WO2019224864A1 - Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby - Google Patents

Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby Download PDF

Info

Publication number
WO2019224864A1
WO2019224864A1 PCT/JP2018/019443 JP2018019443W WO2019224864A1 WO 2019224864 A1 WO2019224864 A1 WO 2019224864A1 JP 2018019443 W JP2018019443 W JP 2018019443W WO 2019224864 A1 WO2019224864 A1 WO 2019224864A1
Authority
WO
WIPO (PCT)
Prior art keywords
combination
rna
seq
grna
crrna
Prior art date
Application number
PCT/JP2018/019443
Other languages
French (fr)
Japanese (ja)
Inventor
山川 和弘
哲司 山形
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to PCT/JP2018/019443 priority Critical patent/WO2019224864A1/en
Publication of WO2019224864A1 publication Critical patent/WO2019224864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for enhancing the expression of SCN1A gene and a method for treating Drave's syndrome thereby.
  • the present invention also relates to an RNA or RNA expression vector for enhancing the expression of the SCN1A gene.
  • the present invention further relates to a cell having enhanced expression of the SCN1A gene and a cell preparation containing the cell.
  • a decrease in the expression level of the SCN1A gene is known to cause epilepsy and social behavioral abnormalities (Ogiwara et al., J. Neuroscie., 27: 5903-5914, 2007, Ogiwara et al., Hum Mol. Genet., 22: 4784-4804, 2013, and Ito et al., Neurobiol. Dis., 49: 29-40, 2013).
  • it is conceivable to introduce the SCN1A gene into the cell but it is a protein exceeding 200 kDa and it is difficult to introduce it into the cell because the gene size is large.
  • CRISPR-on system has been developed as a method to enhance gene expression from intracellular genomic DNA (Cheng et al., Cell Research, 23: 1163-1171, 2013, Mali et al., Science, 339 (6121) : 823-826, 2013, and Konermann et al., Nature, 517 (7536): 583-588, 2015).
  • the present invention provides a method for specifically enhancing the expression of the SCN1A gene.
  • the present invention also provides an RNA or RNA expression vector for specifically enhancing the expression of the SCN1A gene.
  • the present invention further provides cells having enhanced expression of the SCN1A gene and cell preparations containing the cells.
  • the present inventors have found that the expression of the SCN1A gene can be remarkably enhanced when the CRISPR-on system is used with a plurality of sites in the promoter region of the SCN1A gene as target sequences.
  • the present inventors have also found that the expression of the SCN1A gene can be effectively enhanced when any one or more of SEQ ID NOS: 1 to 8, particularly 4 or more are used as target sequences.
  • Drave's syndrome can be treated by enhancing the expression level of the SCN1A gene in inhibitory neurons of Drave's syndrome model mice.
  • RNAs which is a combination of gRNA or crRNA targeting at least one Cas9 endonuclease binding site present on the promoter region of the SCN1A gene.
  • RNA combination according to [1] above which is a combination of gRNA or crRNA targeting at least four Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene.
  • RNA combination according to [1] or [2] above, [1] One RNA selected from the group consisting of the following (1) to (4) or a combination of 2 to 4 RNAs: [2] One RNA selected from the group consisting of the following (5) to (8) or a combination of two to four RNAs, or [3] 2 selected from the group consisting of the following (1) to (8) ⁇ 8 RNA combinations: (1) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 1, (2) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 2, (3) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 3, (4) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 4, (5) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 5, (6) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 6, (7) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 7, and (8) gRNA or crRNA targeting the sequence represented by SEQ ID NO:
  • RNAs according to [3] which is a combination of RNAs according to [1].
  • [5] The combination of RNAs described in [4] above, which includes all the gRNAs described in (1) to (4) or all the crRNAs described in (1) to (4).
  • [6] The combination of RNAs according to [3] above, which is a combination of RNAs according to [2].
  • [7] A combination of RNAs according to [5] above, comprising all the gRNAs according to (5) to (8) or all the crRNAs according to (5) to (8).
  • RNA according to [3] which is a combination of four or more gRNAs selected from the group consisting of (1) to (8) or a combination of crRNAs Combination.
  • An RNA expression vector comprising each of the nucleic acids contained in the nucleic acid combination according to [10] capable of expression.
  • a medicine or combination medicine comprising the RNA or the combination of RNAs according to any one of [1] to [9] above.
  • a medicine or combination medicine comprising the RNA expression vector according to [11] above.
  • a eukaryotic cell that stably expresses the RNA or the combination of RNAs described in [1] to [9] above.
  • a cell preparation comprising the eukaryotic cell according to [14] above.
  • the combination of the above [1] to [10], the RNA expression vector of [11], or the above [14] for use in treating a disease caused by a decrease in the expression level of the SCN1A gene A medicament comprising the eukaryotic cell described in 1.
  • the disease caused by the decreased expression level of the SCN1A gene is any one disease selected from the group consisting of Dravet syndrome, febrile convulsions plus, autism, intellectual disability, and epilepsy in Alzheimer's disease.
  • FIG. 1 is a schematic diagram showing the translation start point and the upstream region of the human SCN1A gene. The positional relationship between multiple transcripts of the human SCN1A gene and the designed target sequence of gRNA is shown.
  • FIG. 2 is a schematic diagram showing the translation start point and upstream region of the mouse Scn1a gene. The positional relationship between a plurality of transcripts of the mouse Scn1a gene and the target sequence of the designed gRNA is shown.
  • FIG. 3 is a diagram showing the effect of increasing the transcript of the human SCN1A gene using the CRISPR-on system by semi-quantitative RT-PCR in human cultured cells (HEK293FT).
  • FIG. 1 is a schematic diagram showing the translation start point and the upstream region of the human SCN1A gene. The positional relationship between multiple transcripts of the human SCN1A gene and the designed target sequence of gRNA is shown.
  • FIG. 2 is a schematic diagram showing the translation start point and upstream region of the mouse Scn1a gene
  • FIG. 4 shows the effect of increasing the transcriptional product of the mouse Scn1a gene using the CRISPR-on system by semi-quantitative RT-PCR in mouse cultured cells (Neuro2A).
  • FIG. 5 is a diagram showing the effect of increasing the transcription product of the mouse Scn1a gene using the CRISPR-on system by Northern blot analysis. In mouse cultured cells (Neuro2A), when transcription was activated using a combination of four gRNAs for the mouse Scn1a gene, the expression level of the full-length transcription product (mRNA) of the gene could be greatly increased.
  • FIG. 6 shows a schematic diagram of the construction of the targeting vector Ai-VPR prepared in Example and the insertion site on the genome.
  • FIG. 7 shows that dCAS-VPR was expressed in Neuro2a cells.
  • FIG. 8 shows that the expression of the endogenous SCN1A gene was improved using gRNA targeting dCAS-VPR and the promoter of the SCN1A gene.
  • FIG. 9 shows the insertion strategy of targeting vector Ai-VPR into the wild type allele of mouse ES cells.
  • FIG. 10 shows that 4 strains (5D, 5E, 7H and 9G) were obtained as ES cells into which Ai-VPR was inserted.
  • FIG. 11 shows the design positions of each primer for verifying the production of transgenic mice expressing dCAS9-VPR in a CRE-dependent manner.
  • FIG. 12 shows amplification products obtained by the primers described in FIG. 11 using the obtained transgenic mouse genome as a template.
  • FIG. 13 shows the design positions of primers in dCAS9-VPR allele before and after recombination with Cre in Rosa26 allyl.
  • FIG. 14 shows the amplification products by the primers described in FIG. 13 using the obtained transgenic mouse genome as a template.
  • FIG. 15 shows that the obtained mouse expresses dCAS9-VPR in a Cre-dependent manner.
  • FIG. 16 is a view of dCAS9-VPR positive cells observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, and cerebellum by immunohistochemical staining.
  • FIG. 17 shows a crossover method for obtaining a Drave syndrome syndrome mouse that expresses dCAS9-VPR in a Vgat-dependent manner.
  • FIG. 18 shows the survival curves of mice of each genotype.
  • “dCAS” indicates that dCAS9-VPR has been incorporated
  • “1A” indicates that the one-sided allele of the SCN1A gene has a nonsense mutation of R1407X
  • “Cre” indicates Vgat-Cre recombinase. Indicates that it has acted.
  • FIG. 19 shows a method for constructing a gRNA-expressing adeno-associated virus (AAV) vector targeting the SCN1A gene.
  • FIG. 20 shows the administration of a gRNA-expressing adeno-associated virus (AAV) vector targeting the SCN1A gene and the time schedule for various analyses.
  • FIG. 21 shows the sensitivity of heat-induced seizures in the treatment and control groups.
  • FIG. 22 shows the time course of the sensitivity of heat-induced convulsive seizures in the treatment group and the control group.
  • CRISPR / Cas9 system is a clustered regularly interspaced short palindromic repeats / CRISPR-associated protein (CRISPR / Cas) system discovered as acquired immunity of eubacteria and archaea. System (Jinek, M., et al. (2012) Science 337, 816-821). Specifically, a plurality of cassettes into which the fragmented foreign DNA (20 bp) has been incorporated are repeated in the genomic region called the bacterial CRISPR region, and different foreign DNAs are incorporated into each cassette. Yes. Each cassette is considered to be generated by fragmenting DNA of a foreign organism (for example, phage) into cells and incorporating it into the CRISPR region.
  • a foreign organism for example, phage
  • crRNA has a protospacer sequence and a sequence complementary to trans-crRNA (tracrRNA) described later.
  • the protospacer sequence is 20 nucleotides long and has a sequence complementary to the target DNA sequence.
  • the protospacer sequence need not have 100% complementarity with the target sequence, and mismatch is allowed in the region of 6 nucleotides from the 5 ′ end.
  • crRNA forms a complex with trans-crRNA (tracrRNA) that is separately transcribed via a complementary portion.
  • the complex of crRNA and tracrRNA forms an additional complex with Cas9 endonuclease.
  • the protospacer moiety in the crRNA hybridizes complementary to the foreign DNA, thereby leading the Cas9 endonuclease to the target sequence of the foreign DNA.
  • the foreign DNA is cleaved by the Cas9 endonuclease at the site of the target sequence, and the CRISPR / Cas9 system protects the host from the foreign DNA.
  • the CRISPR / Cas9 system was discovered by eubacteria and archaea functioning as acquired immunity against new foreign DNA. By designing a protospacer made of foreign DNA, the genome of a mammal can be obtained.
  • the CRISPR / Cas9 system has rapidly spread to the world as a genome editing system because it can be sequence-dependently cleaved and thereby the mammalian genome can be edited.
  • the system currently used mainly is the second type CRISPR / Cas9 system derived from S. pyogenes .
  • Cas9 means an endonuclease having an activity of cleaving DNA such as genomic DNA in the CRISPR / Cas9 system.
  • Cas9 is synonymous with “Cas9 endonuclease” and is used interchangeably.
  • the Cas9 endonuclease is hybridized to the target sequence in a complementary manner by a 20 bp protospacer from the 5 ′ side of the crRNA as described above, and the Cas9 endonuclease is guided to the target sequence.
  • Cas9 endonuclease has two endonuclease domains (RuvC1-like nuclease domain and HNH-like nuclease domain), each of which cleaves each strand of double-stranded DNA, resulting in double-strand breaks in the target sequence.
  • the CRISPR / Cas9 system can lead the endonuclease Cas9 to foreign DNA in a sequence-specific manner, thereby degrading the foreign DNA.
  • the target sequence is generally known to have a protospacer adjacent motif (PAM) immediately thereafter.
  • the PAM sequence is 5′-NGG (where N is A, T, G or C) in the case of S. pyogenes .
  • PAM sequences vary depending on the species of Cas9 endonuclease.
  • dCas9 is Cas9 in which the endonuclease activity of the two endonuclease domains of the Cas9 endonuclease is inactivated. Amino acid mutations corresponding to D10A and H840A can be introduced into Cas9 to inactivate the endonuclease.
  • the crRNA and tracrRNA lead dCas9 to the target sequence on the genomic DNA, but do not cleave the genomic DNA because it does not have endonuclease activity.
  • dCas9 can be used to recruit the transcriptional activation protein onto the genomic DNA in a sequence-specific manner by linking with the transcriptional activation protein.
  • crRNA means crRNA in the CRISPR / Cas9 system, and is RNA having a protospacer portion and a portion that hybridizes with tracrRNA. It is produced as pre-crRNA from the CRISPR region on the bacterial genome and processed into mature crRNA by the action of RNaseIII and the like. crRNA requires complex formation with tracrRNA to direct Cas9 endonuclease or dCas9 to the target sequence.
  • the protospacer sequence of crRNA has a sequence complementary to the target sequence or its complementary strand (however, a mismatch of 1 to several bases is allowed).
  • tracrRNA means tracrRNA in the CRISPR / Cas9 system, and hybridizes with crRNA. It is transcribed as pre-trasrRNA from the CRISPR region on the bacterial genome and processed into mature tracrRNA by the action of RNaseIII and the like.
  • gRNA guide RNA
  • sgRNA single-stranded guide RNA
  • crRNA and tracrRNA are hybridized under physiological conditions to form a hairpin structure at the junction.
  • Cas9 can form a complex with gRNA having a hairpin structure.
  • crRNA and tracrRNA to be ligated may be full-length, mature type, or matured by removing unnecessary sequences (mainly 3 ′ side) from mature type sequences. It is known that it may be a partial sequence of a type sequence (Jinek, M., et al. (2012) Science 337, 816-821).
  • gRNA has crRNA and tracrRNA in the molecule and can bind to Cas9 endonuclease or dCas9
  • gRNA alone can lead Cas9 endonuclease or dCas9 to the target sequence.
  • CRISPR-on or “CRISPR-ON” means transcriptional activity in a sequence-specific manner using a fusion protein of Cas9 (dCas9) in which endonuclease activity is inactivated and transcriptional activation protein. This refers to a system that binds a protein to a promoter region and thereby activates the expression of a gene driven by the promoter.
  • dCas9 Cas9
  • the dCas9 fusion protein that can be used in the CRISPR-on system is not particularly limited, and examples thereof include a dCas9-VP48 fusion protein, a dCas9-VP64 fusion protein, a dCas9-VP96 fusion protein, a dCas9-VP160 fusion protein, and a dCas-VPR fusion protein. It is done.
  • subject means a mammal, and in particular can be a human.
  • treatment is used to mean “treatment” and “prevention”. Therefore, in the present specification, the “pharmaceutical composition used for treating Drave syndrome” means a pharmaceutical composition (for example, a therapeutic or preventive agent for Drave syndrome) used for treating or preventing Drave syndrome. .
  • treatment means treatment, cure, prevention or amelioration of a disease or disorder or a reduction in the rate of progression of a disease or disorder.
  • prevention means reducing the likelihood of the onset of a disease or condition or delaying the onset of a disease or condition.
  • the “SCN1A gene” is a gene encoding Nav1.1, which is one of the ⁇ subunits of voltage-gated sodium channels. Nav1.1 is known to be expressed in the central nervous system in humans. SCNA1 gene mutation is also called febrile convulsions + (Generalized Epilepsy with Febrile Seizures Plus: GEFS +) or Drave syndrome (formerly "infant severe myoclonic epilepsy", but this designation is sometimes called myoclony It has been observed in a wide range of epilepsy patients, including Studies using heteroknock-in mice introduced with the nonsense mutation R1407X of Scn1a reveal that the Scn1a gene is responsible for epilepsy (Ogiwara et al., J.
  • SCN1A gene is used to include orthologs of mouse and other species of SCN1A gene in addition to human SCN1A gene.
  • the “promoter region of the SCN1A gene” means a region related to transcription activation or repression of the SCN1A gene.
  • the human SCN1A gene it is known that there are four non-coding exons, exon A, exon B, exon C and exon D, upstream of the translation start point (Nakayama T., ⁇ et al., Hum. Mutat., 31 (7): 820-829, 2010).
  • “combination” means a combination of two or more different components. In combination, the components may be included in separate forms or mixed.
  • the present inventors have clarified that transcription of the SCN1A gene can be activated by the CRISPR-on system that targets a plurality of sites in the promoter region of the SCN1A gene.
  • the present inventors have shown that transcription of the SCN1A gene can be activated by the CRISPR-on system that targets four or more sites in the promoter region of the SCN1A gene.
  • dCas-transcription activating protein fusion protein can be used as a common component.
  • the dCas-transcription activating protein fusion protein can have a nuclear translocation signal.
  • the transcription of the SCN1A gene can be activated by providing as many crRNAs or gRNAs corresponding to the target sequences as the number of target sequences.
  • the transcriptionally activated SCN1A gene can be a gene that encodes a functional or reduced function SCN1A.
  • an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene A combination of is provided. Since the Cas9 endonuclease binding site may exist only immediately before the PAM sequence as described above, those skilled in the art should determine the promoter region sequence from among the sequences of the promoter region in consideration of the PAM sequence required by the Cas9 endonuclease. Can do.
  • promoter region 1 the region upstream -1 to ⁇ 600 of exon A
  • promoter region 2 The Cas9 endonuclease binding site present on
  • RNA is provided that are combinations of gRNAs or crRNAs that target three or more than four Cas9 endonuclease binding sites.
  • exon A is a region starting from the first base of, for example, variant 1 (Genbank accession number: NM_001165963.1) of the SCN1A transcript.
  • Exon B is a region starting from the first base of, for example, variant 3 (Genbank accession number: NM_001165964.1) of the SCN1A transcript.
  • an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene A combination of is provided. Further according to the present invention, an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene A combination of is provided.
  • a combination of gRNA and a combination of crRNA which have any one, two, three or four of the sequences shown in SEQ ID NOs: 1 to 4 in the promoter region 1 as target sequences.
  • the present invention also provides gRNA and crRNA that target any one, two, three, or four of the sequences shown in SEQ ID NOs: 5 to 8 in the promoter region 2.
  • the present invention further provides gRNA and crRNA targeting any one of 1, 2, 3, 4, 5, 6, 7, or 8 of the sequences represented by SEQ ID NOs: 1 to 8 in the promoter region. Is done.
  • sequence represented by SEQ ID NO: n can be read as “sequence on the promoter region of the SCN1A gene corresponding to the sequence represented by SEQ ID NO: n” (where n is 1 to 8). One of the integers).
  • gRNA or crRNA having a base sequence that hybridizes in a physiological environment to “a sequence on the promoter region of the SCN1A gene corresponding to the sequence represented by SEQ ID NO: n” is also referred to as “SEQ ID NO: n
  • SEQ ID NO: n One skilled in the art will understand that they can be used in the same manner as gRNA or crRNA having the “sequence shown”.
  • RNA or RNA combination of any of [1A]-[3A] is provided below: [1A] one RNA selected from the group consisting of the following (1A) to (4A) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs), [2A] 1 RNA selected from the group consisting of the following (5A) to (8A) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3A] and below (1A) to (8A) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs): (1A) gRNA targeting the sequence represented by SEQ ID NO: 1, (2A) gRNA targeting the sequence shown in SEQ ID NO: 2, (3A) gRNA targeting the sequence shown in SEQ ID NO: 3, (4A) gRNA targeting the sequence shown in SEQ ID NO: 4, (5A) gRNA targeting the sequence shown in SEQ ID NO: 5, (6A) gRNA targeting the sequence shown in SEQ ID NO:
  • RNA or RNA combination of any of [1B]-[3B] is provided below: [1B] one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs), [2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs): (1B) crRNA targeting the sequence represented by SEQ ID NO: 1, (2B) crRNA targeting the sequence shown in SEQ ID NO: 2, (3B) crRNA targeting the sequence shown in SEQ ID NO: 3, (4B) crRNA targeting the sequence shown in SEQ ID NO: 4, (5B) crRNA targeting the sequence shown in SEQ ID NO: 5, (6B) crRNA targeting the sequence shown in SEQ ID NO: 6, (7B)
  • any RNA or combination of RNAs from [1B ′] to [3B ′] is provided: [1B ′] a combination of one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA; [2B ′] a combination of one RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA, or [ 3B ′] a combination of 2 to 8 RNAs selected from the group consisting of the following (1B) to (8B) (particularly a combination of 4 or more RNAs) and a nucleic acid encoding tracrRNA: (1B) crRNA targeting the sequence represented by SEQ ID NO: 1, (2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
  • gRNA and crRNA may have an RNA sequence complementary to the target sequence or its complementary strand at the 5 'end.
  • the RNA sequence complementary to the target sequence of gRNA and crRNA or its complementary strand can be designed based on the sequence of the target sequence or its complementary strand.
  • nucleic acids encoding the gRNA and crRNA of the present invention are provided.
  • the present invention also provides a combination of nucleic acids encoding each of the plurality of gRNAs of the present invention and a combination of nucleic acids encoding each of the plurality of crRNAs.
  • the combination of nucleic acids means a combination of nucleic acids encoding each of a plurality of gRNAs.
  • nucleic acids encoding gRNAs targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
  • each gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on promoter region 1 and / or promoter region 2 of the SCN1A gene is encoded.
  • Nucleic acid combinations are provided which are nucleic acid combinations or nucleic acid encoding each crRNA.
  • a nucleic acid combination encoding each gRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
  • nucleic acid combination encoding each gRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
  • RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs), [2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs): (1B) crRNA targeting the sequence represented by SEQ ID NO: 1, (2B) crRNA targeting the sequence shown in SEQ ID NO: 2, (3B) crRNA targeting the sequence shown in SEQ ID NO: 3, (4B) crRNA targeting the sequence shown in SEQ ID NO: 4, (5B) crRNA targeting the sequence shown in SEQ ID NO: 5, (6B)
  • the following provides a combination of nucleic acids encoding each RNA of any of [1B ′] to [3B ′]: [1B ′] a combination of one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA; [2B ′] a combination of one RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA, or [ 3B ′] a combination of 2 to 8 RNAs selected from the group consisting of the following (1B) to (8B) (particularly a combination of 4 or more RNAs) and a nucleic acid encoding tracrRNA: (1B) crRNA targeting the sequence represented by SEQ ID NO: 1, (2B) crRNA targeting the sequence shown in S
  • an RNA expression vector that allows a cell to express the RNA or RNA combination of the present invention.
  • a nucleic acid encoding gRNA or crRNA is operably linked to an RNA expression promoter.
  • the RNA expression promoter is not particularly limited.
  • the RNA polymerase III promoter can be used, and for example, the U6 promoter can be used.
  • the RNA expression vector of the present invention can be a vector in which a plurality of nucleic acids can be expressed on one RNA expression vector so that the combination of RNAs of the present invention can be expressed.
  • the plurality of RNA expression vectors is a combination of a plurality of RNA expression vectors, and may be a combination of vectors capable of expressing the combination of RNAs of the present invention by combining the plurality of RNA expression vectors.
  • each RNA expression vector may express one different RNA.
  • the combination of RNAs defined in [1A] above may be incorporated on one RNA expression vector, or may be incorporated on a plurality of RNA expression vectors. It may be incorporated on the RNA expression vector.
  • the RNA combination defined in [2A] above may be incorporated on one RNA expression vector, or may be incorporated separately on a plurality of RNA expression vectors, or each RNA May be incorporated on another RNA expression vector.
  • the RNA combination defined in [3A] above may be incorporated on one RNA expression vector, or may be incorporated separately on a plurality of RNA expression vectors, or each RNA May be incorporated on another RNA expression vector.
  • crRNA may be incorporated on one RNA expression vector and tracrRNA may be incorporated on another RNA expression vector.
  • the RNA expression vector encodes each gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene.
  • the RNA expression vector may be, for example, at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 and / or the promoter region 2 of the SCN1A gene.
  • a combination of nucleic acids that is a combination of nucleic acids encoding each of the gRNAs targeted to or a combination of nucleic acids that encode each of the crRNAs.
  • the RNA expression vector also includes, for example, gRNAs targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene.
  • RNA expression vector so that it can be expressed in eukaryotic cells.
  • the RNA expression vector may be, for example, a gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene.
  • a combination of nucleic acids that is a combination of nucleic acids encoding each crRNA is contained in an RNA expression vector so that it can be expressed in eukaryotic cells.
  • RNA expression vector according to any of [4A] to [6A] below: [4A] one RNA expression vector selected from the group consisting of the following (1A) to (4A) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), [5A] One RNA expression vector selected from the group consisting of the following (5A) to (8A) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6A] or less (1A ) To (8A) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors): (1A) an RNA expression vector comprising a gene encoding a gRNA that targets the sequence represented by SEQ ID NO: 1 so that it can be expressed; (2A) an RNA expression vector comprising a gene encoding the gRNA targeting the sequence represented by SEQ ID NO: 2 so as to allow expression; (3
  • an RNA expression vector or a combination of RNA expression vectors described in any of [4D] to [6D] below and a combination of an expression vector that expresses tracrRNA [4D] one RNA expression vector selected from the group consisting of the following (1D) to (4D) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), [5D] One RNA expression vector selected from the group consisting of (5D) to (8D) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6D] or less (1D ) To (8D) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors): (1D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 1 so that it can be expressed; (2D) an RNA expression vector comprising a gene en
  • the RNA expression vector can be, for example, a plasmid vector or a viral vector.
  • a viral vector vectors capable of introducing various genes such as a lentiviral vector, measles virus vector, Sendai virus vector and the like can be used.
  • a person skilled in the art can appropriately select a vector and construct a vector that expresses the gRNA and crRNA of the present invention.
  • a combination medicament comprising the gRNA or combination of gRNAs of the present invention or a combination of crRNA or crRNA.
  • the combination medicine may be a medicine containing each of a plurality of gRNAs or crRNAs in a separate form, that is, a combination of pharmaceutical compositions, or a single medicine containing a plurality of gRNAs or crRNAs in a mixed form. It may be a medicine, i.e. a pharmaceutical composition.
  • the combination medicine may be a medicine containing a plurality of RNA expression vectors expressing gRNA or crRNA in separate forms, that is, a combination of pharmaceutical compositions, or express each of a plurality of gRNA or crRNA. It is also possible to use a single medicine, that is, a pharmaceutical composition, containing a plurality of RNA expression vectors in a mixed form.
  • the pharmaceutical composition may further comprise a pharmaceutically acceptable excipient, carrier or diluent.
  • a pharmaceutically acceptable excipient such as a pharmaceutically acceptable excipient, carrier or diluent.
  • “Pharmaceutically acceptable” has the meaning normally used in the pharmaceutical industry and, in some cases, a molecular entity or composition that does not cause allergic or similar adverse reactions when administered to humans. It is possible to use such as.
  • such compositions are prepared as liquid solutions or suspensions as injections, and solid dosage forms suitable for dissolution or suspension in liquid prior to injection can also be prepared. The preparation can also be emulsified.
  • Excipients, carriers or diluents include, for example, any solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions. Suspensions, colloids, etc. are included.
  • Phosphate, citrate, and other organic acid salt buffers include ascorbic acid; low molecular weight (less than about 10 amino acid residues) polypeptide; protein (eg, serum albumin, gelatin, or immunoglobulin) Hydrophobic polymers (eg polyvinylpyrrolidone); amino acids (eg glycine, glutamine, asparagine, arginine or lysine); monosaccharides, disaccharides and other carbohydrates including glucose, mannose or dextran; chelating agents such as EDTA; Examples include sugar alcohols such as sorbitol; salt-forming counterions such as sodium; and / or nonionic surfactants (eg, polyoxyalkylenes).
  • compositions for pharmaceutically active substances are well known in the art. Except insofar as any conventional media or substance is incompatible with the active ingredient, its use in the therapeutic composition is envisioned. Supplementary active ingredients can also be incorporated into the compositions.
  • various surfactants used in the preparation may be used.
  • the type of the surfactant is not particularly limited, and examples thereof include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Among these, nonionic surfactants are preferable.
  • Nonionic surfactants include, for example, polyoxyalkylene nonionic surfactants such as polyoxyethylene monoalkyl ether or polyoxyethylene monoaryl ether; higher fatty acid esters of polyhydric alcohols (eg, sorbitan, sorbitol); and And those obtained by polymerizing and adding ethylene oxide to a higher fatty acid ester of a polyhydric alcohol.
  • polyoxyalkylene nonionic surfactants such as polyoxyethylene monoalkyl ether or polyoxyethylene monoaryl ether
  • higher fatty acid esters of polyhydric alcohols eg, sorbitan, sorbitol
  • the combination medicament of the present invention may further contain a fusion protein of dCas9 and a transcriptional activation protein or an expression vector of a fusion protein of dCas9 and a transcriptional activation protein in separate forms or mixed forms.
  • the combination medicament of the present invention may further contain tracrRNA or an expression vector of tracrRNA in a separate form or a mixed form so that crRNA forms a complex with the fusion protein.
  • the RNA combination of the present invention may be provided in combination with a fusion protein of dCas9 and a transcription activation protein. Therefore, the present invention provides a combination of the RNA combination of the present invention and a fusion protein of dCas9 and a transcription activation protein.
  • the DNA combination and RNA expression vector combination of the present invention may be provided in combination with a nucleic acid encoding a fusion protein of dCas9 and a transcription activation protein or an expression vector expressing the nucleic acid.
  • the present invention provides a combination of a DNA combination or RNA expression vector combination of the present invention and a nucleic acid encoding a fusion protein of dCas9 and a transcription activation protein or an expression vector expressing the nucleic acid.
  • the RNA combination, DNA combination, and RNA expression vector of the present invention may be provided as a CRISPR-on system containing them.
  • the CRISPR-on system can include, for example, a fusion protein of dCas9 and a transcription activation protein in addition to the RNA combination, DNA combination, and RNA expression vector of the present invention.
  • the expression level of the SCN1A gene can be determined by an expression level measurement method well known to those skilled in the art. For example, gene expression can be confirmed by various methods such as quantitative PCR, Northern blotting, ELISA using anti-SCN1A protein antibody, Western blotting, immunohistological staining, and the like. Whether or not the expression level of the SCN1A gene has increased can be determined by comparing the expression level before and after the introduction of the SCN1A gene. If desired, cells known to express the SCN1A gene (for example, healthy subjects) In comparison with other cells).
  • the gRNA of the present invention or a combination of gRNA is introduced into a cell in combination with a fusion protein of dCas9 and a transcription activation protein, a complex of gRNA and the fusion protein is formed.
  • the formed complex is guided to a target sequence on the genomic DNA in the cell and activates transcription of the SCN1A gene.
  • the crRNA or crRNA combination of the present invention forms a complex of crRNA, tracrRNA and fusion protein when introduced into a cell in combination with a fusion protein of tracrRNA and dCas9 and a transcriptional activation protein. .
  • the formed complex is guided to a target sequence on the genomic DNA in the cell and activates transcription of the SCN1A gene.
  • the DNA or DNA combination of the present invention can be used, for example, to obtain the gRNA or crRNA of the present invention or to amplify the DNA or DNA combination of the present invention.
  • the DNA or DNA combination of the invention can be operably linked to a suitable promoter and used to produce the gRNA or crRNA of the invention in vitro or in a cell.
  • the DNA or DNA combination of the present invention can be cloned into a plasmid having an origin of replication that amplifies in E. coli and amplified in E. coli.
  • the DNA or DNA combination of the present invention can be amplified by PCR.
  • the gRNA expression vector of the present invention can be used in combination with an expression vector that expresses a fusion protein of dCas9 and a transcription activation protein.
  • the crRNA expression vector of the present invention can be used in combination with a tracrRNA RNA expression vector and an expression vector that expresses a fusion protein of dCas9 and a transcription activation protein.
  • an expression vector can be introduced into the cell.
  • Introduction of the expression vector into the cell can be performed by a person skilled in the art by a well-known technique.
  • plasmid vectors can be introduced into cells by methods such as electroporation, calcium phosphate, lipofection, and shotgun methods.
  • when introduced into a mammal individual it is administered by various administration methods such as intravenous administration, intramuscular administration, subcutaneous administration, intraperitoneal administration, and intraventricular administration using a viral vector that infects the mammal. be able to.
  • the expression vector introduced into the cell expresses the gRNA, crRNA and tracrRNA of the present invention in the cell, and the expression vector expressing the fusion protein expresses the fusion protein and binds to the target sequence of the genome in the cell. Then, the transcription of the SCN1A gene is activated.
  • the cell that enhances the expression of the SCN1A gene is preferably a human nerve cell, preferably a human inhibitory nerve cell, more preferably a parvalbumin positive inhibitory nerve cell.
  • the SCN1A gene can be expressed in human inhibitory neurons, more preferably in parvalbumin positive inhibitory neurons.
  • the expression level can be improved.
  • eukaryotic cells (especially human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons) that stably express the RNA or RNA combination of the present invention and the cells are used.
  • a cell preparation comprising is provided.
  • the eukaryotic cell and cell preparation of the present invention the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcription activation protein. Methods for stably expressing RNA in eukaryotic cells are well known to those skilled in the art.
  • the cell preparation means a pharmaceutical composition containing cells as a therapeutically active ingredient.
  • eukaryotic cells stably expressing any one of RNAs or combinations of RNAs [1A] to [3A] (particularly human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons).
  • a cell preparation comprising the eukaryotic cell ⁇ wherein the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcriptional activation protein ⁇ : [1A] one RNA selected from the group consisting of the following (1A) to (4A) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs), [2A] 1 RNA selected from the group consisting of the following (5A) to (8A) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3A] and below (1A) to (8A) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs): (1A) gRNA targeting the sequence represented by SEQ ID NO: 1, (2A) gRNA targeting the sequence shown in SEQ ID NO: 2, (3A) gRNA targeting the sequence shown in SEQ ID NO: 3, (4A) gRNA targeting the sequence shown in SEQ ID NO: 4, (5A) gRNA targeting
  • eukaryotic cells stably expressing any one of RNAs or combinations of RNAs [1B] to [3B] (particularly human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons).
  • a cell preparation comprising the eukaryotic cell ⁇ wherein the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcriptional activation protein ⁇ : [1B] one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs), [2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs): (1B) crRNA targeting the sequence represented by SEQ ID NO: 1, (2B) crRNA targeting the sequence shown in SEQ ID NO: 2, (3B) crRNA targeting the sequence shown in SEQ ID NO: 3, (4B) crRNA targeting the sequence shown in SEQ ID NO: 4, (5B) crRNA targeting the sequence shown in S
  • a eukaryotic cell in particular, a human neuron, preferably a human inhibitory neuron, more preferably a parvalbumin positive inhibitory neuron that stably expresses any RNA or combination of RNAs of [1B ′] to [3B ′].
  • a method for increasing the expression of an SCN1A gene which targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene
  • a method comprising activating transcription of the SCN1A gene using crRNA.
  • a method for treating a disease in a subject in need thereof which targets at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene
  • a method comprising activating transcription of the SCN1A gene using a gRNA or crRNA as defined above.
  • the target disease may be a disease caused by a decrease in the expression level of the SCN1A gene, and the expression level of the SCN1A gene is decreased.
  • the subject may have a disease caused by.
  • the disease to be treated can be epilepsy.
  • the disease to be treated can be Drave syndrome.
  • the disease being treated can be febrile convulsions +.
  • the disease to be treated can be social behavioral abnormalities such as autism.
  • the disease to be treated can be epilepsy in Alzheimer's disease.
  • a subject can be a subject having a functional SCN1A and a mutant SNC1A (eg, nonsense mutation and frameshift mutation).
  • the mutation SNC1A is S103G, T112I, G177fs, G265W, R712X, Q732fs, R946fs, R952X, R946fs, D958fs, M960V, N985I, R1204X, R1213X, S1231R, W1284W, X8, 1685 F1765fs, 1807delMFYE, W1812G, F1831S, R1892X, and Q1904fs.
  • X represents a nonsense mutation
  • fs represents a frameshift mutation.
  • S103G represents that the 103rd S (serine) in the amino acid sequence is mutated to G (glycine).
  • the medicament, combination medicament and cell preparation of the invention are for use in treating febrile convulsions +, for use in treating epilepsy, for use in treating epilepsy.
  • Pharmaceuticals, combination pharmaceuticals for use in treating diseases caused by decreased activity and / or expression of the SCN1A gene, for use in treating social behavioral abnormalities such as autism And can be cell preparations.
  • RNA or RNA of the invention for use in treating epilepsy, for use in treating Drave syndrome, for use in treating febrile seizure +, or to treat social behavioral abnormalities such as autism
  • the RNA or RNA of the invention for the manufacture of a medicament, combination medicament and cell preparation for use in treating a disease caused by a decrease in the activity and / or expression of the SCN1A gene Or the use of DNA or a combination of DNAs or expression vectors.
  • Example 1 Design and production of gRNA
  • a gRNA targeting the promoter region of the Scn1a gene was designed and produced.
  • the human genome sequence was the sequence of GRCh37 / hg19 data set from UCSC Genome Browser.
  • sequence of the promoter region of the mouse Scn1a gene the genomic DNA sequence of C57BL / 6J strain was used.
  • 5′-NGG-3 ′ Proto-spacer Adjacent Motif (PAM) sequence of CAS9 protein existing in the region of about 600 bp to 850 bp upstream of the major translation initiation site in the promoter region.
  • the target sequence of gRNA was selected from the 20-bp side.
  • a total of 18 gRNA sequences were designed in 4 places (hSC1U1-4, hSC1D1-4) for humans and 5 places (mSC1U1-5, mSC1D1-5) for mice.
  • the target specificity of the selected sequence was confirmed by homology search using the NCBI nucleotide sequence database and the BLAST program to be a sequence that does not completely match other regions in the human or mouse genomic sequence.
  • a sequence that does not have a continuous homologous base sequence of 17 bp or more has a small number of homologous partial sequences, and is not located at the 3'-end even if the homologous partial sequence is 17 bp or less is selected.
  • plasmid DNA was prepared.
  • a vector (MLM3636, addgene: Plasmmid # 43860) that expresses gRNA with the U6 promoter was obtained from Addgene. Similar to the production method of Maeder ML et al., Nat Methods., 10 (10): 977-93, 2013, 20 bases with a 4 base overhanging end complementary to the cleavage site of the restriction enzyme BsmBI of the vector were added.
  • a double-stranded DNA fragment was prepared by synthesizing the target sequence and its complementary strand, and incorporated into an MLM3636 vector cleaved with restriction enzyme BsmBI using DNA-Ligation-kit-Ver2.1 (Takara Bio Inc.).
  • dCAS9-VPR gene an expression vector (SP-dCas9-VPR, addgene: lasPlasmid # 63798) using a CMV promoter was obtained from Addgene.
  • the plasmid DNAs of the gRNA expression vector and the dCAS9-VPR gene expression vector were purified using Qiagen Hispeed Plasmid Midi Kit. Note that dCAS9 is a mutant in which the enzymatic functions of the two DNA endonuclease domains of wild-type CAS9 are both destroyed and DNA cannot be cleaved.
  • Example 2 Evaluation of gene expression
  • gene expression was controlled using the prepared plasmid.
  • HEK293FT cells human or Neuro2a cells (mouse) were cultured at 37 ° C. with a carbon dioxide concentration of 5%. Cultured under. In order to introduce plasmid DNA, the cultured cells are seeded at a density of 5 ⁇ 10 4 cells / mL for HEK293FT cells and 1 ⁇ 10 5 cells / mL for Neuro2a cells on a 6-well plate, and proliferated to a density of approximately 80%. I let you. Plasmid DNA was introduced using Lipofectamine LTX (Life Technologies).
  • gRNA plasmid 500 ng if one gRNA was used, and 100 ng each was used if five gRNAs
  • 2000 ng of dCAS9-VPR plasmid DNA were used.
  • the medium was replaced with a DMEM medium containing 10% fresh FBS, and the culture was continued until 48 hours later.
  • RNAiso Plus Purification and quantification of RNA from cells and brain tissue RNAiso Plus (Takara Bio) was used to recover total RNA from cultured cells and mouse brain tissue.
  • Cells cultured in 6-well plates were washed twice with phosphate buffered saline (PBS), and RNA was collected from the cells with 400 ⁇ L of RNAiso Plus per well.
  • PBS phosphate buffered saline
  • RNA was collected from the cells with 400 ⁇ L of RNAiso Plus per well.
  • RNAiso Plus In the case of mouse brain, a 4-week-old C57BL / 6J strain mouse was anesthetized, the brain was removed, 2 ml of RNAiso Plus (Takara Bio Inc.) was added, and the tissue was disrupted with a glass dounce homogenizer to collect RNA. .
  • the primer sets used were as follows.
  • the primers used to amplify the human SCN1A gene are hSCN1A_F: 5'-TGGGGAGTGGATAGAGACCA-3 '(SEQ ID NO: 23) hSCN1A_R: 5'-GAAAGAGATTCAGGACCACTAGG-3 '(SEQ ID NO: 24)
  • Primers used to amplify the ⁇ -actin gene are hACTB_F: 5'-CATGTACGTTGCTATCCAGGC-3 '(SEQ ID NO: 25)
  • the primers used to amplify the mouse Scn1a gene are mScn1A_F: 5'-AGCCTATCCCTCGACCTGGA-3 '(SEQ ID NO: 27) mScn1A_R: 5'-CTGGTCATCCGTTTCCACCA-3 '(SEQ ID NO:
  • Amplification of human SCN1A gene and ⁇ -actin gene is 98 ° C, 5 minutes once, 98 ° C, 15 seconds, 55 ° C, 5 seconds, 72 ° C, 30 seconds 25 times or 30 temperature cycles. went.
  • a temperature cycle of 98 ° C., 5 minutes once, 98 ° C., 15 seconds, 56 ° C., 5 seconds, 72 ° C., 20 seconds was performed 27 times or 30 times. .
  • the labeling and hybridization of the RNA probe, and the detection of the transcript were performed according to the method of DIG Northern Starter Kit of Roche Life Science.
  • the probe used was a 615 base sequence (mScn1a 3′UTR615; SEQ ID NO: 31) in the 3 ′ untranslated region of the mouse Scn1a gene.
  • the probe was prepared by cloning a DNA fragment amplified by PCR with a pBluescript vector and digoxigenin RNA labeling using the T7 promoter.
  • the gene whose expression has been enhanced in this way is compared with the endogenous gene expression in the brain tissue.
  • the band exceeding 8 kb indicated by the arrow in FIG. 5 is a band of mRNA transcribed from the mouse Scn1a gene.
  • Dravet syndrome was treated by improving the expression level of endogenous functional Scn1a gene using a model animal of Drave syndrome.
  • the Scn1a gene is dysfunctional due to various nonsense or frameshifts.
  • a model animal in which one side allele of the Scn1a gene has a nonsense mutation of R1407X and the other allele is a functional gene more specifically, a mouse (that is, Scn1a R1407X / + ) has Drave syndrome. Used as a model animal.
  • the treatment experiment of this example is a system for improving the expression of a functional Scn1a gene by dCas-VPR (as an example of a fusion protein of dCas and a transcription activation protein VPR), and in particular, suppressing the improvement of the expression of the Scn1a gene.
  • a Scn1a R1407X / + mouse that specifically expresses dCas9-VPR is produced, and a guide RNA targeting the promoter region of Scn1a is introduced to suppress it.
  • Mice expressing dCas9-VPR specifically for inhibitory neurons were generated using Vgat-Cre and flox-dCas9-VPR.
  • dCas9-VPR is introduced into an animal by knock-in and administered only by guide RNA, but a fusion protein of dCas9 such as dCas9-VPR and a transcriptional activation protein or a functional fragment thereof is used as a virus or the like. It is clear that similar results can be obtained even if the vector is transiently or constitutively expressed in this vector. Specifically, it is as follows.
  • dCAS9-VPR gene-introduced (transgenic) mouse was prepared.
  • Rosa26 locus on mouse chromosome 5 as the target site.
  • a targeting vector was prepared by modifying Ai9 (Addgene: 22799) used in the preparation of Cre-dependent CAS9 gene expressing mice by Platt RJ et al., (Cell. 2014 159 (2): 440-455).
  • a targeting vector (hereinafter referred to as “Ai-VPR”) in which the IRES sequence and the mRFP gene were linked) was obtained (see FIG. 6). It was confirmed using Neuro2A that Ai-VPR expresses dCAS9-VPR gene and mRFP gene in a Cre-dependent manner. CRISPR / CAS9 genome editing targeting the Rosa26 locus was used to integrate Ai-VPR into cells.
  • PX330-U6-Chimeric_BB-CBh-hSpCas9 (incorporating the Rosa26-1 gRNA sequence (Chu et al., BMC Biotechnology 2016 16 (4)) and the gRNA sequence targeting the Dta gene (5'-GAAAACTTTTCTTCGTACCA-3 ') Addgene: 42230) was lipofected simultaneously with Ai-VPR, and after drug selection with G418, Cre recombinase gene was transiently introduced into the cells to observe the expression of mRFP (see FIG. 7).
  • the amount of mRNA of the endogenous Scn1a gene increased only by introducing four kinds of gRNAs targeting the Scn1a gene (see FIG.
  • Ai-VPR was integrated into the Rosa26 locus by editing the CRISPR / CAS9 genome into mouse ES cells (CMTI-2) as in the case of Neuro2a cells (see FIG. 9). The electroporation method was used for introducing the plasmid DNA. By screening using G418 and PCR, 4 strains of ES cells in which Ai-VPR was integrated into the Rosa26 locus were obtained (clone: 5D, 5E, 7H, 9G; see FIG. 10). 5 'end of Ai-VPR is a product amplified by the following R26F3 primer and Ai9-CAGp5end_R2 primer.
  • mRFP forward primer AAAAAGCAGGCTTCGAAGGAGATAGAaccATGGCCTCCTCCGAGGACGTCATCAAGGAGTTCATG (SEQ ID NO: 35)
  • mRFP reverse primer AGAAAGCTGGGTCctaGTGGCGGCCCTCGGCGCGCTCGTAC (SEQ ID NO: 36)
  • Wt Rosa26 forward primer AAGGGAGCTGCAGTGGAGTA (SEQ ID NO: 37)
  • Wt Rosa26 reverse primer: CCGAAAATCTGTGGGAAGTC SEQ ID NO: 38
  • cCAG-F primer GGTTCGGCTTCTGGCGTGTGACC (SEQ ID NO: 39)
  • dCAS9 791-770 TGTTTGTGCCGATAGCGAGC (SEQ ID NO: 40)
  • Cre amplification forward primer AGGTTCGTTCACTCATGGA (SEQ ID NO: 41)
  • Cre amplification reverse primer TCGACCAGTTTAGTTACCC (SEQ ID NO: 42)
  • CRISPR-ON suppresses (normalizes) the increased sensitivity to heat seizures (pathological condition) in Scn1a-R1407X mutant mice
  • dCAS9-VPR / Scn1aR1407X mouse and Vgat-Cre mouse were mated by artificial insemination (See FIG. 17).
  • mice after epileptic onset were pAAV-MCS in which four gRNA genes (mSC1U1, mSC1U2, hSC1U3, and mSC1U4) targeting the upstream promoter of the Scn1a gene were viralized using AAV-PHP.eB CRISPR-ON was allowed to act by delivery into the brain (1.75 ⁇ 10 11 vg / mouse) from the tail vein with a vector (FIG. 19).
  • the susceptibility to heat-induced seizures was investigated at 6 weeks of age. While measuring the rectal temperature of the mice, the temperature at the time of inducing hyperthermia by raising the temperature and recording a generalized seizure was recorded (see FIG. 20).

Abstract

Provided are a method for enhancing SCN1A gene expression and a method for treating Dravet syndrome using the aforesaid method. Also provided is RNA or RNA expression vector for enhancing SCN1A gene expression. Also provided are a cell in which SCN1A gene expression is enhanced and a cell preparation comprising the cell. More particularly, provided are: a method for treating Dravet syndrome by enhancing SCN1A gene expression in a parvalbumin-positive inhibitory interneuron using gRNA or crRNA targeting at least one Cas9 endonuclease binding site present on the promoter region of SCN1A gene; and a method for enhancing SCN1A gene expression for the aforesaid method.

Description

SCN1A遺伝子の発現増強法とそれによるドラベ症候群の治療法SCN1A gene expression enhancement method and treatment method for Drave syndrome
 本発明は、SCN1A遺伝子の発現増強法とそれによるドラベ症候群の治療法に関する。本発明は、SCN1A遺伝子の発現を増強するためのRNAまたはRNA発現ベクターにも関する。本発明はさらに、SCN1A遺伝子の発現が増強された細胞および該細胞を含む細胞製剤にも関する。 The present invention relates to a method for enhancing the expression of SCN1A gene and a method for treating Drave's syndrome thereby. The present invention also relates to an RNA or RNA expression vector for enhancing the expression of the SCN1A gene. The present invention further relates to a cell having enhanced expression of the SCN1A gene and a cell preparation containing the cell.
 SCN1A遺伝子の発現量の低下は、てんかんや社会性行動異常の原因となることが知られている(Ogiwara et al., J. Neuroscie., 27: 5903-5914, 2007、Ogiwara et al., Hum. Mol. Genet., 22: 4784-4804, 2013、およびIto et al., Neurobiol. Dis., 49: 29-40, 2013)。SCN1A遺伝子の発現量を向上させるためには、SCN1A遺伝子を細胞に導入することが考えられるが、200kDaを超えるタンパク質であり、遺伝子サイズが大きいために細胞に導入することが困難である。また、SCN1A遺伝子のプロモーター領域が解析されつつあるが数十キロbpに及ぶ巨大な領域であり、その制御機構はいまだ不明の部分が多い(Nakayama T., et al., Hum. Mutat., 31(7): 820-829, 2010)。 A decrease in the expression level of the SCN1A gene is known to cause epilepsy and social behavioral abnormalities (Ogiwara et al., J. Neuroscie., 27: 5903-5914, 2007, Ogiwara et al., Hum Mol. Genet., 22: 4784-4804, 2013, and Ito et al., Neurobiol. Dis., 49: 29-40, 2013). In order to improve the expression level of the SCN1A gene, it is conceivable to introduce the SCN1A gene into the cell, but it is a protein exceeding 200 kDa and it is difficult to introduce it into the cell because the gene size is large. In addition, the promoter region of the SCN1A gene is being analyzed, but it is a huge region of several tens of kilobp, and its control mechanism is still unclear (Nakayama T., et al., Hum. Mutat., 31). (7): 820-829, 2010).
 細胞内のゲノムDNAから遺伝子発現を増強する方法としてCRISPR-onシステムが開発されている(Cheng et al., Cell Research, 23: 1163-1171, 2013、Mali et al., Science, 339 (6121): 823-826, 2013、およびKonermann et al., Nature, 517 (7536): 583-588, 2015)。 CRISPR-on system has been developed as a method to enhance gene expression from intracellular genomic DNA (Cheng et al., Cell Research, 23: 1163-1171, 2013, Mali et al., Science, 339 (6121) : 823-826, 2013, and Konermann et al., Nature, 517 (7536): 583-588, 2015).
 本発明は、SCN1A遺伝子の発現を特異的に増強する方法を提供する。本発明はまた、SCN1A遺伝子の発現を特異的に増強するためのRNAまたはRNA発現ベクターを提供する。本発明はさらに、SCN1A遺伝子の発現が増強された細胞および該細胞を含む細胞製剤を提供する。 The present invention provides a method for specifically enhancing the expression of the SCN1A gene. The present invention also provides an RNA or RNA expression vector for specifically enhancing the expression of the SCN1A gene. The present invention further provides cells having enhanced expression of the SCN1A gene and cell preparations containing the cells.
 本発明者らは、SCN1A遺伝子のプロモーター領域の複数の箇所を標的配列としてCRISPR-onシステムを用いた場合、SCN1A遺伝子の発現を顕著に増強させることができることを見出した。本発明者らはまた、配列番号1~8のいずれか1以上、特に4つ以上を標的配列とする場合に、効果的にSCN1A遺伝子の発現を増強させることができることを見出した。本発明者らはさらに、ドラベ症候群のモデルマウスの抑制性神経細胞においてSCN1A遺伝子の発現量を増強することにより、ドラベ症候群が治療できることを見出した。 The present inventors have found that the expression of the SCN1A gene can be remarkably enhanced when the CRISPR-on system is used with a plurality of sites in the promoter region of the SCN1A gene as target sequences. The present inventors have also found that the expression of the SCN1A gene can be effectively enhanced when any one or more of SEQ ID NOS: 1 to 8, particularly 4 or more are used as target sequences. Furthermore, the present inventors have found that Drave's syndrome can be treated by enhancing the expression level of the SCN1A gene in inhibitory neurons of Drave's syndrome model mice.
 本発明によれば、例えば、以下の発明が提供される。
〔1〕SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せ。
〔2〕SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも4つを標的とする、gRNAまたはcrRNAの組合せである、上記〔1〕に記載のRNAの組合せ。
〔3〕上記〔1〕または〔2〕に記載のRNAの組合せであって、
[1]以下(1)~(4)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ、
[2]以下(5)~(8)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ、または
[3]以下(1)~(8)からなる群から選択される2~8つのRNAの組合せ:
 (1)配列番号1で示される配列を標的とするgRNAまたはcrRNA、
 (2)配列番号2で示される配列を標的とするgRNAまたはcrRNA、
 (3)配列番号3で示される配列を標的とするgRNAまたはcrRNA、
 (4)配列番号4で示される配列を標的とするgRNAまたはcrRNA、
 (5)配列番号5で示される配列を標的とするgRNAまたはcrRNA、
 (6)配列番号6で示される配列を標的とするgRNAまたはcrRNA、
 (7)配列番号7で示される配列を標的とするgRNAまたはcrRNA、および
 (8)配列番号8で示される配列を標的とするgRNAまたはcrRNA。
〔4〕[1]に記載のRNAの組合せである、上記〔3〕に記載のRNAの組合せ。
〔5〕(1)~(4)に記載のすべてのgRNAを含むか、または(1)~(4)に記載のすべてのcrRNAを含む、上記〔4〕に記載のRNAの組合せ。
〔6〕[2]に記載のRNAの組合せである、上記〔3〕に記載のRNAの組合せ。
〔7〕(5)~(8)に記載のすべてのgRNAを含むか、または(5)~(8)に記載のすべてのcrRNAを含む、上記〔5〕に記載のRNAの組合せ。
〔8〕[3]に記載のRNAの組合せであって、(1)~(8)からなる群から選択される4つ以上のgRNAの組合せまたはcrRNAの組合せである、上記〔1〕に記載の組合せ。
〔9〕それぞれのRNAが、gRNAである、上記〔1〕~〔8〕のいずれかに記載のRNAの組合せ。
〔10〕上記〔1〕~〔9〕のいずれかに記載のRNAの組合せ、に含まれる各RNAをコードする核酸の組合せ。
〔11〕上記〔10〕に記載の核酸の組合せに含まれる核酸をそれぞれ発現可能に含む、RNA発現ベクター。
〔12〕上記〔1〕~〔9〕のいずれかに記載のRNAまたはRNAの組合せを含む、医薬または組合せ医薬。
〔13〕上記〔11〕に記載のRNA発現ベクターを含む、医薬または組合せ医薬。
〔14〕上記〔1〕~〔9〕に記載のRNAまたはRNAの組合せを安定発現する、真核細胞。
〔15〕上記〔14〕に記載の真核細胞を含む、細胞製剤。
〔16〕SCN1A遺伝子の発現量の低下に起因する疾患を治療することに用いるための、上記〔1〕~〔10〕の組合せ、上記〔11〕に記載のRNA発現ベクター、または上記〔14〕に記載の真核細胞を含む、医薬。
〔17〕SCN1A遺伝子の発現量の低下に起因する疾患を治療することに用いるための、上記〔12〕若しくは〔13〕に記載の医薬または組合せ医薬、または上記〔15〕に記載の細胞製剤。
〔18〕SCN1A遺伝子の発現量の低下に起因する疾患が、ドラベ症候群、熱性痙攣プラス、自閉症、知的障害、およびアルツハイマー病におけるてんかんからなる群から選択されるいずれか1の疾患である、上記〔16〕に記載の医薬、または上記〔17〕に記載の医薬、組合せ医薬、若しくは細胞製剤。
〔19〕SCN1A遺伝子の発現量の低下に起因する疾患が、SCN1A遺伝子のナンセンス変異またはフレームシフト変異による機能的なSCN1A遺伝子の発現量の低下である、上記〔18〕に記載の医薬、組合せ医薬または細胞製剤。
According to the present invention, for example, the following inventions are provided.
[1] A combination of RNAs, which is a combination of gRNA or crRNA targeting at least one Cas9 endonuclease binding site present on the promoter region of the SCN1A gene.
[2] The RNA combination according to [1] above, which is a combination of gRNA or crRNA targeting at least four Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene.
[3] The RNA combination according to [1] or [2] above,
[1] One RNA selected from the group consisting of the following (1) to (4) or a combination of 2 to 4 RNAs:
[2] One RNA selected from the group consisting of the following (5) to (8) or a combination of two to four RNAs, or [3] 2 selected from the group consisting of the following (1) to (8) ~ 8 RNA combinations:
(1) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 1,
(2) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 2,
(3) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 3,
(4) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 4,
(5) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 5,
(6) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 6,
(7) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 7, and (8) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 8.
[4] The combination of RNAs according to [3] above, which is a combination of RNAs according to [1].
[5] The combination of RNAs described in [4] above, which includes all the gRNAs described in (1) to (4) or all the crRNAs described in (1) to (4).
[6] The combination of RNAs according to [3] above, which is a combination of RNAs according to [2].
[7] A combination of RNAs according to [5] above, comprising all the gRNAs according to (5) to (8) or all the crRNAs according to (5) to (8).
[8] The combination of RNA according to [3], which is a combination of four or more gRNAs selected from the group consisting of (1) to (8) or a combination of crRNAs Combination.
[9] The RNA combination according to any one of [1] to [8] above, wherein each RNA is gRNA.
[10] A combination of nucleic acids encoding each RNA contained in the RNA combination according to any one of [1] to [9] above.
[11] An RNA expression vector comprising each of the nucleic acids contained in the nucleic acid combination according to [10] capable of expression.
[12] A medicine or combination medicine comprising the RNA or the combination of RNAs according to any one of [1] to [9] above.
[13] A medicine or combination medicine comprising the RNA expression vector according to [11] above.
[14] A eukaryotic cell that stably expresses the RNA or the combination of RNAs described in [1] to [9] above.
[15] A cell preparation comprising the eukaryotic cell according to [14] above.
[16] The combination of the above [1] to [10], the RNA expression vector of [11], or the above [14] for use in treating a disease caused by a decrease in the expression level of the SCN1A gene A medicament comprising the eukaryotic cell described in 1.
[17] The medicine or combination medicine described in [12] or [13] or the cell preparation described in [15] for use in treating a disease caused by a decrease in the expression level of the SCN1A gene.
[18] The disease caused by the decreased expression level of the SCN1A gene is any one disease selected from the group consisting of Dravet syndrome, febrile convulsions plus, autism, intellectual disability, and epilepsy in Alzheimer's disease The medicine according to [16] above, or the medicine, combination medicine or cell preparation according to [17] above.
[19] The medicine or combination medicine according to [18] above, wherein the disease caused by a decrease in the expression level of the SCN1A gene is a decrease in the expression level of the functional SCN1A gene due to a nonsense mutation or a frameshift mutation of the SCN1A gene Or cell preparation.
図1は、ヒトSCN1A遺伝子の翻訳開始点およびその上流の領域を示す模式図である。ヒトSCN1A遺伝子の複数の転写産物と、設計したgRNAの標的配列の位置的関係が示されている。FIG. 1 is a schematic diagram showing the translation start point and the upstream region of the human SCN1A gene. The positional relationship between multiple transcripts of the human SCN1A gene and the designed target sequence of gRNA is shown. 図2は、マウスScn1a遺伝子の翻訳開始点およびその上流の領域を示す模式図である。マウスScn1a遺伝子の複数の転写産物と、設計したgRNAの標的配列の位置的関係が示されている。FIG. 2 is a schematic diagram showing the translation start point and upstream region of the mouse Scn1a gene. The positional relationship between a plurality of transcripts of the mouse Scn1a gene and the target sequence of the designed gRNA is shown. 図3は、CRISPR-onシステムを用いたヒトSCN1A遺伝子の転写産物の増加効果をヒト培養細胞(HEK293FT)における半定量RT-PCRにより示した図である。FIG. 3 is a diagram showing the effect of increasing the transcript of the human SCN1A gene using the CRISPR-on system by semi-quantitative RT-PCR in human cultured cells (HEK293FT). 図4は、CRISPR-onシステムを用いたマウスScn1a遺伝子の転写産物の増加効果をマウス培養細胞(Neuro2A)における半定量RT-PCRにより示した図である。FIG. 4 shows the effect of increasing the transcriptional product of the mouse Scn1a gene using the CRISPR-on system by semi-quantitative RT-PCR in mouse cultured cells (Neuro2A). 図5は、CRISPR-onシステムを用いたマウスScn1a遺伝子の転写産物の増加効果をノーザンブロット解析により示した図である。マウス培養細胞(Neuro2A)においてマウスScn1a遺伝子に対して4つのgRNAを組み合わせて用いて転写を活性化させると、当該遺伝子の転写産物(mRNA)全長の発現量を大幅に増加させることができた。FIG. 5 is a diagram showing the effect of increasing the transcription product of the mouse Scn1a gene using the CRISPR-on system by Northern blot analysis. In mouse cultured cells (Neuro2A), when transcription was activated using a combination of four gRNAs for the mouse Scn1a gene, the expression level of the full-length transcription product (mRNA) of the gene could be greatly increased. 図6は、実施例で作製したターゲッティングベクターAi-VPRのコンストラクトの模式図と、そのゲノム上での挿入箇所を示す。FIG. 6 shows a schematic diagram of the construction of the targeting vector Ai-VPR prepared in Example and the insertion site on the genome. 図7は、dCAS-VPRがNeuro2a細胞で発現したことを示す。FIG. 7 shows that dCAS-VPR was expressed in Neuro2a cells. 図8は、dCAS-VPRとSCN1A遺伝子のプロモーターを標的としたgRNAを用いて内在性のSCN1A遺伝子の発現が向上したことを示す。FIG. 8 shows that the expression of the endogenous SCN1A gene was improved using gRNA targeting dCAS-VPR and the promoter of the SCN1A gene. 図9は、マウスES細胞の野生型アリルへのターゲッティングベクターAi-VPRの挿入戦略を示す。FIG. 9 shows the insertion strategy of targeting vector Ai-VPR into the wild type allele of mouse ES cells. 図10は、Ai-VPRが挿入されたES細胞として4株(5D、5E、7Hおよび9G)が得られたことを示す。FIG. 10 shows that 4 strains (5D, 5E, 7H and 9G) were obtained as ES cells into which Ai-VPR was inserted. 図11は、CRE依存的にdCAS9-VPRを発現するトランスジェニックマウスの作製を検証するための各プライマーの設計位置を示す。FIG. 11 shows the design positions of each primer for verifying the production of transgenic mice expressing dCAS9-VPR in a CRE-dependent manner. 図12は、得られたトランスジェニックマウスのゲノムを鋳型とした図11に記載された各プライマーによる増幅産物を示す。FIG. 12 shows amplification products obtained by the primers described in FIG. 11 using the obtained transgenic mouse genome as a template. 図13は、Rosa26アリルにおける、Creによる組換え前後のdCAS9-VPRアリルにおけるプライマーの設計位置を示す。FIG. 13 shows the design positions of primers in dCAS9-VPR allele before and after recombination with Cre in Rosa26 allyl. 図14は、得られたトランスジェニックマウスのゲノムを鋳型とした図13に記載された各プライマーによる増幅産物を示す。FIG. 14 shows the amplification products by the primers described in FIG. 13 using the obtained transgenic mouse genome as a template. 図15は、得られたマウスがCre依存的にdCAS9-VPRを発現していることを示す。FIG. 15 shows that the obtained mouse expresses dCAS9-VPR in a Cre-dependent manner. 図16は、免疫組織化学染色により、嗅球、大脳皮質、海馬、線条体、および小脳におけるdCAS9-VPR陽性細胞を観察した図である。FIG. 16 is a view of dCAS9-VPR positive cells observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, and cerebellum by immunohistochemical staining. 図17は、Vgat依存的にdCAS9-VPRを発現するドラベ症候群モデルマウスを得るための掛け合わせ方法を示す。FIG. 17 shows a crossover method for obtaining a Drave syndrome syndrome mouse that expresses dCAS9-VPR in a Vgat-dependent manner. 図18は、各遺伝子型のマウスの生存曲線を示す。図中、「dCAS」は、dCAS9-VPRを組込んだことを示し、「1A」は、SCN1A遺伝子の片側アリルがR1407Xのナンセンス変異を有することを示し、「Cre」は、Vgat-Creリコンビナーゼを作用させたことを示す。FIG. 18 shows the survival curves of mice of each genotype. In the figure, “dCAS” indicates that dCAS9-VPR has been incorporated, “1A” indicates that the one-sided allele of the SCN1A gene has a nonsense mutation of R1407X, and “Cre” indicates Vgat-Cre recombinase. Indicates that it has acted. 図19は、SCN1A遺伝子を標的としたgRNA発現アデノ随伴ウイルス(AAV)ベクターの構築方法を示す。FIG. 19 shows a method for constructing a gRNA-expressing adeno-associated virus (AAV) vector targeting the SCN1A gene. 図20は、SCN1A遺伝子を標的としたgRNA発現アデノ随伴ウイルス(AAV)ベクターの投与と、各種解析のタイムスケジュールを示す。FIG. 20 shows the administration of a gRNA-expressing adeno-associated virus (AAV) vector targeting the SCN1A gene and the time schedule for various analyses. 図21は、処置群および対照群における熱誘導性痙攣発作の感受性を示す。FIG. 21 shows the sensitivity of heat-induced seizures in the treatment and control groups. 図22は、処置群および対照群における熱誘導性痙攣発作の感受性の経時変化を示す。FIG. 22 shows the time course of the sensitivity of heat-induced convulsive seizures in the treatment group and the control group.
発明の具体的な説明Detailed Description of the Invention
 本明細書では、「CRISPR/Cas9システム」とは、真性細菌や古細菌が有する獲得免疫として発見されたClustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)システムをゲノム編集に転用したシステムである(Jinek, M., et al. (2012) Science 337, 816-821)。
 具体的には、上記細菌のCRISPR領域と呼ばれるゲノム領域には、断片化された外来DNA(20bp)が取り込まれたカセットが複数リピートしており、各カセットには、異なる外来DNAが取り込まれている。
 各カセットは、外来生物(例えば、ファージなど)のDNAが細胞内に取り込まれた場合にこれを断片化してCRISPR領域に組み込むことで生じると考えられる。
 各カセットは、CRISPR RNA(crRNA)をコードしている。crRNAは、プロトスペーサー配列と後述するtrans-crRNA(tracrRNA)と相補的な配列とを有する。プロトスペーサー配列は、20ヌクレオチド長であり、標的となるDNA配列と相補的な配列を有する。プロトスペーサー配列は、標的配列と100%の相補性を有している必要はなく、5’末端から6ヌクレオチドの領域ではミスマッチが許容される。crRNAは、相補的部分を介して別に転写されるtrans-crRNA(tracrRNA)と複合体を形成する。crRNAとtracrRNAとの複合体は、Cas9エンドヌクレアーゼとさらなる複合体を形成する。crRNA中のプロトスペーサー部分は、外来DNAと相補的にハイブリッド形成を行い、これによりCas9エンドヌクレアーゼを外来DNAの標的配列に先導する。外来DNAは標的配列の部位においてCas9エンドヌクレアーゼにより切断され、CRISPR/Cas9システムは、外来DNAから宿主を防御する。
 このようにCRISPR/Cas9システムは、真性細菌や古細菌が新しい外来DNAに対する獲得免疫として機能することで発見されたものであるが、外来DNAからなるプロトスペーサーを設計することで、哺乳動物のゲノムを配列依存的に切断できること、およびそれにより、哺乳動物のゲノムを編集できることから、CRISPR/Cas9システムは、ゲノム編集システムとして急速に世界に広がったものである。
 現在主に使用されているシステムは、化膿レンサ球菌(S. pyogenes)に由来する第2種のCRISPR/Cas9システムである。
In this specification, “CRISPR / Cas9 system” is a clustered regularly interspaced short palindromic repeats / CRISPR-associated protein (CRISPR / Cas) system discovered as acquired immunity of eubacteria and archaea. System (Jinek, M., et al. (2012) Science 337, 816-821).
Specifically, a plurality of cassettes into which the fragmented foreign DNA (20 bp) has been incorporated are repeated in the genomic region called the bacterial CRISPR region, and different foreign DNAs are incorporated into each cassette. Yes.
Each cassette is considered to be generated by fragmenting DNA of a foreign organism (for example, phage) into cells and incorporating it into the CRISPR region.
Each cassette encodes CRISPR RNA (crRNA). crRNA has a protospacer sequence and a sequence complementary to trans-crRNA (tracrRNA) described later. The protospacer sequence is 20 nucleotides long and has a sequence complementary to the target DNA sequence. The protospacer sequence need not have 100% complementarity with the target sequence, and mismatch is allowed in the region of 6 nucleotides from the 5 ′ end. crRNA forms a complex with trans-crRNA (tracrRNA) that is separately transcribed via a complementary portion. The complex of crRNA and tracrRNA forms an additional complex with Cas9 endonuclease. The protospacer moiety in the crRNA hybridizes complementary to the foreign DNA, thereby leading the Cas9 endonuclease to the target sequence of the foreign DNA. The foreign DNA is cleaved by the Cas9 endonuclease at the site of the target sequence, and the CRISPR / Cas9 system protects the host from the foreign DNA.
As described above, the CRISPR / Cas9 system was discovered by eubacteria and archaea functioning as acquired immunity against new foreign DNA. By designing a protospacer made of foreign DNA, the genome of a mammal can be obtained. The CRISPR / Cas9 system has rapidly spread to the world as a genome editing system because it can be sequence-dependently cleaved and thereby the mammalian genome can be edited.
The system currently used mainly is the second type CRISPR / Cas9 system derived from S. pyogenes .
 本明細書では、「Cas9」とは、CRISPR/Cas9システムにおいて、ゲノムDNAなどのDNAを切断する活性を有するエンドヌクレアーゼを意味する。本明細書では、「Cas9」は、「Cas9エンドヌクレアーゼ」と同義であり、相互に互換的に用いられる。Cas9エンドヌクレアーゼは、上述の通りcrRNAの5’側から20bpのプロトスペーサーにより、標的配列と相補的にはハイブリッド形成し、Cas9エンドヌクレアーゼは、標的配列に導かれる。Cas9エンドヌクレアーゼは、2つのエンドヌクレアーゼドメイン(RuvC1様ヌクレアーゼドメインとHNH様ヌクレアーゼドメイン)を有し、これらがそれぞれ2本鎖DNAのそれぞれの鎖を切断し、結果として標的配列において2本鎖切断をDNAに導入する。CRISPR/Cas9システムは、エンドヌクレアーゼであるCas9を配列特異的に外来DNAに先導し、これにより外来DNAを分解することができる。
 標的配列は、一般的に、その直後にprotospacer adjacent motif(PAM)を有することが知られている。PAM配列は、化膿レンサ球菌(S. pyogenes)の場合には、5’-NGG(ここでNは、A、T、GまたはCである)である。PAM配列は、Cas9エンドヌクレアーゼの種に依存して異なる。
As used herein, “Cas9” means an endonuclease having an activity of cleaving DNA such as genomic DNA in the CRISPR / Cas9 system. As used herein, “Cas9” is synonymous with “Cas9 endonuclease” and is used interchangeably. The Cas9 endonuclease is hybridized to the target sequence in a complementary manner by a 20 bp protospacer from the 5 ′ side of the crRNA as described above, and the Cas9 endonuclease is guided to the target sequence. Cas9 endonuclease has two endonuclease domains (RuvC1-like nuclease domain and HNH-like nuclease domain), each of which cleaves each strand of double-stranded DNA, resulting in double-strand breaks in the target sequence. Introduce into DNA. The CRISPR / Cas9 system can lead the endonuclease Cas9 to foreign DNA in a sequence-specific manner, thereby degrading the foreign DNA.
The target sequence is generally known to have a protospacer adjacent motif (PAM) immediately thereafter. The PAM sequence is 5′-NGG (where N is A, T, G or C) in the case of S. pyogenes . PAM sequences vary depending on the species of Cas9 endonuclease.
 本明細書では、「dCas9」とは、Cas9エンドヌクレアーゼが有する2つのエンドヌクレアーゼドメインのエンドヌクレアーゼ活性が不活化されたCas9である。エンドヌクレアーゼを不活化させるためにD10AおよびH840Aに対応するアミノ酸変異がCas9に導入され得る。crRNAとtracrRNAによりdCas9は、ゲノムDNA上の標的配列に先導されるが、エンドヌクレアーゼ活性を有しないためにゲノムDNAを切断しない。
 dCas9は、転写活性化タンパク質と連結させることで、転写活性化タンパク質を配列特異的にゲノムDNA上にリクルートさせることに用いることができる。
As used herein, “dCas9” is Cas9 in which the endonuclease activity of the two endonuclease domains of the Cas9 endonuclease is inactivated. Amino acid mutations corresponding to D10A and H840A can be introduced into Cas9 to inactivate the endonuclease. The crRNA and tracrRNA lead dCas9 to the target sequence on the genomic DNA, but do not cleave the genomic DNA because it does not have endonuclease activity.
dCas9 can be used to recruit the transcriptional activation protein onto the genomic DNA in a sequence-specific manner by linking with the transcriptional activation protein.
 本明細書では、「crRNA」とは、CRISPR/Cas9システムにおけるcrRNAを意味し、プロトスペーサー部分と、tracrRNAとハイブリッド形成する部分とを有するRNAである。細菌ゲノム上のCRISPR領域からpre-crRNAとして産生され、RNaseIIIなどの働きにより成熟型crRNAにプロセッシングされる。crRNAは、Cas9エンドヌクレアーゼまたはdCas9を標的配列に先導するために、tracrRNAとの複合体形成を必要とする。crRNAのプロトスペーサー配列は、標的配列またはその相補鎖と相補的な配列を有する(ただし、1~数塩基のミスマッチが許容される)。 In the present specification, “crRNA” means crRNA in the CRISPR / Cas9 system, and is RNA having a protospacer portion and a portion that hybridizes with tracrRNA. It is produced as pre-crRNA from the CRISPR region on the bacterial genome and processed into mature crRNA by the action of RNaseIII and the like. crRNA requires complex formation with tracrRNA to direct Cas9 endonuclease or dCas9 to the target sequence. The protospacer sequence of crRNA has a sequence complementary to the target sequence or its complementary strand (however, a mismatch of 1 to several bases is allowed).
 本明細書では、「tracrRNA」とは、CRISPR/Cas9システムにおけるtracrRNAを意味し、crRNAとハイブリッド形成する。細菌ゲノム上のCRISPR領域からpre-trasrRNAとして転写され、RNaseIIIなどの働きにより成熟型tracrRNAにプロセッシングされる。 In the present specification, “tracrRNA” means tracrRNA in the CRISPR / Cas9 system, and hybridizes with crRNA. It is transcribed as pre-trasrRNA from the CRISPR region on the bacterial genome and processed into mature tracrRNA by the action of RNaseIII and the like.
 本明細書では、「gRNA」(ガイドRNA)とは、crRNAとtracrRNAとを連結させて得た単鎖RNAであり、単鎖ガイドRNA(sgRNA)と呼ばれることもある。gRNAは、生理的条件下でcrRNA部分とtracrRNA部分がハイブリッド形成してその連結部においてヘアピン構造を形成する。Cas9は、ヘアピン構造を形成したgRNAと複合体を形成できる。gRNAにおいては、連結させるcrRNAとtracrRNAとは、それぞれ全長であってもよいし、成熟型であってもよいし、成熟型の配列からさらに不要な配列(主に3’側)を除いた成熟型配列の部分配列であってもよいことが知られている(Jinek, M., et al. (2012) Science 337, 816-821)。gRNAは、分子中にcrRNAとtracrRNAとを有し、Cas9エンドヌクレアーゼまたはdCas9と結合することができるので、gRNA単独でCas9エンドヌクレアーゼまたはdCas9を標的配列に先導することができる。 In the present specification, “gRNA” (guide RNA) is a single-stranded RNA obtained by linking crRNA and tracrRNA, and is sometimes referred to as a single-stranded guide RNA (sgRNA). In gRNA, crRNA and tracrRNA are hybridized under physiological conditions to form a hairpin structure at the junction. Cas9 can form a complex with gRNA having a hairpin structure. In gRNA, crRNA and tracrRNA to be ligated may be full-length, mature type, or matured by removing unnecessary sequences (mainly 3 ′ side) from mature type sequences. It is known that it may be a partial sequence of a type sequence (Jinek, M., et al. (2012) Science 337, 816-821). Since gRNA has crRNA and tracrRNA in the molecule and can bind to Cas9 endonuclease or dCas9, gRNA alone can lead Cas9 endonuclease or dCas9 to the target sequence.
 本明細書では、「CRISPR-on」または「CRISPR-ON」とは、エンドヌクレアーゼ活性を失活させたCas9(dCas9)と転写活性化タンパク質との融合タンパク質を用いて、配列特異的に転写活性化タンパク質をプロモーター領域に結合させ、これにより当該プロモーターにより駆動される遺伝子の発現を活性化させるシステムをいう。CRISPR-onシステムで用い得るdCas9融合タンパク質としては、特に限定されないが例えば、dCas9-VP48融合タンパク質、dCas9-VP64融合タンパク質、dCas9-VP96融合タンパク質、dCas9-VP160融合タンパク質、dCas-VPR融合タンパク質が挙げられる。 In this specification, “CRISPR-on” or “CRISPR-ON” means transcriptional activity in a sequence-specific manner using a fusion protein of Cas9 (dCas9) in which endonuclease activity is inactivated and transcriptional activation protein. This refers to a system that binds a protein to a promoter region and thereby activates the expression of a gene driven by the promoter. The dCas9 fusion protein that can be used in the CRISPR-on system is not particularly limited, and examples thereof include a dCas9-VP48 fusion protein, a dCas9-VP64 fusion protein, a dCas9-VP96 fusion protein, a dCas9-VP160 fusion protein, and a dCas-VPR fusion protein. It is done.
 本明細書では、「対象」とは、哺乳動物を意味し、特にヒトであり得る。 As used herein, “subject” means a mammal, and in particular can be a human.
 本明細書では、「処置」とは、「治療」と「予防」とを含む意味で用いられる。従って、本明細書において「ドラベ症候群を処置することに用いる医薬組成物」とは、ドラベ症候群を治療または予防することに用いる医薬組成物(例えば、ドラベ症候群の治療剤または予防剤)を意味する。
 本明細書では、「治療」とは、疾患若しくは障害の治療、治癒、防止若しくは、寛解の改善、または、疾患若しくは障害の進行速度の低減を意味する。本明細書では、「予防」とは、疾患もしくは病態の発症の可能性を低下させる、または疾患もしくは病態の発症を遅らせることを意味する。
In the present specification, “treatment” is used to mean “treatment” and “prevention”. Therefore, in the present specification, the “pharmaceutical composition used for treating Drave syndrome” means a pharmaceutical composition (for example, a therapeutic or preventive agent for Drave syndrome) used for treating or preventing Drave syndrome. .
As used herein, “treatment” means treatment, cure, prevention or amelioration of a disease or disorder or a reduction in the rate of progression of a disease or disorder. As used herein, “prevention” means reducing the likelihood of the onset of a disease or condition or delaying the onset of a disease or condition.
 本明細書では、「SCN1A遺伝子」とは、電位依存性ナトリウムチャネルのαサブユニットの一つであるNav1.1をコードする遺伝子である。Nav1.1は、ヒトでは中枢神経系に発現することで知られる。SCNA1遺伝子の変異は、熱性痙攣+(Generalized Epilepsy with Febrile Seizures Plus: GEFS+)やドラベ症候群(以前は、「乳児重症ミオクロニーてんかん」とも呼ばれたがミオクロニーを示さない場合があることからこの呼び方はされなくなってきている)を含む幅広いてんかん患者において認められている。
 Scn1aのナンセンス変異R1407Xを導入したヘテロノックインマウスを用いた研究からScn1a遺伝子がてんかんの原因となっていることを明らかにしている(Ogiwara et al., J. Neuroscie., 27: 5903-5914, 2007)。また、抑制性神経細胞のみでScn1aをヘテロノックアウトしたコンディショナルノックアウトマウスにおいて、非常に重篤なてんかん症状が生じることが明らかとなっている(Ogiwara et al., Hum. Mol. Genet., 22: 4784-4804, 2013)。また、Scn1a遺伝子変異が、社会性行動の低下を生じることが明らかとなっている(Ito et al., Neurobiol. Dis., 49: 29-40, 2013)。従って、機能的Scn1aの発現量の低下がこれら疾患の原因となり得る。
 本明細書では、用語「SCN1A遺伝子」には、ヒトSCN1A遺伝子に加えてマウスおよびその他の種のSCN1A遺伝子のオーソログが含まれる意味で用いられる。
In the present specification, the “SCN1A gene” is a gene encoding Nav1.1, which is one of the α subunits of voltage-gated sodium channels. Nav1.1 is known to be expressed in the central nervous system in humans. SCNA1 gene mutation is also called febrile convulsions + (Generalized Epilepsy with Febrile Seizures Plus: GEFS +) or Drave syndrome (formerly "infant severe myoclonic epilepsy", but this designation is sometimes called myoclony It has been observed in a wide range of epilepsy patients, including
Studies using heteroknock-in mice introduced with the nonsense mutation R1407X of Scn1a reveal that the Scn1a gene is responsible for epilepsy (Ogiwara et al., J. Neuroscie., 27: 5903-5914, 2007 ). In addition, it has been clarified that very severe epileptic symptoms occur in conditional knockout mice in which Scn1a is heteroknocked out only by inhibitory neurons (Ogiwara et al., Hum. Mol. Genet., 22: 4784-4804, 2013). It has also been clarified that mutations in the Scn1a gene cause a decrease in social behavior (Ito et al., Neurobiol. Dis., 49: 29-40, 2013). Therefore, a decrease in the expression level of functional Scn1a can cause these diseases.
In the present specification, the term “SCN1A gene” is used to include orthologs of mouse and other species of SCN1A gene in addition to human SCN1A gene.
 本明細書では、「SCN1A遺伝子のプロモーター領域」とは、SCN1A遺伝子の転写活性化または抑制に関する領域を意味する。ヒトSCN1A遺伝子では、翻訳開始点の上流にエクソンA、エクソンB、エクソンCおよびエクソンDの4つの非コーディングエクソン(non-coding exons)の存在が知られている(Nakayama T., et al., Hum. Mutat., 31(7): 820-829, 2010)。 In the present specification, the “promoter region of the SCN1A gene” means a region related to transcription activation or repression of the SCN1A gene. In the human SCN1A gene, it is known that there are four non-coding exons, exon A, exon B, exon C and exon D, upstream of the translation start point (Nakayama T., 開始 et al., Hum. Mutat., 31 (7): 820-829, 2010).
 本明細書では、「組合せ」とは、2つ以上の異なる成分の組合せを意味する。組合せにおいて、成分は、別々の形態で含まれていてもよいし、混合されていてもよい。 In this specification, “combination” means a combination of two or more different components. In combination, the components may be included in separate forms or mixed.
 本発明者らは、SCN1A遺伝子のプロモーター領域の複数の箇所を標的とするCRISPR-onのシステムによりSCN1A遺伝子の転写を活性化できることを明らかにした。特に、本発明者らは、SCN1A遺伝子のプロモーター領域の4つ以上の箇所を標的とするCRISPR-onのシステムによりSCN1A遺伝子の転写を活性化できることを明らかにした。このCRISPR-onシステムでは、dCas-転写活性化タンパク質融合タンパク質を共通のコンポーネントとして用いることができる。dCas-転写活性化タンパク質融合タンパク質は核移行シグナルを有し得る。そして、このCRISPR-onシステムでは、標的配列に対応したcrRNAまたはgRNAを標的配列の数だけ提供することにより、SCN1A遺伝子の転写を活性化できる。転写活性化されるSCN1A遺伝子は、機能的なまたは機能低下したSCN1Aをコードする遺伝子であり得る。 The present inventors have clarified that transcription of the SCN1A gene can be activated by the CRISPR-on system that targets a plurality of sites in the promoter region of the SCN1A gene. In particular, the present inventors have shown that transcription of the SCN1A gene can be activated by the CRISPR-on system that targets four or more sites in the promoter region of the SCN1A gene. In this CRISPR-on system, dCas-transcription activating protein fusion protein can be used as a common component. The dCas-transcription activating protein fusion protein can have a nuclear translocation signal. In this CRISPR-on system, the transcription of the SCN1A gene can be activated by providing as many crRNAs or gRNAs corresponding to the target sequences as the number of target sequences. The transcriptionally activated SCN1A gene can be a gene that encodes a functional or reduced function SCN1A.
 したがって、本発明によれば、SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せが提供される。Cas9エンドヌクレアーゼ結合部位は、上述の通り、PAM配列の直前にのみ存在し得るので、当業者であればCas9エンドヌクレアーゼが要求するPAM配列を考慮して、プロモーター領域の配列の中から決定することができる。 Therefore, according to the present invention, an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene A combination of is provided. Since the Cas9 endonuclease binding site may exist only immediately before the PAM sequence as described above, those skilled in the art should determine the promoter region sequence from among the sequences of the promoter region in consideration of the PAM sequence required by the Cas9 endonuclease. Can do.
 ヒトにおいて、SCN1A遺伝子のプロモーター領域のうち、特にエクソンAの上流-1~-600の領域(以下、「プロモーター領域1」と呼ぶことがある)およびエクソンBの上流-1~-600の領域(以下、「プロモーター領域2」と呼ぶことがある)上に存在するCas9エンドヌクレアーゼ結合部位が標的となり得る。したがって、本発明によれば、SCN1A遺伝子のプロモーター領域のエクソンAの上流-1~-600の領域および/またはエクソンBの上流-1~-600の領域上に存在する少なくとも1箇所、2箇所、3箇所、または4箇所以上のCas9エンドヌクレアーゼ結合部位を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せが提供される。ここで、エクソンAは、SCN1A転写産物の例えばバリアント1(Genbank登録番号:NM_001165963.1)の1番目の塩基から開始する領域である。また、エクソンBは、SCN1A転写産物の例えばバリアント3(Genbank登録番号:NM_001165964.1)の1番目の塩基から開始する領域である。
 本発明によればまた、SCN1A遺伝子のプロモーター領域1上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せが提供される。
 本発明によればさらに、SCN1A遺伝子のプロモーター領域2上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せが提供される。
In humans, among the promoter region of the SCN1A gene, in particular, the region upstream -1 to −600 of exon A (hereinafter sometimes referred to as “promoter region 1”) and the region upstream −1 to −600 of exon B ( The Cas9 endonuclease binding site present on (hereinafter sometimes referred to as “promoter region 2”) can be the target. Therefore, according to the present invention, at least one place, two places present on the region of −1 to −600 upstream of exon A and / or the region of −1 to −600 upstream of exon B of the promoter region of the SCN1A gene, Combinations of RNA are provided that are combinations of gRNAs or crRNAs that target three or more than four Cas9 endonuclease binding sites. Here, exon A is a region starting from the first base of, for example, variant 1 (Genbank accession number: NM_001165963.1) of the SCN1A transcript. Exon B is a region starting from the first base of, for example, variant 3 (Genbank accession number: NM_001165964.1) of the SCN1A transcript.
According to the present invention, an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene A combination of is provided.
Further according to the present invention, an RNA that is a combination of gRNA or crRNA targeting at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene A combination of is provided.
 本発明では、プロモーター領域1のうち、配列番号1~4で示される配列のいずれか1、2、3または4つを標的配列とするgRNAの組合せおよびcrRNAの組合せが提供される。本発明ではまた、プロモーター領域2のうち、配列番号5~8で示される配列のいずれか1、2、3または4つを標的配列とするgRNAおよびcrRNAが提供される。本発明ではさらにまた、プロモーター領域のうち、配列番号1~8で示される配列のいずれか1、2、3、4、5、6、7、または8つを標的配列とするgRNAおよびcrRNAが提供される。以下、「配列番号nで示される配列」という用語は全て、「配列番号nで示される配列に対応するSCN1A遺伝子のプロモーター領域上の配列」と読み替えることができる(ここで、nは1~8のいずれかの整数である)。そして、「配列番号nで示される配列に対応するSCN1A遺伝子のプロモーター領域上の配列」に生理的環境下でハイブリダイズする塩基配列を有するgRNAまたはcrRNAもまた、本発明では、「配列番号nで示される配列」を有するgRNAまたはcrRNAと同様に用いることができることが、当業者であれば理解できる。 In the present invention, a combination of gRNA and a combination of crRNA are provided which have any one, two, three or four of the sequences shown in SEQ ID NOs: 1 to 4 in the promoter region 1 as target sequences. The present invention also provides gRNA and crRNA that target any one, two, three, or four of the sequences shown in SEQ ID NOs: 5 to 8 in the promoter region 2. The present invention further provides gRNA and crRNA targeting any one of 1, 2, 3, 4, 5, 6, 7, or 8 of the sequences represented by SEQ ID NOs: 1 to 8 in the promoter region. Is done. Hereinafter, all the terms “sequence represented by SEQ ID NO: n” can be read as “sequence on the promoter region of the SCN1A gene corresponding to the sequence represented by SEQ ID NO: n” (where n is 1 to 8). One of the integers). And gRNA or crRNA having a base sequence that hybridizes in a physiological environment to “a sequence on the promoter region of the SCN1A gene corresponding to the sequence represented by SEQ ID NO: n” is also referred to as “SEQ ID NO: n One skilled in the art will understand that they can be used in the same manner as gRNA or crRNA having the “sequence shown”.
 本発明によれば、
以下、[1A]~[3A]のいずれかのRNAまたはRNAの組合せが提供される:
[1A]以下(1A)~(4A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2A]以下(5A)~(8A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3A]以下(1A)~(8A)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1A)配列番号1で示される配列を標的とするgRNA、
 (2A)配列番号2で示される配列を標的とするgRNA、
 (3A)配列番号3で示される配列を標的とするgRNA、
 (4A)配列番号4で示される配列を標的とするgRNA、
 (5A)配列番号5で示される配列を標的とするgRNA、
 (6A)配列番号6で示される配列を標的とするgRNA、
 (7A)配列番号7で示される配列を標的とするgRNA、および
 (8A)配列番号8で示される配列を標的とするgRNA。
According to the present invention,
The RNA or RNA combination of any of [1A]-[3A] is provided below:
[1A] one RNA selected from the group consisting of the following (1A) to (4A) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2A] 1 RNA selected from the group consisting of the following (5A) to (8A) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3A] and below (1A) to (8A) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1A) gRNA targeting the sequence represented by SEQ ID NO: 1,
(2A) gRNA targeting the sequence shown in SEQ ID NO: 2,
(3A) gRNA targeting the sequence shown in SEQ ID NO: 3,
(4A) gRNA targeting the sequence shown in SEQ ID NO: 4,
(5A) gRNA targeting the sequence shown in SEQ ID NO: 5,
(6A) gRNA targeting the sequence shown in SEQ ID NO: 6,
(7A) gRNA targeting the sequence represented by SEQ ID NO: 7, and (8A) gRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明によれば、
以下、[1B]~[3B]のいずれかのRNAまたはRNAの組合せが提供される:
[1B]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2B]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3B]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
According to the present invention,
The RNA or RNA combination of any of [1B]-[3B] is provided below:
[1B] one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 以下、[1B’]~[3B’]のいずれかのRNAまたはRNAの組合せが提供される:
[1B’]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、
[2B’]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、または
[3B’]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ)とtracrRNAをコードする核酸との組合せ:
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
Hereinafter, any RNA or combination of RNAs from [1B ′] to [3B ′] is provided:
[1B ′] a combination of one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA;
[2B ′] a combination of one RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA, or [ 3B ′] a combination of 2 to 8 RNAs selected from the group consisting of the following (1B) to (8B) (particularly a combination of 4 or more RNAs) and a nucleic acid encoding tracrRNA:
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明では、gRNAおよびcrRNAは、その5’末端に標的配列またはその相補鎖に相補的なRNA配列を有し得る。gRNAおよびcrRNAが有する標的配列またはその相補鎖に相補的なRNA配列は、標的配列またはその相補鎖の配列に基づいて設計することができる。 In the present invention, gRNA and crRNA may have an RNA sequence complementary to the target sequence or its complementary strand at the 5 'end. The RNA sequence complementary to the target sequence of gRNA and crRNA or its complementary strand can be designed based on the sequence of the target sequence or its complementary strand.
 本発明では、本発明のgRNAおよびcrRNAをコードする核酸が提供される。本発明ではまた、本発明の複数のgRNAそれぞれをコードする核酸の組合せおよび複数のcrRNAそれぞれをコードする核酸の組合せが提供される。ここで、核酸の組合せは、複数のgRNAのそれぞれをコードする核酸の組合せを意味する。 In the present invention, nucleic acids encoding the gRNA and crRNA of the present invention are provided. The present invention also provides a combination of nucleic acids encoding each of the plurality of gRNAs of the present invention and a combination of nucleic acids encoding each of the plurality of crRNAs. Here, the combination of nucleic acids means a combination of nucleic acids encoding each of a plurality of gRNAs.
 すなわち、本発明によれば、SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せが提供される。 That is, according to the present invention, a combination of nucleic acids encoding gRNAs targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
 本発明によれば、SCN1A遺伝子のプロモーター領域1および/またはプロモーター領域2上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せが提供される。
 本発明によればまた、SCN1A遺伝子のプロモーター領域1上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せが提供される。
 本発明によればさらに、SCN1A遺伝子のプロモーター領域2上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せが提供される。
According to the present invention, each gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on promoter region 1 and / or promoter region 2 of the SCN1A gene is encoded. Nucleic acid combinations are provided which are nucleic acid combinations or nucleic acid encoding each crRNA.
According to the present invention, a nucleic acid combination encoding each gRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
According to the present invention, a nucleic acid combination encoding each gRNA targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene, or Nucleic acid combinations are provided that are nucleic acid combinations encoding each crRNA.
 本発明によれば、
以下、[1A]~[3A]のいずれかのRNAそれぞれをコードする核酸または核酸の組合せが提供される:
[1A]以下(1A)~(4A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2A]以下(5A)~(8A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3A]以下(1A)~(8A)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1A)配列番号1で示される配列を標的とするgRNA、
 (2A)配列番号2で示される配列を標的とするgRNA、
 (3A)配列番号3で示される配列を標的とするgRNA、
 (4A)配列番号4で示される配列を標的とするgRNA、
 (5A)配列番号5で示される配列を標的とするgRNA、
 (6A)配列番号6で示される配列を標的とするgRNA、
 (7A)配列番号7で示される配列を標的とするgRNA、および
 (8A)配列番号8で示される配列を標的とするgRNA。
According to the present invention,
Hereinafter, a nucleic acid or a combination of nucleic acids encoding each RNA of any of [1A] to [3A] is provided:
[1A] one RNA selected from the group consisting of the following (1A) to (4A) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2A] 1 RNA selected from the group consisting of the following (5A) to (8A) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3A] and below (1A) to (8A) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1A) gRNA targeting the sequence represented by SEQ ID NO: 1,
(2A) gRNA targeting the sequence shown in SEQ ID NO: 2,
(3A) gRNA targeting the sequence shown in SEQ ID NO: 3,
(4A) gRNA targeting the sequence shown in SEQ ID NO: 4,
(5A) gRNA targeting the sequence shown in SEQ ID NO: 5,
(6A) gRNA targeting the sequence shown in SEQ ID NO: 6,
(7A) gRNA targeting the sequence represented by SEQ ID NO: 7, and (8A) gRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明によれば、
以下、[1B]~[3B]のいずれかのRNAそれぞれをコードする核酸または核酸の組合せが提供される:
[1B]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2B]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3B]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
According to the present invention,
Hereinafter, a nucleic acid or a combination of nucleic acids encoding each RNA of any of [1B] to [3B] is provided:
[1B] one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 以下、[1B’]~[3B’]のいずれかのRNAそれぞれをコードする核酸の組合せが提供される:
[1B’]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、
[2B’]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、または
[3B’]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ)とtracrRNAをコードする核酸との組合せ:
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
The following provides a combination of nucleic acids encoding each RNA of any of [1B ′] to [3B ′]:
[1B ′] a combination of one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA;
[2B ′] a combination of one RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA, or [ 3B ′] a combination of 2 to 8 RNAs selected from the group consisting of the following (1B) to (8B) (particularly a combination of 4 or more RNAs) and a nucleic acid encoding tracrRNA:
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明によれば、本発明のRNAまたはRNAの組合せを細胞に発現させる、RNA発現ベクターが提供される。RNA発現ベクター上では、gRNAまたはcrRNAをコードする核酸が、RNA発現プロモーターに作動可能に連結されている。RNA発現プロモーターとしては、特に限定されないが例えば、RNAポリメラーゼIIIのプロモーターを用いることができ、例えば、U6プロモーターを用いることができる。
 本発明のRNA発現ベクターは、1つのRNA発現ベクター上に複数の核酸が発現可能に組み込まれ、本発明のRNAの組合せを発現できるベクターとすることができる。
 ある態様では、複数のRNA発現ベクターは、複数のRNA発現ベクターの組合せであり、当該複数のRNA発現ベクターを組み合わせることにより、本発明のRNAの組合せを発現できるベクターの組合せであってもよい。この態様では、各RNA発現ベクターがそれぞれ異なる1つのRNAを発現するものであってもよい。
According to the present invention, there is provided an RNA expression vector that allows a cell to express the RNA or RNA combination of the present invention. On the RNA expression vector, a nucleic acid encoding gRNA or crRNA is operably linked to an RNA expression promoter. The RNA expression promoter is not particularly limited. For example, the RNA polymerase III promoter can be used, and for example, the U6 promoter can be used.
The RNA expression vector of the present invention can be a vector in which a plurality of nucleic acids can be expressed on one RNA expression vector so that the combination of RNAs of the present invention can be expressed.
In one embodiment, the plurality of RNA expression vectors is a combination of a plurality of RNA expression vectors, and may be a combination of vectors capable of expressing the combination of RNAs of the present invention by combining the plurality of RNA expression vectors. In this embodiment, each RNA expression vector may express one different RNA.
 例えば、上記[1A]に定義されたRNAの組合せは、1つのRNA発現ベクター上に組み込まれていてもよいし、複数のRNA発現ベクター上に組み込まれていてもよいし、それぞれのRNAが別のRNA発現ベクター上に組み込まれていてもよい。
 例えば、上記[2A]に定義されたRNAの組合せは、1つのRNA発現ベクター上に組み込まれていてもよいし、複数のRNA発現ベクター上に離れて組み込まれていてもよいし、それぞれのRNAが別のRNA発現ベクター上に組み込まれていてもよい。
 例えば、上記[3A]に定義されたRNAの組合せは、1つのRNA発現ベクター上に組み込まれていてもよいし、複数のRNA発現ベクター上に離れて組み込まれていてもよいし、それぞれのRNAが別のRNA発現ベクター上に組み込まれていてもよい。上記[3A]に定義されたRNAの組合せは、crRNAは一つのRNA発現ベクター上に組み込まれ、tracrRNAは別のRNA発現ベクター上に組み込まれていてもよい。
For example, the combination of RNAs defined in [1A] above may be incorporated on one RNA expression vector, or may be incorporated on a plurality of RNA expression vectors. It may be incorporated on the RNA expression vector.
For example, the RNA combination defined in [2A] above may be incorporated on one RNA expression vector, or may be incorporated separately on a plurality of RNA expression vectors, or each RNA May be incorporated on another RNA expression vector.
For example, the RNA combination defined in [3A] above may be incorporated on one RNA expression vector, or may be incorporated separately on a plurality of RNA expression vectors, or each RNA May be incorporated on another RNA expression vector. In the RNA combination defined in [3A] above, crRNA may be incorporated on one RNA expression vector and tracrRNA may be incorporated on another RNA expression vector.
 本発明によれば、例えば、RNA発現ベクターは、SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せを含む。 According to the present invention, for example, the RNA expression vector encodes each gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene. A combination of nucleic acids, or a combination of nucleic acids encoding each crRNA.
 本発明によればまた、RNA発現ベクターは、例えば、SCN1A遺伝子のプロモーター領域1および/またはプロモーター領域2上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである、核酸の組合せを含む。
 本発明によればまた、RNA発現ベクターは、例えば、SCN1A遺伝子のプロモーター領域1上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである核酸の組合せを含む。核酸は、真核細胞内で発現可能にRNA発現ベクターに含まれている。
 本発明によればさらに、RNA発現ベクターは、例えば、SCN1A遺伝子のプロモーター領域2上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAそれぞれをコードする核酸の組合せまたはcrRNAそれぞれをコードする核酸の組合せである核酸の組合せを含む。核酸は、真核細胞内で発現可能にRNA発現ベクターに含まれている。
According to the present invention, the RNA expression vector may be, for example, at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 and / or the promoter region 2 of the SCN1A gene. A combination of nucleic acids that is a combination of nucleic acids encoding each of the gRNAs targeted to or a combination of nucleic acids that encode each of the crRNAs.
According to the present invention, the RNA expression vector also includes, for example, gRNAs targeting at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 1 of the SCN1A gene. Or a combination of nucleic acids that is a combination of nucleic acids encoding each crRNA. The nucleic acid is contained in an RNA expression vector so that it can be expressed in eukaryotic cells.
In addition, according to the present invention, the RNA expression vector may be, for example, a gRNA that targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region 2 of the SCN1A gene. Or a combination of nucleic acids that is a combination of nucleic acids encoding each crRNA. The nucleic acid is contained in an RNA expression vector so that it can be expressed in eukaryotic cells.
 本発明によれば、下記[4A]~[6A]のいずれかに記載のRNA発現ベクターが提供される:
[4A]以下(1A)~(4A)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、
[5A]以下(5A)~(8A)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、または
[6A]以下(1A)~(8A)からなる群から選択される2~8つのRNA発現ベクターの組合せ(特に4つ以上のRNA発現ベクターの組合せ):
 (1A)配列番号1で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (2A)配列番号2で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (3A)配列番号3で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (4A)配列番号4で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (5A)配列番号5で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (6A)配列番号6で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (7A)配列番号7で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、および
 (8A)配列番号8で示される配列を標的とするgRNAを発現可能にコードする遺伝子を含むRNA発現ベクター。
According to the present invention, there is provided an RNA expression vector according to any of [4A] to [6A] below:
[4A] one RNA expression vector selected from the group consisting of the following (1A) to (4A) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors),
[5A] One RNA expression vector selected from the group consisting of the following (5A) to (8A) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6A] or less (1A ) To (8A) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors):
(1A) an RNA expression vector comprising a gene encoding a gRNA that targets the sequence represented by SEQ ID NO: 1 so that it can be expressed;
(2A) an RNA expression vector comprising a gene encoding the gRNA targeting the sequence represented by SEQ ID NO: 2 so as to allow expression;
(3A) an RNA expression vector comprising a gene encoding a gRNA that targets the sequence represented by SEQ ID NO: 3 so as to allow expression;
(4A) an RNA expression vector comprising a gene encoding the gRNA targeting the sequence represented by SEQ ID NO: 4 in such a manner that it can be expressed;
(5A) an RNA expression vector comprising a gene encoding the gRNA targeting the sequence represented by SEQ ID NO: 5 so that it can be expressed;
(6A) an RNA expression vector comprising a gene encoding the gRNA targeting the sequence represented by SEQ ID NO: 6 so that it can be expressed;
(7A) an RNA expression vector comprising a gene encoding a gRNA that targets the sequence represented by SEQ ID NO: 7 so that it can be expressed; and (8A) encoding a gRNA that targets the sequence represented by SEQ ID NO: 8 so that it can be expressed. An RNA expression vector containing a gene.
 本発明によれば、下記[4B]~[6B]のいずれかに記載のRNA発現ベクターまたはRNA発現ベクターの組合せが提供される:
[4B]以下(1B)~(4B)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、
[5B]以下(5B)~(8B)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、または
[6B]以下(1B)~(8B)からなる群から選択される2~8つのRNA発現ベクターの組合せ(特に4つ以上のRNA発現ベクターの組合せ):
 (1B)配列番号1で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (2B)配列番号2で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (3B)配列番号3で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (4B)配列番号4で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (5B)配列番号5で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (6B)配列番号6で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (7B)配列番号7で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、および
 (8B)配列番号8で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター。
According to the present invention, there is provided an RNA expression vector or a combination of RNA expression vectors described in any of [4B] to [6B] below:
[4B] one RNA expression vector selected from the group consisting of the following (1B) to (4B) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors),
[5B] One RNA expression vector selected from the group consisting of the following (5B) to (8B) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6B] or less (1B ) To (8B) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors):
(1B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 1 so that it can be expressed;
(2B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 2 so that it can be expressed;
(3B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 3 so that it can be expressed;
(4B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 4 so that it can be expressed;
(5B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 5 so that it can be expressed;
(6B) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 6 so that it can be expressed;
(7B) an RNA expression vector comprising a gene encoding a crRNA targeting the sequence represented by SEQ ID NO: 7 so that it can be expressed; and (8B) encoding a crRNA targeting the sequence represented by SEQ ID NO: 8 so that it can be expressed. An RNA expression vector containing a gene.
 本発明によれば、下記[4C]~[6C]のいずれかに記載のRNA発現ベクターまたはRNA発現ベクターの組合せが提供される:
[4C]以下(1C)~(4C)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、
[5C]以下(5C)~(8C)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、または
[6C]以下(1C)~(8C)からなる群から選択される2~8つのRNA発現ベクターの組合せ(特に4つ以上のRNA発現ベクターの組合せ):
 (1C)配列番号1で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (2C)配列番号2で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (3C)配列番号3で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (4C)配列番号4で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (5C)配列番号5で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (6C)配列番号6で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (7C)配列番号7で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター、および
 (8C)配列番号8で示される配列を標的とするcrRNAとtracrRNAとを発現可能にコードする遺伝子を含むRNA発現ベクター。
According to the present invention, there is provided an RNA expression vector or a combination of RNA expression vectors described in any of [4C] to [6C] below:
[4C] one RNA expression vector selected from the group consisting of the following (1C) to (4C) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors),
[5C] One RNA expression vector selected from the group consisting of (5C) to (8C) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6C] or less (1C ) To (8C) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors):
(1C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 1 in such a manner that it can be expressed;
(2C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 2 so that it can be expressed;
(3C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 3 so that it can be expressed;
(4C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 4 so that it can be expressed;
(5C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 5 so that it can be expressed;
(6C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence represented by SEQ ID NO: 6 so that it can be expressed;
(7C) an RNA expression vector comprising a gene encoding crRNA and tracrRNA that target the sequence shown in SEQ ID NO: 7 so that it can be expressed; and (8C) crRNA and tracrRNA targeting the sequence shown in SEQ ID NO: 8; An RNA expression vector comprising a gene encoding such that it can be expressed.
 本発明によれば、下記[4D]~[6D]のいずれかに記載のRNA発現ベクターまたはRNA発現ベクターの組合せとtracrRNAを発現する発現ベクターとの組合せが提供される:
[4D]以下(1D)~(4D)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、
[5D]以下(5D)~(8D)からなる群から選択される1つのRNA発現ベクターもしくは2以上のRNA発現ベクターの組合せ(特に4つのRNA発現ベクターの組合せ)、または
[6D]以下(1D)~(8D)からなる群から選択される2~8つのRNA発現ベクターの組合せ(特に4つ以上のRNA発現ベクターの組合せ):
 (1D)配列番号1で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (2D)配列番号2で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (3D)配列番号3で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (4D)配列番号4で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (5D)配列番号5で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (6D)配列番号6で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、
 (7D)配列番号7で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター、および
 (8D)配列番号8で示される配列を標的とするcrRNAを発現可能にコードする遺伝子を含むRNA発現ベクター。
According to the present invention, there is provided an RNA expression vector or a combination of RNA expression vectors described in any of [4D] to [6D] below and a combination of an expression vector that expresses tracrRNA:
[4D] one RNA expression vector selected from the group consisting of the following (1D) to (4D) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors),
[5D] One RNA expression vector selected from the group consisting of (5D) to (8D) or a combination of two or more RNA expression vectors (particularly a combination of four RNA expression vectors), or [6D] or less (1D ) To (8D) in combination of 2 to 8 RNA expression vectors selected from the group consisting of (in particular 4 or more RNA expression vectors):
(1D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 1 so that it can be expressed;
(2D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 2 so that it can be expressed;
(3D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 3 so that it can be expressed;
(4D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 4 so that it can be expressed;
(5D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 5 so as to allow expression;
(6D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 6 so that it can be expressed;
(7D) an RNA expression vector comprising a gene encoding a crRNA that targets the sequence represented by SEQ ID NO: 7 so that it can be expressed; and (8D) encoding a crRNA that targets the sequence represented by SEQ ID NO: 8 so that it can be expressed. An RNA expression vector containing a gene.
 本発明によれば、RNA発現ベクターは、例えば、プラスミドベクターまたはウイルスベクターとすることができる。ウイルスベクターとしては、レンチウイルスベクター、麻疹ウイルスベクター、センダイウイルスベクターなどの様々な遺伝子導入可能なベクターを用いることができる。当業者であれば、適宜ベクターを選択して、本発明のgRNAおよびcrRNAを発現するベクターを構築することができる。 According to the present invention, the RNA expression vector can be, for example, a plasmid vector or a viral vector. As a viral vector, vectors capable of introducing various genes such as a lentiviral vector, measles virus vector, Sendai virus vector and the like can be used. A person skilled in the art can appropriately select a vector and construct a vector that expresses the gRNA and crRNA of the present invention.
 本発明によれば、本発明のgRNAもしくはgRNAの組合せまたはcrRNAもしくはcrRNAの組合せを含む、組合せ医薬が提供される。本発明では、組合せ医薬は、複数のgRNAまたはcrRNAそれぞれを別々の形態で含む医薬、すなわち、医薬組成物の組合せであってもよいし、複数のgRNAまたはcrRNAが混合された形態で含む1つの医薬、すなわち医薬組成物であってもよい。 According to the present invention, there is provided a combination medicament comprising the gRNA or combination of gRNAs of the present invention or a combination of crRNA or crRNA. In the present invention, the combination medicine may be a medicine containing each of a plurality of gRNAs or crRNAs in a separate form, that is, a combination of pharmaceutical compositions, or a single medicine containing a plurality of gRNAs or crRNAs in a mixed form. It may be a medicine, i.e. a pharmaceutical composition.
 本発明では、本発明のRNA発現ベクターを含む医薬または組合せ医薬が提供される。本発明では、組合せ医薬は、gRNAまたはcrRNAそれぞれを発現する複数のRNA発現ベクターを別々の形態で含む医薬、すなわち、医薬組成物の組合せであってもよいし、複数のgRNAまたはcrRNAそれぞれを発現する複数のRNA発現ベクターが混合された形態で含む1つの医薬、すなわち医薬組成物であってもよい。 In the present invention, a medicine or combination medicine containing the RNA expression vector of the present invention is provided. In the present invention, the combination medicine may be a medicine containing a plurality of RNA expression vectors expressing gRNA or crRNA in separate forms, that is, a combination of pharmaceutical compositions, or express each of a plurality of gRNA or crRNA. It is also possible to use a single medicine, that is, a pharmaceutical composition, containing a plurality of RNA expression vectors in a mixed form.
 本発明では、医薬組成物は、製薬的に許容できる賦形剤、担体または希釈剤などをさらに含んでなり得る。
 「製薬的に許容可能な」とは、医薬業界で通常使用される意味を有し、場合により、ヒトに投与された場合にアレルギー反応または同様の有害反応を生じさせない分子的実体物質または組成物等の使用が可能であることを表す。典型的に、そのような組成物は、注射剤として、液体溶液または懸濁液として調製され、注射前の液体中での溶解または懸濁に好適な固体剤形を調製することもできる。調製物は乳化することもできる。
 賦形剤、担体または希釈剤としては、例えば、任意の溶媒、分散媒、ビヒクル、コーティング、希釈剤、抗菌剤および抗真菌剤、等張(isotonic)および吸収遅延剤、バッファー、担体溶液、懸濁液、コロイド、などが含まれる。リン酸塩、クエン酸塩、及び他の有機酸塩のバッファー;アスコルビン酸を含む酸化防止剤;低分子量(約10アミノ酸残基未満)ポリペプチド;タンパク質(例えば血清アルブミン、ゼラチン、又は免疫グロブリン);疎水性ポリマー(例えばポリビニルピロリドン);アミノ酸(例えばグリシン、グルタミン、アスパラギン、アルギニン又はリシン);グルコース、マンノース又はデキストランを含む単糖類、二糖類、及び他の炭水化物;EDTA等のキレート剤;マンニトール又はソルビトール等の糖アルコール;ナトリウム等の塩形成対イオン;及び/又は非イオン性界面活性剤(例えば、ポリオキシアルキレン系)といった例も挙げられる。医薬活性物質のためのそのような媒体および物質の使用は当技術分野で周知である。任意の慣用の媒体または物質が活性成分と不適合である場合を除き、治療用組成物でのその使用が想定される。補助活性成分を組成物に組み入れることもできる。
 本発明の医薬組成物は、製剤に使用される各種の界面活性剤を使用してもよい。界面活性剤の種類は特に限定されず、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、または両性界面活性剤等が挙げられ、中でもノニオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、例えば、ポリオキシエチレンモノアルキルエーテル、またはポリオキシエチレンモノアリールエーテル等のポリオキシアルキレン系ノニオン界面活性剤;多価アルコール(例えばソルビタン、ソルビトール)の高級脂肪酸エステル;および多価アルコールの高級脂肪酸エステルにエチレンオキシドを重合付加させたもの;等が挙げられる。
In the present invention, the pharmaceutical composition may further comprise a pharmaceutically acceptable excipient, carrier or diluent.
“Pharmaceutically acceptable” has the meaning normally used in the pharmaceutical industry and, in some cases, a molecular entity or composition that does not cause allergic or similar adverse reactions when administered to humans. It is possible to use such as. Typically, such compositions are prepared as liquid solutions or suspensions as injections, and solid dosage forms suitable for dissolution or suspension in liquid prior to injection can also be prepared. The preparation can also be emulsified.
Excipients, carriers or diluents include, for example, any solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions. Suspensions, colloids, etc. are included. Phosphate, citrate, and other organic acid salt buffers; antioxidants including ascorbic acid; low molecular weight (less than about 10 amino acid residues) polypeptide; protein (eg, serum albumin, gelatin, or immunoglobulin) Hydrophobic polymers (eg polyvinylpyrrolidone); amino acids (eg glycine, glutamine, asparagine, arginine or lysine); monosaccharides, disaccharides and other carbohydrates including glucose, mannose or dextran; chelating agents such as EDTA; Examples include sugar alcohols such as sorbitol; salt-forming counterions such as sodium; and / or nonionic surfactants (eg, polyoxyalkylenes). The use of such media and materials for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or substance is incompatible with the active ingredient, its use in the therapeutic composition is envisioned. Supplementary active ingredients can also be incorporated into the compositions.
In the pharmaceutical composition of the present invention, various surfactants used in the preparation may be used. The type of the surfactant is not particularly limited, and examples thereof include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Among these, nonionic surfactants are preferable. Nonionic surfactants include, for example, polyoxyalkylene nonionic surfactants such as polyoxyethylene monoalkyl ether or polyoxyethylene monoaryl ether; higher fatty acid esters of polyhydric alcohols (eg, sorbitan, sorbitol); and And those obtained by polymerizing and adding ethylene oxide to a higher fatty acid ester of a polyhydric alcohol.
 本発明の組合せ医薬は、dCas9と転写活性化タンパク質との融合タンパク質またはdCas9と転写活性化タンパク質との融合タンパク質の発現ベクターを、別々の形態で、または混合した形態で、さらに含んでいてもよい。本発明の組合せ医薬は、crRNAが前記融合タンパク質と複合体を形成するために、tracrRNAまたはtracrRNAの発現ベクターを、別々の形態で、または混合した形態で、さらに含んでいてもよい。 The combination medicament of the present invention may further contain a fusion protein of dCas9 and a transcriptional activation protein or an expression vector of a fusion protein of dCas9 and a transcriptional activation protein in separate forms or mixed forms. . The combination medicament of the present invention may further contain tracrRNA or an expression vector of tracrRNA in a separate form or a mixed form so that crRNA forms a complex with the fusion protein.
 本発明のRNAの組合せは、dCas9と転写活性化タンパク質との融合タンパク質と組み合わされて提供されてもよい。したがって、本発明では、本発明のRNAの組合せとdCas9と転写活性化タンパク質との融合タンパク質との組合せが提供される。
 本発明のDNAの組合せおよびRNA発現ベクターの組合せは、dCas9と転写活性化タンパク質との融合タンパク質をコードする核酸または該核酸を発現する発現ベクターと組み合わされて提供されてもよい。したがって、本発明では、本発明のDNAの組合せまたはRNA発現ベクターの組合せと、dCas9と転写活性化タンパク質との融合タンパク質をコードする核酸または該核酸を発現する発現ベクターとの組合せが提供される。
The RNA combination of the present invention may be provided in combination with a fusion protein of dCas9 and a transcription activation protein. Therefore, the present invention provides a combination of the RNA combination of the present invention and a fusion protein of dCas9 and a transcription activation protein.
The DNA combination and RNA expression vector combination of the present invention may be provided in combination with a nucleic acid encoding a fusion protein of dCas9 and a transcription activation protein or an expression vector expressing the nucleic acid. Accordingly, the present invention provides a combination of a DNA combination or RNA expression vector combination of the present invention and a nucleic acid encoding a fusion protein of dCas9 and a transcription activation protein or an expression vector expressing the nucleic acid.
 本発明のRNAの組合せ、DNAの組合せ、およびRNA発現ベクターは、これらを含むCRISPR-onシステムとして提供されてもよい。CRISPR-onシステムは、例えば、本発明のRNAの組合せ、DNAの組合せ、およびRNA発現ベクターに加えて、dCas9と転写活性化タンパク質との融合タンパク質を含み得る。 The RNA combination, DNA combination, and RNA expression vector of the present invention may be provided as a CRISPR-on system containing them. The CRISPR-on system can include, for example, a fusion protein of dCas9 and a transcription activation protein in addition to the RNA combination, DNA combination, and RNA expression vector of the present invention.
 SCN1A遺伝子の発現量は、当業者に周知の発現量測定法により決定することができる。例えば、遺伝子発現は、定量的PCR法、ノーザンブロット法、抗SCN1Aタンパク質抗体を用いたELISA、ウェスタンブロット法、免疫組織学染色などの様々な方法により確認することができる。SCN1A遺伝子の発現量が増加したか否かは、SCN1A遺伝子導入前後でその発現量を比較することにより決定することができ、所望により、SCN1A遺伝子を発現することが知られる細胞(例えば、健常者の細胞)と比較して決定してもよい。 The expression level of the SCN1A gene can be determined by an expression level measurement method well known to those skilled in the art. For example, gene expression can be confirmed by various methods such as quantitative PCR, Northern blotting, ELISA using anti-SCN1A protein antibody, Western blotting, immunohistological staining, and the like. Whether or not the expression level of the SCN1A gene has increased can be determined by comparing the expression level before and after the introduction of the SCN1A gene. If desired, cells known to express the SCN1A gene (for example, healthy subjects) In comparison with other cells).
 本発明では、本発明のgRNAまたはgRNAの組合せは、dCas9と転写活性化タンパク質との融合タンパク質と組み合わせて細胞内に導入されると、gRNAと前記融合タンパク質との複合体を形成する。形成された複合体は、細胞内のゲノムDNA上の標的配列に導かれ、SCN1A遺伝子の転写を活性化する。 In the present invention, when the gRNA of the present invention or a combination of gRNA is introduced into a cell in combination with a fusion protein of dCas9 and a transcription activation protein, a complex of gRNA and the fusion protein is formed. The formed complex is guided to a target sequence on the genomic DNA in the cell and activates transcription of the SCN1A gene.
 本発明では、本発明のcrRNAまたはcrRNAの組合せは、tracrRNAおよびdCas9と転写活性化タンパク質との融合タンパク質と組み合わせて細胞内に導入されると、crRNAとtracrRNAと融合タンパク質との複合体を形成する。形成された複合体は、細胞内のゲノムDNA上の標的配列に導かれ、SCN1A遺伝子の転写を活性化する。 In the present invention, the crRNA or crRNA combination of the present invention forms a complex of crRNA, tracrRNA and fusion protein when introduced into a cell in combination with a fusion protein of tracrRNA and dCas9 and a transcriptional activation protein. . The formed complex is guided to a target sequence on the genomic DNA in the cell and activates transcription of the SCN1A gene.
 本発明では、本発明のDNAまたはDNAの組合せは、例えば、本発明のgRNAまたはcrRNAを得るために、または、本発明のDNAまたはDNAの組合せを増幅させるために用いられ得る。例えば、本発明のDNAまたはDNAの組合せは、適切なプロモーターと作動可能に連結し、本発明のgRNAまたはcrRNAを試験管内で、または細胞内で産生させることに用いることができる。例えば、本発明のDNAまたはDNAの組合せは、大腸菌内で増幅する複製起点を有するプラスミドにクローニングされ、大腸菌内で増幅され得る。また、本発明のDNAまたはDNAの組合せは、PCRにより増幅され得る。 In the present invention, the DNA or DNA combination of the present invention can be used, for example, to obtain the gRNA or crRNA of the present invention or to amplify the DNA or DNA combination of the present invention. For example, the DNA or DNA combination of the invention can be operably linked to a suitable promoter and used to produce the gRNA or crRNA of the invention in vitro or in a cell. For example, the DNA or DNA combination of the present invention can be cloned into a plasmid having an origin of replication that amplifies in E. coli and amplified in E. coli. Also, the DNA or DNA combination of the present invention can be amplified by PCR.
 本発明では、本発明のgRNAの発現ベクターは、dCas9と転写活性化タンパク質との融合タンパク質を発現する発現ベクターと組み合わせて用いることができる。本発明のcrRNAの発現ベクターは、tracrRNAのRNA発現ベクターおよびdCas9と転写活性化タンパク質との融合タンパク質を発現する発現ベクターと組み合わせて用いることができる。 In the present invention, the gRNA expression vector of the present invention can be used in combination with an expression vector that expresses a fusion protein of dCas9 and a transcription activation protein. The crRNA expression vector of the present invention can be used in combination with a tracrRNA RNA expression vector and an expression vector that expresses a fusion protein of dCas9 and a transcription activation protein.
 細胞内のゲノムDNAを切断するためには、発現ベクターを細胞内に導入することができる。発現ベクターの細胞内への導入は、当業者であれば周知の技術により実施することができる。例えば、プラスミドベクターは、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法およびショットガン法などの方法により細胞に導入することができる。また、哺乳動物個体に導入する場合には、該哺乳動物に感染するウイルスベクターを用いて静脈内投与、筋肉内投与、皮下投与、腹腔内投与、脳室内投与などの様々な投与法で投与することができる。細胞内に導入された発現ベクターは、細胞内で本発明のgRNAやcrRNAおよびtracrRNAを発現し、また、融合タンパク質を発現する発現ベクターは融合タンパク質を発現し、細胞内でゲノムの標的配列に結合してSCN1A遺伝子の転写を活性化する。SCN1A遺伝子の発現を増強する細胞は、好ましくは、ヒト神経細胞、好ましくはヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞とすることができる。例えば、小胞型抑制性神経伝達物質トランスポーター(Vgat)のプロモーターやパルブアルブミン(PV)のプロモーターを用いることで、ヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞においてSCN1A遺伝子の発現量を向上させ得る。 In order to cleave genomic DNA in a cell, an expression vector can be introduced into the cell. Introduction of the expression vector into the cell can be performed by a person skilled in the art by a well-known technique. For example, plasmid vectors can be introduced into cells by methods such as electroporation, calcium phosphate, lipofection, and shotgun methods. In addition, when introduced into a mammal individual, it is administered by various administration methods such as intravenous administration, intramuscular administration, subcutaneous administration, intraperitoneal administration, and intraventricular administration using a viral vector that infects the mammal. be able to. The expression vector introduced into the cell expresses the gRNA, crRNA and tracrRNA of the present invention in the cell, and the expression vector expressing the fusion protein expresses the fusion protein and binds to the target sequence of the genome in the cell. Then, the transcription of the SCN1A gene is activated. The cell that enhances the expression of the SCN1A gene is preferably a human nerve cell, preferably a human inhibitory nerve cell, more preferably a parvalbumin positive inhibitory nerve cell. For example, by using a promoter of a vesicle-type inhibitory neurotransmitter transporter (Vgat) or a promoter of parvalbumin (PV), the SCN1A gene can be expressed in human inhibitory neurons, more preferably in parvalbumin positive inhibitory neurons. The expression level can be improved.
 本発明では、本発明のRNAまたはRNAの組合せを安定的に発現する真核細胞(特にヒト神経細胞、好ましくはヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞)および該細胞を含む細胞製剤が提供される。本発明の真核細胞および細胞製剤において、真核細胞は、dCas9と転写活性化タンパク質との融合タンパク質をさらに安定発現していてもよい。RNAを真核細胞に安定的に発現させる方法は当業者に周知である。ここで、細胞製剤とは、細胞を治療上の有効成分とする医薬組成物を意味する。 In the present invention, eukaryotic cells (especially human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons) that stably express the RNA or RNA combination of the present invention and the cells are used. A cell preparation comprising is provided. In the eukaryotic cell and cell preparation of the present invention, the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcription activation protein. Methods for stably expressing RNA in eukaryotic cells are well known to those skilled in the art. Here, the cell preparation means a pharmaceutical composition containing cells as a therapeutically active ingredient.
 本発明によれば、
以下、[1A]~[3A]のいずれかのRNAまたはRNAの組合せを安定発現する真核細胞(特にヒト神経細胞、好ましくはヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞)および該真核細胞を含む細胞製剤が提供される{ここで、真核細胞は、dCas9と転写活性化タンパク質との融合タンパク質をさらに安定発現していてもよい}:
[1A]以下(1A)~(4A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2A]以下(5A)~(8A)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3A]以下(1A)~(8A)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1A)配列番号1で示される配列を標的とするgRNA、
 (2A)配列番号2で示される配列を標的とするgRNA、
 (3A)配列番号3で示される配列を標的とするgRNA、
 (4A)配列番号4で示される配列を標的とするgRNA、
 (5A)配列番号5で示される配列を標的とするgRNA、
 (6A)配列番号6で示される配列を標的とするgRNA、
 (7A)配列番号7で示される配列を標的とするgRNA、および
 (8A)配列番号8で示される配列を標的とするgRNA。
According to the present invention,
Hereinafter, eukaryotic cells stably expressing any one of RNAs or combinations of RNAs [1A] to [3A] (particularly human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons). And a cell preparation comprising the eukaryotic cell {wherein the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcriptional activation protein}:
[1A] one RNA selected from the group consisting of the following (1A) to (4A) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2A] 1 RNA selected from the group consisting of the following (5A) to (8A) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3A] and below (1A) to (8A) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1A) gRNA targeting the sequence represented by SEQ ID NO: 1,
(2A) gRNA targeting the sequence shown in SEQ ID NO: 2,
(3A) gRNA targeting the sequence shown in SEQ ID NO: 3,
(4A) gRNA targeting the sequence shown in SEQ ID NO: 4,
(5A) gRNA targeting the sequence shown in SEQ ID NO: 5,
(6A) gRNA targeting the sequence shown in SEQ ID NO: 6,
(7A) gRNA targeting the sequence represented by SEQ ID NO: 7, and (8A) gRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明によれば、
以下、[1B]~[3B]のいずれかのRNAまたはRNAの組合せを安定発現する真核細胞(特にヒト神経細胞、好ましくはヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞)および該真核細胞を含む細胞製剤が提供される{ここで、真核細胞は、dCas9と転写活性化タンパク質との融合タンパク質をさらに安定発現していてもよい}:
[1B]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、
[2B]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)、または
[3B]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ):
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
According to the present invention,
Hereinafter, eukaryotic cells stably expressing any one of RNAs or combinations of RNAs [1B] to [3B] (particularly human neurons, preferably human inhibitory neurons, more preferably parvalbumin positive inhibitory neurons). And a cell preparation comprising the eukaryotic cell {wherein the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcriptional activation protein}:
[1B] one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs),
[2B] 1 RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNA (particularly a combination of 4 RNAs), or [3B] and below (1B) to (8B) 2-8 RNA combinations selected from the group consisting of (especially combinations of 4 or more RNAs):
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 以下、[1B’]~[3B’]のいずれかのRNAまたはRNAの組合せを安定発現する真核細胞(特にヒト神経細胞、好ましくはヒト抑制性神経細胞、より好ましくはパルブアルブミン陽性抑制性神経細胞)および該真核細胞を含む細胞製剤が提供される{ここで、真核細胞は、dCas9と転写活性化タンパク質との融合タンパク質をさらに安定発現していてもよい}:
[1B’]以下(1B)~(4B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、
[2B’]以下(5B)~(8B)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ(特に4つのRNAの組合せ)とtracrRNAをコードする核酸との組合せ、または
[3B’]以下(1B)~(8B)からなる群から選択される2~8つのRNAの組合せ(特に4つ以上のRNAの組合せ)とtracrRNAをコードする核酸との組合せ:
 (1B)配列番号1で示される配列を標的とするcrRNA、
 (2B)配列番号2で示される配列を標的とするcrRNA、
 (3B)配列番号3で示される配列を標的とするcrRNA、
 (4B)配列番号4で示される配列を標的とするcrRNA、
 (5B)配列番号5で示される配列を標的とするcrRNA、
 (6B)配列番号6で示される配列を標的とするcrRNA、
 (7B)配列番号7で示される配列を標的とするcrRNA、および
 (8B)配列番号8で示される配列を標的とするcrRNA。
Hereinafter, a eukaryotic cell (in particular, a human neuron, preferably a human inhibitory neuron, more preferably a parvalbumin positive inhibitory neuron that stably expresses any RNA or combination of RNAs of [1B ′] to [3B ′]. Cell) and a cell preparation containing the eukaryotic cell {wherein the eukaryotic cell may further stably express a fusion protein of dCas9 and a transcription activation protein}:
[1B ′] a combination of one RNA selected from the group consisting of the following (1B) to (4B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA;
[2B ′] a combination of one RNA selected from the group consisting of the following (5B) to (8B) or a combination of 2 to 4 RNAs (particularly a combination of 4 RNAs) and a nucleic acid encoding tracrRNA, or [ 3B ′] a combination of 2 to 8 RNAs selected from the group consisting of the following (1B) to (8B) (particularly a combination of 4 or more RNAs) and a nucleic acid encoding tracrRNA:
(1B) crRNA targeting the sequence represented by SEQ ID NO: 1,
(2B) crRNA targeting the sequence shown in SEQ ID NO: 2,
(3B) crRNA targeting the sequence shown in SEQ ID NO: 3,
(4B) crRNA targeting the sequence shown in SEQ ID NO: 4,
(5B) crRNA targeting the sequence shown in SEQ ID NO: 5,
(6B) crRNA targeting the sequence shown in SEQ ID NO: 6,
(7B) crRNA targeting the sequence represented by SEQ ID NO: 7, and (8B) crRNA targeting the sequence represented by SEQ ID NO: 8.
 本発明では、SCN1A遺伝子の発現を増加させる方法であって、SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAまたはcrRNAを用いて、SCN1A遺伝子の転写を活性化することを含む、方法が提供される。 In the present invention, a method for increasing the expression of an SCN1A gene, which targets at least one, two, three, or four or more Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene Alternatively, a method is provided comprising activating transcription of the SCN1A gene using crRNA.
 本発明では、その必要のある対象において疾患を処置する方法であって、SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所、2箇所、3箇所、または4箇所以上を標的とするgRNAまたはcrRNAを用いて、SCN1A遺伝子の転写を活性化することを含む、方法が提供される。 In the present invention, a method for treating a disease in a subject in need thereof, which targets at least one, two, three, or four or more of the Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene A method is provided comprising activating transcription of the SCN1A gene using a gRNA or crRNA as defined above.
 本発明の医薬組成物、組合せ医薬、細胞製剤、および処置する方法において、ある態様では、対象疾患は、SCN1A遺伝子の発現量の低下を原因とする疾患であり得、SCN1A遺伝子の発現量の低下を原因とする疾患を有する対象とし得る。本発明の医薬組成物、組合せ医薬、細胞製剤、および処置する方法において、ある態様では、処置される疾患は、てんかんであり得る。ある態様では、処置される疾患はドラベ症候群であり得る。ある態様では、処置される疾患は、熱性痙攣+であり得る。ある態様では、処置される疾患は、自閉症などの社会性行動異常であり得る。ある態様では、処置される疾患はアルツハイマー病におけるてんかんであり得る。本発明では、対象は、機能的SCN1Aと変異SNC1A(例えば、ナンセンス変異およびフレームシフト変異)を有する対象でありうる。ある態様では上記変異SNC1Aは、S103G、T112I、G177fs、G265W、R712X、Q732fs、R946fs、R952X、R946fs、D958fs、M960V、N985I、R1204X、R1213X、S1231R、W1284W、R1407X、R1408X、S1516X、L1670fs、A1685D、F1765fs、1807delMFYE、W1812G、F1831S、R1892X、およびQ1904fsが挙げられる。ここでXはナンセンス変異、fsはフレームシフト変異を表す。また、S103Gは、アミノ酸配列の103番目のS(セリン)がG(グリシン)に変異していることを表す。 In the pharmaceutical composition, the combination drug, the cell preparation, and the method of treating of the present invention, in one embodiment, the target disease may be a disease caused by a decrease in the expression level of the SCN1A gene, and the expression level of the SCN1A gene is decreased. The subject may have a disease caused by. In the pharmaceutical compositions, combination medicaments, cell preparations and methods of treating of the present invention, in certain embodiments, the disease to be treated can be epilepsy. In certain embodiments, the disease to be treated can be Drave syndrome. In certain embodiments, the disease being treated can be febrile convulsions +. In certain embodiments, the disease to be treated can be social behavioral abnormalities such as autism. In certain embodiments, the disease to be treated can be epilepsy in Alzheimer's disease. In the present invention, a subject can be a subject having a functional SCN1A and a mutant SNC1A (eg, nonsense mutation and frameshift mutation). In one aspect, the mutation SNC1A is S103G, T112I, G177fs, G265W, R712X, Q732fs, R946fs, R952X, R946fs, D958fs, M960V, N985I, R1204X, R1213X, S1231R, W1284W, X8, 1685 F1765fs, 1807delMFYE, W1812G, F1831S, R1892X, and Q1904fs. Here, X represents a nonsense mutation, and fs represents a frameshift mutation. S103G represents that the 103rd S (serine) in the amino acid sequence is mutated to G (glycine).
 本発明のある態様では、本発明の医薬、組合せ医薬および細胞製剤は、てんかんを処置することに用いるための、ドラベ症候群を処置することに用いるための、熱性痙攣+を処置することに用いるための、または自閉症などの社会性行動異常を処置することにもちいるための、SCN1A遺伝子の活性および/または発現の低下を原因とする疾患を処置することに用いるための、医薬、組合せ医薬および細胞製剤であり得る。 In one aspect of the invention, the medicament, combination medicament and cell preparation of the invention are for use in treating febrile convulsions +, for use in treating epilepsy, for use in treating epilepsy. Pharmaceuticals, combination pharmaceuticals for use in treating diseases caused by decreased activity and / or expression of the SCN1A gene, for use in treating social behavioral abnormalities such as autism And can be cell preparations.
 本発明では、てんかんを処置することに用いるための、ドラベ症候群を処置することに用いるための、熱性痙攣+を処置することに用いるための、または自閉症などの社会性行動異常を処置することにもちいるための、SCN1A遺伝子の活性および/または発現の低下を原因とする疾患を処置することに用いるための、医薬、組合せ医薬および細胞製剤の製造のための、本発明のRNAもしくはRNAの組合せ、DNAもしくはDNAの組合せ、または発現ベクターの使用が提供される。 In the present invention, for use in treating epilepsy, for use in treating Drave syndrome, for use in treating febrile seizure +, or to treat social behavioral abnormalities such as autism The RNA or RNA of the invention for the manufacture of a medicament, combination medicament and cell preparation for use in treating a disease caused by a decrease in the activity and / or expression of the SCN1A gene Or the use of DNA or a combination of DNAs or expression vectors.
実施例1:gRNAの設計と作製
 本実施例では、Scn1a遺伝子のプロモーター領域を標的とするgRNAを設計し、作製した。
Example 1: Design and production of gRNA In this example, a gRNA targeting the promoter region of the Scn1a gene was designed and produced.
 ヒトゲノム配列はUCSC Genome BrowserよりGRCh37/hg19データセットの配列を使用した。マウスScn1a遺伝子のプロモーター領域の配列は、C57BL/6J系統のゲノムDNA配列を使用した。本実施例では、プロモーター領域のうち、主要な翻訳開始点の上流約600bpから850bpの領域内に存在する5’-NGG-3’(CAS9タンパクのProto-spacer Adjacent Motif(PAM)配列)の5’-側20bpからgRNAの標的配列を選択した。具体的には、ヒトは4箇所(hSC1U1~4,hSC1D1~4)、マウスは5個所(mSC1U1~5,mSC1D1~5)の計18箇所のgRNA配列を設計した。選択した配列の標的特異性は、ヒトまたは、マウスのゲノム配列中で他の領域に完全一致しない配列であることをNCBIの塩基配列データベースとBLASTプログラムによる相同性検索で確認した。さらに、原則的に連続した17bp以上の相同な塩基配列がなく、相同性のある部分配列の数が少なく、相同な部分配列が17bp以下でも3’-側の末端に位置しない配列を選択した。 The human genome sequence was the sequence of GRCh37 / hg19 data set from UCSC Genome Browser. As the sequence of the promoter region of the mouse Scn1a gene, the genomic DNA sequence of C57BL / 6J strain was used. In this example, 5′-NGG-3 ′ (Proto-spacer Adjacent Motif (PAM) sequence of CAS9 protein) existing in the region of about 600 bp to 850 bp upstream of the major translation initiation site in the promoter region. The target sequence of gRNA was selected from the 20-bp side. Specifically, a total of 18 gRNA sequences were designed in 4 places (hSC1U1-4, hSC1D1-4) for humans and 5 places (mSC1U1-5, mSC1D1-5) for mice. The target specificity of the selected sequence was confirmed by homology search using the NCBI nucleotide sequence database and the BLAST program to be a sequence that does not completely match other regions in the human or mouse genomic sequence. Furthermore, in principle, a sequence that does not have a continuous homologous base sequence of 17 bp or more, has a small number of homologous partial sequences, and is not located at the 3'-end even if the homologous partial sequence is 17 bp or less is selected.
 ヒトおよびマウスのSCN1A遺伝子のプロモーター中でgRNAを設計した部位を大きく分けて上流プロモーターおよび下流プロモーターと命名し、以下説明に用いた(図1および2参照)。設計されたgRNAの標的配列のプロモーター上での位置、名称および配列番号との対応は図1および2、表1および2、並びに化1~4の通りであった。 In the promoters of the human and mouse SCN1A genes, the sites where gRNAs were designed were roughly divided into upstream promoters and downstream promoters, which were used in the following description (see FIGS. 1 and 2). Correspondence between the position of the target sequence of the designed gRNA on the promoter, the name, and the sequence number was as shown in FIGS. 1 and 2, Tables 1 and 2, and Chemical Formulas 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000002
上記化学式において、転写開始点を1とした。
Figure JPOXMLDOC01-appb-C000002
In the above chemical formula, the transfer start point was 1.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 次にプラスミドDNAを調製した。gRNA発現ベクターは、U6プロモーターでgRNAを発現するベクター(MLM3636, addgene: Plasmmid #43860)をAddgene社より入手した。Maeder ML et al., Nat Methods., 10(10):977-93, 2013の作製法と同様に、ベクターの制限酵素BsmBIの切断部位に相補的な4塩基の突出末端を付加した20塩基の標的配列とその相補鎖を合成して2本鎖のDNA断片を作製し、DNA Ligation kit Ver2.1(タカラバイオ社)を使用して制限酵素BsmBIで切断したMLM3636ベクターに組み込んだ。dCAS9-VPR遺伝子は、CMVプロモーターによる発現ベクター(SP-dCas9-VPR, addgene: Plasmid #63798)をAddgene社より入手した。gRNA発現ベクターとdCAS9-VPR遺伝子発現ベクターのプラスミドDNAは、キアゲン社のHispeed Plasmid Midi Kitを使用して精製した。なお、dCAS9は、野生型CAS9が有する2つのDNAエンドヌクレアーゼドメインの酵素機能がいずれも破壊され、DNAを切断できない変異体である。 Next, plasmid DNA was prepared. As a gRNA expression vector, a vector (MLM3636, addgene: Plasmmid # 43860) that expresses gRNA with the U6 promoter was obtained from Addgene. Similar to the production method of Maeder ML et al., Nat Methods., 10 (10): 977-93, 2013, 20 bases with a 4 base overhanging end complementary to the cleavage site of the restriction enzyme BsmBI of the vector were added. A double-stranded DNA fragment was prepared by synthesizing the target sequence and its complementary strand, and incorporated into an MLM3636 vector cleaved with restriction enzyme BsmBI using DNA-Ligation-kit-Ver2.1 (Takara Bio Inc.). For the dCAS9-VPR gene, an expression vector (SP-dCas9-VPR, addgene: lasPlasmid # 63798) using a CMV promoter was obtained from Addgene. The plasmid DNAs of the gRNA expression vector and the dCAS9-VPR gene expression vector were purified using Qiagen Hispeed Plasmid Midi Kit. Note that dCAS9 is a mutant in which the enzymatic functions of the two DNA endonuclease domains of wild-type CAS9 are both destroyed and DNA cannot be cleaved.
実施例2:遺伝子発現の評価
 本実施例では、作製したプラスミドを用いて遺伝子発現の制御を行った。
Example 2: Evaluation of gene expression In this example, gene expression was controlled using the prepared plasmid.
細胞培養と遺伝子導入
 ウシ胎児血清(FBS)10%を含むダルベッコ改変イーグル培地(DMEM)を使用して、HEK293FT細胞(ヒト)またはNeuro2a細胞(マウス)を、37℃、二酸化炭素濃度5%の条件下で培養した。プラスミドDNAを導入するため、培養した細胞は、6wellプレートでHEK293FT細胞は5×104個/mL、Neuro2a細胞は1×105個/mLの密度で播種して、およそ80%の密度まで増殖させた。プラスミドDNAの導入は、Lipofectamin LTX(ライフテクノロジーズ社)を使用して行った。1well当たり、gRNAプラスミドを500ng(gRNAが1種であれば、500ng、5種であれば、各100ngを使用した。)とdCAS9-VPRプラスミドDNAを2000ngを使用した。遺伝子導入開始後、12時間で培地を新しいFBS10%を含むDMEM培地に交換し、48時間後まで培養した。
Using cell culture and Dulbecco's modified Eagle's medium (DMEM) containing 10% of transgenic fetal bovine serum (FBS), HEK293FT cells (human) or Neuro2a cells (mouse) were cultured at 37 ° C. with a carbon dioxide concentration of 5%. Cultured under. In order to introduce plasmid DNA, the cultured cells are seeded at a density of 5 × 10 4 cells / mL for HEK293FT cells and 1 × 10 5 cells / mL for Neuro2a cells on a 6-well plate, and proliferated to a density of approximately 80%. I let you. Plasmid DNA was introduced using Lipofectamine LTX (Life Technologies). For each well, 500 ng of gRNA plasmid (500 ng if one gRNA was used, and 100 ng each was used if five gRNAs) and 2000 ng of dCAS9-VPR plasmid DNA were used. In 12 hours after the start of gene transfer, the medium was replaced with a DMEM medium containing 10% fresh FBS, and the culture was continued until 48 hours later.
細胞および脳組織からのRNAの精製と定量
 培養細胞とマウスの脳組織から全RNAを回収するためにRNAiso Plus(タカラバイオ社)を使用した。6wellプレートで培養した細胞をリン酸緩衝生理食塩水(PBS)で2回洗浄して、1well当たり400μLのRNAiso Plusで細胞からRNAを回収した。マウス脳の場合、4週齢のC57BL/6J系統マウスを麻酔して脳を取り出し、2mlのRNAiso Plus(タカラバイオ社)を加えて、ガラス製ダウンス型ホモジナイザーで組織を破砕してRNAを回収した。
Purification and quantification of RNA from cells and brain tissue RNAiso Plus (Takara Bio) was used to recover total RNA from cultured cells and mouse brain tissue. Cells cultured in 6-well plates were washed twice with phosphate buffered saline (PBS), and RNA was collected from the cells with 400 μL of RNAiso Plus per well. In the case of mouse brain, a 4-week-old C57BL / 6J strain mouse was anesthetized, the brain was removed, 2 ml of RNAiso Plus (Takara Bio Inc.) was added, and the tissue was disrupted with a glass dounce homogenizer to collect RNA. .
RT-PCRによる転写産物の検出
 遺伝子の転写産物量を比較するために、タカラバイオ社のPrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time)を使用して培養細胞から全RNAを精製し、常法を用いて全RNAからmRNAをPCRで増幅した。用いたプライマーセットは以下の通りであった。
Detection of transcripts by RT-PCR To compare the amount of transcripts of genes, total RNA was purified from cultured cells using the Takara Bio PrimeScript RT reagent Kit with gDNA Eraser (Perfect Real Time). MRNA was amplified from total RNA by PCR using the method. The primer sets used were as follows.
(各遺伝子検出に用いたプライマーセット)
ヒトSCN1A遺伝子の増幅に使用したプライマーは、
 hSCN1A_F: 5'-TGGGGAGTGGATAGAGACCA-3'(配列番号23)
 hSCN1A_R: 5'-GAAAGAGATTCAGGACCACTAGG-3'(配列番号24)
β-アクチン遺伝子の増幅に使用したプライマーは、
 hACTB_F: 5'-CATGTACGTTGCTATCCAGGC-3'(配列番号25)
 hACTB_R: 5'-CTCCTTAATGTCACGCACGAT-3'(配列番号26)
マウスScn1a遺伝子の増幅に使用したプライマーは、
 mScn1A_F: 5'-AGCCTATCCCTCGACCTGGA-3'(配列番号27)
 mScn1A_R: 5'-CTGGTCATCCGTTTCCACCA-3'(配列番号28)
マウスG3pdh遺伝子の増幅に使用したプライマーは、
 mG3pdh-F: 5'-TCAAGAAGGTGGTGAAGCAG-3'(配列番号29)
 mG3pdh-R: 5'-ATTGTGAGGGAGATGCTCAG-3’(配列番号30)
(Primer set used to detect each gene)
The primers used to amplify the human SCN1A gene are
hSCN1A_F: 5'-TGGGGAGTGGATAGAGACCA-3 '(SEQ ID NO: 23)
hSCN1A_R: 5'-GAAAGAGATTCAGGACCACTAGG-3 '(SEQ ID NO: 24)
Primers used to amplify the β-actin gene are
hACTB_F: 5'-CATGTACGTTGCTATCCAGGC-3 '(SEQ ID NO: 25)
hACTB_R: 5'-CTCCTTAATGTCACGCACGAT-3 '(SEQ ID NO: 26)
The primers used to amplify the mouse Scn1a gene are
mScn1A_F: 5'-AGCCTATCCCTCGACCTGGA-3 '(SEQ ID NO: 27)
mScn1A_R: 5'-CTGGTCATCCGTTTCCACCA-3 '(SEQ ID NO: 28)
The primers used to amplify the mouse G3pdh gene are
mG3pdh-F: 5'-TCAAGAAGGTGGTGAAGCAG-3 '(SEQ ID NO: 29)
mG3pdh-R: 5'-ATTGTGAGGGAGATGCTCAG-3 '(SEQ ID NO: 30)
 ヒトのSCN1A遺伝子とβ-アクチン遺伝子の増幅は、98℃,5分を1回、98℃,15秒、55℃,5秒、72℃,30秒を25回または、30回の温度サイクルで行った。マウスのScn1a遺伝子とG3pdh遺伝子のPCR法では、98℃,5分を1回、98℃,15秒、56℃,5秒、72℃,20秒の温度サイクルを27回または、30回行った。 Amplification of human SCN1A gene and β-actin gene is 98 ° C, 5 minutes once, 98 ° C, 15 seconds, 55 ° C, 5 seconds, 72 ° C, 30 seconds 25 times or 30 temperature cycles. went. In the PCR method of mouse Scn1a gene and G3pdh gene, a temperature cycle of 98 ° C., 5 minutes once, 98 ° C., 15 seconds, 56 ° C., 5 seconds, 72 ° C., 20 seconds was performed 27 times or 30 times. .
ノーザンハイブリダイゼーションによる転写産物の検出
 精製した全RNAをホルムアルデヒド変性1%アガロースゲルで電気泳動した後、ナイロン膜に転写した。泳動した1レーン当たりの全RNA量は、培養細胞では5μg、マウスの脳組織から精製した全RNAは20μgを使用した。RNAプローブの標識とハイブリダイゼーション、および転写産物の検出は、ロシュ・ライフサイエンス社のDIGノーザンスタータキットの方法に従った。プローブには、マウスScn1a遺伝子の3’側非翻訳領域の615塩基の配列(mScn1a 3'UTR615;配列番号31)を用いた。プローブは、PCRで増幅したDNA断片をpBluescriptベクターでクローン化し、T7プロモーターを利用してジゴキシゲニンRNA標識法で調製した。
Detection of Transcript by Northern Hybridization Purified total RNA was electrophoresed on a formaldehyde-denatured 1% agarose gel and then transferred to a nylon membrane. The total RNA amount per lane migrated was 5 μg for cultured cells and 20 μg for total RNA purified from mouse brain tissue. The labeling and hybridization of the RNA probe, and the detection of the transcript were performed according to the method of DIG Northern Starter Kit of Roche Life Science. The probe used was a 615 base sequence (mScn1a 3′UTR615; SEQ ID NO: 31) in the 3 ′ untranslated region of the mouse Scn1a gene. The probe was prepared by cloning a DNA fragment amplified by PCR with a pBluescript vector and digoxigenin RNA labeling using the T7 promoter.
 結果は、図3~5に示される通りであった。 The results were as shown in FIGS.
 図3に示されるように、導入したgRNAの総量は同じであったにも関わらず、1種類のgRNAによりも4種のgRNAの組合せにおいてSCN1Aの遺伝子発現が向上した。この傾向は、上流プロモーターおよび下流プロモーターのいずれでも共通して観察された。 As shown in FIG. 3, although the total amount of the introduced gRNA was the same, the gene expression of SCN1A was improved in the combination of 4 types of gRNA by one type of gRNA. This tendency was commonly observed for both upstream and downstream promoters.
 図4に示されるように、導入したgRNAの総量は同じであったにも関わらず1種類のgRNAによりも5種のgRNAの組合せにおいてScn1aの遺伝子発現が向上した。この傾向は、上流プロモーターおよび下流プロモーターのいずれでも共通して観察された。 As shown in FIG. 4, although the total amount of the introduced gRNA was the same, the gene expression of Scn1a was improved in the combination of 5 types of gRNA by one type of gRNA. This tendency was commonly observed for both upstream and downstream promoters.
 このように、ヒトSCN1A遺伝子においてもマウスScn1a遺伝子においても、このプロモーターを標的とする場合には、それぞれ4種のgRNAの組合せおよび5種のgRNAの組合せで顕著な遺伝子の発現増強が見られた。 Thus, in both the human SCN1A gene and the mouse Scn1a gene, when this promoter was targeted, the combination of 4 types of gRNA and the combination of 5 types of gRNA showed significant gene expression enhancement, respectively. .
 さらに図5では、このようにして発現増強された遺伝子を、脳組織の内在性遺伝子発現と比較されている。図5の矢印で示された8kb超のバンドがマウスScn1a遺伝子から転写されたmRNAのバンドである。 Further, in FIG. 5, the gene whose expression has been enhanced in this way is compared with the endogenous gene expression in the brain tissue. The band exceeding 8 kb indicated by the arrow in FIG. 5 is a band of mRNA transcribed from the mouse Scn1a gene.
 図5に示されるように、陰性対照(N.C.)ではほとんど発現が観察されないのに対して、上流プロモーターの4つのgRNAの組合せ(マウス)および5つのgRNAの組合せ(マウス)により発現を亢進させると、発現量が大幅に亢進した。この結果から、ヒトSCN1A遺伝子においてもマウスScn1a遺伝子においても、このプロモーターを標的とする場合には、それぞれ4種のgRNAの組合せおよび5種のgRNAの組合せで、SCN1A遺伝子発現の大幅な増強・上昇を達成することに成功した。 As shown in FIG. 5, almost no expression is observed in the negative control (NC), whereas the expression of 4 gRNA combinations of the upstream promoter (mouse) and 5 gRNA combinations (mouse). When increased, the expression level was significantly increased. From this result, in both human SCN1A gene and mouse Scn1a gene, when this promoter is targeted, the combination of 4 types of gRNA and the combination of 5 types of gRNA, respectively, greatly enhance / increase the expression of SCN1A gene. Succeeded in achieving.
実施例3:ドラベ症候群の治療
 本実施例では、ドラベ症候群のモデル動物を用いて内在性の機能的Scn1a遺伝子の発現量を向上させることによって、ドラベ症候群の症状を治療した。
Example 3 Treatment of Drave Syndrome In this example, Dravet syndrome was treated by improving the expression level of endogenous functional Scn1a gene using a model animal of Drave syndrome.
 ドラベ症候群の多くでは、様々なナンセンスまたはフレームシフトによりScn1a遺伝子が機能不全となっている。本実施例では、Scn1a遺伝子の片側アリルがR1407Xのナンセンス変異を有し、他方のアリルが機能的な遺伝子であるモデル動物、より具体的にはマウス(すなわち、Scn1aR1407X/+)をドラベ症候群のモデル動物として用いた。本実施例の治療実験は、機能的なScn1a遺伝子をdCas-VPR(dCasと転写活性化タンパク質VPRとの融合タンパク質の一例として)によって発現向上させる系であり、特にScn1a遺伝子の発現向上を抑制性神経細胞において引き起こす系である。
 そのため、本実施例では、dCas9-VPRを抑制性神経細胞特異的に発現するScn1aR1407X/+マウスを作製し、これに対して、Scn1aのプロモーター領域を標的としたガイドRNAを導入して、抑制性神経細胞特異的にScn1a遺伝子の発現増強を誘導した。抑制性神経細胞特異的にdCas9-VPRを発現するマウスは、Vgat-Creとflox-dCas9-VPRとを用いて作製した。
 このモデルでは、dCas9-VPRは、ノックインによって動物に導入し、投与したのはガイドRNAのみであるが、dCas9-VPR等のdCas9と転写活性化タンパク質またはその機能性断片との融合タンパク質をウイルス等のベクターにより動物に一過性または恒常的に発現させても同様の結果が得られることは明らかである。
 具体的には以下の通りである。
In many Drave syndromes, the Scn1a gene is dysfunctional due to various nonsense or frameshifts. In this example, a model animal in which one side allele of the Scn1a gene has a nonsense mutation of R1407X and the other allele is a functional gene, more specifically, a mouse (that is, Scn1a R1407X / + ) has Drave syndrome. Used as a model animal. The treatment experiment of this example is a system for improving the expression of a functional Scn1a gene by dCas-VPR (as an example of a fusion protein of dCas and a transcription activation protein VPR), and in particular, suppressing the improvement of the expression of the Scn1a gene. It is a system that triggers in nerve cells.
Therefore, in this example, a Scn1a R1407X / + mouse that specifically expresses dCas9-VPR is produced, and a guide RNA targeting the promoter region of Scn1a is introduced to suppress it. Enhanced expression of the Scn1a gene specifically in sex neurons. Mice expressing dCas9-VPR specifically for inhibitory neurons were generated using Vgat-Cre and flox-dCas9-VPR.
In this model, dCas9-VPR is introduced into an animal by knock-in and administered only by guide RNA, but a fusion protein of dCas9 such as dCas9-VPR and a transcriptional activation protein or a functional fragment thereof is used as a virus or the like. It is clear that similar results can be obtained even if the vector is transiently or constitutively expressed in this vector.
Specifically, it is as follows.
dCAS9-VPR遺伝子導入(トランスジェニック)マウスの作製
 dCAS9-VPR遺伝子導入マウスを作製した。導入遺伝子を安定的に発現するためマウス染色体5番にあるRosa26遺伝子座を標的部位として組み込みを行った。ターゲッティングベクターは、Platt RJ et al., (Cell. 2014 159 (2):440-455)でCre依存的CAS9遺伝子発現マウスの作製に使用されたAi9 (Addgene: 22799)を改変して作製した。制限酵素FseIによりAi9からtd-Tomato遺伝子を除き、両末端にFseI部位を付加したdCAS9-VPR遺伝子 (SP-dCas9-VPR プラスミド (Addgene:63798) に含まれるdCAS9-VPR遺伝子からattB1 配列 (23bp)を除き、IRES配列とmRFP遺伝子を接続した遺伝子)を組み込んだターゲッティングベクター(以下、「Ai-VPR」という)を得た(図6参照)。
 Ai-VPRがCre依存的にdCAS9-VPR遺伝子及びmRFP遺伝子を発現することをNeuro2Aを用いて確認した。細胞へのAi-VPRの組み込みにはRosa26遺伝子座を標的としたCRISPR/CAS9ゲノム編集を使用した。Rosa26-1 gRNA配列 (Chu et al., BMC Biotechnology 2016 16(4))とDta遺伝子を標的としたgRNA配列 (5’-GAAAACTTTTCTTCGTACCA-3’)を組み込んだpX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene: 42230)をAi-VPRと同時にリポフェクションし、G418による薬剤選択を行った後、細胞にCreリコンビナーゼ遺伝子を一過性に導入してmRFPの発現を観察した(図7参照)。加えて、mRFPを発現している細胞は、Scn1a遺伝子を標的とする4種のgRNAを導入したものだけで内在性Scn1a遺伝子のmRNA量が増加した(図8参照)。
 Neuro2a細胞と同様にマウスES細胞(CMTI-2)へCRISPR/CAS9ゲノム編集によりAi-VPRをRosa26遺伝子座に組み込んだ(図9参照)。プラスミドDNAの導入には、エレクトロポレーション法を用いた。G418選択とPCRを用いたスクリーニングにより、Ai-VPRがRosa26遺伝子座に組み込まれた4株のES細胞を得た(クローン:5D, 5E, 7H, 9G;図10参照)。なお、5’end of Ai-VPRは、下記R26F3プライマーおよびAi9-CAGp5end_R2プライマーで増幅される産物である。
Preparation of dCAS9-VPR gene-introduced (transgenic) mouse A dCAS9-VPR gene-introduced mouse was prepared. In order to stably express the transgene, we inserted the Rosa26 locus on mouse chromosome 5 as the target site. A targeting vector was prepared by modifying Ai9 (Addgene: 22799) used in the preparation of Cre-dependent CAS9 gene expressing mice by Platt RJ et al., (Cell. 2014 159 (2): 440-455). The attB1 sequence (23bp) from the dCAS9-VPR gene (SP-dCas9-VPR plasmid (Addgene: 63798) included in the dCAS9-VPR gene (SPgene) A targeting vector (hereinafter referred to as “Ai-VPR”) in which the IRES sequence and the mRFP gene were linked) was obtained (see FIG. 6).
It was confirmed using Neuro2A that Ai-VPR expresses dCAS9-VPR gene and mRFP gene in a Cre-dependent manner. CRISPR / CAS9 genome editing targeting the Rosa26 locus was used to integrate Ai-VPR into cells. PX330-U6-Chimeric_BB-CBh-hSpCas9 (incorporating the Rosa26-1 gRNA sequence (Chu et al., BMC Biotechnology 2016 16 (4)) and the gRNA sequence targeting the Dta gene (5'-GAAAACTTTTCTTCGTACCA-3 ') Addgene: 42230) was lipofected simultaneously with Ai-VPR, and after drug selection with G418, Cre recombinase gene was transiently introduced into the cells to observe the expression of mRFP (see FIG. 7). In addition, in the cells expressing mRFP, the amount of mRNA of the endogenous Scn1a gene increased only by introducing four kinds of gRNAs targeting the Scn1a gene (see FIG. 8).
Ai-VPR was integrated into the Rosa26 locus by editing the CRISPR / CAS9 genome into mouse ES cells (CMTI-2) as in the case of Neuro2a cells (see FIG. 9). The electroporation method was used for introducing the plasmid DNA. By screening using G418 and PCR, 4 strains of ES cells in which Ai-VPR was integrated into the Rosa26 locus were obtained (clone: 5D, 5E, 7H, 9G; see FIG. 10). 5 'end of Ai-VPR is a product amplified by the following R26F3 primer and Ai9-CAGp5end_R2 primer.
(遺伝子増幅プライマー)
 R26F3プライマー:CTGCCCGAGCGGAAACGCCACTGAC(配列番号31)
 Ai9-CAGp5end_R2プライマー:GTAAGTTATGTAACGCGGAAC(配列番号32)
 dCAS9-VPRフォワードプライマー:TGATATCAACGCGTCAAGTCG(配列番号33)
 dCAS9-VPRリバースプライマー:GTATCTGGCCAGCCACTATG(配列番号34)
 これら4株のES細胞を用いてキメラマウスを作成したところ、5Dと9Gでキメラマウスが得られた。しかし、B6Jマウスとの戻し交配(N1)において、dCAS9-VPR遺伝子をもつ産仔が得られたのは9Gのみであった(図11および12)。
(Gene amplification primer)
R26F3 primer: CTGCCCGAGCGGAAACGCCACTGAC (SEQ ID NO: 31)
Ai9-CAGp5end_R2 primer: GTAAGTTATGTAACGCGGAAC (SEQ ID NO: 32)
dCAS9-VPR forward primer: TGATATCAACGCGTCAAGTCG (SEQ ID NO: 33)
dCAS9-VPR reverse primer: GTATCTGGCCAGCCACTATG (SEQ ID NO: 34)
When chimeric mice were prepared using these four strains of ES cells, chimeric mice were obtained in 5D and 9G. However, in backcrossing with B6J mice (N1), only 9G was obtained with the dCAS9-VPR gene (FIGS. 11 and 12).
(遺伝子増幅プライマー)
 mRFPフォワードプライマー:
AAAAAGCAGGCTTCGAAGGAGATAGAaccATGGCCTCCTCCGAGGACGTCATCAAGGAGTTCATG(配列番号35)
 mRFPリバースプライマー:
AGAAAGCTGGGTCctaGTGGCGGCCCTCGGCGCGCTCGTAC(配列番号36)
 Wt Rosa26フォワードプライマー:AAGGGAGCTGCAGTGGAGTA(配列番号37)
 Wt Rosa26リバースプライマー:CCGAAAATCTGTGGGAAGTC(配列番号38)
(Gene amplification primer)
mRFP forward primer:
AAAAAGCAGGCTTCGAAGGAGATAGAaccATGGCCTCCTCCGAGGACGTCATCAAGGAGTTCATG (SEQ ID NO: 35)
mRFP reverse primer:
AGAAAGCTGGGTCctaGTGGCGGCCCTCGGCGCGCTCGTAC (SEQ ID NO: 36)
Wt Rosa26 forward primer: AAGGGAGCTGCAGTGGAGTA (SEQ ID NO: 37)
Wt Rosa26 reverse primer: CCGAAAATCTGTGGGAAGTC (SEQ ID NO: 38)
dCAS9-VPR遺伝子のCre依存的発現の確認
 作製したdCAS9-VPR遺伝子導入マウスは、CAGプロモーターによるdCAS9-VPR遺伝子の転写をloxP配列で囲われた3個のpolyAシグナル配列で抑止している(図13参照)。従って、Cre非存在下の生体内ではdCAS9-VPRは発現しない。dCAS9-VPRマウスは、ヘテロ接合体でもホモ接合体であっても生育と繁殖は正常で外見上の異常は見られなかった。CreによるdCAS9-VPRの発現を確認するためにdCAS9-VPR KIヘテロマウスをEIIa-CreマウスまたはVgat-Creマウスと交配した。dCAS9-VPRを全身性に発現するdCAS9-VPRヘテロ/EIIa-Creマウスの1世代目(F1)は、loxP部位での組み替えがモザイク性を示したが、2世代目(F2)は、組み替え率100%の個体が生まれた(図14参照)。また、dCAS9-VPRを抑制性神経細胞のみに発現するdCAS9-VPR ヘテロ/Vgat-Creマウスは、正常に生育および繁殖した(>10匹)。
Confirmation of Cre-dependent expression of dCAS9-VPR gene In the prepared dCAS9-VPR gene-introduced mice, transcription of the dCAS9-VPR gene by the CAG promoter is suppressed by three polyA signal sequences surrounded by loxP sequences (Fig. 13). Therefore, dCAS9-VPR is not expressed in vivo in the absence of Cre. The dCAS9-VPR mice, both heterozygous and homozygous, showed normal growth and reproduction with no apparent abnormalities. In order to confirm the expression of dCAS9-VPR by Cre, dCAS9-VPR KI hetero mice were mated with EIIa-Cre mice or Vgat-Cre mice. In the first generation (F1) of dCAS9-VPR hetero / EIIa-Cre mice that express dCAS9-VPR systemically, recombination at the loxP site showed mosaicism, but the second generation (F2) had a recombination rate. 100% of individuals were born (see FIG. 14). In addition, dCAS9-VPR hetero / Vgat-Cre mice that express dCAS9-VPR only in inhibitory neurons grew and propagated normally (> 10 mice).
(遺伝子増幅プライマー)
 cCAG-Fプライマー:GGTTCGGCTTCTGGCGTGTGACC(配列番号39)
 dCAS9 791-770:TGTTTGTGCCGATAGCGAGC(配列番号40)
 Cre増幅フォワードプライマー:AGGTTCGTTCACTCATGGA(配列番号41)
 Cre増幅リバースプライマー:TCGACCAGTTTAGTTACCC(配列番号42)
(Gene amplification primer)
cCAG-F primer: GGTTCGGCTTCTGGCGTGTGACC (SEQ ID NO: 39)
dCAS9 791-770: TGTTTGTGCCGATAGCGAGC (SEQ ID NO: 40)
Cre amplification forward primer: AGGTTCGTTCACTCATGGA (SEQ ID NO: 41)
Cre amplification reverse primer: TCGACCAGTTTAGTTACCC (SEQ ID NO: 42)
 dCAS9-VPR KIヘテロ/Vgat-Creマウスが、Cre依存的にdCAS9-VPRを発現していることはウエスタンブロット法と免疫組織染色によって調査した。抗Cas9抗体(mAb clone: 7A9-3A3, Active motif)を用いたウエスタンブロット法では、dCAS9-VPR KIヘテロ/Vgat-Creマウスにのみ、dCAS9-VPRの予想分子量(220kDa)に相当するタンパクが検出された(図15参照)。加えて、免疫組織染色によりマウス脳内の嗅球、大脳皮質、海馬、線条体、小脳の各領域でdCAS9-VPR陽性の細胞が観察された(図16)。これらの各領域における遺伝子発現は、Vgat遺伝子の発現発現のパターンに良く一致しており、作製したdCAS9-VPR KIマウスが生体内でCre依存的にdCAS9-VPRを発現したことを示す。 It was investigated by Western blotting and immunohistochemical staining that dCAS9-VPR KI hetero / Vgat-Cre mice expressed dCAS9-VPR in a Cre-dependent manner. Western blotting using anti-Cas9 antibodies (mAb clone: 7A9-3A3, Active motif) detected a protein corresponding to the expected molecular weight of dCAS9-VPR (220 kDa) only in dCAS9-VPR KI hetero / Vgat-Cre mice (See FIG. 15). In addition, immunohistochemical staining revealed dCAS9-VPR positive cells in the olfactory bulb, cerebral cortex, hippocampus, striatum, and cerebellum in the mouse brain (FIG. 16). The gene expression in each of these regions closely matches the expression pattern of the Vgat gene, indicating that the prepared dCAS9-VPR KI mice expressed dCAS9-VPR in vivo in a Cre-dependent manner.
In vivo CRISPR-ONによるScn1a-R1407X変異マウスの熱性けいれん感受性亢進(病的状態)の抑制(正常化)
 ドラベ症候群モデルマウスを用いて、抑制性神経細胞特異的なCRISPR-ONによりScn1a遺伝子の発現量を上昇させる治療の効果を調べるためにdCAS9-VPR/Scn1aR1407XマウスとVgat-Creマウスを人工授精により交配した(図17参照)。Scn1aにR1407X変異をもつF1マウスは、生後14日ごろからてんかん発作を伴って突然死を起こすため、dCAS9-VPR/Scn1aR1407X/Vgat-Cre、dCAS9-VPR/Scn1aR1407X、およびScn1aR1407Xの生後30日の生存率は、それぞれ37.5%、66.7%、および83.3%だった(図18参照)。てんかん発症後の4週齢のマウスに、Scn1a 遺伝子の上流プロモーターを標的とする4つのgRNA遺伝子 (mSC1U1、mSC1U2、hSC1U3、およびmSC1U4)をAAV-PHP.eBを使用してウイルス化したpAAV-MCSベクター(図19)で尾静脈より脳内に送達(1.75x1011vg/mouse)してCRISPR-ONを作用させた。生後6週目に熱誘導性けいれん発作の感受性を調査した。マウスの直腸温度を測定しながら、気温を上昇させて高体温を誘導し、全身性のけいれん発作を起こした時点の温度を記録した(図20参照)。Wild type (n=6)とScn1a変異 (R1407X)を持たない遺伝子型(dCAS9-VPR/Vgat-Cre + 4gRNA: n=3, dCAS9-VPR/Vgat-Cre + Vehicle: n=5)の個体は、44℃以下ではけいれん発作を起こさなかった(図21参照)。また、6週目の時点では抑制性神経細胞特異的dCAS9-VPR発現モデル (dCAS9-VPR/Scn1aR1407X/Vgat-Cre + 4gRNA, n=3)と比較群(dCAS9-VPR/Scn1aR1407X + 4gRNA: n=5, dCAS9-VPR/ Scn1aR1407X + Vehicle: n=6, 及びScn1aR1407X: n=6)では、各遺伝子型間で抵抗性に統計学的有意差は得られなかった。しかしながら、抑制性神経細胞特異的dCAS9-VPR発現モデルの3匹中1匹の抵抗性は、Scn1aR1407X マウスが到達できない温度 (43.3℃)を示したことから(図21参照)、引き続き、8週齢、10週齢、12週齢においての熱誘導性けいれん発作の感受性を調査した(図22参照)。4回の測定において、抑制性神経細胞特異的dCAS9-VPR発現モデルの3匹の最も高い発作時体温はそれぞれ、43.3℃、43.5℃、42.8℃であった。遺伝子型と週齢の2元分散分析により遺伝子型間で有意な差が示された(F(2,8)=14.99, p<0.01)。Bonferroniの方法による多重比較では、抑制性神経細胞特異的dCAS9-VPR発現モデル(n=3 の発作時体温(平均42.1℃)と比較群((dCAS9-VPR/Scn1aR1407X + 4gRNA: n=3 とScn1aR1407X: n=5)の発作時体温(平均41.0℃と40.69℃)に統計学的有意差 (MSe=0.5137, p<.05 , alpha'= 0.0167)が示された。これらの結果は、CRISPR-ONのシステムによって抑制性神経におけるScn1a遺伝子の発現量を回復することができること、さらにてんかん発症後であってもドラベ症候群モデルマウスの熱誘導性けいれん発作の抵抗性が回復できることを示す。gRNAの導入に使用したAAV-PHP.eBによるマウス中枢神経における遺伝子導入効率は、大脳皮質の神経細胞の69%、抑制性神経細胞では81%である(Chan KY et al., Nature Neuroscience 2017 20(8))。従って、今回の系では、AAV投与マウスの全抑制性神経にCRISPR-ONが作用したわけではないと考えられる。これが熱性けいれんに対する治療効果が完全ではない理由の1つであると考えられる。また、別の理由として、てんかんの発症によって確立された病的な神経回路が回復の効果を弱めている可能性もある。しかしながら、今回の系によっても、明確な治療効果が得られていることは、CRISPR-ONが作用した個々の細胞では、十分なScn1a遺伝子の発現量が得られていることを示唆する。また、細胞に対するCRISPR-ONの系の導入効率を高めることにより、より高い治療効果を期待できることを示唆する。
 これまでの変異マウスの研究から、Scn1a変異の表現型には、複数の修飾因子が存在することが示されており、遺伝的背景が異なるマウス系統間で自発てんかん発作の頻度や死亡率、熱誘導性けいれん発作の感受性が異なる。通常の飼育環境下で129系統は、自発てんかんによる突然死は起さないのに対し、B6J系統はより高い自発てんかん頻度と死亡率、及び熱誘導性けいれん発作の感受性を示す。近年4件のScn1a変異マウスの実験的治療(表3)が報告されているが、3件 (GS967, CBD, SGE-516) は、発症前から直後に治療を開始しており、そのうち2件 (GS967, SGE-516) では129とB6Jのハイブリッド系統を使用しているため比較は難しい。熱性けいれんの発作閾値は、GS967に回復効果はなく、SGE-516とCUR-1901で上昇した。実験条件が近いCUR-1901 (作用群: n=4, 41.42℃ vs対照群: n=6, 40.15℃, 差1.27℃) と比較すると、Scn1a遺伝子を標的としたCRISPR-ONの回復効果(作用群: n=3, 42.11℃ vs 対照群: n=5, 40.69℃, 差1.42℃)の方が高い。本発明の方法は、gRNAの設計やベクターの投与計画等を変更することで、さらに高い効果を奏し得る。
In vivo CRISPR-ON suppresses (normalizes) the increased sensitivity to heat seizures (pathological condition) in Scn1a-R1407X mutant mice
In order to investigate the effect of treatment to increase the expression level of Scn1a gene by CRISPR-ON specific to inhibitory neurons using Drave syndrome model mouse, dCAS9-VPR / Scn1aR1407X mouse and Vgat-Cre mouse were mated by artificial insemination (See FIG. 17). Since F1 mice with the R1407X mutation in Scn1a suddenly die from epileptic seizures around 14 days after birth, the survival rate of dCAS9-VPR / Scn1aR1407X / Vgat-Cre, dCAS9-VPR / Scn1aR1407X, and Scn1aR1407X after 30 days Were 37.5%, 66.7%, and 83.3%, respectively (see FIG. 18). Four-week-old mice after epileptic onset were pAAV-MCS in which four gRNA genes (mSC1U1, mSC1U2, hSC1U3, and mSC1U4) targeting the upstream promoter of the Scn1a gene were viralized using AAV-PHP.eB CRISPR-ON was allowed to act by delivery into the brain (1.75 × 10 11 vg / mouse) from the tail vein with a vector (FIG. 19). The susceptibility to heat-induced seizures was investigated at 6 weeks of age. While measuring the rectal temperature of the mice, the temperature at the time of inducing hyperthermia by raising the temperature and recording a generalized seizure was recorded (see FIG. 20). Wild type (n = 6) and non-Scn1a mutation (R1407X) genotype (dCAS9-VPR / Vgat-Cre + 4gRNA: n = 3, dCAS9-VPR / Vgat-Cre + Vehicle: n = 5) No seizures occurred at 44 ° C. or lower (see FIG. 21). In addition, at the 6th week, inhibitory neuron-specific dCAS9-VPR expression model (dCAS9-VPR / Scn1aR1407X / Vgat-Cre + 4gRNA, n = 3) and comparison group (dCAS9-VPR / Scn1aR1407X + 4gRNA: n = 5, dCAS9-VPR / Scn1aR1407X + Vehicle: n = 6, and Scn1aR1407X: n = 6), there was no statistically significant difference in resistance between each genotype. However, the resistance of 1 out of 3 of the inhibitory neuron-specific dCAS9-VPR expression model showed a temperature (43.3 ° C.) that the Scn1aR1407X mouse could not reach (see FIG. 21). The susceptibility to heat-induced seizures at 10 and 12 weeks of age was investigated (see FIG. 22). In the four measurements, the highest seizure body temperatures of the three animals of the inhibitory neuron-specific dCAS9-VPR expression model were 43.3 ° C, 43.5 ° C, and 42.8 ° C, respectively. Two-way analysis of variance between genotype and age showed significant differences between genotypes (F (2,8) = 14.99, p <0.01). Multiple comparisons by Bonferroni's method showed that the inhibitory neuron-specific dCAS9-VPR expression model (n = 3 seizure body temperature (average 42.1 ° C) and comparison group ((dCAS9-VPR / Scn1aR1407X + 4gRNA: n = 3 and Scn1aR1407X : n = 5) showed a statistically significant difference (MSe = 0.5137, p <.05, alpha '= 0.0167) in the body temperature at stroke (average 41.0 ℃ and 40.69 ℃). We show that the ON system can restore the expression level of the Scn1a gene in inhibitory nerves, and that resistance to heat-induced seizures in Dravet syndrome mice can be restored even after the onset of epilepsy. The gene transfer efficiency in the central nervous system of mice by AAV-PHP.eB used in the experiment is 69% of neurons in the cerebral cortex and 81% in inhibitory neurons (Chan KY et al., Nature Neuroscience 2017 20 (8) Therefore, in this system, CRISPR-ON did not act on all inhibitory nerves in AAV-treated mice. This is thought to be one reason why the therapeutic effect on febrile seizures is not perfect, and another reason is that the pathological neural circuit established by the onset of epilepsy weakens the recovery effect. However, the clear therapeutic effect obtained by this system is that sufficient expression level of the Scn1a gene is obtained in each cell on which CRISPR-ON has acted. It also suggests that a higher therapeutic effect can be expected by increasing the introduction efficiency of the CRISPR-ON system into cells.
Previous mutant mouse studies have shown that there are multiple modifiers in the Scn1a mutation phenotype, and the frequency, mortality, and fever of spontaneous epileptic seizures between mouse strains with different genetic backgrounds. Susceptibility to induced seizures varies. Under normal rearing conditions, 129 strains do not cause sudden death due to spontaneous epilepsy, while B6J strains exhibit higher spontaneous epilepsy frequency and mortality, and sensitivity to heat-induced seizures. In recent years, experimental treatments (Table 3) of 4 Scn1a mutant mice have been reported, but 3 (GS967, CBD, SGE-516) started treatment immediately before onset, 2 of them (GS967, SGE-516) is difficult to compare because it uses 129 and B6J hybrid systems. The seizure threshold of febrile seizures increased with SGE-516 and CUR-1901, with no recovery effect for GS967. Compared with CUR-1901 (action group: n = 4, 41.42 ° C vs. control group: n = 6, 40.15 ° C, difference 1.27 ° C), which are close to the experimental conditions, CRISPR-ON recovery effect (action) Group: n = 3, 42.11 ° C vs. control group: n = 5, 40.69 ° C, difference 1.42 ° C). The method of the present invention can achieve even higher effects by changing gRNA design, vector administration schedule, and the like.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (19)

  1.  SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも1箇所を標的とするgRNAまたはcrRNAの組合せである、RNAの組合せ。 RNA combination which is a combination of gRNA or crRNA targeting at least one Cas9 endonuclease binding site present on the promoter region of the SCN1A gene.
  2.  SCN1A遺伝子のプロモーター領域上に存在するCas9エンドヌクレアーゼ結合部位の少なくとも4つを標的とする、gRNAまたはcrRNAの組合せである、請求項1に記載のRNAの組合せ。 The RNA combination according to claim 1, which is a combination of gRNA or crRNA targeting at least four Cas9 endonuclease binding sites present on the promoter region of the SCN1A gene.
  3.  請求項1または2に記載のRNAの組合せであって、
    [1]以下(1)~(4)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ、
    [2]以下(5)~(8)からなる群から選択される1つのRNA若しくは2~4つのRNAの組合せ、または
    [3]以下(1)~(8)からなる群から選択される2~8つのRNAの組合せ:
     (1)配列番号1で示される配列を標的とするgRNAまたはcrRNA、
     (2)配列番号2で示される配列を標的とするgRNAまたはcrRNA、
     (3)配列番号3で示される配列を標的とするgRNAまたはcrRNA、
     (4)配列番号4で示される配列を標的とするgRNAまたはcrRNA、
     (5)配列番号5で示される配列を標的とするgRNAまたはcrRNA、
     (6)配列番号6で示される配列を標的とするgRNAまたはcrRNA、
     (7)配列番号7で示される配列を標的とするgRNAまたはcrRNA、および
     (8)配列番号8で示される配列を標的とするgRNAまたはcrRNA。
    A combination of RNAs according to claim 1 or 2,
    [1] One RNA selected from the group consisting of the following (1) to (4) or a combination of 2 to 4 RNAs:
    [2] One RNA selected from the group consisting of the following (5) to (8) or a combination of two to four RNAs, or [3] 2 selected from the group consisting of the following (1) to (8) ~ 8 RNA combinations:
    (1) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 1,
    (2) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 2,
    (3) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 3,
    (4) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 4,
    (5) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 5,
    (6) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 6,
    (7) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 7, and (8) gRNA or crRNA targeting the sequence represented by SEQ ID NO: 8.
  4.  [1]に記載のRNAの組合せである、請求項3に記載のRNAの組合せ。 The combination of RNA according to claim 3, which is a combination of RNA according to [1].
  5.  (1)~(4)に記載のすべてのgRNAを含むか、または(1)~(4)に記載のすべてのcrRNAを含む、請求項4に記載のRNAの組合せ。 The RNA combination according to claim 4, comprising all gRNAs according to (1) to (4), or comprising all crRNAs according to (1) to (4).
  6.  [2]に記載のRNAの組合せである、請求項3に記載のRNAの組合せ。 The combination of RNA according to claim 3, which is a combination of RNA according to [2].
  7.  (5)~(8)に記載のすべてのgRNAを含むか、または(5)~(8)に記載のすべてのcrRNAを含む、請求項5に記載のRNAの組合せ。 The combination of RNAs according to claim 5, comprising all the gRNAs according to (5) to (8), or all the crRNAs according to (5) to (8).
  8.  [3]に記載のRNAの組合せであって、(1)~(8)からなる群から選択される4つ以上のgRNAの組合せまたはcrRNAの組合せである、請求項1に記載のRNAの組合せ。 The combination of RNAs according to [3], which is a combination of four or more gRNAs or a combination of crRNAs selected from the group consisting of (1) to (8) .
  9.  それぞれのRNAが、gRNAである、請求項1~8のいずれか一項に記載のRNAの組合せ。 The combination of RNAs according to any one of claims 1 to 8, wherein each RNA is gRNA.
  10.  請求項1~9のいずれか一項に記載のRNAの組合せ、に含まれる各RNAをコードする核酸の組合せ。 A combination of nucleic acids encoding each RNA contained in the combination of RNAs according to any one of claims 1 to 9.
  11.  請求項10に記載の核酸の組合せに含まれる核酸をそれぞれ発現可能に含む、RNA発現ベクター。 An RNA expression vector comprising the nucleic acids contained in the nucleic acid combination according to claim 10 so that each of the nucleic acids can be expressed.
  12.  請求項1~9のいずれか一項に記載のRNAまたはRNAの組合せを含む、医薬または組合せ医薬。 A medicine or combination medicine comprising the RNA or the combination of RNAs according to any one of claims 1 to 9.
  13.  請求項11に記載のRNA発現ベクターを含む、医薬または組合せ医薬。 A medicine or combination medicine comprising the RNA expression vector according to claim 11.
  14.  請求項1~9のいずれか一項に記載のRNAまたはRNAの組合せを安定発現する、真核細胞。 A eukaryotic cell that stably expresses the RNA or the combination of RNAs according to any one of claims 1 to 9.
  15.  請求項14に記載の真核細胞を含む、細胞製剤。 A cell preparation comprising the eukaryotic cell according to claim 14.
  16.  SCN1A遺伝子の発現量の低下に起因する疾患を治療することに用いるための、請求項1~10の組合せ、請求項11に記載のRNA発現ベクター、または請求項14に記載の真核細胞を含む、医薬。 A combination of claims 1 to 10, an RNA expression vector according to claim 11, or a eukaryotic cell according to claim 14 for use in treating a disease caused by a decrease in the expression level of the SCN1A gene. , Medicine.
  17.  SCN1A遺伝子の発現量の低下に起因する疾患を治療することに用いるための、請求項12若しくは13に記載の医薬または組合せ医薬、または請求項15に記載の細胞製剤。 The medicine or combination medicine according to claim 12 or 13, or the cell preparation according to claim 15, for use in treating a disease caused by a decrease in the expression level of the SCN1A gene.
  18.  SCN1A遺伝子の発現量の低下に起因する疾患が、ドラベ症候群、熱性痙攣プラス、自閉症、知的障害、およびアルツハイマー病におけるてんかんからなる群から選択されるいずれか1の疾患である、請求項16に記載の医薬、または請求項17に記載の医薬、組合せ医薬、若しくは細胞製剤。 The disease resulting from a decrease in the expression level of the SCN1A gene is any one disease selected from the group consisting of Drave syndrome, febrile convulsions plus, autism, intellectual disability, and epilepsy in Alzheimer's disease. 16. The medicine according to claim 16, or the medicine, combination medicine or cell preparation according to claim 17.
  19.  SCN1A遺伝子の発現量の低下に起因する疾患が、SCN1A遺伝子のナンセンス変異またはフレームシフト変異による機能的なSCN1A遺伝子の発現量の低下である、請求項18に記載の医薬、組合せ医薬または細胞製剤。 The medicament, combination drug or cell preparation according to claim 18, wherein the disease caused by a decrease in the expression level of the SCN1A gene is a decrease in the expression level of the functional SCN1A gene due to a nonsense mutation or a frameshift mutation of the SCN1A gene.
PCT/JP2018/019443 2018-05-21 2018-05-21 Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby WO2019224864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019443 WO2019224864A1 (en) 2018-05-21 2018-05-21 Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019443 WO2019224864A1 (en) 2018-05-21 2018-05-21 Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby

Publications (1)

Publication Number Publication Date
WO2019224864A1 true WO2019224864A1 (en) 2019-11-28

Family

ID=68615698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019443 WO2019224864A1 (en) 2018-05-21 2018-05-21 Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby

Country Status (1)

Country Link
WO (1) WO2019224864A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243651A1 (en) * 2019-05-29 2020-12-03 Encoded Therapeutics, Inc. Compositions and methods for selective gene regulation
CN112575033A (en) * 2020-12-24 2021-03-30 南京启真基因工程有限公司 CRISPR system and application thereof in construction of SCN1A gene mutated cloned pig nuclear donor cell for epileptic encephalopathy
WO2021113541A1 (en) * 2019-12-06 2021-06-10 Stoke Therapeutics, Inc. Antisense oligomers for treatment of conditions and diseases
WO2023129940A1 (en) * 2021-12-30 2023-07-06 Regel Therapeutics, Inc. Compositions for modulating expression of sodium voltage-gated channel alpha subunit 1 and uses thereof
US11873490B2 (en) 2017-08-25 2024-01-16 Stoke Therapeutics, Inc. Antisense oligomers for treatment of conditions and diseases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512812A (en) * 1999-11-26 2004-04-30 マクギル ユニバーシティー Locus for idiopathic generalized epilepsy, mutation of the locus, and methods of using the locus for evaluation, diagnosis, prognosis, or treatment of epilepsy
JP2006524490A (en) * 2003-03-27 2006-11-02 バイオノミックス リミテッド Methods for diagnosing and treating epilepsy
JP2013535958A (en) * 2010-06-23 2013-09-19 カッパーアールエヌエー,インコーポレイテッド Treatment of SCNA-related diseases by inhibition of natural antisense transcripts on sodium channels, voltage-dependent, alpha subunit (SCNA)
JP2018088888A (en) * 2016-12-06 2018-06-14 国立研究開発法人理化学研究所 Methods for enhancing scn1a gene expression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512812A (en) * 1999-11-26 2004-04-30 マクギル ユニバーシティー Locus for idiopathic generalized epilepsy, mutation of the locus, and methods of using the locus for evaluation, diagnosis, prognosis, or treatment of epilepsy
JP2006524490A (en) * 2003-03-27 2006-11-02 バイオノミックス リミテッド Methods for diagnosing and treating epilepsy
JP2013535958A (en) * 2010-06-23 2013-09-19 カッパーアールエヌエー,インコーポレイテッド Treatment of SCNA-related diseases by inhibition of natural antisense transcripts on sodium channels, voltage-dependent, alpha subunit (SCNA)
JP2018088888A (en) * 2016-12-06 2018-06-14 国立研究開発法人理化学研究所 Methods for enhancing scn1a gene expression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASHIMO, TOMOJI: "News of genome editing technologies in laboratory rats", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 252, no. 2, 2015, pages 171 - 176 *
YAMAKAWA, KAZUHIRO: "Causative Genes for epilepsy with autism: SCN1A and SCN2A", JAPANESE JOURNAL MOLECULAR PSYCHIATRY, vol. 13, no. 2, 2013 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873490B2 (en) 2017-08-25 2024-01-16 Stoke Therapeutics, Inc. Antisense oligomers for treatment of conditions and diseases
WO2020243651A1 (en) * 2019-05-29 2020-12-03 Encoded Therapeutics, Inc. Compositions and methods for selective gene regulation
WO2021113541A1 (en) * 2019-12-06 2021-06-10 Stoke Therapeutics, Inc. Antisense oligomers for treatment of conditions and diseases
CN112575033A (en) * 2020-12-24 2021-03-30 南京启真基因工程有限公司 CRISPR system and application thereof in construction of SCN1A gene mutated cloned pig nuclear donor cell for epileptic encephalopathy
CN112575033B (en) * 2020-12-24 2023-03-10 南京启真基因工程有限公司 CRISPR system and application thereof in construction of SCN1A gene mutated epileptic encephalopathy clone pig nuclear donor cell
WO2023129940A1 (en) * 2021-12-30 2023-07-06 Regel Therapeutics, Inc. Compositions for modulating expression of sodium voltage-gated channel alpha subunit 1 and uses thereof

Similar Documents

Publication Publication Date Title
WO2019224864A1 (en) Method for enhancing scn1a gene expression and method for treating dravet syndrome thereby
US20230235325A1 (en) Compositions and Methods for Treating Huntington&#39;s Disease and Related Disorders
TW202028466A (en) Methods and compositions for editing rnas
CA3009727A1 (en) Compositions and methods for the treatment of hemoglobinopathies
KR102138131B1 (en) Animal model of brain tumor and manufacturing method of animal model
JP2022526455A (en) Methods and Compositions for Editing RNA
KR20230074515A (en) Genetically engineered T cells with disrupted legase-1 and/or TGFBRII with improved functionality and persistence
AU2017379073B2 (en) Compositions and methods for treating alpha-1 antitrypsin deficiency
US20210054370A1 (en) Methods and compositions for treating angelman syndrome
JP2018088888A (en) Methods for enhancing scn1a gene expression
CN112996913B (en) Oligomeric nucleic acid molecules and uses thereof
US20190037817A1 (en) Ldl receptor gene knockout, genetically-engineered hamster
US20220290157A1 (en) Compositions and methods for treating amyotrophic lateral sclerosis
US20220356472A1 (en) Methods and compositions for type 2 diabetes therapy
US20190071673A1 (en) CRISPRs WITH IMPROVED SPECIFICITY
US20220265852A1 (en) Allele-specific inactivation of mutant htt via gene editing at coding region single nucleotide polymorphisms
WO2021190226A1 (en) Application of single-base editing-mediated splicing repair in preparation and treatment of spinal muscular atrophy
US20240124840A1 (en) Genetically modified cells and uses thereof for prevention of acute graft-versus-host disease
WO2024015933A2 (en) Transplanting stem cell-derived microglia to treat leukodystrophies
CN117795070A (en) Compounds and methods for allele-specific editing of ELANE genes
EP3868887A1 (en) Novel virus vector and methods for producing and using same
Zeballos et al. Mitigating a TDP-43 proteinopathy using RNA-targeting CRISPR effector proteins.
CA3222964A1 (en) Methods of treating asthma with solute carrier family 27 member 3 (slc27a3) inhibitors
CA3232251A1 (en) Treatment of glaucoma with rho guanine nucleotide exchange factor 12 (arhgef12) inhibitors
KR20210151110A (en) Gene-editing system for modifying SCN9A or SCN10A gene and methods and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP