直接的又は間接的な接続が切断されているときに、前記判定を行うものとしてもよい。 Further, the second state transition determination unit may perform the determination when a direct or indirect connection between the drone and the controller is disconnected.
 また、前記ドローンおよび前記操縦器は、前記ドローンシステムが現在属する状態の情報、ならびに前記ドローンおよび前記操縦器の電源のオンオフ情報および電源容量、動作履歴、メンテナンス履歴、故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、前記操縦器と前記ドローンとの接続状態、および、前記ドローンが備える薬剤タンクに注入されている水又は薬剤の別、その量および注入履歴のうちすくなくとも1個の情報を互いに送受信するものとしてもよい。 In addition, the drone and the pilot are executing information on the state to which the drone system currently belongs, power on / off information and power capacity of the drone and the pilot, operation history, maintenance history, failure information, and emergency stop. Information on whether or not, the history of emergency stop, the connection state between the pilot and the drone, and the water or the drug injected into the drug tank provided in the drone, the amount and the injection history Of these, at least one piece of information may be transmitted and received.
 また、前記ドローンは、前記操縦器から前記操縦器の電源容量を受信し、前記電源容量が所定値以下の場合は、退避行動をとるものとしてもよい。 Further, the drone may receive a power capacity of the pilot from the pilot and take a retreat action when the power capacity is a predetermined value or less.
 また、前記操縦器は、前記ドローンに緊急停止命令を送信し、前記ドローンは前記緊急停止命令を受領した旨の受領情報を前記操縦器に送信するものとしてもよい。 The pilot may transmit an emergency stop command to the drone, and the drone may transmit reception information to the pilot indicating that the emergency stop command has been received.
 また、基地局が、前記ドローンおよび前記操縦器の少なくとも一方とネットワークと通じて互いに接続され、前記基地局は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第3状態遷移判定部を備え、前記第1状態遷移判定部、前記第2状態遷移判定部、および前記第3状態遷移判定部は、前記判定を択一的に行うものとしてもよい。 A third state in which a base station is connected to at least one of the drone and the pilot through a network, and the base station determines whether the condition is satisfied for each of the plurality of states; A transition determination unit may be provided, and the first state transition determination unit, the second state transition determination unit, and the third state transition determination unit may alternatively perform the determination.
 また、前記基地局は、前記ドローンシステムが現在属する状態の情報、ならびに前記ドローン前記操縦器、および前記基地局の電源のオンオフ情報および電源容量、動作履歴、メンテナンス履歴、故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、前記ドローン、前記操縦器、および前記基地局の互いの接続状態、および、前記ドローンが備える薬剤タンクに注入されている水又は薬剤の別、その量および注入履歴のうちすくなくとも1個の情報を、前記ドローンおよび前記操縦器の少なくとも一方と送受信するものとしてもよい。 In addition, the base station executes information on the state to which the drone system currently belongs, as well as on / off information and power capacity of the drone and the base station, operation history, maintenance history, failure information, and emergency stop. Information on whether or not it is in the middle, history of emergency stop, the connection state of the drone, the pilot, and the base station, and the water or medicine injected into the medicine tank provided in the drone Alternatively, at least one piece of information about the amount and the injection history may be transmitted / received to / from the drone and / or the pilot.
 また、営農支援クラウドが、前記ドローンおよび前記操縦器の少なくとも一方とネットワークと通じて互いに接続され、前記営農支援クラウドは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第4状態遷移判定部を備え、前記第1状態遷移判定部、前記第2状態遷移判定部、および前記第4状態遷移判定部は、前記判定を択一的に行うものとしてもよい。 Further, a farming support cloud is connected to at least one of the drone and the controller through a network, and the farming support cloud determines whether or not the condition is satisfied for each of the plurality of states. A four-state transition determination unit may be provided, and the first state transition determination unit, the second state transition determination unit, and the fourth state transition determination unit may alternatively perform the determination.
 また、前記第1状態遷移判定部、前記第2状態遷移判定部、前記第3状態遷移判定部、および前記第4状態遷移判定部は、前記判定を択一的に行うものとしてもよい。 In addition, the first state transition determination unit, the second state transition determination unit, the third state transition determination unit, and the fourth state transition determination unit may alternatively perform the determination.
 また、本発明の別の観点に係るドローンは、操縦器と、ネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムに接続されるドローンであって、前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う。 A drone according to another aspect of the present invention is a drone connected to a control device and a drone system connected to each other through a network and operating in cooperation with each other, and the drone system includes a plurality of different drones. The drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone satisfies the condition for each of the plurality of states. A first state transition determination unit that determines whether or not the first state transition determination unit includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states; The transition determination unit and the second state transition determination unit alternatively perform the determination.
 また、本発明の別の観点に係る操縦器は、ドローンと、ネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムに接続される操縦器であって、前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う。 A pilot according to another aspect of the present invention is a pilot connected to a drone and a drone system connected to each other through a network and operating in cooperation with each other, and the drone system includes a plurality of different drones. The drone system transitions to another state corresponding to the condition by satisfying a condition determined for each state, and the drone satisfies the condition for each of the plurality of states. A first state transition determination unit that determines whether or not the first state transition determination unit includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states; The state transition determination unit and the second state transition determination unit alternatively perform the determination.
 また、本発明の別の観点に係るドローンシステムの制御方法は、操縦器と、ドローンと、がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムの制御方法であって、前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、前記制御方法は、前記ドローンが前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定ステップと、前記操縦器が前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定ステップと、を含み、前記第1状態遷移判定ステップおよび前記第2状態遷移判定ステップを択一的に行う。 A drone system control method according to another aspect of the present invention is a drone system control method in which a controller and a drone are connected to each other through a network and operate in cooperation with each other. The system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition defined for each state, and the control method includes: A first state transition determination step for determining whether or not the condition is satisfied for each state; and a second state transition determination for determining whether or not the controller satisfies the condition for each of the plurality of states The first state transition determination step and the second state transition determination step are alternatively performed.
 また、本発明の別の観点に係るドローンシステム制御プログラムは、操縦器と、ドローンと、がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムにおいてコンピュータに実行させるドローンシステム制御プログラムであって、前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、前記ドローンシステム制御プログラムは、前記ドローンにより前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定命令と、前記操縦器により前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定命令と、を含み、前記第1状態遷移判定命令および前記第2状態遷移判定命令を択一的にコンピュータに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
A drone system control program according to another aspect of the present invention is a drone system control program that is executed by a computer in a drone system in which a controller and a drone are connected to each other through a network and operate in cooperation with each other. The drone system has a plurality of different states, the drone system transitions to another state corresponding to the condition by satisfying a condition defined for each state, and the drone system control program A first state transition determination instruction for determining whether or not the condition is satisfied for each of the plurality of states by the drone; and whether or not the condition is satisfied for each of the plurality of states by the pilot. A second state transition determination instruction for determining, the first state transition determination instruction and the second state transition determination instruction Alternatively causes the computer to execute state transition determination instruction.
The computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
自律飛行時であっても、高い安全性を維持できるドローン(無人飛行体)を提供する。 A drone (unmanned aerial vehicle) that can maintain high safety even during autonomous flight.
本願発明に係るドローンシステムを構成するドローンの実施の形態を示す平面図である。It is a top view which shows embodiment of the drone which comprises the drone system which concerns on this invention. 上記ドローンの正面図である。It is a front view of the drone. 上記ドローンの右側面図である。It is a right view of the above-mentioned drone. 上記ドローンの背面図である。It is a rear view of the drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンシステムの全体概念図である。It is a whole conceptual diagram of the above-mentioned drone system. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the drone. 上記ドローンが有する薬剤散布システムの構成を表した模式図である。It is a schematic diagram showing the structure of the chemical | medical agent spraying system which the said drone has. 上記ドローンシステムの構成要素である上記ドローン、操縦器、基地局、および営農支援クラウドがそれぞれ有する、状態遷移に関する機能部を示す機能ブロック図である。It is a functional block diagram which shows the function part regarding a state transition which the said drone which is a component of the said drone system, a control device, a base station, and a farming support cloud each have. 上記ドローンの詳細な機能ブロック図である。It is a detailed functional block diagram of the drone. 上記ドローンシステムが遷移する複数の状態を示す概略状態遷移図である。It is a schematic state transition diagram which shows the several state which the said drone system changes. 上記ドローンシステムが遷移する、薬剤補充に関する概略状態遷移図である。It is an outline state transition diagram about medicine replenishment with which the above-mentioned drone system changes. 上記ドローンシステムが遷移する、離陸診断に関する概略状態遷移図である。It is a schematic state transition diagram regarding takeoff diagnosis in which the drone system changes. 上記ドローンシステムが遷移する、上記ドローンシステムのシャットダウンに関する概略状態遷移図である。It is a schematic state transition diagram regarding the shutdown of the drone system in which the drone system transitions.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. All figures are exemplary. In the following detailed description, for the purposes of explanation, certain specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図および図9に示すように、ドローンシステム500は、ドローン100、操縦器401、基地局404、および営農支援クラウド405が、ネットワーク(NW)を通じて互いに接続され、互いに協調して動作するシステムである。なお、ドローンシステム500は、すべての構成要素が互いに直接接続されていてもよいし、各構成要素が少なくとも1個の構成要素と直接接続され、当該直接接続されている構成要素を経由して別の構成要素と間接的に接続されている構成であってもよい。 FIG. 6 shows an overall conceptual diagram of a system using an embodiment of a drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram, and the scale is not accurate. As shown in FIG. 9 and FIG. 9, the drone system 500 is a system in which a drone 100, a controller 401, a base station 404, and a farming support cloud 405 are connected to each other through a network (NW) and operate in cooperation with each other. is there. In the drone system 500, all the components may be directly connected to each other, or each component is directly connected to at least one component and separated via the directly connected component. The structure indirectly connected with the component of (2) may be sufficient.
操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操縦器を使用してもよい(非常用操縦器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。 The controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program. The drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency controller with an emergency stop function may be used (the emergency controller is a dedicated device with a large emergency stop button, etc. so that a quick response can be taken in an emergency. Preferably). It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100. Actually, the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different. Usually, the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農支援クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農支援クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。 The base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi The communication master unit and the RTK-GPS base station may be independent devices). The farming support cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like. The farming support cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth state of the crop, and perform processing for determining the flight route. In addition, the drone 100 may be provided with the topographic information and the like of the stored farm 403. In addition, the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農支援クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Usually, the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine. The flight route (invasion route) from the arrival / departure point 406 to the target farm field 403 may be stored in advance in the farming support cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
図1に、ドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を、図4に背面図を、図5に斜視図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。 1 is a plan view of an embodiment of the drone 100, FIG. 2 is a front view thereof (viewed from the advancing direction side), FIG. 3 is a right side view thereof, FIG. 4 is a rear view thereof, and FIG. The figure is shown. In the specification of the present application, drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type). First, it shall refer to an aircraft in general having a plurality of rotor blades or flying means.
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられていることが望ましい。 The rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also called rotor) are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b Rotating means (typically an electric motor, but it may be a motor), one for each rotor blade It is desirable that The upper and lower rotors (for example, 101-1a and 101-1b) in one set and their corresponding motors (for example, 102-1a and 102-1b) are used for drone flight stability, etc. It is desirable that the axes are collinear and rotate in opposite directions. Although some of the rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory and are in the positions shown if there is a left side view. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, and 103-4 are means for spraying the drug downward, and it is preferable that four nozzles are provided. In addition, in this specification, a chemical | medical agent generally refers to the liquid or powder disperse | distributed to agricultural fields, such as an agricultural chemical, a herbicide, liquid fertilizer, an insecticide, a seed | species, and water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
ドローン100は薬剤タンク104に保管される薬剤を、圃場に向かって空中から下方に向かって散布する。空中散布を行うドローン100によれば、地上散布機や使用者自身により地上から散布される場合に比べて、圃場に対して薬剤を緻密に散布することが可能である。そのため、地上から散布される場合のように、圃場内の領域に重複して散布されることがなく、均一に散布することができる。したがって、薬剤タンク104に保管される薬剤は、地上から散布される薬剤に比べて高濃度、例えば10倍程度の薬剤である。 The drone 100 sprays the medicine stored in the medicine tank 104 from the air toward the bottom toward the field. According to the drone 100 that performs aerial spraying, it is possible to spray the medicine more precisely on the field than when sprayed from the ground by a ground sprayer or the user. Therefore, unlike the case where it is sprayed from the ground, it is not sprayed over the area in the field and can be sprayed uniformly. Therefore, the medicine stored in the medicine tank 104 is a medicine having a high concentration, for example, about 10 times that of the medicine sprayed from the ground.
図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 The schematic diagram showing the control function of the Example of the drone for chemical distribution which concerns on FIG. 7 at this invention is shown. The flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100. The actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農支援クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming support cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。 The battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable. The battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。 The flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device. The base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
6軸センサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis sensor 505 is means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration). The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism. The atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves. These sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less. The multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to perform various settings. Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, building, human body, standing tree, bird, or other drone. . The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open. The medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。 The flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 The LED 107 is a display means for informing the drone operator of the drone status. Display means such as a liquid crystal display may be used instead of or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal. The Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective. The warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state). These input / output means may be selected according to drone cost targets and performance requirements, and may be duplexed / multiplexed.
 図8に示すように、ドローン100が備える薬剤の吐出制御システムは、薬剤を散布する農業用機械、特に本例では薬剤散布用ドローン100に備えられ、薬剤の吐出を精度よく制御すると共に、薬剤の吐出異常を検知する。 As shown in FIG. 8, the drug discharge control system included in the drone 100 is provided in an agricultural machine for spraying medicine, particularly in the drug spraying drone 100 in this example, and controls the medicine discharge with high precision. Detects abnormal discharge.
 なお、本実施形態において、薬剤の「吐出異常」といった場合には、現実に薬剤の吐出異常を来たし、規定値を超える薬剤が吐出されている状態のほか、このような薬剤の吐出異常となる虞のある準備状態や、散布予定とは異なる薬剤が現実に散布され、又は散布される虞がある設定異常の状態を含む。 In the present embodiment, in the case of “discharging abnormality” of a medicine, the medicine discharge abnormality actually occurs, and in addition to a state where a medicine exceeding a specified value is being discharged, such a medicine discharging abnormality occurs. This includes a preparation state that has a fear and a setting abnormality state in which a medicine different from the spraying schedule is actually sprayed or may be sprayed.
 薬剤タンク104は上述の通り、散布される薬剤を保管するためのタンクである。
この薬剤タンク104には、薬剤を充填したり、保管している薬剤を出したりするための開閉可能な蓋が取り付けられている。この開閉可能な蓋には、開閉状態を検知可能な開閉センサー104aが取り付けられている。この開閉センサー104aは例えば、蓋に取り付けられたマグネットと、本体に取り付けられて、このマグネットの磁力や接触を感知する感知器によって構成することができる。これにより蓋の開閉状態を判別して、使用者に蓋の開閉状態を認識可能とし、蓋が開いたまま薬剤の散布が行われるといった事態を防ぐことができる。
As described above, the medicine tank 104 is a tank for storing the medicine to be sprayed.
The medicine tank 104 is provided with an openable / closable lid for filling medicine or taking out medicines stored. An open / close sensor 104a capable of detecting an open / close state is attached to the openable / closable lid. The open / close sensor 104a can be constituted by, for example, a magnet attached to the lid and a sensor attached to the main body and sensing the magnetic force and contact of the magnet. Thereby, the open / closed state of the lid is determined, the user can recognize the open / closed state of the lid, and the situation where the medicine is sprayed while the lid is open can be prevented.
 また、薬剤タンク104には薬剤種別判別センサー104bが設けられている。薬剤種別判別センサー104bは、薬剤タンク104内に貯留されている薬剤の種別を判別することができる。 Further, the medicine tank 104 is provided with a medicine type discrimination sensor 104b. The medicine type discrimination sensor 104b can discriminate the type of medicine stored in the medicine tank 104.
 この薬剤種別判別センサー104bは例えば、薬剤タンク104内の薬剤の粘度や導電率、あるいはpHを測定することのできる装置によって構成され、測定された各項目の値と、薬剤ごとの基準となる値とを対比し、薬剤の種別を判別することができる。 The medicine type discrimination sensor 104b is constituted by, for example, a device capable of measuring the viscosity, conductivity, or pH of the medicine in the medicine tank 104, and the value of each measured item and the reference value for each medicine And the type of medicine can be determined.
 なお、これに限らず、例えば薬剤タンク104としてカートリッジ式の薬剤タンクを用いれば、当該カートリッジ式の薬剤タンクに薬剤種別のデータを記録したIC等を付しておき、当該IC等から薬剤種別のデータを取得する手段を設けることで、薬剤の種別を判別することもできる。 For example, if a cartridge type drug tank is used as the drug tank 104, an IC or the like in which the drug type data is recorded is attached to the cartridge type drug tank. By providing means for acquiring data, the type of medicine can be determined.
 ここで、薬剤は複数の種類のものが用いられる場合があるため、散布を予定している薬剤が薬剤タンク104内に保管されているかどうかを判別することは有用である。特に、薬剤の粒子径は種類に応じて異なるところ、散布を予定していた薬剤よりも粒子径の小さい薬剤を誤って散布してしまった場合には、ドリフト(薬剤の目的物以外への飛散、付着)を惹き起こす可能性が高く、看過できない。 Here, since there are cases where a plurality of types of drugs are used, it is useful to determine whether or not the drug scheduled to be sprayed is stored in the drug tank 104. In particular, the particle size of the drug varies depending on the type. If a drug with a particle size smaller than the drug intended to be sprayed is accidentally sprayed, drift (scattering of the drug other than the target) will occur. , Adhesion) is high and cannot be overlooked.
 また、薬剤タンク104には、薬剤の液切れを検知するための液切れセンサー511が取り付けられている。なお、薬剤の液切れには、薬剤がなくなった場合のほか、薬剤の量が所定の量以下になった場合を含み、任意に設定された量に応じて、薬剤の液切れを検知することができる。 Further, the medicine tank 104 is provided with a liquid shortage sensor 511 for detecting the liquid shortage of the medicine. In addition, when the medicine runs out, it includes not only the case where the medicine runs out, but also the case where the amount of medicine falls below a predetermined amount, and detects the running out of medicine according to an arbitrarily set amount. Can do.
 なお、薬剤タンク104内における薬剤の蒸散検知機能や、温度・湿度の測定機能などを薬剤タンク104に設け、薬剤が適切な状態に管理されるようにするとよい。 It should be noted that a medicine transpiration detection function and a temperature / humidity measurement function in the medicine tank 104 may be provided in the medicine tank 104 so that the medicine is managed in an appropriate state.
 ポンプ106は、薬剤タンク104内に保管されている薬剤を下流へ吐き出し、薬剤ホース105-1、105-2、105-3、105-4を介して各薬剤ノズル103-1、103-2、103-3、103-4へ送出する。 The pump 106 discharges the medicine stored in the medicine tank 104 downstream, and each medicine nozzle 103-1, 103-2, via the medicine hose 105-1, 105-2, 105-3, 105-4, Send to 103-3, 103-4.
 なお、薬剤は薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4へ送出されるところ、本実施形態の説明では、この送出経路に沿って薬剤が送出される方向を下流方向と称し、これとは逆の方向を上流方向と称することがある。なお、薬剤は一部、薬剤タンク104から三方弁122を介して再び薬剤タンク104へ送出されるが、この経路に関しては、三方弁122側を下流方向、薬剤タンク104側を上流方向と称している。 Note that the medicine is delivered from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, and 103-4. In the description of the present embodiment, the medicine is delivered along this delivery path. Is referred to as the downstream direction, and the opposite direction may be referred to as the upstream direction. A part of the medicine is sent again from the medicine tank 104 to the medicine tank 104 through the three-way valve 122. In this route, the three-way valve 122 side is referred to as a downstream direction, and the medicine tank 104 side is referred to as an upstream direction. Yes.
 拡張タンク131は、三方弁122から送出された薬剤を一時的に貯留させ、薬剤タンク104に戻すためのタンクである。 The expansion tank 131 is a tank for temporarily storing the medicine sent from the three-way valve 122 and returning it to the medicine tank 104.
 三方弁122から拡張タンク131を介して薬剤タンク104に至る経路は、薬剤タンク104に注入されている水又は薬剤中の気泡を除去(脱泡)するための経路である。この経路を循環させると共に、拡張タンク131に一時的に貯留させることで水又は薬剤の脱泡を行うことができる。 The path from the three-way valve 122 to the drug tank 104 via the expansion tank 131 is a path for removing (defoaming) water in the drug tank 104 or bubbles in the drug. By circulating this path and temporarily storing it in the expansion tank 131, it is possible to defoam water or chemicals.
 逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤を一定方向のみに送出し、当該一定方向とは逆の方向への流入、即ち逆流を防ぐための弁である。この逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路において、薬剤の吐出を遮断する遮断機構の役割を果たしており、薬剤の吐出を遮断する役割を果たすことができれば、遮断機構として電磁弁など、他の機構のものを用いることもできる。 The check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 deliver the drug only in a certain direction and in the direction opposite to the certain direction. This is a valve for preventing the inflow, that is, the back flow. The check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7 are provided from the drug tank 104 to the drug nozzles 103-1, 103-2, 103-3. , 103-4 plays a role of a blocking mechanism that blocks the discharge of the drug, and if it can play a role of blocking the discharge of the drug, the other mechanism such as an electromagnetic valve is used as the blocking mechanism You can also
 本例では、逆止弁121-1が薬剤タンク104とポンプ106の間であって、薬剤タンク104に設けられた薬剤吐出口近傍に設けられ、逆止弁121-2が三方弁122と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、逆止弁121-4、121-5、121-6、121-7が薬剤の外部への吐出口103a-1、103a-2、103a-3、103a-4に設けられ、逆止弁121-3が三方弁122と拡張タンク131の間に設けられている。逆止弁121-1は、薬剤タンク104から送出された薬剤を下流方向へ送出させ、薬剤タンク104へ逆流不能に制御している。また、逆止弁121-2は、ポンプ106から送出された薬剤を下流方向へ送出させ、ポンプ106へ逆流不能に制御している。また、逆止弁121-3は、三方弁122から送出された薬剤を拡張タンク131のある上流方向へ送出させ、三方弁122へ逆流不能に制御している。さらに、逆止弁121-4、121-5、121-6、121-7は、吐出口103a-1、103a-2、103a-3、103a-4から薬剤が外部へ吐出するのを遮断可能にしている。 In this example, the check valve 121-1 is provided between the drug tank 104 and the pump 106, in the vicinity of the drug discharge port provided in the drug tank 104, and the check valve 121-2 is provided with the three-way valve 122 and the drug. The nozzles 103-1, 103-2, 103-3, 103-4 are provided, and check valves 121-4, 121-5, 121-6, 121-7 are provided to discharge the medicine 103a- 1, 103 a-2, 103 a-3, and 103 a-4, and a check valve 121-3 is provided between the three-way valve 122 and the expansion tank 131. The check valve 121-1 controls the medicine sent out from the medicine tank 104 in the downstream direction so that it cannot flow back to the medicine tank 104. The check valve 121-2 controls the medicine sent from the pump 106 in the downstream direction so that it cannot flow back to the pump 106. The check valve 121-3 controls the medicine sent from the three-way valve 122 to be sent in the upstream direction where the expansion tank 131 is present, so that the check valve 121-3 cannot flow back to the three-way valve 122. Furthermore, the check valves 121-4, 121-5, 121-6, 121-7 can block the discharge of medicine from the discharge ports 103a-1, 103a-2, 103a-3, 103a-4. I have to.
 なお、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7には、スイング式、リフト式、ウエハ式など、各種のものを用いることができ、特に特定のものに限られることはない。また、本例に関わらず、本例よりも多くの逆止弁を適宜の箇所に設けてもよい。 Various check valves 121-1, 121-2, 121-3, 121-4, 121-5, 121-6, 121-7, such as swing type, lift type, and wafer type, are used. It is not limited to a specific one. Regardless of this example, more check valves may be provided in appropriate locations than in this example.
 三方弁122は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられており、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路と、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路の分岐点を構成しており、切替操作に応じて薬剤を各経路へ送出させる。三方弁122は、例えば三方電磁弁である。
ここで、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路は、薬剤を薬剤ノズル103-1、103-2、103-3、103-4から吐出させ、薬剤を散布させるための経路である。
また、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路は上述の通り、薬剤中の気泡を除去(脱泡)するための経路である。
The three-way valve 122 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, A branch point of a path connected to 103-4 and a path connected from the pump 106 to the drug tank 104 via the expansion tank 131 is configured, and the drug is sent to each path according to the switching operation. The three-way valve 122 is, for example, a three-way solenoid valve.
Here, the path leading from the pump 106 to the drug nozzles 103-1, 103-2, 103-3, 103-4 causes the drug to be discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4. It is a route for spraying medicine.
Further, as described above, the path leading from the pump 106 to the drug tank 104 via the expansion tank 131 is a path for removing (defoaming) bubbles in the drug.
 流量センサー510は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、薬剤ノズル103-1、103-2、103-3、103-4へ送出されている薬剤の流量を測定する。この流量センサー510によって測定された薬剤の流量に基づき、圃場403に散布した薬剤の量を把握することができる。 The flow sensor 510 is provided between the pump 106 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and is sent to the drug nozzles 103-1, 103-2, 103-3, 103-4. Measure the drug flow rate. Based on the flow rate of the medicine measured by the flow sensor 510, the amount of the medicine spread on the field 403 can be grasped.
 圧力センサー111-1、111-2は、薬剤の吐出口に設けられ、薬剤ノズル103-1、103-2、103-3、103-4から外部へ吐出される薬剤の吐出圧を測定する。
圧力センサー111-1、111-2は、ポンプ106の下流側に設けられ、下流へ吐き出される薬剤の吐出圧を測定する。
これらの圧力センサー111-1、111-2によって薬剤の吐出圧を測定することにより、各圧力センサーの111-1、111-2から得られる薬剤の吐出圧及び/又は各圧力センサー111-1、111-2による測定値から求められる圧力損失の数値に基づき、薬剤の吐出状況を精度よく把握して、薬剤の過剰吐出などの吐出異常を判断したり、薬剤の吐出を制御したりすることができる。
The pressure sensors 111-1 and 111-2 are provided at the discharge port of the drug and measure the discharge pressure of the drug discharged from the drug nozzles 103-1, 103-2, 103-3, and 103-4 to the outside.
The pressure sensors 111-1 and 111-2 are provided on the downstream side of the pump 106, and measure the discharge pressure of the medicine discharged downstream.
By measuring the discharge pressure of the drug by these pressure sensors 111-1, 111-2, the discharge pressure of the drug obtained from each pressure sensor 111-1, 111-2 and / or each pressure sensor 111-1, Based on the value of pressure loss obtained from the measurement value of 111-2, it is possible to accurately grasp the discharge state of the drug, judge discharge abnormalities such as excessive discharge of the drug, and control the discharge of the drug it can.
 ポンプ用センサー106aは、ポンプ106内において薬剤を薬剤タンク104から吸い込むと共に下流へ吐き出す回転子の回転数を測定する。
このポンプ用センサー106aによってポンプ106の回転子の回転数を測定することにより、ポンプ106によって送出されている薬剤の量を把握し、薬剤の過剰吐出などの吐出異常を判断したり、薬剤の吐出を制御したりすることができる。
The pump sensor 106a measures the number of rotations of the rotor that sucks the drug from the drug tank 104 and discharges it downstream in the pump 106.
By measuring the number of rotations of the rotor of the pump 106 by the pump sensor 106a, the amount of the medicine delivered by the pump 106 can be grasped, and an abnormal discharge such as excessive discharge of the medicine can be determined, or the discharge of the medicine Can be controlled.
 ノズル種別判別センサー114-1、114-2、114-3、114-4は、薬剤の吐出口に取り付けられる薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
散布される薬剤ごとの粒子径の違いから、薬剤ノズル103-1、103-2、103-3、103-4は通常、薬剤に応じて用いられるものが異なっている。そのため、薬剤ノズル103-1、103-2、103-3、103-4の種別が適切か否かを判別することで、誤った薬剤の散布を防ぐことができる。
The nozzle type discrimination sensors 114-1, 114-2, 114-3, 114-4 discriminate the types of the drug nozzles 103-1, 103-2, 103-3, 103-4 attached to the drug discharge ports. be able to.
Due to the difference in particle diameter for each sprayed drug, the drug nozzles 103-1, 103-2, 103-3, and 103-4 are usually used in accordance with the drug. Therefore, by determining whether the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 are appropriate, it is possible to prevent the wrong medicine from being sprayed.
 具体的には例えば、吐出口に薬剤ノズル103-1、103-2、103-3、103-4と嵌合又は係合する機構を設けておき、薬剤ノズル103-1、103-2、103-3、103-4には、当該吐口側の嵌合又は係合機構に嵌合又は係合する機構であって、複数の薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状の機構を設ける。そして、吐出口に薬剤ノズル103-1、103-2、103-3、103-4を取り付けた際、薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状を識別することにより、薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。 Specifically, for example, a mechanism for fitting or engaging with the drug nozzles 103-1, 103-2, 103-3, 103-4 is provided at the discharge port, and the drug nozzles 103-1, 103-2, 103 are provided. -3, 103-4 is a mechanism that fits or engages with the spout-side fitting or engagement mechanism, and includes a plurality of drug nozzles 103-1, 103-2, 103-3, 103-4 A differently shaped mechanism is provided for each. When the medicine nozzles 103-1, 103-2, 103-3, 103-4 are attached to the discharge ports, different shapes are identified for the medicine nozzles 103-1, 103-2, 103-3, 103-4. By doing so, the types of the medicine nozzles 103-1, 103-2, 103-3, and 103-4 can be determined.
 なお、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路の途中には、当該経路中に貯留する薬剤を外部へ排出するためのコック付きの排出口(図6中、「DRAIN」と表記)が設けられている。圃場403への薬剤の散布が終わった後などにおいて、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路に溜まっている薬剤を排出させる場合には、この排出口より薬剤を排出させることができる。 In addition, in the middle of the path from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, 103-4, a discharge port with a cock for discharging medicine stored in the path to the outside (Indicated as “DRAIN” in FIG. 6). For example, after the spraying of the medicine on the field 403 is finished, when discharging the medicine accumulated in the path from the medicine tank 104 to the medicine nozzles 103-1, 103-2, 103-3, 103-4, The drug can be discharged from this discharge port.
 なお、薬剤タンク104に薬剤を補充する過程、特に後述する注水待機状態(S31)およびエア抜き待機状態(S32)では、薬剤タンク104に水が注入される。薬剤吐出システムが有する、薬剤に関する各センサー、すなわち液切れセンサー511、圧力センサー511-1、511-2、および流量センサー510は、薬剤タンク104に水が入っている場合にも、同様に動作する。また、薬剤種別判別センサー104bは、薬剤タンク104に水が入っていることを判別することが可能である。 It should be noted that water is injected into the drug tank 104 in the process of refilling the drug tank 104 with the drug, particularly in the water injection standby state (S31) and the air bleeding standby state (S32) described later. Each sensor relating to the drug, that is, the liquid shortage sensor 511, the pressure sensors 511-1 and 511-2, and the flow rate sensor 510 included in the drug discharge system operate similarly when the drug tank 104 is filled with water. . Further, the medicine type discrimination sensor 104b can discriminate that the medicine tank 104 contains water.
 ドローン100、操縦器401、基地局404、および営農支援クラウド405が互いに接続され、協調して動作するドローンシステム500は、いずれかの構成要素と他の構成要素との接続が切断されたり、いずれかの構成要素の電源がオフになっていたりする場合にも、ドローンシステム500の状態を保持し、ドローンシステムとしての運用を円滑に継続できることが望ましい。 The drone system 500 in which the drone 100, the pilot 401, the base station 404, and the farming support cloud 405 are connected to each other and operate in cooperation with each other, the connection between one of the components and the other components is cut off, It is desirable that the state of the drone system 500 can be maintained and the operation as the drone system can be continued smoothly even when the power of such components is turned off.
 また、ドローンシステム500は、互いに異なる複数の状態を有する。ドローンシステム500は、状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移する。「ドローンシステム500の状態」とは、別の状態に遷移するための条件が互いに異なることを示す概念であり、状態ごとにソフトウェアのシステム構成上互いに独立して構成されていてもよいし、複数の状態が同一のシステム構成中に構成されていてもよい。ドローンシステム500は、ある状態に属しているとき、当該状態ごとに定められる動作を行う。状態ごとに定められる条件を充足していない場合、ドローンシステム500は、当該状態に留まる。また、定められる条件が複数あり、複数の状態に遷移し得る状態があってもよい。 Further, the drone system 500 has a plurality of different states. The drone system 500 transitions to another state corresponding to the condition by satisfying the condition determined for each state. The “state of the drone system 500” is a concept indicating that the conditions for transitioning to another state are different from each other, and each state may be configured independently of each other in the software system configuration. May be configured in the same system configuration. When the drone system 500 belongs to a certain state, the drone system 500 performs an operation determined for each state. If the condition determined for each state is not satisfied, the drone system 500 remains in that state. In addition, there may be a plurality of conditions to be determined, and there may be a state that can transition to a plurality of states.
 ドローン100、操縦器401、基地局404、および営農支援クラウド405のいずれかに異常が生じている場合、ドローンシステム500全体の安全性を脅かす恐れがある。ドローンシステム500の状態を正しく判定し、その判定に応じて動作が規定されていることで、条件を充足しない場合にドローン100を飛行させたり薬剤を散布させたりすることがない。すなわち、ドローンシステム500を安全に稼働させることができる。特に、ドローン100を安全に飛行させ、薬剤を散布することができる。 If there is an abnormality in any of the drone 100, the pilot 401, the base station 404, and the farming support cloud 405, the safety of the entire drone system 500 may be threatened. Since the state of the drone system 500 is correctly determined and the operation is regulated according to the determination, the drone 100 is not allowed to fly or the medicine is not sprayed when the condition is not satisfied. That is, the drone system 500 can be operated safely. In particular, the drone 100 can fly safely and spray the medicine.
 図9に示すように、ドローン100は、第1状態送信部111と、第1状態受信部112と、第1状態遷移判定部113と、第1主端末決定部114と、第1状態記憶部115と、を有する。また、操縦器401、基地局404、および営農支援クラウド405は、第1状態送信部111、第1状態受信部112、第1状態遷移判定部113、第1主端末決定部114、および第1状態記憶部115に対応する構成をそれぞれ有する。すなわち、操縦器401は、第2状態送信部411、第2状態受信部412、第2状態遷移判定部413、第2主端末決定部414、および第2状態記憶部415、を有する。基地局404は、第3状態送信部441、第3状態受信部442、第3状態受信部443、第3主端末決定部444、および第3状態記憶部445を有する。営農支援クラウド405は、第4状態送信部451、第4状態受信部452、第4状態遷移判定部453、第4主端末決定部454、および第4状態記憶部455を有する。 As shown in FIG. 9, the drone 100 includes a first state transmission unit 111, a first state reception unit 112, a first state transition determination unit 113, a first main terminal determination unit 114, and a first state storage unit. 115. In addition, the pilot 401, the base station 404, and the farming support cloud 405 include the first state transmission unit 111, the first state reception unit 112, the first state transition determination unit 113, the first main terminal determination unit 114, and the first Each has a configuration corresponding to the state storage unit 115. That is, the controller 401 includes a second state transmission unit 411, a second state reception unit 412, a second state transition determination unit 413, a second main terminal determination unit 414, and a second state storage unit 415. The base station 404 includes a third state transmission unit 441, a third state reception unit 442, a third state reception unit 443, a third main terminal determination unit 444, and a third state storage unit 445. The farming support cloud 405 includes a fourth state transmission unit 451, a fourth state reception unit 452, a fourth state transition determination unit 453, a fourth main terminal determination unit 454, and a fourth state storage unit 455.
 第1乃至第4状態送信部111,411,441,451は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404それぞれの端末の状況を示す端末情報を、接続されている他の構成要素に送信する機能部である。他の構成要素は、ここでは、ドローン100、操縦器401、基地局404、又は営農支援クラウド405である。端末情報とは、例えばドローン100、操縦器401、基地局404それぞれの電源のオンオフ情報や、それぞれの電源容量などを示す数値である。また、端末情報とは、各構成要素間の接続状態、各構成要素の動作履歴およびメンテナンス履歴、各構成要素の故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、ならびに、薬剤タンク104に注入されている水又は薬剤の別、その量および注入履歴等を含んでいてもよい。 The first to fourth state transmitting units 111, 411, 441, and 451 are connected to the information on the state to which the drone system 500 currently belongs, and the terminal information indicating the states of the terminals of the drone 100, the pilot 401, and the base station 404, respectively. It is a functional unit that transmits to a component. The other components here are the drone 100, the pilot 401, the base station 404, or the farming support cloud 405. The terminal information is numerical values indicating, for example, power on / off information of the drone 100, the pilot 401, and the base station 404, and the power capacity of each. In addition, the terminal information refers to the connection state between each component, the operation history and maintenance history of each component, the failure information of each component, information on whether or not an emergency stop is being performed, and an emergency stop. It may include the history, the amount of water or medicine injected into the medicine tank 104, the amount thereof, the injection history, and the like.
 第1乃至第4状態送信部111,411,441,451は、営農支援クラウド405の状況を示すクラウド情報をさらに他の構成要素に送信してもよい。クラウド情報とは、例えば営農支援クラウド405に記憶されている情報が更新された履歴、すなわち、最終更新日時や、更新を行った端末の情報等を含んでいてもよい。 The first to fourth state transmission units 111, 411, 441, and 451 may transmit cloud information indicating the status of the farming support cloud 405 to other components. The cloud information may include, for example, a history in which information stored in the farming support cloud 405 is updated, that is, the last update date and time, information on the terminal that performed the update, and the like.
 第1乃至第4状態受信部112,412,442,452は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404の状況を示す端末情報を、接続されている他の構成要素が有する第1乃至第4状態送信部111,411,441,451から受信する機能部である。また、第1乃至第4状態受信部112,412,442,452は、クラウド情報をさらに他の構成要素から受信してもよい。 The first to fourth status receiving units 112, 412, 442, and 452 include information on the status to which the drone system 500 currently belongs, and terminal information indicating the status of the drone 100, the pilot 401, and the base station 404. It is a functional unit that receives from the first to fourth state transmission units 111, 411, 441, 451. Further, the first to fourth state receiving units 112, 412, 442, and 452 may receive cloud information from other components.
 すなわち、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方に送信する。また、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方から受信する。基地局404は、操縦器401および基地局404の接続状態、ドローン100および基地局404の接続状態、ならびに、操縦器401およびドローン100の接続状態のうち、少なくとも一個の接続状態を、ドローン100および操縦器401の少なくとも一方から受信する。 That is, the base station 404 transmits the state to which the drone system 500 currently belongs to at least one of the drone 100 and the controller 401. Further, the base station 404 receives the state to which the drone system 500 currently belongs from at least one of the drone 100 and the pilot 401. The base station 404 has at least one connection state selected from the connection state between the pilot 401 and the base station 404, the connection state between the drone 100 and the base station 404, and the connection state between the pilot 401 and the drone 100. Receive from at least one of the pilots 401.
 また、基地局404は、各構成要素と営農支援クラウド405との接続状態を、少なくとも1個の他の構成要素との間で送受信してもよい。 In addition, the base station 404 may transmit and receive the connection state between each component and the farming support cloud 405 with at least one other component.
 第1乃至第4状態送信部111,411,441,451および第1乃至第4状態受信部112,412,442,452によれば、各構成要素は、ドローンシステム500において接続されている他の構成要素の端末情報およびクラウド情報を互いに把握することができる。すなわち、各構成要素は、いずれの構成要素が協調から外れた場合にも、ドローンシステム500の状態を保持し、ドローンシステム500としての運用を円滑に継続できる。 According to the first to fourth state transmitting units 111, 411, 441, and 451 and the first to fourth state receiving units 112, 412, 442, and 452, each component grasps each other's terminal information and cloud information of other components connected in the drone system 500 be able to. In other words, each component can maintain the state of the drone system 500 and smoothly continue operation as the drone system 500 even when any component is out of cooperation.
 また、操縦器401が端末情報およびクラウド情報を常に把握している構成によれば、使用者402はドローンシステム500の様子を常に把握することができる。 Further, according to the configuration in which the controller 401 always grasps the terminal information and the cloud information, the user 402 can always grasp the state of the drone system 500.
 第1乃至第4状態遷移判定部113,413,443,453は、ドローンシステム500が現在属する状態を認識して、現在属する状態から別の状態に遷移するための条件が充足しているか否かを判定する機能部である。第1乃至第4状態遷移判定部113,413,443,453は、同じ条件に関する判断を行うことが可能であり、それぞれの状態遷移判定部は、他の状態遷移判定部の代替として動作することができる。 The first to fourth state transition determination units 113, 413, 443, and 453 are functional units that recognize a state to which the drone system 500 currently belongs and determine whether or not a condition for transitioning from the current state to another state is satisfied. is there. The first to fourth state transition determination units 113, 413, 443, and 453 can make a determination regarding the same condition, and each state transition determination unit can operate as an alternative to another state transition determination unit.
 第1乃至第4状態遷移判定部113,413,443,453は、別の状態に遷移するための条件が充足しているか否かの判定を択一的に行う。すなわち、1個の状態遷移判定部が判定を行っている場合、他の状態遷移判定部は判定を行わない。以降の説明において、状態遷移の判定を行っている状態遷移判定部を有する構成要素を、「主端末」ともいう。この構成によれば、いずれかの構成要素の電源がオフになっている場合や、いずれかの構成要素間の接続が切断され、主端末としての動作ができない場合においても、別の構成要素が主端末として状態遷移の判定を行い、ドローンシステム500の状態を遷移させることができる。 1st thru | or 4th state transition determination part 113,413,443,453 alternatively determines whether the conditions for changing to another state are satisfied. That is, when one state transition determination unit makes a determination, the other state transition determination units do not perform the determination. In the following description, a component having a state transition determination unit that determines a state transition is also referred to as a “main terminal”. According to this configuration, even when one of the components is turned off, or when the connection between any of the components is disconnected and the operation as the main terminal is not possible, another component is The state transition can be determined as the main terminal, and the state of the drone system 500 can be transitioned.
 第1乃至第4主端末決定部114,414,444,454は、第1乃至第4状態受信部112,412,442,452が受信する情報に基づいて、いずれの構成要素を主端末とするかを決定する機能部である。いずれの構成要素が主端末となるか、すなわち第1乃至第4状態遷移判定部111,411,441,451のうちいずれが状態遷移を判定するかは、あらかじめ優先順位が定められている。具体的には、各構成要素の電源が投入され、すべての構成要素が協調している場合、ドローン100が主端末となる。ドローン100の電源がオフ、又はドローン100の各構成要素との接続が切断され、主端末としての動作が不可能な場合、第1乃至第4主端末決定部114,414,444,454の決定により、操縦器401が主端末となる。なお、優先順位は一例であり、ドローン100が主端末として動作不能な場合、基地局404又は営農支援クラウド405が主端末となってもよい。また、優先順位は、固定されていてもよいし、変動してもよい。たとえば、優先順位は、ドローンシステム500が現在属している状態に応じて変動してもよい。 The first to fourth main terminal determining units 114, 414, 444, and 454 are functional units that determine which component is the main terminal based on information received by the first to fourth state receiving units 112, 412, 442, and 452. A priority is determined in advance which component is the main terminal, that is, which of the first to fourth state transition determination units 111, 411, 441, and 451 determines the state transition. Specifically, when the power of each component is turned on and all the components are coordinated, the drone 100 becomes the main terminal. If the drone 100 is powered off or disconnected from each component of the drone 100 and cannot operate as a main terminal, the first to fourth main terminal determining units 114, 414, 444, and 454 determine the controller 401 Becomes the main terminal. The priority order is an example, and when the drone 100 cannot operate as the main terminal, the base station 404 or the farming support cloud 405 may be the main terminal. The priority order may be fixed or may vary. For example, the priority may vary depending on the state to which the drone system 500 currently belongs.
 本実施形態においては、主端末決定部は各構成要素に設けられている。この構成によれば、いずれの構成要素の接続が切断され、協調が外れた場合であっても、主端末を決定することができる。なお、すべての構成要素が協調して動作している場合にはいずれか1の主端末決定部が主端末の決定を行えば足り、例えば、ドローン100に設けられている第1主端末決定部114が、ドローン100が主端末となる旨の決定を行えばよい。ドローン100が協調から外れた場合は、第2主端末決定部114がその旨の情報に基づいて、操縦器401が主端末となることを決定する。 In the present embodiment, the main terminal determination unit is provided in each component. According to this configuration, the main terminal can be determined even when any component is disconnected and uncoordinated. When all the components are operating in cooperation, it is sufficient that any one of the main terminal determination units determines the main terminal. For example, the first main terminal determination unit provided in the drone 100 114 may determine that the drone 100 is the main terminal. When the drone 100 is out of cooperation, the second main terminal determination unit 114 determines that the controller 401 becomes the main terminal based on the information to that effect.
 第1乃至第4状態記憶部115,415,445,455は、ドローンシステム500が現在属する状態、およびドローン100、操縦器401、および基地局404の状況を示す端末情報を記憶する機能部である。第1状態記憶部115は、営農支援クラウド405の状況を示すクラウド情報をさらに記憶してもよい。 The first to fourth state storage units 115, 415, 445, and 455 are functional units that store terminal information indicating the state to which the drone system 500 currently belongs and the states of the drone 100, the controller 401, and the base station 404. The first state storage unit 115 may further store cloud information indicating the status of the farming support cloud 405.
 第1乃至第4状態記憶部115,415,445,455は、少なくとも一部が不揮発性の記憶領域、例えば不揮発性メモリによって構成されている。この構成によれば、各構成要素の電源がオフになっても、情報を記憶しておくことができる。電源の再投入時にも故障情報やメンテナンスの履歴が引き継がれているので、電源がオフになる前に起こった故障や異常に対しても確実に修理およびメンテナンスを行うことができ、ドローンシステム500を安全に使用することができる。 The first to fourth state storage units 115, 415, 445, and 455 are at least partially configured by a nonvolatile storage area, for example, a nonvolatile memory. According to this configuration, information can be stored even when the power of each component is turned off. Since failure information and maintenance history are carried over when the power is turned on again, repairs and maintenance can be performed reliably even for failures and abnormalities that occur before the power is turned off. It can be used safely.
 図10に示すように、ドローン100は、薬剤タンク104への薬剤の注入を管理するための構成として、注水検知部31と、エア抜き検知部32と、満タン検知部33と、を備える。 As shown in FIG. 10, the drone 100 includes a water injection detection unit 31, an air bleeding detection unit 32, and a full tank detection unit 33 as a configuration for managing the injection of the drug into the drug tank 104.
 注水検知部31は、薬剤タンク104に注水が完了していることを検知する機能部である。 The water injection detection unit 31 is a functional unit that detects that water has been injected into the chemical tank 104.
