WO2019225566A1 - Optical integrated circuit and integrated circuit - Google Patents

Optical integrated circuit and integrated circuit Download PDF

Info

Publication number
WO2019225566A1
WO2019225566A1 PCT/JP2019/019997 JP2019019997W WO2019225566A1 WO 2019225566 A1 WO2019225566 A1 WO 2019225566A1 JP 2019019997 W JP2019019997 W JP 2019019997W WO 2019225566 A1 WO2019225566 A1 WO 2019225566A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
integrated circuit
resonator
optical waveguide
sub
Prior art date
Application number
PCT/JP2019/019997
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 正彦
正人 森藤
雄次 宮本
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2020521232A priority Critical patent/JP7019220B2/en
Publication of WO2019225566A1 publication Critical patent/WO2019225566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • the present disclosure relates to an optical integrated circuit including an optical diode having a resonator surrounded by a photonic crystal structure.
  • Patent Document 1 and Patent Document 2 An optical integrated circuit having a resonator surrounded by a photonic crystal structure is described in Patent Document 1 and Patent Document 2.
  • a plurality of resonators are formed on the sides of the optical waveguide, and optical signals generated by the plurality of resonators are output to the optical waveguide.
  • the optical signal output from the resonator can be transmitted in one direction of the optical waveguide, or the optical signal transmitted from one direction of the optical waveguide can be converted into an electric signal.
  • the present disclosure provides an optical integrated circuit or an integrated circuit capable of increasing a ratio of an optical signal output in one direction of an optical waveguide or a ratio of an optical signal transmitted from one direction input to a resonator. With the goal.
  • An optical integrated circuit is formed on the side of the optical waveguide and the optical waveguide, and converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide, or
  • the present disclosure can provide an optical integrated circuit or an integrated circuit capable of increasing the ratio of an optical signal output in one direction of an optical waveguide or the ratio of an optical signal transmitted from one direction input to a resonator.
  • FIG. 1 is a diagram illustrating a configuration of an integrated circuit according to an embodiment.
  • FIG. 2 is a perspective view of the optical integrated circuit according to the embodiment.
  • FIG. 3 is a diagram illustrating a state of connection between the optical integrated circuit and the optical waveguide according to the embodiment.
  • FIG. 4 is a diagram showing a state of connection between the optical integrated circuit and the optical fiber according to the embodiment.
  • FIG. 5 is a plan view of the laser diode and the optical waveguide according to the embodiment.
  • FIG. 6 is a plan view of the laser diode and the optical waveguide according to the embodiment.
  • FIG. 7 is a diagram illustrating simulation conditions for changing the position of the sub-resonator according to the embodiment.
  • FIG. 8 is a diagram illustrating the left / right ratio with respect to the position of the sub-resonator according to the embodiment.
  • FIG. 9 is a diagram illustrating the width of the sub-resonator according to the embodiment.
  • FIG. 10 is an enlarged view of the periphery of the optical waveguide according to the embodiment.
  • FIG. 11 is a diagram illustrating the coupling efficiency with respect to the shift amount of the holes on the side of the optical waveguide according to the embodiment.
  • FIG. 12 is a plan view of a laser diode and an optical waveguide according to a modification of the embodiment.
  • FIG. 13 is a diagram showing the coupling efficiency with respect to the shift amount of the side holes of the optical waveguide according to the modification of the embodiment.
  • the size of the CPU chip is several centimeters, and about 10 billion transistors are formed in it. When these are moved at the same clock speed, problems of heat generation and power consumption occur. As a solution, there is a method of performing information processing with a plurality of cores having a small size.
  • optical wiring is used for information transmission between cores.
  • Conventional optical transmission technology is used for relatively long-distance information transmission, and the size of the optical transmission module is large. Therefore, it is difficult to incorporate such a technique in the chip.
  • a micro optical module that enables this will be described.
  • the optical modules described in Patent Document 1 and Patent Document 2 have the following problems.
  • an optical diode having a resonator on the side of the optical waveguide is formed.
  • the optical signal generated by the photodiode is output to the optical waveguide.
  • the optical signal output to the optical waveguide needs to be transmitted in one direction of the optical waveguide.
  • the optical signal is transmitted in both directions. For example, when an optical signal is transmitted in the left direction, the optical signal transmitted in the right direction is reflected by the phase adjustment region at the end of the optical waveguide, and this reflected wave is transmitted in the left direction.
  • An optical integrated circuit is formed on the side of the optical waveguide and the optical waveguide, and converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide, or
  • the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be increased.
  • the sub-resonator may be formed asymmetrically with respect to the clockwise and counterclockwise optical signals in the main resonator.
  • the sub-resonator may have different effects on the clockwise optical signal and the counterclockwise optical signal in the main resonator.
  • the sub-resonator may be formed other than between the main resonator and the optical waveguide.
  • the main resonator and the sub resonator may be adjacent to each other.
  • the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be further increased.
  • the sub-resonator may be formed by removing holes having a photonic crystal structure of 1 to 3 inclusive.
  • the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be further increased.
  • the optical waveguide is surrounded on both sides by a photonic crystal structure, and the interval between the photonic crystal structures on both sides of the optical waveguide is a photonic crystal structure other than both sides of the optical waveguide. It may be wider than the interval.
  • the coupling efficiency between the main resonator and the optical waveguide can be improved.
  • the optical integrated circuit includes a plurality of photodiodes including the photodiode, and the plurality of photodiodes are formed on the sides of the optical waveguide.
  • Electric signals have different wavelengths from each other. Converts to an optical signal and outputs the optical signal to the optical waveguide, or (2) converts an optical signal having a different wavelength transmitted through the optical waveguide into an electrical signal, and the optical waveguide has a signal transmission direction. You may have the groove
  • the coupling efficiency between the plurality of photodiodes having different wavelengths and the optical waveguide can be improved.
  • An integrated circuit is an integrated circuit that transmits a signal via electricity and light, and includes the optical integrated circuit.
  • An integrated circuit includes a plurality of cores and the optical integrated circuit that transmits signals between the plurality of cores.
  • the integrated circuit may include a plurality of blocks each including a plurality of the cores, and the optical integrated circuit may transmit signals between the plurality of blocks.
  • FIG. 1 is a diagram showing a configuration of an integrated circuit 100 according to the present embodiment.
  • FIG. 1 is a schematic diagram, and the ratio of the size of each component does not necessarily match the actual one.
  • the integrated circuit 100 transmits signals via electricity and light.
  • the integrated circuit 100 is, for example, a semiconductor chip and functions as a CPU.
  • the integrated circuit 100 includes nine 3 ⁇ 3 blocks 101.
  • Each block 101 includes nine 3 ⁇ 3 cores 102 (processor cores). That is, the integrated circuit 100 includes 81 9 cores of 9 ⁇ 9.
  • the core 102 does not have to be a processor core, and may be an arbitrary processing circuit.
  • Information transmission between a plurality of cores 102 included in one block 101 is performed by electrical wiring.
  • Optical wiring is used for information transmission between the plurality of blocks 101 and information transmission between the integrated circuit 100 and the outside.
  • each block 101 includes one port 103.
  • the port 103 includes a part of the core 102 and four optical integrated circuits 104 (optical modules).
  • the port 103 transmits a signal between the blocks 101 via the optical waveguide 105 or transmits a signal between the block 101 and the outside via the optical fiber 106.
  • the central core 102 functions as a communication-dedicated core, and transmits electrical signals between the other eight cores 102 and the port 103.
  • the block 101 is about 1 cm square
  • the core 102 is about 3 mm square.
  • the port 103 is about 1 mm square. That is, for example, the size of the port 103 is smaller than the size of the core 102.
  • the size of the port 103 may be larger than the size of the core 102.
  • a part of the central core 102 may function as the port 103, or a core dedicated to communication may not be provided, and a part of each of the nine cores 102 may function as the port 103.
  • the optical integrated circuit 104 transmits signals between the plurality of ports 103. Specifically, the optical integrated circuit 104 transmits signals between the plurality of blocks 101.
  • the four optical integrated circuits 104 transmit optical signals to other blocks 101 adjacent to the four sides or to the outside.
  • an optical waveguide 105 is used to transmit an optical signal between the blocks 101
  • an optical fiber 106 is used to transmit an optical signal between the block 101 and the outside.
  • the numbers and sizes of the blocks 101 and the cores 102 are examples, and any number or size of the blocks 101 and the cores 102 may be used.
  • a network can be built in the CPU. As a result, even if any of the optical integrated circuits 104 fails, information can be transmitted via a detour route. Therefore, it is possible to suppress a decrease in CPU performance when the optical integrated circuit 104 fails.
  • FIG. 2 is a perspective view showing the configuration of the optical integrated circuit 104.
  • An optical integrated circuit 104 shown in FIG. 2 is a semiconductor integrated circuit that mutually converts an optical signal including an optical signal having a plurality of wavelengths and an electrical signal, and includes a plurality of photodiodes (PD) formed on a semiconductor substrate 205.
  • PD photodiodes
  • 201a to 201c a plurality of laser diodes (LD) 202a to 202c
  • an input optical waveguide 203 an input optical waveguide 203
  • an output optical waveguide 204 Note that the photodiodes 201a to 201c are represented as photodiodes 201 unless otherwise distinguished, and the laser diodes 202a to 202c are represented as laser diodes 202 unless otherwise distinguished.
  • the input optical waveguide 203 is an optical waveguide that transmits an input optical signal 208 input from the outside.
  • the output optical waveguide 204 is an optical waveguide that transmits an output optical signal 209 output to the outside.
  • the plurality of photodiodes 201 are formed on the side of the optical waveguide 203 and are optically connected to the optical waveguide 203.
  • the plurality of photodiodes 201 are photodiodes that convert the input optical signal 208 transmitted by the optical waveguide 203 into an electrical signal.
  • Each photodiode 201 includes an electrode 206.
  • Each photodiode 201 converts light of different wavelengths contained in the input optical signal 208 into an electrical signal.
  • the wavelength of the optical signal that the photodiode 201a converts into an electrical signal is 1290 nm
  • the wavelength of the optical signal that the photodiode 201b converts into an electrical signal is 1300 nm
  • the wavelength of the optical signal that the photodiode 201c converts into an electrical signal The wavelength is 1310 nm.
  • the plurality of laser diodes 202 are formed on the side of the optical waveguide 204 and are optically connected to the optical waveguide 204.
  • the plurality of laser diodes 202 are optical diodes that convert an electrical signal into an output optical signal 209 and output it to the optical waveguide 204.
  • Each laser diode 202 includes an electrode 206.
  • Each laser diode 202 converts an electrical signal into an optical signal having a different wavelength. For example, the wavelength of the optical signal output from the laser diode 202a is 1290 nm, the wavelength of the optical signal output from the laser diode 202b is 1300 nm, and the wavelength of the optical signal output from the laser diode 202c is 1310 nm.
  • FIG. 3 is a diagram schematically showing a state of connection between the optical integrated circuit 104 and the optical waveguide 105.
  • an IC 302, an electrode 303, and a wiring 304 are formed on a substrate 301.
  • the substrate 301 is, for example, a Si substrate.
  • the IC 302 is an IC that performs amplification and processing of the electrical signal output from the photodiode 201 of the optical integrated circuit 104 and supplies the electrical signal to the laser diode 202 of the optical integrated circuit 104.
  • the optical integrated circuit 104, the IC 302, the electrode 303, and the wiring 304 are included in the port 103 shown in FIG.
  • the IC 302 is a part of the core 102, for example.
  • the electrode 303 and each photodiode 201 of the optical integrated circuit 104 and the electrode 206 of each laser diode 202 are flip-chip bonded using solder bumps.
  • the electrode 303 and the IC 302 are connected through a wiring 304.
  • the optical integrated circuit 104 and the IC 302 are connected.
  • the optical waveguide 105 and the optical waveguides 203 and 204 of the optical integrated circuit 104 are connected.
  • FIG. 4 is a diagram schematically showing a state of connection between the optical integrated circuit 104 and the optical fiber 106.
  • the connection relationship between the substrate 301 and the optical integrated circuit 104 is the same as in FIG.
  • the optical fiber 106 is housed in a V-shaped groove formed on the substrate 301.
  • the optical fiber 106 and the optical waveguides 203 and 204 of the optical integrated circuit 104 are connected.
  • the optical integrated circuit 104 in this embodiment has a simple planar structure, it can be easily integrated as shown in FIGS.
  • FIG. 5 is a top view of the laser diode 202 and the optical waveguide 204 shown in FIG. As shown in FIG. 5, the laser diode 202 includes a main resonator 401, a sub resonator 402, and an electrode 206.
  • the main resonator 401, the sub resonator 402, and the optical waveguide 204 are formed in the two-dimensional photonic crystal structure. That is, the main resonator 401, the sub resonator 402, and the optical waveguide 204 are surrounded by the two-dimensional photonic crystal structure.
