CN110163940B - 超声图像的显示方法和装置、存储介质及电子装置 - Google Patents

超声图像的显示方法和装置、存储介质及电子装置 Download PDF

Info

Publication number
CN110163940B
CN110163940B CN201810508663.2A CN201810508663A CN110163940B CN 110163940 B CN110163940 B CN 110163940B CN 201810508663 A CN201810508663 A CN 201810508663A CN 110163940 B CN110163940 B CN 110163940B
Authority
CN
China
Prior art keywords
signal
dimensional
analytic
supercomplex
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810508663.2A
Other languages
English (en)
Other versions
CN110163940A (zh
Inventor
王亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tencent Technology Shenzhen Co Ltd
Original Assignee
Tencent Technology Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tencent Technology Shenzhen Co Ltd filed Critical Tencent Technology Shenzhen Co Ltd
Priority to CN201810508663.2A priority Critical patent/CN110163940B/zh
Priority to JP2020543587A priority patent/JP6941742B2/ja
Priority to PCT/CN2019/082216 priority patent/WO2019223442A1/zh
Priority to EP19808389.1A priority patent/EP3806028B1/en
Publication of CN110163940A publication Critical patent/CN110163940A/zh
Priority to US16/935,421 priority patent/US11486862B2/en
Application granted granted Critical
Publication of CN110163940B publication Critical patent/CN110163940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8977Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biochemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Signal Processing (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Graphics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

本发明公开了一种超声图像的显示方法和装置、存储介质及电子装置。其中,该方法包括:获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。本发明解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。

