WO2019223346A1 - 一种封闭断块油藏氮气复合吞吐方法 - Google Patents

一种封闭断块油藏氮气复合吞吐方法 Download PDF

Info

Publication number
WO2019223346A1
WO2019223346A1 PCT/CN2019/071824 CN2019071824W WO2019223346A1 WO 2019223346 A1 WO2019223346 A1 WO 2019223346A1 CN 2019071824 W CN2019071824 W CN 2019071824W WO 2019223346 A1 WO2019223346 A1 WO 2019223346A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
injection
throughput
injected
foaming agent
Prior art date
Application number
PCT/CN2019/071824
Other languages
English (en)
French (fr)
Inventor
鹿腾
李兆敏
李健
张丁涌
侯大炜
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/472,827 priority Critical patent/US11187065B2/en
Publication of WO2019223346A1 publication Critical patent/WO2019223346A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium

Definitions

  • the invention relates to a nitrogen compound throughput method for a closed fault block reservoir, and belongs to the technical field of oil and gas field development.
  • Closed fault block reservoirs refer to the accumulation of oil and gas in traps formed by the occlusion of multiple faults. Due to the low oil-bearing area and reserves of closed fault block reservoirs, the reservoir cannot establish a “one injection and one production” well pattern. Most closed small fault block reservoirs have only one production well. Therefore, it is difficult to improve the well pattern, water flood control is low, and the energy is decreasing rapidly. The development of closed small fault block reservoirs has the characteristics of low fluid production and low production. . In view of this kind of problem, research on effective development methods of closed fault block reservoirs needs to be carried out to improve the recovery factor of imperfect closed fault block reservoirs.
  • nitrogen flooding, foam flooding, and carbon dioxide flooding have been applied in conventional reservoirs, and have achieved good development results.
  • injection-production well pattern that is, nitrogen injection in the injection well, Bubble agent, water, carbon dioxide, etc., after injection, displace the crude oil in the formation under the effect of displacement pressure, and produce crude oil in the production well.
  • the reservoir cannot establish a “one injection and one production” well pattern. Most closed small fault block reservoirs have only one production well. And CO2 flooding cannot be implemented in closed small fault block reservoirs.
  • Nitrogen injection into a well in a closed fault block reservoir can effectively supplement formation energy. Nitrogen stimulation does not require a well pattern and single well throughput. It can be realized, thereby solving problems such as difficulty in water injection and difficulty in establishing an effective pressure system.
  • related researches have been carried out on the optimization of injection and production parameters and supporting equipment of nitrogen throughput technology.
  • on-site implementation of closed small fault block reservoirs found that after 2-3 cycles of nitrogen throughput, the cycle recovery rate became lower and lower, the oil change rate was low, and the throughput effect was unsatisfactory.
  • the main problems are as follows: (1) With the increase of the throughput period, nitrogen is easy to form large continuous channels in the formation.
  • the present invention provides a nitrogen compound throughput method for a closed fault block reservoir.
  • the present invention adjusts a development method that has an unsatisfactory late-time nitrogen throughput effect from the perspective of improving the later-time nitrogen throughput effect.
  • Adding slugs such as water, foaming agent solution, and carbon dioxide to the nitrogen gas puffing can effectively enhance the effect of nitrogen gas puffing and increasing production, and realize the efficient and stable development of closed fault block reservoirs in the later stage of nitrogen puffing.
  • a nitrogen compound throughput method for a closed fault block reservoir includes:
  • the reservoir is a closed fault block reservoir with a buried depth ⁇ 5000m, residual oil saturation> 0.5, reservoir thickness> 10m, and horizontal permeability> 100mD, ratio of vertical permeability to horizontal permeability> 0.35, oil layer porosity> 0.20, formation dip angle> 8 °;
  • the following throughput phases are sequentially performed: a nitrogen throughput phase, a nitrogen and water composite throughput phase, a nitrogen and foaming agent composite throughput phase, and a nitrogen and carbon dioxide composite throughput phase.
  • the nitrogen-throughput stage includes: drilling a horizontal or vertical well in a closed fault block reservoir, injecting nitrogen into the well, and injecting nitrogen in an amount of 50,000 to 300,000 m 3 , the larger the reservoir area
  • the initial pressure drop of the manhole is faster.
  • the nitrogen gradually expands to the top of the formation.
  • the pressure drop rate gradually decreases.
  • nitrogen diffuses to the top of the oil layer at this time, and the boring well is ended.
  • the manhole time is 10-30 days.
  • Crude oil and nitrogen Continuous production The initial oil production rate is large and the gas production rate is low. As the production progresses, the oil production rate gradually decreases. When the oil production rate is less than 0.1-0.5 tons / day, the production is terminated;
  • the combined nitrogen and water throughput stage includes an injection, manhole, and recovery stage
  • the injection method in the injection phase is as follows:
  • nitrogen is injected first, and the nitrogen injection amount is 50000-300000m 3.
  • the injection pressure of the surface nitrogen injection equipment can not be continuously injected with a large amount of nitrogen.
  • Nitrogen slugs and water slugs are injected alternately, and nitrogen is injected first.
  • the slug and nitrogen slug injection volume depends on the pressure limit of the nitrogen injection equipment. When the nitrogen injection pressure reaches the upper limit of the nitrogen injection equipment injection pressure, stop the nitrogen injection and start the water slug injection.
  • the purpose of the water slug injection is to press the nitrogen into the Formation, reduce the nitrogen injection pressure.
  • the volume of the water injection plug is 30-50m 3.
  • the nitrogen injection plug is injected again until the nitrogen injection pressure reaches the upper limit of the injection pressure of the nitrogen injection equipment, and then the water injection plug is injected again. Inject nitrogen and water plug until the total nitrogen injection reaches 50,000-300,000m 3. The larger the reservoir area, the larger the nitrogen injection;