 エア抜き検知部32は、薬剤タンク104の内部の空気を薬剤タンク104の外部に流出させるエア抜き動作が完了していることを検知する機能部である。エア抜き検知部32は、三方弁122が拡張タンク131側の経路を開放している場合、図6における薬剤タンク104から三方弁122までの経路(以下、「上流経路」ともいう。)においてエア抜きが完了していることを検知する。エア抜き検知部32は、三方弁122が薬剤ノズル103-1~4側の経路を開放している場合、図6における三方弁122から薬剤ノズル103-1~4までの経路(以下、「下流経路」ともいう。)においてエア抜きが完了していることを検知する。 The air bleeding detection unit 32 is a functional unit that detects that the air bleeding operation for causing the air inside the drug tank 104 to flow out of the drug tank 104 is completed. When the three-way valve 122 opens the path on the expansion tank 131 side, the air bleeding detection unit 32 performs air in the path from the medicine tank 104 to the three-way valve 122 in FIG. 6 (hereinafter also referred to as “upstream path”). Detect that the removal is complete. When the three-way valve 122 opens the path on the drug nozzles 103-1 to 4-4 side, the air bleeding detection unit 32 passes the path from the three-way valve 122 to the drug nozzles 103-1 to 4 in FIG. It is also referred to as “route”.) It is detected that air bleeding has been completed.
 エア抜き検知部32は、上流経路におけるエア抜きの検知では、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-1および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。下流経路においては、具体的には、エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-1の値および流量センサー510の値の少なくとも一方の値を基準値として記憶している。エア抜き検知部32は、ポンプ106の回転数に応じた基準値と、圧力および流量の少なくとも一方の実測値とを比較する。その差が所定以内の場合、エア抜き検知部32は、エア抜き動作が完了していることを検知する。 The air bleeding detection unit 32 detects air bleeding in the upstream path based on the rotational speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-1 and the flow sensor 510. Detect that the air bleeding operation is complete. In the downstream path, specifically, the air bleeding detection unit 32 sets the value of the pressure sensor 111-1 and the value of the flow rate sensor 510 according to the rotation speed of the pump 106 when the air bleeding operation is completed. At least one value is stored as a reference value. The air bleeding detection unit 32 compares a reference value corresponding to the number of rotations of the pump 106 with an actual measurement value of at least one of pressure and flow rate. When the difference is within the predetermined range, the air bleeding detection unit 32 detects that the air bleeding operation is completed.
 エア抜き検知部32は、下流経路におけるエア抜きの検知においては、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-2および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-2の値をおよび流量センサー510の値の少なくとも一方の値を基準値として記憶し、実測値と比較してエア抜き動作の完了を検知する。また、圧力センサー111-1の値も下流経路におけるエア抜きの検知に利用してもよい。 The air bleeding detection unit 32 detects air bleeding in the downstream path based on the rotation speed of the pump 106 detected by the pump sensor 106a and the measurement result of at least one of the pressure sensor 111-2 and the flow rate sensor 510. Detecting that the air bleeding operation is complete. The air bleeding detection unit 32 stores the value of the pressure sensor 111-2 corresponding to the rotation speed of the pump 106 and the value of the flow rate sensor 510 as a reference value when the air bleeding operation is completed. Then, the completion of the air bleeding operation is detected in comparison with the actually measured value. Further, the value of the pressure sensor 111-1 may also be used for air bleeding detection in the downstream path.
 なお、三方弁122が開放している経路により、ポンプ106の回転数に応じた圧力センサー111-1、111-2の値および流量センサー510の値は、それぞれ異なる。エア抜き検知部32は、三方弁122がいずれの経路を開放しているかの情報に基づいて、実測値と比較する基準値を決定する。 Note that the values of the pressure sensors 111-1 and 111-2 and the value of the flow sensor 510 differ according to the number of rotations of the pump 106 depending on the path through which the three-way valve 122 is open. The air bleeding detection unit 32 determines a reference value to be compared with the actual measurement value based on information on which path the three-way valve 122 is open.
 満タン検知部33は、薬剤タンク104に薬剤の補充が完了していることを検知する機能部である。 The full tank detection unit 33 is a functional unit that detects that the medicine tank 104 has been replenished with medicine.
 図10に示すように、ドローン100は、離陸前に、ドローン100が安全に飛行し、薬剤散布を行うための条件が整っているか診断するための構成として、飛行開始指令受信部51と、飛行計画確認部52と、ドローン判定部53と、外部環境判定部54と、を備える。 As shown in FIG. 10, the drone 100 has a flight start command receiving unit 51 as a configuration for diagnosing whether the conditions for the drone 100 to fly safely and perform drug spraying are ready before takeoff, A plan confirmation unit 52, a drone determination unit 53, and an external environment determination unit 54 are provided.
 飛行開始指令受信部51は、使用者402から入力される飛行開始指令を受信する機能部である。飛行開始指令は、操縦器401からドローン100に送信される指令である。飛行開始指令は、使用者402の意思がドローン100に伝達されるための指令であるため、使用者402の動作を起点としてドローン100に送信される。 The flight start command receiving unit 51 is a functional unit that receives a flight start command input from the user 402. The flight start command is a command transmitted from the controller 401 to the drone 100. Since the flight start command is a command for transmitting the intention of the user 402 to the drone 100, the flight start command is transmitted to the drone 100 with the operation of the user 402 as a starting point.
 飛行計画確認部52は、ドローン100が、ドローン100の飛行計画に関する情報を正常に保有しているか否かを確認する機能部である。飛行計画は、例えば飛行中に薬液を散布する圃場の位置や、当該圃場内における飛行するルートを含む。飛行計画は、あらかじめドローン100に登録される情報であり、適宜書き換え可能である。また、飛行計画に含まれる飛行ルートは、指定される圃場の位置に基づいて自動的に算出される。なお、飛行ルートは、圃場の位置に基づいて一意に算出されるものであってもよいし、他の条件を考慮して飛行計画の策定の度ごとに算出される、異なる飛行ルートであってもよい。 The flight plan confirmation unit 52 is a functional unit that confirms whether or not the drone 100 normally holds information related to the flight plan of the drone 100. The flight plan includes, for example, the position of a field where chemicals are sprayed during flight, and the flight route in the field. The flight plan is information registered in advance in the drone 100 and can be appropriately rewritten. Further, the flight route included in the flight plan is automatically calculated based on the designated position of the field. The flight route may be uniquely calculated based on the position of the field, or may be a different flight route that is calculated every time a flight plan is formulated in consideration of other conditions. Also good.
 ドローン判定部53は、ドローン100自体が有する各構成が正常の範囲内で動作していることを判定する機能部である。ドローン100自体が有する各構成とは、例えばバッテリー502やモーター102、各種センサ等である。 The drone determination unit 53 is a functional unit that determines that each configuration of the drone 100 itself is operating within a normal range. The components included in the drone 100 are, for example, the battery 502, the motor 102, various sensors, and the like.
 外部環境判定部54は、主にドローン100の外部環境がドローン100の飛行に適する環境であるかを判定する機能部である。外部環境とは、例えば各構成要素間を接続する電波の妨げになるような外乱の有無や、GPSの受信感度、および気温などを含む。 The external environment determination unit 54 is a functional unit that mainly determines whether the external environment of the drone 100 is an environment suitable for the flight of the drone 100. The external environment includes, for example, the presence / absence of disturbance that interferes with radio waves connecting each component, GPS reception sensitivity, temperature, and the like.
●ドローンシステムの状態遷移
 図11に示すように、本実施形態におけるドローンシステム500は、停止状態(S0)と、初期チェック状態(S1)と、薬剤準備スタンバイ状態(S2)と、薬剤準備状態(S3)と、飛行開始スタンバイ状態(S4)と、離陸診断状態(S5)と、飛行散布状態(S6)と、着陸後スタンバイ状態(S7)と、メンテナンス状態(S8)と、シャットダウン状態(S9)と、を取り得る。
Drone System State Transition As shown in FIG. 11, the drone system 500 according to the present embodiment includes a stop state (S0), an initial check state (S1), a medicine preparation standby state (S2), and a medicine preparation state ( S3), start-of-flight standby state (S4), take-off diagnosis state (S5), flight dispersion state (S6), standby state after landing (S7), maintenance state (S8), and shutdown state (S9) And can take.
 停止状態(S0)は、ドローン100、操縦器401および基地局404の電源がオフになっている状態である。停止状態(S0)において各構成要素の電源がオンになると、ドローンシステム500は初期チェック状態(S1)に遷移する。各構成要素の電源は、それぞれ使用者402により手動でオンにできるようになっていてもよいし、使用者402がある1個の構成要素を操作することで、他の構成要素の電源がオンになるようになっていてもよい。例えば、使用者402が操縦器401の電源をオンにして専用のアプリケーションを起動することで、ドローン100および基地局404の電源がオンになるように構成されていてもよい。 The stop state (S0) is a state in which the power of the drone 100, the pilot 401, and the base station 404 is turned off. When the power of each component is turned on in the stop state (S0), the drone system 500 transitions to the initial check state (S1). The power of each component may be manually turned on by the user 402, or the power of other components is turned on by operating one component of the user 402. You may come to become. For example, the drone 100 and the base station 404 may be turned on when the user 402 turns on the power of the controller 401 and starts a dedicated application.
 初期チェック状態(S1)は、各構成要素の起動後に、各構成要素の動作が正常に行われているかどうかを確認する状態である。初期チェック状態では、例えば各構成要素に電源が投入されているか否かの確認や、各構成要素間の通信が正常に行われているか否かの確認が行われる。所定の確認事項がすべて正常であることが確認されると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。 The initial check state (S1) is a state in which after each component is activated, it is confirmed whether or not each component is operating normally. In the initial check state, for example, it is confirmed whether or not each component is powered on, and whether or not communication between the components is normally performed. When it is confirmed that all the predetermined confirmation items are normal, the drone system 500 transitions to the medicine preparation standby state (S2).
 薬剤準備スタンバイ状態(S2)は、使用者402からの、ドローン100の薬剤タンク104に薬剤を注入する作業を開始する旨の指令、すなわち薬剤注入開始指令が入力されるのを待機している状態である。使用者402により入力される薬剤注入開始指令を受信すると、ドローンシステム500は、薬剤準備状態(S3)に遷移する。 The medicine preparation standby state (S2) is a state in which the user 402 waits for a command to start injecting medicine into the medicine tank 104 of the drone 100, that is, a medicine injection start instruction is input. It is. When the medicine injection start command input by the user 402 is received, the drone system 500 transitions to the medicine preparation state (S3).
 薬剤準備状態(S3)は、使用者402により薬剤タンク104に薬剤を注入する作業が行われている間、ドローンシステム500が属する状態である。 The drug preparation state (S3) is a state in which the drone system 500 belongs while the user 402 is injecting the drug into the drug tank 104.
 図12に示すように、薬剤準備状態(S3)は、注水待機状態(S31)と、エア抜き待機状態(S32)と、薬剤待機状態(S33)と、を含む。 As shown in FIG. 12, the medicine preparation state (S3) includes a water injection standby state (S31), an air bleeding standby state (S32), and a medicine standby state (S33).
 注水待機状態(S31)は、薬剤タンク104に水を注入することが可能な状態である。注水待機状態(S31)は、使用者からの薬剤注入開始指令に基づいて薬剤準備スタンバイ状態(S2)から遷移する状態である。注水待機状態(S31)において、注水検知部31が薬剤タンク104に水が注入されたことを検知すると、ドローンシステム500は、エア抜き待機状態(S32)に遷移する。ドローンシステム500は、薬剤タンク104が有する注水口の蓋が適宜のロック機構によりロックされていることを条件に、エア抜き待機状態(S32)に遷移してもよい。 The water injection standby state (S31) is a state in which water can be injected into the medicine tank 104. The water injection standby state (S31) is a state in which a transition from the medicine preparation standby state (S2) is made based on a medicine injection start command from the user. In the water injection standby state (S31), when the water injection detector 31 detects that water has been injected into the chemical tank 104, the drone system 500 transitions to the air bleeding standby state (S32). The drone system 500 may transition to the air bleeding standby state (S32) on the condition that the lid of the water injection port of the medicine tank 104 is locked by an appropriate lock mechanism.
 エア抜き待機状態(S32)は、ポンプ106を駆動してエア抜きを行い、薬剤タンク104内および薬剤タンク104から薬剤ノズル103-1~4に至る経路から空気が抜けるのを待機する状態である。エア抜き待機状態(S32)は、さらに上流エア抜き待機状態(S32-1)および下流エア抜き待機状態(S32-2)を有する。 The air bleeding standby state (S32) is a state in which the pump 106 is driven to perform air bleeding and wait for air to escape from the inside of the medicine tank 104 and the route from the medicine tank 104 to the medicine nozzles 103-1 to 104-3. . The air bleeding standby state (S32) further includes an upstream air bleeding standby state (S32-1) and a downstream air bleeding standby state (S32-2).
 上流エア抜き待機状態(S32-1)において、三方弁122は、拡張タンク131側に開放されている。薬剤タンク104内および上流経路中に存在している空気は、ポンプ106の駆動により、この経路を循環させると共に拡張タンク131に一時的に貯留され、除去される。エア抜き検知部32が上流経路におけるエア抜き動作の完了を検知すると、ドローンシステム500は、下流エア抜き待機状態(S32-2)に遷移する。 In the upstream air bleeding standby state (S32-1), the three-way valve 122 is opened to the expansion tank 131 side. The air existing in the drug tank 104 and in the upstream path is circulated through this path and temporarily stored in the expansion tank 131 and removed by driving the pump 106. When the air bleeding detection unit 32 detects the completion of the air bleeding operation in the upstream path, the drone system 500 transitions to the downstream air bleeding standby state (S32-2).
 下流エア抜き待機状態(S32-2)において、三方弁122は、薬剤ノズル103-1~4側に開放されている。主に下流経路中に存在している空気は、ポンプ106の駆動により移動する水に押されて、ノズル103から薬剤タンク104の外部に放出される。すなわち、下流経路における薬剤タンク104のエア抜きが行われる。エア抜き検知部32がエア抜き動作の完了を検知すると、ドローンシステム500は、薬剤待機状態(S33)に遷移する。 In the downstream air bleeding standby state (S32-2), the three-way valve 122 is opened to the drug nozzles 103-1 to 4-3 side. Air existing mainly in the downstream path is pushed by the moving water by driving the pump 106 and is discharged from the nozzle 103 to the outside of the medicine tank 104. That is, air removal from the medicine tank 104 in the downstream path is performed. When the air bleeding detection unit 32 detects the completion of the air bleeding operation, the drone system 500 transitions to the medicine standby state (S33).
 薬剤待機状態(S33)は、注水口の蓋のロックが解除されており、注水口から薬剤を注入することができる状態である。満タン検知部33が薬剤タンク104に薬剤の補充が完了していることを検知すると、ドローンシステム500は、飛行開始スタンバイ状態(S4)に遷移する。 The medicine standby state (S33) is a state where the lid of the water inlet is unlocked and the medicine can be injected from the water inlet. When the full tank detection unit 33 detects that the medicine tank 104 has been replenished with the medicine, the drone system 500 transitions to the flight start standby state (S4).
 飛行開始スタンバイ状態(S4)は、使用者402からの飛行開始指令が入力可能な状態である。飛行開始指令は、使用者402がドローン100の離陸を促す指令である。図11に示すように、飛行開始指令受信部51が、飛行開始指令を受信すると、ドローンシステム500は、ドローン100の離陸前に必要な離陸診断を行う離陸診断状態(S5)に移行する。 The flight start standby state (S4) is a state in which a flight start command from the user 402 can be input. The flight start command is a command that prompts the user 402 to take off the drone 100. As shown in FIG. 11, when the flight start command receiving unit 51 receives the flight start command, the drone system 500 shifts to a take-off diagnosis state (S5) for performing a take-off diagnosis required before the drone 100 takes off.
 離陸診断状態(S5)は、ドローン100が離陸する前に、ドローン100が安全に飛行し、薬剤散布を行うための条件が整っているか診断する間、ドローンシステム500が属する状態である。 The take-off diagnosis state (S5) is a state in which the drone system 500 belongs while diagnosing whether the conditions for the drone 100 to fly safely and perform the chemical spraying are in place before the drone 100 takes off.
 図13に示すように、離陸診断状態(S5)は、ドローン判定状態(S51)と、飛行計画確認状態(S52)と、外部環境判定状態(S53)と、を含む。 As shown in FIG. 13, the takeoff diagnosis state (S5) includes a drone determination state (S51), a flight plan confirmation state (S52), and an external environment determination state (S53).
 ドローン判定状態(S51)は、ドローン判定部53によりドローン100自体が有する各構成が正常の範囲内で動作していることが判定される間、ドローンシステム500が属する状態である。ドローン判定部53により各構成が正常の範囲内で動作していることが判定されると、ドローンシステム500は、外部環境判定状態(S53)に遷移する。ドローン判定部53により異常が確認されると、操縦器401にその旨表示され、着陸後スタンバイ状態(S7)に遷移する。 The drone determination state (S51) is a state to which the drone system 500 belongs while it is determined by the drone determination unit 53 that each configuration of the drone 100 itself is operating within a normal range. When the drone determination unit 53 determines that each component is operating within a normal range, the drone system 500 transitions to the external environment determination state (S53). When an abnormality is confirmed by the drone determination unit 53, a message to that effect is displayed on the controller 401, and a transition is made to a standby state (S7) after landing.
 飛行計画確認状態(S52)は、飛行計画確認部52により、ドローン100がドローン100の飛行計画に関する情報を正常に保有しているか否か確認される間、ドローンシステム500が属する状態である。飛行計画に関する情報が確認されると、ドローンシステム500は外部環境判定状態(S53)に遷移する。飛行計画に関する情報が正常に保有されていない場合、ドローンシステム500は飛行計画に関する情報を入手する動作を行う。この動作は、例えば営農支援クラウド405から当該情報を受信してもよい。また、薬剤散布を行う圃場の指定など使用者402による決定が必要な場合は、操縦器401を通じてその旨を使用者402に通知し、決定を促す。 The flight plan confirmation state (S52) is a state in which the drone system 500 belongs while the flight plan confirmation unit 52 confirms whether or not the drone 100 normally holds information on the flight plan of the drone 100. When the information about the flight plan is confirmed, the drone system 500 transitions to the external environment determination state (S53). If the information regarding the flight plan is not normally held, the drone system 500 performs an operation of obtaining information regarding the flight plan. This operation may be received from the farming support cloud 405, for example. In addition, when a determination by the user 402 is necessary, such as designation of a field where medicine spraying is performed, the user 402 is notified through the controller 401 to prompt the determination.
 外部環境判定状態(S53)は、外部環境判定部54により主にドローン100の外部環境がドローン100の飛行に適する環境であるか判定される間、ドローンシステム500が属する状態である。外部環境判定部54により外部環境が飛行に適すると判定されると、ドローンシステム500は離陸し、飛行散布状態(S6)に遷移する。飛行開始指令の後であって離陸の直前に離陸診断状態(S5)を有することで、薬剤注入等の他の作業中に発生した異常も確実に検知することができるため、別のタイミングで診断を行う構成及び診断を行わない構成に比べて高い安全性を担保できる。 The external environment determination state (S53) is a state to which the drone system 500 belongs while it is determined by the external environment determination unit 54 whether or not the external environment of the drone 100 is an environment suitable for the flight of the drone 100. When the external environment determination unit 54 determines that the external environment is suitable for flight, the drone system 500 takes off and transitions to the flight dispersion state (S6). Having a take-off diagnosis state (S5) immediately after take-off command and immediately before take-off makes it possible to reliably detect abnormalities that occur during other operations such as drug injection. High safety can be ensured as compared with the configuration that performs the above and the configuration that does not perform the diagnosis.
 外部環境判定部54により、外部環境がドローン100の飛行に適さないと判定されると、ドローン100は着陸したまま待機する。また、操縦器401にその旨が表示される。外部環境は、短時間での変動が激しいファクターであるので、別の状態に遷移するのではなく、外部環境が飛行に適する状況になるのを待機するのが好適である。 If the external environment determination unit 54 determines that the external environment is not suitable for the flight of the drone 100, the drone 100 stands by while landing. In addition, a message to that effect is displayed on the controller 401. Since the external environment is a factor that fluctuates rapidly in a short time, it is preferable to wait for the external environment to be in a state suitable for flight, instead of transitioning to another state.
 ドローンシステム500は、離陸診断状態(S5)において、使用者402による確認を促し、使用者402が確認した旨の情報を入力することを状態遷移の1条件としてもよい。 The drone system 500 may prompt the user 402 for confirmation in the takeoff diagnosis state (S5) and input information indicating that the user 402 has confirmed as one condition of the state transition.
 ドローンシステム500は、離陸診断状態(S5)において、非常用操縦器の電源容量を確認してもよい。非常用操縦器の電源容量が所定以下の場合、飛行散布状態(S6)において緊急停止指令を送信することができず、安全性を損なうおそれがあるためである。非常用操縦器の電源容量が所定以下の場合は、操縦器401にその旨表示し、非常用操縦器のバッテリを交換する等の措置を使用者402に促す。また、操縦器401自身の電源容量についても同様である。 The drone system 500 may check the power capacity of the emergency pilot in the takeoff diagnosis state (S5). This is because when the power supply capacity of the emergency pilot is less than or equal to a predetermined value, an emergency stop command cannot be transmitted in the flight dispersion state (S6), which may impair safety. When the power capacity of the emergency pilot is below a predetermined level, the fact is displayed on the pilot 401 and the user 402 is urged to take measures such as replacing the battery of the emergency pilot. The same applies to the power supply capacity of the pilot 401 itself.
 飛行散布状態(S6)は、ドローン100が飛行し、圃場に薬剤散布を行っている間、ドローンシステム500が属する状態である。ドローン100が着陸すると、着陸後スタンバイ状態(S7)に遷移する。 The flying spraying state (S6) is a state where the drone system 500 belongs while the drone 100 is flying and spraying the medicine on the field. When drone 100 lands, it changes to the standby state (S7) after landing.
 飛行散布状態(S6)において操縦器401又は非常用操縦器により緊急停止指令が送信されると、ドローン100は退避行動を取る。退避行動とは、例えば、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめ飛行制御部23に記憶させた地点であり、例えば発着地点406である。発着地点406とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は発着地点406に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。 When the emergency stop command is transmitted from the controller 401 or the emergency controller in the flight spraying state (S6), the drone 100 takes evacuation action. The evacuation action includes, for example, “emergency return” in which the user immediately moves to a predetermined return point on the shortest route. The predetermined return point is a point previously stored in the flight control unit 23, for example, a departure / arrival point 406. The landing point 406 is, for example, a land point where the user 402 can approach the drone 100. The user 402 can check the drone 100 that has reached the landing point 406, or manually carry it to another location. can do.
 また、退避行動は、着陸動作を含む。「着陸動作」とは、通常の着陸動作をする「通常着陸」、通常の着陸より速く下降して着陸する「緊急着陸」、および、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」を含む。なお、「緊急着陸」には、通常の着陸より速く下降して、通常時と同様の姿勢制御を行いながら通常の着陸を行う場合と同様の地点に着陸する動作だけでなく、姿勢制御の精度が悪く、姿勢を多少崩しながらも着陸を成立させる動作も含める。具体例の一つとして全モーターの回転数をゆっくり均等に減少させることで、真下にではないものの精度よく下降しながら着陸することができる。 Also, the evacuation action includes landing action. “Landing operation” means “normal landing” that performs normal landing operation, “emergency landing” that descends and landes faster than normal landing, and all drones are stopped and the drone 100 is moved downward from the spot Including "Emergency stop" to drop. In “Emergency Landing”, not only landing at the same point as when performing normal landing while descending faster than normal landing and performing the same posture control as normal, but also the accuracy of posture control This includes the action to establish landing while the posture is slightly broken. As a specific example, the number of rotations of all the motors can be decreased slowly and evenly so that landing can be made while accurately descending although not directly below.
 ドローン100は、少なくとも飛行散布状態(S6)において、操縦器401から操縦器401の電源容量を受信する。ドローン100は、操縦器401の電源容量が所定以下の場合には退避行動をとる。操縦器401の電源容量が低下している場合、使用者402の飛行に関する指令をドローン100に伝達することができず、ドローン100の安全な飛行が困難になる。したがって、操縦器401の電源容量が低下している場合は、ドローン100のバッテリー502の容量が充分である場合にも、ドローン100に退避行動を取らせるとよい。 The drone 100 receives the power capacity of the pilot 401 from the pilot 401 at least in the flight spraying state (S6). The drone 100 takes evacuation action when the power supply capacity of the controller 401 is equal to or less than a predetermined value. When the power supply capacity of the pilot 401 is reduced, it is not possible to transmit a command related to the flight of the user 402 to the drone 100, and it is difficult to fly the drone 100 safely. Therefore, when the power supply capacity of the controller 401 is low, the drone 100 may be caused to take a retreat action even when the capacity of the battery 502 of the drone 100 is sufficient.
 また、同様に、非常用操縦器の電源容量が所定以下の場合も、ドローン100に退避行動を取らせるとよい。 Similarly, when the power supply capacity of the emergency controller is below a predetermined level, the drone 100 should be evacuated.
 ドローンシステム500は、操縦器401又は非常用操縦器からの緊急停止命令を受信すると、緊急停止状態(S11)に遷移する。ドローンシステム500は、緊急停止命令を受領して緊急停止状態(S11)に遷移した旨の受領情報を操縦器401に送信する。この構成によれば、使用者402は、ドローンシステム500が使用者402の意図通りに緊急停止状態(S11)に遷移したことを操縦器401の表示により知ることができる。 When the drone system 500 receives an emergency stop command from the controller 401 or the emergency controller, the drone system 500 transits to an emergency stop state (S11). The drone system 500 receives the emergency stop command and transmits reception information indicating that the emergency stop command has been entered to the emergency stop state (S11). According to this configuration, the user 402 can know from the display on the controller 401 that the drone system 500 has transitioned to the emergency stop state (S11) as intended by the user 402.
 着陸後スタンバイ状態(S7)は、着陸後に作業を切り替える準備をしている間、ドローンシステム500が属する状態である。着陸後スタンバイ状態(S7)は、ドローン100が着陸している状態において使用者402からの動作指令に基づいて複数の状態に遷移可能な状態である。 The landing standby state (S7) is a state to which the drone system 500 belongs while preparing for switching work after landing. The post-landing standby state (S7) is a state in which a transition can be made to a plurality of states based on an operation command from the user 402 when the drone 100 is landing.
 着陸後スタンバイ状態(S7)において、使用者402から薬剤散布を行う圃場を切り替える動作指令を受信すると、ドローンシステム500は、指定圃場切替ルート(D)を経由して飛行開始スタンバイ状態(S4)に遷移する。 In the standby state after landing (S7), when receiving an operation command for switching the field for spraying medicine from the user 402, the drone system 500 enters the flight start standby state (S4) via the designated field switching route (D). Transition.
 着陸後スタンバイ状態(S7)において、使用者402からメンテナンスを行う動作指令を受信すると、ドローンシステム500は、メンテナンス状態(S8)に遷移する。 Upon receiving an operation command for performing maintenance from the user 402 in the standby state after landing (S7), the drone system 500 transitions to the maintenance state (S8).
 着陸後スタンバイ状態(S7)において、使用者402から薬剤補充を行う動作指令を受信すると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。 In the standby state after landing (S7), when receiving an operation command for replenishing medicine from the user 402, the drone system 500 transitions to a medicine preparation standby state (S2).
 着陸後スタンバイ状態(S7)を有するドローンシステム500によれば、ある圃場について薬剤散布を終えたドローン100が、引き続き別の圃場への薬剤散布や薬剤補充を行う場合にも、円滑に次の動作に移行することができる。具体的には、圃場の切替えおよび薬剤補充を行う場合に、シャットダウン状態(S9)や停止状態(S0)、初期チェック状態(S1)等の他の状態を経由することなく、飛行開始スタンバイ状態(S4)および薬剤準備スタンバイ状態(S2)に直接遷移することができる。 According to the drone system 500 having the standby state (S7) after landing, even when the drone 100 that has finished spraying the drug on one field continues to spray the drug to another field or refills the drug, Can be migrated to. Specifically, when performing field switching and drug replenishment, the flight start standby state (without passing through other states such as the shutdown state (S9), stop state (S0), initial check state (S1)) ( Direct transition to S4) and drug ready standby state (S2).
 メンテナンス状態(S8)は、ドローン100がドローン100自体のメンテナンスを行っている間、ドローンシステム500が属する状態である。メンテナンスとは、例えば自動でドローン100の外筐体を洗浄する動作を含む。メンテナンス状態(S8)におけるメンテナンスが終了すると、ドローンシステム500は、シャットダウン状態(S9)に遷移する。 The maintenance state (S8) is a state in which the drone system 500 belongs while the drone 100 is performing maintenance of the drone 100 itself. The maintenance includes an operation of automatically cleaning the outer casing of the drone 100, for example. When the maintenance in the maintenance state (S8) is completed, the drone system 500 transitions to the shutdown state (S9).
 シャットダウン状態(S9)は、ドローン100、操縦器401及び基地局404の相互の接続を解除し、ドローン100、操縦器401及び基地局404の電源をシャットダウンするまでの間、ドローンシステム500が属する状態である。 In the shutdown state (S9), the drone system 500 belongs until the drone 100, the pilot 401, and the base station 404 are disconnected from each other and the power of the drone 100, the pilot 401, and the base station 404 is shut down. It is.
 図14に示すように、シャットダウン状態(S9)は、ドローンシャットダウン状態(S91)と、他端末シャットダウン状態(S92)と、を含む。 As shown in FIG. 14, the shutdown state (S9) includes a drone shutdown state (S91) and another terminal shutdown state (S92).
 ドローンシャットダウン状態(S91)は、ドローン100がシャットダウン、すなわち電源がオフされるのに必要な準備を行い、ドローン100がシャットダウンするまでの間、ドローンシステム500が属する状態である。ドローンシャットダウン状態(S91)において、ドローン100は、第1状態記憶部115に記憶されている情報を不揮発性の記憶部に格納する。また、ドローン100は、第1状態送信部111により、第1状態記憶部115に記憶されている情報を営農支援クラウド405に送信する。 The drone shutdown state (S91) is a state where the drone system 500 belongs until the drone 100 is shut down, that is, the preparation necessary for turning off the power is performed and the drone 100 is shut down. In the drone shutdown state (S91), the drone 100 stores the information stored in the first state storage unit 115 in the nonvolatile storage unit. In addition, the drone 100 transmits the information stored in the first state storage unit 115 to the farming support cloud 405 by the first state transmission unit 111.
 ドローン100は、操縦器401及び基地局404との接続を解除し、各構成要素との協調を解除する。そして、ドローン100はシャットダウンされる。 The drone 100 releases the connection with the pilot 401 and the base station 404, and releases the cooperation with each component. And drone 100 is shut down.
 ドローン100がシャットダウンされると、ドローンシステム500は、他端末シャットダウン状態(S92)に遷移する。ここで、ドローン100が主端末であった場合、ドローン100のシャットダウンと共に、主端末は他の構成要素、例えば操縦器401に移行する。 When the drone 100 is shut down, the drone system 500 transitions to the other terminal shutdown state (S92). Here, when the drone 100 is the main terminal, the main terminal shifts to another component, for example, the controller 401 when the drone 100 is shut down.
 主端末の移行は、ドローン100のシャットダウン前に、第1主端末決定部114により操縦器401を主端末に決定してもよい。また、第2主端末決定部414がドローン100の電源がオフになっていることを検知して、操縦器401を主端末に決定してもよい。 In the transition of the main terminal, the pilot 401 may be determined as the main terminal by the first main terminal determination unit 114 before the drone 100 is shut down. Alternatively, the second main terminal determination unit 414 may detect that the drone 100 is powered off and determine the controller 401 as the main terminal.
 他端末シャットダウン状態(S92)は、操縦器401及び基地局404がシャットダウンするまでの間、ドローンシステム500が属する状態である。操縦器401及び基地局404は、第2および第3状態送信部411、441により、第2および第3状態記憶部415、445にそれぞれ記憶されている情報を営農支援クラウド405に送信してもよい。 The other terminal shutdown state (S92) is a state to which the drone system 500 belongs until the controller 401 and the base station 404 are shut down. The pilot 401 and the base station 404 may transmit the information stored in the second and third state storage units 415 and 445 to the farming support cloud 405 by the second and third state transmission units 411 and 441, respectively. Good.
 ドローン100、操縦器401及び基地局404が全てシャットダウンされると、ドローンシステム500は停止する。すなわち、ドローンシステム500は、停止状態(S0)に遷移する。 When the drone 100, the pilot 401 and the base station 404 are all shut down, the drone system 500 stops. That is, the drone system 500 transitions to the stop state (S0).
 薬剤準備状態(S3)又は離陸診断状態(S5)において、ドローン100のバッテリー容量が所定以下になっていることが検知されると、ドローンシステム500はバッテリー切れルート(C)を経由して着陸後スタンバイ状態(S7)に遷移する。着陸後スタンバイ状態(S7)においてバッテリー容量が所定以下であるとき、ドローンシステム500はシャットダウン状態(S9)に移行し、バッテリー502が交換可能な状態になる。 When it is detected that the battery capacity of the drone 100 is less than the specified value in the drug preparation state (S3) or takeoff diagnosis state (S5), the drone system 500 will stop after landing via the battery dead route (C). Transition to the standby state (S7). When the battery capacity is below a predetermined level in the standby state after landing (S7), the drone system 500 shifts to the shutdown state (S9), and the battery 502 becomes replaceable.
 薬剤準備状態(S3)又は着陸後スタンバイ状態(S7)において、薬剤タンク104内の薬剤が所定以下であることが検知されると、ドローンシステム500は薬剤切れルート(B)を経由して薬剤準備スタンバイ状態(S2)に遷移する。薬剤準備状態(S3)、すなわちドローン100が着陸している状態において薬剤タンク104の薬剤が所定以下であることが検知されたときは、離陸前に薬剤準備スタンバイ状態(S2)に遷移することができる。薬剤準備状態(S3)において薬剤タンク104に薬剤が充分入っていた場合は、ドローン100の飛行散布状態(S6)において薬剤が枯渇する可能性が高い。したがって、ドローン100は飛行散布状態(S6)から着陸して着陸後スタンバイ状態(S7)に遷移した上で、薬剤準備スタンバイ状態(S2)に遷移する。このように、ドローンシステム500は、薬剤切れを検知して2個の異なる状態から薬剤準備スタンバイ状態(S2)に遷移することができるので、薬剤切れとなった場合にも冗長な状態遷移をすることなく円滑に次の状態に遷移することができる。 When it is detected in the medicine preparation state (S3) or the standby state after landing (S7) that the medicine in the medicine tank 104 is less than or equal to a predetermined value, the drone system 500 prepares the medicine through the medicine out route (B). Transition to the standby state (S2). When it is detected that the medicine in the medicine tank 104 is equal to or less than a predetermined value in the medicine preparation state (S3), that is, the drone 100 is landing, the transition to the medicine preparation standby state (S2) may be made before takeoff. it can. When the medicine tank 104 is sufficiently filled in the medicine preparation state (S3), there is a high possibility that the medicine is depleted in the flying spray state (S6) of the drone 100. Accordingly, the drone 100 is landed from the flight spraying state (S6), transitions to the standby state (S7) after landing, and then transitions to the medicine preparation standby state (S2). In this way, since the drone system 500 can detect a medicine out and can transition from two different states to the medicine preparation standby state (S2), the drone system 500 performs a redundant state transition even when the medicine runs out. It is possible to smoothly transition to the next state without any problem.
 ドローン、操縦器、基地局、および営農支援クラウドが互いに接続され、協調して動作する本発明に係るドローンシステムによれば、いずれかの構成要素と他の構成要素との接続が切断されたり、いずれかの構成要素の電源がオフになっていたりする場合にも、ドローンシステムの状態を保持し、ドローンシステムとしての運用を円滑に継続することができる。 According to the drone system according to the present invention in which the drone, the controller, the base station, and the farming support cloud are connected to each other and operate in cooperation with each other, the connection between any of the components and the other components is cut off, Even when the power of any component is turned off, the state of the drone system can be maintained and the operation as the drone system can be continued smoothly.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、ドローン全般に適用可能である。特に、自律飛行を行うドローンに有用である。 In this description, the agricultural chemical spraying drone has been described as an example, but the technical idea of the present invention is not limited to this and can be applied to all drones. This is particularly useful for drones that perform autonomous flight.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンシステムにおいては、自律飛行時であっても、高い安全性を維持できるドローンシステムを提供することができる。

 
(Technologically significant effect of the present invention)
The drone system according to the present invention can provide a drone system that can maintain high safety even during autonomous flight.

Claims (16)

  1.  操縦器と、
     ドローンと、
    がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムであって、
     前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、
     前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、
     前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、
     前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う、
    ドローンシステム。
     
    A pilot,
    With drone,
    Is a drone system that is connected to each other through a network and operates in cooperation with each other,
    The drone system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition determined for each state,
    The drone includes a first state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The pilot includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The first state transition determination unit and the second state transition determination unit perform the determination alternatively.
    Drone system.
  2.  いずれの状態遷移判定部が前記判定を行うかを決定する主端末決定部をさらに有し、前記主端末決定部は、前記第1状態遷移判定部が前記判定をできる状態にないとき、第2状態遷移判定部が前記判定を行うことを決定する、請求項1記載のドローンシステム。
     
    It further has a main terminal determination unit that determines which state transition determination unit performs the determination, and the main terminal determination unit includes a second terminal when the first state transition determination unit is not in a state where the determination can be performed. The drone system according to claim 1, wherein the state transition determination unit determines to perform the determination.
  3.  前記第2状態遷移判定部は、前記ドローンの電源がオフになっているときに、前記判定を行う、請求項1又は2記載のドローンシステム。
     
    The drone system according to claim 1 or 2, wherein the second state transition determination unit performs the determination when the power of the drone is off.
  4.  前記第2状態遷移判定部は、前記ドローンと前記操縦器の直接的又は間接的な接続が切断されているときに、前記判定を行う、請求項1乃至3のいずれかに記載のドローンシステム。
     
    The drone system according to any one of claims 1 to 3, wherein the second state transition determination unit performs the determination when a direct or indirect connection between the drone and the controller is disconnected.
  5.  前記ドローンおよび前記操縦器は、前記ドローンシステムが現在属する状態の情報、ならびに前記ドローンおよび前記操縦器の電源のオンオフ情報および電源容量、動作履歴、メンテナンス履歴、故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、前記操縦器と前記ドローンとの接続状態、および、前記ドローンが備える薬剤タンクに注入されている水又は薬剤の別、その量および注入履歴のうちすくなくとも1個の情報を互いに送受信する、請求項1乃至4のいずれかに記載のドローンシステム。
     
    The drone and the pilot are executing information on the state to which the drone system currently belongs, power on / off information and power capacity of the drone and the pilot, operation history, maintenance history, failure information, and emergency stop. Information on whether or not, history of emergency stop, connection state between the pilot and the drone, and whether or not the water or medicine injected into the medicine tank provided in the drone, its amount and injection history The drone system according to any one of claims 1 to 4, wherein at least one piece of information is transmitted / received to / from each other.
  6.  前記ドローンは、前記操縦器から前記操縦器の電源容量を受信し、前記電源容量が所定値以下の場合は、退避行動をとる、請求項1乃至5のいずれかに記載のドローンシステム。
     
    The drone system according to any one of claims 1 to 5, wherein the drone receives a power capacity of the pilot from the pilot, and takes a retreat action when the power capacity is a predetermined value or less.
  7.  前記操縦器は、前記ドローンに緊急停止命令を送信し、前記ドローンは前記緊急停止命令を受領した旨の受領情報を前記操縦器に送信する、請求項1乃至6のいずれかに記載のドローンシステム。
     
    The drone system according to claim 1, wherein the pilot transmits an emergency stop command to the drone, and the drone transmits reception information indicating that the emergency stop command has been received to the pilot. .
  8.  前記ドローンシステムが有する複数の状態は、
      前記ドローンのシャットダウンを待機するドローンシャットダウン状態と、
      前記操縦器のシャットダウンを待機する他端末シャットダウン状態と、
    をさらに含み、
      前記ドローンシステムは前記ドローンシャットダウン状態において前記ドローンに記憶されている情報を不揮発性の記憶部に保存し、前記ドローンがシャットダウンされると前記第2状態遷移判定部により前記他端末シャットダウン状態に遷移することが決定され、前記他端末シャットダウン状態において前記操縦器がシャットダウンされる、請求項1乃至7のいずれかに記載のドローンシステム。
     
    The plurality of states that the drone system has are:
    A drone shutdown state waiting for the drone to shut down;
    Other terminal shutdown state waiting for shutdown of the pilot,
    Further including
    The drone system stores information stored in the drone in the non-volatile storage unit in the drone shutdown state, and transitions to the other terminal shutdown state by the second state transition determination unit when the drone is shut down. The drone system according to any one of claims 1 to 7, wherein it is determined that the pilot is shut down in the other terminal shutdown state.
  9.  基地局が、前記ドローンおよび前記操縦器の少なくとも一方とネットワークと通じて互いに接続され、
     前記基地局は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第3状態遷移判定部を備え、
     前記第1状態遷移判定部、前記第2状態遷移判定部、および前記第3状態遷移判定部は、前記判定を択一的に行う、請求項1乃至8のいずれかに記載のドローンシステム。
     
    Base stations are connected to each other through a network with at least one of the drone and the pilot,
    The base station includes a third state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The drone system according to any one of claims 1 to 8, wherein the first state transition determination unit, the second state transition determination unit, and the third state transition determination unit perform the determination alternatively.
  10.  前記基地局は、前記ドローンシステムが現在属する状態の情報、ならびに前記ドローン前記操縦器、および前記基地局の電源のオンオフ情報および電源容量、動作履歴、メンテナンス履歴、故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、前記ドローン、前記操縦器、および前記基地局の互いの接続状態、および、前記ドローンが備える薬剤タンクに注入されている水又は薬剤の別、その量および注入履歴のうちすくなくとも1個の情報を、前記ドローンおよび前記操縦器の少なくとも一方と送受信する、請求項9記載のドローンシステム。
     
    The base station is currently executing information on the state to which the drone system currently belongs, as well as on / off information and power capacity of the drone and the base station, operation history, maintenance history, failure information, and emergency stop. Information on whether or not there is, history of emergency stop, connection state of the drone, the pilot, and the base station, and another of water or medicine injected into a medicine tank provided in the drone, The drone system according to claim 9, wherein at least one of the quantity and the injection history is transmitted to and received from at least one of the drone and the pilot.
  11.  営農支援クラウドが、前記ドローンおよび前記操縦器の少なくとも一方とネットワークと通じて互いに接続され、
     前記営農支援クラウドは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第4状態遷移判定部を備え、
     前記第1状態遷移判定部、前記第2状態遷移判定部、および前記第4状態遷移判定部は、前記判定を択一的に行う、請求項1乃至10のいずれかに記載のドローンシステム。
     
    A farming support cloud is connected to each other through a network with at least one of the drone and the pilot,
    The farming support cloud includes a fourth state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The drone system according to any one of claims 1 to 10, wherein the first state transition determination unit, the second state transition determination unit, and the fourth state transition determination unit perform the determination alternatively.
  12.  前記基地局は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第3状態遷移判定部を備え、
     前記第1状態遷移判定部、前記第2状態遷移判定部、前記第3状態遷移判定部、および前記第4状態遷移判定部は、前記判定を択一的に行う、請求項11記載のドローンシステム。
     
    The base station includes a third state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The drone system according to claim 11, wherein the first state transition determination unit, the second state transition determination unit, the third state transition determination unit, and the fourth state transition determination unit perform the determination alternatively. .
  13.  操縦器と、ネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムに接続されるドローンであって、
     前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、
     前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、
     前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、
     前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う、
    ドローン。
     
    A drone connected to a pilot system and a drone system connected to each other through a network and operating in cooperation with each other;
    The drone system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition determined for each state,
    The drone includes a first state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The pilot includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The first state transition determination unit and the second state transition determination unit perform the determination alternatively.
    Drone.
  14.  ドローンと、ネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムに接続される操縦器であって、
     前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、
     前記ドローンは、前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定部を備え、
     前記操縦器は、前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定部を備え、
     前記第1状態遷移判定部および前記第2状態遷移判定部は、前記判定を択一的に行う、
    操縦器。
     
    A pilot connected to a drone and a drone system connected to each other through a network and operating in cooperation with each other,
    The drone system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition determined for each state,
    The drone includes a first state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The pilot includes a second state transition determination unit that determines whether or not the condition is satisfied for each of the plurality of states.
    The first state transition determination unit and the second state transition determination unit perform the determination alternatively.
    Pilot.
  15.  操縦器と、
     ドローンと、
    がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムの制御方法であって、
     前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、
     前記制御方法は、
      前記ドローンが前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定ステップと、
      前記操縦器が前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定ステップと、
    を含み、
     前記第1状態遷移判定ステップおよび前記第2状態遷移判定ステップを択一的に行う、ドローンシステムの制御方法。
     
    A pilot,
    With drone,
    Is a control method of a drone system that is connected to each other through a network and operates in cooperation with each other,
    The drone system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition determined for each state,
    The control method is:
    A first state transition determination step of determining whether the drone satisfies the condition for each of the plurality of states;
    A second state transition determination step for determining whether or not the controller satisfies the condition for each of the plurality of states;
    Including
    A control method for a drone system, wherein the first state transition determination step and the second state transition determination step are performed alternatively.
  16.  操縦器と、
     ドローンと、
    がネットワークと通じて互いに接続されて互いに協調して動作するドローンシステムにおいてコンピュータに実行させるドローンシステム制御プログラムであって、
     前記ドローンシステムは互いに異なる複数の状態を有し、前記ドローンシステムは、前記状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移し、
     前記ドローンシステム制御プログラムは、
      前記ドローンにより前記複数の状態ごとに前記条件を充足しているか否かを判定する第1状態遷移判定命令と、
      前記操縦器により前記複数の状態ごとに前記条件を充足しているか否かを判定する第2状態遷移判定命令と、
    を含み、
     前記第1状態遷移判定命令および前記第2状態遷移判定命令を択一的にコンピュータに実行させる、ドローンシステム制御プログラム。
     

     
     
    A pilot,
    With drone,
    Is a drone system control program that is executed by a computer in a drone system that is connected to each other through a network and operates in cooperation with each other,
    The drone system has a plurality of different states, and the drone system transitions to another state corresponding to a condition by satisfying a condition determined for each state,
    The drone system control program is
    A first state transition determination instruction for determining whether or not the condition is satisfied for each of the plurality of states by the drone;
    A second state transition determination command for determining whether or not the condition is satisfied for each of the plurality of states by the pilot;
    Including
    A drone system control program for causing a computer to alternatively execute the first state transition determination instruction and the second state transition determination instruction.



PCT/JP2019/020825 2018-05-25 2019-05-27 Drone system, drone, controller, method for controlling drone system, and control program of drone system WO2019225762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570162A JP6803592B2 (en) 2018-05-25 2019-05-27 Drone system, drone, pilot, drone system control method, and drone system control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100380 2018-05-25
JP2018100380 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225762A1 true WO2019225762A1 (en) 2019-11-28

Family

ID=68616855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020825 WO2019225762A1 (en) 2018-05-25 2019-05-27 Drone system, drone, controller, method for controlling drone system, and control program of drone system

Country Status (2)

Country Link
JP (1) JP6803592B2 (en)
WO (1) WO2019225762A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394608A1 (en) * 2019-06-13 2020-12-17 International Business Machines Corporation Intelligent vehicle delivery
KR102241886B1 (en) * 2020-06-19 2021-04-16 강원대학교산학협력단 Unmanned aerial vehicle flight route setting method and unmanned aerial vehicle flight system
WO2021110820A1 (en) * 2019-12-05 2021-06-10 Thales Electronic system for controlling an unmanned aircraft, and associated methods and computer programs
WO2021177192A1 (en) * 2020-03-05 2021-09-10 ソニーグループ株式会社 Path generation method, path generation device, and program
WO2023079755A1 (en) * 2021-11-08 2023-05-11 株式会社Fuji Management system and management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001485A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Monitoring system for unmanned helicopter
CN105857637A (en) * 2016-06-08 2016-08-17 广东容祺智能科技有限公司 Unmanned aerial vehicle self-checking system
JP2017065297A (en) * 2015-09-28 2017-04-06 双葉電子工業株式会社 Flight control device, flight control method, flight vehicle
WO2017170148A1 (en) * 2016-03-31 2017-10-05 株式会社ニコン Flight device, electronic device and program
US20170345319A1 (en) * 2016-05-24 2017-11-30 Beijing Xiaomi Mobile Software Co., Ltd. Methods and Devices for Controlling Unmanned Aerial Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001485A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Monitoring system for unmanned helicopter
JP2017065297A (en) * 2015-09-28 2017-04-06 双葉電子工業株式会社 Flight control device, flight control method, flight vehicle
WO2017170148A1 (en) * 2016-03-31 2017-10-05 株式会社ニコン Flight device, electronic device and program
US20170345319A1 (en) * 2016-05-24 2017-11-30 Beijing Xiaomi Mobile Software Co., Ltd. Methods and Devices for Controlling Unmanned Aerial Vehicle
CN105857637A (en) * 2016-06-08 2016-08-17 广东容祺智能科技有限公司 Unmanned aerial vehicle self-checking system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394608A1 (en) * 2019-06-13 2020-12-17 International Business Machines Corporation Intelligent vehicle delivery
US11521160B2 (en) * 2019-06-13 2022-12-06 International Business Machines Corporation Intelligent vehicle delivery
WO2021110820A1 (en) * 2019-12-05 2021-06-10 Thales Electronic system for controlling an unmanned aircraft, and associated methods and computer programs
FR3104135A1 (en) * 2019-12-05 2021-06-11 Thales Electronic control system of an unmanned aircraft on board, associated methods and computer programs
WO2021177192A1 (en) * 2020-03-05 2021-09-10 ソニーグループ株式会社 Path generation method, path generation device, and program
KR102241886B1 (en) * 2020-06-19 2021-04-16 강원대학교산학협력단 Unmanned aerial vehicle flight route setting method and unmanned aerial vehicle flight system
WO2023079755A1 (en) * 2021-11-08 2023-05-11 株式会社Fuji Management system and management method

Also Published As

Publication number Publication date
JP6803592B2 (en) 2020-12-23
JPWO2019225762A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP7009005B2 (en) Drone system
WO2019225762A1 (en) Drone system, drone, controller, method for controlling drone system, and control program of drone system
JP6829453B2 (en) Drones, drone control methods, and drone control programs
JP6777923B2 (en) Drone system, drone system control method, and drone system control program
JP6727525B2 (en) Drone, drone control method, and drone control program
JP6749626B2 (en) Drug ejection control system, method, and computer program
CN111566010B (en) Unmanned aerial vehicle, unmanned aerial vehicle control method, and computer-readable recording medium
JP6913978B2 (en) Fault detection systems, methods, and computer programs
JP6889502B2 (en) Drones, drone control methods, and drone control programs
JP6837254B2 (en) Drone system, drone, drone system control method, and drone system control program
JP6746157B2 (en) Drug replenishment control system, sprayer, drone, drug replenishment system control method, and drug replenishment system control program
JP6901187B2 (en) Drug spraying system, control method of drug spraying system, and drug spraying system control program
JP6746126B2 (en) System and method for preventing drug leakage

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019570162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807219

Country of ref document: EP

Kind code of ref document: A1