Description

超声图像的显示方法和装置、存储介质及电子装置
技术领域
本发明涉及计算机领域,具体而言,涉及一种超声图像的显示方法和装置、存储介质及电子装置。
背景技术
包络检测是B模式超声图像(简称B超图像)重建的一个重要步骤。B超图像重建的基本流程包括:从超声探头获得高频的射频(Radio Frequency,简称为RF)信号,这个原始RF信号是沿超声探头方向的一维信号。然后对该一维信号做希尔伯特变换构建出一维解析信号,计算该一维解析信号的幅度值即为一维包络信号。多个一维包络信号根据所在的探头位置可以拼接成二维信号,从而获得二维包络图像,进过一些后处理可以获得二维B超图像。而对于三维B超图像,目前大多是基于一维包络信号拼接成三维包络图像,进过一些后处理获得三维B超图像。
现有三维B超图像重建方式为根据一维射频信号的一维包络信号按照空间位置拼接而成,三维B超图像中的每一列都是独立的一维包络信号,相邻每一列的相关性没有在成像过程中考虑在内,这样将会导致重建的三维B超图像出现重建误差,降低了三维B超图像的准确度。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种超声图像的显示方法和装置、存储介质及电子装置,以至少解决相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
根据本发明实施例的一个方面,提供了一种超声图像的显示方法,包括:获取检测设备对待检测对象进行检测得到的输入信号,其中,所述输入信号为三维射频信号;对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;在显示设备上显示所述三维超声图像中的所述包络信息,其中,所述包络信息用于指示所述待检测对象。
根据本发明实施例的另一方面,还提供了一种超声图像的显示装置,获取单元,用于获取检测设备对待检测对象进行检测得到的输入信号,其中,所述输入信号为三维射频信号;计算单元,用于对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;显示单元,用于在显示设备上显示所述三维超声图像中的所述包络信息,其中,所述包络信息用于指示所述待检测对象。
根据本发明实施例的另一方面,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行本发明实施例中任意一种超声图像的显示方法。
根据本发明实施例的另一方面,还提供了一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行本发明实施例中任意一种超声图像的显示方法。
在本发明实施例中,通过获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的超声图像的显示方法的硬件环境的示意图;
图2是根据本发明实施例的一种可选的超声图像的显示方法的流程图;
图3是根据相关技术中一维信号的包络拼接组成平面的示意图;
图4是根据本发明实施例的3D频率域中的8个象限的示意图;
图5是根据本发明实施例的采集三维射频信号的平台的示意图;
图6是根据本发明实施例的三维射频信号的结构图;
图7是根据本发明实施例的三维超声图像中包络图像的对比图;
图8是根据本发明实施例的放大后的三维超声图像中包络图像的示意图;
图9是根据本发明实施例的放大后的竖直方向上的亮度对比示意图;
图10是根据本发明实施例的放大后的医用探针方向上的亮度对比示意图;
图11是根据本发明实施例的线性探头采集三维射频信号的平台的示意图;
图12是根据本发明实施例的线性探头采集到的三维射频信号的结构图;
图13是根据本发明实施例的线性探头采集到的三维超声图像中包络图像的对比图;
图14是根据本发明实施例的线性探头采集到的三维超声图像中包络图像在竖直方向上的亮度对比示意图;
图15是根据本发明实施例的线性探头采集到的三维超声图像中包络图像在医用探针方向上的亮度对比示意图;
图16是根据本发明实施例的一种可选的超声图像的显示装置的示意图;以及
图17是根据本发明实施例的一种电子装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本发明实施例的一个方面,提供了一种超声图像的显示方法。
可选地,在本实施例中,上述超声图像的显示方法可以应用于如图1所示的由服务器102和检测设备104所构成的硬件环境中。如图1所示,服务器102通过网络与检测设备104进行连接,上述网络包括但不限于:广域网、城域网或局域网,检测设备104可以包括但并不限于超声设备。
可选地,本发明实施例的超声图像的显示方法可以检测设备和显示设备104共同执行,具体执行过程可以描述为:检测设备获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;检测设备根据包络信息生成三维超声图像,并将三维超声图像发送给显示设备;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
可选地,检测设备与显示设备可以为一体式结构,例如图1所示的检测设备104即为检测设备与显示设备的一体式结构。或者,检测设备与显示设备也可以为独立式结构,检测设备用于生成三维超声图像,显示设备用于显示三维超声图像。
下面将对本发明实施例的超声图像的显示方法进行详细说明。
图2是根据本发明实施例的一种可选的超声图像的显示方法的流程图,如图2所示,该方法可以包括以下步骤:
步骤S202,获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;
步骤S204,对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;
步骤S206,在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
通过上述步骤S202至步骤S206,通过获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
在步骤S202提供的技术方案中,检测设备可以包括当并不限于超声设备,检测设备可以用于对待检测对象进行检测,其中,本发明实施例待检测对象的类型不做具体限定,例如待检测对象可以为人体器官(例如肾脏、肝脏等)。检测设备对待检测对象进行检测时,检测设备可以发出检测信号,该检测信号经过待检测对象反射后的信号即为输入信号,其中,该输入信号可以为实数信号,且该输入信号可以为一个高频的三维射频信号。
在步骤S204提供的技术方案中,在获取到输入信号之后,本发明实施例可以对该输入信号进行一次性模值计算,也即对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,三维超声图像中的包络信息可以用于指示待检测对象。此处需要说明的是,一次性模值计算可以至少用于直接获取三维射频信号的三维幅度,其中,包络信息可以包括三维射频信号的三维幅度。本发明实施例通过对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,相较于利用一维包络信息进行拼接得到三维超声图像,本发明实施例可以使得三维超声图像中包括信息所指示的待检测对象的亮度大于一维超声图像或二维超声图像中待检测对象的亮度,实现待检测对象在三维超声图像中清晰显示的目的,进而达到提高三维超声图像的准确度的效果。