  • manhole production starts. Because the injection of the water slug can quickly push nitrogen to the top of the oil layer, the manhole time is shorter, 5-10 days;
  • the recovery phase begins.
  • the large channels of nitrogen communication can be blocked, so that nitrogen cannot form a continuous gas channel, and the nitrogen blocked in the formation can better increase the formation energy; reduced plugging nitrogen reservoir unswept volume of the drive, to displace oil, until, when the amount of oil in a single cycle (t) to the injection amount of nitrogen (104 side) is less than 5, i.e., within the injection cycle 104
  • the amount of oil produced by square nitrogen is less than 5 tons, and the next cycle is changed to the combined throughput of nitrogen and foaming agent. With the increase of the combined throughput of nitrogen and water, the effect gradually becomes worse. This is due to the plugging of the water section.
  • the combined nitrogen and foaming phase of the foaming agent includes an injection, a manhole and a recovery phase;
  • nitrogen is injected first, and the nitrogen injection amount is 50,000-300,000m 3.
  • the larger the reservoir area the larger the nitrogen injection amount; after the nitrogen injection, the foaming agent solution is injected to foam.
  • the agent is an anionic surfactant, the volume of the foaming agent solution injected is 100-500m 3 , and the concentration of the foaming agent is 0.3-0.5wt%.
  • the larger the reservoir area the larger the amount of foaming agent solution injected;
  • the second injection method is to use nitrogen slug and The foam solution plugs are alternately injected.
  • the nitrogen plug is injected first.
  • the injection amount of the nitrogen plug depends on the pressure limit of the nitrogen injection equipment. When the nitrogen injection pressure reaches the upper limit of the injection pressure of the nitrogen injection equipment, stop the injection of nitrogen and start the injection of the foaming agent solution.
  • the purpose of the plug is to inject nitrogen into the formation and reduce the nitrogen injection pressure.
  • the volume of the plug for the foaming agent solution is 30-50m 3 , and the nitrogen is injected after the plug of the foaming agent solution. Stop until the nitrogen injection pressure reaches the upper limit of the injection pressure of the nitrogen injection equipment, and then inject the foaming agent solution stopper again; alternately inject nitrogen and the foaming agent solution stopper until the total nitrogen injection amount reaches 50,000-300,000m 3 , and the reservoir area The larger the amount of nitrogen injection;
  • manhole production starts. Because the injection of the foaming agent solution slug can quickly push nitrogen to the top of the oil layer, the manhole time is 5-10 days;
  • the recovery phase begins, until, when a certain amount of oil period (t) to the injection amount of nitrogen (104 side) is less than 5, i.e., the inner side 104 of nitrogen injection period recovery of oil is less than 5 tons,
  • the next cycle is changed to the nitrogen and carbon dioxide composite throughput phase.
  • the effect gradually worsens. This is due to the limited scope of the previous types of throughput methods in the formation. Water, foaming agent solutions, etc. cannot effectively use deep formations. After the foaming agent solution is injected, it can form a nitrogen foam state with the recovered nitrogen.
  • the nitrogen foam has a strong ability to block gas channeling, thereby more significantly blocking the large channels of nitrogen communication, so that nitrogen cannot form a continuous gas channeling channel.
  • the nitrogen blocked in the formation can better increase the formation energy; and the foaming agent solution can improve the washing efficiency and improve the development effect.
  • the nitrogen and carbon dioxide compound throughput stage includes an injection, manhole and recovery stage
  • the manhole After the injection, the manhole is started. In order to increase the diffusion range of carbon dioxide and the contact time with crude oil, the manhole time should be increased.
  • the manhole time is set to 30-90 days;
  • the carbon dioxide can reduce the viscosity of the crude oil and increase the expansion performance of the crude oil.
  • the carbon dioxide can mix with the crude oil, increase the fluidity of the remaining oil, and improve the nitrogen throughput.
  • the technical problem to be solved by the present invention is that due to the low oil-bearing area and reserves of closed fault block reservoirs, the reservoir cannot establish a “one injection and one production” well pattern alone. Most closed fault block reservoirs have only one production well, so It is difficult to improve the well pattern, the degree of water flood control is low, the energy is decreasing rapidly, and the development of closed fault block reservoirs has the characteristics of low fluid production and low recovery.
  • the invention provides a nitrogen compound throughput method for a closed fault block reservoir, which utilizes a well in the closed reservoir to implement nitrogen throughput, nitrogen and water composite throughput, nitrogen and foaming agent composite throughput, and nitrogen and carbon dioxide composite at different stages.
  • this method can effectively solve the problems of low waterflooding control and fast energy declining in closed fault block reservoirs, and nitrogen compound throughput can solve the problem of poor later performance of single nitrogen throughput, thereby improving the development effect of closed fault block reservoirs. Improve the efficiency of energy extraction.
  • FIG. 1 is a schematic diagram of nitrogen throughput injection
  • Figure 2 is a schematic diagram of nitrogen and water composite throughput
  • FIG. 3 is a schematic diagram of composite throughput of nitrogen and a foaming agent
  • FIG. 4 is a schematic diagram of composite throughput of nitrogen and carbon dioxide.
  • a nitrogen compound throughput method for a closed fault block reservoir includes:
  • the reservoir is a closed fault block reservoir with a buried depth ⁇ 5000m, residual oil saturation> 0.5, reservoir thickness> 10m, and horizontal permeability> 100mD, ratio of vertical permeability to horizontal permeability> 0.35, oil layer porosity> 0.20, formation dip angle> 8 °;
  • the selected developed oil reservoir is a closed oil reservoir.
  • the oil layer is mainly composed of fine sandstone and silty sandstone.
  • the reservoir is relatively closed, and the formation inclination angle is 15 °. Water injection cannot be used for energy replenishment.
  • the formation pressure is 22 MPa
  • the temperature is 94 ° C
  • the average porosity is 20.8%
  • the average air permeability is 46 ⁇ 10 -3 ⁇ m2.
  • This reservoir type is a normal-pressure, low-permeability lithologic structural reservoir, which is favorable for nitrogen injection.
  • the following throughput phases are sequentially performed: a nitrogen throughput phase, a nitrogen and water composite throughput phase, a nitrogen and foaming agent composite throughput phase, and a nitrogen and carbon dioxide composite throughput phase.
  • the first cycle includes: drilling a horizontal or vertical well in a closed fault block reservoir, injecting nitrogen into the well, the nitrogen injection amount is 50000-300000m 3 , and the manhole time is 10-30 days; After the completion of the manhole, the well is opened for production. When the oil production rate is lower than 0.1-0.5 tons / day, the production is ended;
  • Second period repeating the nitrogen throughput stage, until: a period when the amount of oil (t) to the injection amount of nitrogen (104 side) is less than 5, i.e., 104 square nitrogen injection period within which the produced oil is less than 5 Ton, the next cycle is changed to the nitrogen and water compound throughput stage.
  • the third cycle the combined nitrogen and water throughput phase, including the injection, manhole and recovery phases;
  • the injection method in the injection phase is as follows:
  • nitrogen is injected first, and the nitrogen injection amount is 50000-300000m 3 ; after nitrogen is injected, water is injected, and the volume of injected water is 100-500m 3 ;
  • nitrogen slugs and water slugs are injected alternately. Nitrogen slugs are injected first. The amount of nitrogen slug injection depends on the pressure limit of the nitrogen injection equipment. When the nitrogen injection pressure reaches the nitrogen injection equipment, After the upper limit of the pressure, stop injecting nitrogen and start injecting the water slug. The volume of the water injecting plug is 30-50m 3. After the water injecting stopper, the nitrogen injecting stopper is injected again until the nitrogen injection pressure reaches the upper limit of the injection pressure of the nitrogen injection equipment. Inject water slug again; alternately inject nitrogen and water slug until the total nitrogen injection volume reaches 50,000-300,000m 3 ;
  • the recovery phase begins, the replacement of oil, until, when the amount of oil in a single cycle (t) to the injection amount of nitrogen (104 side) is less than 5, i.e. within the period 104 square nitrogen injection oil recovery Less than 5 tons, the next cycle is changed to the combined throughput of nitrogen and foaming agent.
  • the volume of nitrogen injected is 200,000 cubic meters, and the volume of injected water slug is 60 cubic meters.
  • the wellhead is installed with a pressure gauge to start manhole.
  • the manhole time is 10 days, and then the oil nozzle is used to control the discharge to prevent the formation from being disturbed by the excessive discharge speed. Destroy water slugs.
  • the rotary pumping is performed. When the set limit output is reached, the next cycle of nitrogen compound throughput is performed.
  • the fourth cycle the nitrogen and foaming agent compound throughput phase, including the injection, manhole and recovery phases;
  • nitrogen is injected first, and the nitrogen injection amount is 50000-300000m 3 ; after the nitrogen is injected, the foaming agent solution is injected.
  • the foaming agent is an anionic surfactant, and the foaming agent is injected.
  • the volume of the solution is 100-500m 3 and the foaming agent concentration is 0.3-0.5wt%;
  • nitrogen slugs and foaming agent solution slugs are alternately injected.
  • Nitrogen slugs are injected first.
  • the amount of nitrogen slug injection depends on the pressure limit of the nitrogen injection equipment.
  • stop injecting nitrogen and start injecting the foaming agent solution plug is 30-50 m 3 .
  • the foaming agent solution plug is 30-50 m 3 .
  • the manhole production starts, and the manhole time is 5-10 days;
  • the recovery phase begins, until, when a certain amount of oil period (t) to the injection amount of nitrogen (104 side) is less than 5, i.e., the inner side 104 of nitrogen injection period recovery of oil is less than 5 tons, The next cycle was changed to a combined nitrogen and carbon dioxide throughput stage.
  • a volume of 230,000 m3 of nitrogen is injected and a volume of 0.5% of a foaming agent solution is injected at 40 m3.
  • a wellhead pressure gauge was installed to start the manhole, and the manhole time was 5 days.
  • the nozzle was used to control the discharge and let the nitrogen slowly and evenly pass through the large holes to form a continuous foam slug.
  • the rotary pumping is performed. When the set limit output is reached, the next cycle of nitrogen compound throughput is performed.
  • the sixth cycle the combined nitrogen and carbon dioxide throughput stage: including the injection, manhole and recovery stages;
  • the volume of carbon dioxide injected is 150,000 cubic meters
  • the volume of nitrogen injected is 150,000 cubic meters
  • the water stage plug is 20 cubic meters.
  • the seventh cycle the nitrogen compound throughput injection phase, in order to enhance the retention and storage capacity of carbon dioxide and nitrogen, add a foaming agent solution. Inject 200,000 cubic meters of carbon dioxide volume, 100,000 cubic meters of nitrogen volume, 20 cubic meters of 0.5% HY-2 (foaming agent solution), and 10 cubic meters of water slug.
  • the wellhead was installed with a pressure gauge to start manholes. The manhole time was 5 days, and then the rapid discharge was used to give full play to the expansion energy of the crude oil, so that the crude oil after viscosity reduction was quickly separated from the deep reservoir.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种封闭断块油藏氮气复合吞吐方法包括:选择开发的油藏:按照以下条件进行粗筛选该开发方法适用的油藏:油藏为封闭断块油藏,埋深<5000m,剩余油饱和度>0.5,油层厚度>10m,水平渗透率>100mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,地层倾角>8°;顺次进行以下吞吐阶段:氮气吞吐阶段、氮气和水复合吞吐阶段、氮气和起泡剂复合吞吐阶段、氮气和二氧化碳复合吞吐阶段。该方法从改善氮气吞吐后期效果的角度出发,在氮气吞吐中添加水、起泡剂溶液、二氧化碳等段塞,有效地增强氮气吞吐封驻增产的效果,实现氮气吞吐后期封闭断块油藏高效稳定的开发。

Description

一种封闭断块油藏氮气复合吞吐方法 技术领域
本发明涉及一种封闭断块油藏氮气复合吞吐方法,属于油气田开发的技术领域。
背景技术
封闭断块油藏是指由多条断层遮挡作用而形成的圈闭内的油气聚集,由于封闭断块油藏含油面积和储量较低,储层无法单独建立“一注一采”井网,大部分封闭小断块油藏内只有一口生产井,因此井网完善难度大,水驱控制程度低,能量递减快,封闭小断块油藏开发中表现出低产液量和低采出程度特点。针对该类问题,需要开展封闭断块油藏有效开发方式的研究,提高注采不完善封闭断块油藏的采收率。
目前氮气驱、泡沫驱和二氧化碳驱已经在常规油藏开展了应用,并且取得了较好的开发效果,但是这些油藏的应用均是采用注采井网实现,即在注入井内注入氮气、起泡剂、水、二氧化碳等,注入后在驱替压差的作用下驱替地层内的原油,在生产井内产出原油。但是由于封闭小断块油藏含油面积和储量较低,储层无法单独建立“一注一采”井网,大部分封闭小断块油藏内只有一口生产井,因此上述氮气驱、泡沫驱和二氧化碳驱无法在封闭小断块油藏内实施。
针对封闭断块油藏特点,有些学者已经提出了氮气吞吐等开发方式,在封闭断块油藏内的一口井内注入氮气,可以有效补充地层能量,氮气吞吐不需要完善的井网,单井吞吐即可实现,从而解决注水困难、有效压力系统难以建立等问题。目前,氮气吞吐技术在注采参数优化及设备配套方面都开展了相关研究。但现场对封闭小断块油藏实施发现氮气吞吐2-3周期后,周期采收程度越来越低,换油率低,吞吐效果不理想。主要存在以下问题:(1)随着吞吐周期的增加,氮气在地层中易形成大的连续通道,开采过程中气窜现象严重,氮气无法在地层形成有效的驻留。(2)氮气的溶解性能低,很难大幅度提升原油的膨胀性。(3)在一般油藏条件下氮气与原油无法发生混相,难以降低原油的粘度。因此本专利发明一种氮气复合吞吐方法,增强氮气在封闭小断块油藏吞吐的技术效果。
发明内容
针对现有技术的不足,本发明提供一种封闭断块油藏氮气复合吞吐方法。本 发明从改善氮气吞吐后期效果的角度出发,对氮气吞吐后期吞吐效果不理想的开发方法进行调整。在氮气吞吐中添加水、起泡剂溶液、二氧化碳等段塞,可以有效地增强氮气吞吐封驻增产的效果,实现氮气吞吐后期封闭断块油藏高效稳定的开发。
本发明的技术方案如下:
一种封闭断块油藏氮气复合吞吐方法,包括:
选择开发的油藏:按照以下条件进行粗筛选该开发方法适用的油藏:油藏为封闭断块油藏,埋深<5000m,剩余油饱和度>0.5,油层厚度>10m,水平渗透率>100mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,地层倾角>8°;
顺次进行以下吞吐阶段:氮气吞吐阶段、氮气和水复合吞吐阶段、氮气和起泡剂复合吞吐阶段、氮气和二氧化碳复合吞吐阶段。
本发明公开的另一方面,所述氮气吞吐阶段,包括:在封闭断块油藏内钻一口水平井或直井,在该井内注入氮气,氮气注入量为50000-300000m 3,油藏面积越大,氮气注入量越大,注入氮气后,关闭该井进行焖井,焖井中观察该井压力变化,焖井初始阶段压力下降速度较快,随着焖井的进行,氮气逐渐向地层顶部扩展,压力下降速度逐渐降低,当压力下降速度达到拐点后,此时氮气扩散至油层顶部,结束闷井,焖井时间为10-30天;焖井结束后打开该井生产,生产过程中原油和氮气不断产出,生产初期产油速度较大,产气速度较低,随着生产的进行,产油速度逐渐降低,当产油速度低于0.1-0.5吨/天后,结束生产;
重复所述氮气吞吐阶段,直至:当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨时,该周期氮气吞吐效果和经济效益差,下一周期改为所述氮气和水复合吞吐阶段。随着氮气吞吐周期数的增多,氮气吞吐效果逐渐变差,这是由于多周期氮气吞吐后氮气形成了气窜通道,注入的氮气很快产出,无法有效在地层里封存驱油。
本发明公开的另一方面,所述氮气和水复合吞吐阶段,包括注入、焖井和回采阶段;
所述注入阶段注入方式如下:
针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为 50000-300000m 3,油藏面积越大,氮气注入量越大;注入氮气后再注入水,注入水的体积为100-500m 3,油藏面积越大,水注入量越大;
针对渗透率小于100mD的低渗透率储层,由于低渗透油藏渗透率较低,地面注氮设备注入压力的限制无法大量持续的注入氮气,氮气段塞与水段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入水段塞,注入水段塞的目的是将氮气压入地层,降低氮气注入压力,注入水段塞的体积为30-50m 3,注入水段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入水段塞;交替注入氮气和水段塞,直至氮气总注入量达到50000-300000m 3,油藏面积越大,氮气注入量越大;
注入完成后,开始焖井生产,由于水段塞的注入可以将氮气迅速推至油层顶部,因此焖井时间较短,为5-10天;
焖井结束后,开始回采阶段,水注入后可以堵塞氮气连通的大孔道,使氮气无法形成连续的气窜通道,封堵在地层中的氮气能够更好地增加地层能量;随着井口能量的降低,封堵的氮气将驱动未波及体积的储层,置换出原油,直至,当单个周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和起泡剂复合吞吐阶段,随着氮气和水复合吞吐周期数的增大,效果逐渐变差,这是由于水段塞封堵氮气气窜的能力和水渗吸驱油效果有限,多周期吞吐后采油量降低;并且水在吞吐焖井时间内可以通过毛管力发挥渗吸驱油能力,因此氮气和水复合吞吐能够改善氮气吞吐效果。
本发明公开的另一方面,所述氮气和起泡剂复合吞吐阶段,包括注入、焖井和回采阶段;
针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为50000-300000m 3,油藏面积越大,氮气注入量越大;注入氮气后再注入起泡剂溶液,起泡剂为阴离子性表面活性剂,注入起泡剂溶液的体积为100-500m 3,起泡剂浓度为0.3-0.5wt%,油藏面积越大,起泡剂溶液注入量越大;
针对渗透率小于100mD的低渗透率储层,由于低渗透油藏渗透率较低,地面注氮设备注入压力的限制无法大量持续的注入氮气,因此第二种注入方式为采用氮气段塞与起泡剂溶液段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于 注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入起泡剂溶液段塞,注入起泡剂溶液段塞的目的是将氮气压入地层,降低氮气注入压力,注入起泡剂溶液段塞的体积为30-50m 3,注入起泡剂溶液段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入起泡剂溶液段塞;交替注入氮气和起泡剂溶液段塞,直至氮气总注入量达到50000-300000m 3,油藏面积越大,氮气注入量越大;
注入完成后,开始焖井生产,由于起泡剂溶液段塞的注入可以将氮气迅速推至油层顶部,因此焖井时间为5-10天;
焖井结束后,开始回采阶段,直至,当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和二氧化碳复合吞吐阶段,随着氮气和起泡剂复合吞吐周期数的增大,效果逐渐变差,这是由于前面几种吞吐方式在地层内的波及范围有限,氮气、水、起泡剂溶液等无法有效动用深部地层。起泡剂溶液注入后可以与回采的氮气形成氮气泡沫状态,氮气泡沫具有较强的封堵气窜的能力,从而更为明显的堵塞氮气连通的大孔道,使氮气无法形成连续的气窜通道,封堵在地层中的氮气能够更好地增加地层能量;并且起泡剂溶液可以提高洗油效率,改善开发效果。
本发明公开的另一方面,所述氮气和二氧化碳复合吞吐阶段:包括注入、焖井和回采阶段;
先注入二氧化碳,注入量为10-50吨,油藏面积越大,二氧化碳注入量越大;然后再注入氮气,氮气注入量50000-300000m 3,油藏面积越大,氮气注入量越大;
注入结束后,开始焖井,为了提高二氧化碳的扩散范围和与原油的接触时间,要增大焖井时间,焖井时间设置为30-90天;
焖井结束后开始回采阶段,二氧化碳的可以很好地降低原油粘度,并增加原油的膨胀性能,二氧化碳能与原油发生混相,增加剩余油的流动性,提高氮气吞吐效果。
本发明的优势在于:
本发明要解决的技术问题在于:由于封闭断块油藏含油面积和储量较低,储层无法单独建立“一注一采”井网,大部分封闭断块油藏内只有一口生产井,因此井网完善难度大,水驱控制程度低,能量递减快,封闭断块油藏开发中表现出 低产液量和低采出程度特点。
本发明提供了一种封闭断块油藏氮气复合吞吐方法,利用封闭油藏内一口井,在不同阶段分别实施氮气吞吐、氮气和水复合吞吐、氮气和起泡剂复合吞吐、氮气和二氧化碳复合吞吐,该方法可以有效解决封闭断块油藏水驱控制程度低和能量递减快的问题,并且氮气复合吞吐能够解决单一氮气吞吐后期效果差的问题,从而改善封闭断块油藏开发效果,大大提升能源的开采效率。
附图说明:
图1为氮气吞吐注入示意图;
图2为氮气和水复合吞吐示意图;
图3为氮气和起泡剂复合吞吐示意图;
图4为氮气和二氧化碳复合吞吐示意图。
具体实施方式:
下面结合具体实施例和说明书附图对本发明做详细的说明,但不限于此。
实施例、
一种封闭断块油藏氮气复合吞吐方法,包括:
选择开发的油藏:按照以下条件进行粗筛选该开发方法适用的油藏:油藏为封闭断块油藏,埋深<5000m,剩余油饱和度>0.5,油层厚度>10m,水平渗透率>100mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,地层倾角>8°;
以本实施例为例,所选择开发的油藏为封闭油藏,该油层以细砂岩、粉细砂岩为主,储层较封闭,地层倾角15°,无法注水进行能量补充。地层压力22MPa,温度94℃,平均孔隙度20.8%,平均空气渗透率46×10 -3μm2。该油藏类型为常压、低渗岩性构造油藏,有利于氮气注入。
顺次进行以下吞吐阶段:氮气吞吐阶段、氮气和水复合吞吐阶段、氮气和起泡剂复合吞吐阶段、氮气和二氧化碳复合吞吐阶段。
第一周期:所述氮气吞吐阶段,包括:在封闭断块油藏内钻一口水平井或直井,在该井内注入氮气,氮气注入量为50000-300000m 3,焖井时间为10-30天;焖井结束后打开该井生产,当产油速度低于0.1-0.5吨/天后,结束生产;
第二周期:重复所述氮气吞吐阶段,直至:当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨时,下一周期改为所述氮气和水复合吞吐阶段。
第三周期:所述氮气和水复合吞吐阶段,包括注入、焖井和回采阶段;
所述注入阶段注入方式如下:
针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为50000-300000m 3;注入氮气后再注入水,注入水的体积为100-500m 3
针对渗透率小于100mD的低渗透率储层,氮气段塞与水段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入水段塞,注入水段塞的体积为30-50m 3,注入水段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入水段塞;交替注入氮气和水段塞,直至氮气总注入量达到50000-300000m 3
注入完成后,开始焖井生产,为5-10天;
焖井结束后,开始回采阶段,置换出原油,直至,当单个周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和起泡剂复合吞吐阶段。
本实施例中,所述第三周期氮气复合吞吐注入阶段,注入氮气体积20万方,注入水段塞体积60方。注完水段塞后井口安装压力表开始焖井,为保证水段塞充分发挥渗吸作用,焖井时间为10天,之后用油嘴控制放喷,防止因放喷速度过大而扰动地层,破坏水段塞。放喷结束后进行转抽,当达到设定的极限产量时,进行下一周期的氮气复合吞吐。
第四周期:所述氮气和起泡剂复合吞吐阶段,包括注入、焖井和回采阶段;
针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为50000-300000m 3;注入氮气后再注入起泡剂溶液,起泡剂为阴离子性表面活性剂,注入起泡剂溶液的体积为100-500m 3,起泡剂浓度为0.3-0.5wt%;
针对渗透率小于100mD的低渗透率储层,采用氮气段塞与起泡剂溶液段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入起泡剂溶液段塞, 注入起泡剂溶液段塞的体积为30-50m 3,注入起泡剂溶液段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入起泡剂溶液段塞;交替注入氮气和起泡剂溶液段塞,直至氮气总注入量达到50000-300000m 3
注入完成后,开始焖井生产,焖井时间为5-10天;
焖井结束后,开始回采阶段,直至,当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和二氧化碳复合吞吐阶段。
在本实施例中,所述第四周期氮气复合吞吐注入阶段,注入氮气体积23万方,注入0.5%的起泡剂溶液体积40方。注完起泡剂溶液后安装井口压力表开始焖井,焖井时间为5天,之后用油嘴控制放喷,让氮气缓慢均匀的通过大孔道,形成连续的泡沫段塞。放喷结束后进行转抽,当达到设定的极限产量时,进行下一周期的氮气复合吞吐。
由于产量较好,继续进行氮气+起泡剂溶液吞吐。
第五周期:氮气复合吞吐注入阶段,注入氮气体积25万方,注入0.5%的HY-2(起泡剂溶液)体积60方。注完起泡剂溶液后安装井口压力表开始焖井,焖井时间为5天,之后用油嘴控制放喷,让氮气缓慢均匀的通过大孔道,形成连续的泡沫段塞。放喷结束后进行转抽,当达到设定的极限产量时,进行下一周期的氮气复合吞吐。
第六周期:所述氮气和二氧化碳复合吞吐阶段:包括注入、焖井和回采阶段;
先注入二氧化碳,注入量为10-50吨;然后再注入氮气,氮气注入量50000-300000m 3
注入结束后,开始焖井,为30-90天;
焖井结束后开始回采阶段。
在本实施例中,所述第六周期氮气复合吞吐注入阶段,注入二氧化碳体积15万方,注入氮气体积15万方,水段塞以及20方。注完氮气后井口安装压力表开始焖井,焖井时间为5天,之后用快速放喷,充分发挥原油的膨胀能,使降粘之后的原油迅速从油藏深部脱离出来。放喷结束后进行转抽,当达到设定的极限产量时,进行下一周期的氮气复合吞吐。
第七周期:氮气复合吞吐注入阶段,为加强二氧化碳与氮气的驻留封存能力, 加注起泡剂溶液。注入二氧化碳体积20万方,注入氮气体积10万方,注入0.5%的HY-2(起泡剂溶液)体积20方,水段塞以及10方。注完氮气后井口安装压力表开始焖井,焖井时间为5天,之后用快速放喷,充分发挥原油的膨胀能,使降粘之后的原油迅速从油藏深部脱离出来。

Claims (5)

  1. 一种封闭断块油藏氮气复合吞吐方法,其特征在于,该方法包括:
    选择开发的油藏:按照以下条件进行粗筛选该开发方法适用的油藏:油藏为封闭断块油藏,埋深<5000m,剩余油饱和度>0.5,油层厚度>10m,水平渗透率>100mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,地层倾角>8°;
    顺次进行以下吞吐阶段:氮气吞吐阶段、氮气和水复合吞吐阶段、氮气和起泡剂复合吞吐阶段、氮气和二氧化碳复合吞吐阶段。
  2. 根据权利要求1所述的一种封闭断块油藏氮气复合吞吐方法,其特征在于,所述氮气吞吐阶段,包括:在封闭断块油藏内钻一口水平井或直井,在该井内注入氮气,氮气注入量为50000-300000m 3,注入氮气后,关闭该井进行焖井,焖井时间为10-30天;焖井结束后打开该井生产,当产油速度低于0.1-0.5吨/天后,结束生产;
    重复所述氮气吞吐阶段,直至:当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨时,下一周期改为所述氮气和水复合吞吐阶段。
  3. 根据权利要求1所述的一种封闭断块油藏氮气复合吞吐方法,其特征在于,所述氮气和水复合吞吐阶段,包括注入、焖井和回采阶段;
    所述注入阶段注入方式如下:
    针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为50000-300000m 3;注入氮气后再注入水,注入水的体积为100-500m 3
    针对渗透率小于100mD的低渗透率储层,氮气段塞与水段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入水段塞,注入水段塞的体积为30-50m 3,注入水段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入水段塞;交替注入氮气和水段塞,直至氮气总注入量达到50000-300000m 3
    注入完成后,开始焖井生产,为5-10天;
    焖井结束后,开始回采阶段,置换出原油,直至,当单个周期内采油量(吨) 与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和起泡剂复合吞吐阶段。
  4. 根据权利要求1所述的一种封闭断块油藏氮气复合吞吐方法,其特征在于,所述氮气和起泡剂复合吞吐阶段,包括注入、焖井和回采阶段;
    针对渗透率大于等于100mD的中高渗透率储层,先注入氮气,氮气注入量为50000-300000m 3;注入氮气后再注入起泡剂溶液,起泡剂为阴离子性表面活性剂,注入起泡剂溶液的体积为100-500m 3,起泡剂浓度为0.3-0.5wt%;
    针对渗透率小于100mD的低渗透率储层,采用氮气段塞与起泡剂溶液段塞交替注入,先注入氮气段塞,氮气段塞注入量取决于注氮设备压力限制,当氮气注入压力达到注氮设备注入压力上限后,停止注入氮气,开始注入起泡剂溶液段塞,注入起泡剂溶液段塞的体积为30-50m 3,注入起泡剂溶液段塞后再次注入氮气段塞,直至氮气注入压力达到注氮设备注入压力上限,然后再次注入起泡剂溶液段塞;交替注入氮气和起泡剂溶液段塞,直至氮气总注入量达到50000-300000m 3
    注入完成后,开始焖井生产,焖井时间为5-10天;
    焖井结束后,开始回采阶段,直至,当某周期内采油量(吨)与注氮气量(10 4方)小于5时,即该周期内注10 4方氮气采出油量小于5吨,下一周期改为氮气和二氧化碳复合吞吐阶段。
  5. 根据权利要求1所述的一种封闭断块油藏氮气复合吞吐方法,其特征在于,所述氮气和二氧化碳复合吞吐阶段:包括注入、焖井和回采阶段;
    先注入二氧化碳,注入量为10-50吨;然后再注入氮气,氮气注入量50000-300000m 3
    注入结束后,开始焖井,为30-90天;
    焖井结束后开始回采阶段。
PCT/CN2019/071824 2018-05-25 2019-01-15 一种封闭断块油藏氮气复合吞吐方法 WO2019223346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/472,827 US11187065B2 (en) 2018-05-25 2019-01-15 Composite nitrogen huff and puff method for bounded fault block reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810514761.7A CN108708693B (zh) 2018-05-25 2018-05-25 一种封闭断块油藏氮气复合吞吐方法
CN201810514761.7 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223346A1 true WO2019223346A1 (zh) 2019-11-28

Family

ID=63869580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071824 WO2019223346A1 (zh) 2018-05-25 2019-01-15 一种封闭断块油藏氮气复合吞吐方法

Country Status (3)

Country Link
US (1) US11187065B2 (zh)
CN (1) CN108708693B (zh)
WO (1) WO2019223346A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427404A (zh) * 2020-09-23 2022-05-03 中国石油化工股份有限公司 一种强边底水稠油油藏微生物吞吐采油方法
CN114753818A (zh) * 2021-01-12 2022-07-15 中国石油天然气股份有限公司 提高稠油吞吐井产量的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208010332U (zh) * 2018-02-13 2018-10-26 宁波金地电子有限公司 一种非开挖导向仪的探棒
CN108708693B (zh) * 2018-05-25 2019-03-26 中国石油大学(华东) 一种封闭断块油藏氮气复合吞吐方法
CN110541693B (zh) * 2019-08-29 2021-09-28 中国石油化工股份有限公司 低渗透厚层砂岩油藏co2驱泄复合开发方法
CN110847867B (zh) * 2019-12-12 2020-08-25 西南石油大学 一种致密油藏注气驱替转注点遴选方法
CN115110924B (zh) * 2021-03-18 2024-03-26 中国石油天然气股份有限公司 一种适用于页岩油油藏的分时控量注采吞吐开发方法
CN115110926B (zh) * 2021-03-18 2024-04-30 中国石油天然气股份有限公司 特低渗、超低渗油藏用分时控量注采吞吐开发装置及方法
CN113323636A (zh) * 2021-05-19 2021-08-31 中国石油化工股份有限公司 一种用于复合控水增油的氮气注入量确定方法及采油方法
CN116218501A (zh) * 2021-12-02 2023-06-06 中国石油天然气股份有限公司 一种发泡液、泡沫驱油实现方法及应用
CN114370260A (zh) * 2022-01-27 2022-04-19 中国海洋石油集团有限公司 海上高含水稠油冷采井热复合吞吐增效系统及其作业方法
CN114607325A (zh) * 2022-03-10 2022-06-10 华鼎鸿基采油技术服务(北京)有限公司 一种低渗透油藏驱替原油的方法
CN118128494A (zh) * 2024-05-08 2024-06-04 中海油田服务股份有限公司 一种海上稠油热化学复合吞吐增效的工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2871830Y (zh) * 2006-03-31 2007-02-21 辽河石油勘探局 一种油田开采注蒸汽、co2、n2三联供装置
US20070204995A1 (en) * 2006-01-25 2007-09-06 Summit Downhole Dynamics, Ltd. Remotely operated selective fracing system
CN104033137A (zh) * 2013-03-06 2014-09-10 中国石油化工股份有限公司 利用油田污水提高断块油藏采收率方法
CN105089584A (zh) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 油水井交替耦合注采提高封闭小断块油藏采收率的方法
CN108708693A (zh) * 2018-05-25 2018-10-26 中国石油大学(华东) 一种封闭断块油藏氮气复合吞吐方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352680B (zh) * 2013-07-05 2015-12-16 中国石油大学(北京) 基于井筒油藏一体化的泡沫吞吐排砂实验装置及方法
CN104213886B (zh) * 2014-08-19 2016-08-31 中国石油天然气股份有限公司 一种稠油油藏人造泡沫油吞吐开采方法
CN104314541B (zh) * 2014-08-26 2018-04-27 中国海洋石油总公司 一种多元热流体吞吐开采稠油油藏的方法
CN105587301A (zh) * 2014-10-23 2016-05-18 中国石油化工股份有限公司 一种稠油热采提高采收率的方法
CN107288599A (zh) * 2016-03-30 2017-10-24 中国石油化工股份有限公司 治理蒸汽吞吐汽窜的堵调方法
CN105781512A (zh) * 2016-04-19 2016-07-20 中国石油大学(华东) 一种泡沫辅助温敏相变体系抑制复合热流体吞吐气窜的方法
CN106089166A (zh) * 2016-06-17 2016-11-09 中国石油大学(华东) 一种致密油储层co2泡沫吞吐提高采收率的方法
US10570715B2 (en) * 2017-08-18 2020-02-25 Linde Aktiengesellschaft Unconventional reservoir enhanced or improved oil recovery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070204995A1 (en) * 2006-01-25 2007-09-06 Summit Downhole Dynamics, Ltd. Remotely operated selective fracing system
CN2871830Y (zh) * 2006-03-31 2007-02-21 辽河石油勘探局 一种油田开采注蒸汽、co2、n2三联供装置
CN104033137A (zh) * 2013-03-06 2014-09-10 中国石油化工股份有限公司 利用油田污水提高断块油藏采收率方法
CN105089584A (zh) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 油水井交替耦合注采提高封闭小断块油藏采收率的方法
CN108708693A (zh) * 2018-05-25 2018-10-26 中国石油大学(华东) 一种封闭断块油藏氮气复合吞吐方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG GUO-MIN ET AL, SPECIAL OIL & GAS RESERVOIR, vol. 11, no. 3, 30 June 2004 (2004-06-30), pages 46-48 - 67, XP055657305, ISSN: 1006-6535 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427404A (zh) * 2020-09-23 2022-05-03 中国石油化工股份有限公司 一种强边底水稠油油藏微生物吞吐采油方法
CN114753818A (zh) * 2021-01-12 2022-07-15 中国石油天然气股份有限公司 提高稠油吞吐井产量的方法
CN114753818B (zh) * 2021-01-12 2024-03-01 中国石油天然气股份有限公司 提高稠油吞吐井产量的方法

Also Published As

Publication number Publication date
CN108708693A (zh) 2018-10-26
US11187065B2 (en) 2021-11-30
CN108708693B (zh) 2019-03-26
US20210332680A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2019223346A1 (zh) 一种封闭断块油藏氮气复合吞吐方法
Holt et al. Underground storage of CO2 in aquifers and oil reservoirs
CN113294126B (zh) 一种稳固地层的天然气水合物联合开采方法及装置
RU2510455C2 (ru) Способ увеличения извлечения углеводородов
US3402768A (en) Oil recovery method using a nine-spot well pattern
CN103867169B (zh) 气溶性表面活性剂用于二氧化碳驱油流度控制中的方法
CN109653721B (zh) 一种浅层低压低渗透油藏压裂增能驱油一体化工艺方法
CN101103176A (zh) 用于改进采油的组合物和方法
CN107269255B (zh) 一种通过簇间驱油开采致密油的方法及装置
CN110541693B (zh) 低渗透厚层砂岩油藏co2驱泄复合开发方法
CN110552671A (zh) 一种利用二甲基醚辅助co2驱实现稠油油藏高效开发的方法
CN100485160C (zh) 氮气泡沫调驱段塞注入工艺
CN108410439B (zh) 一种凝胶泡沫与原位微乳液组合应用油井增产的方法
CN111456693B (zh) 致密-页岩油藏超前注气及持续注气补充地层能量的方法
CN113464087A (zh) 一种底水油藏高含水油井选择性堵水方法
CN109233768A (zh) 一种非常规油气藏油井的堵水方法
CN114370260A (zh) 海上高含水稠油冷采井热复合吞吐增效系统及其作业方法
US4224992A (en) Method for enhanced oil recovery
CN109025940A (zh) 一种针对致密油藏的co2压裂驱油一体化采油方法
US3599717A (en) Alternate flood process for recovering petroleum
CN111810102B (zh) 一种利用气体水锁效应实现控制底水上窜的方法
CN114607325A (zh) 一种低渗透油藏驱替原油的方法
US3525396A (en) Alternate gas and water flood process for recovering petroleum
CN112523731B (zh) 一种利用高渗条带开采普通稠油的方法
RU2736021C1 (ru) Способ регулирования охвата пласта газоциклической закачкой диоксида углерода при сверхкритических условиях в добывающую скважину с помощью пенных систем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807968

Country of ref document: EP

Kind code of ref document: A1