WO2019224729A2 - Catalyst layer ink and production method for fuel cell - Google Patents

Catalyst layer ink and production method for fuel cell Download PDF

Info

Publication number
WO2019224729A2
WO2019224729A2 PCT/IB2019/054212 IB2019054212W WO2019224729A2 WO 2019224729 A2 WO2019224729 A2 WO 2019224729A2 IB 2019054212 W IB2019054212 W IB 2019054212W WO 2019224729 A2 WO2019224729 A2 WO 2019224729A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
ionomer
catalyst
ink
carrier
Prior art date
Application number
PCT/IB2019/054212
Other languages
French (fr)
Japanese (ja)
Other versions
WO2019224729A3 (en
Inventor
高椋庄吾
Original Assignee
ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of WO2019224729A2 publication Critical patent/WO2019224729A2/en
Publication of WO2019224729A3 publication Critical patent/WO2019224729A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Patent application title CATALYST LAYER INK AND FUEL CELL MANUFACTURING METHOD
  • the present invention relates to a catalyst layer ink and a method for producing a fuel cell.
  • a solid polymer electrolyte type fuel cell has an electrolyte membrane, which is an ion conductive solid polymer membrane, between two electrodes.
  • electrolyte membrane which is an ion conductive solid polymer membrane
  • anode a reaction occurs in which hydrogen gas supplied as fuel is separated into protons and electrons.
  • Proton moves to the other electrode via the electrolyte membrane, and electrons move to the other electrode via the external circuit. This movement of electrons generates current in the external circuit.
  • the other electrode which is a cathode, is supplied with oxygen gas, and protons that have moved from the electrolyte membrane and electrons that have moved from the external circuit react with oxygen gas to produce water.
  • Each electrode is provided with a catalyst layer in which a reaction of hydrogen gas or oxygen gas occurs.
  • catalyst particles such as platinum are supported by a carrier having pores such as mesoporous carbon.
  • the catalyst particles are usually covered with an electrolyte similar to the electrolyte membrane.
  • the electrolyte used in such a catalyst layer is hereinafter referred to as an ionomer.
  • the particle diameter of the catalyst particles is smaller than the inner diameter of the pores of the carrier, the catalyst particles are supported not only on the outer surface of the carrier but also inside the pores. Therefore, when the catalyst particles inside the pores are also coated with the ionomer, the catalyst utilization rate is improved (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 1 7-1 2 6 5 1 4
  • the ionomer generally has an acidic functional group with a polymer having a repeating structure as a main chain.
  • naphthion ⁇ 3 ⁇ 011 registered trademark
  • Ionomer is easy to crystallize because the polymer of the main chain has a repeating structure.
  • a catalyst and a carrier are mixed with a hydrophilic solvent such as water or alcohol to prepare an ink for a catalyst layer, molecules are aggregated around the crystallized portion in each ionomer, and an acidic functional group is formed. Colloids arranged on the outside tend to be formed. As a result, it becomes difficult for the ionomer to penetrate into the pores of the support.
  • the catalyst layer formed using such a catalyst layer ink the catalyst particles in the pores are not easily covered with the ionomer, and the catalyst utilization rate is lowered.
  • An object of the present invention is to provide a catalyst layer ink capable of forming a catalyst layer in which an ionomer is present in the pores of a carrier.
  • the method for producing the ink for a catalyst layer according to the present invention is a method for producing an ink for a catalyst layer containing an ionomer, a catalyst, a carrier having pores, and a solvent, wherein the ionomer in the ink for the catalyst layer comprises A polymer having an acidic functional group or a precursor thereof, and the ionomer ⁇ 2019/224729 ⁇ (: 17132019/054212
  • the method for producing a fuel cell according to the present invention is a method for producing a fuel cell having catalyst layers on both sides of an electrolyte membrane, and the step of preparing an ink for a catalyst layer containing an ionomer, a catalyst, a carrier having pores, and a solvent And applying the catalyst layer ink to both surfaces of the electrolyte membrane to form the catalyst layer, wherein the ionomer in the catalyst layer ink has an acidic functional group or a precursor thereof.
  • the step of preparing the ink for the catalyst layer is a step of mixing the ionomer material with the catalyst, the carrier and the solvent to obtain a mixture, and reacting the material in the mixture. Producing the ink for the catalyst layer by producing the ionomer.
  • a catalyst layer ink capable of forming a catalyst layer in which an ionomer is present in the pores of the carrier.
  • FIG. 1 is a cross-sectional view showing a configuration of a fuel cell according to an embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a carrier in which catalyst particles in the outer surface and pores are coated with an ionomer.
  • FIG. 3 is a cross-sectional view showing an example of a carrier in which only catalyst particles on the outer surface are coated with an ionomer.
  • the production method of the present invention is a method for producing an ink for a catalyst layer and a fuel cell used for forming a catalyst layer of a fuel cell.
  • the fuel cell produced by the production method of the present invention may be a fuel cell having a single cell structure or a fuel cell having a stack structure.
  • Figure 1 shows an example of the configuration of a fuel cell, the basic unit of a fuel cell.
  • a fuel cell 10 shown in FIG. 1 is a solid polymer electrolyte fuel cell that generates electricity by receiving supply of hydrogen gas and oxygen gas.
  • the fuel cell 10 has two separators 3 and a membrane electrode assembly 4 provided between the two separators 3.
  • the separator 3 has a flow path for flowing the gas supplied to the fuel cell 10 to the membrane electrode assembly 4.
  • the separator 3 electrically connects adjacent cells.
  • the membrane / electrode assembly 4 includes an electrolyte membrane 1 and two electrodes 2.
  • the electrolyte membrane 1 is a proton-donating solid polymer electrolyte membrane.
  • an electrolyte similar to the electrolyte that can be used in the electrode 2 described later can be used.
  • the two electrodes 2 are provided on both surfaces of the electrolyte membrane 1 respectively.
  • One electrode 2 is an anode and is also called a fuel electrode.
  • the other electrode 2 is a cathode and is also called an air electrode.
  • a reaction occurs in which electrons (61) and protons (H + ) are generated from the hydrogen gas (H 2 ) supplied via the separator 3.
  • the electrons are sent to the cathode via an external circuit.
  • each electrode 2 has a catalyst layer 2 1 and a gas diffusion layer 2 2.
  • the gas diffusion layer 22 can be provided as necessary for the purpose of uniformly diffusing the hydrogen gas or oxygen gas supplied to each electrode 2 to the electrode 2.
  • a porous fiber sheet having conductivity, gas permeability and gas diffusibility such as carbon fiber, a porous metal plate such as foam metal, and expanded metal is used. be able to.
  • the catalyst layer 2 1 is provided adjacent to the electrolyte membrane 1.
  • the catalyst layer 21 includes a catalyst, a support, and an ionomer, and promotes the above-described reaction of hydrogen gas and oxygen gas by the catalyst.
  • a particulate catalyst is supported on a carrier, and the carrier and the catalyst are covered with an ionomer.
  • the support and catalyst should be at least partially coated with ionomer, but from the viewpoint of improving the catalyst utilization rate, the larger the coated region, the better. From the viewpoint of increasing the reactivity with the gas, it is preferable that the ionomer layer covering the catalyst is thin.
  • the catalyst is not particularly limited as long as it has a catalytic action of hydrogen gas or oxygen gas.
  • platinum Pt
  • ruthenium Ru
  • iridium Ir
  • rhodium Rh
  • Palladium P d
  • osmium O s
  • tungsten W
  • lead P b
  • iron F e
  • Cr chromium
  • cobalt C o
  • nickel N i
  • Metals such as manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga) and aluminum (A1), mixtures of these metals, and alloys.
  • platinum, platinum-containing mixtures or alloys are preferred from the viewpoint of improving catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like.
  • the composition of the alloy depends on the type of metal to be alloyed. For example, the platinum content is 30 to 90 atomic%, and the other metal content is 10 to It can be 70 atomic%.
  • the average particle diameter of the catalyst is not particularly limited, but is preferably 1 to 30 nm, and more preferably 1 to 2 nm, from the viewpoint of improving the catalyst utilization rate and the supportability on the carrier.
  • the average particle diameter of the catalyst can be determined as the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst particles in X-ray diffraction.
  • the average particle diameter of the catalyst is the average value of the particle diameters of n catalyst particles observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). You can also ask for it.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • a conductive porous metal compound having pores can be used as the carrier.
  • An example of the porous metal compound is mesoporous carbon.
  • mesoporous carbon for example, carbon black such as Ketchen Black (registered trademark), acetylene black, Vulcan (registered trademark), etc., and multi-layer graph entite are laminated to create mesoporous. Examples thereof include carbon having a formed structure.
  • Examples of porous metal compounds include Pt black, Pd black, Pt metal deposited in fractal form, Ti, Zr, Nb, Mo, Hf, Examples thereof include oxides such as Ta and W, nitrides, carbides, oxynitrides, and carbonitrides.
  • mesoporosca-bon is preferred from the viewpoint of good dispersibility, a large surface area, and low particle growth at high temperatures even when the amount of catalyst supported is large.
  • the average particle size of the carrier is not particularly limited, but is preferably from 10 to 100 nm from the viewpoint of improving the supportability of the catalyst particles.
  • the average particle size of the support can be determined by TEM or SEM in the same manner as the average particle size of the catalyst.
  • the average pore diameter of the pores of the carrier is not particularly limited, but is preferably 2 to 20 nm from the viewpoint of supporting the catalyst particles in the pores.
  • BET specific surface area of the support from the viewpoint of carrying many catalyst particles, 5 0 m 2 / g or more is good Mashiku, 5 0 0 m 2 / g or more Ri preferably yo, is 7 0 0 m 2 / g or more It is even better.
  • BET specific surface area of the support, from the viewpoint of uniformly support the catalyst particles is preferably 1 5 0 0 m 2 / g hereinafter, 1 3 0 0m 2 / g is Ri preferably yo less, 1 0 0 0 m 2 / g or less is even more preferable.
  • BET specific surface area of the support is preferably 5 0 ⁇ 1 5 0 0 m 2 / g, 5 0 0 ⁇ 1 3 0 0 m 2 / g Gayo Ri preferred lay, 7 0 0 ⁇ 1 0 0 0 m 2 / g is more preferable.
  • the BET specific surface area of the carrier is measured by a nitrogen adsorption method.
  • the mass of the catalyst supported on the carrier can be usually 1 to 99% by mass with respect to the total mass (100% by mass) of the catalyst and the carrier, which improves the catalytic activity and the supportability. From the viewpoint, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable.
  • the ionomer is a proton-donating solid polymer electrolyte used in the catalyst layer 21.
  • the ionomer has an acidic functional group with a polymer having a repeating structure as a main chain.
  • the acidic functional group is not particularly limited as long as it is an acidic functional group, and examples thereof include a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group. Among them, from the viewpoint of proton conductivity, Sulfonic acid groups are preferred.
  • the mechanism of proton conduction by ionomers is that a hydrophilic core is formed by an acidic functional group, and a network of clusters in which water molecules are localized is formed in the core. Proton moving model has been proposed
  • Examples of the ionomer that can be used in the catalyst layer 21 include ion-exchangeable polymers such as a fluorine-based polymer and a hydrocarbon-based polymer having an acidic functional group.
  • the ionomer used in the catalyst layer 21 may be the same type as the electrolyte used in the electrolyte membrane 1 or may be a different type.
  • Examples of the fluorine-based polymer having an acidic functional group include perfluorosulfonic acid polymer.
  • the perfluorosulfonic acid polymer has a polytetrafluoroethylene (PTFE) unit and a perfluorosulfonic acid unit.
  • PTFE polytetrafluoroethylene
  • a commercially available product can also be used as the perfluorosulfonic acid polymer. Examples of commercial products that can be used include Nafion (registered trademark, manufactured by DuPont), Aquivion (registered trademark, manufactured by Solvay), Flemion (FIemion: registered trademark, manufactured by Asahi Glass), Ash Plex (Aciplex: registered trademark, manufactured by Asahi Kasei Corporation).
  • exemplary compounds (1) to (3) of the perfluorosulfonic acid polymer are not limited thereto.
  • exemplary compounds (1) and (2) are naphthion (registered trademark) and aqua ion (registered trademark), respectively.
  • Illustrative compound (3) is an ionomer proposed by 3M Company.
  • hydrocarbon polymer having an acidic functional group examples include an aromatic polymer and an aliphatic polymer having an acidic functional group.
  • Aromatic polymers with acidic functional groups include, for example, sulfonated polyetheretherketones (£££! ⁇ ;), Sulfonated polyethersulfones (3 £ 3), sulfonated polyphenylsulfones. Sulfonated polyimide, sulfonated polyetherimide, sulfonated polysulfone, sulfonated polystyrene and the like.
  • exemplary compounds (11) to (13) of an aromatic polymer having an acidic functional group are not limited thereto.
  • Exemplary Compound (11) is £££ X
  • Exemplary Compound (12) is £££
  • Exemplary Compound (13) is a sulfonated polyetherimide.
  • Examples of the aliphatic polymer having an acidic functional group include polyvinyl sulfonic acid and polyvinyl phosphonic acid.
  • the ion exchange capacity (IEC) of the ionomer is preferably 0.6 meq / g or more, more preferably 0.9 meq / g or more from the viewpoint of improving the proton conductivity. 1.2 meq / g or more is more preferable.
  • the ion exchange capacity of the ionomer is preferably 3 meq / g or less, more preferably 2.5 meq / g or less, and 2 meq / g or less from the viewpoint of dimensional stability during water supply. Further preferred. Therefore, the ion exchange capacity of the ionomer is preferably 0.6 to 3 meq / g, more preferably 0.9 to 2.5 meq / g,
  • More preferred is 1-2 to 2 meq / g.
  • the mass ratio (I / C) of the support (C) to the ionomer (I) is preferably 0.1 or more from the viewpoint of increasing ionic conductivity. Preferably it is 0.2 or more, more preferably 0.3 or more. Meanwhile, mass ratio (1 /
  • the mass ratio is preferably 0.1 to 2, more preferably 0.2 to 1.5, and still more preferably 0.3 to 1.1.
  • the thickness of the catalyst layer 21 is not particularly limited. However, from the viewpoint of the catalyst performance of the catalyst layer 21 and the formability of the catalyst layer 21, the thickness is preferably 0.1 / im or more. or more preferable towards good, in terms of gas diffusibility, the catalyst layer 2 1 of the thickness is preferably the this or less 5 0 / i m, 2 0 "m preferably Ri in which this Togayo less. Therefore, the thickness of the catalyst layer 21 is preferably 0.1 to 50 / im, more preferably 1 to 20 "m.
  • the catalyst layer 21 of the fuel cell 10 described above includes a step of preparing catalyst layer ink and a step of forming the catalyst layer 21 by applying the prepared catalyst layer ink on both surfaces of the electrolyte membrane 1. And can be formed through
  • an ionomer is formed in the catalyst layer ink including a carrier having a pore, a catalyst, and a solvent.
  • the step of preparing the ink for the catalyst layer includes the step of mixing the ionomer material with the catalyst, the carrier and the solvent to obtain a mixture, and reacting the material in the mixture to produce the ionomer. And obtaining a catalyst layer ink.
  • a polar proton solvent such as water or alcohol
  • mesoporous carbon is used as a carrier and platinum is used as a catalyst
  • mesoporous carbon is dispersed in pure water, and nitric acid is added to this dispersion.
  • nitric acid is added to this dispersion.
  • mesoporous carbon is dispersed in pure water, and nitric acid is added to this dispersion.
  • mesoporous carbon is dispersed in pure water, and nitric acid is added to this dispersion.
  • a dispersion of mesoporous carbon carrying platinum particles on the outer surface and inside the pores can be obtained.
  • the mixture is obtained by mixing the ionomer material with the obtained dispersion.
  • the ionomer material is reacted to form an ionomer.
  • the ionomer material may be mixed and reacted several times.
  • polymers are hydrophobic and acidic functional groups are hydrophilic. Therefore, ionomer molecules aggregate in a hydrophilic solvent such as water, alcohol, etc., and the hydrophilic portion is arranged around the hydrophobic portion in which the polymer of each ionomer molecule is oriented and crystallized, for example, the diameter 10 11 1X1 A relatively large colloid tends to be formed. Due to the large size of the colloid, it is difficult for the ionomer to penetrate into the pores of the support in a solvent, and it tends to cover only the outer surface of the support.
  • the ionomer material is not a polymer but a monomer and is smaller in size than the inner diameter of the pores. Therefore, an ionomer can be produced inside the pores of the carrier by allowing the material to react after the material has entered the pores of the carrier in the catalyst layer ink. That is, the ionomer in the ink for the catalyst layer exists not only on the outer surface of the carrier but also inside the pores. In the catalyst layer formed using such a catalyst layer ink, not only the outer surface of the carrier but also the catalyst supported in the pores are covered with the ionomer. In addition to the catalyst supported on the outer surface of the carrier, the catalytic action of the catalyst inside the pores can be obtained, so the catalyst utilization rate is improved.
  • the ionomer in the catalyst layer ink may be a polymer having an acidic functional group that can be used as an electrolyte, or may be a polymer having a precursor of an acidic functional group.
  • precursors include halogenated acidic functional groups such as 1 £ 0 2 F and 1 £ 0 2 0 1, and acidic functional groups such as 1 £ 0 3 X 3 and-£ 0 3 (NH 4 ).
  • examples thereof include a protecting group in which the group is protected with a metal or the like.
  • the ionomer is a polymer having a precursor of an acidic functional group, the ionomer can be used as an electrolyte by performing a protonation such as saponification to convert it into an acidic functional group. Is possible.
  • the ionomer is a perfluorosulfonic acid polymer
  • a polymer having a repeating structure derived from tetrafluoroethylene that is, polytetrafluoroethylene
  • polytetrafluoroethylene is obtained by polymerization reaction using tetrafluoroethylene as a monomer.
  • a perfluorosulfonic acid precursor is mixed and reacted with this polytetrafluoroethylene to produce a perfluorosulfonic acid polymer having a polytetrafluoroethylene unit and a unit of perfluorosulfonic acid precursor.
  • the reaction process of the perfluorosulfonic acid polymer is not limited to this, and it may be generated by an optimal reaction process for the target perfluorosulfonic acid polymer.
  • the ionomer When the ionomer is an aromatic polymer having an acidic functional group, it has a polymerization reaction of an aromatic vinyl monomer having an acidic functional group or a precursor thereof, and has an aromatic vinyl monomer and an acidic functional group or a precursor thereof.
  • Aromatic polymer with acidic functional group or precursor is generated in the ink for catalyst layer by polymerization reaction of vinyl monomer, polymerization reaction of vinyl monomer and acidic functional group or precursor with aromatic vinyl monomer.
  • the aromatic vinyl monomer that can be used can be appropriately selected according to the design of the target aromatic polymer. For example, styrene, methylstyrene, benzophenone, 4, 4'-difluorobenzophenone, 4
  • reaction process is not limited to the above.
  • the ionomer is an aliphatic polymer having an acidic functional group
  • a polymerization reaction of an aliphatic vinyl monomer having an acidic functional group or a precursor thereof, an aliphatic vinyl monomer having an acidic functional group or a precursor thereof, and An aliphatic polymer having an acidic functional group or a precursor thereof is generated in the catalyst layer ink by a polymerization reaction with an aliphatic vinyl monomer.
  • the aliphatic vinyl monomer that can be used can be appropriately selected according to the design of the target aliphatic polymer. Examples thereof include acrylic vinyl monomers such as acrylonitrile and olefins such as ethylene and propylene. It is done.
  • a polymerization initiator can be used for the polymerization reaction.
  • usable polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, 4,4'-azobis 4-cyanovaleric acid and its salts, 2,2'-azobis (2-amidinopropane) salts, and the like. And azo compounds and peroxide compounds.
  • the ionomer in the ink for the catalyst layer is generated inside the pores of the support, the ionomer is present not only on the outer surface of the carrier but also inside the pores. be able to.
  • a catalyst layer in which not only the outer surface of the carrier but also catalyst particles located in the pores are coated with an ionomer can be obtained.
  • FIG. 2 shows an example of a carrier in which an ionomer has penetrated into the pores.
  • the catalyst 11 is supported on the outer surface and pores of the support 12.
  • the ionomer 13 is present not only on the outer surface of the support 12 but also inside the pores, and covers the support 12 and the catalyst 11.
  • the ionomer 13 can conduct ions to the catalyst 11 supported not only on the outer surface but also in the pores, thereby improving the catalyst utilization rate.
  • FIG. 3 shows an example of a carrier in which only the outer surface is coated with an ionomer.
  • the ionomer 13 whose size is larger than the pores of the carrier 12 cannot penetrate into the pores of the carrier 12 and ion conduction to the catalyst 11 supported in the pores.
  • the rate goes down.
  • the catalytic action is due to the catalyst 1 1 existing on the outer surface of the carrier 12 coated with the ionomer 13, and the catalyst utilization rate is reduced compared to the example shown in FIG.
  • the fuel cell 10 described above can be manufactured through the steps of preparing a catalyst layer ink and applying the catalyst layer ink to both surfaces of the electrolyte membrane 1 to form the catalyst layer 21.
  • an ionomer is generated in the catalyst layer ink.
  • the gas diffusion layer 22 is formed by sandwiching the formed catalyst layer 21 between carbon fiber sheets or the like and thermocompression bonding. Thereby, the membrane electrode assembly 4 of the electrolyte membrane 1 and the electrode 2 is obtained. By sandwiching the surface of each membrane electrode assembly 4 on the side of each electrode 2 between two separators 3, a fuel cell 10 can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Provided is a catalyst layer ink that enables the formation of a catalyst layer in which ionomers are present within the pores of a carrier. This method for producing a catalyst layer ink that includes ionomers, a catalyst, a carrier having pores, and a solvent, comprises: a step in which the ionomers in the catalyst layer ink are a polymer comprising an acidic functional group or a precursor thereof, and the ionomer material is mixed with the solvent, the carrier and the catalyst to obtain a mixture; and a step in which the material is reacted in the mixture to produce ionomers, thereby providing the catalyst layer ink.

Description

〇 2019/224729 卩(:17132019/054212  〇 2019/224729 卩 (: 17132019/054212
1  1
【書類名】 明細書  [Document Name] Statement
【発明の名称】 触媒層用インク及び燃料電池の製造方法  Patent application title: CATALYST LAYER INK AND FUEL CELL MANUFACTURING METHOD
【技術分野】  【Technical field】
【 0 0 0 1】  [0 0 0 1]
本発明は、 触媒層用インク及び燃料電池の製造方法に関する。  The present invention relates to a catalyst layer ink and a method for producing a fuel cell.
【背景技術】  [Background]
【 0 0 0 2】  [0 0 0 2]
固体高分子電解質型の燃料電池は、 イオン伝導性を有する固体高分子膜である電解質膜 を 2つの電極間に有する。 この燃料電池では、 アノー ドである一方の電極において、 燃料 と して供給された水素ガスがプロ トンと電子に分離する反応が生じる。 プロ トンは電解質 膜を経由して他方の電極へ移動し、 電子は外部回路を経由して他方の電極へ移動する。 こ の電子の移動によ り外部回路では電流が発生する。 一方、 カソー ドである他方の電極で は、 酸素ガスが供給され、 電解質膜から移動してきたプロ トンと外部回路から移動してき た電子が酸素ガス と反応して水が生成される。  A solid polymer electrolyte type fuel cell has an electrolyte membrane, which is an ion conductive solid polymer membrane, between two electrodes. In this fuel cell, at one electrode, which is an anode, a reaction occurs in which hydrogen gas supplied as fuel is separated into protons and electrons. Proton moves to the other electrode via the electrolyte membrane, and electrons move to the other electrode via the external circuit. This movement of electrons generates current in the external circuit. On the other hand, the other electrode, which is a cathode, is supplied with oxygen gas, and protons that have moved from the electrolyte membrane and electrons that have moved from the external circuit react with oxygen gas to produce water.
【 0 0 0 3】  [0 0 0 3]
各電極には、 水素ガス又は酸素ガスの反応が生じる触媒層が設けられている。 触媒層で は、 メ ソポーラスカーボン等の細孔を有する担体によって、 白金等の触媒粒子が担持され ている。 触媒作用を高めるため、 触媒粒子は、 通常は電解質膜と同類の電解質によって被 覆されている。 このよ うな触媒層内で使用する電解質を、 以下、 アイオノマーという。  Each electrode is provided with a catalyst layer in which a reaction of hydrogen gas or oxygen gas occurs. In the catalyst layer, catalyst particles such as platinum are supported by a carrier having pores such as mesoporous carbon. In order to enhance the catalytic action, the catalyst particles are usually covered with an electrolyte similar to the electrolyte membrane. The electrolyte used in such a catalyst layer is hereinafter referred to as an ionomer.
【 0 0 0 4】  [0 0 0 4]
一般的に、 触媒粒子の粒子径は担体の細孔の内径よ り小さいため、 触媒粒子は、 担体の 外表面だけでなく細孔内部にも担持されている。 よって、 細孔内部の触媒粒子もアイオノ マーによって被覆される と、 触媒利用率が向上する (例えば、 特許文献 1参照。  In general, since the particle diameter of the catalyst particles is smaller than the inner diameter of the pores of the carrier, the catalyst particles are supported not only on the outer surface of the carrier but also inside the pores. Therefore, when the catalyst particles inside the pores are also coated with the ionomer, the catalyst utilization rate is improved (see, for example, Patent Document 1).
【先行技術文献】  [Prior art documents]
【特許文献】  [Patent Literature]
【 0 0 0 5】  [0 0 0 5]
【特許文献 1】 特開 2 0 1 7— 1 2 6 5 1 4号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. 2 0 1 7-1 2 6 5 1 4
【発明の概要】  Summary of the Invention
【発明が解決しよ う とする課題】  [Problems to be solved by the invention]
【 0 0 0 6】  [0 0 0 6]
アイオノマーは、 一般に繰り返し構造を有するポリマーを主鎖と して、 酸性の官能基を 有する。 例えば、 代表的なアイオノマーの 1つであるナフイオン ^3^ 011、 登録商標) は 、 ポリテ トラフルオロエチレンユニッ トを主鎖と して、 パーフルオロエーテルスルホン酸 ユニッ トを側鎖と して有する。  The ionomer generally has an acidic functional group with a polymer having a repeating structure as a main chain. For example, naphthion ^ 3 ^ 011 (registered trademark), which is one of typical ionomers, has a polytetrafluoroethylene unit as a main chain and a perfluoroethersulfonic acid unit as a side chain.
【 0 0 0 7】  [0 0 0 7]
アイオノマーは、 主鎖のポリマーが繰り返し構造を有するため、 結晶化しやすい。 アイ オノマー、 触媒及び担体を水、 アルコール等の親水性溶媒と混合して触媒層用インクを調 製したとき、 各アイオノマー内の結晶化部を中心に分子同士が凝集して、 酸性の官能基が 外側に配列したコロイ ドが形成されやすい。 その結果、 アイオノマーが担体の細孔内部に 浸入するこ とが難しく なる。 このよ うな触媒層用イ ンクを使用して形成された触媒層は、 細孔内部の触媒粒子がアイオノマーによって被覆されにく く なるため、 触媒利用率が低下 する。  Ionomer is easy to crystallize because the polymer of the main chain has a repeating structure. When an ionomer, a catalyst and a carrier are mixed with a hydrophilic solvent such as water or alcohol to prepare an ink for a catalyst layer, molecules are aggregated around the crystallized portion in each ionomer, and an acidic functional group is formed. Colloids arranged on the outside tend to be formed. As a result, it becomes difficult for the ionomer to penetrate into the pores of the support. In the catalyst layer formed using such a catalyst layer ink, the catalyst particles in the pores are not easily covered with the ionomer, and the catalyst utilization rate is lowered.
【 0 0 0 8】  [0 0 0 8]
本発明は、 アイオノマーが担体の細孔内に存在する触媒層の形成が可能な触媒層用イン クを提供するこ とを目的とする。  An object of the present invention is to provide a catalyst layer ink capable of forming a catalyst layer in which an ionomer is present in the pores of a carrier.
【課題を解決するための手段】  [Means for Solving the Problems]
【 0 0 0 9】  [0 0 0 9]
本発明に係る触媒層用インクの製造方法は、 アイオノマー、 触媒、 細孔を有する担体及 び溶媒を含む触媒層用インクを製造する方法であって、 前記触媒層用インク中の前記アイ オノマーが、 酸性の官能基又はその前駆体を有するポリマーであり、 前記アイオノマーの 〇 2019/224729 卩(:17132019/054212 The method for producing the ink for a catalyst layer according to the present invention is a method for producing an ink for a catalyst layer containing an ionomer, a catalyst, a carrier having pores, and a solvent, wherein the ionomer in the ink for the catalyst layer comprises A polymer having an acidic functional group or a precursor thereof, and the ionomer 〇 2019/224729 卩 (: 17132019/054212
2  2
材料を、 前記触媒、 前記担体及び前記溶媒と混合し、 混合物を得るステップと、 前記混合 物中で前記材料を反応させて前記アイオノマーを生成するこ とで、 前記触媒層用インクを 得るステップと、 を含む触媒層用イ ンクの製造方法。 Mixing a material with the catalyst, the carrier and the solvent to obtain a mixture; and reacting the material in the mixture to produce the ionomer, thereby obtaining the catalyst layer ink; The manufacturing method of the ink for catalyst layers containing,.
【 0 0 1 0】  [0 0 1 0]
本発明に係る燃料電池の製造方法は、 電解質膜の両面に触媒層を有する燃料電池の製造 方法であって、 アイオノマー、 触媒、 細孔を有する担体及び溶媒を含む触媒層用インクを 調製するステップと、 前記触媒層用インクを前記電解質膜の両面に塗布して前記触媒層を 形成するステップと、 を含み、 前記触媒層用インク中の前記アイオノマーが、 酸性の官能 基又はその前駆体を有するポリマーであり、 前記触媒層用インクを調製するステップは、 前記アイオノマーの材料を、 前記触媒、 前記担体及び前記溶媒と混合し、 混合物を得るス テップと、 前記混合物中で前記材料を反応させて前記アイオノマーを生成するこ とで、 前 記触媒層用インクを得るステップと、 を含む。  The method for producing a fuel cell according to the present invention is a method for producing a fuel cell having catalyst layers on both sides of an electrolyte membrane, and the step of preparing an ink for a catalyst layer containing an ionomer, a catalyst, a carrier having pores, and a solvent And applying the catalyst layer ink to both surfaces of the electrolyte membrane to form the catalyst layer, wherein the ionomer in the catalyst layer ink has an acidic functional group or a precursor thereof. The step of preparing the ink for the catalyst layer is a step of mixing the ionomer material with the catalyst, the carrier and the solvent to obtain a mixture, and reacting the material in the mixture. Producing the ink for the catalyst layer by producing the ionomer.
【発明の効果】  【The invention's effect】
【 0 0 1 1 】  【0 0 1 1】
本発明によれば、 アイオノマーが担体の細孔内に存在する触媒層の形成が可能な触媒層 用インクを提供するこ とができる。  According to the present invention, it is possible to provide a catalyst layer ink capable of forming a catalyst layer in which an ionomer is present in the pores of the carrier.
【図面の簡単な説明】  [Brief description of the drawings]
【 0 0 1 2】  [0 0 1 2]
【図 1 】 一実施形態の燃料電池の構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of a fuel cell according to an embodiment.
【図 2】 アイオノマーによ り外表面及び細孔内の触媒粒子が被覆された担体の例を示 す断面図である。  FIG. 2 is a cross-sectional view showing an example of a carrier in which catalyst particles in the outer surface and pores are coated with an ionomer.
【図 3】 アイオノマーによ り外表面の触媒粒子のみが被覆された担体の例を示す断面 図である。  FIG. 3 is a cross-sectional view showing an example of a carrier in which only catalyst particles on the outer surface are coated with an ionomer.
【発明を実施するための形態】  BEST MODE FOR CARRYING OUT THE INVENTION
【 0 0 1 3】  [0 0 1 3]
本発明の製造方法は、 燃料電池の触媒層の形成に用いられる触媒層用インク及び燃料電 池の製造方法である。  The production method of the present invention is a method for producing an ink for a catalyst layer and a fuel cell used for forming a catalyst layer of a fuel cell.
以下、 本発明の触媒層用イ ンク及び燃料電池の製造方法の実施の形態について、 図面を 参照して説明する。 以下に説明する構成は、 本発明の一実施態様と しての一例 (代表例) であり、 本発明は以下に説明する構成に限定されない。  Hereinafter, embodiments of a catalyst layer ink and a fuel cell manufacturing method of the present invention will be described with reference to the drawings. The configuration described below is an example (representative example) as an embodiment of the present invention, and the present invention is not limited to the configuration described below.
【 0 0 1 4】  [0 0 1 4]
(燃料電池)  (Fuel cell)
本発明の製造方法によって製造される燃料電池は、 単セル構造を有する燃料電池であっ てもよいし、 スタ ック構造を有する燃料電池であってもよい。  The fuel cell produced by the production method of the present invention may be a fuel cell having a single cell structure or a fuel cell having a stack structure.
図 1 は、 燃料電池の基本単位である燃料電池セルの構成例を示している。  Figure 1 shows an example of the configuration of a fuel cell, the basic unit of a fuel cell.
【 0 0 1 5】  [0 0 1 5]
図 1 に示す燃料電池セル 1 0は、 水素ガスと酸素ガスの供給を受けて発電する固体高分 子電解質型燃料電池である。 燃料電池セル 1 0は、 図 1 に示すよ う に、 2つのセパレータ 3 と、 2つのセパレータ 3間に設けられた膜電極接合体 4 とを有する。 セパレータ 3は、 燃料電池セル 1 0に供給されるガスを膜電極接合体 4へ流す流路を有する。 燃料電池セル 1 0がスタ ック構造である場合、 セパレータ 3は、 隣り合うセル間を電気的に接続する。 膜電極接合体 4は、 図 1 に示すよ う に、 電解質膜 1 と、 2つの電極 2 と、 を有する。  A fuel cell 10 shown in FIG. 1 is a solid polymer electrolyte fuel cell that generates electricity by receiving supply of hydrogen gas and oxygen gas. As shown in FIG. 1, the fuel cell 10 has two separators 3 and a membrane electrode assembly 4 provided between the two separators 3. The separator 3 has a flow path for flowing the gas supplied to the fuel cell 10 to the membrane electrode assembly 4. When the fuel battery cell 10 has a stack structure, the separator 3 electrically connects adjacent cells. As shown in FIG. 1, the membrane / electrode assembly 4 includes an electrolyte membrane 1 and two electrodes 2.
【 0 0 1 6 】  【0 0 1 6】
電解質膜 1 は、 プロ トン供与性の固体高分子電解質の膜である。 電解質膜 1 には、 後述 する電極 2において使用可能な電解質と同様の電解質を使用するこ とができる。  The electrolyte membrane 1 is a proton-donating solid polymer electrolyte membrane. For the electrolyte membrane 1, an electrolyte similar to the electrolyte that can be used in the electrode 2 described later can be used.
【 0 0 1 7】  [0 0 1 7]
2つの電極 2は、 電解質膜 1 の両面にそれぞれ設けられる。 一方の電極 2はアノー ドで あり、 燃料極と も呼ばれる。 他方の電極 2はカソー ドであり、 空気極と も呼ばれる。 アノ ー ドである電極 2では、 セパレータ 3を介して供給された水素ガス (H 2) から電子 ( 6 一) とプロ トン (H +) を生成する反応が生じる。 電子は外部回路を経由してカソー ドで 〇 2019/224729 卩(:17132019/054212 The two electrodes 2 are provided on both surfaces of the electrolyte membrane 1 respectively. One electrode 2 is an anode and is also called a fuel electrode. The other electrode 2 is a cathode and is also called an air electrode. In the electrode 2 which is an anode, a reaction occurs in which electrons (61) and protons (H + ) are generated from the hydrogen gas (H 2 ) supplied via the separator 3. The electrons are sent to the cathode via an external circuit. 〇 2019/224729 卩 (: 17132019/054212
3  Three
ある電極 2へ移動する。 この電子の移動によ り外部回路では電流が発生する。 プロ トンは 電解質膜 1 を経由してカソー ドである電極 2へ移動する。 カソー ドである電極 2では、 セ パレータ 3を介して酸素ガス (02) が供給され、 外部回路から移動してきた電子によ り 酸素イオン (〇 2一) が生成される。 酸素イオンは、 電解質膜 1 から移動してきたプロ ト ン ( 2 H +) と結合して、 水 (H20) になる。 Move to a certain electrode 2. This movement of electrons generates a current in the external circuit. The proton moves through the electrolyte membrane 1 to the electrode 2 which is a cathode. In the electrode 2 which is a cathode, oxygen gas (0 2 ) is supplied via the separator 3, and oxygen ions (0 2 ) are generated by electrons moving from the external circuit. Oxygen ions combine with the proton (2 H +) that has migrated from the electrolyte membrane 1 to become water (H 2 0).
【 0 0 1 8 】  【0 0 1 8】
各電極 2は、 図 1 に示すよ うに、 触媒層 2 1 とガス拡散層 2 2を有する。 ガス拡散層 2 2は、 各電極 2に供給された水素ガス又は酸素ガスを電極 2に均一に拡散する 目的で、 必 要に応じて設けるこ とができる。 ガス拡散層 2 2 と しては、 例えばカーボン繊維等の導電 性、 ガス透過性及びガス拡散性を有する多孔性繊維シー ト、 発砲金属、 エキスパン ドメ タ ル等の多孔性の金属板を用いるこ とができる。  As shown in FIG. 1, each electrode 2 has a catalyst layer 2 1 and a gas diffusion layer 2 2. The gas diffusion layer 22 can be provided as necessary for the purpose of uniformly diffusing the hydrogen gas or oxygen gas supplied to each electrode 2 to the electrode 2. As the gas diffusion layer 22, for example, a porous fiber sheet having conductivity, gas permeability and gas diffusibility such as carbon fiber, a porous metal plate such as foam metal, and expanded metal is used. be able to.
【 0 0 1 9】  [0 0 1 9]
(触媒層)  (Catalyst layer)
触媒層 2 1 は、 電解質膜 1 に隣接して設けられる。 触媒層 2 1 は、 触媒、 担体及びアイ オノマーを含み、 触媒によって上述した水素ガス及び酸素ガスの反応を促進する。 触媒層 2 1 では、 粒子状の触媒が担体に担持され、 アイオノマーによって担体及び触媒が被覆さ れている。 担体及び触媒は、 少なく と も一部がアイオノマーによって被覆されていればよ いが、 触媒利用率の向上の観点からは、 被覆される領域が大きいほど好ま しい。 ガス との 反応性を高める観点からは、 触媒を被覆するアイオノマーの層は薄い方が好ましい。  The catalyst layer 2 1 is provided adjacent to the electrolyte membrane 1. The catalyst layer 21 includes a catalyst, a support, and an ionomer, and promotes the above-described reaction of hydrogen gas and oxygen gas by the catalyst. In the catalyst layer 21, a particulate catalyst is supported on a carrier, and the carrier and the catalyst are covered with an ionomer. The support and catalyst should be at least partially coated with ionomer, but from the viewpoint of improving the catalyst utilization rate, the larger the coated region, the better. From the viewpoint of increasing the reactivity with the gas, it is preferable that the ionomer layer covering the catalyst is thin.
【 0 0 2 0】  [0 0 2 0]
(触媒)  (Catalyst)
触媒と しては、 水素ガス又は酸素ガスの触媒作用を有するのであれば特に限定されない が、 例えば白金 ( P t)、 ルテニウム ( R u)、 イ リ ジウム ( I r)、 ロジウム ( R h)、 パ ラジウム (P d)、 オスミ ウム (O s)、 タングステン (W)、 鉛 (P b)、 鉄 (F e)、 ク ロム (C r)、 コバルト (C o)、 ニッケル (N i)、 マンガン (Mn)、 バナジウム (V)、 モリブデン (M o)、 ガリ ウム (G a) 及びアルミニウム (A 1 ) 等の金属、 これ ら金属の混合物、 合金等が挙げられる。 なかでも、 触媒活性、 一酸化炭素等に対する耐被 毒性、 耐熱性等を向上させる観点から、 白金、 白金を含む混合物又は合金が好ま しい。 触 媒が合金からなる場合、 合金の組成は、 合金化する金属の種類にもよるが、 例えば白金の 含有量を 3 〇〜 9 0原子%と し、 その他の金属の含有量を 1 〇〜 7 0原子%とするこ とが できる。  The catalyst is not particularly limited as long as it has a catalytic action of hydrogen gas or oxygen gas. For example, platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh) , Palladium (P d), osmium (O s), tungsten (W), lead (P b), iron (F e), chromium (C r), cobalt (C o), nickel (N i) Metals such as manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga) and aluminum (A1), mixtures of these metals, and alloys. Of these, platinum, platinum-containing mixtures or alloys are preferred from the viewpoint of improving catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like. When the catalyst is made of an alloy, the composition of the alloy depends on the type of metal to be alloyed. For example, the platinum content is 30 to 90 atomic%, and the other metal content is 10 to It can be 70 atomic%.
【 00 2 1】  [00 2 1]
触媒の平均粒子径は、 特に限定されないが、 触媒利用率及び担体での担持性の向上の観 点からは、 好ましく は 1〜 3 0 n m、 よ り好ましく は 1〜 2 O n mである。  The average particle diameter of the catalyst is not particularly limited, but is preferably 1 to 30 nm, and more preferably 1 to 2 nm, from the viewpoint of improving the catalyst utilization rate and the supportability on the carrier.
触媒の平均粒子径は、 X線回折における触媒粒子の回折ピークの半値幅よ り求められる 結晶子径と して求めるこ とができる。 また、 触媒の平均粒子径は、 透過型電子顕微鏡 (T EM : Transmission Electron Microscope) 又は走査型電子顕微鏡 (S EM : Scanning Electron Microscope) よ り観察した n個の触媒粒子の粒子径の平均値と して求めるこ と もできる。 nは、 例えば 2 0 0〜 3 0 0 とすることができる。  The average particle diameter of the catalyst can be determined as the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst particles in X-ray diffraction. The average particle diameter of the catalyst is the average value of the particle diameters of n catalyst particles observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). You can also ask for it. For example, n can be 2 00 to 3 0 0.
【 0 0 2 2】  [0 0 2 2]
(担体)  (Carrier)
担体と しては、 細孔を有する導電性の多孔性金属化合物を用いるこ とができる。 多孔性 金属化合物と しては、 例えばメ ソポーラスカーボンが挙げられる。 メ ソポーラスカーボン と しては、 例えばケッチエンブラック (登録商標) 、 アセチレンブラ ック、 バルカン (登 録商標) 等のカーボンブラ ック、 複数層のグラフエンシー トが積層されてメ ソポーラスが 形成された構造を有するカーボン等が挙げられる。 また、 多孔性金属化合物と しては、 例 えば P tブラ ック、 P dブラ ック、 フラクタル状に析出させた P t金属、 T i 、 Z r、 N b、 M o、 H f 、 T a、 W等の酸化物、 窒化物、 炭化物、 酸窒化物、 炭窒化物等が挙げら れる。 なかでも、 分散性が良好で表面積が大きく 、 触媒の担持量が多い場合でも高温での 粒子成長が少ない観点からは、 メ ソポ'ーラスカ'—ボンが好ましい。 〇 2019/224729 卩(:17132019/054212 As the carrier, a conductive porous metal compound having pores can be used. An example of the porous metal compound is mesoporous carbon. As mesoporous carbon, for example, carbon black such as Ketchen Black (registered trademark), acetylene black, Vulcan (registered trademark), etc., and multi-layer graph entite are laminated to create mesoporous. Examples thereof include carbon having a formed structure. Examples of porous metal compounds include Pt black, Pd black, Pt metal deposited in fractal form, Ti, Zr, Nb, Mo, Hf, Examples thereof include oxides such as Ta and W, nitrides, carbides, oxynitrides, and carbonitrides. Of these, mesoporosca-bon is preferred from the viewpoint of good dispersibility, a large surface area, and low particle growth at high temperatures even when the amount of catalyst supported is large. 〇 2019/224729 卩 (: 17132019/054212
4  Four
【 0 0 2 3】  [0 0 2 3]
担体の平均粒径は、 特に限定されないが、 触媒粒子の担持性を高める観点からは、 1 0 〜 1 0 0 nmが好ましい。  The average particle size of the carrier is not particularly limited, but is preferably from 10 to 100 nm from the viewpoint of improving the supportability of the catalyst particles.
担体の平均粒径は、 触媒の平均粒子径と同様にして、 T EM又は S EMによ り求めるこ とができる。  The average particle size of the support can be determined by TEM or SEM in the same manner as the average particle size of the catalyst.
【 0 0 2 4】  [0 0 2 4]
担体の細孔の平均孔径は、 特に限定されないが、 触媒粒子を細孔内にも担持する観点か らは、 2〜 2 0 nmが好ましい。  The average pore diameter of the pores of the carrier is not particularly limited, but is preferably 2 to 20 nm from the viewpoint of supporting the catalyst particles in the pores.
【 0 0 2 5】  [0 0 2 5]
担体の BET比表面積は、 多く の触媒粒子を担持する観点から、 5 0m2/g以上が好 ましく 、 5 0 0 m2/g以上がよ り好ましく 、 7 0 0 m2/g以上がさ らに好ま しい。 一 方、 担体の BET比表面積は、 均一に触媒粒子を担持する観点から、 1 5 0 0 m2/g以 下が好ましく 、 1 3 0 0m2/g以下がよ り好ましく 、 1 0 0 0m2/g以下がさ らに好 ましい。 したがって、 担体の B E T比表面積は、 5 0〜 1 5 0 0 m 2 / gが好ましく 、 5 0 0〜 1 3 0 0 m2/gがよ り好ま しく 、 7 0 0〜 1 0 0 0 m2/gがさ らに好ましい。 上記担体の B E T比表面積は、 窒素吸着法によ り測定される。 BET specific surface area of the support, from the viewpoint of carrying many catalyst particles, 5 0 m 2 / g or more is good Mashiku, 5 0 0 m 2 / g or more Ri preferably yo, is 7 0 0 m 2 / g or more It is even better. Hand, BET specific surface area of the support, from the viewpoint of uniformly support the catalyst particles is preferably 1 5 0 0 m 2 / g hereinafter, 1 3 0 0m 2 / g is Ri preferably yo less, 1 0 0 0 m 2 / g or less is even more preferable. Therefore, BET specific surface area of the support is preferably 5 0~ 1 5 0 0 m 2 / g, 5 0 0~ 1 3 0 0 m 2 / g Gayo Ri preferred lay, 7 0 0~ 1 0 0 0 m 2 / g is more preferable. The BET specific surface area of the carrier is measured by a nitrogen adsorption method.
【 0 0 2 6】  [0 0 2 6]
担体に担持された触媒の質量は、 触媒と担体を合わせた質量 ( 1 0 0質量%) に対して 、 通常 1〜 9 9質量%とするこ とができ、 触媒活性及び担持性の向上の観点からは、 1 0 〜 9 0質量%が好ましく 、 2 0〜 8 0質量%がよ り好ましい。  The mass of the catalyst supported on the carrier can be usually 1 to 99% by mass with respect to the total mass (100% by mass) of the catalyst and the carrier, which improves the catalytic activity and the supportability. From the viewpoint, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable.
【 0 0 2 7】  [0 0 2 7]
(アイオノマー)  (Ionomer)
アイオノマーは、 触媒層 2 1 中で使用するプロ トン供与性の固体高分子電解質である。 アイオノマーは、 繰り返し構造を有するポリマーを主鎖と して、 酸性の官能基を有する。 酸性の官能基と しては、 酸性を示す官能基であれば特に限定されず、 例えばスルホン酸基 、 リ ン酸基、 カルボン酸基等が挙げられ、 なかでもプロ トン伝導性の観点から、 スルホン 酸基が好ましい。 アイオノマーによるプロ トン伝導のメカニズムと しては、 酸性の官能基 によって親水性のコアが形成され、 コア内に水分子が局在したクラスターのネッ トワーク が形成されて、 この親水性のネッ トワークをプロ トンが移動するモデルが提唱されている  The ionomer is a proton-donating solid polymer electrolyte used in the catalyst layer 21. The ionomer has an acidic functional group with a polymer having a repeating structure as a main chain. The acidic functional group is not particularly limited as long as it is an acidic functional group, and examples thereof include a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group. Among them, from the viewpoint of proton conductivity, Sulfonic acid groups are preferred. The mechanism of proton conduction by ionomers is that a hydrophilic core is formed by an acidic functional group, and a network of clusters in which water molecules are localized is formed in the core. Proton moving model has been proposed
【 0 0 2 8】 [0 0 2 8]
触媒層 2 1 に使用できるアイオノマーと しては、 例えば酸性の官能基を有するフッ素系 ポリマー、 炭化水素系ポリマー等のイオン交換性ポリマーが挙げられる。 触媒層 2 1 に使 用するアイオノマーは、 電解質膜 1 で使用される電解質と同じ種類であってもよいし、 異 なる種類であってもよい。  Examples of the ionomer that can be used in the catalyst layer 21 include ion-exchangeable polymers such as a fluorine-based polymer and a hydrocarbon-based polymer having an acidic functional group. The ionomer used in the catalyst layer 21 may be the same type as the electrolyte used in the electrolyte membrane 1 or may be a different type.
【 0 0 2 9】  [0 0 2 9]
酸性の官能基を有するフッ素系ポリマーと しては、 パーフルオロスルホン酸ポリマー等 が挙げられる。 パーフルオロスルホン酸ポリマーは、 ポリテ トラフルオロエチレン (PT F E) ユニッ ト と、 パーフルオロスルホン酸ユニッ ト とを有する。 パーフルオロスルホン 酸ポリマーと しては、 市販品も使用することができる。 使用できる市販品と しては、 例え ばナフイオン (Nafion : 登録商標、 DuPont社製) 、 アクイ ヴイオン (Aquivion : 登録商 標、 Solvay社製) 、 フレミオン ( FIemion : 登録商標、 旭硝子社製)、 アシプレックス ( Aciplex : 登録商標、 旭化成社製) 等が挙げられる。  Examples of the fluorine-based polymer having an acidic functional group include perfluorosulfonic acid polymer. The perfluorosulfonic acid polymer has a polytetrafluoroethylene (PTFE) unit and a perfluorosulfonic acid unit. A commercially available product can also be used as the perfluorosulfonic acid polymer. Examples of commercial products that can be used include Nafion (registered trademark, manufactured by DuPont), Aquivion (registered trademark, manufactured by Solvay), Flemion (FIemion: registered trademark, manufactured by Asahi Glass), Ash Plex (Aciplex: registered trademark, manufactured by Asahi Kasei Corporation).
【 0 0 3 0】  [0 0 3 0]
以下は、 パーフルオロスルホン酸ポリマーの例示化合物 ( 1) 〜 ( 3) であるが、 これ らに限定されない。 例示化合物 ( 1 ) 及び ( 2) は、 それぞれナフイオン (登録商標) 及 びアクイ ヴイオン (登録商標) である。 例示化合物 ( 3) は、 3 M社が提案するアイオノ マーである。  The following are exemplary compounds (1) to (3) of the perfluorosulfonic acid polymer, but are not limited thereto. Exemplary compounds (1) and (2) are naphthion (registered trademark) and aqua ion (registered trademark), respectively. Illustrative compound (3) is an ionomer proposed by 3M Company.
【 0 0 3 1 】  【0 0 3 1】
【化 1 】 〇 2019/224729 卩(:17132019/054212 [Chemical 1] 〇 2019/224729 卩 (: 17132019/054212
5  Five
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0003
Figure imgf000007_0003
【 0 0 3 2】 [0 0 3 2]
酸性の官能基を有する炭化水素系ポリマーと しては、 例えば酸性の官能基を有する芳香 族ポリマー、 脂肪族ポリマー等が挙げられる。  Examples of the hydrocarbon polymer having an acidic functional group include an aromatic polymer and an aliphatic polymer having an acidic functional group.
【 0 0 3 3】  [0 0 3 3]
酸性の官能基を有する芳香族ポリマーと しては、 例えばスルホン化ポリエーテルエーテ ルケ トン (£ £ £ !<;) 、 スルホン化ポリエーテルスルホン (3 £ 3) 、 スルホン化ポ リ フエニルスルホン
Figure imgf000007_0002
、 スルホン化ポリイ ミ ド、 スルホン化ポリエーテルイ ミ ド、 スルホン化ポリスルホン、 スルホン化ポリスチレン等が挙げられる。
Aromatic polymers with acidic functional groups include, for example, sulfonated polyetheretherketones (£££! <;), Sulfonated polyethersulfones (3 £ 3), sulfonated polyphenylsulfones.
Figure imgf000007_0002
Sulfonated polyimide, sulfonated polyetherimide, sulfonated polysulfone, sulfonated polystyrene and the like.
【 0 0 3 4】  [0 0 3 4]
以下は、 酸性の官能基を有する芳香族ポリマーの例示化合物 ( 1 1) 〜 ( 1 3) である が、 これらに限定されない。 例示化合物 ( 1 1) は £ £ £ X、 例示化合物 ( 1 2) は £ £ £、 例示化合物 ( 1 3) はスルホン化ポリエーテルイ ミ ドである。  The following are exemplary compounds (11) to (13) of an aromatic polymer having an acidic functional group, but are not limited thereto. Exemplary Compound (11) is £££ X, Exemplary Compound (12) is £££, Exemplary Compound (13) is a sulfonated polyetherimide.
【化 2】 [Chemical 2]
〇 2019/224729 卩(:17132019/054212 〇 2019/224729 卩 (: 17132019/054212
6  6
(11)  (11)
Figure imgf000008_0001
Figure imgf000008_0001
【 0 0 3 5】  [0 0 3 5]
酸性の官能基を有する脂肪族ポリマーと しては、 例えばポリ ビニルスルホン酸、 ポリ ビ ニルリ ン酸等が挙げられる。  Examples of the aliphatic polymer having an acidic functional group include polyvinyl sulfonic acid and polyvinyl phosphonic acid.
【 0 0 3 6 】  [0 0 3 6]
アイオノマーのイオン交換容量 ( I EC : Ion Exchange Capacity) は、 プロ トン伝導 性の向上の観点からは、 0. 6 meq/g以上であるこ とが好ましく 、 0. 9 meq/g以上がよ り好ましく 、 1 . 2 meq/g以上がさ らに好ま しい。 また、 アイオノマーのイオン交換容量 は、 給水時の寸法安定性の観点からは、 3meq/g以下であるこ とが好ましく 、 2. 5 meq/g以下がよ り好ま しく 、 2 meq/g以下がさ らに好ましい。 よって、 アイオノマーのイ オン交換容量は、 0. 6〜 3meq/gが好ましく 、 0. 9〜 2. 5 meq/gがよ り好ましく 、 The ion exchange capacity (IEC) of the ionomer is preferably 0.6 meq / g or more, more preferably 0.9 meq / g or more from the viewpoint of improving the proton conductivity. 1.2 meq / g or more is more preferable. The ion exchange capacity of the ionomer is preferably 3 meq / g or less, more preferably 2.5 meq / g or less, and 2 meq / g or less from the viewpoint of dimensional stability during water supply. Further preferred. Therefore, the ion exchange capacity of the ionomer is preferably 0.6 to 3 meq / g, more preferably 0.9 to 2.5 meq / g,
1 . 2〜 2 meq/gがさ らに好ましい。 More preferred is 1-2 to 2 meq / g.
【 0 0 3 7】  [0 0 3 7]
担体がメ ソポーラスカーボンである場合、 アイオノマー ( I) に対する担体 (C) の質 量比 ( I /C) は、 イオン伝導性を高める観点から、 好ま しく は 0. 1以上であり、 よ り 好ましく は 0. 2以上であり、 さ らに好ましく は 0. 3以上である。 一方、 質量比 ( 1 / When the support is mesoporous carbon, the mass ratio (I / C) of the support (C) to the ionomer (I) is preferably 0.1 or more from the viewpoint of increasing ionic conductivity. Preferably it is 0.2 or more, more preferably 0.3 or more. Meanwhile, mass ratio (1 /
C) は、 触媒を被覆するアイオノマーの厚みを抑えて、 触媒活性を高める観点から、 好ま しく は 2以下であり、 よ り好ましく は 1 . 5以下であり、 さ らに好ましく は 1 . 1以下で ある。 したがって、 質量比と しては、 0. 1〜 2が好ましく 、 0. 2〜 1 . 5がよ り好ま しく 、 0. 3〜 1 . 1 がさ らに好ま しい。 C) is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.1 or less, from the viewpoint of increasing the catalytic activity by suppressing the thickness of the ionomer covering the catalyst. It is. Accordingly, the mass ratio is preferably 0.1 to 2, more preferably 0.2 to 1.5, and still more preferably 0.3 to 1.1.
【 0 0 3 8 】  [0 0 3 8]
触媒層 2 1 の厚みは、 特に限定されないが、 触媒層 2 1 の触媒性能及び触媒層 2 1 の形 成性の観点から、 0. 1 /i m以上であるこ とが好ま しく 、 1 " m以上がよ り好ましい 方、 ガス拡散性の観点からは、 触媒層 2 1の厚みは、 5 0 /i m以下であるこ とが好ましく 、 2 0 " m以下であるこ とがよ り好ましい。 したがって、 触媒層 2 1 の厚みは、 0. 1〜 5 0 /i mが好ましく 、 1〜 2 0 " mがよ り好ましい。 The thickness of the catalyst layer 21 is not particularly limited. However, from the viewpoint of the catalyst performance of the catalyst layer 21 and the formability of the catalyst layer 21, the thickness is preferably 0.1 / im or more. or more preferable towards good, in terms of gas diffusibility, the catalyst layer 2 1 of the thickness is preferably the this or less 5 0 / i m, 2 0 "m preferably Ri in which this Togayo less. Therefore, the thickness of the catalyst layer 21 is preferably 0.1 to 50 / im, more preferably 1 to 20 "m.
【 0 0 3 9】 〇 2019/224729 卩(:17132019/054212 [0 0 3 9] 〇 2019/224729 卩 (: 17132019/054212
7  7
上述した燃料電池セル 1 0の触媒層 2 1 は、 触媒層用インクを調製するステップと、 調 製した触媒層用イ ンクを電解質膜 1 の両面に塗布して触媒層 2 1 を形成するステップと、 を経て形成するこ とができる。  The catalyst layer 21 of the fuel cell 10 described above includes a step of preparing catalyst layer ink and a step of forming the catalyst layer 21 by applying the prepared catalyst layer ink on both surfaces of the electrolyte membrane 1. And can be formed through
【 0 0 4 0】  [0 0 4 0]
(触媒層用インクの製造方法)  (Method for producing ink for catalyst layer)
触媒層用イ ンクを調製するステップでは、 細孔を有する担体、 触媒及び溶媒を含む触媒 層用インク中でアイオノマーを生成する。 本実施形態において、 触媒層用インクを調製す るステップは、 アイオノマーの材料を触媒、 担体及び溶媒と混合し、 混合物を得るステッ プと、 混合物中で材料を反応させてアイオノマーを生成するこ とで、 触媒層用イ ンクを得 るステップと、 を含む。  In the step of preparing the catalyst layer ink, an ionomer is formed in the catalyst layer ink including a carrier having a pore, a catalyst, and a solvent. In this embodiment, the step of preparing the ink for the catalyst layer includes the step of mixing the ionomer material with the catalyst, the carrier and the solvent to obtain a mixture, and reacting the material in the mixture to produce the ionomer. And obtaining a catalyst layer ink.
【 0 0 4 1】  [0 0 4 1]
(混合物を得るステップ)  (Step of obtaining a mixture)
触媒層用イ ンクの溶媒と しては、 通常、 水、 アルコール等のプロ トン性極性溶媒が使用 され得る。 例えば、 担体と してメ ソポーラスカーボンを使用し、 触媒と して白金を使用す る場合、 メ ソポーラスカーボンを純水中に分散させ、 この分散液中に硝酸を添加する。 さ らに、 ジニ トロジアミ ン白金塩水溶液を添加した後、 エタノールを添加して加熱するこ と によ り還元する。 これによ り、 外表面及び細孔の内部に白金粒子を担持したメ ソポーラス カーボンの分散液が得られる。 得られた分散液にアイオノマーの材料を混合するこ とによ り、 混合物が得られる。  As the solvent for the catalyst layer ink, a polar proton solvent such as water or alcohol can be usually used. For example, when mesoporous carbon is used as a carrier and platinum is used as a catalyst, mesoporous carbon is dispersed in pure water, and nitric acid is added to this dispersion. Furthermore, after adding an aqueous dinitrodiamine platinum salt solution, it is reduced by adding ethanol and heating. As a result, a dispersion of mesoporous carbon carrying platinum particles on the outer surface and inside the pores can be obtained. The mixture is obtained by mixing the ionomer material with the obtained dispersion.
【 0 0 4 2】  [0 0 4 2]
(アイオノマーを生成するステップ)  (Step of generating ionomer)
得られた混合物中で、 アイオノマーの材料を反応させてアイオノマーを生成する。 アイ オノマーの材料を複数回に分けて混合し、 反応させてもよい。  In the resulting mixture, the ionomer material is reacted to form an ionomer. The ionomer material may be mixed and reacted several times.
アイオノマーは、 ポリマーが疎水性を示し、 酸性の官能基が親水性を示す。 したがって 、 水、 アルコール等の親水性溶媒中においてアイオノマー分子は凝集し、 各アイオノマー 分子のポリマーが配向して結晶化した疎水性部分の周囲に親水性部分が配列して、 例えば 直径 1 0 11 1X1前後の比較的大きなコロイ ドが形成される傾向がある。 コロイ ドのサイズが 大きいために、 アイオノマーは、 溶媒中で担体の細孔の内部まで浸入するこ とが難しく 、 担体の外表面を被覆するにと どまる傾向にある。  In ionomers, polymers are hydrophobic and acidic functional groups are hydrophilic. Therefore, ionomer molecules aggregate in a hydrophilic solvent such as water, alcohol, etc., and the hydrophilic portion is arranged around the hydrophobic portion in which the polymer of each ionomer molecule is oriented and crystallized, for example, the diameter 10 11 1X1 A relatively large colloid tends to be formed. Due to the large size of the colloid, it is difficult for the ionomer to penetrate into the pores of the support in a solvent, and it tends to cover only the outer surface of the support.
【 0 0 4 3】  [0 0 4 3]
これに対し、 アイオノマーの材料は、 ポリマーではなくモノマーであり 、 細孔の内径よ り もサイズが小さい。 そのため、 触媒層用インク中で担体の細孔内に材料を浸入させた後 、 材料を反応させるこ とによ り、 担体の細孔内部でアイオノマーを生成するこ とができる 。 すなわち、 触媒層用インク中のアイオノマーは、 担体の外表面だけでなく細孔内部にも 存在する。 このよ うな触媒層用インクを用いて形成された触媒層では、 担体の外表面だけ でなく細孔内部に担持された触媒もアイオノマーによって被覆される。 担体の外表面に担 持された触媒に加えて細孔内部の触媒の触媒作用も得られるため、 触媒利用率が向上する  In contrast, the ionomer material is not a polymer but a monomer and is smaller in size than the inner diameter of the pores. Therefore, an ionomer can be produced inside the pores of the carrier by allowing the material to react after the material has entered the pores of the carrier in the catalyst layer ink. That is, the ionomer in the ink for the catalyst layer exists not only on the outer surface of the carrier but also inside the pores. In the catalyst layer formed using such a catalyst layer ink, not only the outer surface of the carrier but also the catalyst supported in the pores are covered with the ionomer. In addition to the catalyst supported on the outer surface of the carrier, the catalytic action of the catalyst inside the pores can be obtained, so the catalyst utilization rate is improved.
【 0 0 4 4】 [0 0 4 4]
触媒層用イ ンク中のアイオノマーは、 電解質と して使用可能な酸性の官能基を有するポ リマーであってもよいし、 酸性の官能基の前駆体を有するポリマーであってもよい。 前駆 体と しては、 例えば一 £〇 2 F、 一 £〇 2 0 1 等のハロゲン化した酸性の官能基、 一 £〇 3 X 3 、 - £〇 3 (N H 4) 等の酸性の官能基を金属等によって保護した保護基等が挙げ られる。 アイオノマーが酸性の官能基の前駆体を有するポリマーである場合、 ケン化等の プロ トン化の操作を行って酸性の官能基に変換することによ り、 アイオノマーを電解質と して使用するこ とが可能になる。 The ionomer in the catalyst layer ink may be a polymer having an acidic functional group that can be used as an electrolyte, or may be a polymer having a precursor of an acidic functional group. Examples of precursors include halogenated acidic functional groups such as 1 £ 0 2 F and 1 £ 0 2 0 1, and acidic functional groups such as 1 £ 0 3 X 3 and-£ 0 3 (NH 4 ). Examples thereof include a protecting group in which the group is protected with a metal or the like. When the ionomer is a polymer having a precursor of an acidic functional group, the ionomer can be used as an electrolyte by performing a protonation such as saponification to convert it into an acidic functional group. Is possible.
【 0 0 4 5】  [0 0 4 5]
アイオノマーが、 パーフルオロスルホン酸ポリマーである場合、 例えばモノマーと して テ トラフルオロエチレンを使用して重合反応させることによ り 、 テ トラフルオロエチレン に由来する繰り返し構造を有するポリマー、 すなわちポリテ トラフルオロエチレンを生成 〇 2019/224729 卩(:17132019/054212 When the ionomer is a perfluorosulfonic acid polymer, for example, a polymer having a repeating structure derived from tetrafluoroethylene, that is, polytetrafluoroethylene, is obtained by polymerization reaction using tetrafluoroethylene as a monomer. Produce ethylene 〇 2019/224729 卩 (: 17132019/054212
8  8
する。 さらに、 パーフルオロスルホン酸前駆体を混合してこのポリテ トラフルオロエチレ ンと反応させて、 ポリテ トラフルオロエチレンユニッ トと、 パーフルオロスルホン酸前駆 体のユニッ トとを有するパーフルオロスルホン酸ポリマーを生成する。 なお、 パーフルオ ロスルホン酸ポリマーの反応工程はこれに限定されず、 目的のパーフルオロスルホン酸ポ リマーに最適な反応工程により生成すればよい。 To do. Further, a perfluorosulfonic acid precursor is mixed and reacted with this polytetrafluoroethylene to produce a perfluorosulfonic acid polymer having a polytetrafluoroethylene unit and a unit of perfluorosulfonic acid precursor. To do. Note that the reaction process of the perfluorosulfonic acid polymer is not limited to this, and it may be generated by an optimal reaction process for the target perfluorosulfonic acid polymer.
【 0 0 4 6】  [0 0 4 6]
アイオノマーが、 酸性の官能基を有する芳香族ポリマーである場合、 酸性の官能基又は その前駆体を有する芳香族ビニルモノマーの重合反応、 芳香族ビニルモノマーと酸性の官 能基又はその前駆体を有するビニルモノマーの重合反応、 ビニルモノマーと酸性の官能基 又はその前駆体を有する芳香族ビニルモノマーの重合反応等によって、 触媒層用インク中 に酸性の官能基又はその前駆体を有する芳香族ポリマーを生成する。 使用できる芳香族ビ ニルモノマーは、 目的の芳香族ポリマーの設計に応じて適宜選択することができ、 例えば スチレン、 メチルスチレン、 ベンゾフエノン、 4, 4 ' —ジフルオロべンゾフエノン、 4 When the ionomer is an aromatic polymer having an acidic functional group, it has a polymerization reaction of an aromatic vinyl monomer having an acidic functional group or a precursor thereof, and has an aromatic vinyl monomer and an acidic functional group or a precursor thereof. Aromatic polymer with acidic functional group or precursor is generated in the ink for catalyst layer by polymerization reaction of vinyl monomer, polymerization reaction of vinyl monomer and acidic functional group or precursor with aromatic vinyl monomer. To do. The aromatic vinyl monomer that can be used can be appropriately selected according to the design of the target aromatic polymer. For example, styrene, methylstyrene, benzophenone, 4, 4'-difluorobenzophenone, 4
, 4 / —ジクロロジフエニルスルホン、 ヒ ドロキノン等が挙げられる。 反応工程は上記に 限定されず、 例えば 4, 4 ' —ジフルオロべンゾフエノンとヒ ドロキノンを炭酸カリ ウム の存在下で重合反応させて? £ を生成した後、 硫酸と混合して所定温度で所定時間撹 拌することにより、 Xをスルホン化反応させて、 上記例示化合物 ( 1 1) の
Figure imgf000010_0001
£ Xを生成することができる。
, 4 / —dichlorodiphenyl sulfone, hydroquinone and the like. The reaction process is not limited to the above. For example, is a polymerization reaction of 4,4'-difluorobenzophenone and hydroquinone in the presence of potassium carbonate? , And then mixed with sulfuric acid and stirred at a predetermined temperature for a predetermined time to cause a sulfonation reaction of X.
Figure imgf000010_0001
£ X can be generated.
【 0 0 4 7】  [0 0 4 7]
アイオノマーが、 酸性の官能基を有する脂肪族ポリマーである場合、 酸性の官能基又は その前駆体を有する脂肪族ビニルモノマーの重合反応、 酸性の官能基又はその前駆体を有 する脂肪族ビニルモノマーと脂肪族ビニルモノマーとの重合反応等によって、 触媒層用イ ンク中に酸性の官能基又はその前駆体を有する脂肪族ポリマーを生成する。 使用できる脂 肪族ビニルモノマーは、 目的の脂肪族ポリマーの設計に応じて適宜選択することができ、 例えばアク リ ロニ ト リル等のアク リル系ビニルモノマー、 エチレン、 プロピレン等のオレ フイン等が挙げられる。  When the ionomer is an aliphatic polymer having an acidic functional group, a polymerization reaction of an aliphatic vinyl monomer having an acidic functional group or a precursor thereof, an aliphatic vinyl monomer having an acidic functional group or a precursor thereof, and An aliphatic polymer having an acidic functional group or a precursor thereof is generated in the catalyst layer ink by a polymerization reaction with an aliphatic vinyl monomer. The aliphatic vinyl monomer that can be used can be appropriately selected according to the design of the target aliphatic polymer. Examples thereof include acrylic vinyl monomers such as acrylonitrile and olefins such as ethylene and propylene. It is done.
【 0 0 4 8】  [0 0 4 8]
重合反応には、 重合開始剤を使用できる。 使用できる重合開始剤としては、 例えば過硫 酸カリ ウム、 過硫酸アンモニウム等の過硫酸塩、 4, 4 ' ーアゾビス 4ーシアノ吉草酸及 びその塩、 2, 2 ' —アゾビス ( 2—アミジノプロパン) 塩等のアゾ系化合物、 パーオキ シド化合物等が挙げられる。  A polymerization initiator can be used for the polymerization reaction. Examples of usable polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, 4,4'-azobis 4-cyanovaleric acid and its salts, 2,2'-azobis (2-amidinopropane) salts, and the like. And azo compounds and peroxide compounds.
【 0 0 4 9】  [0 0 4 9]
以上のようにして製造された触媒層用インクは、 触媒層用インク中のアイオノマーが担 体の細孔内部でも生成されるため、 担体の外表面だけでなく細孔内部にもアイオノマーを 存在させることができる。 このような触媒層用インクを用いて触媒層を形成することによ り、 担体の外表面だけでなく細孔内に位置する触媒粒子もアイオノマーで被覆された触媒 層を得ることができる。  In the ink for the catalyst layer produced as described above, since the ionomer in the ink for the catalyst layer is generated inside the pores of the support, the ionomer is present not only on the outer surface of the carrier but also inside the pores. be able to. By forming a catalyst layer using such a catalyst layer ink, a catalyst layer in which not only the outer surface of the carrier but also catalyst particles located in the pores are coated with an ionomer can be obtained.
【 0 0 5 0】  [0 0 5 0]
図 2は、 アイオノマーが細孔の内部まで浸入した担体の一例を示す。  FIG. 2 shows an example of a carrier in which an ionomer has penetrated into the pores.
図 2に示すように、 触媒 1 1は担体 1 2の外表面及び細孔内に担持されている。 アイオ ノマー 1 3は、 担体 1 2の外表面だけでなく細孔の内部にも存在して、 担体 1 2及び触媒 1 1 を被覆している。 アイオノマー 1 3によって、 外表面だけでなく細孔内に担持された 触媒 1 1へのイオン伝導が可能であり、 触媒利用率が向上する。  As shown in FIG. 2, the catalyst 11 is supported on the outer surface and pores of the support 12. The ionomer 13 is present not only on the outer surface of the support 12 but also inside the pores, and covers the support 12 and the catalyst 11. The ionomer 13 can conduct ions to the catalyst 11 supported not only on the outer surface but also in the pores, thereby improving the catalyst utilization rate.
【 0 0 5 1 】  【0 0 5 1】
図 3は、 アイオノマーによって外表面のみが被覆された担体の例を示す。  FIG. 3 shows an example of a carrier in which only the outer surface is coated with an ionomer.
図 3に示すように、 担体 1 2の細孔より もサイズが大きいアイオノマー 1 3は、 担体 1 2の細孔の内部に浸入できず、 細孔内に担持された触媒 1 1へのイオン伝導率が下がる。 触媒作用は、 アイオノマー 1 3によって被覆された担体 1 2の外表面に存在する触媒 1 1 によるところとなり、 図 2に示す例と比べて触媒利用率が低下する。  As shown in FIG. 3, the ionomer 13 whose size is larger than the pores of the carrier 12 cannot penetrate into the pores of the carrier 12 and ion conduction to the catalyst 11 supported in the pores. The rate goes down. The catalytic action is due to the catalyst 1 1 existing on the outer surface of the carrier 12 coated with the ionomer 13, and the catalyst utilization rate is reduced compared to the example shown in FIG.
【 0 0 5 2】 〇 2019/224729 卩(:17132019/054212 [0 0 5 2] 〇 2019/224729 卩 (: 17132019/054212
9  9
(燃料電池の製造方法)  (Fuel cell manufacturing method)
上述した燃料電池セル 1 0は、 触媒層用インクを調製するステップと、 電解質膜 1の両 面に触媒層用インクを塗布して触媒層 2 1 を形成するステップと、 を経て製造され得る。 触媒層用インクを調製するステップでは、 上述のよ うに、 触媒層用インク中でアイオノマ 一を生成する。  The fuel cell 10 described above can be manufactured through the steps of preparing a catalyst layer ink and applying the catalyst layer ink to both surfaces of the electrolyte membrane 1 to form the catalyst layer 21. In the step of preparing the catalyst layer ink, as described above, an ionomer is generated in the catalyst layer ink.
【 0 0 5 3】  [0 0 5 3]
次いで、 形成した触媒層 2 1をカーボン繊維シー ト等で挟み、 熱圧着することで、 ガス 拡散層 2 2を形成する。 これにより、 電解質膜 1及び電極 2の膜電極接合体 4が得られる 。 膜電極接合体 4の各電極 2側の面を、 2枚のセパレータ 3で挟むことにより、 燃料電池 セル 1 0が得られる。  Next, the gas diffusion layer 22 is formed by sandwiching the formed catalyst layer 21 between carbon fiber sheets or the like and thermocompression bonding. Thereby, the membrane electrode assembly 4 of the electrolyte membrane 1 and the electrode 2 is obtained. By sandwiching the surface of each membrane electrode assembly 4 on the side of each electrode 2 between two separators 3, a fuel cell 10 can be obtained.
【 0 0 5 4】  [0 0 5 4]
以上、 本発明の好ましい実施形態について説明したが、 本発明は、 これらの実施形態に 限定されず、 本発明の範囲内で種々の変形及び変更が可能である。  As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the scope of this invention.
【符号の説明】  [Explanation of symbols]
【 0 0 5 5】  [0 0 5 5]
1 0 . . .燃料電池セル、 4 . . . 膜電極接合体、 1 . . . 電解質膜、 2 . . . 電極、 2 1... Fuel cell, 4 .. Membrane electrode assembly, 1... Electrolyte membrane, 2... Electrode, 2
1 . . . 触媒層、 2 2 . . . ガス拡散層、 3 . . . セパレータ 1 catalyst layer, 2 2 gas diffusion layer, 3 separator

Claims

〇 2019/224729 卩(:17132019/054212 10 【書類名】 請求の範囲 〇 2019/224729 卩 (: 17132019/054212 10 [Document Name] Claim
【請求項 1 】  [Claim 1]
アイオノマー、 触媒、 細孔を有する担体及び溶媒を含む触媒層用インクを製造する方法 であって、  A method for producing an ink for a catalyst layer comprising an ionomer, a catalyst, a carrier having pores, and a solvent, comprising:
前記触媒層用インク中の前記アイオノマーが、 酸性の官能基又はその前駆体を有するポ リマーであり、  The ionomer in the ink for the catalyst layer is a polymer having an acidic functional group or a precursor thereof;
前記アイオノマーの材料を、 前記触媒、 前記担体及び前記溶媒と混合し、 混合物を得る ステップと、  Mixing the ionomer material with the catalyst, the support and the solvent to obtain a mixture;
前記混合物中で前記材料を反応させて前記アイオノマーを生成することで、 前記触媒層 用インクを得るステップと、  Reacting the material in the mixture to produce the ionomer, thereby obtaining the catalyst layer ink;
を含む触媒層用インクの製造方法。  The manufacturing method of the ink for catalyst layers containing this.
【請求項 2】  [Claim 2]
前記触媒層用インク中の前記アイオノマーが、 テ トラフルオロエチレンに由来する繰り 返し構造を有するポリマーユニッ トと、 パーフルオロスルホン酸又はその前駆体のユニッ 卜と、 を有するパーフルオロスルホン酸ポリマーである、  The ionomer in the catalyst layer ink is a perfluorosulfonic acid polymer having a polymer unit having a repeating structure derived from tetrafluoroethylene, and a unit of perfluorosulfonic acid or a precursor thereof. ,
請求項 1 に記載の触媒層用インクの製造方法。  The method for producing the ink for a catalyst layer according to claim 1.
【請求項 3】  [Claim 3]
前記触媒層用インク中の前記アイオノマーが、 酸性の官能基又はその前駆体を有する炭 化水素系ポリマーである、  The ionomer in the ink for the catalyst layer is a hydrocarbon-based polymer having an acidic functional group or a precursor thereof.
請求項 1 に記載の触媒層用インクの製造方法。  The method for producing the ink for a catalyst layer according to claim 1.
【請求項 4】  [Claim 4]
前記触媒層用インク中の前記アイオノマーが、 前記担体の細孔内に存在する、 請求項 1〜 3のいずれか一項に記載の触媒層用インクの製造方法。  The method for producing an ink for a catalyst layer according to any one of claims 1 to 3, wherein the ionomer in the ink for the catalyst layer is present in pores of the carrier.
【請求項 5】  [Claim 5]
電解質膜 ( 1) の両面に触媒層 ( 2 1) を有する燃料電池の製造方法であって、 アイオノマー、 触媒、 細孔を有する担体及び溶媒を含む触媒層用インクを調製するステ ップと、  A method for producing a fuel cell having a catalyst layer (2 1) on both sides of an electrolyte membrane (1), comprising the steps of preparing an ink for a catalyst layer comprising an ionomer, a catalyst, a carrier having pores, and a solvent;
前記触媒層用インクを前記電解質膜の両面に塗布して前記触媒層を形成するステップ と、 を含み、  Applying the catalyst layer ink on both surfaces of the electrolyte membrane to form the catalyst layer; and
前記触媒層用インク中の前記アイオノマーが、 酸性の官能基又はその前駆体を有するポ リマーであり、  The ionomer in the ink for the catalyst layer is a polymer having an acidic functional group or a precursor thereof;
前記触媒層用インクを調製するステップは、  The step of preparing the ink for the catalyst layer includes:
前記アイオノマーの材料を、 前記触媒、 前記担体及び前記溶媒と混合し、 混合物を得る ステップと、  Mixing the ionomer material with the catalyst, the support and the solvent to obtain a mixture;
前記混合物中で前記材料を反応させて前記アイオノマーを生成することで、 前記触媒層 用インクを得るステップと、  Reacting the material in the mixture to produce the ionomer, thereby obtaining the catalyst layer ink;
を含む燃料電池の製造方法。  A method for producing a fuel cell comprising:
PCT/IB2019/054212 2018-05-25 2019-05-22 Catalyst layer ink and production method for fuel cell WO2019224729A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100255A JP2019202287A (en) 2018-05-25 2018-05-25 Manufacturing method of both ink for catalyst layer and fuel cell
JP2018-100255 2018-05-25

Publications (2)

Publication Number Publication Date
WO2019224729A2 true WO2019224729A2 (en) 2019-11-28
WO2019224729A3 WO2019224729A3 (en) 2020-01-23

Family

ID=67544275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/054212 WO2019224729A2 (en) 2018-05-25 2019-05-22 Catalyst layer ink and production method for fuel cell

Country Status (2)

Country Link
JP (1) JP2019202287A (en)
WO (1) WO2019224729A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244740A (en) * 2020-03-06 2022-10-25 日产化学株式会社 Novel catalyst composition and carbon material having nitrogen-containing group

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2554160A1 (en) * 2004-01-23 2005-09-22 The University Of North Carolina At Chapel Hill Liquid materials for use in electrochemical cells
KR100590555B1 (en) * 2004-07-08 2006-06-19 삼성에스디아이 주식회사 Supported catalyst and fuel cell using the same
JP5023483B2 (en) * 2005-12-09 2012-09-12 トヨタ自動車株式会社 Method for producing electrode for fuel cell, and polymer electrolyte fuel cell having the same
JP4923598B2 (en) * 2006-02-02 2012-04-25 トヨタ自動車株式会社 Highly hydrophilic carrier, catalyst carrier, fuel cell electrode, method for producing the same, and polymer electrolyte fuel cell including the same
DK2638588T3 (en) * 2010-11-12 2023-03-13 Celcibus Ab Fuel cell electrode with porous carbon core with macrocyclic metal chelates on it
JP6007389B2 (en) * 2012-10-16 2016-10-12 株式会社エクォス・リサーチ Catalyst production method and catalyst

Also Published As

Publication number Publication date
JP2019202287A (en) 2019-11-28
WO2019224729A3 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CA2902397C (en) Catalyst particles for fuel cells and method for producing same
EP2990109B1 (en) Catalyst and electrode catalyst layer for fuel cell having the catalyst
CA2910237C (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
JP7085648B2 (en) A method for manufacturing a membrane-electrode assembly, a fuel cell including the membrane-electrode assembly manufactured thereby and the membrane-electrode assembly.
CA3021498C (en) High activity alloy-based electrode catalyst, and membrane electrode assembly and fuel cell using high activity alloy-based electrode catalyst
JP5425765B2 (en) Catalyst layer
JP2019517110A (en) catalyst
JP7181404B2 (en) Catalyst, method for producing same, electrode containing same, membrane-electrode assembly containing same, and fuel cell containing same
EP3903935B1 (en) Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
EP3520892A1 (en) Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same
JP2019505376A (en) catalyst
CN108878898B (en) Fuel cell with separated electrolyte distribution and method for manufacturing the same
JP2018081740A (en) Carbon powder for fuel cell, catalyst arranged by use thereof, electrode catalyst layer, membrane-electrode assembly and fuel cell
JP6554954B2 (en) Catalyst mixture, production method thereof, and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst mixture
WO2019224729A2 (en) Catalyst layer ink and production method for fuel cell
JP6183120B2 (en) Membrane electrode assembly for fuel cell and fuel cell
JP6191326B2 (en) ELECTRODE CATALYST PARTICLE FOR FUEL CELL, ELECTRODE CATALYST FOR FUEL CELL USING THE SAME, ELECTROLYTE-ELECTRODE ASSEMBLY, FUEL CELL, AND METHOD FOR PRODUCING CATALYTIC PARTICLE AND CATALYST
JP6469942B2 (en) Catalyst particles for fuel cell and method for producing the same
WO2019229576A1 (en) Methods for producing catalyst layer ink and fuel battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19749781

Country of ref document: EP

Kind code of ref document: A2