下面将详细说明对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息的具体过程:
可选地,步骤S204对三维射频信号进行一次性模值计算可以包括以下步骤S2042至步骤S2044:
步骤S2042,获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示。
步骤S2044,获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
针对上述步骤S2042,可选地,获取输入信号对应的第一超复数信号可以包括:获取输入信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,此处可以把三维射频信号的输入信号定义为f(x,y,z),并定义f(x,y,z)的超复数信号ψcas(x,y,z)如公式(3)所示:
Figure BDA0001672274140000071
这个超复数信号ψcas(x,y,z)使用了3个复数单位的基:e1,e2,e3,用于定义虚数单位。其理论依据来自于双四元数biquaternion的定义。下面对涉及到的内容做如下解释:
当定义e1=e2=e3=i时,就是如公式(1)中所示的传统虚数单位i。
传统一维包络检测用一维解析信号来实现,对于一维射频信号f(x),计算其一维希尔伯特变换H{f(x)},它们分别作为实部和虚部,从而组成一个复数信号,即一维解析信号fA(x),如公式(1)所示:
Figure BDA0001672274140000072
其中,i是复数单位,x属于实数R。这个一维高频信号f(x)的幅度值如公式(2)所示:
Figure BDA0001672274140000073
当e1,e2,e3互不相同时,它们能生成8个不同的虚数单位(23=8),定义如公式(4)所示:
[1,i=e2e3,j=e3e1,k=e1e2,∈=-e1e2e3,∈i=e1,∈j=e2,∈k=e3]    (4)
其中1代表实数部分,并且∈2=1,e1 2=e2 2=e3 2=-1
公式(3)中***代表3D卷积计算。δ(x),δ(y),δ(z)是狄拉克函数。对于三维射频信号,这里x,y,z轴可以分别对应图3中的x,y,z轴的物理意义。其中,图3一个三维超声扇形探头发出射频信号的示意图,其中,高频信号f(x)表示从超声探头发出的一维射频信号,多个一维射频信号组成了一个平面,多个平面组成了一个三维射频体数据。
进一步展开计算公式(3),得到公式(5):
Figure BDA0001672274140000081
展开公式(5)中的卷积计算,可以看到有如下8个卷积计算(见公式(6))。另外,根据公式(4)可以计算公式(6)中的每一项卷积的虚数单位,如公式(6)所示:
f(x,y,z)★★★[δ(x)δ(y)δ(z)]=f(x,y,z),
Figure BDA0001672274140000091
Figure BDA0001672274140000092
Figure BDA0001672274140000093
Figure BDA0001672274140000094
Figure BDA0001672274140000095
Figure BDA0001672274140000096
Figure BDA0001672274140000097
在公式(6)中H{f}代表了信号f(x,y,z)的希尔伯特变化,Hz{f}代表了对信号f(x,y,z)的在z方向的希尔伯特变换,Hy{f}代表了对信号f(x,y,z)的在y方向的希尔伯特变换,Hx{f}代表了对信号f(x,y,z)的在x方向的希尔伯特变换,Hyz{f}代表了对信号f(x,y,z)的在y,z方向的希尔伯特变换,Hxz{f}代表了对信号f(x,y,z)的在x,z方向的希尔伯特变换,Hxy{f}代表了对信号f(x,y,z)的在x,y方向的希尔伯特变换。
通过把公式(6)的结果代入公式(5),则超复数信号ψcas(x,y,z)可以写成如公式(7)所示:
ψcas(x,y,z)=f+iHyz{f}+j(-Hxz{f})+kHxy{f}
+∈(-H{f})+∈iHx{f}+∈jHy{f}+∈kHz{f}   (7)
此处需要说明的是,公式(7)中所示的超复数信号即为本发明实施例中的第二超复数信号。
综上,三维射频信号的输入信号f(x,y,z)对应的第二超复数信号如公式(7)所示。同时,每个超复数信号的分量都用了输入信号的希尔伯特变换来表示。
公式(7)为理论值,接下来需要在工程角度实现每个分量的计算,然后再计算出这个超复数信号的幅度值(理论值),进而从工程角度获取超复数信号的幅度值(理论值)。
上述内容用卷积的形式来定义超复数信号,用双四元数的三个基来定义超复数信号的虚数单位,其有益效果是这种定义形式是传统复数和四元数的宏观形式,可以处理三维数据,并且向下兼容表达了传统复数(一个实数部分和一个虚数部分),以及四元数(一个实数部分和三个虚数部分)。
接下来需要间接计算超复数信号的每个分量里面的希尔伯特变换的方法,获得公式(7)结果的工程上能实现的数学表达式。
由于从理论上很难直接计算出希尔伯特变换,此处阐述一种间接计算希尔伯特变化的方法,这个方法从工程上是可以实现的,而非一个理论的公式。
工程实现指的是:也就是用常见的编程语言和公开代码库可以实现。
对于三维射频信号的输入信号f(x,y,z),计算f(x,y,z)的单象限解析信号,也就是从实数信号f(x,y,z)的3D傅立叶频谱中单一象限做傅立叶反变换获得的信号。这种信号用常规编程语言的傅立叶变换函数就可以计算出来。
一个三维实数信号,首先通过傅立叶变换,把信号从3D实数域变换到3D频率域,在这个3D频率域里面有8个象限,如图4所示。在3D频率域中,一半的频谱就包含了完整的原始信号的全部信息。因此,3D频率域的8个象限中,我们可以选择四个相邻象限,就包含输入信号的全部信息。如图4中展示了3D频率域中的八个象限(3D的象限称为orthant),可以看到象限1orthant I,象限3orthant III,象限5orthant V,象限7orthant VII,是相邻的4个象限。
图4中3D频率域中的八个象限(orthant)。其中u,v,w是频率域的3个维度。
下面阐述四个单项限解析信号的计算过程,如公式(8)至公式(11)所示:
Figure BDA0001672274140000111
Figure BDA0001672274140000112
Figure BDA0001672274140000113
Figure BDA0001672274140000114
其中ψ1(x,y,z),ψ3(x,y,z),ψ5(x,y,z),ψ7(x,y,z)代表了分别从图4中频率域的象限1orthant I,象限3orthant III,象限5orthant V,象限7orthant VII获得的单项限解析信号。这个信号与公式(3)中的定义不同的地方是:定义中用了唯一的虚数单位i,也就是最传统的复数的定义(即包含了一个实数部分和一个虚数部分的复数)。类似公式(6)的计算方式,公式(8)至(11)的三维卷积有8个分量,都是可以用输入信号f(x,y,z)的希尔伯特变换表示,它们组成了这些单象限解析信号的实数部分和虚数部分。
进一步,上述公式中也定义了这些单象限解析信号的模值和角度值(即复数ψ1(x,y,z)极坐标形式),例如在公式(8)中,α1(x,y,z)表示复数ψ1(x,y,z)极坐标形式的模值,(这里α1也可以称为幅度值)。注:在公式(8)中,α1(x,y,z)简写为α1
Figure BDA0001672274140000115
表示复数ψ1(x,y,z)极坐标形式的角度值(这里,
Figure BDA0001672274140000116
也可以称为相位)。同样的,在公式(8)中,
Figure BDA0001672274140000117
简写为
Figure BDA0001672274140000118
它们的具体计算方式图公式(12)所示:
Figure BDA0001672274140000121
Figure BDA0001672274140000122
通过公式(8),可以得到模值α1,角度
Figure BDA0001672274140000126
和希尔伯特变换之间的关系如公式(13)所示:
Figure BDA0001672274140000123
Figure BDA0001672274140000124
同理,从公式(9)-(11)可以得到另外三个单象限解析信号的模值,角度和希尔伯特变换之间的对应关系,如公式(14)所示:
Figure BDA0001672274140000125
公式(14)即可用于表示本发明实施例中的用希尔伯特变换表示的分量与解析信号的模值以及角度的对应关系。
公式(14)是用输入信号的解析信号的模值和角度来表示的希尔伯特变换。公式(14)左边的部分在工程师较难计算得到,公式(14)右边部分可以通过传统编程语言的傅里叶变换的库函数计算得到。
把公式(14)的结果代入公式(7),就实现了通过传统编程语言的傅里叶变换的库函数来计算我们在数学理论上定义的超复数信号ψcas(x,y,z),也就是如公式(15)所示的表达式:
Figure BDA0001672274140000131
公式(15)中所示的超复数信号即为本发明实施例中的第一超复数信号。
综上,上述内容从理论上把超复数信号ψcas(x,y,z)的内容换算成了其他形式的表达式,目的是获得一个工程上能实现的超复数信号ψcas(x,y,z)表达式,如公式(15)所示。
在获取到如公式(15)所示的第一超复数信号之后,可以计算该第一超复数信号的模值,计算超复数信号的模值|ψcas(x,y,z)|的具体过程可以描述为:
计算模值需要用到几个双四元数的性质:
双四元数性质1:双四元数的乘法
对于一个双四元数A,它的表达式可以如公式(16)所示:
A=p+∈q
=(p0+ip1+jp2+kp3)+∈(q0+iq1+jq2+kq3)
=p0+ip1+jp2+kp3+∈q0+∈iq1+∈jq2+∈kq3   (16)
这里p和q都是四元数。定义另外一个双四元数B=p’+∈q’,则两个双四元数的乘积如公式(17)所示:
AB=(p+∈q)(p′+∈q′)=(pp′+qq′)+∈(pq′+qp′)   (17)
其中四元数p,q,p’,q’它们之间的四元数乘积理论这里不做赘述。
双四元数性质2:双四元数的共轭
双四元数A的共轭可以定义为Ac,如公式(18)所示:
Ac=pc+∈qc
=(p0-ip1-jp2-kp3)+∈(q0-iq1-jq2-kq3)
=p0-ip1-jp2-kp3+∈q0-∈iq1-∈jq2-∈kq3   (18)
其中pc是四元数p的共轭.
为了计算超复数信号的模值|ψcas(x,y,z)|,需要首先利用公式(16)至(19),来计算ψcas(x,y,z)和它共轭的乘积,即ψcascas)c,如公式(19)所示:
Figure BDA0001672274140000141
从公式(19)可以看出来ψcascas)c的结果只包含两个部分,一个是实数部分,即
Figure BDA0001672274140000142
另一部分是以∈为虚数单位的部分,即
Figure BDA0001672274140000143
实际上这一部分称为双四元数的“伪实数”部分。其他的虚数部分都为0,这个结果对计算模值|ψcas(x,y,z)|有很大帮助。下面阐释计算模值|ψcas(x,y,z)|的过程。
首先定义一个超复数信号ψcas(x,y,z)的一种极坐标形式:
Figure BDA0001672274140000144
这里|ψcas|是模值,a是单位双四元数(具有一个性质:与自己共轭乘积为1a(ac)=1),φ是双四元数角度。则有公式(20)所示:
ψcascas)c=|ψcas|2e2∈φ=|ψcas|2[ch(2φ)+∈sh(2φ)],     (20)
其中ch(),sh()分别是双曲余弦和双曲正弦函数。此公式据具体推导过程如下所示:
Figure BDA0001672274140000151
其中,r代表正的复数。
为了简化计算,可以用两个符号M和N来表示公式(20):
ψcascas)c=M+∈N
这里M代表公式(19)以及公式(20)的实数部分,N代表公式(19)以及公式(20)的“伪实数”部分。可得:
M2-N2=|ψcas|4[ch(2φ)2-sh(2φ)2]=|ψcas|4
因此|ψcas|=(M2-N2)1/4,把符号M,N代入公式(19)的内容,可得公式(21):
Figure BDA0001672274140000152
公式(21)的结果就是第一超复数信号的模值|ψcas(x,y,z)|,表示这个模值的元素来自于公式(8)至(11)的计算。那些计算是工程上能实现的计算过程。输入信息是公式(8)至(11)的极坐标的模值α1(x,y,z),α3(x,y,z),α5(x,y,z),α7(x,y,z),和角度
Figure BDA0001672274140000161
输出是第一超复数信号的模值,也即包络信号|ψcas(x,y,z)|。
也就是说,本发明实施例可以按照以下公式(21)获取第一超复数信号的模值:
Figure BDA0001672274140000162
其中,|ψcas|表示第一超复数信号的模值,α1为第一解析信号的模值,
Figure BDA0001672274140000163
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,
Figure BDA0001672274140000164
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,
Figure BDA0001672274140000165
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,
Figure BDA0001672274140000166
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
在获取到公式(21)所示的第一超复数信号的模值之后,即可以得到三维超声图像中用于指示待检测对象的包络信息。本发明实施例可以根据该包络信息生成三维超声图像。其中,根据包络信息生成三维超声图像的过程此处不做具体限定,具体可以包括但并不限于去噪等图像处理手段。
在步骤S206提供的技术方案中,在生成三维超声图像之后,可以在显示设备上显示该三维超声图像和/或在显示设备上显示该三维超声图像中的包络信息,其中,显示设备与检测设备可以为一体式结构,显示设备与检测设备也可以为独立式结构,当显示设备与检测设备相互独立时,检测设备在生成三维超声图像之后,可以将三维超声图像发送给显示设备进行显示,以便于用户可以清楚直观地从显示设备上观察到待检测对象。
需要说明的是,利用本发明实施例的超声图像的显示方法,由于三维超声图像中用于指示待检测对象的包络信息是对三维射频信号进行一次性模值计算得到的,而并非是通过一维包络信息拼接得到的,所以在三维超声图像中所述包络信息指示的待检测对象相对于一维超声图像或二维超声图像中的检测对象的亮度要更大一些,清晰度要更高一些,因此,本发明实施例可以达到使得待检测对象在三维超声图像中显示得更加清晰,进而提高三维超声图像的准确度的效果。
本发明所提供的超声图像的显示方法,可以用于B模式超声成像的直接三维包络检测。本发明通过基于3D卷积的形式和克里福德代数双四元数形式,定义高维超复数解析信号,实现一次性计算三维射频信号的三维幅度,即三维射频信号的三维超声图像。利用希尔伯特变换实现所提出的超复数信号以及它模值的工程实现方法。同时对比传统B模式超声图像重建是根据一维超声射频信号的一维包络信号按空间位置拼接而成的方式,本发明完全摒弃一维包络信号拼接B超图像的方法,避免了由于一维包络信号拼接而成的三维B模式图像的重建误差。另外,本发明同时适用于一次性二维和三维的B超图像的包络检测。
本发明可应用于对三维射频信号的包络计算的设备,比如用于三维超声设备的B模式成像。如图3所示,利用三维扇形探头获得的三维B模式图像中,本方法可以实现对三维数据的一次成像。
本发明可以实现对三维射频超声信号的一次性模值计算,从而获得其三维包络图像(也即本发明上述实施例中的包络信息所指示的图像)。此处所说的三维射频超声信号的模值指的就是三维包络图像。在这个三维包络图像的基础上可以使用任何二维或者三维的图像后处理算法以得到三维超声图像。
如图5所示,举例解释了用三维扇形超声探头(3D Ultrasound probe)采集三维射频信号的平台。在三维扇形超声探头下面有人造假体(Phantom),来模仿人体。有一个医用探针(Biopsy needle)插入到这个人造假体中,来模仿把医用探针插入人体获取人体组织用于后续活检的实验。用医用探针获取人体组织的过程中,医生会用超声探头来观察医用探针在人体里的位置,目的是使得探针的针头达到既定的人体组织位置。
图6中标出了三维超声使用的3个坐标轴方向术语:轴向axial,侧向lateral,扇面方向elevation。在图6中,显示了三维射频信号的x,y轴组成一个扇面,z轴是elevation轴,表示不同的二维扇面。把图6中获得的三维射频信号分别用现有方法和本发明提出的方法来计算超声包络图像。图7显示了一部分结果,是图6中扇面slice 15的结果。这个扇面上,有医用探针的位置。图7a、图7b是现有的一维方法和二维方法计算出来的结果。图7c是本发明计算出来的结果。在图7c中高亮的斜着的细长白色区域是医用探针的位置。这个亮度越高,说明医用探针越明显得显示在超声包络图像上。为了对比细节图7d获取了图像竖直方向的轮廓线(profile),图7e沿着探针方向的轮廓线。这些轮廓线的数值越高,代表亮度越大,也就是探针越清晰的显示在包络图上。从轮廓线的值可以看出,本发明提出的三维方法在探针位置的亮度大部分高于一维和二维的方法。
图8是放大后的图7c。图8中斜着的四边形框是医用探针的位置。两条虚线就是图7d和图7e的轮廓线位置。
图9是放大后的图7d,图10是放大后的图7e。图9中两条横向线条中间部分是医用探针的位置。上述示例是基于扇形的超声探头的三维射频数据的两个结果。
为了证明本发明的普适性,下面的示例是基于线性探头的三维射频数据的三维包络图像计算。同样可以得到类似的结论:本方案的三维包络图像能更好得显示出探针的位置信息。
图11是线性超声探头的示意图,图12是线性超声探头采集到的数据坐标轴示例,数据是立方体结构。图13是线性超声探头的三维包络结果,其中,图13a是一维方法的结果、图13b是二维方法的结果,图13c是本发明方法的结果。图14是方框内竖直方向上的轮廓线像素亮度对比。其中两条横向线条中间部分是医用探针的位置。三维方法的结果亮度最高。最明显的显示了探针。图15是方框内沿着探针的方向上的轮廓线像素亮度对比。整个曲线都是医用探针的在图像中的位置。三维方法的结果亮度最高,最明显的显示了探针。
本发明方案从数学上可以解决一切三维高频信号的包络计算,在应用层面,同时也可以解决三维信号中某一个维度或者某两个维度上是高频信号,其他维度上不是高频信号的三维信号。因此,潜在的能够应用于高频信号通信,高频雷达信号解调,或者用高频信息加密了图像,需要计算信号的包络信息解密等各种三维高频信号的模值计算所涉及的物理,工程应用等问题。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
根据本发明实施例的另一个方面,还提供了一种用于实施上述超声图像的显示方法的超声图像的显示装置。图16是根据本发明实施例的一种可选的超声图像的显示装置的示意图,如图16所示,该装置可以包括:
获取单元22,用于获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;计算单元24,用于对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;显示单元26,用于在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
需要说明的是,该实施例中的获取单元22可以用于执行本申请实施例中的步骤S202,该实施例中的计算单元24可以用于执行本申请实施例中的步骤S204,该实施例中的显示单元26可以用于执行本申请实施例中的步骤S206。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现。
可选地,计算单元24可以包括:第一获取模块,用于获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;第二获取模块,用于获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
可选地,第一获取模块可以包括:第一获取子模块,用于获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;第二获取子模块,用于获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;转换模块,用于根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,第二获取模块用于按照以下公式获取第一超复数信号的模值:
Figure BDA0001672274140000211
其中,|ψcas|表示第一超复数信号的模值,α1为第一解析信号的模值,
Figure BDA0001672274140000212
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,
Figure BDA0001672274140000213
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,
Figure BDA0001672274140000214
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,
Figure BDA0001672274140000215
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,三维超声图像中包络信息所指示的待检测对象的亮度大于一维超声图像或二维超声图像中待检测对象的亮度。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现。
通过上述模块,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
根据本发明实施例的又一个方面,还提供了一种用于实施上述超声图像的显示方法的电子装置。
图17是根据本发明实施例的一种电子装置的结构框图,如图17所示,该电子装置可以包括:一个或多个(图中仅示出一个)处理器201、存储器203,其中,存储器203中可以存储有计算机程序,处理器201可以被设置为运行所述计算机程序以执行本发明实施例的超声图像的显示方法。
其中,存储器203可用于存储计算机程序以及模块,如本发明实施例中的超声图像的显示方法和装置对应的程序指令/模块,处理器201通过运行存储在存储器203内的计算机程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的超声图像的显示方法。存储器203可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器203可进一步包括相对于处理器201远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
可选地,如图17所示,该电子装置还可以包括:传输装置205以及输入输出设备207。其中,传输装置205用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置205包括一个网络适配器(NetworkInterface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置205为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
本领域普通技术人员可以理解,图17所示的结构仅为示意,电子装置可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(MobileInternet Devices,MID)、PAD等终端设备。图17其并不对上述电子装置的结构造成限定。例如,电子装置还可以包括比图17中所示更多或者更少的组件(如网络接口、显示装置等),或者具有与图17所示不同的配置。
可选地,在本实施例中,上述存储器203可以用于存储计算机程序。
可选地,在本实施例中,上述处理器可以被设置为运行计算机程序,以执行以下步骤:获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
处理器201还用于执行下述步骤:获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
处理器201还用于执行下述步骤:获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
处理器201还用于执行下述步骤:按照以下公式获取第一超复数信号的模值:
Figure BDA0001672274140000231
其中,|ψcas|表示第一超复数信号的模值,α1为第一解析信号的模值,
Figure BDA0001672274140000241
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,
Figure BDA0001672274140000242
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,
Figure BDA0001672274140000243
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,
Figure BDA0001672274140000244
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
采用本发明实施例,提供了一种超声图像的显示方案。通过获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象,达到了在三维超声图像中准确显示待检测对象的目的,从而实现了提高三维超声图像的准确度的技术效果,进而解决了相关技术中重建的三维B超图像存在重建误差,降低了三维B超图像的准确度的技术问题。
根据本发明实施例的又一个方面,还提供了一种存储介质。该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述实施例中超声图像的显示方法的步骤。
可选地,在本实施例中,存储介质可以位于上述实施例所示的网络中的多个网络设备中的至少一个网络设备上。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的计算机程序:
S1,获取检测设备对待检测对象进行检测得到的输入信号,其中,输入信号为三维射频信号;
S2,对三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,一次性模值计算至少用于直接获取三维射频信号的三维幅度;
S3,在显示设备上显示三维超声图像中的包络信息,其中,包络信息用于指示待检测对象。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:获取三维射频信号对应的第一超复数信号,其中,第一超复数信号为8个分量之和,每个分量用输入信号对应的多个解析信号的模值以及角度表示;获取第一超复数信号的模值,其中,第一超复数信号的模值用于表示三维射频信号的三维幅度,包络信息包括第一超复数信号的模值。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:获取三维射频信号对应的第二超复数信号,其中,第二超复数信号包括8个分量,每个分量用输入信号的希尔伯特变换表示;获取用希尔伯特变换表示的分量与多个解析信号的模值以及角度的对应关系;根据对应关系将第二超复数信号转换为第一超复数信号。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:按照以下公式获取第一超复数信号的模值:
Figure BDA0001672274140000251
其中,|ψcas|表示第一超复数信号的模值,α1为第一解析信号的模值,
Figure BDA0001672274140000252
为第一解析信号的角度,第一解析信号为输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,
Figure BDA0001672274140000253
为第三解析信号的角度,第三解析信号为输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,
Figure BDA0001672274140000261
为第五解析信号的角度,第五解析信号为输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,
Figure BDA0001672274140000262
为第七解析信号的角度,第七解析信号为输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,多个解析信号包括第一解析信号、第三解析信号、第五解析信号以及第七解析信号。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
可选地,在本实施例中,本领域普通技术人员可以理解上述实施例的方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
上述实施例中的集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在上述计算机可读取的存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在存储介质中,包括若干指令用以使得一台或多台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的客户端,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种超声图像的显示方法,其特征在于,包括:
通过超声探头和显示设备构成的设备获取对待检测对象进行检测得到的输入信号,其中,所述输入信号为三维射频信号;
对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;
获取所述三维射频信号对应的第一超复数信号,其中,所述第一超复数信号为8个分量之和,每个分量用所述输入信号对应的多个解析信号的模值以及角度表示;
获取所述第一超复数信号的模值,其中,所述第一超复数信号的模值用于表示所述三维射频信号的三维幅度,所述包络信息包括所述第一超复数信号的模值;
在所述显示设备上显示所述三维超声图像中的所述包络信息,其中,所述包络信息用于指示所述待检测对象;
所述获取所述三维射频信号对应的第一超复数信号包括:
获取所述三维射频信号对应的第二超复数信号,其中,所述第二超复数信号包括8个分量,每个分量用所述输入信号的希尔伯特变换表示;
获取用希尔伯特变换表示的分量与所述多个解析信号的模值以及角度的对应关系;
根据所述对应关系将所述第二超复数信号转换为所述第一超复数信号。
2.根据权利要求1所述的方法,其特征在于,按照以下公式获取所述第一超复数信号的模值:
其中,|ψcas|表示所述第一超复数信号的模值,α1为第一解析信号的模值,为所述第一解析信号的角度,所述第一解析信号为所述输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,为所述第三解析信号的角度,所述第三解析信号为所述输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,为所述第五解析信号的角度,所述第五解析信号为所述输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,为所述第七解析信号的角度,所述第七解析信号为所述输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,所述多个解析信号包括所述第一解析信号、所述第三解析信号、所述第五解析信号以及所述第七解析信号。
3.一种超声图像的显示装置,其特征在于,包括:
获取单元,用于通过超声探头和显示设备构成的设备获取对待检测对象进行检测得到的输入信号,其中,所述输入信号为三维射频信号;
计算单元,用于对所述三维射频信号进行一次性模值计算,得到三维超声图像中的包络信息,其中,所述一次性模值计算至少用于直接获取所述三维射频信号的三维幅度;
第一获取模块,用于获取所述三维射频信号对应的第一超复数信号,其中,所述第一超复数信号为8个分量之和,每个分量用所述输入信号对应的多个解析信号的模值以及角度表示;
第二获取模块,用于获取所述第一超复数信号的模值,其中,所述第一超复数信号的模值用于表示所述三维射频信号的三维幅度,所述包络信息包括所述第一超复数信号的模值;
显示单元,用于在所述显示设备上显示所述三维超声图像中的所述包络信息,其中,所述包络信息用于指示所述待检测对象;
所述第一获取模块包括:
第一获取子模块,用于获取所述三维射频信号对应的第二超复数信号,其中,所述第二超复数信号包括8个分量,每个分量用所述输入信号的希尔伯特变换表示;
第二获取子模块,用于获取用希尔伯特变换表示的分量与所述多个解析信号的模值以及角度的对应关系;
转换模块,用于根据所述对应关系将所述第二超复数信号转换为所述第一超复数信号。
4.根据权利要求3所述的装置,其特征在于,所述第二获取模块用于按照以下公式获取所述第一超复数信号的模值:
其中,|ψcas|表示所述第一超复数信号的模值,α1为第一解析信号的模值,为所述第一解析信号的角度,所述第一解析信号为所述输入信号对应的在三维频率域的8个象限中的第一象限内的解析信号,α3为第三解析信号的模值,为所述第三解析信号的角度,所述第三解析信号为所述输入信号对应的在三维频率域的8个象限中第三象限内的解析信号,α5为第五解析信号的模值,为所述第五解析信号的角度,所述第五解析信号为所述输入信号对应的在三维频率域的8个象限中第五象限内的解析信号,α7为第七解析信号的模值,为所述第七解析信号的角度,所述第七解析信号为所述输入信号对应的在三维频率域的8个象限中第七象限内的解析信号,所述多个解析信号包括所述第一解析信号、所述第三解析信号、所述第五解析信号以及所述第七解析信号。
5.一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至2任一项中所述的方法。
6.一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至2任一项中所述的方法。
CN201810508663.2A 2018-05-24 2018-05-24 超声图像的显示方法和装置、存储介质及电子装置 Active CN110163940B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810508663.2A CN110163940B (zh) 2018-05-24 2018-05-24 超声图像的显示方法和装置、存储介质及电子装置
JP2020543587A JP6941742B2 (ja) 2018-05-24 2019-04-11 超音波画像の表示方法及び装置、記憶媒体並びに電子装置
PCT/CN2019/082216 WO2019223442A1 (zh) 2018-05-24 2019-04-11 超声图像的显示方法和装置、存储介质及电子装置
EP19808389.1A EP3806028B1 (en) 2018-05-24 2019-04-11 Ultrasound image display method and apparatus, and storage medium and electronic apparatus
US16/935,421 US11486862B2 (en) 2018-05-24 2020-07-22 Ultrasound image display method and apparatus, storage medium, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810508663.2A CN110163940B (zh) 2018-05-24 2018-05-24 超声图像的显示方法和装置、存储介质及电子装置

Publications (2)

Publication Number Publication Date
CN110163940A CN110163940A (zh) 2019-08-23
CN110163940B true CN110163940B (zh) 2023-04-18

Family

ID=67644979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810508663.2A Active CN110163940B (zh) 2018-05-24 2018-05-24 超声图像的显示方法和装置、存储介质及电子装置

Country Status (5)

Country Link
US (1) US11486862B2 (zh)
EP (1) EP3806028B1 (zh)
JP (1) JP6941742B2 (zh)
CN (1) CN110163940B (zh)
WO (1) WO2019223442A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199625B2 (ja) * 2003-09-12 2008-12-17 アロカ株式会社 超音波画像処理装置
CN100579459C (zh) * 2006-04-24 2010-01-13 株式会社东芝 超声波图像获取装置及超声波图像获取方法
CN103512960B (zh) * 2013-09-27 2016-01-06 中国科学院声学研究所 一种超声阵列成像方法
US20160238568A1 (en) * 2015-02-18 2016-08-18 Riverside Research Institute Typing and imaging of biological and non-biological materials using quantitative ultrasound
CN106934335B (zh) * 2015-12-31 2021-02-02 南通东华软件有限公司 图像识别的方法和装置

Also Published As

Publication number Publication date
CN110163940A (zh) 2019-08-23
JP2021513421A (ja) 2021-05-27
US20200348268A1 (en) 2020-11-05
EP3806028B1 (en) 2023-12-20
JP6941742B2 (ja) 2021-09-29
EP3806028A1 (en) 2021-04-14
EP3806028A4 (en) 2021-06-23
US11486862B2 (en) 2022-11-01
WO2019223442A1 (zh) 2019-11-28

Similar Documents

Publication Publication Date Title
CN107220933B (zh) 一种参考线确定方法和系统
Al-Zu’bi et al. Efficient 3D medical image segmentation algorithm over a secured multimedia network
CA2595010A1 (en) Temperature mapping on structural data
CN110313941B (zh) 数据处理方法、装置、设备及存储介质
CN110288653B (zh) 一种多角度超声图像融合方法、系统及电子设备
WO2005106799A1 (en) Method and system for multi-object volumetric data visualization
CN110916707B (zh) 二维骨骼图像获取方法、系统及装置
Lee et al. Ultrasound needle segmentation and trajectory prediction using excitation network
US20170032702A1 (en) Method and Apparatus For Generating an Ultrasound Scatterer Representation
US20150104084A1 (en) Scanning system and image display method
Chen et al. Real-time freehand 3D ultrasound imaging
CN111369675B (zh) 基于肺结节脏层胸膜投影的三维可视模型重建方法及装置
CN110163940B (zh) 超声图像的显示方法和装置、存储介质及电子装置
Vasconcelos et al. Spatial calibration of a 2D/3D ultrasound using a tracked needle
CN108511052B (zh) 用于确定投影数据组的方法以及投影确定系统
CN116363038A (zh) 超声图像融合方法、装置、计算机设备及存储介质
CN112669450B (zh) 人体模型构建方法和个性化人体模型构建方法
Haq et al. Block-based compressed sensing of MR images using multi-rate deep learning approach
Guedri et al. Three-dimensional reconstruction of blood vessels of the human retina by fractal interpolation
Chan et al. Using game controller as position tracking sensor for 3D freehand ultrasound imaging
CN110490977B (zh) 一种用于全息设备的图像处理方法、系统和存储介质
CN110599560B (zh) 磁共振成像方法、装置、存储介质及计算机设备
Gomes‐Fonseca et al. Surface‐based registration between CT and US for image‐guided percutaneous renal access–A feasibility study
Kim et al. A Multiscale Deep Encoder–Decoder with Phase Congruency Algorithm Based on Deep Learning for Improving Diagnostic Ultrasound Image Quality
CN113470154B (zh) 图像处理方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant