WO2019224894A1 - Communication system and signal processing method - Google Patents
Communication system and signal processing method Download PDFInfo
- Publication number
- WO2019224894A1 WO2019224894A1 PCT/JP2018/019563 JP2018019563W WO2019224894A1 WO 2019224894 A1 WO2019224894 A1 WO 2019224894A1 JP 2018019563 W JP2018019563 W JP 2018019563W WO 2019224894 A1 WO2019224894 A1 WO 2019224894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- observation
- individual
- broadcast
- distributed
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9058—Bistatic or multistatic SAR
Definitions
- the present invention relates to a communication system and a signal processing method that generate and accumulate observation results based on signals generated in each of a plurality of distributed individuals that receive an observation signal from an observation target by radio.
- the length of the optical path to the point where the light is collected from the target is strictly in the wavelength order.
- the points that are accumulated are also called focal points. This is a requirement to construct an interferometer in a broad sense if it is extended to the communication system or the wavelength of light, and if it is integrated and collected at one point in the same phase, it corresponds to constructing a telescope To do. Therefore, until now, the receiving and receiving surfaces have basically a rigid structure, and an integrated rigid body constitutes a telescope.
- interferometers that are not limited to integration and condensing but actively correct the phase of the obtained signals and synthesize them to obtain observation outputs are becoming mainstream, particularly in the radio wave region.
- the application of a retrodirective method has been progressing, in which the phase of signals from a plurality of reception points is manipulated to recursively transmit and receive signals at one point in the same phase.
- retrodirective power transmission and reception which is composed of a large number of multipoint moving distributed individuals such as spacecrafts and satellites.
- the retrodirective method is one of so-called interferometer technologies.
- a special application refers to processing on distributed individuals that recursively retransmits in the same phase.
- Fig. 1 describes the signal generation method using a recursive directional transponder.
- the original signal from the transmission source (Transmitter) is cos ⁇ t.
- the received signal at the transponder is It is.
- the receiving individual is based on this Shall be transmitted.
- the phases of the received signal and the transmitted signal are synchronized as follows.
- the transmission signal y ' It becomes.
- the phase and time at the original transmission source position is the direction to return to the transmission source (Transmitter). Because And the same phase as the original transmission signal.
- This is the principle of a recursive-oriented (retrodirective) transponder.
- transponder received signal y In general, transponder received signal y In contrast, a transmission signal (conjugate signal) in which y ′ below returns with the same phase is given.
- the received signal When a location is at a distance x from the transmission point, the received signal there Local transmitter output And mix and pass through the Low Pass filter (LPF) Get.
- LPF Low Pass filter
- the distance to the original transmission point is x, and the arrival time of the signal is thus, it can be seen that the original signal is synchronized with a certain phase difference.
- This method is composed only of electronic circuits and is called a hardware retrodirective method.
- ⁇ 0 is common to all the distributedly arranged transmitters, the phases of all the distributed transmitters returning to the original can be made common and aggregated. However, the initial phase ⁇ 0 of each transmitter is disjoint. Even if a single ⁇ 0 is generated by the reference signal source and delivered by radio waves, the distance from the signal source to each dispersed individual varies, so ⁇ 0 is shared by all distributed transmitters. It cannot be made. Therefore, the reference signal can no longer be a reference, and this method does not solve the problem.
- the time synchronization itself of the local transmitter can be synchronized by transmitting it from the reference signal source with multiple waves.
- the retrodirective method is still impractical because the return wave is forced to have the same frequency as the received wave.
- it is necessary to return a signal having the same phase at a frequency different from a specified reception frequency in an arbitrary direction, and the problem cannot be solved.
- each node is supplied with a phase reference signal (reference signal), but the method described in the specification is as the supply method: ⁇
- phase-matched transmission lines ie, transmission lines having matched propagation delays L / v, where L is the linelength and v is the propagation velocity
- the phase matched transmission line ie transmission line matched transmission delay; line length (L ) / Having a transmission speed (v)
- a wired cable whose phase shift associated with the supply is known in advance may be used. It is a premise. Therefore, it is difficult to realize a freely flying spacecraft, which is a great restriction. Therefore, the technique of Patent Document 1 does not deal with a “compensation method for a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” as in the present invention described later.
- Patent Document 2 does not deal with conjugate phase generation but relates to a wireless charging method.
- reference signal and reproduction / relay signal of observation signal It does not deal with the "phase compensation method related to spatial propagation of”.
- Patent Document 3 has only one beacona as a pilot signal, and cannot compensate for a phase shift caused by a spatial distance from the reference signal generator. Thus, it does not deal with the “phase compensation method related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
- Patent Document 4 has only one pilot generator as a pilot signal.
- “compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal” It does not deal with "law”.
- Patent Document 5 has only one Communication Source as a pilot signal.
- “compensation of a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” It does not deal with "law”.
- Patent Document 6 has only one input to the Conjugator IV as a pilot signal.
- the reference signal and the phase related to the spatial propagation of the regenerated / relayed signal of the observation signal It does not deal with "compensation law”.
- Patent Document 7 does not deal with conjugate phase generation but relates to a wireless charging method.
- a reference signal and a reproduction / relay signal of an observation signal are used. It does not deal with the "phase compensation method related to spatial propagation of".
- Patent Document 8 has only one beacona as a pilot signal, and cannot compensate for a phase shift caused by a spatial distance from the reference signal generator. Thus, it does not deal with the “phase compensation method related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
- Patent Document 9 has only one pilot generator as a pilot signal.
- the compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal It does not deal with "law”.
- Patent Document 10 has only one Communication Source as a pilot signal.
- “compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal” It does not deal with "law”.
- Patent Document 11 has only one input to the Conjugator IV as a pilot signal.
- the reference signal and the phase related to the spatial propagation of the observation signal reproduction / relay signal It does not deal with "compensation law”.
- Patent Document 12 has a configuration in which each individual includes an optical phase synchronization mechanism. According to this system, although the problem of recursion orientation is solved, a multi-element antenna having a very large number of elements is required, and each individual is expensive, which is not practical.
- Patent Document 13 deals with a device that spreads the pilot signal to spread spectrum and accurately synchronizes the signal.
- “reproduction / relay of reference signal and observation signal” It does not deal with the “phase compensation method related to signal spatial propagation”.
- Patent Document 14 deals with a system in which pilot signals are distributed to each power transmission unit by a distributor and are passed through a phase difference detection cable, but there is only one pilot signal, and the present invention described later This does not deal with the “phase compensation method related to spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
- Patent Document 15 has only one pilot signal, and deals with a “compensation method for a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” as in the present invention described later. Not a thing.
- US Patent Application Publication No. 20130002472 Active retrodirective antenna array with a virtual beacon
- U.S. Patent No. 9,900,057 Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of
- U.S. Patent No. 9,887,589 Systems and methods for improved phase determinations in wireless power delivery environments
- US Patent No. 9,356,666 Oilator andcipirecipient based transmissions in wireless communications
- U.S. Patent No. 9,325,403 Digital-retro-directive-communication-system-and-method-thereof
- US Patent No. 8,072,380 Wireless power transmission system and method
- Patent No. 9,900,057 Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of
- U.S. Patent No. 9,887,589 Systems and methods for improved phase determinations in wireless power delivery environments
- US Patent No. 9,356,666 Oil andcipirecipient based transmissions in wireless communications
- U.S. Patent No. 9,325,403 Digital-retro-directive-communication-system-and-method-thereof
- JP 2005-328650 A (Retrodirective array antenna device and space solar power generation system using the device)
- JP 2005-319853 (Satellite, Earth Station)
- JP 2004-007932 A (Microwave Transmission System)
- Japanese Patent Laid-Open No. 06-327172 (Solar Power Transmission Device)
- the keywords characterizing the present invention are “wireless system”, “real-time processing”, “exclusion of two-way communication”, and “realization of a communication system as an interferometer”. These simultaneous solutions are problems in the prior art. Being “wireless” greatly reduces the difficulty of use in free-flying vehicles and moving vehicles. In the prior art, the wired system was exclusively used. According to “real-time processing”, offline correlation processing, equipment and work can be eliminated. In conventional methods, offline processing such as correlation processing is often requested. “Exclusion of bidirectional communication” is realized by one-way transmission from a broadcast individual. Conventional methods are often premised on the use of bidirectional communication.
- a communication system By “implementing a communication system as an interferometer”, it is possible to return an in-phase signal at a frequency different from a predetermined reception frequency in an arbitrary direction. That is, it is possible to steer. This was not possible with the conventional method.
- the retrodirective type is only an example of realizing a communication system as the simplest interferometer. It stays at a stage where it can reply to the original signal source at the same frequency as it was received.
- the present invention is not necessarily recursive, and makes it possible to return a signal in the same phase at a frequency different from a predetermined reception frequency in an arbitrary designated direction.
- phase processing of signals from each of a plurality of individuals (communication devices) in a communication system as an interferometer is currently an off-run statistical method called correlation processing.
- correlation processing the methods related to recursive folding accumulation and collection are retrodirective, and the uncertainty of distance from the observation target is removed in real time. The method to do is being taken.
- the signal processing in each distributed individual is governed by the initial phase of the local signal source on the same individual, that is, it is difficult to manage the time between the individuals receiving accumulation and light collection.
- the time synchronization itself can be realized on each distributed individual if signals distributed from the reference signal source are delivered at a plurality of different frequencies.
- the current retrodirective method which is a typical interferometer process, for example, it is impossible to synchronize the time with respect to the observation target, in other words, to remove the uncertainty of the distance from the observation target. Only in the case of the loopback process in which the response transmission frequency matches the frequency from the target, it is only possible to cancel and eliminate the distance information for each individual target.
- the phase of the signal returned by the response remains synchronized regardless of the distance from the observation target, and is accumulated in real time regardless of the distance from the reference signal source.
- the response from the individual, that is, the return signal is to maintain phase synchronization.
- the system can be configured with a wireless medium by releasing the physical restriction of requiring a cable system, that is, a cable, and the integration and condensing functions can be demonstrated in real time instead of correlation processing.
- the present invention constitutes a communication system as a wireless interferometer that eliminates cables and uses radio waves, functions in real time rather than statistically, and each distributed individual receives received information.
- Independent distributed processing that performs processing depending only on the signal, and sends a return signal that is not necessarily recursive, and is always collected and collected in-phase to an integrated individual that is not necessarily fixed in space.
- a communication system that performs signal processing.
- a communication system has a plurality of distributed individuals that wirelessly receive an observation signal from an observation target, and generates an observation result signal based on signals generated in each of the plurality of distributed individuals Receiving an observation signal from the observation target, generating a signal based on the observation signal, and broadcasting the signal based on the observation signal together with a predetermined reference signal to the plurality of distributed individuals by radio
- Each of the plurality of distributed individuals includes a signal based on the observation signal from the broadcast individual, the reference signal, and the observation signal received from the observation target.
- An individual observation result signal that does not depend on the first relative position between the individual and the broadcast individual and the second relative position between the distributed individual and the observation target should be received by the broadcast individual.
- a signal processing unit for generating a signal, and wirelessly transmitting the signal generated by the signal processing unit to the broadcast individual, wherein the broadcast individual receives the individual observation signal from each of the plurality of distributed individuals. As a result, an observation result signal is generated based on the received signal.
- FIG. 1 is a diagram illustrating signal generation of a recursive directional transponder.
- FIG. 2 is a diagram showing a typical example of a conventional retrodirective method.
- FIG. 3 is a diagram illustrating the principle of signal processing in the communication system according to the embodiment of the present invention.
- FIG. 4 is a system diagram of the signal processing shown in FIG.
- FIG. 5 is a diagram illustrating a first configuration example of a communication system applied to observation.
- FIG. 6 is a diagram illustrating a second configuration example of a communication system applied to observation.
- FIG. 7 is a diagram illustrating a first application example of the communication system for returning a retro directive.
- FIG. 8 is a diagram illustrating a second application example of the communication system for returning a retro directive.
- FIG. 1 is a diagram illustrating signal generation of a recursive directional transponder.
- FIG. 2 is a diagram showing a typical example of a conventional retrodirective method.
- FIG. 3 is
- FIG. 9 is a diagram illustrating the principle of signal processing in a communication system including a target individual.
- FIG. 10 is a system diagram of the signal processing shown in FIG.
- FIG. 11 is a diagram illustrating a configuration example of a communication system (including a target individual) applied to astronomical observation.
- FIG. 12 is a diagram illustrating a configuration example of a communication system (including target individuals) applied to real-time orbit determination of a deep space probe.
- FIG. 13 is a diagram showing a communication system (including target individuals) applied to astronomical observation on a hemisphere scale.
- FIG. 14 is a diagram for displaying a list of frequencies assigned to the deep space communication band-1.
- FIG. 15 is a diagram showing a list of frequencies assigned to deep space communication band-2.
- a feature of the communication system is that an individual generating a reference signal to be shared has a signal from an original observation target at the same individual position in addition to the reference signal. Receiving, reproducing, relaying, and processing through the mixed / high / low-pass filter for each distributed individual. In other words, it is in “How to compensate for phase related to spatial propagation of reference signal, observation signal reproduction, and relay signal”.
- the communication system includes an observation target, a broadcast individual (communication device), and a plurality of distributed individuals (communication devices) used for observation scattered as a group.
- the signal emitted wirelessly from the target transmission source Assume that ⁇ 0 is observation information.
- x2F1 is a relative position between the observation object F2 and the broadcast individual F1.
- x 1 is the relative position between each distributed individual and broadcast individual F1 (first relative position).
- the reference signal is a signal from the local oscillator (LOC) For each distributed individual. And received.
- LOC local oscillator
- the signal from the original observation target F2 is received by each distributed individual and multiplied by m. Is obtained.
- x 2 is the relative position of each distributed individual as an observation target F2 (second relative position). If a high / low-pass filter (signal processing unit) is used in each distributed individual, the phase returned to the broadcast individual F1 will eventually be It becomes.
- z is a position in the direction toward the broadcast individual F1 with respect to each distributed individual.
- Fig. 4 shows a system diagram of signal processing, which is the basis of this method.
- the signal sent from the broadcast individual F1 to each distributed individual receives the reference signal obtained by processing such as multiplication and the signal from the observation target F2 at the broadcast individual F1, and the reproduced signal is not changed. It is a signal to be relayed obtained by moving in the frequency domain such as multiplying.
- each distributed individual receives a signal from the original observation target F2. As shown in FIG. 4, each distributed individual returns a signal obtained through independent processing to the broadcast individual F1.
- the above-described configuration of this communication system is a form intended to obtain a strong signal by accumulating signals received by each distributed individual in the same phase by the broadcast individual F1.
- the distance and time in space are The signal transmitted from each distributed individual and received by the broadcast individual F1 is obtained by substituting the above into the previous equation, and there can be a condition that does not depend on the direction, It is.
- Independence from x1 (first relative position) indicates that it was able to synchronize with the broadcast individual F1
- independence from x2 (second relative position) means that the distance from the original observation target F2 to each distributed individual Indicates that there is no need to know. That is, this condition corresponds to collecting and condensing the signal from the original observation target F2 in the broadcast individual F1 in phase with all dispersed individuals.
- the broadcast individual F1 may be the original observation target direction, but the directions may be different.
- phase of the signal collected and collected by the broadcast individual F1 does not depend on the distance of each distributed individual from the broadcast individual F1 or the observation target F2. It is.
- the signal gathered in the broadcast individual F1 is independent of the distance (x 2 , x 1 ) between each distributed individual and the observation target F2 and the broadcast individual F1. Thus, they are collected and condensed (observation results) as a 5 times-multiplied wave (individual observation result signal).
- One selection method is to select the second greatest common divisor of absolute values of p and q as q ′.
- FIG. 5 shows a first configuration example of a communication system applied to observation.
- This first configuration example is an application example in remote sensing, which is expected to produce results in practical use.
- an individual 100 in a group of a plurality of distributed individuals 100, 101, 102 is a broadcast individual F1
- this individual 100 (broadcast individual F1) is a signal from other individuals (distributed individuals) 101, 102.
- this communication system there is another individual 103 that emits a reference signal, and the observation target F2 reflects the signal wave emitted from the individual 103 and emits a reflected wave.
- a reflected wave is transmitted from the observation target F2 in a state where random phase noise (observation signal) is carried, and is received by each individual 100, 101, 102 of the satellite group which is a distributed individual.
- the individual 103 that emits the reference signal may be the same as the broadcast individual 100 (F1).
- the above-described configuration example of the communication system can be used for remote sensing on the ground surface, and leads to an application in which a synthetic aperture radar is configured without a cable with a large number of satellites forming a group. Radar observation can be realized by multiple independent satellites that are independent in space.
- the observation by the communication system described above can be realized only by one-way communication. That is, it is an independent distributed method that does not require bidirectional relative position measurement. As a result, it becomes possible to freely set and disperse the group of distributed individuals, and the participating individuals and the number of individuals may be unknown, which opens the way for widespread use. In addition, the amount of communication is very small and constant, no matter how the number of distributed individuals increases, and drastically reduces facilities and equipment investment in the construction of observation and communication systems composed of large groups. Can do.
- the communication system provides a communication system as an interferometer wirelessly. That is, the broadcast individual F1 that transmits the reference signal receives the signal from the same observation target F2 etc. as the distributed individual in addition to transmitting the reference signal to the individual (distributed individual) group.
- the broadcast individual F1 that transmits the reference signal receives the signal from the same observation target F2 etc. as the distributed individual in addition to transmitting the reference signal to the individual (distributed individual) group.
- the reference signal when the reference signal is one wave, it cannot be excluded that the distance from the reference signal source, that is, the broadcast individual F1 to each distributed individual is unknown. That is, by means of one-wave radio, it is not possible to synchronize the time between each distributed individual and the broadcast individual F1 as a reference signal source.
- the reference signal when the reference signal has two or more waves, it is solved that the distance from the reference signal source, that is, the broadcast individual F1 to each distributed individual is unknown, and time synchronization itself is possible.
- the distance from the observation target F2 to each distributed individual is unknown, and it cannot be excluded that it is not managed.
- the only technology that can be achieved at this stage is the retrodirective type recursive return reply, which leaves the problem that the return frequency matches the observed frequency.
- the signal from the observation target etc. is received by the reference signal source, that is, the broadcast individual F1, and in addition to the transmission of the reference signal, the reference signal is transmitted and relayed.
- the reference signal source that is, the broadcast individual F1
- the reference signal is transmitted and relayed.
- Both the unknown distance from the source broadcast individual F1 to each distributed individual and the unknown distance to each distributed individual from the observation target F2 are resolved, and the direction of the default observation target F2
- the light can be collected and condensed, that is, steered at a predetermined folding frequency, and a communication system as an interferometer can be configured. A similar configuration is possible even when there are a plurality of broadcast reference signals.
- Application example-1 ⁇ Extended example of remote sensing observation>
- the radio wave source (individual 103) to be irradiated is only one specific individual.
- the observation target F2 is irradiated with a signal from a group of many (a plurality of) irradiation individuals 103 (1), 103 (2), and 103 (3) satellites.
- the This communication system assumes a plurality of GPS satellites or the like as radio wave sources (individuals 103 (1), 103 (2), 103 (3)).
- GNSS navigation satellite
- the present invention provides a means for securing the increase in area in real time even though it is a wireless medium.
- this method can be realized with one-way communication and broadcast means (broadcast individual F1), so it is possible to freely set and disperse individual satellites as distributed individuals, and there is no need for specific individual identification. This is advantageous compared to other communication systems.
- the distance and time in space along the route are There is a condition that the signal transmitted from each distributed individual and received at the same distance from the original observation target F2 as the broadcast individual F1 does not depend on x 1 and x 2. It becomes.
- the phase of the transmitted signal from each distributed individual on the same plane does not depend on the distance from each distributed individual F1 or F2 is there.
- the signal gathered in the broadcast individual F1 is independent of the distance of each distributed individual to the earth (observation target F2) and the broadcast individual F1. Then, it is transmitted in the direction of the earth (observation target F2) as 4.5 multiplied wave (individual observation result signal).
- the processing described above it is possible for a group of satellites flying in formation to form a single large antenna and primary mirror, and transmit to the Earth with increased intensity in phase without using a wired signal line.
- the transmitter and the antenna group arranged on the non-rigid film surface do not need to be coherent transponders individually, and data can be transmitted back to the earth with high gain.
- This corresponds to a communication application in which recursion is to be ensured, and corresponds to an example in which a large high-gain antenna is configured with a large number of independent child transponders in space.
- a system free from a distribution mechanism such as a cable can be provided when energy transmission is performed in a solar power generation satellite or the like.
- the present invention can be applied not only to communication but also to a case where individual flying satellites transmit power individually, and solar power generation satellites can eliminate the process of collecting individual generated power.
- Each distributed individual is not necessarily limited to an application in which free flight is performed.
- the physical position and distance are generally known, but the same phase in communication cannot be guaranteed, or it varies from moment to moment. If it is possible, it will be an effective application example.
- FIG. 7 shows that the distributed individuals 101, 102, 103, 104, and 105 that have received the signal of the marker station to be observed placed on the ground E by the above-described method are the reference signal and the individual 100 from the broadcast individual 100.
- the example of the communication system which receives the signal which relayed the signal from the received marker station, and sends it back in phase with the marker station is shown.
- Two uncertainties for the broadcast individual 100 at the positions of the distributed individuals 101, 102, 103, 104, and 105 and the uncertainty for the marker station are eliminated simultaneously.
- FIG. 8 shows an application in a spacecraft having a film surface structure in which it is difficult to construct one large primary mirror, for example.
- the group of distributed individuals 101, 102, 103, 104, and 105 on the membrane surface S uses the present method to determine the uncertainty of the position of the distributed individuals 101, 102, 103, 104, and 105 with respect to the broadcast individual 100 and the ground. This is an example in which two uncertainties with respect to the station E are eliminated at the same time and function as a single large mirror.
- a retrodirective-type reference signal is sent from the earth station to the spacecraft.
- down link ⁇ you can generate a phase-matched signal at the earth station. That is, a retrodirective antenna can be configured.
- Tables 1 and 2 shown in FIGS. 14 and 15 list related frequency assignments internationally assigned for deep space communication. It can be confirmed that this retrodirective downlink return is actually possible.
- Application example-2 In the above-described communication system example (application example-1), three types of individuals are included: the observation object F2, the broadcast individual F1, and a plurality of distributed individuals participating in the observation. Next, a case where a target individual is newly introduced and the communication system is configured by four types of individuals will be described.
- the target signal has large phase fluctuations and noise, and it is difficult to receive it with coherency maintained.
- the frequency of the original observation information is set to 2 ⁇ .
- the target individual F2 which is an artificial signal source, is placed in the direction of the observation target. Thereby, it is possible to avoid interference with signals from the original observation target.
- the target individual F2 At each distributed individual in the group, with its own local transmitter To obtain a down-converted signal.
- phase of the second term, the third term and the fourth term in parentheses is a signal that can be shared or broadcast within the group. After all, when viewed from each distributed individual, As if the signal was It can be assumed that
- the main purpose of providing a signal source for the target individual F2 is to supplement the phase stability of the signal of the observation target itself.
- the observation target is a distant galaxy, it is distributed in a broad spectrum, in other words, the phase is unstablely distributed.
- the broadcast individual F1 relays the signal from the observation target, the original signal with a very wide bandwidth and the clear center frequency cannot be displayed on the broadcast individual F1, and retransmitted. That is, it is not easy to perform the replayed relay. This causes the same difficulty even when phase processing is performed on signals from observation targets on distributed individuals.
- the target individual F2 or target satellite the signal from the observation target is shifted to a stable intermediate frequency range, and the signal from the observation target is converted into phase information distributed around a stable transmission spectrum. This corresponds to providing observation targets.
- the broadcast individual F1 can receive in synchronization with the phase of a clear center frequency, and can simultaneously relay the surrounding phase information.
- the phase operation on the distributed individuals can also be performed assuming that the observation signal is signal processing from this virtual observation target (target individual F2). Since the signal from the target individual F2 is reproduced and relayed by the broadcast individual F1, the distance information between the target individual F2 and the broadcast individual F1 can be reflected. It is important that the uncertainty of the distance between the individual F2 and each distributed individual can be removed, and it is not just a transition of the frequency range. This means that a virtual communication / observation plane perpendicular to the line connecting the target individual F2 and the broadcast individual F1 is constructed.
- the distance at which the target individual F2 is placed is the distance of this (length scale / angular resolution at which the communication and observation system is deployed) It must be above. Even in a group satellite system in orbit around the earth, the distance to the target individual F2 in some cases is well comparable to the Earth's attractive range.
- Target target F2 is not limited to artificial celestial bodies. It is not easy in terms of cost to arrange the artificial celestial body far enough. Applications where the background radio celestial body plays the role of the target individual F2 are promising, especially in communication and observation systems that use distributed individuals with long base lines, such as intercontinental and earth-hemisphere scales. It must be a radio celestial object at infinity.
- the observation target and the target individual F2 can be identified as one observation target. it can.
- the discussion in the communication system composed of the three types of individuals described above can be directly applied to the communication system to which the target individual F2 is added.
- FIG. 10 shows a system diagram of signal processing when the target individual F2 is introduced and implemented
- FIG. 11 shows a typical configuration example of a communication system composed of four types of individuals including the target individual F2. .
- the broadcast individual 100 (F1) and the distributed individuals 101 and 102 receive signals from the observation target and the target individual 110 and process them as if they were signals from one observation target.
- a plurality of satellites as a plurality of distributed individuals 101 and 102 perform astronomical observation.
- VLBI observation constructed on the ground for example, when observing 30 GHz (wavelength is 1 cm) in kilometers, the spatial resolution obtained is 10 ⁇ -5 radians. Therefore, in a group satellite observation system (communication system) of the same scale, when the target individual 110 is artificially provided, if the individual individual 110 is placed at a distance of 10 ⁇ 5 km or more, the spatial resolution is maintained and You can build an interferometer that works in time. Of course, it is further advantageous in terms of resolution that the target individual 110 is an infinite radio wave object. By using the target individual 110 as an artificial satellite or the like, it will be possible to expand the degree of freedom in selecting the direction of the observation target. In the 300 GHz band (wavelength 1 mm), a real-time interferometer can be constructed by placing the target at 10 ⁇ 6 km10, that is, near the Lagrange point of the solar-earth system.
- FIG. 12 shows a configuration example of a communication system (including a target individual) applied to real-time orbit determination of a deep space probe.
- the ground station F2 across continents receives signals from deep space probes from the earth's hemisphere.
- atomic clocks placed on the ground stations and time signals supplied from navigation satellites are used, and the geographical position of each ground station is also used.
- radio sources with a stable background and radio celestial bodies have been used.
- time synchronization means and reference signal generation means signals from these stationary or high altitude satellites can be used. It is an effective method to use a satellite that stays at a high altitude with a very long visible time, such as a geostationary satellite that can be simultaneously visible from the ground station F2 on the hemisphere.
- the above-mentioned stationary or high altitude is obtained using astronomical radio waves such as a stable radio source of the background that is the target individual F2.
- Uncertainty can be removed by broadcasting the signal received by the satellite together with the reference signal to the ground stations as the distributed individuals 101 and 102.
- the uncertainty of the position of the deep space probe in addition to the uncertainty of the position of each ground station is also based on the signal received by each ground station as the distributed individuals 101 and 102. Retransmitted and aggregated in phase with the above-mentioned geostationary or high altitude satellite (broadcast individual 100).
- the distance, declination and red longitude values of the target deep space probe in advance orbital elements or geocentric systems are calculated.
- the phase of the signal to be broadcast is artificially manipulated, and the combined signal obtained from each ground station by the above-mentioned geostationary or high altitude satellites has the maximum intensity, orbital element or geocentric system
- the trajectory is determined by calculating the distance, declination, and red longitude
- the mirror surface areas of a plurality of ground stations are combined, so an improvement in reception performance itself is also expected.
- FIG. 13 shows a communication system (including a target individual) applied to hemispherical astronomical observation as an example of physical observation.
- space VLBI observation is performed, which consists of a group of ground stations including spacecraft.
- the method is similar to the method in the deep space probe orbit determination in FIG.
- Target individual F2 should be a radio celestial object at infinity.
- the obtained observation signals are retransmitted from the terrestrial radio telescope and the space telescope, which are the dispersed individuals 101 and 102, and can be collected and collected in the same phase by a stationary or high altitude satellite (a window individual 100).
- the effect of the communication system described above can be directly exhibited when a spacecraft such as an artificial satellite or a spacecraft is used as a group. What can be achieved with this communication system, regardless of the individual positions of the group satellites, ⁇ Be able to carry out observations of observation objects with a large number of individuals, ⁇ Up to now, it is possible to improve the light gathering power, which has been limited by a single mirror or plate-shaped light receiving and receiving means, by integrating with many dispersed individual satellites.
- the high-efficiency, narrow-field transmission means provided by the antennas can be realized with a large number of individuals that are not necessarily position-controlled, It is.
- the group of dispersed individuals may be distributed over a wide area, and any individual spacecraft can participate, such as a spacecraft that exists on a global scale, that is, on the hemisphere on the ground surface, or in the vicinity of the same hemisphere. is there.
- geostationary satellites can be assumed as useful broadcast individuals F2 or aggregate individuals.
- a geostationary satellite or a satellite with a high altitude at a far point that can cover the hemisphere for a long time can be assumed.
- each signal transmitted and received may generally be an electromagnetic wave including light or may be a sound wave.
- the present invention changes the fixed concept of centralized control and proposes that a large number of distributed individuals perform independent distributed processing for a certain common purpose. It can be applied in a wide range of applications, from scientific astronomical observation to engineering technology such as ultra-long-distance communications, and further to remote sensing observation as industrial technology. Applications can be expected in a wide range of industries. If the synchronism of a large number of radars is established in accordance with the present invention, there will be no influence on the industry, such as fine weather information that could not be obtained with a conventional single mirror.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radio Relay Systems (AREA)
Abstract
The present invention comprises a plurality of dispersed entities 101, 102 for wirelessly receiving an observation signal from an object F2 of observation and a broadcast entity 100 (F1) for wirelessly broadcasting, to the plurality of dispersed entities, a prescribed reference signal and a signal based on the observation signal from the object F2 of observation. Each of the dispersed entities 101, 102 has a signal processing unit for generating, from the signal based on the observation signal and the reference signal from the broadcast entity 100 (F1) and the observation signal received from the object F2 of observation, a signal that should be received by the broadcast entity 100 as an individual observation result signal not dependent on a first relative position between the dispersed entity and the broadcast entity 100 or a second relative position between the dispersed entity and the object F2 of observation. The signals generated by the signal processing units are wirelessly transmitted to the broadcast entity.
Description
本発明は、観測対象からの観測信号を無線により受信する複数の分散個体のそれぞれにおいて生成される信号に基づいて観測結果を生成し、集積せしめる通信システム及び信号処理方法に関する。
The present invention relates to a communication system and a signal processing method that generate and accumulate observation results based on signals generated in each of a plurality of distributed individuals that receive an observation signal from an observation target by radio.
一般に、観測対象からの放射される信号、送信される信号を受信して集積するには、波長オーダーで、対象から集光される、言い換えれば集積される点までの光路の長さが厳密に管理されていなくてはならない。集積される点は、焦点とも呼ばれる。これは、通信システムあるいは光の波長まで拡張していうならば、広い意味で干渉計を構成する要件であり、同位相で1点に集積、集光される場合は、望遠鏡を構成することに相当する。したがって、現代にいたるまで、基本的に受信、受光面は剛な構造であり、一体型の剛体が、望遠鏡を構成してきた。
In general, in order to receive and integrate radiated signals and transmitted signals from the observation target, the length of the optical path to the point where the light is collected from the target, in other words, collected, is strictly in the wavelength order. Must be managed. The points that are accumulated are also called focal points. This is a requirement to construct an interferometer in a broad sense if it is extended to the communication system or the wavelength of light, and if it is integrated and collected at one point in the same phase, it corresponds to constructing a telescope To do. Therefore, until now, the receiving and receiving surfaces have basically a rigid structure, and an integrated rigid body constitutes a telescope.
近年、集積、集光に限定せず、得られた信号の位相を積極的に補正し合成して観測出力を得る、干渉計が、特に電波領域では主流になりつつある。一方で、複数の受信点からの信号の位相操作を行って、再帰的に1点へ同位相で送信させ受信させる、レトロディレクティブ方式の応用が進展してきている。とくに、宇宙機、人工衛星など、多数、多点の移動する分散個体で構成する、レトロディレクティブ方式の送受電への関心が高い。基本的に、レトロディレクティブ方式は、いわゆる干渉計技術の1つである。特別な応用としては、再帰的に同位相で再送信を行う分散個体上の処理を指す。
In recent years, interferometers that are not limited to integration and condensing but actively correct the phase of the obtained signals and synthesize them to obtain observation outputs are becoming mainstream, particularly in the radio wave region. On the other hand, the application of a retrodirective method has been progressing, in which the phase of signals from a plurality of reception points is manipulated to recursively transmit and receive signals at one point in the same phase. In particular, there is a high interest in retrodirective power transmission and reception, which is composed of a large number of multipoint moving distributed individuals such as spacecrafts and satellites. Basically, the retrodirective method is one of so-called interferometer technologies. A special application refers to processing on distributed individuals that recursively retransmits in the same phase.
図1に、再帰的な指向トランスポンダによる信号生成の方法を記述した。
Fig. 1 describes the signal generation method using a recursive directional transponder.
図1において、送信源(Transmitter)からの原信号をcosωtとする。トランスポンダ(Transponder)での受信信号は、
である。ここで、受信する個体は、これを基に
の送信を行うものとする。ここに、z は、任意の方向へのトランスポンダからの距離を示す。すなわち、z=0 は、トランスポンダ自身の位置を示す。 In FIG. 1, the original signal from the transmission source (Transmitter) is cosωt. The received signal at the transponder is
It is. Here, the receiving individual is based on this
Shall be transmitted. Here, z indicates the distance from the transponder in an arbitrary direction. That is, z = 0 indicates the position of the transponder itself.
である。ここで、受信する個体は、これを基に
の送信を行うものとする。ここに、z は、任意の方向へのトランスポンダからの距離を示す。すなわち、z=0 は、トランスポンダ自身の位置を示す。 In FIG. 1, the original signal from the transmission source (Transmitter) is cosωt. The received signal at the transponder is
It is. Here, the receiving individual is based on this
Shall be transmitted. Here, z indicates the distance from the transponder in an arbitrary direction. That is, z = 0 indicates the position of the transponder itself.
この送信に際して、受信信号と送信信号の位相を以下のように同期させる。
During this transmission, the phases of the received signal and the transmitted signal are synchronized as follows.
特別な場合、送信源(Transmitter)へ戻る方向へは、元の送信源位置での位相と時刻は
であるから、
となり、元の送信信号と同位相になる。これが、再帰指向(レトロディレクティブ)トランスポンダの原理である。
In a special case, the phase and time at the original transmission source position is the direction to return to the transmission source (Transmitter).
Because
And the same phase as the original transmission signal. This is the principle of a recursive-oriented (retrodirective) transponder.
一般に、トランスポンダの受信信号y
に対して、以下の y’ が同じ位相で戻る送信信号(共役信号)を与える。
In general, transponder received signal y
In contrast, a transmission signal (conjugate signal) in which y ′ below returns with the same phase is given.
この方式では、仮に送信する周波数が逓倍されても、戻された信号の位相が元の信号を逓倍した信号に同期することが約束される。たとえば
である。
In this method, even if the frequency to be transmitted is multiplied, it is promised that the phase of the returned signal is synchronized with the signal multiplied by the original signal. For example
It is.
ある場所が、送信点から距離 x にあるとき、そこでの受信信号
に、局所発信機出力
を乗じて混合し、Low Pass filter (LPF) を通過させると
を得る。 When a location is at a distance x from the transmission point, the received signal there
Local transmitter output
And mix and pass through the Low Pass filter (LPF)
Get.
に、局所発信機出力
を得る。 When a location is at a distance x from the transmission point, the received signal there
Local transmitter output
Get.
θ0は、局所発信機の初期位相である。これは「後進波」を示しており、-z=xで変数を置き換えると
を得る。 θ 0 is the initial phase of the local transmitter. This indicates “backward wave”, and if you replace the variable with -z = x,
Get.
を得る。 θ 0 is the initial phase of the local transmitter. This indicates “backward wave”, and if you replace the variable with -z = x,
Get.
元の送信点までの距離は x であり、その信号の到達時刻は、下記
となることから、元の信号に一定の位相差を持って同期することがわかる。この方法は、電子回路のみで構成され、ハードウェアレトロディレクティブ方式と呼ばれる。
The distance to the original transmission point is x, and the arrival time of the signal is
Thus, it can be seen that the original signal is synchronized with a certain phase difference. This method is composed only of electronic circuits and is called a hardware retrodirective method.
仮にすべての分散配置される送信機に、θ0が共通であれば、元に戻る全ての分布送信機の位相を共通にでき、集約できる。しかし、各送信機の初期位相θ0は、ばらばらである。基準信号源で1つのθ0を生成し、電波によってそれを送達させても、同信号源から各分散個体までの距離はまちまちであるので、全ての分散配置された送信機でθ0を共通化することはできない。よって、同基準信号は、もはや基準になりえず、この方式では、問題は解決しない。
If θ 0 is common to all the distributedly arranged transmitters, the phases of all the distributed transmitters returning to the original can be made common and aggregated. However, the initial phase θ 0 of each transmitter is disjoint. Even if a single θ 0 is generated by the reference signal source and delivered by radio waves, the distance from the signal source to each dispersed individual varies, so θ 0 is shared by all distributed transmitters. It cannot be made. Therefore, the reference signal can no longer be a reference, and this method does not solve the problem.
局所発信器(局発)の時刻の同期自身は、基準信号源から、多波で送信することで、時刻同期が実現できる。この段階で、レトロディレクティブ方式だけについては、局発同期の問題はない。しかし、依然として、そのレトロディレクティブ方式は、返送波が受信波と同一周波数を余儀なくされ実用的でない。また干渉計として機能するためには、任意の方向へ、指定の受信周波数と異なる周波数で同相の信号を返すことが必要であり、課題を解決できていない。
The time synchronization itself of the local transmitter (local oscillator) can be synchronized by transmitting it from the reference signal source with multiple waves. At this stage, there is no problem of local synchronization for the retrodirective method alone. However, the retrodirective method is still impractical because the return wave is forced to have the same frequency as the received wave. Also, in order to function as an interferometer, it is necessary to return a signal having the same phase at a frequency different from a specified reception frequency in an arbitrary direction, and the problem cannot be solved.
特許文献1に記載の典型的な従来技術の例が、図2に示される。図2において、各ノードには、Phase Reference Signal (基準信号)が供給される、としているが、その供給方法として、明細書が記述している方法は:
”To ensure an identical reference phase at each node, phase-matched transmission lines(i.e., transmission lines having matched propagation delays L/v, where L is the linelength and v is the propagation velocity) transport the reference signal from the sourceto each array node.”(和訳:各ノードで同一の基準の位相(であること)を確実にするためには、位相が整合した送信線路(すなわち、送電線路が整合した伝送遅れ;線路の長さ(L)/伝送速度(v)をもつこと)が、基準信号を、信号源から各配列のノードに伝送する。)であり、供給に伴う位相ずれがあらかじめ既知である有線のケーブルを使用することが前提である。したがって、自由に飛行する宇宙機においては、実現が困難で、大きな制約となる。よって、この特許文献1の技術は、後述する本発明のような「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。 An example of a typical prior art described inPatent Document 1 is shown in FIG. In FIG. 2, each node is supplied with a phase reference signal (reference signal), but the method described in the specification is as the supply method:
`` To ensure an identical reference phase at each node, phase-matched transmission lines (ie, transmission lines having matched propagation delays L / v, where L is the linelength and v is the propagation velocity) transport the reference signal from the source to each array node. ”To ensure the same reference phase at each node, the phase matched transmission line (ie transmission line matched transmission delay; line length (L ) / Having a transmission speed (v)) is to transmit the reference signal from the signal source to the nodes of each array.), And a wired cable whose phase shift associated with the supply is known in advance may be used. It is a premise. Therefore, it is difficult to realize a freely flying spacecraft, which is a great restriction. Therefore, the technique ofPatent Document 1 does not deal with a “compensation method for a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” as in the present invention described later.
”To ensure an identical reference phase at each node, phase-matched transmission lines(i.e., transmission lines having matched propagation delays L/v, where L is the linelength and v is the propagation velocity) transport the reference signal from the sourceto each array node.”(和訳:各ノードで同一の基準の位相(であること)を確実にするためには、位相が整合した送信線路(すなわち、送電線路が整合した伝送遅れ;線路の長さ(L)/伝送速度(v)をもつこと)が、基準信号を、信号源から各配列のノードに伝送する。)であり、供給に伴う位相ずれがあらかじめ既知である有線のケーブルを使用することが前提である。したがって、自由に飛行する宇宙機においては、実現が困難で、大きな制約となる。よって、この特許文献1の技術は、後述する本発明のような「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。 An example of a typical prior art described in
`` To ensure an identical reference phase at each node, phase-matched transmission lines (ie, transmission lines having matched propagation delays L / v, where L is the linelength and v is the propagation velocity) transport the reference signal from the source to each array node. ”To ensure the same reference phase at each node, the phase matched transmission line (ie transmission line matched transmission delay; line length (L ) / Having a transmission speed (v)) is to transmit the reference signal from the signal source to the nodes of each array.), And a wired cable whose phase shift associated with the supply is known in advance may be used. It is a premise. Therefore, it is difficult to realize a freely flying spacecraft, which is a great restriction. Therefore, the technique of
特許文献2に記載された技術は、共役な位相発生を扱ったものではなく、ワイヤレスでの充電方法に関わるもので、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 2 does not deal with conjugate phase generation but relates to a wireless charging method. As in the present invention to be described later, “reference signal and reproduction / relay signal of observation signal” It does not deal with the "phase compensation method related to spatial propagation of".
特許文献3に記載された技術は、パイロット信号としてのbeacon が1 本だけであり、基準信号発生装置との空間距離に起因する位相ずれを補償することができておらず、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 3 has only one beacona as a pilot signal, and cannot compensate for a phase shift caused by a spatial distance from the reference signal generator. Thus, it does not deal with the “phase compensation method related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
特許文献4に記載された技術は、パイロット信号としてのpilot generatorが1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 4 has only one pilot generator as a pilot signal. As in the present invention to be described later, “compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal” It does not deal with "law".
特許文献5に記載された技術は、パイロット信号としてのCommunication Source が1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 5 has only one Communication Source as a pilot signal. As in the present invention described later, “compensation of a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” It does not deal with "law".
特許文献6に記載された技術は、パイロット信号としてのConjugator への入力が1つだけあり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 6 has only one input to the Conjugator IV as a pilot signal. As in the present invention described later, “the reference signal and the phase related to the spatial propagation of the regenerated / relayed signal of the observation signal” It does not deal with "compensation law".
特許文献7に記載された技術は、共役な位相発生を扱ったものではなく、ワイヤレスでの充電方法に関わるもので、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 7 does not deal with conjugate phase generation but relates to a wireless charging method. As in the present invention to be described later, a reference signal and a reproduction / relay signal of an observation signal are used. It does not deal with the "phase compensation method related to spatial propagation of".
特許文献8に記載された技術は、パイロット信号としてのbeacon が1 本だけであり、基準信号発生装置との空間距離に起因する位相ずれを補償することができておらず、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 8 has only one beacona as a pilot signal, and cannot compensate for a phase shift caused by a spatial distance from the reference signal generator. Thus, it does not deal with the “phase compensation method related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
特許文献9に記載された技術は、パイロット信号としてのpilot generatorが1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 9 has only one pilot generator as a pilot signal. As in the present invention to be described later, “the compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal” It does not deal with "law".
特許文献10に記載された技術は、パイロット信号としてのCommunication Source が1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 10 has only one Communication Source as a pilot signal. As in the present invention to be described later, “compensation of the phase related to the spatial propagation of the reference signal and the reproduction / relay signal of the observation signal” It does not deal with "law".
特許文献11に記載された技術は、パイロット信号としてのConjugator への入力が1つだけあり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 11 has only one input to the Conjugator IV as a pilot signal. As in the present invention to be described later, “the reference signal and the phase related to the spatial propagation of the observation signal reproduction / relay signal” It does not deal with "compensation law".
特許文献12に記載されたシステムは、各個体が、光位相同期機構を備える構成である。このシステムによれば、再帰指向の課題は解決されるものの、非常に素子数が多い多素子アンテアが必要であり、個々の個体が高価となり現実的でない。
The system described in Patent Document 12 has a configuration in which each individual includes an optical phase synchronization mechanism. According to this system, although the problem of recursion orientation is solved, a multi-element antenna having a very large number of elements is required, and each individual is expensive, which is not practical.
特許文献13に記載された技術は、pilot 信号にスペクトル拡散をさせて、同期を正確にとらせる工夫を扱ったもので、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 13 deals with a device that spreads the pilot signal to spread spectrum and accurately synchronizes the signal. As in the present invention described later, “reproduction / relay of reference signal and observation signal” It does not deal with the “phase compensation method related to signal spatial propagation”.
特許文献14に記載された技術は、パイロット信号を分配器で各送電ユニットに互いに分配し、位相差検出ケーブルを介する方式を扱っているが、pilot 信号は1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technology described in Patent Document 14 deals with a system in which pilot signals are distributed to each power transmission unit by a distributor and are passed through a phase difference detection cable, but there is only one pilot signal, and the present invention described later This does not deal with the “phase compensation method related to spatial propagation of the reference signal and the reproduction / relay signal of the observation signal”.
特許文献15に記載された技術は、pilot 信号が1つだけであり、後述する本発明のように「基準信号と、観測信号の再生・中継信号の空間伝搬に関わる位相の補償法」を扱ったものではない。
The technique described in Patent Document 15 has only one pilot signal, and deals with a “compensation method for a phase related to spatial propagation of a reference signal and a reproduction / relay signal of an observation signal” as in the present invention described later. Not a thing.
本発明を特徴づけるキーワードは、「無線方式」、「実時間での処理」、「双方向通信の排除」、及び「干渉計としての通信システムの実現」である。これらの同時解決が、従来技術での課題である。
「無線方式」であることは、自由飛行体、移動体での利用の困難さを大幅に緩和する。従来技術では、有線方式がもっぱらであった。
「実時間での処理」であることによれば、オフラインの相関処理、設備や作業を排除することができる。従来方式では、相関処理などオフライン処理を要求する場合がほとんどであった。
「双方向通信の排除」は、同報個体からの片方向送信によって実現される。従来方式では、双方向通信の採用を前提とした場合が多い。
「干渉計としての通信システムの実現」により、任意の方向へ、既定の受信周波数とは異なる周波数で同相の信号を返すことを可能する。つまり操舵可能であることを実現させている。従来方式では、これは不可能であった。レトロディレクティブ型であることは、最も簡単な干渉計としての通信システムの実現の一例にすぎない。元の信号源へ、受信したのと同じ周波数で返信ができる段階にとどまる。本発明は、かならずしも再帰的ではなく、任意の指定方向へ信号を既定の受信周波数とは異なる周波数で同相の信号を返すことを可能にしている。 The keywords characterizing the present invention are “wireless system”, “real-time processing”, “exclusion of two-way communication”, and “realization of a communication system as an interferometer”. These simultaneous solutions are problems in the prior art.
Being “wireless” greatly reduces the difficulty of use in free-flying vehicles and moving vehicles. In the prior art, the wired system was exclusively used.
According to “real-time processing”, offline correlation processing, equipment and work can be eliminated. In conventional methods, offline processing such as correlation processing is often requested.
“Exclusion of bidirectional communication” is realized by one-way transmission from a broadcast individual. Conventional methods are often premised on the use of bidirectional communication.
By “implementing a communication system as an interferometer”, it is possible to return an in-phase signal at a frequency different from a predetermined reception frequency in an arbitrary direction. That is, it is possible to steer. This was not possible with the conventional method. The retrodirective type is only an example of realizing a communication system as the simplest interferometer. It stays at a stage where it can reply to the original signal source at the same frequency as it was received. The present invention is not necessarily recursive, and makes it possible to return a signal in the same phase at a frequency different from a predetermined reception frequency in an arbitrary designated direction.
「無線方式」であることは、自由飛行体、移動体での利用の困難さを大幅に緩和する。従来技術では、有線方式がもっぱらであった。
「実時間での処理」であることによれば、オフラインの相関処理、設備や作業を排除することができる。従来方式では、相関処理などオフライン処理を要求する場合がほとんどであった。
「双方向通信の排除」は、同報個体からの片方向送信によって実現される。従来方式では、双方向通信の採用を前提とした場合が多い。
「干渉計としての通信システムの実現」により、任意の方向へ、既定の受信周波数とは異なる周波数で同相の信号を返すことを可能する。つまり操舵可能であることを実現させている。従来方式では、これは不可能であった。レトロディレクティブ型であることは、最も簡単な干渉計としての通信システムの実現の一例にすぎない。元の信号源へ、受信したのと同じ周波数で返信ができる段階にとどまる。本発明は、かならずしも再帰的ではなく、任意の指定方向へ信号を既定の受信周波数とは異なる周波数で同相の信号を返すことを可能にしている。 The keywords characterizing the present invention are “wireless system”, “real-time processing”, “exclusion of two-way communication”, and “realization of a communication system as an interferometer”. These simultaneous solutions are problems in the prior art.
Being “wireless” greatly reduces the difficulty of use in free-flying vehicles and moving vehicles. In the prior art, the wired system was exclusively used.
According to “real-time processing”, offline correlation processing, equipment and work can be eliminated. In conventional methods, offline processing such as correlation processing is often requested.
“Exclusion of bidirectional communication” is realized by one-way transmission from a broadcast individual. Conventional methods are often premised on the use of bidirectional communication.
By “implementing a communication system as an interferometer”, it is possible to return an in-phase signal at a frequency different from a predetermined reception frequency in an arbitrary direction. That is, it is possible to steer. This was not possible with the conventional method. The retrodirective type is only an example of realizing a communication system as the simplest interferometer. It stays at a stage where it can reply to the original signal source at the same frequency as it was received. The present invention is not necessarily recursive, and makes it possible to return a signal in the same phase at a frequency different from a predetermined reception frequency in an arbitrary designated direction.
干渉計としての通信システムにおける複数の個体(通信機)それぞれからの信号についての位相処理は、現状では、相関処理というオフランの統計的な手法にとどまる。工学的には、多くの干渉計技術の中で、再帰的な折り返しの集積、集光に関わる方法については、レトロディレクティブ方式にて、実時間で、観測対象からの距離の不確定性を除去する方式が採られつつある。
The phase processing of signals from each of a plurality of individuals (communication devices) in a communication system as an interferometer is currently an off-run statistical method called correlation processing. Engineeringly, among many interferometer technologies, the methods related to recursive folding accumulation and collection are retrodirective, and the uncertainty of distance from the observation target is removed in real time. The method to do is being taken.
しかし、現状のレトロディレクティブ方式には、数多くの課題が残されており、またそれらは、宇宙天文分野、地表観測分野においても共通である。
However, many problems remain in the current retrodirective method, and they are common in the space astronomy field and the surface observation field.
代表的には、
1.各分散個体での信号処理は、同個体上の局所信号源の初期位相で支配される、つまり集積、集光を受ける個体間での時刻管理が難しい。
2.時刻の同期そのものは、基準信号源から分配される信号が異なった複数の周波数で送達されれば、各分散個体上で同期が実現されうる。しかし、たとえば代表的な干渉計処理である、現状のレトロディレクティブ方式をとっても、観測対象に対する時刻の同期、言い換えれば観測対象からの距離の不確定性の除去は不可能である。唯一、応答送信周波数が対象からの周波数に一致した折り返し処理の場合のみ、各個体の対象に対する距離情報を相殺し除去できるのみである。 Typically,
1. The signal processing in each distributed individual is governed by the initial phase of the local signal source on the same individual, that is, it is difficult to manage the time between the individuals receiving accumulation and light collection.
2. The time synchronization itself can be realized on each distributed individual if signals distributed from the reference signal source are delivered at a plurality of different frequencies. However, even with the current retrodirective method, which is a typical interferometer process, for example, it is impossible to synchronize the time with respect to the observation target, in other words, to remove the uncertainty of the distance from the observation target. Only in the case of the loopback process in which the response transmission frequency matches the frequency from the target, it is only possible to cancel and eliminate the distance information for each individual target.
1.各分散個体での信号処理は、同個体上の局所信号源の初期位相で支配される、つまり集積、集光を受ける個体間での時刻管理が難しい。
2.時刻の同期そのものは、基準信号源から分配される信号が異なった複数の周波数で送達されれば、各分散個体上で同期が実現されうる。しかし、たとえば代表的な干渉計処理である、現状のレトロディレクティブ方式をとっても、観測対象に対する時刻の同期、言い換えれば観測対象からの距離の不確定性の除去は不可能である。唯一、応答送信周波数が対象からの周波数に一致した折り返し処理の場合のみ、各個体の対象に対する距離情報を相殺し除去できるのみである。 Typically,
1. The signal processing in each distributed individual is governed by the initial phase of the local signal source on the same individual, that is, it is difficult to manage the time between the individuals receiving accumulation and light collection.
2. The time synchronization itself can be realized on each distributed individual if signals distributed from the reference signal source are delivered at a plurality of different frequencies. However, even with the current retrodirective method, which is a typical interferometer process, for example, it is impossible to synchronize the time with respect to the observation target, in other words, to remove the uncertainty of the distance from the observation target. Only in the case of the loopback process in which the response transmission frequency matches the frequency from the target, it is only possible to cancel and eliminate the distance information for each individual target.
解決すべき点は、観測対象からの距離に関わらず応答で返送される信号の位相が同期性を保ち、基準信号源からの距離によらずに、実時間で集積、集光点で各分散個体からの応答、すなわち返送信号が位相の同期性を保つことである。その結果、有線方式、すなわちケーブルを要するという物理的な拘束を解放して無線媒体でシステムが構成でき、相関処理に代わって実時間で、集積、集光機能を発揮することができ、双方向通信を排除し各分散個体が観測対象や基準信号源からの受信情報だけに依存した処理で、集積、集光システムが構成でき(独立分散方式)、単純な再帰性の折り返しにとどまらず、応答される返送信号が、任意の場所を予め特定して同相となる集積、集光を可能とする分散個体の群を構築することができる。
The point to be solved is that the phase of the signal returned by the response remains synchronized regardless of the distance from the observation target, and is accumulated in real time regardless of the distance from the reference signal source. The response from the individual, that is, the return signal is to maintain phase synchronization. As a result, the system can be configured with a wireless medium by releasing the physical restriction of requiring a cable system, that is, a cable, and the integration and condensing functions can be demonstrated in real time instead of correlation processing. Processing that depends on the information received from the observation target and reference signal source, and each distributed individual can be integrated and a condensing system can be configured (independent dispersion method), not just a simple recursive loopback, but a response It is possible to construct a group of dispersed individuals that can collect and collect light in which the return signals are specified in advance and are in the same phase.
すなわち、本発明は、ケーブルを排し、電波を介した無線方式の干渉計としての通信システムを構成するものであって、統計的な処理ではなく実時間で機能し、各分散個体が受信情報だけに依存して処理を行う独立分散処理方式を採りつつ、必ずしも再帰的ではない返送信号を発信するものであって、必ずしも空間に固定されていない集積個体へ、同相でかつ集積、集光される信号処理を行わせる通信システムを構成するものである。
That is, the present invention constitutes a communication system as a wireless interferometer that eliminates cables and uses radio waves, functions in real time rather than statistically, and each distributed individual receives received information. Independent distributed processing that performs processing depending only on the signal, and sends a return signal that is not necessarily recursive, and is always collected and collected in-phase to an integrated individual that is not necessarily fixed in space. A communication system that performs signal processing.
本発明に係る通信システムは、観測対象からの観測信号を無線により受信する複数の分散個体を有し、前記複数の分散個体のそれぞれにおいて生成される信号に基づいて観測結果信号を生成する通信システムであって、前記観測対象からの観測信号を受信して該観測信号に基づいた信号を生成し、前記観測信号に基づいた信号を所定の基準信号とともに前記複数の分散個体に無線にて同報送信する同報個体を有し、前記複数の分散個体のそれぞれは、前記同報個体からの前記観測信号に基づいた信号及び前記基準信号、並びに前記観測対象から受信した前記観測信号から、当該分散個体と前記同報個体との第1相対位置及び当該分散個体と前記観測対象との第2相対位置に依存しない個別観測結果信号として前記同報個体にて受信されるべき信号を生成する信号処理部を備え、該信号処理部にて生成される信号を無線にて前記同報個体に送信し、前記同報個体は、前記複数の分散個体のそれぞれから前記個別観測信号として受信される前記信号に基づいて観測結果信号を生成する、構成となる。
A communication system according to the present invention has a plurality of distributed individuals that wirelessly receive an observation signal from an observation target, and generates an observation result signal based on signals generated in each of the plurality of distributed individuals Receiving an observation signal from the observation target, generating a signal based on the observation signal, and broadcasting the signal based on the observation signal together with a predetermined reference signal to the plurality of distributed individuals by radio Each of the plurality of distributed individuals includes a signal based on the observation signal from the broadcast individual, the reference signal, and the observation signal received from the observation target. An individual observation result signal that does not depend on the first relative position between the individual and the broadcast individual and the second relative position between the distributed individual and the observation target should be received by the broadcast individual. A signal processing unit for generating a signal, and wirelessly transmitting the signal generated by the signal processing unit to the broadcast individual, wherein the broadcast individual receives the individual observation signal from each of the plurality of distributed individuals. As a result, an observation result signal is generated based on the received signal.
本発明の実施の一形態に係る通信システムの特徴は、共通とすべき基準信号を発生させている個体が、同基準信号に加えて、同個体位置でおおもとの観測対象からの信号を受信して再生、中継し、各分散個体で混合・高低域フィルタを介した処理をさせることにある。すなわち、 「基準信号と、観測信号の再生、中継信号の空間伝播に関わる位相の補償法」にある。本通信システムは、観測対象、同報個体(通信機)、及び群として散らばる観測に用いられる複数の分散個体(通信機)を含む。
A feature of the communication system according to an embodiment of the present invention is that an individual generating a reference signal to be shared has a signal from an original observation target at the same individual position in addition to the reference signal. Receiving, reproducing, relaying, and processing through the mixed / high / low-pass filter for each distributed individual. In other words, it is in “How to compensate for phase related to spatial propagation of reference signal, observation signal reproduction, and relay signal”. The communication system includes an observation target, a broadcast individual (communication device), and a plurality of distributed individuals (communication devices) used for observation scattered as a group.
図3を用いて、本発明の実施の一形態に係る通信システムにおける信号処理の原理を説明する。
The principle of signal processing in the communication system according to the embodiment of the present invention will be described with reference to FIG.
ここで、対象たる送信源(観測対象)から無線放射される信号を
と仮定する。φ0は、観測情報である。
Here, the signal emitted wirelessly from the target transmission source (observation target)
Assume that φ 0 is observation information.
基準信号を同報送信する同報個体 F1 では、前記信号源からの信号は
である。x2F1は、観測対象F2と同報個体F1との相対位置である。
For a broadcast individual F1 that broadcasts a reference signal, the signal from the signal source is
It is. x2F1 is a relative position between the observation object F2 and the broadcast individual F1.
が各分散個体に転送されて受信される信号になる。逓倍には、位相同期は必要なく、受信信号を product 乗算すればよい。x1は、各分散個体と同報個体F1との相対位置(第1相対位置)である。
Becomes a signal that is transferred to each distributed individual and received. Multiplication does not require phase synchronization, and the received signal may be multiplied by product. x 1 is the relative position between each distributed individual and broadcast individual F1 (first relative position).
基準信号は、局所発振器(LOC)からの信号
を、q 逓倍することにより生成され、各分散個体では
と受信される。 The reference signal is a signal from the local oscillator (LOC)
For each distributed individual.
And received.
と受信される。 The reference signal is a signal from the local oscillator (LOC)
And received.
また、おおもとの観測対象 F2 からの信号は、同様に各分散個体で受信され m 逓倍されて
が得られる。x2は、各分散個体と観測対象F2との相対位置(第2相対位置)である。各分散個体において、高・低域フィルタ(信号処理部)を用いると、結局、同報個体F1 へ返される位相は
となる。zは、各分散個体を基準とした同報個体F1に向かう方向の位置である。
Similarly, the signal from the original observation target F2 is received by each distributed individual and multiplied by m.
Is obtained. x 2 is the relative position of each distributed individual as an observation target F2 (second relative position). If a high / low-pass filter (signal processing unit) is used in each distributed individual, the phase returned to the broadcast individual F1 will eventually be
It becomes. z is a position in the direction toward the broadcast individual F1 with respect to each distributed individual.
が得られる。x2は、各分散個体と観測対象F2との相対位置(第2相対位置)である。各分散個体において、高・低域フィルタ(信号処理部)を用いると、結局、同報個体F1 へ返される位相は
Is obtained. x 2 is the relative position of each distributed individual as an observation target F2 (second relative position). If a high / low-pass filter (signal processing unit) is used in each distributed individual, the phase returned to the broadcast individual F1 will eventually be
図4には、この方式の基本となる信号処理の系統図を掲げた。同報個体F1から各分散個体に送られる信号は、逓倍などの処理をして得られる基準信号と、観測対象F2からの信号を同報個体F1にて受信し、再生した信号を、そのままないし逓倍するなど周波数領域上で移動して得た中継されるべき信号である。各分散個体は、これらに加えて、本来の観測対象F2からの信号を受信する。各分散個体は、図4に示すように、個々に独立の処理にて得た信号を同報個体F1へ返信する。
Fig. 4 shows a system diagram of signal processing, which is the basis of this method. The signal sent from the broadcast individual F1 to each distributed individual receives the reference signal obtained by processing such as multiplication and the signal from the observation target F2 at the broadcast individual F1, and the reproduced signal is not changed. It is a signal to be relayed obtained by moving in the frequency domain such as multiplying. In addition to these, each distributed individual receives a signal from the original observation target F2. As shown in FIG. 4, each distributed individual returns a signal obtained through independent processing to the broadcast individual F1.
この通信システムの上記構成は、各分散個体で受信した信号を、同報個体F1で同相で集積し強い信号を得ることを目的とする形態である。
この経路での信号では、空間上の距離、時刻は、
であり、各分散個体から送信され、同報個体F1で受信された信号は、前式に上記を代入して得られ、方に依存しない条件が存在でき、それらは、
である。 x1 (第1相対位置)に依存しないことは、同報個体F1に同期できたことを示し、x2(第2相対位置)に依存しないことは、元の観測対象F2から各分散個体までの距離を把握する必要がないことを示す。つまり、この条件は、元の観測対象F2からの信号を全分散個体で位相を合わせて、同報個体F1に集積、集光することに相当する。同報個体F1は、元の観測対象方向であってもよいが、方向が異なっていてもよい。
The above-described configuration of this communication system is a form intended to obtain a strong signal by accumulating signals received by each distributed individual in the same phase by the broadcast individual F1.
In the signal along this route, the distance and time in space are
The signal transmitted from each distributed individual and received by the broadcast individual F1 is obtained by substituting the above into the previous equation, and there can be a condition that does not depend on the direction,
It is. Independence from x1 (first relative position) indicates that it was able to synchronize with the broadcast individual F1, and independence from x2 (second relative position) means that the distance from the original observation target F2 to each distributed individual Indicates that there is no need to know. That is, this condition corresponds to collecting and condensing the signal from the original observation target F2 in the broadcast individual F1 in phase with all dispersed individuals. The broadcast individual F1 may be the original observation target direction, but the directions may be different.
この経路での信号では、空間上の距離、時刻は、
In the signal along this route, the distance and time in space are
p またはq は、負の値となるが、それは、Low Pass Filter による位相の差分の抽出処理に対応する。m は自由にとれるため、最終的に集光した信号は、原信号を典型的にはup-convert された状態で得ることができる。同報個体F1 で、集積、集光される信号の位相は、各分散個体の、同報個体 F1, 観測対象F2 からの距離によらず
である。 p or q takes a negative value, which corresponds to the phase difference extraction processing by the Low Pass Filter. Since m can be taken freely, the final collected signal can be obtained with the original signal typically up-converted. The phase of the signal collected and collected by the broadcast individual F1 does not depend on the distance of each distributed individual from the broadcast individual F1 or the observation target F2.
It is.
である。 p or q takes a negative value, which corresponds to the phase difference extraction processing by the Low Pass Filter. Since m can be taken freely, the final collected signal can be obtained with the original signal typically up-converted. The phase of the signal collected and collected by the broadcast individual F1 does not depend on the distance of each distributed individual from the broadcast individual F1 or the observation target F2.
It is.
注目すべきは、この結果は、x1(第1相対位置)への依存性のみならず、x2(第2相対位置)への依存性も同時に消去、除去できていることである。この処理により、有線の信号線を介することなく、移動体、とくに編隊飛行などをする衛星群で、時刻同期と観測信号同期が達成できる。このことは、同報個体F1 点を、集積、焦点とする望遠鏡を構築することができることを意味する。
Noteworthy is that this result is that not only the dependence on x1 (first relative position) but also the dependence on x2 (second relative position) can be erased and removed at the same time. With this processing, time synchronization and observation signal synchronization can be achieved in a moving body, particularly a group of satellites that fly in formation, without using a wired signal line. This means that a telescope that collects and focuses the broadcast individual F1 saddle point can be constructed.
具体的な信号処理の方法を以下に記述する。
p=6, q=-6, m=5 の場合の例を掲げる。q’=-q/2=3 でシステムを構成する。 A specific signal processing method will be described below.
Here is an example for p = 6, q = -6, m = 5. Configure the system with q '=-q / 2 = 3.
p=6, q=-6, m=5 の場合の例を掲げる。q’=-q/2=3 でシステムを構成する。 A specific signal processing method will be described below.
Here is an example for p = 6, q = -6, m = 5. Configure the system with q '=-q / 2 = 3.
これが同報個体F1と各分散個体では
と受信される。
This is for broadcast individual F1 and each distributed individual
And received.
同報個体F1で生成する基準信号のもとになる信号を
とする。
The signal that is the basis of the reference signal generated by the individual F1
And
同報個体F1から、各分散個体に中継され、また各分散個体で受信し、また逓倍された信号は以下のようになる。
From the broadcast individual F1, a signal relayed to each distributed individual, received by each distributed individual, and multiplied is as follows.
最初に、第1項の信号及び第3項の信号を合成し、High Pass Filter(信号処理部) を通過させると
を得、第2項の基準信号を、合成し Low Pass Filter (信号処理部)を2回通過させると、結局
を得る。 First, when the signal of the first term and the signal of the third term are combined and passed through the High Pass Filter (signal processing unit)
And combining the reference signal of the second term and passing through the Low Pass Filter (signal processor) twice
Get.
を得、第2項の基準信号を、合成し Low Pass Filter (信号処理部)を2回通過させると、結局
を得る。 First, when the signal of the first term and the signal of the third term are combined and passed through the High Pass Filter (signal processing unit)
And combining the reference signal of the second term and passing through the Low Pass Filter (signal processor) twice
Get.
同報個体F1で各分散個体からの信号を受信する場合は、おおもとの観測対象F2からの経路から、空間上の距離、時刻は、
であるから、同報個体F1に集まる信号は、各分散個体のおおもとの観測対象F2や同報個体F1との距離(x2、x1)、とは無関係に
となり、5逓倍波(個別観測結果信号)として、集積、集光される(観測結果)ことになる。 When a signal from each distributed individual is received by the broadcast individual F1, the distance and time in space from the original observation target F2
Therefore, the signal gathered in the broadcast individual F1 is independent of the distance (x 2 , x 1 ) between each distributed individual and the observation target F2 and the broadcast individual F1.
Thus, they are collected and condensed (observation results) as a 5 times-multiplied wave (individual observation result signal).
であるから、同報個体F1に集まる信号は、各分散個体のおおもとの観測対象F2や同報個体F1との距離(x2、x1)、とは無関係に
となり、5逓倍波(個別観測結果信号)として、集積、集光される(観測結果)ことになる。 When a signal from each distributed individual is received by the broadcast individual F1, the distance and time in space from the original observation target F2
Therefore, the signal gathered in the broadcast individual F1 is independent of the distance (x 2 , x 1 ) between each distributed individual and the observation target F2 and the broadcast individual F1.
Thus, they are collected and condensed (observation results) as a 5 times-multiplied wave (individual observation result signal).
この通信システムにおいては、システムにおける使用周波数の選定が重要である。
p+q=0 の条件を一挙に実現しようとすると、同報個体F1から送信される2種類の信号が同一周波数をもってしまうため、各分散個体では受信ができなくなる。正確には、識別が困難になる。 In this communication system, selection of the frequency used in the system is important.
If the condition of p + q = 0 is to be realized at once, the two types of signals transmitted from the broadcast individual F1 have the same frequency, so that each distributed individual cannot receive. To be precise, identification becomes difficult.
p+q=0 の条件を一挙に実現しようとすると、同報個体F1から送信される2種類の信号が同一周波数をもってしまうため、各分散個体では受信ができなくなる。正確には、識別が困難になる。 In this communication system, selection of the frequency used in the system is important.
If the condition of p + q = 0 is to be realized at once, the two types of signals transmitted from the broadcast individual F1 have the same frequency, so that each distributed individual cannot receive. To be precise, identification becomes difficult.
このため、p ないしq は、その約数にあたる別の周波数で同報送信し、各分散個体側(信号処理部)で、もとの周波数にまで複数回の合成とフィルタリングを行わせることになる。また、後述の自然天体観測等において、たとえば、おおもとの観測対象F2からの信号が、処理対象の周波数の2倍である場合には、p, q として「2」もさけるべきである。もちろん、「1」は避けなくてはならない。以下に具体的な例で示す。
For this reason, p or q is broadcasted at a different frequency corresponding to the divisor, and each distributed individual side (signal processing unit) performs multiple times of synthesis and filtering to the original frequency. . Further, in the natural celestial object observation described later, for example, when the signal from the original observation target F2 is twice the frequency of the processing target, “2” should be avoided as p and q. Of course, “1” must be avoided. Specific examples are shown below.
たとえば、p=6 である場合は、各分散個体側では、q=-6 の操作を、q’=-q/2=3 の Low Pass Filter(信号処理部)による位相の差分処理を2回行うことで、混信を避けつつ達成させることができる。q’ として、p, q の絶対値の第2最大公約数を選ぶのが1つの選択法である。mは、自由に選ぶとができ、p+q=0 であるため、各分散個体からの送信周波数は、mω であり、たとえば、惑星探査機への応用で深宇宙バンドを意図して選択する際には、適切な周波数で設定するべきである。
For example, when p = 6, on each distributed individual side, the operation of q = -6 is performed twice, and the difference processing of the phase by the LowqPass Filter (signal processing unit) of q '=-q / 2 = 3 is performed twice. By doing so, it can be achieved while avoiding interference. One selection method is to select the second greatest common divisor of absolute values of p and q as q ′. m can be chosen freely, and since p + q = 0 、, the transmission frequency from each distributed individual is mω, for example, the deep space band is intentionally selected for application to planetary probes In some cases, it should be set at an appropriate frequency.
図5には、観測に適用される通信システムの第1の構成例が示される。この第1の構成例は、実用面で成果が期待されるリモートセンシングでの応用例である。図5において、複数の分散個体100、101、102の群内における個体100が同報個体F1であり、この個体100(同報個体F1)が他の個体(分散個体)101、102からの信号の集積も行う。この通信システムでは、基準信号を照射する別の個体103が存在し、観測対象F2は、個体103から照射され信号波を反射して反射波を発する。観測対象F2からは反射波がランダム性のある位相雑音(観測信号)が乗った状態で発信され、それが分散個体たる衛星群の各個体100、101、102で受信される。この基準信号を照射する個体103は、同報個体100(F1)と同一であってもよい。
FIG. 5 shows a first configuration example of a communication system applied to observation. This first configuration example is an application example in remote sensing, which is expected to produce results in practical use. In FIG. 5, an individual 100 in a group of a plurality of distributed individuals 100, 101, 102 is a broadcast individual F1, and this individual 100 (broadcast individual F1) is a signal from other individuals (distributed individuals) 101, 102. Are also accumulated. In this communication system, there is another individual 103 that emits a reference signal, and the observation target F2 reflects the signal wave emitted from the individual 103 and emits a reflected wave. A reflected wave is transmitted from the observation target F2 in a state where random phase noise (observation signal) is carried, and is received by each individual 100, 101, 102 of the satellite group which is a distributed individual. The individual 103 that emits the reference signal may be the same as the broadcast individual 100 (F1).
上述した通信システムの構成例は、地表を対象としたリモートセンシングで利用可能であり、群を成す多数の衛星個体で合成開口レーダーをケーブルなしで構成する応用につながる。レーダー観測を、空間上では独立の、複数の分散個体たる衛星によって実現することができる。
The above-described configuration example of the communication system can be used for remote sensing on the ground surface, and leads to an application in which a synthetic aperture radar is configured without a cable with a large number of satellites forming a group. Radar observation can be realized by multiple independent satellites that are independent in space.
上述した通信システムによる観測は、片方向通信のみで実現できる。すなわち、双方向での相対位置計測などを要しない、独立分散方式であることである。その結果、分散個体の群への集合、離散が自由になり、参加する個体や、個体数は不明でもよいことになり、広範な利用へ道がひらかれる。また、通信量は、分散個体数がどんなに増加しても、ごく少量で一定であり、大規模な群で構成する、観測、通信システムの構築への施設・設備投資を劇的に削減することができる。
The observation by the communication system described above can be realized only by one-way communication. That is, it is an independent distributed method that does not require bidirectional relative position measurement. As a result, it becomes possible to freely set and disperse the group of distributed individuals, and the participating individuals and the number of individuals may be unknown, which opens the way for widespread use. In addition, the amount of communication is very small and constant, no matter how the number of distributed individuals increases, and drastically reduces facilities and equipment investment in the construction of observation and communication systems composed of large groups. Can do.
上述した通信システムでは、受信して応答する分散個体は、参加が自由で、また離散も自由である。このことは、たとえば、小型宇宙機が、このシステムに突然に参加したり、また機能を失って離脱したりするのも自由であることを意味する。多数の小型衛星が大きなミッションの構築に参加したり、離脱したりすることが可能になる。
In the communication system described above, distributed individuals that receive and respond are free to participate and discrete. This means, for example, that a small spacecraft is free to suddenly join the system or lose function and leave. Numerous small satellites can participate in or leave large missions.
上述した通信システムの実現にあたり、複数の微弱電波に対する高性能な受信および再生能力をもつ必要はない。微弱な信号は元の観測対象等からの信号だけに限られ、とくに基準信号が近距離の同報個体F1から発せられる実応用では、受信機の性能へ要求は高くなく、搭載性に関わる制約は少ない。
In realizing the above-described communication system, it is not necessary to have a high-performance reception and reproduction capability for a plurality of weak radio waves. Weak signals are limited to only signals from the original observation target, etc. Especially in actual applications where the reference signal is emitted from a short-distance broadcast individual F1, there is no high requirement for receiver performance, and restrictions related to mountability There are few.
本発明の実施の形態に係る通信システムは、無線にて干渉計としての通信システムを提供するものである。そのことは、基準信号を送信する同報個体F1が、基準信号を個体(分散個体)群に送信することに加えて、分散個体と同じ観測対象F2等からの信号を受信し、それも同時に分散個体群内に送信して中継することの両方で、各分散個体から、基準信号を送信する同報個体F1までの空間距離と、観測対象F2までの空間距離の両方を相殺させ、影響を排除することである。
The communication system according to the embodiment of the present invention provides a communication system as an interferometer wirelessly. That is, the broadcast individual F1 that transmits the reference signal receives the signal from the same observation target F2 etc. as the distributed individual in addition to transmitting the reference signal to the individual (distributed individual) group. By transmitting and relaying within the distributed population, both the spatial distance from each distributed individual to the broadcast individual F1 that transmits the reference signal and the spatial distance to the observation target F2 are offset, and the effect is reduced. It is to eliminate.
一般に、基準信号が1波である場合、基準信号源すなわち同報個体F1から各分散個体までの距離が未知であることを排除できない。すなわち1波の無線による手段では、各分散個体と基準信号源たる同報個体F1との間の時刻の同期はできない。一方、基準信号が2波以上である場合、基準信号源すなわち同報個体F1から各分散個体までの距離が未知であることは解決され、時刻の同期自身は可能となる。しかし、観測対象F2からの各分散個体までの距離が未知であり、管理されない点を依然として排除できない。唯一、ここまでの技術段階で可能となるのは、レトロディレクティブ型の、再帰的な折り返し返信だけであり、その場合は、折り返し周波数が観測周波数に一致してしまう課題を残してしまう。
Generally, when the reference signal is one wave, it cannot be excluded that the distance from the reference signal source, that is, the broadcast individual F1 to each distributed individual is unknown. That is, by means of one-wave radio, it is not possible to synchronize the time between each distributed individual and the broadcast individual F1 as a reference signal source. On the other hand, when the reference signal has two or more waves, it is solved that the distance from the reference signal source, that is, the broadcast individual F1 to each distributed individual is unknown, and time synchronization itself is possible. However, the distance from the observation target F2 to each distributed individual is unknown, and it cannot be excluded that it is not managed. The only technology that can be achieved at this stage is the retrodirective type recursive return reply, which leaves the problem that the return frequency matches the observed frequency.
1波の基準信号に加えて、観測対象等からの信号を基準信号源すなわち同報個体F1にて受信し、同基準信号の発信に加えて、これを送信して中継することで、基準信号源たる同報個体F1から各分散個体までの距離が未知であることと、観測対象F2からの各分散個体までの距離が未知であることの両方が、解決され、既定の観測対象F2の方向と異なる方向に、予め定められた折り返し周波数で、集積、集光させること、つまり操舵することができ、干渉計としての通信システムを構成することができることになる。なお、同報される基準信号が複数である場合も同様の構成は可能である。
In addition to the reference signal of one wave, the signal from the observation target etc. is received by the reference signal source, that is, the broadcast individual F1, and in addition to the transmission of the reference signal, the reference signal is transmitted and relayed. Both the unknown distance from the source broadcast individual F1 to each distributed individual and the unknown distance to each distributed individual from the observation target F2 are resolved, and the direction of the default observation target F2 In other directions, the light can be collected and condensed, that is, steered at a predetermined folding frequency, and a communication system as an interferometer can be configured. A similar configuration is possible even when there are a plurality of broadcast reference signals.
以下、有効な効果を発揮する実例(実施例)について説明する。
Hereinafter, actual examples (examples) that exhibit effective effects will be described.
応用例-1:
<リモートセンシング観測の拡張例>
図5に示す通信システムの構成例では、照射する電波源(個体103)は、特定の個体1つにすぎなかった。これに対して、図6に示す通信システムの構成例では、多数(複数)の照射個体103(1)、103(2)、103(3)たる衛星の群から信号が観測対象F2に照射される。この通信システムは、複数のGPS 衛星などを電波源(個体103(1)、103(2)、103(3))想定したものである。これは、リモートセンシング観測の拡張であり、複数の衛星によるレーダー照射を受けた地表が仮想の観測対象F2、すなわち、観測信号の発信源となる場合である。近年GNSS (航法衛星)電波によるリモートセンシングが登場しており、これにより、新たな照射個体を省くことが可能である。観測信号をより強い強度で、また高い分解能で、すなわち大口径で受信する要望は強く、本発明が、その大面積化を無線媒体でありながらも、実時間で確保する手段を提供する。とくに、本方式では、片方向の通信、同報手段(同報個体F1)で、これが実現できるため、分散個体たる個々の衛星の集合や離散が自由であり、特定の個体識別を要しない点で、他の通信システムに比べて有利である。 Application example-1:
<Extended example of remote sensing observation>
In the configuration example of the communication system shown in FIG. 5, the radio wave source (individual 103) to be irradiated is only one specific individual. On the other hand, in the configuration example of the communication system shown in FIG. 6, the observation target F2 is irradiated with a signal from a group of many (a plurality of) irradiation individuals 103 (1), 103 (2), and 103 (3) satellites. The This communication system assumes a plurality of GPS satellites or the like as radio wave sources (individuals 103 (1), 103 (2), 103 (3)). This is an extension of remote sensing observation, where the ground surface that has received radar irradiation from multiple satellites becomes a virtual observation target F2, that is, a source of observation signals. In recent years, remote sensing using GNSS (navigation satellite) radio waves has emerged, which makes it possible to eliminate new irradiated individuals. There is a strong demand to receive an observation signal with a stronger intensity and with a higher resolution, that is, with a large aperture, and the present invention provides a means for securing the increase in area in real time even though it is a wireless medium. In particular, this method can be realized with one-way communication and broadcast means (broadcast individual F1), so it is possible to freely set and disperse individual satellites as distributed individuals, and there is no need for specific individual identification. This is advantageous compared to other communication systems.
<リモートセンシング観測の拡張例>
図5に示す通信システムの構成例では、照射する電波源(個体103)は、特定の個体1つにすぎなかった。これに対して、図6に示す通信システムの構成例では、多数(複数)の照射個体103(1)、103(2)、103(3)たる衛星の群から信号が観測対象F2に照射される。この通信システムは、複数のGPS 衛星などを電波源(個体103(1)、103(2)、103(3))想定したものである。これは、リモートセンシング観測の拡張であり、複数の衛星によるレーダー照射を受けた地表が仮想の観測対象F2、すなわち、観測信号の発信源となる場合である。近年GNSS (航法衛星)電波によるリモートセンシングが登場しており、これにより、新たな照射個体を省くことが可能である。観測信号をより強い強度で、また高い分解能で、すなわち大口径で受信する要望は強く、本発明が、その大面積化を無線媒体でありながらも、実時間で確保する手段を提供する。とくに、本方式では、片方向の通信、同報手段(同報個体F1)で、これが実現できるため、分散個体たる個々の衛星の集合や離散が自由であり、特定の個体識別を要しない点で、他の通信システムに比べて有利である。 Application example-1:
<Extended example of remote sensing observation>
In the configuration example of the communication system shown in FIG. 5, the radio wave source (individual 103) to be irradiated is only one specific individual. On the other hand, in the configuration example of the communication system shown in FIG. 6, the observation target F2 is irradiated with a signal from a group of many (a plurality of) irradiation individuals 103 (1), 103 (2), and 103 (3) satellites. The This communication system assumes a plurality of GPS satellites or the like as radio wave sources (individuals 103 (1), 103 (2), 103 (3)). This is an extension of remote sensing observation, where the ground surface that has received radar irradiation from multiple satellites becomes a virtual observation target F2, that is, a source of observation signals. In recent years, remote sensing using GNSS (navigation satellite) radio waves has emerged, which makes it possible to eliminate new irradiated individuals. There is a strong demand to receive an observation signal with a stronger intensity and with a higher resolution, that is, with a large aperture, and the present invention provides a means for securing the increase in area in real time even though it is a wireless medium. In particular, this method can be realized with one-way communication and broadcast means (broadcast individual F1), so it is possible to freely set and disperse individual satellites as distributed individuals, and there is no need for specific individual identification. This is advantageous compared to other communication systems.
<レトロディレクティブ型の返送の例>
おおもとの観測対象方向、つまり基準信号源に向かって、全個体が送信する分散型レトロディレクティブ方式への応用例である。 <Retro directive type return example>
This is an application example to the distributed retrodirective method in which all individuals transmit toward the original observation target direction, that is, the reference signal source.
おおもとの観測対象方向、つまり基準信号源に向かって、全個体が送信する分散型レトロディレクティブ方式への応用例である。 <Retro directive type return example>
This is an application example to the distributed retrodirective method in which all individuals transmit toward the original observation target direction, that is, the reference signal source.
この場合、経路に沿って、空間上の距離、時刻は、
であり、各分散個体から送信され、元の観測対象F2からの距離が同報個体F1と同じ距離の面で受信された信号が、x1,x2に依存しない条件が存在し、それは同じく
となる。
In this case, the distance and time in space along the route are
There is a condition that the signal transmitted from each distributed individual and received at the same distance from the original observation target F2 as the broadcast individual F1 does not depend on x 1 and x 2.
It becomes.
であり、各分散個体から送信され、元の観測対象F2からの距離が同報個体F1と同じ距離の面で受信された信号が、x1,x2に依存しない条件が存在し、それは同じく
There is a condition that the signal transmitted from each distributed individual and received at the same distance from the original observation target F2 as the broadcast individual F1 does not depend on x 1 and x 2.
同面での各分散個体からの送信信号の位相は、各分散個体の同報個体 F1, 観測対象 F2 からの距離によらず
ある。
The phase of the transmitted signal from each distributed individual on the same plane does not depend on the distance from each distributed individual F1 or F2
is there.
具体的な信号処理を以下に説明する。
Specific signal processing will be described below.
p=6, q=-6, m=4.5 の場合の例を掲げる。q’=-q/2=3 でシステムを構成する。
観測対象F2たる地球局からの uplink信号を、
とする。
Here is an example for p = 6, q = -6, m = 4.5. Configure the system with q '=-q / 2 = 3.
The uplink signal from the earth station that is the observation target F2,
And
観測対象F2たる地球局からの uplink信号を、
The uplink signal from the earth station that is the observation target F2,
これが同報個体F1と各分散個体では
と受信される。
This is for broadcast individual F1 and each distributed individual
And received.
同報個体F1から、各分散個体に中継される、また各分散個体で受信し、また逓倍された信号は以下になる。
From the broadcast individual F1, a signal relayed to each distributed individual, received by each distributed individual, and multiplied is as follows.
最初に、第1項の信号及び第3項の信号を合成し、High Pass Filter(信号処理部)を通過させると
が得られ、第2項の基準信号を、合成し Low Pass Filter(信号処理部) を2回通過させると、結局
が得られる。
First, when the signal of the first term and the signal of the third term are combined and passed through the High Pass Filter (signal processing unit)
When the reference signal of the second term is synthesized and passed through the Low Pass Filter (signal processing unit) twice, the result is
Is obtained.
が得られ、第2項の基準信号を、合成し Low Pass Filter(信号処理部) を2回通過させると、結局
When the reference signal of the second term is synthesized and passed through the Low Pass Filter (signal processing unit) twice, the result is
同報個体F1で各分散個体からの信号を受信する場合は、おおもとの観測対象F2からの経路から、空間上の距離、時刻は、
であるから、同報個体F1に集まる信号は、各分散個体のおおもとの地球(観測対象F2)や同報個体F1との距離に無関係に
となり、4.5 逓倍波(個別観測結果信号)として地球(観測対象F2)方向に送信される。
When a signal from each distributed individual is received by the broadcast individual F1, the distance and time in space from the original observation target F2
Therefore, the signal gathered in the broadcast individual F1 is independent of the distance of each distributed individual to the earth (observation target F2) and the broadcast individual F1.
Then, it is transmitted in the direction of the earth (observation target F2) as 4.5 multiplied wave (individual observation result signal).
上述したような処理により、有線の信号線を介することなく、編隊飛行する衛星群が、1つの大型のアンテナ、主鏡を構成しつつ、地球へ同相で強度を高めて送信することが可能になる。たとえば、剛でない膜面上に配置した送信機、アンテナ群が、個々にコヒーレントトランスポンダとなる必要はなく、高利得でデータを地球に折り返し送信することが可能となる。これは、再帰性を確保したい通信上の応用に相当し、大型の高利得アンテナを、空間上では独立の多数の子トランスポンダで構成する事例に相当する。
Through the processing described above, it is possible for a group of satellites flying in formation to form a single large antenna and primary mirror, and transmit to the Earth with increased intensity in phase without using a wired signal line. Become. For example, the transmitter and the antenna group arranged on the non-rigid film surface do not need to be coherent transponders individually, and data can be transmitted back to the earth with high gain. This corresponds to a communication application in which recursion is to be ensured, and corresponds to an example in which a large high-gain antenna is configured with a large number of independent child transponders in space.
また、同様に、太陽発電衛星などにおいて、エネルギー伝送を行わせる場合に、ケーブル等による分配機構から解放されるシステムを提供することができる。単に通信のみならず、自由飛行する個体衛星群が、個々に電力を伝送する場合にも応用が可能であり、太陽発電衛星では、個々の発電電力を集電する過程を省くことにつながる。
Similarly, a system free from a distribution mechanism such as a cable can be provided when energy transmission is performed in a solar power generation satellite or the like. The present invention can be applied not only to communication but also to a case where individual flying satellites transmit power individually, and solar power generation satellites can eliminate the process of collecting individual generated power.
各分散個体が必ずしも自由な飛行を行う応用に限定されない。上述のように、膜面上に多数個の小トランスポンダを配置する場合など、物理的な位置、距離は概ね把握されているものの、通信上の同位相性を保証できない場合や、時々刻々に変動しうる場合が、現実的にも有力な応用事例となる。
各 Each distributed individual is not necessarily limited to an application in which free flight is performed. As described above, when many small transponders are arranged on the film surface, the physical position and distance are generally known, but the same phase in communication cannot be guaranteed, or it varies from moment to moment. If it is possible, it will be an effective application example.
図7は、上述した方法で地上Eに置かれた観測対象たるマーカー局の信号を受信した分散個体101、102、103、104、105が、同報個体100からの基準信号および同個体100で受信したマーカー局からの信号を中継した信号を受信し、マーカー局方向へ位相を合わせて返送する通信システムの例を示す。分散個体101、102、103、104、105の位置の同報個体100に対する不確定性とマーカー局に対する不確定性の2つが同時に解消される。
FIG. 7 shows that the distributed individuals 101, 102, 103, 104, and 105 that have received the signal of the marker station to be observed placed on the ground E by the above-described method are the reference signal and the individual 100 from the broadcast individual 100. The example of the communication system which receives the signal which relayed the signal from the received marker station, and sends it back in phase with the marker station is shown. Two uncertainties for the broadcast individual 100 at the positions of the distributed individuals 101, 102, 103, 104, and 105 and the uncertainty for the marker station are eliminated simultaneously.
この手法は、深宇宙探査機において、大型アンテナを分散個体で構成する場合において応用できる。図8は、たとえば、1枚の大型主鏡を構成することが難しい膜面構造を有する探査機での応用を示す。膜面S上の分散個体101、102、103、104、105の群が、本方式を用いて、分散個体101、102、103、104、105の位置の同報個体100に対する不確定性と地上局Eに対する不確定性の2つを同時に解消し、大型の1枚の主鏡として機能する例である。膜面S上の分散個体101、102、103、104、105の群では、同報個体100から各分散個体への同報送信を有線にて実施することも可能である。
This method can be applied to a deep space probe when a large antenna is composed of distributed individuals. FIG. 8 shows an application in a spacecraft having a film surface structure in which it is difficult to construct one large primary mirror, for example. The group of distributed individuals 101, 102, 103, 104, and 105 on the membrane surface S uses the present method to determine the uncertainty of the position of the distributed individuals 101, 102, 103, 104, and 105 with respect to the broadcast individual 100 and the ground. This is an example in which two uncertainties with respect to the station E are eliminated at the same time and function as a single large mirror. In the group of distributed individuals 101, 102, 103, 104, and 105 on the film surface S, it is also possible to perform broadcast transmission from the broadcast individual 100 to each distributed individual by wire.
深宇宙バンドの、x-band Uplink 帯で、地球局から探査機にレトロディレクティブ型の基準信号を送り、本方式にて、m=4.5 で逓倍して down link 信号を作ると、Ka-band のdown link で、地球局にて位相がそろった信号を発生させることができる。すなわち、レトロディレクティブ型のアンテナを構成させることができる。
In the deep space band, in the x-band Uplink zone, a retrodirective-type reference signal is sent from the earth station to the spacecraft. With down link 信号, you can generate a phase-matched signal at the earth station. That is, a retrodirective antenna can be configured.
図14及び図15に示す表1および表2には、深宇宙通信向けに国際的に割り当てられている、関連の周波数割り当てが一覧表示される。このレトロディレクティブなダウンリンク返送が実際に可能であることが確認できる。
Tables 1 and 2 shown in FIGS. 14 and 15 list related frequency assignments internationally assigned for deep space communication. It can be confirmed that this retrodirective downlink return is actually possible.
応用例-2:
前述した通信システムの例(応用例-1)では、観測対象F2、同報個体F1、及び観測に参加する複数の分散個体の3種類の個体が含まれていた。次に、新たに標的個体を導入し、通信システムを4種類の個体にて構成する場合について説明する。 Application example-2:
In the above-described communication system example (application example-1), three types of individuals are included: the observation object F2, the broadcast individual F1, and a plurality of distributed individuals participating in the observation. Next, a case where a target individual is newly introduced and the communication system is configured by four types of individuals will be described.
前述した通信システムの例(応用例-1)では、観測対象F2、同報個体F1、及び観測に参加する複数の分散個体の3種類の個体が含まれていた。次に、新たに標的個体を導入し、通信システムを4種類の個体にて構成する場合について説明する。 Application example-2:
In the above-described communication system example (application example-1), three types of individuals are included: the observation object F2, the broadcast individual F1, and a plurality of distributed individuals participating in the observation. Next, a case where a target individual is newly introduced and the communication system is configured by four types of individuals will be described.
図9を参照して、自然天体のランダム性の高い、ある帯域の信号を、ターゲット衛星で 1/2 の周波数でダウンさせた信号を処理する方式についてまず説明する。
Referring to FIG. 9, a method for processing a signal obtained by down-converting a signal of a certain band with high randomness of a natural celestial body at a frequency of 1/2 by a target satellite will be described first.
目的の信号は位相変動、雑音が大きく、コヒーレンシを維持した受信は難しい。元の観測情報の周波数を、ここでは2ωとおく。観測対象の方向に、人工の信号源となる標的個体F2 を配すると仮定する。これにより、元の観測対象からの信号との混信障害を避けることができる。
The target signal has large phase fluctuations and noise, and it is difficult to receive it with coherency maintained. Here, the frequency of the original observation information is set to 2ω. Assume that the target individual F2, which is an artificial signal source, is placed in the direction of the observation target. Thereby, it is possible to avoid interference with signals from the original observation target.
観測対象等からの信号を、観測情報たる位相φ0で表現して、
とする。
Express the signal from the observation object etc. with the phase φ 0 as the observation information,
And
このとき、標的個体F2は
の信号を発すると仮定し、群内の各分散個体にて、自己の局所発信器にて
を混合して、ダウンコンバートした信号を得るものとする。
At this time, the target individual F2
At each distributed individual in the group, with its own local transmitter
To obtain a down-converted signal.
各分散個体では、標的個体F2および、観測対象等からの信号として、下記を得る。
これらを乗積検波し、Low Pass Filter(信号処理部)を通過させると
を得る。
In each distributed individual, the following are obtained as signals from the target individual F2 and the observation target.
When these products are detected and passed through the Low Pass Filter (signal processor)
Get.
括弧内の第2項、第3項及び第4項の位相は、いずれも共有できるか、あるいは群内に同報される信号であり、結局、各分散個体からみた場合は、観測対象からの信号が、あたかも
で得られると仮定してよいことになる。
The phase of the second term, the third term and the fourth term in parentheses is a signal that can be shared or broadcast within the group. After all, when viewed from each distributed individual, As if the signal was
It can be assumed that
これにより、観測対象等の周波数を、2ωと扱う必要はなく、本来 ωの信号を受信する場合に等価である。一般には、安定な発信を行うかぎりは、任意の実数x倍 xωであると仮定してもよい。
Therefore, it is not necessary to treat the frequency of the object to be observed as 2ω, which is essentially equivalent to receiving a signal of ω. In general, as long as stable transmission is performed, an arbitrary real number x times xω may be assumed.
標的個体F2の信号源を設ける最大の目的は、観測対象自身の信号の位相安定性を補うためである。観測対象は、たとえば遠方の銀河であるような場合は、広いスペクトルで分布し、いいかえれば位相が不安定に変化して分布する。同報個体F1が、観測対象からの信号を中継する際、元の非常に広い帯域の、かつ明瞭な中心周波数を示しがたい信号については、同報個体F1上で受信し再送信すること、すなわち再生した中継を行うことは容易ではない。これは分散個体上での観測対象からの信号を位相処理する場合でも同様の困難さを招く。観測対象からの信号を、標的個体F2ないし標的衛星を設けることで、安定な中間周波数域に移行させて、観測対象からの信号を安定な発信スペクトルのまわりに分布する位相情報に変換し、仮想の観測対象を設けることに対応する。
The main purpose of providing a signal source for the target individual F2 is to supplement the phase stability of the signal of the observation target itself. For example, when the observation target is a distant galaxy, it is distributed in a broad spectrum, in other words, the phase is unstablely distributed. When the broadcast individual F1 relays the signal from the observation target, the original signal with a very wide bandwidth and the clear center frequency cannot be displayed on the broadcast individual F1, and retransmitted. That is, it is not easy to perform the replayed relay. This causes the same difficulty even when phase processing is performed on signals from observation targets on distributed individuals. By providing the target individual F2 or target satellite, the signal from the observation target is shifted to a stable intermediate frequency range, and the signal from the observation target is converted into phase information distributed around a stable transmission spectrum. This corresponds to providing observation targets.
同報個体F1は、明瞭な中心周波数の位相に同期した受信を行うことができ、その周囲の位相情報を同時に中継できるようになる。分散個体上での位相操作も、観測信号が、あたかも、この仮想の観測対象(標的個体F2)からの信号処理とみなして実施できることになる。標的個体F2からの信号を、同報個体F1が再生し中継することで、標的個体F2と同報個体F1間の距離情報を反映させることができるため、中継された信号をもとに、標的個体F2と各分散個体間の距離の不確定性を除去できることができる点が重要であり、単に周波数域を移行させることだけではない。このことは、標的個体F2と同報個体F1を結ぶ線に垂直な仮想な通信、観測面を構築することを意味する。
The broadcast individual F1 can receive in synchronization with the phase of a clear center frequency, and can simultaneously relay the surrounding phase information. The phase operation on the distributed individuals can also be performed assuming that the observation signal is signal processing from this virtual observation target (target individual F2). Since the signal from the target individual F2 is reproduced and relayed by the broadcast individual F1, the distance information between the target individual F2 and the broadcast individual F1 can be reflected. It is important that the uncertainty of the distance between the individual F2 and each distributed individual can be removed, and it is not just a transition of the frequency range. This means that a virtual communication / observation plane perpendicular to the line connecting the target individual F2 and the broadcast individual F1 is constructed.
(観測波長/基線長)が観測システム(通信システム)の角度分解能を与えるため、標的個体F2が配置される距離は、この(通信、観測システムが展開される長さスケール/角度分解能)の距離以上でなくてはならない。地球周回軌道上の群衛星システムであっても、標的個体F2までの距離は、場合によっては、優に地球引力圏距離に匹敵する。
Since (observation wavelength / baseline length) gives the angular resolution of the observation system (communication system), the distance at which the target individual F2 is placed is the distance of this (length scale / angular resolution at which the communication and observation system is deployed) It must be above. Even in a group satellite system in orbit around the earth, the distance to the target individual F2 in some cases is well comparable to the Earth's attractive range.
標的個体F2は、人工天体と限らない。人工天体を十分な遠方に配置するのは、経費面からも容易ではない。背景の電波天体が標的個体F2の役割を担う応用は有力であって、とくに基線の長さが長い、たとえば大陸間、地球半球規模で配置される分散個体を用いる通信、観測システムでは、標的を無限遠の電波天体としなくてはならない。
Target target F2 is not limited to artificial celestial bodies. It is not easy in terms of cost to arrange the artificial celestial body far enough. Applications where the background radio celestial body plays the role of the target individual F2 are promising, especially in communication and observation systems that use distributed individuals with long base lines, such as intercontinental and earth-hemisphere scales. It must be a radio celestial object at infinity.
図9において、観測対象と標的個体F2からの信号を、同報個体F1および分散個体にて同時に受信することで、観測対象と標的個体F2とをあわせて1つの観測対象と同一視することができる。その結果、標的個体F2を追加した通信システムに対して、前述した3種類の個体で構成される通信システムにおける議論をそのまま適用できることができる。
In FIG. 9, by simultaneously receiving signals from the observation target and the target individual F2 by the broadcast individual F1 and the distributed individual, the observation target and the target individual F2 can be identified as one observation target. it can. As a result, the discussion in the communication system composed of the three types of individuals described above can be directly applied to the communication system to which the target individual F2 is added.
図10は、この標的個体F2を導入して実施する場合の信号処理の系統図を示し、図11は、標的個体F2を含む4種類の個体で構成する通信システムの代表的な構成例を示す。
FIG. 10 shows a system diagram of signal processing when the target individual F2 is introduced and implemented, and FIG. 11 shows a typical configuration example of a communication system composed of four types of individuals including the target individual F2. .
同報個体100(F1)と分散個体101、102は、観測対象と標的個体110からの信号を受信して、あたかも1つの観測対象からの信号として処理する。この例では、複数の分散個体101、102としての複数の衛星が天体観測を実施する。
The broadcast individual 100 (F1) and the distributed individuals 101 and 102 receive signals from the observation target and the target individual 110 and process them as if they were signals from one observation target. In this example, a plurality of satellites as a plurality of distributed individuals 101 and 102 perform astronomical observation.
地上にて構築するVLBI 観測の例として、たとえば30GHz 域(波長は1cm)をキロメートルで観測する場合、得られる空間分解能は、10^-5 ラジアンである。したがって、同様規模の群衛星観測システム(通信システム)では、標的個体110を人工的に設ける場合、同個体110は、10^5 km以上の遠方に配置すれば、空間分解能を維持して、実時間で機能する干渉計構築できることになる。もちろん、標的個体110は無限遠の電波天体であることは分解能上さらに有利である。標的個体110を人工的な衛星等とすることで、観測対象の方向の選択に自由度を拡大することが可能であろう。300GHz帯(波長1mm)では、10^6 km 、すなわち太陽-地球系のラグランジュ点付近に標的を配置することで、実時間の干渉計を構築することができる。
As an example of VLBI observation constructed on the ground, for example, when observing 30 GHz (wavelength is 1 cm) in kilometers, the spatial resolution obtained is 10 ^ -5 radians. Therefore, in a group satellite observation system (communication system) of the same scale, when the target individual 110 is artificially provided, if the individual individual 110 is placed at a distance of 10 ^ 5 km or more, the spatial resolution is maintained and You can build an interferometer that works in time. Of course, it is further advantageous in terms of resolution that the target individual 110 is an infinite radio wave object. By using the target individual 110 as an artificial satellite or the like, it will be possible to expand the degree of freedom in selecting the direction of the observation target. In the 300 GHz band (wavelength 1 mm), a real-time interferometer can be constructed by placing the target at 10 ^ 6 km10, that is, near the Lagrange point of the solar-earth system.
図12は、深宇宙探査機の実時間軌道決定に適用される通信システム(標的個体を含む)の構成例を示す。
FIG. 12 shows a configuration example of a communication system (including a target individual) applied to real-time orbit determination of a deep space probe.
大陸間をまたぐ地上局F2は、地球の半球面上から、深宇宙探査機からの信号を受信する。従来技術では、地上局間の時刻同期を確保するためには、地上局に置かれる原子時計や、航法衛星から供給される時刻信号が使われ、また、各地上局の地理学的な位置の不確定性を除くために、背景の安定な電波源、電波天体が使用されてきた。時刻同期の手段、基準信号発生手段としては、それら静止あるいは高高度衛星からの信号を用いることができる。半球面上の地上局F2から同時に可視とできる、静止衛星など、非常に可視時間の長い高高度に滞在する衛星を用いることが有効な方法である。各分散個体101、102たる地上局の位置の不確定性については、本発明が提供するように、標的個体F2たる背景の安定な電波源などの天体電波を利用し、上記の静止ないし高高度衛星にて受信した信号も、基準信号とともに、分散個体101、102たる各地上局に同報することで、不確定性を除去できる。このような構成の通信システムによれば、各地上局の位置の不確定性にくわえて深宇宙探査機の位置の不確定性も、分散個体101、102たる各地上局で受信する信号にもとづき再送信され、上記の静止ないし高高度衛星(同報個体100)にて同相で集約される。
The ground station F2 across continents receives signals from deep space probes from the earth's hemisphere. In the prior art, in order to ensure time synchronization between ground stations, atomic clocks placed on the ground stations and time signals supplied from navigation satellites are used, and the geographical position of each ground station is also used. In order to eliminate uncertainty, radio sources with a stable background and radio celestial bodies have been used. As time synchronization means and reference signal generation means, signals from these stationary or high altitude satellites can be used. It is an effective method to use a satellite that stays at a high altitude with a very long visible time, such as a geostationary satellite that can be simultaneously visible from the ground station F2 on the hemisphere. As for the uncertainty of the position of the ground station that is each of the dispersed individuals 101 and 102, as provided by the present invention, the above-mentioned stationary or high altitude is obtained using astronomical radio waves such as a stable radio source of the background that is the target individual F2. Uncertainty can be removed by broadcasting the signal received by the satellite together with the reference signal to the ground stations as the distributed individuals 101 and 102. According to the communication system having such a configuration, the uncertainty of the position of the deep space probe in addition to the uncertainty of the position of each ground station is also based on the signal received by each ground station as the distributed individuals 101 and 102. Retransmitted and aggregated in phase with the above-mentioned geostationary or high altitude satellite (broadcast individual 100).
軌道決定を目的とする場合は、この上記の静止ないし高高度衛星上で、対象となる深宇宙探査機の事前の予測される軌道要素あるいは地心系での距離と赤緯、赤経値をもとに、同報されるべき信号の位相を人為的に操作し、上記の静止ないし高高度衛星で各地上局から得られる合成信号が最大の強度となる、軌道要素あるいは地心系での距離と赤緯、赤経値を求めることで、軌道決定を実現する。副次的な効果として、複数の地上局の鏡面面積を合成することになるため、受信性能自体の向上も期待される。
For the purpose of orbit determination, on the above-mentioned geostationary or high-altitude satellites, the distance, declination and red longitude values of the target deep space probe in advance orbital elements or geocentric systems are calculated. Originally, the phase of the signal to be broadcast is artificially manipulated, and the combined signal obtained from each ground station by the above-mentioned geostationary or high altitude satellites has the maximum intensity, orbital element or geocentric system The trajectory is determined by calculating the distance, declination, and red longitude As a secondary effect, the mirror surface areas of a plurality of ground stations are combined, so an improvement in reception performance itself is also expected.
図13には、理学観測の例として、半球規模での天体観測に適用される通信システム(標的個体を含む)を示す。この例では、宇宙機を含む地上局群で構成するスペースVLBI観測が行われる。その方法は、図12での深宇宙探査機軌道決定での方法と相似である。標的個体F2は、無限遠の電波天体であるべきである。得られる観測信号は、分散個体101、102である、地上電波望遠鏡や宇宙望遠鏡から再送信され、静止ないし高高度衛星(同窓個体100)にて同相で集積、集光して得ることができる。
FIG. 13 shows a communication system (including a target individual) applied to hemispherical astronomical observation as an example of physical observation. In this example, space VLBI observation is performed, which consists of a group of ground stations including spacecraft. The method is similar to the method in the deep space probe orbit determination in FIG. Target individual F2 should be a radio celestial object at infinity. The obtained observation signals are retransmitted from the terrestrial radio telescope and the space telescope, which are the dispersed individuals 101 and 102, and can be collected and collected in the same phase by a stationary or high altitude satellite (a window individual 100).
上述した通信システムの効果を直接的に発揮しうるのは、群として人工衛星や探査機などの宇宙機を用いる場合である。この通信システムにて実現できることは、群をなす衛星の個々の位置によらずに、
・観測対象の観測を多数の個体で精細に実施できること、
・これまで、1枚鏡ないし板状の受光、受信手段で制約されていた集光力を、多数の分散個体たる衛星で積分して改善できること、及び
・これまでは、1つの鏡ないし1枚のアンテナで設けてきた高効率で狭視野の送信手段を多数の必ずしも位置管理できていない個体群で実現できること、
である。 The effect of the communication system described above can be directly exhibited when a spacecraft such as an artificial satellite or a spacecraft is used as a group. What can be achieved with this communication system, regardless of the individual positions of the group satellites,
・ Be able to carry out observations of observation objects with a large number of individuals,
・ Up to now, it is possible to improve the light gathering power, which has been limited by a single mirror or plate-shaped light receiving and receiving means, by integrating with many dispersed individual satellites. The high-efficiency, narrow-field transmission means provided by the antennas can be realized with a large number of individuals that are not necessarily position-controlled,
It is.
・観測対象の観測を多数の個体で精細に実施できること、
・これまで、1枚鏡ないし板状の受光、受信手段で制約されていた集光力を、多数の分散個体たる衛星で積分して改善できること、及び
・これまでは、1つの鏡ないし1枚のアンテナで設けてきた高効率で狭視野の送信手段を多数の必ずしも位置管理できていない個体群で実現できること、
である。 The effect of the communication system described above can be directly exhibited when a spacecraft such as an artificial satellite or a spacecraft is used as a group. What can be achieved with this communication system, regardless of the individual positions of the group satellites,
・ Be able to carry out observations of observation objects with a large number of individuals,
・ Up to now, it is possible to improve the light gathering power, which has been limited by a single mirror or plate-shaped light receiving and receiving means, by integrating with many dispersed individual satellites. The high-efficiency, narrow-field transmission means provided by the antennas can be realized with a large number of individuals that are not necessarily position-controlled,
It is.
群をなす分散個体は、広範囲に分布してもよく、地球規模すなわち地表面でいえば半球面上、また同じ半球周辺の範囲に存在する宇宙機など、いかなる個体の宇宙機の参加が可能である。そのような場合には、有用な同報個体F2ないし集約個体として、静止衛星を想定することができる。もちろん、観測対象によっては、有用な標的個体F2として、静止衛星、ないしは長時間にわたって半球をカバーすることができる遠地点を高高度とする衛星を想定することができる。
The group of dispersed individuals may be distributed over a wide area, and any individual spacecraft can participate, such as a spacecraft that exists on a global scale, that is, on the hemisphere on the ground surface, or in the vicinity of the same hemisphere. is there. In such a case, geostationary satellites can be assumed as useful broadcast individuals F2 or aggregate individuals. Of course, depending on the observation target, as a useful target individual F2, a geostationary satellite or a satellite with a high altitude at a far point that can cover the hemisphere for a long time can be assumed.
なお、前述した各通信システムにおいて、送受信される各信号は、一般的には光を含む電磁波であっても、更に、音波であってもよい。
In each communication system described above, each signal transmitted and received may generally be an electromagnetic wave including light or may be a sound wave.
また、本発明は、前述した実施の形態、各種実施例、その変形例及び応用例に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から除外するものではない。
Further, the present invention is not limited to the above-described embodiments, various examples, modified examples, and application examples. Various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
本発明は、集中制御の固定観念を変えて、多数の分散個体が、ある共通目的をもって、そのために、独立分散処理を行うことを提案している。応用範囲は、理学的な天文観測から、超遠距離通信などの工学技術、さらには、産業技術としてのリモートセンシング観測にいたるまで、広い範囲で応用が可能である。広く産業界にて、応用が期待できる。
本発明にしたがって、多数のレーダーの同期性を確立すれば、これまでの1枚鏡ではありえなかった、精細な気象情報などを得ることができる、など、産業界への影響ははかりしれない。 The present invention changes the fixed concept of centralized control and proposes that a large number of distributed individuals perform independent distributed processing for a certain common purpose. It can be applied in a wide range of applications, from scientific astronomical observation to engineering technology such as ultra-long-distance communications, and further to remote sensing observation as industrial technology. Applications can be expected in a wide range of industries.
If the synchronism of a large number of radars is established in accordance with the present invention, there will be no influence on the industry, such as fine weather information that could not be obtained with a conventional single mirror.
本発明にしたがって、多数のレーダーの同期性を確立すれば、これまでの1枚鏡ではありえなかった、精細な気象情報などを得ることができる、など、産業界への影響ははかりしれない。 The present invention changes the fixed concept of centralized control and proposes that a large number of distributed individuals perform independent distributed processing for a certain common purpose. It can be applied in a wide range of applications, from scientific astronomical observation to engineering technology such as ultra-long-distance communications, and further to remote sensing observation as industrial technology. Applications can be expected in a wide range of industries.
If the synchronism of a large number of radars is established in accordance with the present invention, there will be no influence on the industry, such as fine weather information that could not be obtained with a conventional single mirror.
Claims (11)
- 観測対象からの観測信号を無線により受信する複数の分散個体を有し、前記複数の分散個体のそれぞれにおいて生成される信号に基づいて観測結果信号を生成する通信システムであって、
前記観測対象からの観測信号を受信して該観測信号に基づいた信号を生成し、前記観測信号に基づいた信号を所定の基準信号とともに前記複数の分散個体に無線にて同報送信する同報個体を有し、
前記複数の分散個体のそれぞれは、
前記同報個体からの前記観測信号に基づいた信号及び前記基準信号、並びに前記観測対象から受信した前記観測信号から、当該分散個体と前記同報個体との第1相対位置及び当該分散個体と前記観測対象との第2相対位置に依存しない個別観測結果信号として前記同報個体にて受信されるべき信号を生成する信号処理部を備え、該信号処理部にて生成される信号を無線にて前記同報個体に送信し、
前記同報個体は、前記複数の分散個体のそれぞれから前記個別観測信号として受信される前記信号に基づいて観測結果信号を生成する、通信システム。 A communication system having a plurality of distributed individuals that wirelessly receive observation signals from an observation target, and generating an observation result signal based on signals generated in each of the plurality of distributed individuals,
Broadcast that receives an observation signal from the observation target, generates a signal based on the observation signal, and broadcasts the signal based on the observation signal to the plurality of distributed individuals together with a predetermined reference signal Have an individual,
Each of the plurality of distributed individuals is
From the signal based on the observation signal from the broadcast individual and the reference signal, and the observation signal received from the observation target, a first relative position between the distributed individual and the broadcast individual, the distributed individual, and the A signal processing unit that generates a signal to be received by the broadcast individual as an individual observation result signal independent of the second relative position with respect to the observation target; and the signal generated by the signal processing unit is wireless Sent to the broadcast individual,
The broadcast individual generates an observation result signal based on the signal received as the individual observation signal from each of the plurality of distributed individuals. - 前記同報個体は、前記複数の分散個体のうちの1つである、請求項1記載の通信システム。 The communication system according to claim 1, wherein the broadcast individual is one of the plurality of distributed individuals.
- 前記観測対象の方向に配置され、前記観測信号としての信号を前記複数の分散個体のそれぞれ、及び前記同報個体に送信する標的個体を有する、請求項1または2記載の通信システム。 The communication system according to claim 1 or 2, further comprising a target individual arranged in the direction of the observation target and transmitting a signal as the observation signal to each of the plurality of distributed individuals and the broadcast individual.
- 前記標的個体から前記観測信号として送信される信号は、前記観測対象からの観測信号の周波数の整数分の一ないし有理数比の周波数の信号である、請求項3記載の通信システム。 The communication system according to claim 3, wherein the signal transmitted as the observation signal from the target individual is a signal having a frequency of an integer fraction or a rational number ratio of the frequency of the observation signal from the observation target.
- 前記同報個体及び前記複数の分散個体の少なくとも1つは、静止衛星、または長時間にわたって地球半球面をカバーすることができる高高度に滞在する衛星である、請求項1乃至4のいずれかに記載の通信システム。 At least one of the broadcast individual and the plurality of distributed individuals is a geostationary satellite or a satellite that stays at a high altitude that can cover the earth hemisphere for a long time. The communication system described.
- 前記同報個体から前記複数の分散個体のそれぞれに同報送信される信号は、3波以上の信号を含む請求項1乃至5のいずれかに記載の通信システム。 The communication system according to any one of claims 1 to 5, wherein a signal transmitted from the broadcast individual to each of the plurality of distributed individuals includes a signal of three or more waves.
- 前記同報個体から前記複数の分散個体のそれぞれに同報送信される信号は、複数波を合成した複数の離散、あるいは連続的なスペクトルをなす波で構成される、請求項1乃至6のいずれかに記載の通信システム。 The signal transmitted from the broadcast individual to each of the plurality of distributed individuals is composed of a plurality of discrete or continuous spectrum waves obtained by combining a plurality of waves. A communication system according to claim 1.
- 前記信号が、音波ないし光である、請求項1乃至7のいずれかに記載の通信システム。 The communication system according to any one of claims 1 to 7, wherein the signal is a sound wave or light.
- 観測対象からの観測信号を無線により受信する複数の分散個体と、前記観測対象からの観測信号を無線により受信するとともに、前記複数の分散個体に対して同報通信可能な同報個体とを有する通信システムにおける信号処理方法であって、
前記同報個体が、前記観測対象からの観測信号を受信して該観測信号に基づいた信号を生成し、前記観測信号に基づいた信号を所定の基準信号とともに前記複数の分散個体に無線にて同報送信する第1ステップと、
前記複数の分散個体のそれぞれが、
前記同報個体からの前記観測信号に基づいた信号及び前記基準信号、並びに前記観測対象から受信される前記観測信号から、当該分散個体と前記同報個体との第1相対位置及び当該分散個体と前記観測対象との第2相対位置に依存しない個別観測結果信号として前記同報個体にて受信されるべき信号を生成し、その生成された信号を無線にて前記同報個体に送信する第2ステップと、
前記同報個体が、前記複数の分散個体のそれぞれから前記個別観測信号として受信される前記信号に基づいて観測結果信号を生成する、信号処理方法。 A plurality of distributed individuals that wirelessly receive observation signals from the observation target, and a broadcast individual that receives the observation signals from the observation target wirelessly and can broadcast to the plurality of distributed individuals. A signal processing method in a communication system, comprising:
The broadcast individual receives an observation signal from the observation target, generates a signal based on the observation signal, and wirelessly transmits the signal based on the observation signal to the plurality of distributed individuals together with a predetermined reference signal. A first step of broadcasting,
Each of the plurality of distributed individuals is
From the signal based on the observation signal from the broadcast individual and the reference signal, and the observation signal received from the observation target, a first relative position between the distributed individual and the broadcast individual and the distributed individual A second signal that is to be received by the broadcast individual as an individual observation result signal independent of the second relative position with respect to the observation target is generated, and the generated signal is transmitted to the broadcast individual by radio. Steps,
The signal processing method, wherein the broadcast individual generates an observation result signal based on the signal received as the individual observation signal from each of the plurality of distributed individuals. - 前記通信システムは、前記観測対象の方向に配置され、前記観測信号としての信号を前記複数の分散個体のそれぞれ、及び前記同報個体に送信する標的個体を有し、
前記第1ステップでは、前記同報個体が、前記標的個体からの信号を前記観測信号として受信し、
前記複数の分散個体のそれぞれが、前記標的個体からの信号を前記観測信号として受信する、請求項9記載の信号処理方法。 The communication system is arranged in the direction of the observation target, and has a target individual that transmits a signal as the observation signal to each of the plurality of distributed individuals and the broadcast individual,
In the first step, the broadcast individual receives a signal from the target individual as the observation signal,
The signal processing method according to claim 9, wherein each of the plurality of distributed individuals receives a signal from the target individual as the observation signal. - 前記標的個体から前記観測信号として送信される信号は、前記観測対象からの観測信号の周波数の整数分の一ないし有理数比の周波数の信号である、請求項10記載の信号処理方法。 11. The signal processing method according to claim 10, wherein the signal transmitted as the observation signal from the target individual is a signal having a frequency of an integer fraction or a rational number ratio of the frequency of the observation signal from the observation target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019563 WO2019224894A1 (en) | 2018-05-22 | 2018-05-22 | Communication system and signal processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019563 WO2019224894A1 (en) | 2018-05-22 | 2018-05-22 | Communication system and signal processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019224894A1 true WO2019224894A1 (en) | 2019-11-28 |
Family
ID=68616926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019563 WO2019224894A1 (en) | 2018-05-22 | 2018-05-22 | Communication system and signal processing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019224894A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021224952A1 (en) * | 2020-05-07 | 2021-11-11 | 合同会社パッチドコニックス | Communication system and signal processing method |
CN114095112A (en) * | 2021-10-12 | 2022-02-25 | 北京长焜科技有限公司 | Long-distance access method based on 5G NR wireless communication technology |
WO2022254474A1 (en) * | 2021-05-31 | 2022-12-08 | 合同会社パッチドコニックス | Wireless observation system and signal processing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0837743A (en) * | 1994-07-22 | 1996-02-06 | Nissan Motor Co Ltd | Microwave transmitting device |
JPH09113615A (en) * | 1995-10-24 | 1997-05-02 | Nec Corp | Interferometry sar system |
JP2001309581A (en) * | 2000-04-24 | 2001-11-02 | Mitsubishi Electric Corp | Method of generating electric power with cosmic solar beam, system for solar power generation, power generation satellite, control satellite and power generation base |
US20160065006A1 (en) * | 2014-09-01 | 2016-03-03 | James Joshua Woods | Solar Energy Conversion and Transmission System and Method |
-
2018
- 2018-05-22 WO PCT/JP2018/019563 patent/WO2019224894A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0837743A (en) * | 1994-07-22 | 1996-02-06 | Nissan Motor Co Ltd | Microwave transmitting device |
JPH09113615A (en) * | 1995-10-24 | 1997-05-02 | Nec Corp | Interferometry sar system |
JP2001309581A (en) * | 2000-04-24 | 2001-11-02 | Mitsubishi Electric Corp | Method of generating electric power with cosmic solar beam, system for solar power generation, power generation satellite, control satellite and power generation base |
US20160065006A1 (en) * | 2014-09-01 | 2016-03-03 | James Joshua Woods | Solar Energy Conversion and Transmission System and Method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021224952A1 (en) * | 2020-05-07 | 2021-11-11 | 合同会社パッチドコニックス | Communication system and signal processing method |
WO2022254474A1 (en) * | 2021-05-31 | 2022-12-08 | 合同会社パッチドコニックス | Wireless observation system and signal processing method |
CN114095112A (en) * | 2021-10-12 | 2022-02-25 | 北京长焜科技有限公司 | Long-distance access method based on 5G NR wireless communication technology |
CN114095112B (en) * | 2021-10-12 | 2023-09-15 | 北京长焜科技有限公司 | Long-distance access method based on 5G NR wireless communication technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rajan et al. | Space-based aperture array for ultra-long wavelength radio astronomy | |
Nie et al. | Channel modeling and analysis of inter-small-satellite links in terahertz band space networks | |
Rajan et al. | Orbiting low frequency array for radio astronomy | |
WO2019224894A1 (en) | Communication system and signal processing method | |
US8102313B2 (en) | Retroreflecting transponder | |
CN109188434B (en) | SAR system based on frequency modulation continuous wave system and processing method thereof | |
JP6559432B2 (en) | Geolocation of interference using satellite constellations | |
RU2700166C1 (en) | Method of global active-passive multi-position satellite radar of earth surface and near-earth space and device for its implementation | |
Wang et al. | Integrated wireless sensor systems via near-space and satellite platforms: A review | |
Cecconi et al. | NOIRE study report: towards a low frequency radio interferometer in space | |
Marrero et al. | Architectures and synchronization techniques for distributed satellite systems: A survey | |
JP2015184276A5 (en) | ||
Enderle et al. | Space user visibility benefits of the multi-GNSS Space Service Volume: An internationally-coordinated, global and mission-specific analysis | |
Jamshed et al. | Synergizing airborne non-terrestrial networks and reconfigurable intelligent surfaces-aided 6G IoT | |
Kudriashov et al. | System design for the event horizon imaging experiment using the PECMEO concept | |
Yin et al. | Integrated sensing and communications enabled low earth orbit satellite systems | |
Zou et al. | Scisrs: Signal cancellation using intelligent surfaces for radio astronomy services | |
CN103323856A (en) | Method for locating non-cooperative wireless signal source based on high-rail three-satellite time-difference system | |
US11546083B2 (en) | Method, system and apparatus for time and frequency synchronization for high speed moving platforms | |
Sirbu et al. | Evaluation of different satellite navigation methods for the Moon in the future exploration age | |
Sun et al. | Enabling inter-satellite communication and ranging for small satellites | |
Merlano-Duncan et al. | A remote carrier synchronization technique for coherent distributed remote sensing systems | |
Ryerson | Passive satellite communication | |
RU2284550C2 (en) | Space automated system for taking control over moving objects | |
Xie et al. | Satellite navigation inter-satellite link technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18919946 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18919946 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |