WO2019223442A1 - 超声图像的显示方法和装置、存储介质及电子装置 - Google Patents
超声图像的显示方法和装置、存储介质及电子装置 Download PDFInfo
- Publication number
- WO2019223442A1 WO2019223442A1 PCT/CN2019/082216 CN2019082216W WO2019223442A1 WO 2019223442 A1 WO2019223442 A1 WO 2019223442A1 CN 2019082216 W CN2019082216 W CN 2019082216W WO 2019223442 A1 WO2019223442 A1 WO 2019223442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- dimensional
- analytical
- super
- ultrasound image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0645—Display representation or displayed parameters, e.g. A-, B- or C-Scan
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/005—General purpose rendering architectures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8977—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8993—Three dimensional imaging systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/466—Displaying means of special interest adapted to display 3D data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02475—Tissue characterisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
Definitions
- the present application relates to the field of computers, and in particular, to the display of ultrasound images.
- Envelope detection is an important step in the reconstruction of B-mode ultrasound images (B ultrasound images for short).
- the basic process of B-mode image reconstruction includes: obtaining a high-frequency radio frequency (Radio Frequency) signal from an ultrasound probe, and the original RF signal is a one-dimensional signal along the direction of the ultrasound probe. Then a Hilbert transform is performed on the one-dimensional signal to construct a one-dimensional analytical signal, and the amplitude value of the one-dimensional analytical signal is calculated to be a one-dimensional envelope signal. Multiple one-dimensional envelope signals can be spliced into two-dimensional signals according to the position of the probe, so as to obtain a two-dimensional envelope image. After some post-processing, a two-dimensional B-ultrasound image can be obtained. As for the 3D B-ultrasound images, most of them are currently stitched into 3D envelope images based on the 1D envelope signals, and some post-processing is performed to obtain the 3D B ultrasound images.
- Radio Frequency Radio Frequency
- the embodiments of the present application provide a method and a device for displaying an ultrasound image, a storage medium, and an electronic device, which improve the accuracy of the three-dimensional B-ultrasound image.
- a method for displaying an ultrasound image including: acquiring an input signal obtained by a detection device to detect an object to be detected, where the input signal is a three-dimensional radio frequency signal; One-time modulus calculation to obtain envelope information in a three-dimensional ultrasound image, the one-time modulus calculation is used to directly obtain at least three-dimensional amplitude of the three-dimensional radio frequency signal; display the envelope information in the three-dimensional ultrasound image The envelope information is used to indicate the object to be detected.
- an ultrasound image display device is further provided, and an obtaining unit is configured to obtain an input signal obtained by the detection device for detecting an object to be detected, where the input signal is a three-dimensional radio frequency signal; a calculation unit A one-time mode value calculation for the three-dimensional radio frequency signal to obtain envelope information in a three-dimensional ultrasound image, the one-time mode value calculation is used at least to directly obtain a three-dimensional amplitude of the three-dimensional radio frequency signal; a display unit, Used to display the envelope information in the three-dimensional ultrasound image, where the envelope information is used to indicate the object to be detected.
- a storage medium is also provided, where the computer program is stored in the storage medium, wherein the computer program is configured to execute any one of the ultrasound images in the embodiments of the present application when running. Display method.
- an electronic device including a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the application by the computer program. Any one of the methods for displaying an ultrasound image in the embodiments.
- FIG. 1 is a schematic diagram of a hardware environment of a method for displaying an ultrasound image according to an embodiment of the present application
- FIG. 2 is a flowchart of an optional method for displaying an ultrasound image according to an embodiment of the present application
- FIG. 3 is a schematic diagram of an envelope stitching composition plane of a one-dimensional signal according to the related art
- 4 is a schematic diagram of 8 quadrants in a 3D frequency domain according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of a platform for collecting three-dimensional radio frequency signals according to an embodiment of the present application
- FIG. 6 is a structural diagram of a three-dimensional radio frequency signal according to an embodiment of the present application.
- FIG. 7 is a comparison diagram of an envelope image in a three-dimensional ultrasound image according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of an envelope image in an enlarged three-dimensional ultrasound image according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of brightness comparison in a vertical direction after being enlarged according to an embodiment of the present application.
- FIG. 10 is a schematic diagram of brightness comparison in the direction of an enlarged medical probe according to an embodiment of the present application.
- FIG. 11 is a schematic diagram of a platform for acquiring a three-dimensional radio frequency signal by a linear probe according to an embodiment of the present application
- FIG. 12 is a structural diagram of a three-dimensional radio frequency signal collected by a linear probe according to an embodiment of the present application.
- FIG. 13 is a comparison diagram of an envelope image in a three-dimensional ultrasound image acquired by a linear probe according to an embodiment of the present application
- FIG. 14 is a schematic diagram of brightness comparison of an envelope image in a vertical direction in a three-dimensional ultrasound image collected by a linear probe according to an embodiment of the present application;
- 15 is a schematic diagram of brightness comparison of an envelope image in a direction of a medical probe in a three-dimensional ultrasound image collected by a linear probe according to an embodiment of the present application;
- 16 is a schematic diagram of an optional ultrasound image display device according to an embodiment of the present application.
- FIG. 17 is a structural block diagram of an electronic device according to an embodiment of the present application.
- a method for displaying an ultrasound image is provided.
- the foregoing method for displaying an ultrasound image may be applied to a hardware environment composed of a server 102 and a detection device 104 as shown in FIG. 1.
- the server 102 is connected to the detection device 104 through a network.
- the above network includes, but is not limited to, a wide area network, a metropolitan area network, or a local area network.
- the detection device 104 may include, but is not limited to, an ultrasound device.
- the method for displaying an ultrasound image in the embodiment of the present application may be performed jointly by the detection device 104 and the display device, and a specific execution process may be described as follows: the detection device obtains an input signal obtained by the detection device to detect an object to be detected, where the input signal Is a three-dimensional radio frequency signal; the one-time modulus calculation is performed on the three-dimensional radio frequency signal to obtain the envelope information in the three-dimensional ultrasound image, wherein the one-time modulus calculation is used to directly obtain at least the three-dimensional amplitude of the three-dimensional radio frequency signal; the detection device is based on the envelope The information generates a three-dimensional ultrasound image and sends the three-dimensional ultrasound image to a display device; the envelope information in the three-dimensional ultrasound image is displayed on the display device, where the envelope information is used to indicate an object to be detected.
- the detection device and the display device may be an integrated structure.
- the detection device 104 shown in FIG. 1 is an integrated structure of the detection device and the display device.
- the detection device and the display device may also be independent structures.
- the detection device is used to generate a three-dimensional ultrasound image
- the display device is used to display a three-dimensional ultrasound image.
- FIG. 2 is a flowchart of an optional ultrasound image display method according to an embodiment of the present application. As shown in FIG. 2, the method may include the following steps:
- S202 Obtain an input signal obtained by the detection device for detecting the object to be detected, where the input signal is a three-dimensional radio frequency signal;
- S204 Perform a one-time mode value calculation on the three-dimensional radio frequency signal to obtain envelope information in the three-dimensional ultrasound image.
- the one-time mode value calculation is used at least to directly obtain the three-dimensional amplitude of the three-dimensional radio frequency signal.
- S206 Display envelope information in the three-dimensional ultrasound image, where the envelope information is used to indicate an object to be detected.
- the input signal obtained by the detection device to detect the object to be detected is obtained, where the input signal is a three-dimensional radio frequency signal; the three-dimensional radio frequency signal is calculated once to obtain the envelope information in the three-dimensional ultrasound image, Among them, the one-time modulus calculation is at least used to directly obtain the three-dimensional amplitude of the three-dimensional radio frequency signal; the envelope information in the three-dimensional ultrasound image is displayed on the display device, where the envelope information is used to indicate the object to be detected, which has reached the three-dimensional ultrasound.
- the purpose of accurately displaying the object to be detected in the image achieves the technical effect of improving the accuracy of the 3D ultrasound image, thereby solving the reconstruction error of the 3D B ultrasound image reconstructed in the related technology, and reducing the accuracy of the 3D B ultrasound image. technical problem.
- the detection device may include, but is not limited to, an ultrasonic device, and the detection device may be used to detect an object to be detected.
- the type of the object to be detected is not specifically limited in the embodiments of the present application, such as the object to be detected. It can be a human organ (eg, kidney, liver, etc.).
- the detection device can send a detection signal, and the signal reflected by the object to be detected is the input signal, where the input signal can be a real number signal and the input signal can be a high 3D radio frequency signals.
- the embodiment of the present application may perform a one-time modulus calculation on the input signal, that is, a one-time modulus calculation on a three-dimensional radio frequency signal, to obtain a three-dimensional ultrasound image.
- Envelope information where the envelope information in the three-dimensional ultrasound image can be used to indicate an object to be detected.
- the one-time modulus calculation can be used at least to directly obtain the three-dimensional amplitude of the three-dimensional radio frequency signal, wherein the envelope information may include the three-dimensional amplitude of the three-dimensional radio frequency signal.
- the embodiment of the present application obtains the envelope information in the three-dimensional ultrasound image by performing a one-time modulus calculation on the three-dimensional radio frequency signal.
- the embodiment of the present application can make the three-dimensional ultrasound image
- the brightness of the object to be detected indicated by the information included in the image is greater than the brightness of the object to be detected in the one-dimensional ultrasound image or the two-dimensional ultrasound image, so that the object to be detected is clearly displayed in the three-dimensional ultrasound image, thereby improving the three-dimensional ultrasound image.
- the effect of accuracy is greater than the brightness of the object to be detected in the one-dimensional ultrasound image or the two-dimensional ultrasound image, so that the object to be detected is clearly displayed in the three-dimensional ultrasound image, thereby improving the three-dimensional ultrasound image.
- the one-time calculation of the three-dimensional radio frequency signal by S204 may include the following S2042 to S2044:
- S2042 Obtain a first super-complex signal corresponding to the three-dimensional radio frequency signal, where the first super-complex signal is a sum of eight components, and each component is represented by a modulus value and an angle of a plurality of analytical signals corresponding to the input signal.
- the modulus value of the first super-complex signal is used to represent a three-dimensional amplitude of the three-dimensional radio frequency signal, and the envelope information includes the modulus value of the first super-complex signal.
- acquiring the first super-complex signal corresponding to the input signal may include: acquiring the second super-complex signal corresponding to the input signal, wherein the second super-complex signal includes 8 components, and each component uses the input signal
- the Hilbert transform representation is used to obtain the correspondence between the components represented by the Hilbert transform and the modulus values and angles of the plurality of analytic signals; and the second super-complex signal is converted into the first super-complex signal according to the corresponding relation.
- the input signal of the three-dimensional radio frequency signal can be defined here as f (x, y, z), and the super-complex signal ⁇ cas (x, y, z) of f (x, y, z) is defined as the formula (3) shown:
- This super-complex signal ⁇ cas (x, y, z) uses the basis of three complex units: e 1 , e 2 , e 3 , which are used to define imaginary units.
- the theoretical basis is derived from the definition of the biquaternion. The following explains the contents involved:
- FIG. 3 is a schematic diagram of a three-dimensional ultrasonic fan-shaped probe emitting radio frequency signals.
- the high-frequency signal f (x) represents a one-dimensional radio frequency signal sent from the ultrasound probe, and a plurality of one-dimensional radio frequency signals form a plane.
- a three-dimensional RF volume data is provided.
- H ⁇ f ⁇ represents the Hilbert variation of the signal f (x, y, z)
- Hz ⁇ f ⁇ represents the z-direction of the signal f (x, y, z).
- Hilbert transform H y ⁇ f ⁇ represents the Hilbert transform on the signal f (x, y, z) in the y direction
- H x ⁇ f ⁇ represents the signal f (x, y, z)
- H yz ⁇ f ⁇ represents the Hilbert transform in the y, z direction of the signal f (x, y, z)
- H xz ⁇ f ⁇ represents the pair Hilbert transform of the signal f (x, y, z) in the x, z direction
- H xy ⁇ f ⁇ represents the Hilbert of the signal f (x, y, z) in the x, y direction Transform.
- ⁇ cas (x, y, z) f + iH yz ⁇ f ⁇ + j (-H xz ⁇ f ⁇ ) + kH xy ⁇ f ⁇
- the super complex signal shown in formula (7) is the second super complex signal in the embodiment of the present application.
- the second super-complex signal corresponding to the input signal f (x, y, z) of the three-dimensional radio frequency signal is shown in formula (7).
- the components of each super-complex signal are represented by the Hilbert transform of the input signal.
- Formula (7) is a theoretical value. Next, the calculation of each component needs to be realized from an engineering perspective, and then the amplitude value (theoretical value) of this super-complex signal is calculated, and then the amplitude value of the super-complex signal (theoretical value) is obtained from an engineering perspective. value).
- the above content uses the form of convolution to define the super complex signal, and the three bases of the double quaternion to define the imaginary unit of the super complex signal.
- This definition form is the traditional macro and quaternion macro form. It can process three-dimensional data, and is backward compatible with traditional complex numbers (a real number part and an imaginary number part), and quaternions (a real number part and three imaginary number parts).
- Project implementation refers to: that is, it can be achieved using common programming languages and open code libraries.
- the single quadrant analytical signal of f (x, y, z) that is, from the 3D Fourier spectrum of the real number signal f (x, y, z).
- the quadrant is the signal obtained by inverse Fourier transform. This signal can be calculated using the Fourier transform function of a conventional programming language.
- the signal is first transformed from a 3D real number domain to a 3D frequency domain by Fourier transform.
- the 3D frequency domain half of the frequency spectrum contains all the information of the complete original signal. Therefore, in the 8 quadrants of the 3D frequency domain, we can select four adjacent quadrants, which contain all the information of the input signal.
- the eight quadrants in the 3D frequency domain or quadrants in the 3D are called orthants). You can see the quadrants 1 or 3, 3 or 3, 5 or 7 and 7 are adjacent 4 quadrants.
- ⁇ 1 (x, y, z), ⁇ 3 (x, y, z), ⁇ 5 (x, y, z), ⁇ 7 (x, y, z) represent the Single quadrant resolution signals obtained from quadrant 1orthant I, quadrant 3orthant III, quadrant 5orthant V, and quadrant 7orthant VII.
- This signal differs from the definition in formula (3) in that the definition uses the only imaginary unit i, which is the most traditional definition of a complex number (that is, a complex number that includes a real number part and an imaginary number part).
- the three-dimensional convolutions of formulas (8) to (11) have 8 components, all of which can be represented by the Hilbert transform of the input signal f (x, y, z). They consist of The real and imaginary parts of these single quadrant parsed signals are described.
- ⁇ 1 (x, y, Z) represents the modulus value of the complex number ⁇ 1 (x, y, z) in the form of polar coordinates, (where ⁇ 1 may also be referred to as an amplitude value).
- ⁇ 1 (x, y, z) is abbreviated as ⁇ 1 .
- ⁇ 1 Represents an angle value in polar coordinates of the complex number ⁇ 1 (x, y, z) (here, (Also called phase).
- formula (12) Abbreviated as Their specific calculation method is shown in formula (12):
- Formula (14) can be used to represent the corresponding relationship between the component represented by the Hilbert transform and the modulus value and angle of the analytical signal in the embodiment of the present application.
- Formula (14) is a Hilbert transform expressed by the modulus value and the angle of the analytical signal of the input signal.
- the left part of formula (14) is difficult for engineers to calculate, and the right part of formula (14) can be calculated by the library function of the Fourier transform of traditional programming languages.
- the super-complex signal shown in formula (15) is the first super-complex signal in the embodiment of the present application.
- the modulus value of the first super-complex signal can be calculated, and the specific value of the modulus value of the super-complex signal
- can be calculated.
- Double quaternion property 1 multiplication of double quaternions
- Double quaternion property 2 Conjugate of double quaternion
- the conjugate of the double quaternion A can be defined as Ac, as shown in formula (18):
- the other part is the part with ⁇ as the imaginary unit, that is:
- is the modulus value
- ⁇ is the angle of the double quaternion.
- the result of formula (21) is the modulus value
- the input information is the modulus values ⁇ 1 (x, y, z), ⁇ 3 (x, y, z), ⁇ 5 (x, y, z), ⁇ 7 ( x, y, z), and angle
- the output is the modulus value of the first super-complex signal, that is, the envelope signal
- the embodiment of the present application can obtain the modulus value of the first super-complex signal according to the following formula (21):
- ⁇ cas represents the modulus value of the first super-complex signal
- ⁇ 1 is the modulus value of the first analytical signal
- the first analytical signal is the analytical signal corresponding to the input signal in the first quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 3 is the modulus value of the third analytical signal
- the third analytical signal is the analytical signal corresponding to the input signal in the third quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 5 is the modulus value of the fifth analytical signal.
- the fifth analytical signal is the analytical signal corresponding to the input signal in the fifth quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 7 is the modulus value of the seventh analytical signal.
- the seventh analysis signal is an analysis signal corresponding to the input signal in the seventh quadrant of the eight quadrants in the three-dimensional frequency domain.
- the plurality of analysis signals include the first analysis signal, the third analysis signal, and the first analysis signal. Five analytical signals and seventh analytical signal.
- the envelope information indicating the object to be detected in the three-dimensional ultrasound image can be obtained.
- An embodiment of the present application may generate a three-dimensional ultrasound image according to the envelope information.
- the process of generating a three-dimensional ultrasound image based on the envelope information is not specifically limited herein, and may specifically include, but is not limited to, image processing methods such as denoising.
- the three-dimensional ultrasound image may be displayed on a display device and / or the envelope information in the three-dimensional ultrasound image may be displayed on the display device, wherein the display device and the detection
- the device may be an integrated structure, and the display device and the detection device may also be independent structures.
- the detection device may send the 3D ultrasound image to the display device for display. So that the user can clearly and intuitively observe the object to be detected from the display device.
- the envelope information used to indicate the object to be detected in the three-dimensional ultrasound image is obtained by performing a one-time modulus calculation on the three-dimensional radio frequency signal, rather than through
- the one-dimensional envelope information is obtained by splicing, so the object to be detected indicated by the envelope information in the three-dimensional ultrasound image has a greater brightness and sharpness than the detected object in the one-dimensional ultrasound image or the two-dimensional ultrasound image.
- the embodiments of the present application can achieve the effect of making the object to be detected more clearly in the three-dimensional ultrasound image, thereby improving the accuracy of the three-dimensional ultrasound image.
- the method for displaying an ultrasound image can be used for direct three-dimensional envelope detection of B-mode ultrasound imaging.
- the present application defines a high-dimensional super-complex analytical signal based on a 3D convolutional form and a Clifford algebraic double quaternion form, thereby realizing the one-time calculation of the three-dimensional amplitude of the three-dimensional radio frequency signal, that is, the three-dimensional ultrasound image of the three-dimensional radio frequency signal.
- the Hilbert transform is used to realize the proposed super-complex signal and its engineering implementation of its modulus.
- the traditional B-mode ultrasound image reconstruction is based on the one-dimensional envelope signal of one-dimensional ultrasonic radio frequency signal stitching according to the spatial position.
- This application completely discards the one-dimensional envelope signal stitching method of B ultrasound images, avoiding Reconstruction error of 3D B-mode image stitched from two-dimensional envelope signals.
- the present application is applicable to envelope detection of two-dimensional and three-dimensional B-ultrasound images at one time.
- the present application can be applied to a device for calculating an envelope of a three-dimensional radio frequency signal, such as B-mode imaging of a three-dimensional ultrasound device.
- a device for calculating an envelope of a three-dimensional radio frequency signal such as B-mode imaging of a three-dimensional ultrasound device.
- the method can realize one-time imaging of three-dimensional data.
- This application can implement a one-time calculation of a three-dimensional radio frequency ultrasonic signal, thereby obtaining a three-dimensional envelope image (that is, an image indicated by the envelope information in the foregoing embodiment of the application).
- the modulus of the three-dimensional RF ultrasonic signal referred to here refers to a three-dimensional envelope image.
- any two-dimensional or three-dimensional image post-processing algorithm can be used to obtain a three-dimensional ultrasound image.
- a platform for acquiring a three-dimensional radio frequency signal using a three-dimensional ultrasonic probe (3D Ultrasound probe) is explained as an example.
- 3D Ultrasound probe 3D Ultrasound probe
- An artificial prosthesis Phantom
- a medical probe Biopsy needle
- Biopsy needle was inserted into this artificial prosthesis to simulate the experiment of inserting a medical probe into the human body to obtain human tissue for subsequent biopsy.
- a doctor will use an ultrasound probe to observe the position of the medical probe in the human body, so that the needle of the probe can reach the predetermined position of the human tissue.
- the three coordinate axis direction terms used by 3D ultrasound are marked in Figure 6: axial, lateral, and fan direction elevation.
- the x and y axes of the three-dimensional RF signal are shown to form a sector, and the z-axis is the elevation axis, which represents different two-dimensional sectors.
- the three-dimensional radio frequency signal obtained in FIG. 6 is used to calculate the ultrasound envelope image by the existing method and the method proposed in the present application, respectively.
- Fig. 7 shows a part of the result, which is the result of the slice 15 in Fig. 6. On this sector, there is the position of the medical probe.
- Figures 7a and 7b show the results calculated by the existing one-dimensional and two-dimensional methods.
- Figure 7c is the result calculated by this application.
- FIG. 7c The oblique elongated white area highlighted in Figure 7c is the location of the medical probe. The higher this brightness, the more clearly the medical probe is displayed on the ultrasound envelope image.
- FIG. 7d obtains the vertical profile of the image, and FIG. 7e follows the probe direction. The higher the value of these contour lines, the greater the brightness, that is, the clearer the probe is displayed on the envelope graph. It can be seen from the values of the contour lines that the brightness of the three-dimensional method proposed in the present application at the probe position is mostly higher than that of the one-dimensional and two-dimensional methods.
- Fig. 8 is an enlarged view of Fig. 7c.
- the oblique rectangular frame in FIG. 8 is the position of the medical probe.
- the two dashed lines are the positions of the contour lines in Figs. 7d and 7e.
- Fig. 9 is an enlarged view of Fig. 7d
- Fig. 10 is an enlarged view of Fig. 7e.
- the middle part of the two horizontal lines in FIG. 9 is the position of the medical probe.
- the above examples are two results of 3D RF data based on a sector-shaped ultrasound probe.
- the following example is a three-dimensional envelope image calculation based on three-dimensional radio frequency data of a linear probe.
- FIG. 11 is a schematic diagram of a linear ultrasound probe
- FIG. 12 is an example of a data axis collected by the linear ultrasound probe, and the data has a cube structure.
- 13 is a result of a three-dimensional envelope of a linear ultrasound probe, wherein FIG. 13a is a result of a one-dimensional method, FIG. 13b is a result of a two-dimensional method, and FIG. 13c is a result of the method of the present application.
- FIG. 14 is a comparison of the outline pixel brightness in the vertical direction within the box. The middle of the two horizontal lines is the location of the medical probe. The three-dimensional method results in the highest brightness. The probe is most clearly shown.
- FIG. 15 is a comparison of the brightness of the outline pixels in the box along the direction of the probe. The entire curve is the position of the medical probe in the image.
- the result of the 3D method is the brightest and the probe is most clearly shown.
- the solution of this application can mathematically solve the envelope calculation of all three-dimensional high-frequency signals.
- it can also solve high-frequency signals in one or two dimensions of the three-dimensional signals, and not high-frequency signals in other dimensions.
- Three-dimensional signal Therefore, it can potentially be applied to high-frequency signal communication, demodulation of high-frequency radar signals, or encryption of images with high-frequency information, which requires calculation of the envelope information of the signal and decryption of various three-dimensional high-frequency signals.
- the method according to the above embodiments can be implemented by means of software plus a necessary universal hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
- the technical solution of this application that is essentially or contributes to the existing technology can be embodied in the form of a software product, which is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the embodiments of the present application.
- a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
- FIG. 16 is a schematic diagram of an optional ultrasound image display device according to an embodiment of the present application. As shown in FIG. 16, the device may include:
- An obtaining unit 22 is configured to obtain an input signal obtained by the detection device for detecting an object to be detected, where the input signal is a three-dimensional radio frequency signal; a calculation unit 24 is configured to perform a one-time modulus calculation on the three-dimensional radio frequency signal to obtain a three-dimensional ultrasound image Envelope information, where the one-time modulus calculation is at least used to directly obtain the three-dimensional amplitude of the three-dimensional radio frequency signal; and the display unit 26 is used to display the envelope information in the three-dimensional ultrasound image on a display device, where the envelope information is used To indicate the object to be detected.
- the obtaining unit 22 in this embodiment may be used to execute step S202 in the embodiment of the present application
- the calculation unit 24 in this embodiment may be used to execute step S204 in the embodiment of the present application.
- the display unit 26 can be used to execute step S206 in the embodiment of the present application.
- the calculation unit 24 may include a first acquisition module for acquiring a first super complex signal corresponding to the three-dimensional radio frequency signal, where the first super complex signal is a sum of eight components, and each component corresponds to an input signal. Modulo values and angle representations of multiple analytical signals; a second acquisition module configured to obtain the modulo value of the first super-complex signal, where the modulo value of the first super-complex signal is used to represent the three-dimensional amplitude of the three-dimensional radio frequency signal,
- the network information includes a modulus value of the first super-complex signal.
- the first acquisition module may include: a first acquisition sub-module for acquiring a second super-complex signal corresponding to the three-dimensional radio frequency signal, wherein the second super-complex signal includes 8 components, and each component uses an input signal. Hilbert transform representation; a second acquisition sub-module for acquiring the correspondence between the components represented by the Hilbert transform and the modulus values and angles of a plurality of parsed signals; a conversion module for converting the second The super-complex signal is converted into a first super-complex signal.
- the second obtaining module is configured to obtain the modulus value of the first super-complex signal according to the following formula:
- ⁇ cas represents the modulus value of the first super-complex signal
- ⁇ 1 is the modulus value of the first analytical signal
- the first analytical signal is the analytical signal corresponding to the input signal in the first quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 3 is the modulus value of the third analytical signal
- the third analytical signal is the analytical signal corresponding to the input signal in the third quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 5 is the modulus value of the fifth analytical signal.
- the fifth analytical signal is the analytical signal corresponding to the input signal in the fifth quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 7 is the modulus value of the seventh analytical signal.
- the seventh analysis signal is the analysis signal corresponding to the input signal in the seventh quadrant of the eight quadrants in the three-dimensional frequency domain. Five analytical signals and seventh analytical signal.
- the brightness of the object to be detected indicated by the envelope information in the three-dimensional ultrasound image is greater than the brightness of the object to be detected in the one-dimensional ultrasound image or the two-dimensional ultrasound image.
- the purpose of accurately displaying the object to be detected in the three-dimensional ultrasound image is achieved, thereby achieving the technical effect of improving the accuracy of the three-dimensional ultrasound image, thereby solving the reconstruction error of the three-dimensional B-mode image reconstructed in the related technology, and reducing The technical problems of the accuracy of 3D B-ultrasounds are discussed.
- an electronic device for implementing the above-mentioned method for displaying an ultrasound image is also provided.
- FIG. 17 is a structural block diagram of an electronic device according to an embodiment of the present application.
- the electronic device may include: one or more processors (only one is shown in the figure), a processor 201, and a memory 203.
- a computer program may be stored in the memory 203, and the processor 201 may be configured to run the computer program to execute the method for displaying an ultrasound image in the embodiment of the present application.
- the memory 203 may be used to store computer programs and modules, such as program instructions / modules corresponding to the ultrasound image display method and device in the embodiments of the present application.
- the processor 201 runs the computer programs and modules stored in the memory 203, thereby Various functional applications and data processing are performed, that is, the above-mentioned method for displaying an ultrasound image is implemented.
- the memory 203 may include a high-speed random access memory, and may further include a non-volatile memory, such as one or more magnetic storage devices, a flash memory, or other non-volatile solid-state memory.
- the memory 203 may further include memories remotely provided with respect to the processor 201, and these remote memories may be connected to the terminal through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
- the electronic device may further include: a transmission device 205 and an input-output device 207.
- the transmission device 205 is configured to receive or send data via a network.
- Specific examples of the foregoing network may include a wired network and a wireless network.
- the transmission device 205 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices and routers through a network cable so as to communicate with the Internet or a local area network.
- the transmission device 205 is a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
- RF radio frequency
- the structure shown in FIG. 17 is only a schematic, and the electronic device may be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a handheld computer, and a mobile Internet device (MID). , PAD and other terminal equipment.
- FIG. 17 does not limit the structure of the electronic device.
- the electronic device may further include more or fewer components (such as a network interface, a display device, etc.) than those shown in FIG. 17, or have a different configuration from that shown in FIG. 17.
- the foregoing memory 203 may be used to store a computer program.
- the processor may be configured to run a computer program to perform the following steps: obtaining an input signal obtained by the detection device for detecting an object to be detected, where the input signal is a three-dimensional radio frequency signal;
- the RF signal is subjected to a one-time mode value calculation to obtain the envelope information in the three-dimensional ultrasound image.
- the one-time mode value calculation is used to directly obtain at least the three-dimensional amplitude of the three-dimensional radio frequency signal.
- the envelope in the three-dimensional ultrasound image is displayed on a display device. Information, wherein the envelope information is used to indicate an object to be detected.
- the processor 201 is further configured to perform the following steps: obtaining a first super-complex signal corresponding to the three-dimensional radio frequency signal, where the first super-complex signal is a sum of eight components, and each component uses a plurality of parsed signals corresponding to the input signal. Modulus value and angle indication; acquiring the modulus value of the first super-complex signal, wherein the modulus value of the first super-complex signal is used to represent the three-dimensional amplitude of the three-dimensional radio frequency signal, and the envelope information includes the modulus value of the first super-complex signal.
- the processor 201 is further configured to perform the following steps: acquiring a second super-complex signal corresponding to the three-dimensional radio frequency signal, wherein the second super-complex signal includes 8 components, each component being represented by a Hilbert transform of the input signal; acquiring Correspondence between the components represented by the Hilbert transform and the modulus values and angles of the plurality of analytic signals; according to the correspondence relationship, the second super-complex signal is converted into the first super-complex signal.
- the processor 201 is further configured to perform the following steps: obtain the modulus value of the first super-complex signal according to the following formula:
- ⁇ cas represents the modulus value of the first super-complex signal
- ⁇ 1 is the modulus value of the first analytical signal
- the first analytical signal is the analytical signal corresponding to the input signal in the first quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 3 is the modulus value of the third analytical signal
- the third analytical signal is the analytical signal corresponding to the input signal in the third quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 5 is the modulus value of the fifth analytical signal.
- the fifth analytical signal is the analytical signal corresponding to the input signal in the fifth quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 7 is the modulus value of the seventh analytical signal.
- the seventh analysis signal is an analysis signal corresponding to the input signal in the seventh quadrant of the eight quadrants in the three-dimensional frequency domain.
- the plurality of analysis signals include the first analysis signal, the third analysis signal, and the first analysis signal. Five analytical signals and seventh analytical signal.
- a display scheme of an ultrasound image is provided.
- the input signal obtained by detecting the detection object to be detected by the detection device is obtained, wherein the input signal is a three-dimensional radio frequency signal; the one-time modulus value calculation is performed on the three-dimensional radio frequency signal to obtain the envelope information in the three-dimensional ultrasound image, where the one-time modulus value Calculate at least the three-dimensional amplitude used to directly obtain the three-dimensional radio frequency signal; display the envelope information in the three-dimensional ultrasound image on the display device, where the envelope information is used to indicate the object to be detected, and the accurate display of the to-be-detected in the three-dimensional ultrasound image is achieved.
- a storage medium is also provided.
- a computer program is stored in the storage medium, and the computer program is configured to execute the steps of the method for displaying an ultrasound image in the foregoing embodiment when running.
- the storage medium may be located on at least one network device among multiple network devices in the network shown in the foregoing embodiments.
- the storage medium is configured to store a computer program for performing the following steps:
- S2 Perform a one-time mode value calculation on the three-dimensional radio frequency signal to obtain envelope information in the three-dimensional ultrasound image.
- the one-time mode value calculation is used to directly obtain at least the three-dimensional amplitude of the three-dimensional radio frequency signal.
- the storage medium is further configured to store a computer program for performing the following steps: obtaining a first super-complex signal corresponding to the three-dimensional radio frequency signal, wherein the first super-complex signal is a sum of 8 components, and each component is used Modulus values and angle representations of multiple parsed signals corresponding to the input signal; obtain the modulus value of the first super complex signal, wherein the modulus value of the first super complex signal is used to represent the three-dimensional amplitude of the three-dimensional radio frequency signal, and the envelope information includes The modulus value of a super-complex signal.
- the storage medium is further configured to store a computer program for performing the following steps: obtaining a second super-complex signal corresponding to the three-dimensional radio frequency signal, wherein the second super-complex signal includes 8 components, and each component uses an input signal
- the Hilbert transform representation is used to obtain the correspondence between the components represented by the Hilbert transform and the modulus values and angles of the plurality of analytic signals; and the second super-complex signal is converted into the first super-complex signal according to the corresponding relation.
- the storage medium is further configured to store a computer program for performing the following steps: obtaining the modulus value of the first super-complex signal according to the following formula:
- ⁇ cas represents the modulus value of the first super-complex signal
- ⁇ 1 is the modulus value of the first analytical signal
- the first analytical signal is the analytical signal corresponding to the input signal in the first quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 3 is the modulus value of the third analytical signal
- the third analytical signal is the analytical signal corresponding to the input signal in the third quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 5 is the modulus value of the fifth analytical signal.
- the fifth analytical signal is the analytical signal corresponding to the input signal in the fifth quadrant of the eight quadrants in the three-dimensional frequency domain
- ⁇ 7 is the modulus value of the seventh analytical signal.
- the seventh analysis signal is the analysis signal corresponding to the input signal in the seventh quadrant of the eight quadrants in the three-dimensional frequency domain. Five analytical signals and seventh analytical signal.
- the storage medium may include: a flash disk, a read-only memory (ROM), a random access device (Random Access Memory, RAM), a magnetic disk, or an optical disk.
- the integrated unit in the foregoing embodiment When the integrated unit in the foregoing embodiment is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in the computer-readable storage medium.
- the technical solution of the present application essentially or part that contributes to the existing technology or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium.
- Several instructions are included to cause one or more computer devices (which may be personal computers, servers, or network devices, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
- the disclosed client can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the unit is only a logical function division.
- multiple units or components may be combined or may be combined. Integration into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, units or modules, and may be electrical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
- the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Signal Processing (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Graphics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
Abstract
本申请公开了一种超声图像的显示方法和装置、存储介质及电子装置。其中,该方法包括:获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。本申请解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
Description
本申请要求于2018年05月24日提交中国专利局、申请号为201810508663.2、申请名称为“超声图像的显示方法和装置、存储介质及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及计算机领域,具体而言,涉及超声图像的显示。
包络检测是B模式超声图像(简称B超图像)重建的一个重要步骤。B超图像重建的基本流程包括:从超声探头获得高频的射频(Radio Frequency,简称为RF)信号,这个原始RF信号是沿超声探头方向的一维信号。然后对该一维信号做希尔伯特变换构建出一维解析信号,计算该一维解析信号的幅度值即为一维包络信号。多个一维包络信号根据所在的探头位置可以拼接成二维信号,从而获得二维包络图像,进过一些后处理可以获得二维B超图像。而对于三维B超图像,目前大多是基于一维包络信号拼接成三维包络图像,进过一些后处理获得三维B超图像。
发明内容
本申请实施例提供了一种超声图像的显示方法和装置、存储介质及电子装置,提高了三维B超图像的准确度。
根据本申请实施例的一个方面,提供了一种超声图像的显示方法,包括:获取检测设备对待检测对象进行检测得到的输入信号,所述输入信号为三维射频信号;对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;显示所述三维超声图像中的所述包络信息,所述包络信息用于指示所述待检测对象。
根据本申请实施例的另一方面,还提供了一种超声图像的显示装置,获取单元,用于获取检测设备对待检测对象进行检测得到的输入信号,所述输入信号为三维射频信号;计算单元,用于对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;显示单元,用于显示所述三维超声图像中的所述包 络信息,所述包络信息用于指示所述待检测对象。
根据本申请实施例的另一方面,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行本申请实施例中任意一种超声图像的显示方法。
根据本申请实施例的另一方面,还提供了一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行本申请实施例中任意一种超声图像的显示方法。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的超声图像的显示方法的硬件环境的示意图;
图2是根据本申请实施例的一种可选的超声图像的显示方法的流程图;
图3是根据相关技术中一维信号的包络拼接组成平面的示意图;
图4是根据本申请实施例的3D频率域中的8个象限的示意图;
图5是根据本申请实施例的采集三维射频信号的平台的示意图;
图6是根据本申请实施例的三维射频信号的结构图;
图7是根据本申请实施例的三维超声图像中包络图像的对比图;
图8是根据本申请实施例的放大后的三维超声图像中包络图像的示意图;
图9是根据本申请实施例的放大后的竖直方向上的亮度对比示意图;
图10是根据本申请实施例的放大后的医用探针方向上的亮度对比示意图;
图11是根据本申请实施例的线性探头采集三维射频信号的平台的示意图;
图12是根据本申请实施例的线性探头采集到的三维射频信号的结构图;
图13是根据本申请实施例的线性探头采集到的三维超声图像中包络图像的对比图;
图14是根据本申请实施例的线性探头采集到的三维超声图像中包络图像在竖直方向上的亮度对比示意图;
图15是根据本申请实施例的线性探头采集到的三维超声图像中包络图像在医用探针方向上的亮度对比示意图;
图16是根据本申请实施例的一种可选的超声图像的显示装置的示意图;以及
图17是根据本申请实施例的一种电子装置的结构框图。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例的一个方面,提供了一种超声图像的显示方法。
可选地,在本实施例中,上述超声图像的显示方法可以应用于如图1所示的由服务器102和检测设备104所构成的硬件环境中。如图1所示,服务器102通过网络与检测设备104进行连接,上述网络包括但不限于:广域网、城域网或局域网,检测设备104可以包括但并不限于超声设备。
可选地,本申请实施例的超声图像的显示方法可以检测设备104和显示设备共同执行,具体执行过程可以描述为:检测设备获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;检测设备根据包络信息生成三维超声图像,并将三维超声图像发送给显示设备;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
可选地,检测设备与显示设备可以为一体式结构,例如图1所示的检测设备104即为检测设备与显示设备的一体式结构。或者,检测设备与显示设备也可以为独立式结构,检测设备用于生成三维超声图像,显示设备用于显示三维超声图像。
下面将对本申请实施例的超声图像的显示方法进行详细说明。
图2是根据本申请实施例的一种可选的超声图像的显示方法的流程图,如图2所示,该方法可以包括以下步骤:
S202,获取检测设备对待检测对象进行检测得到的输入信号,输入信号为三维射频信号;
S204,对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,一次性模值计算至少用于直接获取三维射频信号的三维幅度;
S206,显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
通过上述S202至S206,通过获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
在S202提供的技术方案中,检测设备可以包括当并不限于超声设备,检测设备可以用于对待检测对象进行检测,其中,本申请实施例待检测对象的类型不做具体限定,例如待检测对象可以为人体器官(例如肾脏、肝脏等)。检测设备对待检测对象进行检测时,检测设备可以发出检测信号,该检测信号经过待检测对象反射后的信号即为输入信号,其中,该输入信号可以为实数信号,且该输入信号可以为一个高频的三维射频信号。
在S204提供的技术方案中,在获取到输入信号之后,本申请实施例可以对该输入信号进行一次性模值计算,也即对三维射频信号进行一次性模值计算, 得到三维超声图像中的包络信息,其中,三维超声图像中的包络信息可以用于指示待检测对象。此处需要说明的是,一次性模值计算可以至少用于直接获取三维射频信号的三维幅度,其中,包络信息可以包括三维射频信号的三维幅度。本申请实施例通过对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,相较于利用一维包络信息进行拼接得到三维超声图像,本申请实施例可以使得三维超声图像中包括信息所指示的待检测对象的亮度大于一维超声图像或二维超声图像中待检测对象的亮度,实现待检测对象在三维超声图像中清晰显示的目的,进而达到提高三维超声图像的准确度的效果。
下面将详细说明对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息的具体过程:
可选地,S204对三维射频信号进行一次性模值计算可以包括以下S2042至S2044:
S2042,获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示。
S2044,获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
针对上述S2042,可选地,获取输入信号对应的第一超复数信号可以包括:获取输入信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,此处可以把三维射频信号的输入信号定义为f(x,y,z),并定义f(x,y,z)的超复数信号ψ
cas(x,y,z)如公式(3)所示:
这个超复数信号ψ
cas(x,y,z)使用了3个复数单位的基:e
1,e
2,e
3,用于定义虚数单位。其理论依据来自于双四元数biquaternion的定义。下面对涉 及到的内容做如下解释:
当定义e
1=e
2=e
3=i时,就是如公式(1)中所示的传统虚数单位i。
传统一维包络检测用一维解析信号来实现,对于一维射频信号f(x),计算其一维希尔伯特变换H{f(x)},它们分别作为实部和虚部,从而组成一个复数信号,即一维解析信号f
A(x),如公式(1)所示:
其中,i是复数单位,x属于实数R。这个一维高频信号f(x)的幅度值如公式(2)所示:
当e1,e2,e3互不相同时,它们能生成8个不同的虚数单位(2
3=8),定义如公式(4)所示:
[1,i=e
2e
3,j=e
3e
1,k=e
1e
2,∈=-e
1e
2e
3,∈i=e
1,∈j=e
2,∈k=e
3] (4)
其中1代表实数部分,并且∈
2=1,e
1
2=e
2
2=e
3
2=-1。
公式(3)中***代表3D卷积计算。δ(x),δ(y),δ(z)是狄拉克函数。对于三维射频信号,这里x,y,z轴可以分别对应图3中的x,y,z轴的物理意义。其中,图3一个三维超声扇形探头发出射频信号的示意图,其中,高频信号f(x)表示从超声探头发出的一维射频信号,多个一维射频信号组成了一个平面,多个平面组成了一个三维射频体数据。
进一步展开计算公式(3),得到公式(5):
展开公式(5)中的卷积计算,可以看到有如下8个卷积计算(见公式(6))。另外,根据公式(4)可以计算公式(6)中的每一项卷积的虚数单位,如公式(6)所示:
在公式(6)中H{f}代表了信号f(x,y,z)的希尔伯特变化,H
z{f}代表了对信号f(x,y,z)的在z方向的希尔伯特变换,H
y{f}代表了对信号f(x,y,z)的在y方向的希尔伯特变换,H
x{f}代表了对信号f(x,y,z)的在x方向的希尔伯特变换,H
yz{f}代表了对信号f(x,y,z)的在y,z方向的希尔伯特变换,H
xz{f}代表了对信号f(x,y,z)的在x,z方向的希尔伯特变换,H
xy{f}代表了对信号f(x,y,z)的在x,y方向的希尔伯特变换。
通过把公式(6)的结果代入公式(5),则超复数信号ψ
cas(x,y,z)可以写成如公式(7)所示:
ψ
cas(x,y,z)=f+iH
yz{f}+j(-H
xz{f})+kH
xy{f}
+∈(-H{f})+∈iH
x{f}+∈jH
y{f}+∈kH
z{f} (7)
此处需要说明的是,公式(7)中所示的超复数信号即为本申请实施例中的第二超复数信号。
综上,三维射频信号的输入信号f(x,y,z)对应的第二超复数信号如公式(7)所示。同时,每个超复数信号的分量都用了输入信号的希尔伯特变换来表 示。
公式(7)为理论值,接下来需要在工程角度实现每个分量的计算,然后再计算出这个超复数信号的幅度值(理论值),进而从工程角度获取超复数信号的幅度值(理论值)。
上述内容用卷积的形式来定义超复数信号,用双四元数的三个基来定义超复数信号的虚数单位,其有益效果是这种定义形式是传统复数和四元数的宏观形式,可以处理三维数据,并且向下兼容表达了传统复数(一个实数部分和一个虚数部分),以及四元数(一个实数部分和三个虚数部分)。
接下来需要间接计算超复数信号的每个分量里面的希尔伯特变换的方法,获得公式(7)结果的工程上能实现的数学表达式。
由于从理论上很难直接计算出希尔伯特变换,此处阐述一种间接计算希尔伯特变化的方法,这个方法从工程上是可以实现的,而非一个理论的公式。
工程实现指的是:也就是用常见的编程语言和公开代码库可以实现。
对于三维射频信号的输入信号f(x,y,z),计算f(x,y,z)的单象限解析信号,也就是从实数信号f(x,y,z)的3D傅立叶频谱中单一象限做傅立叶反变换获得的信号。这种信号用常规编程语言的傅立叶变换函数就可以计算出来。
一个三维实数信号,首先通过傅立叶变换,把信号从3D实数域变换到3D频率域,在这个3D频率域里面有8个象限,如图4所示。在3D频率域中,一半的频谱就包含了完整的原始信号的全部信息。因此,3D频率域的8个象限中,我们可以选择四个相邻象限,就包含输入信号的全部信息。如图4中展示了3D频率域中的八个象限(3D的象限称为orthant),可以看到象限1orthant I,象限3orthant III,象限5orthant V,象限7orthant VII,是相邻的4个象限。
图4中3D频率域中的八个象限(orthant)。其中u,v,w是频率域的3个维度。
下面阐述四个单项限解析信号的计算过程,如公式(8)至公式(11)所示:
其中ψ
1(x,y,z),ψ
3(x,y,z),ψ
5(x,y,z),ψ
7(x,y,z)代表了分别从图4中频率域的象限1orthant I,象限3orthant III,象限5orthant V,象限7orthant VII获得的单项限解析信号。这个信号与公式(3)中的定义不同的地方是:定义中用了唯一的虚数单位i,也就是最传统的复数的定义(即包含了一个实数部分和一个虚数部分的复数)。类似公式(6)的计算方式,公式(8)至(11)的三维卷积有8个分量,都是可以用输入信号f(x,y,z)的希尔伯特变换表示,它们组成了这些单象限解析信号的实数部分和虚数部分。
进一步,上述公式中也定义了这些单象限解析信号的模值和角度值(即复数ψ
1(x,y,z)极坐标形式),例如在公式(8)中,α
1(x,y,z)表示复数ψ
1(x,y,z)极坐标形式的模值,(这里α
1也可以称为幅度值)。注:在公式(8)中,α
1(x,y,z)简写为α
1。
表示复数ψ
1(x,y,z)极坐标形式的角度值(这里,
也可以称为相位)。同样的,在公式(8)中,
简写为
它们的具体计算方式图公式(12)所示:
同理,从公式(9)-(11)可以得到另外三个单象限解析信号的模值,角度和希尔伯特变换之间的对应关系,如公式(14)所示:
公式(14)即可用于表示本申请实施例中的用希尔伯特变换表示的分量与解析信号的模值以及角度的对应关系。
公式(14)是用输入信号的解析信号的模值和角度来表示的希尔伯特变换。公式(14)左边的部分在工程师较难计算得到,公式(14)右边部分可以通过传统编程语言的傅里叶变换的库函数计算得到。
把公式(14)的结果代入公式(7),就实现了通过传统编程语言的傅里叶变换的库函数来计算我们在数学理论上定义的超复数信号ψ
cas(x,y,z),也就是如公式(15)所示的表达式:
公式(15)中所示的超复数信号即为本申请实施例中的第一超复数信号。
综上,上述内容从理论上把超复数信号ψ
cas(x,y,z)的内容换算成了其他形式的表达式,目的是获得一个工程上能实现的超复数信号ψ
cas(x,y,z)表达式,如公式(15)所示。
在获取到如公式(15)所示的第一超复数信号之后,可以计算该第一超复数信号的模值,计算超复数信号的模值|ψ
cas(x,y,z)|的具体过程可以描述为:
计算模值需要用到几个双四元数的性质:
双四元数性质1:双四元数的乘法;
对于一个双四元数A,它的表达式可以如公式(16)所示:
A=p+∈q
=(p
0+ip
1+ip
2+kp
3)+∈(q
0+iq
1+jq
2+kq
3)
=p
0+ip
1+jp
2+kp
3+∈q
0+∈iq
1+∈jq
2+∈kq
3 (16)
这里p和q都是四元数。定义另外一个双四元数B=p’+∈q’,则两个双四元数的乘积如公式(17)所示:
AB=(p+∈q)(p′+q′)=(pp′+qq′)+∈(pq′+qp′) (17)
其中四元数p,q,p’,q’它们之间的四元数乘积理论这里不做赘述。
双四元数性质2:双四元数的共轭;
双四元数A的共轭可以定义为Ac,如公式(18)所示:
A
c=p
c+∈q
c
=(p
0-ip
1-jp
2-kp
3)+∈(q
0-iq
1-jq
2-kq
3)
=p
0-ip
1-jp
2-kp
3+∈q
0-∈iq
1-∈jq
2-∈kq
3 (18)
其中p
c是四元数p的共轭。
为了计算超复数信号的模值|ψ
cas(x,y,z)|,需要首先利用公式(16)至(19),来计算ψ
cas(x,y,z)和它共轭的乘积,即ψ
cas(ψ
cas)
c,如公式(19) 所示:
从公式(19)可以看出来ψ
cas(ψ
cas)
c的结果只包含两个部分,一个是实数部分,即:
另一部分是以∈为虚数单位的部分,即:
实际上这一部分称为双四元数的“伪实数”部分。其他的虚数部分都为0,这个结果对计算模值|ψ
cas(x,y,z)|有很大帮助。下面阐释计算模值|ψ
cas(x,y,z)|的过程。
首先定义一个超复数信号ψ
cas(x,y,z)的一种极坐标形式:
这里|ψ
cas|是模值,a是单位双四元数(具有一个性质:与自己共轭乘积为1a(a
c)=1),φ是双四元数角度。则有公式(20)所示:
Aψ
cas(ψ
cas)
c=|ψ
cas|
2e
2∈φ=|ψ
cas|
2[ch(2φ)+∈sh(2φ)], (20)
其中ch(),sh()分别是双曲余弦和双曲正弦函数。此公式据具体推导过程如下所示:
其中,r代表正的复数。
为了简化计算,可以用两个符号M和N来表示公式(20):
ψ
cas(ψ
cas)
c=M+∈N
这里M代表公式(19)以及公式(20)的实数部分,N代表公式(19)以及公式(20)的“伪实数”部分。可得:
M
2-N
2=|ψ
cas|
4[ch(2φ)
2-sh(2φ)
2]=|ψ
cas|
4
因此|ψ
cas|=(M
2-N
2)
1/4,把符号M,N代入公式(19)的内容,可得公式(21):
公式(21)的结果就是第一超复数信号的模值|ψ
cas(x,y,z)|,表示这个模值的元素来自于公式(8)至(11)的计算。那些计算是工程上能实现的计算过程。输入信息是公式(8)至(11)的极坐标的模值α
1(x,y,z),α
3(x,y,z),α
5(x,y,z),α
7(x,y,z),和角度
输出是第一超复数信号的模值,也即包络信号|ψ
cas(x,y,z)|。
也就是说,本申请实施例可以按照以下公式(21)获取第一超复数信号的模值:
其中,|ψ
cas|表示第一超复数信号的模值,α
1为第一解析信号的模值,
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α
3为第三解析信号的模值,
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α
5为第五解析信号的模值,
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α
7为第七解析信号的模值,
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
在获取到公式(21)所示的第一超复数信号的模值之后,即可以得到三维超声图像中用于指示待检测对象的包络信息。本申请实施例可以根据该包络信息生成三维超声图像。其中,根据包络信息生成三维超声图像的过程此处不做具体限定,具体可以包括但并不限于去噪等图像处理手段。
在步骤S206提供的技术方案中,在生成三维超声图像之后,可以在显示设备上显示该三维超声图像和/或在显示设备上显示该三维超声图像中的包络信息,其中,显示设备与检测设备可以为一体式结构,显示设备与检测设备也可以为独立式结构,当显示设备与检测设备相互独立时,检测设备在生成三维超声图像之后,可以将三维超声图像发送给显示设备进行显示,以便于用户可以清楚直观地从显示设备上观察到待检测对象。
需要说明的是,利用本申请实施例的超声图像的显示方法,由于三维超声 图像中用于指示待检测对象的包络信息是对三维射频信号进行一次性模值计算得到的,而并非是通过一维包络信息拼接得到的,所以在三维超声图像中所述包络信息指示的待检测对象相对于一维超声图像或二维超声图像中的检测对象的亮度要更大一些,清晰度要更高一些,因此,本申请实施例可以达到使得待检测对象在三维超声图像中显示得更加清晰,进而提高三维超声图像的准确度的效果。
本申请所提供的超声图像的显示方法,可以用于B模式超声成像的直接三维包络检测。本申请通过基于3D卷积的形式和克里福德代数双四元数形式,定义高维超复数解析信号,实现一次性计算三维射频信号的三维幅度,即三维射频信号的三维超声图像。利用希尔伯特变换实现所提出的超复数信号以及它模值的工程实现方法。同时对比传统B模式超声图像重建是根据一维超声射频信号的一维包络信号按空间位置拼接而成的方式,本申请完全摒弃一维包络信号拼接B超图像的方法,避免了由于一维包络信号拼接而成的三维B模式图像的重建误差。另外,本申请同时适用于一次性二维和三维的B超图像的包络检测。
本申请可应用于对三维射频信号的包络计算的设备,比如用于三维超声设备的B模式成像。如图3所示,利用三维扇形探头获得的三维B模式图像中,本方法可以实现对三维数据的一次成像。
本申请可以实现对三维射频超声信号的一次性模值计算,从而获得其三维包络图像(也即本申请上述实施例中的包络信息所指示的图像)。此处所说的三维射频超声信号的模值指的就是三维包络图像。在这个三维包络图像的基础上可以使用任何二维或者三维的图像后处理算法以得到三维超声图像。
如图5所示,举例解释了用三维扇形超声探头(3D Ultrasound probe)采集三维射频信号的平台。在三维扇形超声探头下面有人造假体(Phantom),来模仿人体。有一个医用探针(Biopsy needle)插入到这个人造假体中,来模仿把医用探针插入人体获取人体组织用于后续活检的实验。用医用探针获取人体组织的过程中,医生会用超声探头来观察医用探针在人体里的位置,目的是使得探针的针头达到既定的人体组织位置。
图6中标出了三维超声使用的3个坐标轴方向术语:轴向axial,侧向lateral, 扇面方向elevation。在图6中,显示了三维射频信号的x,y轴组成一个扇面,z轴是elevation轴,表示不同的二维扇面。把图6中获得的三维射频信号分别用现有方法和本申请提出的方法来计算超声包络图像。图7显示了一部分结果,是图6中扇面slice 15的结果。这个扇面上,有医用探针的位置。图7a、图7b是现有的一维方法和二维方法计算出来的结果。图7c是本申请计算出来的结果。在图7c中高亮的斜着的细长白色区域是医用探针的位置。这个亮度越高,说明医用探针越明显得显示在超声包络图像上。为了对比细节图7d获取了图像竖直方向的轮廓线(profile),图7e沿着探针方向的轮廓线。这些轮廓线的数值越高,代表亮度越大,也就是探针越清晰的显示在包络图上。从轮廓线的值可以看出,本申请提出的三维方法在探针位置的亮度大部分高于一维和二维的方法。
图8是放大后的图7c。图8中斜着的四边形框是医用探针的位置。两条虚线就是图7d和图7e的轮廓线位置。
图9是放大后的图7d,图10是放大后的图7e。图9中两条横向线条中间部分是医用探针的位置。上述示例是基于扇形的超声探头的三维射频数据的两个结果。
为了证明本申请的普适性,下面的示例是基于线性探头的三维射频数据的三维包络图像计算。同样可以得到类似的结论:本方案的三维包络图像能更好得显示出探针的位置信息。
图11是线性超声探头的示意图,图12是线性超声探头采集到的数据坐标轴示例,数据是立方体结构。图13是线性超声探头的三维包络结果,其中,图13a是一维方法的结果、图13b是二维方法的结果,图13c是本申请方法的结果。图14是方框内竖直方向上的轮廓线像素亮度对比。其中两条横向线条中间部分是医用探针的位置。三维方法的结果亮度最高。最明显的显示了探针。图15是方框内沿着探针的方向上的轮廓线像素亮度对比。整个曲线都是医用探针的在图像中的位置。三维方法的结果亮度最高,最明显的显示了探针。
本申请方案从数学上可以解决一切三维高频信号的包络计算,在应用层面,同时也可以解决三维信号中某一个维度或者某两个维度上是高频信号,其他维度上不是高频信号的三维信号。因此,潜在的能够应用于高频信号通信,高频雷达信号解调,或者用高频信息加密了图像,需要计算信号的包络信息解 密等各种三维高频信号的模值计算所涉及的物理,工程应用等问题。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
根据本申请实施例的另一个方面,还提供了一种用于实施上述超声图像的显示方法的超声图像的显示装置。图16是根据本申请实施例的一种可选的超声图像的显示装置的示意图,如图16所示,该装置可以包括:
获取单元22,用于获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;计算单元24,用于对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;显示单元26,用于在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
需要说明的是,该实施例中的获取单元22可以用于执行本申请实施例中的步骤S202,该实施例中的计算单元24可以用于执行本申请实施例中的步骤S204,该实施例中的显示单元26可以用于执行本申请实施例中的步骤S206。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现。
可选地,计算单元24可以包括:第一获取模块,用于获取三维射频信号对 应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;第二获取模块,用于获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
可选地,第一获取模块可以包括:第一获取子模块,用于获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;第二获取子模块,用于获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;转换模块,用于根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,第二获取模块用于按照以下公式获取第一超复数信号的模值:
其中,|ψ
cas|表示第一超复数信号的模值,α
1为第一解析信号的模值,
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α
3为第三解析信号的模值,
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α
5为第五解析信号的模值,
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α
7为第七解析信号的模值,
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,三维超声图像中包络信息所指示的待检测对象的亮度大于一维超 声图像或二维超声图像中待检测对象的亮度。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现。
通过上述模块,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
根据本申请实施例的又一个方面,还提供了一种用于实施上述超声图像的显示方法的电子装置。
图17是根据本申请实施例的一种电子装置的结构框图,如图17所示,该电子装置可以包括:一个或多个(图中仅示出一个)处理器201、存储器203,其中,存储器203中可以存储有计算机程序,处理器201可以被设置为运行所述计算机程序以执行本申请实施例的超声图像的显示方法。
其中,存储器203可用于存储计算机程序以及模块,如本申请实施例中的超声图像的显示方法和装置对应的程序指令/模块,处理器201通过运行存储在存储器203内的计算机程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的超声图像的显示方法。存储器203可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器203可进一步包括相对于处理器201远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
可选地,如图17所示,该电子装置还可以包括:传输装置205以及输入输出设备207。其中,传输装置205用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置205包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置205为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
本领域普通技术人员可以理解,图17所示的结构仅为示意,电子装置可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。图17其并不对上述电子装置的结构造成限定。例如,电子装置还可以包括比图17中所示更多或者更少的组件(如网络接口、显示装置等),或者具有与图17所示不同的配置。
可选地,在本实施例中,上述存储器203可以用于存储计算机程序。
可选地,在本实施例中,上述处理器可以被设置为运行计算机程序,以执行以下步骤:获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
处理器201还用于执行下述步骤:获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
处理器201还用于执行下述步骤:获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
处理器201还用于执行下述步骤:按照以下公式获取第一超复数信号的模值:
其中,|ψ
cas|表示第一超复数信号的模值,α
1为第一解析信号的模值,
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α
3为第三解析信号的模值,
为第三解 析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α
5为第五解析信号的模值,
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α
7为第七解析信号的模值,
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
采用本申请实施例,提供了一种超声图像的显示方案。通过获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
根据本申请实施例的又一个方面,还提供了一种存储介质。该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述实施例中超声图像的显示方法的步骤。
可选地,在本实施例中,存储介质可以位于上述实施例所示的网络中的多个网络设备中的至少一个网络设备上。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的计算机程序:
S1,获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;
S2,对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;
S3,在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:按照以下公式获取第一超复数信号的模值:
其中,|ψ
cas|表示第一超复数信号的模值,α
1为第一解析信号的模值,
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α
3为第三解析信号的模值,
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α
5为第五解析信号的模值,
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α
7为第七解析信号的模值,
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
可选地,在本实施例中,本领域普通技术人员可以理解上述实施例的方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程 序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
上述实施例中的集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在上述计算机可读取的存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在存储介质中,包括若干指令用以使得一台或多台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的客户端,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (13)
- 一种超声图像的显示方法,其特征在于,应用于检测设备,所述方法包括:获取检测设备对待检测对象进行检测得到的输入信号,所述输入信号为三维射频信号;对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;显示所述三维超声图像中的所述包络信息,所述包络信息用于指示所述待检测对象。
- 根据权利要求1所述的方法,其特征在于,所述对所述三维射频信号进行一次性模值计算,包括:获取所述三维射频信号对应的第一超复数信号,所述第一超复数信号为8个分量之和,每个分量用所述输入信号对应的多个解析信号的模值以及角度表示;获取包括所述第一超复数信号的模值的所述包络信息,所述第一超复数信号的模值用于表示所述三维射频信号的三维幅度。
- 根据权利要求2所述的方法,其特征在于,所述获取所述三维射频信号对应的第一超复数信号,包括:获取所述三维射频信号对应的第二超复数信号,所述第二超复数信号包括8个分量,每个分量用所述输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与所述多个解析信号的模值以及角度的对应关系;根据所述对应关系将所述第二超复数信号转换为所述第一超复数信号。
- 根据权利要求2所述的方法,其特征在于,按照以下公式获取所述第一超复数信号的模值:其中,|ψ cas|表示所述第一超复数信号的模值,α 1为第一解析信号的模值, 为所述第一解析信号的角度,所述第一解析信号为所述输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α 3为第三解析信号的模值, 为所述第三解析信号的角度,所述第三解析信号为所述输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α 5为第五解析信号的模值, 为所述第五解析信号的角度,所述第五解析信号为所述输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α 7为第七解析信号的模值, 为所述第七解析信号的角度,所述第七解析信号为所述输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,所述多个解析信号包括所述第一解析信号、所述第三解析信号、所述第五解析信号以及所述第七解析信号。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述三维超声图像中通过所述包络信息所指示所述待检测对象的亮度大于一维超声图像或二维超声图像中所述待检测对象的亮度。
- 一种超声图像的显示装置,其特征在于,所述装置包括获取单元、计算单元和显示单元:所述获取单元,用于获取检测设备对待检测对象进行检测得到的输入信号,所述输入信号为三维射频信号;所述计算单元,用于对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;所述显示单元,用于显示所述三维超声图像中的所述包络信息,所述包络信息用于指示所述待检测对象。
- 根据权利要求6所述的装置,其特征在于,所述计算单元包括:第一获取模块,用于获取所述三维射频信号对应的第一超复数信号,其中,所述第一超复数信号为8个分量之和,每个分量用所述输入信号对应的多个解析信号的模值以及角度表示;第二获取模块,用于获取包括所述第一超复数信号的模值的所述包络信息,所述第一超复数信号的模值用于表示所述三维射频信号的三维幅度。
- 根据权利要求7所述的装置,其特征在于,所述第一获取模块包括:第一获取子模块,用于获取所述三维射频信号对应的第二超复数信号,所述第二超复数信号包括8个分量,每个分量用所述输入信号的希尔伯特变换表示;第二获取子模块,用于获取用希尔伯特变换表示的分量与所述多个解析信号的模值以及角度的对应关系;转换模块,用于根据所述对应关系将所述第二超复数信号转换为所述第一超复数信号。
- 根据权利要求7所述的装置,其特征在于,所述第二获取模块用于按照以下公式获取所述第一超复数信号的模值:其中,|ψ cas|表示所述第一超复数信号的模值,α 1为第一解析信号的模值, 为所述第一解析信号的角度,所述第一解析信号为所述输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α 3为第三解析信号的模值, 为所述第三解析信号的角度,所述第三解析信号为所述输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α 5为第五解析信号的模值, 为所述第五解析信号的角度,所述第五解析信号为所述输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α 7为第七解析信号的模值, 为所述第七解析信号的角度,所述第七解析信号为所述输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,所述多个解析信号包括所述第一解析信号、所述第三解析信号、所述第五解析信号以及所述第七解析信号。
- 根据权利要求6至9中任一项所述的装置,其特征在于,所述三维超声图像中通过所述包络信息所指示所述待检测对象的亮度大于一维超声图像或二维超声图像中所述待检测对象的亮度。
- 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至5任一项中所述的方法。
- 一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存 储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至5任一项中所述的方法。
- 一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行权利要求1-5任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020543587A JP6941742B2 (ja) | 2018-05-24 | 2019-04-11 | 超音波画像の表示方法及び装置、記憶媒体並びに電子装置 |
EP19808389.1A EP3806028B1 (en) | 2018-05-24 | 2019-04-11 | Ultrasound image display method and apparatus, and storage medium and electronic apparatus |
US16/935,421 US11486862B2 (en) | 2018-05-24 | 2020-07-22 | Ultrasound image display method and apparatus, storage medium, and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810508663.2A CN110163940B (zh) | 2018-05-24 | 2018-05-24 | 超声图像的显示方法和装置、存储介质及电子装置 |
CN201810508663.2 | 2018-05-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/935,421 Continuation US11486862B2 (en) | 2018-05-24 | 2020-07-22 | Ultrasound image display method and apparatus, storage medium, and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019223442A1 true WO2019223442A1 (zh) | 2019-11-28 |
Family
ID=67644979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082216 WO2019223442A1 (zh) | 2018-05-24 | 2019-04-11 | 超声图像的显示方法和装置、存储介质及电子装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11486862B2 (zh) |
EP (1) | EP3806028B1 (zh) |
JP (1) | JP6941742B2 (zh) |
CN (1) | CN110163940B (zh) |
WO (1) | WO2019223442A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022041386A (ja) * | 2020-09-01 | 2022-03-11 | キヤノンメディカルシステムズ株式会社 | 多元数演算装置及び医用画像診断装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005087237A (ja) * | 2003-09-12 | 2005-04-07 | Aloka Co Ltd | 超音波画像処理装置 |
CN101061961A (zh) * | 2006-04-24 | 2007-10-31 | 株式会社东芝 | 超声波图像获取装置及超声波图像获取方法 |
CN103512960A (zh) * | 2013-09-27 | 2014-01-15 | 中国科学院声学研究所 | 一种超声阵列成像方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160238568A1 (en) * | 2015-02-18 | 2016-08-18 | Riverside Research Institute | Typing and imaging of biological and non-biological materials using quantitative ultrasound |
CN106934335B (zh) * | 2015-12-31 | 2021-02-02 | 南通东华软件有限公司 | 图像识别的方法和装置 |
-
2018
- 2018-05-24 CN CN201810508663.2A patent/CN110163940B/zh active Active
-
2019
- 2019-04-11 WO PCT/CN2019/082216 patent/WO2019223442A1/zh unknown
- 2019-04-11 JP JP2020543587A patent/JP6941742B2/ja active Active
- 2019-04-11 EP EP19808389.1A patent/EP3806028B1/en active Active
-
2020
- 2020-07-22 US US16/935,421 patent/US11486862B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005087237A (ja) * | 2003-09-12 | 2005-04-07 | Aloka Co Ltd | 超音波画像処理装置 |
CN101061961A (zh) * | 2006-04-24 | 2007-10-31 | 株式会社东芝 | 超声波图像获取装置及超声波图像获取方法 |
CN103512960A (zh) * | 2013-09-27 | 2014-01-15 | 中国科学院声学研究所 | 一种超声阵列成像方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3806028A4 |
Also Published As
Publication number | Publication date |
---|---|
US11486862B2 (en) | 2022-11-01 |
CN110163940A (zh) | 2019-08-23 |
JP6941742B2 (ja) | 2021-09-29 |
EP3806028A4 (en) | 2021-06-23 |
US20200348268A1 (en) | 2020-11-05 |
EP3806028A1 (en) | 2021-04-14 |
JP2021513421A (ja) | 2021-05-27 |
EP3806028B1 (en) | 2023-12-20 |
CN110163940B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6700622B2 (ja) | マルチモーダル画像を処理するシステム及び方法 | |
JP2020042028A (ja) | コレクターの相対パラメータのキャリブレーション方法、装置、機器及び媒体 | |
JP6764995B2 (ja) | パノラマ画像圧縮方法および装置 | |
US20110262015A1 (en) | Image processing apparatus, image processing method, and storage medium | |
US10002424B2 (en) | Image processing system and method to reconstruct a three-dimensional (3D) anatomical surface | |
CA2595010A1 (en) | Temperature mapping on structural data | |
WO2020177348A1 (zh) | 用于生成三维模型的方法和装置 | |
US9192339B2 (en) | Scanning system and image display method | |
WO2023061000A1 (zh) | 超声乳腺三维全景图的生成方法和超声设备 | |
JP2015513945A6 (ja) | 3d ct立体データにおける歯のグラフカットベースのインタラクティブセグメンテーション法 | |
JP2015513945A (ja) | 3dct立体データにおける歯のグラフカットベースのインタラクティブセグメンテーション法 | |
Chen et al. | Real-time freehand 3D ultrasound imaging | |
CN110288653A (zh) | 一种多角度超声图像融合方法、系统及电子设备 | |
Morgan et al. | Hand-eye calibration for surgical cameras: a procrustean perspective-n-point solution | |
JPWO2016136065A1 (ja) | 超音波撮像装置、および、画像処理装置 | |
WO2019223442A1 (zh) | 超声图像的显示方法和装置、存储介质及电子装置 | |
US9406126B2 (en) | Image processing apparatus and method, and ultrasonic diagnostic apparatus | |
JP2022111704A (ja) | 画像処理装置、医用画像撮像装置、画像処理方法、およびプログラム | |
WO2020175445A1 (ja) | 学習方法、学習装置、生成モデル及びプログラム | |
JP7140475B2 (ja) | 画像処理装置、画像処理方法、画像処理システム及びプログラム | |
Tan et al. | A novel enhanced intensity‐based automatic registration: Augmented reality for visualization and localization cancer tumors | |
Chan et al. | Using game controller as position tracking sensor for 3D freehand ultrasound imaging | |
CN114820731A (zh) | Ct影像和三维体表图像的配准方法及相关装置 | |
Vasconcelos et al. | Similarity registration problems for 2d/3d ultrasound calibration | |
CN112652056A (zh) | 一种3d信息展示方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19808389 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020543587 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019808389 Country of ref document: EP Effective date: 20210111 |