  • the photonic crystal structure has a refractive index periodic structure formed by arranging with a predetermined period. Specifically, a hole is arranged in a semiconductor in a two-dimensional triangular lattice shape. For example, the lattice constant (lattice spacing) a of the photonic crystal structure is 340 nm, and the radius r of the holes is 0.3a. These values are merely examples, and the present invention is not limited to these values. The values described below are all examples and are not limited thereto.
  • the two-dimensional photonic crystal structure In the region of the two-dimensional photonic crystal structure, light cannot exist, and light can exist only in a portion called a defect whose arrangement is disturbed. Therefore, when a linear defect is produced in the two-dimensional photonic crystal structure, light can enter this portion and function as an optical waveguide. If a defect that resonates light of a specific wavelength is disposed near the optical waveguide, it functions as a resonator. Further, the wavelength of light to be resonated is determined according to the shape and size of the resonator. Thereby, optical signals having different wavelengths can be emitted from the common optical waveguide.
  • the main resonator 401 has a circular shape and is optically connected to the optical waveguide 204.
  • the structure similar to patent document 1 or patent document 2 can be used, for example.
  • a main resonator 401 is defined as a region including a region where no holes are formed and one round of holes surrounding the region.
  • a sub-resonator 402 is defined to include a region in which no holes are formed and one round of holes surrounding the region.
  • the electrode 206 of the laser diode 202 is formed above the main resonator 401.
  • An optical signal is generated according to the electrical signal applied to the electrode 206 and output to the optical waveguide 204.
  • the shape of the electrode 206 may be a shape that covers the entire main resonator 401 when viewed from above, and need not be the same shape as the main resonator 401.
  • the size of the electrode 206 is larger than the size of the main resonator 401 in order to perform alignment with the electrode 303 connected to the IC 302.
  • the radius R of the main resonator 401 is about 1 ⁇ m
  • the length of one side of the electrode 206 is about 5 ⁇ m to 10 ⁇ m.
  • the electrode 206 is flip-chip bonded using the electrode 303 and the solder bump. At this time, if bonding using solder bumps is performed on the upper part of the main resonator 401, the characteristics of the main resonator 401 may deteriorate. Therefore, it is preferable that the electrode 206 has a shape and size that can be bonded using a solder bump in a region other than the upper portion of the main resonator 401.
  • the sub-resonator 402 is smaller than the main resonator 401 and is formed in the vicinity of the main resonator 401.
  • an electrode 206 is formed on the sub-resonator 402.
  • the main resonator 401 and the electrode 206 are electrically connected, but the sub-resonator 402 and the electrode 206 are not electrically connected.
  • the core layer of the main resonator 401 is electrically connected to the electrode 206 through a conductive cladding layer formed thereabove.
  • a non-conductive cladding layer is formed above the core layer of the sub-resonator 402.
  • the electrode 206 may not be formed on the sub-resonator 402.
  • the photodiode 201 and the optical waveguide 203 may have the same configuration as that of the main resonator 401 and the optical waveguide 204 of the laser diode 202. That is, it is preferable that the photodiode 201 also includes the sub resonator 402.
  • the light generated in the circular main resonator 401 has the property of going straight. Since light cannot enter the photonic crystal structure in which the holes are two-dimensionally arranged, the light goes around the outermost periphery of the main resonator 401. Since the main resonator 401 is surrounded by 18 vacancies, only 9-wave waves exist stably as standing waves. This standing wave is also a superposition of clockwise (counterclockwise) and counterclockwise (counterclockwise) circulating waves.
  • the clockwise circular wave is optically coupled to the optical waveguide 204 in the upper part of the main resonator 401 in FIG.
  • the counterclockwise circular wave is emitted leftward of the optical waveguide 204. Since the clockwise and counterclockwise light paths are exactly the same, the laser gain is also the same, and light of the same intensity is emitted from the left and right in the optical waveguide 204.
  • the optical signal only needs to be emitted in the left direction of the optical waveguide 204, and does not need to be emitted in the right direction.
  • the optical signal transmitted in the right direction is reflected by the phase adjustment region at the right end of the optical waveguide 204 shown in FIG. 2, and the reflected wave is transmitted in the left direction. Therefore, the attenuation of the optical signal is suppressed by adjusting the position of the phase adjustment region so that the phase of the optical signal output from the resonator to the left and the phase of the reflected wave are the same. it can.
  • FIG. 2 when a plurality of laser diodes 202 having different wavelengths are provided on the side of one optical waveguide 204, the phases of all the optical signals of the plurality of laser diodes 202 can be adjusted. There is a problem that it is difficult.
  • the optical signal emitted in the right direction is reduced by providing the sub-resonator 402.
  • this principle will be described.
  • the counterclockwise light travels along the outer periphery of the main resonator 401 at 11 o'clock, 10 o'clock, 9 o'clock, 8 o'clock, 7 o'clock, 6 o'clock, and 5 o'clock, and is not affected by the sub-resonator 402. Laser oscillation is obtained with the same gain as without 402.
  • clockwise light travels around the outer periphery of the main resonator 401 at 1 o'clock, 2 o'clock, 3 o'clock, 4 o'clock, 5 o'clock, and light at a position of 6 o'clock is partly sub-resonant. Enter the vessel 402.
  • the light that has entered the sub-resonator 402 is reflected in the sub-resonator 402 and returns to the main resonator 401 again. Since the reflected light travels counterclockwise, it affects the clockwise circular wave, and the clockwise laser light is significantly weakened.
  • the sub-resonator 402 is formed by not creating two holes, but even one hole functions as the sub-resonator 402. Further, in order to allow a large amount of clockwise light to enter the sub-resonator 402, the hole at the right end of the sub-resonator 402 is shifted slightly from the original position of the triangular lattice to a position closer to the main resonator 401. Similarly, the width of the sub-resonator 402 (the vertical size in FIG. 5) is slightly narrowed.
  • FIG. 6 is a diagram illustrating an example in which two resonators are arranged on both sides of the optical waveguide 204. As shown in FIG. 6, the main resonator 401 a and the sub resonator 402 a are formed below the optical waveguide 204, and the main resonator 401 b and the sub resonator 402 b are formed above the optical waveguide 204.
  • the sub-resonator 402a is formed by not creating one hole.
  • the sub-resonator 402a is at a position rotated right by 60 degrees with respect to the sub-resonator 402 shown in FIG.
  • the counterclockwise laser beam is mainly used, and the laser beam is emitted from the left side of the optical waveguide 204.
  • the radius R2 of the main resonator 401b is slightly larger than the radius R1 of the main resonator 401a.
  • the length of the circumference where the standing wave exists is proportional to the radius R.
  • the wavelength of the main resonator 401b is slightly longer than the wavelength of the main resonator 401a.
  • the output wavelengths of the main resonator 401a and the main resonator 401b are different.
  • the basic design of the main resonator 401a and the sub resonator 402a and the main resonator 401b and the sub resonator 402b is vertically symmetric with respect to the optical waveguide 204 as an axis. That is, in the main resonator 401 b, clockwise laser light is mainly used, and an optical signal is emitted from the left side of the optical waveguide 204.
  • a wavelength division multiplexing optical module as shown in FIG. 2 can be manufactured.
  • the size of the main resonator 401 is extremely small, for example, 2 ⁇ m
  • the size of the optical integrated circuit 104 is very small, about 100 ⁇ m square.
  • the port 103 can be realized with about 1 mm square.
  • an integrated circuit 100 using an optical wiring can be realized while suppressing an increase in size in a CPU chip of about 3 cm square.
  • the ratio of the optical signal transmitted from one direction input to the resonator is increased by using the same configuration for the photodiode 201. The effect of being able to be realized.
  • the optical wiring can be introduced into the CPU chip and used for information transmission between the cores. This improves the CPU performance by one to two digits.
  • the impact of this disclosure is very significant in the information society.
  • the small size of the optical module directly leads to a reduction in the price of the optical module.
  • the smaller the module size the more modules can be made from a single wafer, so the unit price of the optical module is reduced.
  • the flip chip bonding shown in FIGS. 3 and 4 can be automated using an infrared camera. Therefore, the optical wiring in the chip can be realized while suppressing the increase in the price of the chip.
  • the wavelength of each photodiode must be within the allowable range of the design value.
  • the temperature of the optical module it is necessary to keep the temperature of the optical module constant (for example, 50 ° C.) using a thermoelectric element or the like. Since the optical module 104 according to the present embodiment is very small, the power consumption of the thermoelectric element is very small and the response to changes in the environmental temperature is excellent. This temperature control mechanism is a part of the function required for the port 103.
  • the sub-resonator 402 is disposed so as to be optically coupled to one of the clockwise light and the counterclockwise light of the main resonator 401 and not to be optically coupled to the other.
  • the sub-resonator 402 is arranged so that optical coupling between one of the clockwise light and the counterclockwise light of the main resonator 401 is stronger (or weaker) than the other. That is, the sub resonator 402 is formed asymmetrically with respect to the clockwise and counterclockwise optical signals in the main resonator 401. Further, the sub-resonator 402 has different effects on the clockwise optical signal and the counterclockwise optical signal in the main resonator 401.
  • the sub-resonator 402 is preferably formed on the opposite side of the main resonator 401 from the optical waveguide 204.
  • the center (or upper end) of the sub-resonator 402 is disposed below the line passing through the center of the main resonator 401 and parallel to the optical waveguide 204. That is, the sub resonator 402 is not formed between the main resonator 401 and the optical waveguide 404. In other words, the sub-resonator 402 is formed other than between the main resonator 401 and the optical waveguide 404. Thereby, it is possible to suppress the sub resonator 402 from inhibiting optical coupling between the main resonator 401 and the optical waveguide 204.
  • FIG. 7 is a diagram illustrating simulation conditions.
  • FIG. 8 is a diagram showing a simulation result when the defect position x of the sub-resonator 402 is changed as shown in FIG. Note that the length of the defect is one hole.
  • the vertical axis of the graph shown in FIG. 8 indicates the ratio of the energy of the optical signal output in the right direction and the left direction (hereinafter referred to as the left / right ratio). Is high (the energy of the optical signal in an unnecessary direction is low).
  • the sub-resonator 402 is preferably formed by removing holes having a photonic crystal structure of 1 to 3 inclusive.
  • the interval between the holes on both sides of the optical waveguide 204 is made wider than the interval a between the other holes.
  • the coupling efficiency of optical coupling between the main resonator 401 and the optical waveguide 204 (hereinafter also simply referred to as “coupling efficiency”) can be improved.
  • FIG. 10 is an enlarged view of the region 403 in FIG.
  • broken holes indicate holes arranged at intervals a as in the case of other holes.
  • the holes on both sides of the optical waveguide 204 are shifted to the optical waveguide 204 side by ⁇ s. That is, the gap between the holes on both sides of the optical waveguide 204 is wider than the gap a between the other holes. Note that ⁇ s is positive in the direction away from the optical waveguide 204.
  • FIG. 11 is a diagram showing a simulation result of the coupling efficiency with respect to ⁇ s / a. As shown in FIG. 11, the coupling efficiency can be improved by appropriately setting ⁇ s.
  • an appropriate value of ⁇ s changes by changing the radius R of the main resonator 401, that is, by changing the wavelength.
  • FIG. 12 is a top view of the optical waveguide 204 and the laser diode 202 in this case.
  • the optical waveguide 204 has a groove 501 formed along the signal transmission direction.
  • the width of the groove 501 is 0.6a.
  • the depth of the groove 501 is, for example, about the same as the hole or deeper than the hole.
  • FIG. 13 is a diagram showing a simulation result of the coupling efficiency with respect to ⁇ s / a in this case.
  • the optimal ⁇ s can be set for a plurality of laser diodes 202 having different wavelengths.
  • the method of shifting the holes by ⁇ s and the method of providing the groove 501 can also be applied to the optical waveguide 203 connected to the photodiode 201.
  • optical integrated circuit and the integrated circuit according to the embodiment of the present invention have been described above, the present disclosure is not limited to this embodiment.
  • the laser diode 202 and the photodiode 201 are both provided with the sub-resonator 402, but only one of them may be provided with the sub-resonator 402.
  • the characteristic configuration of the present disclosure described above may be applied to only one of the laser diode 202 and the photodiode 201.
  • the example in which the plurality of laser diodes 202 and the plurality of photodiodes 201 are alternately arranged above and below the optical waveguide 204 or 203 has been described.
  • the plurality of laser diodes 202 and the plurality of photodiodes 201 are arranged. This arrangement is not limited to this.
  • the plurality of laser diodes 202 and the plurality of photodiodes 201 may be arranged in the same direction of the optical waveguide 204 or 203.
  • optical integrated circuit and the integrated circuit according to one or more aspects have been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the present disclosure can be applied to an optical integrated circuit and an optical module, and in particular to an optical integrated circuit and an optical module for wavelength division multiplexing transmission in optical communication.
  • DESCRIPTION OF SYMBOLS 100 Integrated circuit 101 Block 102 Core 103 Port 104 Optical integrated circuit 105, 203, 204 Optical waveguide 106 Optical fiber 201, 201a, 201b, 201c Photodiode 202, 202a, 202b, 202c Laser diode 205 Semiconductor substrate 206, 303 Electrode 208 Input light Signal 209 Output optical signal 301 Substrate 302 IC 304 Wiring 401, 401a, 401b Main resonator 402, 402a, 402b Sub resonator 403 Region 501 Groove

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An optical integrated circuit (104) according to the present invention is provided with: an optical waveguide (203 or 204); and a laser diode (202) or a photodiode (201), which is formed on a side of the optical waveguide (203 or 204), and which converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide (204), or alternatively converts an optical signal transmitted through the optical waveguide (203) into an electrical signal. The laser diode (202) or the photodiode (201) comprises: a circular main resonator (401) which is surrounded by a photonic crystal structure; and an auxiliary resonator (402) which is formed in the vicinity of the main resonator (401), while being surrounded by the photonic crystal structure.

Description

光集積回路及び集積回路Optical integrated circuit and integrated circuit
 本開示は、フォトニック結晶構造体に囲まれた共振器を有する光ダイオードを備える光集積回路に関する。 The present disclosure relates to an optical integrated circuit including an optical diode having a resonator surrounded by a photonic crystal structure.
 フォトニック結晶構造体に囲まれた共振器を有する光集積回路について、特許文献1及び特許文献2に記載されている。例えば、特許文献1及び特許文献2に記載の光集積回路では、光導波路の側方に複数の共振器が形成され、複数の共振器で生成された光信号が、光導波路に出力される。 An optical integrated circuit having a resonator surrounded by a photonic crystal structure is described in Patent Document 1 and Patent Document 2. For example, in the optical integrated circuits described in Patent Document 1 and Patent Document 2, a plurality of resonators are formed on the sides of the optical waveguide, and optical signals generated by the plurality of resonators are output to the optical waveguide.
特開2007-194301号公報JP 2007-194301 A 特開2009-239260号公報JP 2009-239260 A
 このような、光集積回路では、共振器から出力された光信号を、光導波路の一方向に伝送できる、又は、光導波路の一方向から伝送された光信号を電気信号に変換できることが好ましい。 In such an optical integrated circuit, it is preferable that the optical signal output from the resonator can be transmitted in one direction of the optical waveguide, or the optical signal transmitted from one direction of the optical waveguide can be converted into an electric signal.
 そこで、本開示は、光導波路の一方向に出力される光信号の割合、又は共振器に入力される一方向から伝送される光信号の割合を増加できる光集積回路又は集積回路を提供することを目的とする。 Therefore, the present disclosure provides an optical integrated circuit or an integrated circuit capable of increasing a ratio of an optical signal output in one direction of an optical waveguide or a ratio of an optical signal transmitted from one direction input to a resonator. With the goal.
 本開示の一態様に係る光集積回路は、光導波路と、前記光導波路の側方に形成されており、電気信号を光信号に変換し、当該光信号を前記光導波路に出力する、又は、前記光導波路を伝送される光信号を電気信号に変換する光ダイオードとを備え、前記光ダイオードは、フォトニック結晶構造体に囲まれた円形の主共振器と、前記主共振器の近傍に形成され、フォトニック結晶構造体に囲まれた副共振器とを有する。 An optical integrated circuit according to an aspect of the present disclosure is formed on the side of the optical waveguide and the optical waveguide, and converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide, or A photodiode that converts an optical signal transmitted through the optical waveguide into an electrical signal, and the photodiode is formed in a circular main resonator surrounded by a photonic crystal structure and in the vicinity of the main resonator And a sub-resonator surrounded by the photonic crystal structure.
 本開示は、光導波路の一方向に出力される光信号の割合、又は共振器に入力される一方向から伝送される光信号の割合を増加できる光集積回路又は集積回路を提供できる。 The present disclosure can provide an optical integrated circuit or an integrated circuit capable of increasing the ratio of an optical signal output in one direction of an optical waveguide or the ratio of an optical signal transmitted from one direction input to a resonator.
図1は、実施の形態に係る集積回路の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an integrated circuit according to an embodiment. 図2は、実施の形態に係る光集積回路の斜視図である。FIG. 2 is a perspective view of the optical integrated circuit according to the embodiment. 図3は、実施の形態に係る光集積回路と光導波路との接続の様子を示す図である。FIG. 3 is a diagram illustrating a state of connection between the optical integrated circuit and the optical waveguide according to the embodiment. 図4は、実施の形態に係る光集積回路と光ファイバーとの接続の様子を示す図である。FIG. 4 is a diagram showing a state of connection between the optical integrated circuit and the optical fiber according to the embodiment. 図5は、実施の形態に係るレーザダイオード及び光導波路の平面図である。FIG. 5 is a plan view of the laser diode and the optical waveguide according to the embodiment. 図6は、実施の形態に係るレーザダイオード及び光導波路の平面図である。FIG. 6 is a plan view of the laser diode and the optical waveguide according to the embodiment. 図7は、実施の形態に係る副共振器の位置を変更するシミュレーション条件を示す図である。FIG. 7 is a diagram illustrating simulation conditions for changing the position of the sub-resonator according to the embodiment. 図8は、実施の形態に係る副共振器の位置に対する左右比を示す図である。FIG. 8 is a diagram illustrating the left / right ratio with respect to the position of the sub-resonator according to the embodiment. 図9は、実施の形態に係る副共振器の幅を示す図である。FIG. 9 is a diagram illustrating the width of the sub-resonator according to the embodiment. 図10は、実施の形態に係る光導波路の周辺の拡大図である。FIG. 10 is an enlarged view of the periphery of the optical waveguide according to the embodiment. 図11は、実施の形態に係る光導波路の側方の空孔のシフト量に対する結合効率を示す図である。FIG. 11 is a diagram illustrating the coupling efficiency with respect to the shift amount of the holes on the side of the optical waveguide according to the embodiment. 図12は、実施の形態の変形例に係るレーザダイオード及び光導波路の平面図である。FIG. 12 is a plan view of a laser diode and an optical waveguide according to a modification of the embodiment. 図13は、実施の形態の変形例に係る光導波路の側方の空孔のシフト量に対する結合効率を示す図である。FIG. 13 is a diagram showing the coupling efficiency with respect to the shift amount of the side holes of the optical waveguide according to the modification of the embodiment.
 (本開示の基礎となった知見)
 近年の情報化社会の発達は、目覚しいものがある。これは主にソフトウェアの発達によるところが大きい。他方、ハードウェアの発達は、既に物理的限界に近いところまで到達しており、伸びしろが少ない状態にある。例えば、情報処理の中核である半導体CPUチップのクロック速度は、この10年で殆ど変わっていない。チップ内の情報伝送は、金属配線で行われており、配線の微細化により信号遅延が発生する。クロック速度を高めると、チップ自体が発熱し、消費電力が大きく増大する。現状、3GHz程度のクロック速度が妥協点となっている。これに対して、CPUチップの高性能化のために、情報処理を行うコアと呼ばれる部分を複数設け、複数のコアで並列処理することが行われている。
(Knowledge that became the basis of this disclosure)
The development of information society in recent years is remarkable. This is largely due to software development. On the other hand, the development of hardware has already reached a point where it is close to the physical limit, and there is little room for elongation. For example, the clock speed of the semiconductor CPU chip, which is the core of information processing, has hardly changed in the last 10 years. Information transmission within the chip is performed by metal wiring, and signal delay occurs due to miniaturization of the wiring. When the clock speed is increased, the chip itself generates heat and power consumption increases greatly. Currently, a clock speed of about 3 GHz is a compromise. On the other hand, in order to improve the performance of the CPU chip, a plurality of parts called cores that perform information processing are provided, and parallel processing is performed by the plurality of cores.
 CPUチップのサイズは数cm角であり、この中に100億個程度のトランジスタが形成されている。これらを同一のクロック速度で動かすと発熱と消費電力の問題が発生する。この解決策として、サイズが小さい複数のコアで情報方処理を行う方法がある。 The size of the CPU chip is several centimeters, and about 10 billion transistors are formed in it. When these are moved at the same clock speed, problems of heat generation and power consumption occur. As a solution, there is a method of performing information processing with a plurality of cores having a small size.
 複数のコアで並列処理を行うためには、コア間での情報伝送が重要になる。現在のCPUチップ内部では、情報伝送は全て金属配線で行われているので、この金属配線における発熱と消費電力の問題が発生する。 In order to perform parallel processing with multiple cores, information transmission between cores is important. In the current CPU chip, since information transmission is all performed by metal wiring, there is a problem of heat generation and power consumption in the metal wiring.
 本開示のCPUチップでは、コア間での情報伝送に光配線を用いる。従来の光伝送技術は、比較的長距離の情報伝送に用いられており、光伝送モジュールのサイズが大きい。よって、このような技術をチップ内に組み込むことは困難である。本開示では、それを可能にする微小な光モジュールについて説明する。 In the CPU chip of the present disclosure, optical wiring is used for information transmission between cores. Conventional optical transmission technology is used for relatively long-distance information transmission, and the size of the optical transmission module is large. Therefore, it is difficult to incorporate such a technique in the chip. In the present disclosure, a micro optical module that enables this will be described.
 また、特許文献1及び特許文献2に記載の光モジュールでは、以下の課題がある。これらの光モジュールでは、光導波路の側方に共振器を有する光ダイオードが形成される。光ダイオードで生成された光信号は、光導波路に出力される。ここで、光導波路に出力された光信号は、光導波路のいずれか一方の方向に伝送される必要がある。しかしながら、従来技術では、光信号は両方向に伝送される。例えば、光信号を左方向に伝送する際には、右方向に伝送された光信号は、光導波路の端部にある位相調整領域で反射され、この反射波が左方向に伝送される。よって、共振器から左方向に出力された光信号の位相と、この反射波の位相とが同位相になるように調整することで、光信号が減衰することを抑制できる。しかしながら、一つの光導波路の側方に、波長が異なる複数の共振器を設ける場合には、これらの複数の共振器の全ての光信号の位相を調整することが困難であるという課題がある。これにより、光伝送でエラーが生じる可能性がある。 Further, the optical modules described in Patent Document 1 and Patent Document 2 have the following problems. In these optical modules, an optical diode having a resonator on the side of the optical waveguide is formed. The optical signal generated by the photodiode is output to the optical waveguide. Here, the optical signal output to the optical waveguide needs to be transmitted in one direction of the optical waveguide. However, in the prior art, the optical signal is transmitted in both directions. For example, when an optical signal is transmitted in the left direction, the optical signal transmitted in the right direction is reflected by the phase adjustment region at the end of the optical waveguide, and this reflected wave is transmitted in the left direction. Therefore, it is possible to suppress the attenuation of the optical signal by adjusting the phase of the optical signal output in the left direction from the resonator and the phase of the reflected wave to be the same phase. However, when a plurality of resonators having different wavelengths are provided on the side of one optical waveguide, there is a problem that it is difficult to adjust the phases of all the optical signals of the plurality of resonators. This can cause errors in optical transmission.
 本開示の一態様に係る光集積回路は、光導波路と、前記光導波路の側方に形成されており、電気信号を光信号に変換し、当該光信号を前記光導波路に出力する、又は、前記光導波路を伝送される光信号を電気信号に変換する光ダイオードとを備え、前記光ダイオードは、フォトニック結晶構造体に囲まれた円形の主共振器と、前記主共振器の近傍に形成され、フォトニック結晶構造体に囲まれた副共振器とを有する。 An optical integrated circuit according to an aspect of the present disclosure is formed on the side of the optical waveguide and the optical waveguide, and converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide, or A photodiode that converts an optical signal transmitted through the optical waveguide into an electrical signal, and the photodiode is formed in a circular main resonator surrounded by a photonic crystal structure and in the vicinity of the main resonator And a sub-resonator surrounded by the photonic crystal structure.
 これによれば、副共振器を設けることで、光導波路の一方向に出力される光信号の割合、又は共振器に入力される一方向から伝送される光信号の割合を増加できる。 According to this, by providing the sub-resonator, the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be increased.
 例えば、前記副共振器は、前記主共振器における右回りと左回りの光信号に対して非対称に形成されていてもよい。 For example, the sub-resonator may be formed asymmetrically with respect to the clockwise and counterclockwise optical signals in the main resonator.
 例えば、前記副共振器は、前記主共振器における右回りの光信号と左回りの光信号とに与える影響が異なってもよい。 For example, the sub-resonator may have different effects on the clockwise optical signal and the counterclockwise optical signal in the main resonator.
 例えば、前記副共振器は、前記主共振器と前記光導波路との間以外に形成されていてもよい。 For example, the sub-resonator may be formed other than between the main resonator and the optical waveguide.
 これによれば、副共振器が主共振器と光導波路との光結合を阻害することを抑制できる。 According to this, it is possible to suppress the sub resonator from inhibiting optical coupling between the main resonator and the optical waveguide.
 例えば、前記主共振器と前記副共振器とは隣接していてもよい。 For example, the main resonator and the sub resonator may be adjacent to each other.
 これによれば、光導波路の一方向に出力される光信号の割合、又は共振器に入力される一方向から伝送される光信号の割合をさらに増加できる。 According to this, the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be further increased.
 例えば、前記副共振器は、1以上かつ3以下のフォトニック結晶構造の空孔が除去されることで形成されていてもよい。 For example, the sub-resonator may be formed by removing holes having a photonic crystal structure of 1 to 3 inclusive.
 これによれば、光導波路の一方向に出力される光信号の割合、又は共振器に入力される一方向から伝送される光信号の割合をさらに増加できる。 According to this, the ratio of the optical signal output in one direction of the optical waveguide or the ratio of the optical signal transmitted from one direction input to the resonator can be further increased.
 例えば、前記光導波路は、両側方をフォトニック結晶構造体で囲まれており、前記光導波路の両側方のフォトニック結晶構造体の間隔は、前記光導波路の両側方以外のフォトニック結晶構造体の間隔より広くてもよい。 For example, the optical waveguide is surrounded on both sides by a photonic crystal structure, and the interval between the photonic crystal structures on both sides of the optical waveguide is a photonic crystal structure other than both sides of the optical waveguide. It may be wider than the interval.
 これによれば、主共振器と光導波路との結合効率を向上できる。 According to this, the coupling efficiency between the main resonator and the optical waveguide can be improved.
 例えば、前記光集積回路は、前記光ダイオードを含む複数の光ダイオードを備え、前記複数の光ダイオードは、前記光導波路の側方に形成されており、(1)電気信号を、互いに波長の異なる光信号に変換し、前記光信号を前記光導波路に出力する、又は、(2)前記光導波路を伝送される互いに波長の異なる光信号を電気信号に変換し、前記光導波路は、信号伝送方向に沿って形成された溝を有してもよい。 For example, the optical integrated circuit includes a plurality of photodiodes including the photodiode, and the plurality of photodiodes are formed on the sides of the optical waveguide. (1) Electric signals have different wavelengths from each other. Converts to an optical signal and outputs the optical signal to the optical waveguide, or (2) converts an optical signal having a different wavelength transmitted through the optical waveguide into an electrical signal, and the optical waveguide has a signal transmission direction. You may have the groove | channel formed along.
 これによれば、光導波路に溝を設けることで、波長の異なる複数の光ダイオードと、光導波路との結合効率を向上できる。 According to this, by providing the groove in the optical waveguide, the coupling efficiency between the plurality of photodiodes having different wavelengths and the optical waveguide can be improved.
 本開示の一態様に係る集積回路は、電気及び光を介して信号を伝送する集積回路であって、前記光集積回路を備える。 An integrated circuit according to an aspect of the present disclosure is an integrated circuit that transmits a signal via electricity and light, and includes the optical integrated circuit.
 本開示の一態様に係る集積回路は、複数のコアと、前記複数のコア間の信号の伝送を行う前記光集積回路とを備える。 An integrated circuit according to an aspect of the present disclosure includes a plurality of cores and the optical integrated circuit that transmits signals between the plurality of cores.
 これによれば、複数のコアを有する集積回路の高性能化を実現できる。 According to this, high performance of an integrated circuit having a plurality of cores can be realized.
 例えば、前記集積回路は、各々が複数の前記コアを含む複数のブロックを含み、前記光集積回路は、前記複数のブロック間の信号の伝送を行ってもよい。 For example, the integrated circuit may include a plurality of blocks each including a plurality of the cores, and the optical integrated circuit may transmit signals between the plurality of blocks.
 これによれば、ブロック内では電気配線を用い、ブロック間では光配線を用いることで、光配線の増加を抑制できるとともに、集積回路の高性能化を実現できる。 According to this, by using electrical wiring in the block and using optical wiring between the blocks, an increase in the optical wiring can be suppressed and high performance of the integrated circuit can be realized.
 なお、これらの包括的または具体的な態様は、システム、方法、又は集積回路で実現されてもよく、システム、方法及び集積回路の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, a method, or an integrated circuit, and may be realized by any combination of the system, the method, and the integrated circuit.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be specifically described with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present disclosure. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態)
 現在市販のCPUのコア数は10以下であるが、近い将来に1桁近く増加させたいという需要がある。具体的には、9×9=81個のコアを有するCPUを作製する。81個のコアを全て光導波路で接続するためには1万本近い光導波路が必要になる。光導波路は損失がほぼ無く、CPUチップのサイズ内で用いられる場合には信号遅延も発生しないので、コア間の距離を設計で考慮する必要がない。しかし、光導波路は電気配線に比べてサイズが大きい。また、光導波路を立体交差させるとなると、その作製は容易ではなく高コストとなる。実用的な構成としては、電気配線と光配線とのハイブリッドとなる。
(Embodiment)
Currently, the number of cores of commercially available CPUs is 10 or less, but there is a demand for an increase of almost one digit in the near future. Specifically, a CPU having 9 × 9 = 81 cores is manufactured. In order to connect all the 81 cores with optical waveguides, nearly 10,000 optical waveguides are required. The optical waveguide has almost no loss, and when it is used within the size of the CPU chip, there is no signal delay, so there is no need to consider the distance between the cores in the design. However, the optical waveguide is larger in size than the electrical wiring. Further, when the optical waveguide is three-dimensionally crossed, its production is not easy and the cost is high. A practical configuration is a hybrid of electrical wiring and optical wiring.
 図1は、本実施の形態に係る集積回路100の構成を示す図である。なお、図1は模式図であり、各構成要素のサイズの比率は実際のものとは必ずしも一致しない。集積回路100は、電気及び光を介して信号を伝送する。図1に示すように集積回路100は、例えば、半導体チップであり、CPUとして機能する。この集積回路100は、3×3の9個のブロック101を含む。各ブロック101は、3×3の9個のコア102(プロセッサコア)を含む。つまり、集積回路100は、9×9の81個のコア102を含む。なお、コア102は、プロセッサコアでなくてもよく、任意の処理回路であってもよい。 FIG. 1 is a diagram showing a configuration of an integrated circuit 100 according to the present embodiment. FIG. 1 is a schematic diagram, and the ratio of the size of each component does not necessarily match the actual one. The integrated circuit 100 transmits signals via electricity and light. As shown in FIG. 1, the integrated circuit 100 is, for example, a semiconductor chip and functions as a CPU. The integrated circuit 100 includes nine 3 × 3 blocks 101. Each block 101 includes nine 3 × 3 cores 102 (processor cores). That is, the integrated circuit 100 includes 81 9 cores of 9 × 9. The core 102 does not have to be a processor core, and may be an arbitrary processing circuit.
 1つのブロック101に含まれる複数のコア102の間の情報伝送は、電気配線により行われる。複数のブロック101の間の情報伝送、及び、集積回路100と外部との間の情報伝送は、光配線が用いられる。 Information transmission between a plurality of cores 102 included in one block 101 is performed by electrical wiring. Optical wiring is used for information transmission between the plurality of blocks 101 and information transmission between the integrated circuit 100 and the outside.
 具体的には、各ブロック101は、1つのポート103を含む。ポート103は、コア102の一部と、4つ光集積回路104(光モジュール)とを含む。ポート103は、光導波路105を介したブロック101間の信号の伝達、又は光ファイバー106を介したブロック101と外部との間の信号の伝達を行う。例えば、1つのブロック101に含まれる9個のコア102のうち、中央のコア102は、通信専用のコアとして機能し、他の8個のコア102とポート103との間の電気信号の伝達を行う。例えば、ブロック101は1cm角程度であり、コア102は3mm角程度である。また、ポート103は1mm角程度である。つまり、例えば、ポート103のサイズは、コア102のサイズより小さい。なお、ポート103のサイズはコア102のサイズより大きくてもよい。また、中央のコア102の一部がポート103として機能してもよいし、通信専用のコアを設けず、9個のコア102の各々の一部がポート103として機能してもよい。 Specifically, each block 101 includes one port 103. The port 103 includes a part of the core 102 and four optical integrated circuits 104 (optical modules). The port 103 transmits a signal between the blocks 101 via the optical waveguide 105 or transmits a signal between the block 101 and the outside via the optical fiber 106. For example, among the nine cores 102 included in one block 101, the central core 102 functions as a communication-dedicated core, and transmits electrical signals between the other eight cores 102 and the port 103. Do. For example, the block 101 is about 1 cm square, and the core 102 is about 3 mm square. The port 103 is about 1 mm square. That is, for example, the size of the port 103 is smaller than the size of the core 102. Note that the size of the port 103 may be larger than the size of the core 102. In addition, a part of the central core 102 may function as the port 103, or a core dedicated to communication may not be provided, and a part of each of the nine cores 102 may function as the port 103.
 光集積回路104は、複数のポート103間の信号の伝送を行う。具体的には、光集積回路104は、複数のブロック101間の信号の伝送を行う。 The optical integrated circuit 104 transmits signals between the plurality of ports 103. Specifically, the optical integrated circuit 104 transmits signals between the plurality of blocks 101.
 より詳細には、4つの光集積回路104は、4方に隣接する他のブロック101又は外部との光信号の伝達を行う。具体的には、ブロック101間の光信号の伝達には光導波路105が用いられ、ブロック101と外部との光信号の伝達には光ファイバー106が用いられる。 More specifically, the four optical integrated circuits 104 transmit optical signals to other blocks 101 adjacent to the four sides or to the outside. Specifically, an optical waveguide 105 is used to transmit an optical signal between the blocks 101, and an optical fiber 106 is used to transmit an optical signal between the block 101 and the outside.
 なお、ブロック101及びコア102の数及びサイズは、一例であり、任意の数又はサイズのブロック101及びコア102が用いられてもよい。 Note that the numbers and sizes of the blocks 101 and the cores 102 are examples, and any number or size of the blocks 101 and the cores 102 may be used.
 また、図1に示す構成により、CPU内にネットワ-クを構築できる。これにより、いずれかの光集積回路104が故障した場合でも、迂回するルートを介して情報を伝達できる。よって、光集積回路104が故障した場合のCPUの性能の低下を抑制できる。 Also, with the configuration shown in FIG. 1, a network can be built in the CPU. As a result, even if any of the optical integrated circuits 104 fails, information can be transmitted via a detour route. Therefore, it is possible to suppress a decrease in CPU performance when the optical integrated circuit 104 fails.
 図2は、光集積回路104の構成を示す斜視図である。図2に示す光集積回路104は、複数の波長の光信号が含まれる光信号と電気信号とを相互に変換する半導体集積回路であり、半導体基板205に形成された複数のフォトダイオード(PD)201a~201cと、複数のレーザダイオード(LD)202a~202cと、入力用の光導波路203と、出力用の光導波路204とを備える。なお、複数のフォトダイオード201a~201cを特に区別しない場合は、フォトダイオード201と表し、複数のレーザダイオード202a~202cを特に区別しない場合は、レーザダイオード202と表す。 FIG. 2 is a perspective view showing the configuration of the optical integrated circuit 104. An optical integrated circuit 104 shown in FIG. 2 is a semiconductor integrated circuit that mutually converts an optical signal including an optical signal having a plurality of wavelengths and an electrical signal, and includes a plurality of photodiodes (PD) formed on a semiconductor substrate 205. 201a to 201c, a plurality of laser diodes (LD) 202a to 202c, an input optical waveguide 203, and an output optical waveguide 204. Note that the photodiodes 201a to 201c are represented as photodiodes 201 unless otherwise distinguished, and the laser diodes 202a to 202c are represented as laser diodes 202 unless otherwise distinguished.
 入力用の光導波路203は、外部より入力される入力光信号208を伝送する光導波路である。出力用の光導波路204は、外部に出力する出力光信号209を伝送する光導波路である。 The input optical waveguide 203 is an optical waveguide that transmits an input optical signal 208 input from the outside. The output optical waveguide 204 is an optical waveguide that transmits an output optical signal 209 output to the outside.
 複数のフォトダイオード201は、光導波路203の側方に形成され、光導波路203と光学的に接続される。複数のフォトダイオード201は、光導波路203が伝送した入力光信号208を電気信号に変換する光ダイオードである。各フォトダイオード201は、電極206を備える。各フォトダイオード201は、入力光信号208に含まれる、異なる波長の光をそれぞれ電気信号に変換する。例えば、フォトダイオード201aが電気信号に変換する光信号の波長は1290nmであり、フォトダイオード201bが電気信号に変換する光信号の波長は1300nmであり、フォトダイオード201cが電気信号に変換する光信号の波長は1310nmである。 The plurality of photodiodes 201 are formed on the side of the optical waveguide 203 and are optically connected to the optical waveguide 203. The plurality of photodiodes 201 are photodiodes that convert the input optical signal 208 transmitted by the optical waveguide 203 into an electrical signal. Each photodiode 201 includes an electrode 206. Each photodiode 201 converts light of different wavelengths contained in the input optical signal 208 into an electrical signal. For example, the wavelength of the optical signal that the photodiode 201a converts into an electrical signal is 1290 nm, the wavelength of the optical signal that the photodiode 201b converts into an electrical signal is 1300 nm, and the wavelength of the optical signal that the photodiode 201c converts into an electrical signal The wavelength is 1310 nm.
 複数のレーザダイオード202は、光導波路204の側方に形成され、光導波路204と光学的に接続される。複数のレーザダイオード202は、電気信号を出力光信号209に変換し、光導波路204に出力する光ダイオードである。各レーザダイオード202は、電極206を備える。各レーザダイオード202は、電気信号をそれぞれ異なる波長の光信号に変換する。例えば、レーザダイオード202aが出力する光信号の波長は1290nmであり、レーザダイオード202bが出力する光信号の波長は1300nmであり、レーザダイオード202cが出力する光信号の波長は1310nmである。 The plurality of laser diodes 202 are formed on the side of the optical waveguide 204 and are optically connected to the optical waveguide 204. The plurality of laser diodes 202 are optical diodes that convert an electrical signal into an output optical signal 209 and output it to the optical waveguide 204. Each laser diode 202 includes an electrode 206. Each laser diode 202 converts an electrical signal into an optical signal having a different wavelength. For example, the wavelength of the optical signal output from the laser diode 202a is 1290 nm, the wavelength of the optical signal output from the laser diode 202b is 1300 nm, and the wavelength of the optical signal output from the laser diode 202c is 1310 nm.
 図3は、光集積回路104と光導波路105との接続の様子を模式的に示す図である。図3に示すように基板301上に、IC302、電極303と、配線304とが形成されている。基板301は、例えば、Si基板である。 FIG. 3 is a diagram schematically showing a state of connection between the optical integrated circuit 104 and the optical waveguide 105. As shown in FIG. 3, an IC 302, an electrode 303, and a wiring 304 are formed on a substrate 301. The substrate 301 is, for example, a Si substrate.
 IC302は、光集積回路104のフォトダイオード201が出力する電気信号の増幅及び処理と、光集積回路104のレーザダイオード202に電気信号の供給とを行うICである。ここで、光集積回路104、IC302、電極303及び配線304は、図1に示すポート103に含まれる。IC302は、例えば、コア102の一部である。 The IC 302 is an IC that performs amplification and processing of the electrical signal output from the photodiode 201 of the optical integrated circuit 104 and supplies the electrical signal to the laser diode 202 of the optical integrated circuit 104. Here, the optical integrated circuit 104, the IC 302, the electrode 303, and the wiring 304 are included in the port 103 shown in FIG. The IC 302 is a part of the core 102, for example.
 図2に示す光集積回路104の上下を反転させ、電極303と、光集積回路104の各フォトダイオード201及び各レーザダイオード202の電極206とをハンダバンプを用いてフリップチップ接合する。また、電極303とIC302とは、配線304を介し接続される。これにより、光集積回路104とIC302とが接続される。また、光導波路105と、光集積回路104の光導波路203及び204とが接続される。 2 is turned upside down, and the electrode 303 and each photodiode 201 of the optical integrated circuit 104 and the electrode 206 of each laser diode 202 are flip-chip bonded using solder bumps. In addition, the electrode 303 and the IC 302 are connected through a wiring 304. Thereby, the optical integrated circuit 104 and the IC 302 are connected. Further, the optical waveguide 105 and the optical waveguides 203 and 204 of the optical integrated circuit 104 are connected.
 図4は、光集積回路104と光ファイバー106との接続の様子を模式的に示す図である。基板301と光集積回路104との接続関係は、図3と同様である。 FIG. 4 is a diagram schematically showing a state of connection between the optical integrated circuit 104 and the optical fiber 106. The connection relationship between the substrate 301 and the optical integrated circuit 104 is the same as in FIG.
 光ファイバー106は、基板301に形成されたV型の溝に収められる。光ファイバー106と、光集積回路104の光導波路203及び204とが接続される。 The optical fiber 106 is housed in a V-shaped groove formed on the substrate 301. The optical fiber 106 and the optical waveguides 203 and 204 of the optical integrated circuit 104 are connected.
 本実施の形態における光集積回路104は、単純な平面構造であるので、図3及び図4に示すように容易に集積化することができる。また、同一の光集積回路104を使用して、同一の方法で、ブロック101間及びチップ外部との光配線を作製することが可能である。これにより、コストの削減、及びチップの寿命の向上を実現できる。 Since the optical integrated circuit 104 in this embodiment has a simple planar structure, it can be easily integrated as shown in FIGS. In addition, it is possible to fabricate optical wiring between the blocks 101 and outside the chip by using the same optical integrated circuit 104 by the same method. As a result, it is possible to reduce the cost and improve the life of the chip.
 図5は、図2に示すレーザダイオード202及び光導波路204の上面図である。図5に示すように、レーザダイオード202は、主共振器401と、副共振器402と、電極206とを備える。 FIG. 5 is a top view of the laser diode 202 and the optical waveguide 204 shown in FIG. As shown in FIG. 5, the laser diode 202 includes a main resonator 401, a sub resonator 402, and an electrode 206.
 主共振器401、副共振器402及び光導波路204は、二次元フォトニック結晶構造体内に形成される。つまり、主共振器401、副共振器402及び光導波路204は、二次元フォトニック結晶構造体に囲まれている。フォトニック結晶構造体は、所定の周期で配列することにより形成された屈折率周期構造を有し、具体的には、半導体に空孔が二次元の三角格子状に配列されたものである。例えば、フォトニック結晶構造体の格子定数(格子間隔)aは340nmであり、空孔の半径rは0.3aである。なお、これらの値は一例であり、これに限定されるものではない。また、以下で述べる値も全て一例であり、それらに限定されるものではない。 The main resonator 401, the sub resonator 402, and the optical waveguide 204 are formed in the two-dimensional photonic crystal structure. That is, the main resonator 401, the sub resonator 402, and the optical waveguide 204 are surrounded by the two-dimensional photonic crystal structure. The photonic crystal structure has a refractive index periodic structure formed by arranging with a predetermined period. Specifically, a hole is arranged in a semiconductor in a two-dimensional triangular lattice shape. For example, the lattice constant (lattice spacing) a of the photonic crystal structure is 340 nm, and the radius r of the holes is 0.3a. These values are merely examples, and the present invention is not limited to these values. The values described below are all examples and are not limited thereto.
 二次元フォトニック結晶構造体の領域では光が存在できず、配列を乱した欠陥と呼ばれる部分のみに光が存在できる。よって、二次元フォトニック結晶構造体に線状欠陥を作製すると、この部分に光が侵入することが可能になり、光導波路として機能する。この光導波路の近傍に特定の波長の光を共鳴する欠陥を配置すると、共振器として機能する。また、共振器の形状及び大きさに応じて、共鳴する光の波長が決まる。これにより、波長の異なる光信号を共通の光導波路より出射することができる。 In the region of the two-dimensional photonic crystal structure, light cannot exist, and light can exist only in a portion called a defect whose arrangement is disturbed. Therefore, when a linear defect is produced in the two-dimensional photonic crystal structure, light can enter this portion and function as an optical waveguide. If a defect that resonates light of a specific wavelength is disposed near the optical waveguide, it functions as a resonator. Further, the wavelength of light to be resonated is determined according to the shape and size of the resonator. Thereby, optical signals having different wavelengths can be emitted from the common optical waveguide.
 主共振器401は、円形であり、光導波路204と光学的に接続されている。なお、レーザダイオード202の断面構造及び材料等については、例えば、特許文献1又は特許文献2と同様の構造を用いることができる。また、本明細書では、空孔が形成されていない領域と、その領域を囲む1周分の空孔とを含むものを主共振器401と定義する。同様に、空孔が形成されていない領域と、その領域を囲む1周分の空孔とを含むものを副共振器402と定義する。 The main resonator 401 has a circular shape and is optically connected to the optical waveguide 204. In addition, about the cross-sectional structure and material of the laser diode 202, the structure similar to patent document 1 or patent document 2 can be used, for example. Further, in this specification, a main resonator 401 is defined as a region including a region where no holes are formed and one round of holes surrounding the region. Similarly, a sub-resonator 402 is defined to include a region in which no holes are formed and one round of holes surrounding the region.
 主共振器401の上方には、レーザダイオード202の電極206が形成されている。この電極206に印加された電気信号に応じて光信号が生成され、光導波路204に出力される。なお、電極206の形状は、上面視した際に、主共振器401の全体を覆う形状であればよく、主共振器401と同一の形状である必要はない。例えば、電極206のサイズは、IC302に接続される電極303との位置あわせを行うために、主共振器401のサイズより大きい。例えば、主共振器401の半径Rは1μm程度であり、電極206の一辺の長さは5μm~10μm程度である。 The electrode 206 of the laser diode 202 is formed above the main resonator 401. An optical signal is generated according to the electrical signal applied to the electrode 206 and output to the optical waveguide 204. The shape of the electrode 206 may be a shape that covers the entire main resonator 401 when viewed from above, and need not be the same shape as the main resonator 401. For example, the size of the electrode 206 is larger than the size of the main resonator 401 in order to perform alignment with the electrode 303 connected to the IC 302. For example, the radius R of the main resonator 401 is about 1 μm, and the length of one side of the electrode 206 is about 5 μm to 10 μm.
 また、上述したように電極206は、電極303とハンダバンプを用いてフリップチップ接合される。このとき、主共振器401の上部においてハンダバンプを用いた接合が行われると、主共振器401の特性が悪化する可能性がある。よって、電極206は、主共振器401の上部以外の領域においてハンダバンプを用いた接合が行える形状及びサイズを有することが好ましい。 As described above, the electrode 206 is flip-chip bonded using the electrode 303 and the solder bump. At this time, if bonding using solder bumps is performed on the upper part of the main resonator 401, the characteristics of the main resonator 401 may deteriorate. Therefore, it is preferable that the electrode 206 has a shape and size that can be bonded using a solder bump in a region other than the upper portion of the main resonator 401.
 副共振器402は、主共振器401より小さく、主共振器401の近傍に形成される。例えば、図5に示すように、副共振器402の上部に電極206が形成されている。ここで、主共振器401と電極206とは電気的に接続されるが、副共振器402と電極206とは電気的に接続されない。具体的には、主共振器401のコア層は、その上方に形成された導電性のクラッド層を介して電極206と電気的に接続される。一方、副共振器402のコア層の上方には非導電性のクラッド層が形成される。これにより、副共振器402のコア層と電極206とは電気的に接続されない。なお、副共振器402の上部に電極206が形成されていなくてもよい。 The sub-resonator 402 is smaller than the main resonator 401 and is formed in the vicinity of the main resonator 401. For example, as shown in FIG. 5, an electrode 206 is formed on the sub-resonator 402. Here, the main resonator 401 and the electrode 206 are electrically connected, but the sub-resonator 402 and the electrode 206 are not electrically connected. Specifically, the core layer of the main resonator 401 is electrically connected to the electrode 206 through a conductive cladding layer formed thereabove. On the other hand, a non-conductive cladding layer is formed above the core layer of the sub-resonator 402. As a result, the core layer of the sub-resonator 402 and the electrode 206 are not electrically connected. Note that the electrode 206 may not be formed on the sub-resonator 402.
 なお、フォトダイオード201の構成については、詳しい説明を省略するが、例えば、特許文献1又は特許文献2と同様の構造を用いることができる。または、フォトダイオード201及び光導波路203として、レーザダイオード202の主共振器401及び光導波路204と同様の構成を用いてもよい。つまり、フォトダイオード201も、副共振器402を備えることが好ましい。 In addition, although detailed description is abbreviate | omitted about the structure of the photodiode 201, the structure similar to patent document 1 or patent document 2 can be used, for example. Alternatively, the photodiode 201 and the optical waveguide 203 may have the same configuration as that of the main resonator 401 and the optical waveguide 204 of the laser diode 202. That is, it is preferable that the photodiode 201 also includes the sub resonator 402.
 以下において、まず、副共振器402が無い場合の主共振器401の動作について説明する。円形の主共振器401内に発生した光は直進したい性質を持っている。空孔が二次元的に配列されたフォトニック結晶構造体内に光は侵入することができないため、光は主共振器401の最外周を周回する。主共振器401は18個の空孔で囲まれているので、9波長の波のみが定在波として安定に存在する。この定在波は、時計回り(右回り)と反時計回り(左回り)の周回波が重なったものでもある。時計回りの周回波は、図5において主共振器401の上部にある光導波路204へ光結合して、同図において光導波路204の右方向へ出射される。他方、反時計回りの周回波は、光導波路204の左方向へ出射される。時計回りと反時計回りの光の経路は全く同一なので、レーザの利得も同じであり、光導波路204において左右で同じ強度の光が出射される。 In the following, the operation of the main resonator 401 when there is no sub-resonator 402 will be described first. The light generated in the circular main resonator 401 has the property of going straight. Since light cannot enter the photonic crystal structure in which the holes are two-dimensionally arranged, the light goes around the outermost periphery of the main resonator 401. Since the main resonator 401 is surrounded by 18 vacancies, only 9-wave waves exist stably as standing waves. This standing wave is also a superposition of clockwise (counterclockwise) and counterclockwise (counterclockwise) circulating waves. The clockwise circular wave is optically coupled to the optical waveguide 204 in the upper part of the main resonator 401 in FIG. 5 and is emitted to the right of the optical waveguide 204 in FIG. On the other hand, the counterclockwise circular wave is emitted leftward of the optical waveguide 204. Since the clockwise and counterclockwise light paths are exactly the same, the laser gain is also the same, and light of the same intensity is emitted from the left and right in the optical waveguide 204.
 ここで、光信号は、光導波路204の左方向へ出射されればよく、右方向に出射される必要はない。なお、右方向に伝送された光信号は、図2に示す光導波路204の右端部にある位相調整領域で反射され、この反射波が左方向に伝送される。よって、共振器から左方向に出力された光信号の位相と、この反射波の位相とが同位相になるように、位相調整領域の位置を調整することで、光信号が減衰することを抑制できる。図2に示すように、一つの光導波路204の側方に、波長が異なる複数のレーザダイオード202を設ける場合には、これらの複数のレーザダイオード202の全ての光信号の位相を調整することが困難であるという課題がある。 Here, the optical signal only needs to be emitted in the left direction of the optical waveguide 204, and does not need to be emitted in the right direction. The optical signal transmitted in the right direction is reflected by the phase adjustment region at the right end of the optical waveguide 204 shown in FIG. 2, and the reflected wave is transmitted in the left direction. Therefore, the attenuation of the optical signal is suppressed by adjusting the position of the phase adjustment region so that the phase of the optical signal output from the resonator to the left and the phase of the reflected wave are the same. it can. As shown in FIG. 2, when a plurality of laser diodes 202 having different wavelengths are provided on the side of one optical waveguide 204, the phases of all the optical signals of the plurality of laser diodes 202 can be adjusted. There is a problem that it is difficult.
 本実施の形態では、副共振器402を設けることで、この右方向に出射される光信号を低減する。以下、この原理について説明する。 In this embodiment, the optical signal emitted in the right direction is reduced by providing the sub-resonator 402. Hereinafter, this principle will be described.
 反時計回りの光は主共振器401の外周を、11時、10時、9時、8時、7時、6時、5時と進み、副共振器402の影響を受けず、副共振器402が無い場合と同じ利得を得てレーザ発振する。他方、時計回りの光は主共振器401の外周を、1時、2時、3時、4時、5時と進み、6時に位置で、直進性質のある光は、その一部が副共振器402に進入する。副共振器402に進入した光は、副共振器402内で反射されて、主共振器401に再び戻る。その反射光は反時計回りに進むので、時計回りの周回波に影響を及ぼし、時計回りのレーザ光は著しく弱くなる。 The counterclockwise light travels along the outer periphery of the main resonator 401 at 11 o'clock, 10 o'clock, 9 o'clock, 8 o'clock, 7 o'clock, 6 o'clock, and 5 o'clock, and is not affected by the sub-resonator 402. Laser oscillation is obtained with the same gain as without 402. On the other hand, clockwise light travels around the outer periphery of the main resonator 401 at 1 o'clock, 2 o'clock, 3 o'clock, 4 o'clock, 5 o'clock, and light at a position of 6 o'clock is partly sub-resonant. Enter the vessel 402. The light that has entered the sub-resonator 402 is reflected in the sub-resonator 402 and returns to the main resonator 401 again. Since the reflected light travels counterclockwise, it affects the clockwise circular wave, and the clockwise laser light is significantly weakened.
 なお、副共振器402の長さ(図5では左右方向の大きさを)を変えても時計回りの光が低減される度合いに殆ど影響がなかった。つまり、時計回りの光が弱くなる理由は、進行波と反射波の位相が逆位相となって打ち消し合うためではなく、反射波と進行波の位相が異なるためにレーザ発振の利得が低下するためだと想定される。 It should be noted that changing the length of the sub-resonator 402 (the size in the left-right direction in FIG. 5) had almost no effect on the degree to which the clockwise light was reduced. In other words, the reason why the clockwise light is weak is not because the traveling wave and the reflected wave are in opposite phases and cancel each other, but because the reflected wave and the traveling wave are different in phase, the laser oscillation gain is reduced. It is assumed.
 また、図5では、空孔を2つ作製しないことで副共振器402を形成しているが、空孔が1つでも副共振器402として機能する。また、時計回りの光を副共振器402に多く進入させるために、副共振器402の右端の空孔を三角格子の本来の位置から少し主共振器401に近い位置にシフトさせている。同様に、副共振器402の幅(図5では上下方向の大きさを)をやや狭めている。 In FIG. 5, the sub-resonator 402 is formed by not creating two holes, but even one hole functions as the sub-resonator 402. Further, in order to allow a large amount of clockwise light to enter the sub-resonator 402, the hole at the right end of the sub-resonator 402 is shifted slightly from the original position of the triangular lattice to a position closer to the main resonator 401. Similarly, the width of the sub-resonator 402 (the vertical size in FIG. 5) is slightly narrowed.
 図5に示す副共振器402付きの円形の主共振器401では、反時計回りのレーザ光が主として発生しているので、光導波路204では左に進行する光が主となる。なお、主共振器401と光導波路204の光結合効率を30%前後とするために、主共振器401と光導波路204の位置関係を、図5に示すように設計している。 In the circular main resonator 401 with the sub-resonator 402 shown in FIG. 5, counterclockwise laser light is mainly generated, so that light traveling mainly to the left is mainly used in the optical waveguide 204. Note that the positional relationship between the main resonator 401 and the optical waveguide 204 is designed as shown in FIG. 5 so that the optical coupling efficiency between the main resonator 401 and the optical waveguide 204 is about 30%.
 図6は、2つの共振器を光導波路204の両側に配置した場合の例を示す図である。図6に示すように、光導波路204の下側に主共振器401a及び副共振器402aが形成され、光導波路204の上側に主共振器401b及び副共振器402bが形成される。 FIG. 6 is a diagram illustrating an example in which two resonators are arranged on both sides of the optical waveguide 204. As shown in FIG. 6, the main resonator 401 a and the sub resonator 402 a are formed below the optical waveguide 204, and the main resonator 401 b and the sub resonator 402 b are formed above the optical waveguide 204.
 また、図6では、副共振器402aは、空孔を1つ作製しないことで形成している。また、副共振器402aは、図5に示す副共振器402に対して、60度右回転させた位置にある。この場合も、図5の場合と同様に、半時計回りレーザ光が主となり、レーザ光は光導波路204の左側から出射される。 In FIG. 6, the sub-resonator 402a is formed by not creating one hole. The sub-resonator 402a is at a position rotated right by 60 degrees with respect to the sub-resonator 402 shown in FIG. Also in this case, as in the case of FIG. 5, the counterclockwise laser beam is mainly used, and the laser beam is emitted from the left side of the optical waveguide 204.
 また、主共振器401bの半径R2は、主共振器401aの半径R1と比べて少し大きい。ここで、定在波が存在する円周の長さは半径Rに比例する。また、主共振器401bにおいても、主共振器401aと同様に9波長の定在波のみが安定に存在する。よって、主共振器401bの波長は、主共振器401aの波長より少し長くなる。このように、主共振器401aと主共振器401bの出力波長は異なる。 Also, the radius R2 of the main resonator 401b is slightly larger than the radius R1 of the main resonator 401a. Here, the length of the circumference where the standing wave exists is proportional to the radius R. Also, in the main resonator 401b, only the 9-wave standing waves exist stably as in the main resonator 401a. Therefore, the wavelength of the main resonator 401b is slightly longer than the wavelength of the main resonator 401a. Thus, the output wavelengths of the main resonator 401a and the main resonator 401b are different.
 また、主共振器401a及び副共振器402aと、主共振器401b及び副共振器402bとの基本設計は、光導波路204を軸として上下対称となっている。つまり、主共振器401bでは、時計回りのレーザ光が主となり、光信号は光導波路204の左側から出射される。 The basic design of the main resonator 401a and the sub resonator 402a and the main resonator 401b and the sub resonator 402b is vertically symmetric with respect to the optical waveguide 204 as an axis. That is, in the main resonator 401 b, clockwise laser light is mainly used, and an optical signal is emitted from the left side of the optical waveguide 204.
 図6の構造を繰り返すことにより、図2に示すような波長多重光モジュールを作製することができる。ここで、主共振器401のサイズは、例えば2μmと極微小なので、光集積回路104のサイズも100μm角程度と非常に小さくなる。その結果、ポート103を1mm角程度で実現できる。これにより、3cm角程度であるCPUチップにおいて、サイズの増加を抑制しつつ、光配線を用いた集積回路100を実現できる。 6 is repeated, a wavelength division multiplexing optical module as shown in FIG. 2 can be manufactured. Here, since the size of the main resonator 401 is extremely small, for example, 2 μm, the size of the optical integrated circuit 104 is very small, about 100 μm square. As a result, the port 103 can be realized with about 1 mm square. Thus, an integrated circuit 100 using an optical wiring can be realized while suppressing an increase in size in a CPU chip of about 3 cm square.
 なお、ここでは、レーザダイオード202の構成を主に説明したが、フォトダイオード201に対しても同様の構成を用いることで、共振器に入力される一方向から伝送される光信号の割合を増加できるという効果を実現できる。 Although the configuration of the laser diode 202 has been mainly described here, the ratio of the optical signal transmitted from one direction input to the resonator is increased by using the same configuration for the photodiode 201. The effect of being able to be realized.
 以上のように、光配線をCPUチップ内に導入し、コア間での情報伝送に用いることができる。これにより、CPUの性能が1から2桁向上する。情報化社会において、本開示の影響は非常に大きい。 As described above, the optical wiring can be introduced into the CPU chip and used for information transmission between the cores. This improves the CPU performance by one to two digits. The impact of this disclosure is very significant in the information society.
 また、光モジュール(光集積回路104)のサイズが小さいことは、光モジュールの低価格化に直結する。モジュールサイズが小さい程、1枚のウエハから多くのモジュールを作製できるので、光モジュールの単価は下がる。また、図3及び図4に示すフリップチップボンディングは、赤外線カメラを用いることで自動化が可能である。よって、チップの価格上昇を抑制しつつ、チップ内の光配線を実現できる。 Also, the small size of the optical module (optical integrated circuit 104) directly leads to a reduction in the price of the optical module. The smaller the module size, the more modules can be made from a single wafer, so the unit price of the optical module is reduced. The flip chip bonding shown in FIGS. 3 and 4 can be automated using an infrared camera. Therefore, the optical wiring in the chip can be realized while suppressing the increase in the price of the chip.
 また、本実施の形態のように光の波長多重通信を行うためには、各光ダイオードの波長が設計値の許容範囲に入っていなければならない。一般に光ダイオードの波長は環境温度に影響されるので、光モジュールの温度を、熱電素子等を用いて一定(例えば、50°C)に保つ必要がある。本実施の形態に係る光モジュール104は非常に小型なので、熱電素子の消費電力も微小であり、環境温度の変化に対する応答性にも優れる。この温度制御機構は、ポート103に必要な機能の一部である。 In addition, in order to perform optical wavelength division multiplexing communication as in the present embodiment, the wavelength of each photodiode must be within the allowable range of the design value. In general, since the wavelength of the photodiode is affected by the environmental temperature, it is necessary to keep the temperature of the optical module constant (for example, 50 ° C.) using a thermoelectric element or the like. Since the optical module 104 according to the present embodiment is very small, the power consumption of the thermoelectric element is very small and the response to changes in the environmental temperature is excellent. This temperature control mechanism is a part of the function required for the port 103.
 以下、副共振器402の詳細について説明する。上述したように、副共振器402は、主共振器401の時計回りの光と反時計回りの光との一方と光結合し、かつ、他方と光結合しないように配置される。言い換えると、副共振器402は、主共振器401の時計回りの光と反時計回りの光との一方と光結合が、他方と光結合より強く(又は弱く)なるように配置される。つまり、副共振器402は、主共振器401における右回りと左回りの光信号に対して非対称に形成されている。また、副共振器402は、主共振器401における右回りの光信号と左回りの光信号とに与える影響が異なる。 Hereinafter, details of the sub-resonator 402 will be described. As described above, the sub-resonator 402 is disposed so as to be optically coupled to one of the clockwise light and the counterclockwise light of the main resonator 401 and not to be optically coupled to the other. In other words, the sub-resonator 402 is arranged so that optical coupling between one of the clockwise light and the counterclockwise light of the main resonator 401 is stronger (or weaker) than the other. That is, the sub resonator 402 is formed asymmetrically with respect to the clockwise and counterclockwise optical signals in the main resonator 401. Further, the sub-resonator 402 has different effects on the clockwise optical signal and the counterclockwise optical signal in the main resonator 401.
 また、副共振器402は、主共振器401の光導波路204とは反対側に形成されていることが好ましい。例えば、図5において、副共振器402の中心(又は上端部)は、主共振器401の中心を通り、かつ、光導波路204と平行な線よりも下側に配置される。つまり、副共振器402は、主共振器401と光導波路404との間には形成されない。言い換えると、副共振器402は、主共振器401と光導波路404との間以外に形成される。これにより、副共振器402が、主共振器401と光導波路204との光結合を阻害することを抑制できる。 Also, the sub-resonator 402 is preferably formed on the opposite side of the main resonator 401 from the optical waveguide 204. For example, in FIG. 5, the center (or upper end) of the sub-resonator 402 is disposed below the line passing through the center of the main resonator 401 and parallel to the optical waveguide 204. That is, the sub resonator 402 is not formed between the main resonator 401 and the optical waveguide 404. In other words, the sub-resonator 402 is formed other than between the main resonator 401 and the optical waveguide 404. Thereby, it is possible to suppress the sub resonator 402 from inhibiting optical coupling between the main resonator 401 and the optical waveguide 204.
 また、主共振器401と副共振器402とは隣接していてもよい。以下、副共振器402と主共振器401との距離を変えた場合のシミュレーション結果について説明する。図7は、シミュレーションの条件を示す図である。図8は、図7に示すように副共振器402の欠陥の位置xを変えた場合のシミュレーション結果を示す図である。なお、欠陥の長さは1空孔としている。図8に示すグラフの縦軸は、右方向と左方向とに出力される光信号のエネルギーの比率(以下、左右比と呼ぶ)を示し、値が高いほど、所望の方向の光信号のエネルギーが高い(不要な方向の光信号のエネルギーが低い)ことを示す。 Further, the main resonator 401 and the sub resonator 402 may be adjacent to each other. Hereinafter, a simulation result when the distance between the sub resonator 402 and the main resonator 401 is changed will be described. FIG. 7 is a diagram illustrating simulation conditions. FIG. 8 is a diagram showing a simulation result when the defect position x of the sub-resonator 402 is changed as shown in FIG. Note that the length of the defect is one hole. The vertical axis of the graph shown in FIG. 8 indicates the ratio of the energy of the optical signal output in the right direction and the left direction (hereinafter referred to as the left / right ratio). Is high (the energy of the optical signal in an unnecessary direction is low).
 図8に示すように、主共振器401と副共振器402とが隣接している場合(x=1)において、左右比が最も高くなる。また、x=0では、左右比が低下している。これは、副共振器402が、右回りと左回りの両方の光に影響を与えているためと考えられる。 As shown in FIG. 8, when the main resonator 401 and the sub resonator 402 are adjacent to each other (x = 1), the left / right ratio becomes the highest. Further, when x = 0, the left / right ratio is reduced. This is presumably because the sub-resonator 402 affects both clockwise and counterclockwise light.
 また、図9に示すように、副共振器402の欠陥の長さd(除去する空孔の数)を変更した場合、除去する空孔の数が1~3では、左右比が高くなり、かつ、この間では、左右比の変化はなかった。一方、除去する空孔の数が4以上になると左右比が低くなることが分かった。よって、副共振器402は、1以上かつ3以下のフォトニック結晶構造の空孔が除去されることで形成されることが好ましい。 Further, as shown in FIG. 9, when the defect length d (number of holes to be removed) of the sub-resonator 402 is changed, the right / left ratio becomes high when the number of holes to be removed is 1 to 3, In addition, there was no change in the left / right ratio during this period. On the other hand, it was found that when the number of holes to be removed is 4 or more, the left / right ratio is lowered. Therefore, the sub-resonator 402 is preferably formed by removing holes having a photonic crystal structure of 1 to 3 inclusive.
 また、本実施の形態では、光導波路204の両側方の空孔の間隔を、他の空孔の間隔aよりも広くしている。これにより、主共振器401と光導波路204との光結合の結合効率(以下、単に「結合効率」とも呼ぶ)を改善できる。 Further, in the present embodiment, the interval between the holes on both sides of the optical waveguide 204 is made wider than the interval a between the other holes. Thereby, the coupling efficiency of optical coupling between the main resonator 401 and the optical waveguide 204 (hereinafter also simply referred to as “coupling efficiency”) can be improved.
 図10は、図5の領域403の拡大図である。図10において破線の空孔は、他の空孔と同様に間隔aで配置された空孔を示している。図10に示すように、光導波路204の両側方の空孔は、光導波路204側に-Δsだけシフトされている。つまり、光導波路204の両側方の空孔の間隔は、他の空孔の間隔aよりも広くなっている。なお、Δsは光導波路204から離れる方向を正としている。 FIG. 10 is an enlarged view of the region 403 in FIG. In FIG. 10, broken holes indicate holes arranged at intervals a as in the case of other holes. As shown in FIG. 10, the holes on both sides of the optical waveguide 204 are shifted to the optical waveguide 204 side by −Δs. That is, the gap between the holes on both sides of the optical waveguide 204 is wider than the gap a between the other holes. Note that Δs is positive in the direction away from the optical waveguide 204.
 図11は、Δs/aに対する結合効率のシミュレーション結果を示す図である。図11に示すように、適切にΔsを設定することで結合効率を向上できる。 FIG. 11 is a diagram showing a simulation result of the coupling efficiency with respect to Δs / a. As shown in FIG. 11, the coupling efficiency can be improved by appropriately setting Δs.
 また、図11に示すように、主共振器401の半径Rを変更すること、つまり、波長を変更することで、適切なΔsの値が変化する。これにより、一つの光導波路204に対して波長の異なる複数のレーザダイオード202を設ける場合には、複数のレーザダイオード202の全てに対して結合効率を上げることが困難である。 Further, as shown in FIG. 11, an appropriate value of Δs changes by changing the radius R of the main resonator 401, that is, by changing the wavelength. Thus, when a plurality of laser diodes 202 having different wavelengths are provided for one optical waveguide 204, it is difficult to increase the coupling efficiency for all of the plurality of laser diodes 202.
 これに対して、光導波路204に溝501を形成することで、最適なΔsの波長依存性を低減できる。図12は、この場合の光導波路204及びレーザダイオード202の上面図である。図12に示すように、光導波路204は、信号伝送方向に沿って形成された溝501を有する。例えば、溝501の幅は0.6aである。また、溝501の深さは、例えば、空孔と同程度、又は、空孔よりも深い。 On the other hand, by forming the groove 501 in the optical waveguide 204, the optimum wavelength dependency of Δs can be reduced. FIG. 12 is a top view of the optical waveguide 204 and the laser diode 202 in this case. As shown in FIG. 12, the optical waveguide 204 has a groove 501 formed along the signal transmission direction. For example, the width of the groove 501 is 0.6a. In addition, the depth of the groove 501 is, for example, about the same as the hole or deeper than the hole.
 図13は、この場合のΔs/aに対する結合効率のシミュレーション結果を示す図である。図13に示すように、溝501を形成することで、最適なΔsの波長依存性を低減できる。これにより、波長の異なる複数のレーザダイオード202に対して最適なΔsを設定できる。 FIG. 13 is a diagram showing a simulation result of the coupling efficiency with respect to Δs / a in this case. As shown in FIG. 13, by forming the groove 501, the optimum wavelength dependency of Δs can be reduced. Thereby, the optimal Δs can be set for a plurality of laser diodes 202 having different wavelengths.
 なお、Δsだけ空孔をシフトさせる手法及び溝501を設ける手法については、フォトダイオード201に接続される光導波路203に対しても適用できる。 Note that the method of shifting the holes by Δs and the method of providing the groove 501 can also be applied to the optical waveguide 203 connected to the photodiode 201.
 以上、本発明の実施の形態に係る光集積回路及び集積回路について説明したが、本開示は、この実施の形態に限定されるものではない。 Although the optical integrated circuit and the integrated circuit according to the embodiment of the present invention have been described above, the present disclosure is not limited to this embodiment.
 例えば、上記説明では、レーザダイオード202及びフォトダイオード201が共に副共振器402を備える例を説明したが、いずれか一方のみが副共振器402を備えてもよい。同様に、上記で説明した本開示の特徴的な構成を、レーザダイオード202及びフォトダイオード201の一方のみに適用してもよい。 For example, in the above description, the laser diode 202 and the photodiode 201 are both provided with the sub-resonator 402, but only one of them may be provided with the sub-resonator 402. Similarly, the characteristic configuration of the present disclosure described above may be applied to only one of the laser diode 202 and the photodiode 201.
 また、上記説明では、複数のレーザダイオード202及び複数のフォトダイオード201が、光導波路204又は203の上下に交互に配置されている例を述べたが、複数のレーザダイオード202及び複数のフォトダイオード201の配置はこれに限らない。例えば、複数のレーザダイオード202及び複数のフォトダイオード201は、光導波路204又は203の同一方向に配置されてもよい。 In the above description, the example in which the plurality of laser diodes 202 and the plurality of photodiodes 201 are alternately arranged above and below the optical waveguide 204 or 203 has been described. However, the plurality of laser diodes 202 and the plurality of photodiodes 201 are arranged. This arrangement is not limited to this. For example, the plurality of laser diodes 202 and the plurality of photodiodes 201 may be arranged in the same direction of the optical waveguide 204 or 203.
 また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。 Further, all the numbers used above are examples for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
 以上、一つまたは複数の態様に係る光集積回路及び集積回路について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 As described above, the optical integrated circuit and the integrated circuit according to one or more aspects have been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
 本開示は、光集積回路及び光モジュールに適用でき、特に、光通信における波長多重伝送用の光集積回路及び光モジュールに適用できる。 The present disclosure can be applied to an optical integrated circuit and an optical module, and in particular to an optical integrated circuit and an optical module for wavelength division multiplexing transmission in optical communication.
 100 集積回路
 101 ブロック
 102 コア
 103 ポート
 104 光集積回路
 105、203、204 光導波路
 106 光ファイバー
 201、201a、201b、201c フォトダイオード
 202、202a、202b、202c レーザダイオード
 205 半導体基板
 206、303 電極
 208 入力光信号
 209 出力光信号
 301 基板
 302 IC
 304 配線
 401、401a、401b 主共振器
 402、402a、402b 副共振器
 403 領域
 501 溝
DESCRIPTION OF SYMBOLS 100 Integrated circuit 101 Block 102 Core 103 Port 104 Optical integrated circuit 105, 203, 204 Optical waveguide 106 Optical fiber 201, 201a, 201b, 201c Photodiode 202, 202a, 202b, 202c Laser diode 205 Semiconductor substrate 206, 303 Electrode 208 Input light Signal 209 Output optical signal 301 Substrate 302 IC
304 Wiring 401, 401a, 401b Main resonator 402, 402a, 402b Sub resonator 403 Region 501 Groove

Claims (11)

  1.  光導波路と、
     前記光導波路の側方に形成されており、電気信号を光信号に変換し、当該光信号を前記光導波路に出力する、又は、前記光導波路を伝送される光信号を電気信号に変換する光ダイオードとを備え、
     前記光ダイオードは、
     フォトニック結晶構造体に囲まれた円形の主共振器と、
     前記主共振器の近傍に形成され、フォトニック結晶構造体に囲まれた副共振器とを有する
     光集積回路。
    An optical waveguide;
    Light that is formed on the side of the optical waveguide and converts an electrical signal into an optical signal and outputs the optical signal to the optical waveguide, or converts an optical signal transmitted through the optical waveguide into an electrical signal A diode and
    The photodiode is
    A circular main resonator surrounded by a photonic crystal structure;
    An optical integrated circuit having a sub-resonator formed in the vicinity of the main resonator and surrounded by a photonic crystal structure.
  2.  前記副共振器は、前記主共振器における右回りと左回りの光信号に対して非対称に形成されている
     請求項1記載の光集積回路。
    The optical integrated circuit according to claim 1, wherein the sub-resonator is formed asymmetrically with respect to the clockwise and counterclockwise optical signals in the main resonator.
  3.  前記副共振器は、前記主共振器における右回りの光信号と左回りの光信号とに与える影響が異なる
     請求項1又は2記載の光集積回路。
    The optical integrated circuit according to claim 1, wherein the sub-resonator has different influences on a clockwise optical signal and a counterclockwise optical signal in the main resonator.
  4.  前記副共振器は、前記主共振器と前記光導波路との間以外に形成されている
     請求項1~3のいずれか1項に記載の光集積回路。
    The optical integrated circuit according to any one of claims 1 to 3, wherein the sub-resonator is formed in a portion other than between the main resonator and the optical waveguide.
  5.  前記主共振器と前記副共振器とは隣接している
     請求項1~4のいずれか1項に記載の光集積回路。
    The optical integrated circuit according to any one of claims 1 to 4, wherein the main resonator and the sub resonator are adjacent to each other.
  6.  前記副共振器は、1以上かつ3以下のフォトニック結晶構造の空孔が除去されることで形成されている
     請求項1~5のいずれか1項に記載の光集積回路。
    6. The optical integrated circuit according to claim 1, wherein the sub-resonator is formed by removing holes having a photonic crystal structure of 1 to 3 inclusive.
  7.  前記光導波路は、両側方をフォトニック結晶構造体で囲まれており、
     前記光導波路の両側方のフォトニック結晶構造体の間隔は、前記光導波路の両側方以外のフォトニック結晶構造体の間隔より広い
     請求項1~6のいずれか1項に記載の光集積回路。
    The optical waveguide is surrounded on both sides by a photonic crystal structure,
    The optical integrated circuit according to any one of claims 1 to 6, wherein an interval between the photonic crystal structures on both sides of the optical waveguide is wider than an interval between the photonic crystal structures on both sides of the optical waveguide.
  8.  前記光集積回路は、前記光ダイオードを含む複数の光ダイオードを備え、
     前記複数の光ダイオードは、前記光導波路の側方に形成されており、(1)電気信号を、互いに波長の異なる光信号に変換し、前記光信号を前記光導波路に出力する、又は、(2)前記光導波路を伝送される互いに波長の異なる光信号を電気信号に変換し、
     前記光導波路は、信号伝送方向に沿って形成された溝を有する
     請求項1~7のいずれか1項に記載の光集積回路。
    The optical integrated circuit includes a plurality of photodiodes including the photodiode.
    The plurality of photodiodes are formed on the side of the optical waveguide, and (1) convert electrical signals into optical signals having different wavelengths and output the optical signals to the optical waveguide, or ( 2) Converting optical signals having different wavelengths transmitted through the optical waveguide into electrical signals;
    The optical integrated circuit according to claim 1, wherein the optical waveguide has a groove formed along a signal transmission direction.
  9.  電気及び光を介して信号を伝送する集積回路であって、
     請求項1~8のいずれか1項に記載の光集積回路を備える
     集積回路。
    An integrated circuit that transmits signals via electricity and light,
    An integrated circuit comprising the optical integrated circuit according to any one of claims 1 to 8.
  10.  複数のコアと、
     前記複数のコア間の信号の伝送を行う請求項1~8のいずれか1項に記載の光集積回路とを備える
     集積回路。
    With multiple cores,
    9. An integrated circuit comprising: the optical integrated circuit according to claim 1 that transmits a signal between the plurality of cores.
  11.  前記集積回路は、各々が複数の前記コアを含む複数のブロックを含み、
     前記光集積回路は、前記複数のブロック間の信号の伝送を行う
     請求項10記載の集積回路。
    The integrated circuit includes a plurality of blocks each including a plurality of the cores;
    The integrated circuit according to claim 10, wherein the optical integrated circuit transmits a signal between the plurality of blocks.
PCT/JP2019/019997 2018-05-24 2019-05-21 Optical integrated circuit and integrated circuit WO2019225566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521232A JP7019220B2 (en) 2018-05-24 2019-05-21 Optical integrated circuits and integrated circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099926 2018-05-24
JP2018099926 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225566A1 true WO2019225566A1 (en) 2019-11-28

Family

ID=68615812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019997 WO2019225566A1 (en) 2018-05-24 2019-05-21 Optical integrated circuit and integrated circuit

Country Status (2)

Country Link
JP (1) JP7019220B2 (en)
WO (1) WO2019225566A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063972A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Semiconductor laser, and manufacturing method thereof
JP2005064471A (en) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp Optical device, manufacturing method thereof, and semiconductor laser oscillator
JP2007194301A (en) * 2006-01-17 2007-08-02 Osaka Univ Optical integrated circuit and optical module
JP2009239260A (en) * 2008-03-07 2009-10-15 Mitsubishi Electric Corp Semiconductor laser and method for manufacturing the same
JP2011501238A (en) * 2007-10-23 2011-01-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical wiring for computer system devices
US20140226691A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Iii-v photonic crystal microlaser bonded on silicon-on-insulator
JP2014150151A (en) * 2013-01-31 2014-08-21 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal device
JP2014202788A (en) * 2013-04-01 2014-10-27 日本電信電話株式会社 Optical flip-flop circuit
US20160349456A1 (en) * 2015-04-21 2016-12-01 Infineon Technologies Austria Ag Plasmonic and photonic wavelength separation filters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343059B2 (en) * 2003-10-11 2008-03-11 Hewlett-Packard Development Company, L.P. Photonic interconnect system
US7466884B2 (en) * 2006-10-17 2008-12-16 Hewlett-Packard Development Company, L.P. Photonic-interconnect systems for reading data from memory cells and writing data to memory integrated circuits

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063972A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Semiconductor laser, and manufacturing method thereof
JP2005064471A (en) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp Optical device, manufacturing method thereof, and semiconductor laser oscillator
JP2007194301A (en) * 2006-01-17 2007-08-02 Osaka Univ Optical integrated circuit and optical module
JP2011501238A (en) * 2007-10-23 2011-01-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical wiring for computer system devices
JP2009239260A (en) * 2008-03-07 2009-10-15 Mitsubishi Electric Corp Semiconductor laser and method for manufacturing the same
JP2014150151A (en) * 2013-01-31 2014-08-21 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal device
US20140226691A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Iii-v photonic crystal microlaser bonded on silicon-on-insulator
JP2014202788A (en) * 2013-04-01 2014-10-27 日本電信電話株式会社 Optical flip-flop circuit
US20160349456A1 (en) * 2015-04-21 2016-12-01 Infineon Technologies Austria Ag Plasmonic and photonic wavelength separation filters

Also Published As

Publication number Publication date
JP7019220B2 (en) 2022-02-15
JPWO2019225566A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6175263B2 (en) Spot size converter, manufacturing method thereof, and optical integrated circuit device
KR101305848B1 (en) Optical waveguide and optical waveguide module
US10466413B2 (en) Opto-electronic system including optical input/output device
KR101448574B1 (en) Optical engine for point-to-point communications
US20100215313A1 (en) Optical interconnection assembled circuit
JP6121730B2 (en) Optical device
US20170098922A1 (en) Semiconductor light emitting device and optical transceiver
US8320761B2 (en) Broadband and wavelength-selective bidirectional 3-way optical splitter
JP2016500451A (en) Optical fiber coupler array
JP2019504357A (en) Photonic integrated circuit using chip integration
JP2017041618A (en) Optical module
US7474825B1 (en) Circular grating resonator with integrated electro-optical modulation
KR20150128718A (en) Coupled ring resonator system
JP6393221B2 (en) Optical transmitter and optical transmitter
WO2019225566A1 (en) Optical integrated circuit and integrated circuit
US20120148190A1 (en) Optical module and optical transmission device using the same
JP2009104064A (en) Electronic device provided with optical wiring and optical wiring for the same
CN101128761A (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
CN111103658A (en) Device for optical coupling and system for communication
US11119280B2 (en) Grating couplers and methods of making same
JP2018032043A (en) Optical device and method for manufacturing the same
JP2017004006A (en) Optical device and manufacturing method thereof
JP2010164504A (en) Optical gyrosensor
JP2007194301A (en) Optical integrated circuit and optical module
US20230341624A1 (en) Integrated optical devices and methods of forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808139

Country of ref document: EP

Kind code of ref document: A1