WO2019221252A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2019221252A1
WO2019221252A1 PCT/JP2019/019591 JP2019019591W WO2019221252A1 WO 2019221252 A1 WO2019221252 A1 WO 2019221252A1 JP 2019019591 W JP2019019591 W JP 2019019591W WO 2019221252 A1 WO2019221252 A1 WO 2019221252A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
animal
person
unit
information processing
Prior art date
Application number
PCT/JP2019/019591
Other languages
French (fr)
Japanese (ja)
Inventor
政治 羽田野
直久 皆川
孝雄 内藤
Original Assignee
一般社団法人認知症高齢者研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人認知症高齢者研究所 filed Critical 一般社団法人認知症高齢者研究所
Priority to CN201980033077.XA priority Critical patent/CN112135568A/en
Priority to KR1020207036191A priority patent/KR20210010548A/en
Priority to JP2020519931A priority patent/JP7285046B2/en
Publication of WO2019221252A1 publication Critical patent/WO2019221252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to an information processing apparatus, an information processing method, and a program related to prediction of dementia.
  • Patent Document 1 An apparatus that supports diagnosis of dementia has been proposed (see Patent Document 1).
  • An object of the present invention is to provide an information processing apparatus, an information processing method, and a program capable of easily and accurately predicting the onset of dementia in humans or animals.
  • Information processing apparatus of the present invention At least selected from the group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal
  • a data acquisition unit for acquiring one type A predicting unit that predicts the onset of the behavioral / psychological symptoms in the dementia of the person or animal or the onset time based on the data acquired by the data acquiring unit.
  • the said prediction part can perform the prediction regarding the behavioral / psychological symptom in the dementia of the said person or animal using at least 1 sort (s) of reasoning analysis, regression analysis, HotSpot analysis, proximity analysis, and spatiotemporal analysis.
  • the prediction unit receives the index value indexed by the indexing unit and performs prediction using a function or a classifier that outputs a prediction value related to behavioral / psychological symptoms in dementia of the person or animal be able to.
  • the classifier may be an SVM (Support Vector Machine), a neural network, or a linear regression model.
  • the prediction unit evaluates the difference between the prediction of behavior / psychological symptoms in dementia of the person or animal and the actual behavior / psychological symptoms of the person or animal, and based on the evaluation result, the function or A learning unit that performs learning of the classifier can be included.
  • the learning unit evaluates the difference between the prediction of the behavior / psychological symptoms in the human or animal dementia predicted by the prediction unit and the actual behavior / psychological symptoms of the human or animal, Prediction regarding behavior / psychological symptoms in dementia of the person or animal of the prediction unit, evaluation contents of difference between actual behavior / psychological symptoms of the person or animal, information on data acquired by the data acquisition unit, and
  • the function or classifier can be learned by deep learning.
  • the function includes a parameter relating to a numerical value related to data acquired by the data acquisition unit, and a coefficient
  • the learning unit can adjust the coefficient by deep learning.
  • the data acquisition unit acquires the environmental data and the biological data
  • the environmental data may include temperature and humidity around the person or animal
  • the biological data may include pulse, respiratory rate, and body temperature of the person or animal.
  • the present invention includes a data storage unit in which the environmental data and the biological data are stored in association with information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biological data. be able to.
  • a correlation table configured by associating the environmental data and the biometric data with information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biometric data is stored.
  • a coping method deriving unit that generates or selects a coping method can be included based on the prediction content related to the behavioral / psychological symptoms in dementia of the human or animal predicted by the prediction unit.
  • the actual behavior / psychological symptom of the person or animal is determined by a behavior / psychological symptom determination unit according to a determination algorithm
  • the learning unit evaluates a difference between the determination result of the behavior / psychological symptom determination unit and the determination result of the behavior / psychological symptom of the person or animal actually determined by the person, and the determination algorithm based on the evaluation result Can learn.
  • a data acquisition unit includes a group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal.
  • a prediction unit including a step of predicting the onset or the onset time of the behavior / psychological symptoms in dementia of the person or animal based on the data acquired by the data acquisition unit.
  • the data acquisition unit includes environmental data around the person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal.
  • the predicting unit is configured to execute a step of predicting the onset or the onset time of the behavior / psychological symptoms in the dementia of the person or animal based on the data acquired by the data acquiring unit.
  • BPSD Predicting the onset of BPSD or the time of onset, and taking early measures to prevent the onset of BPSD and to greatly reduce the occurrence of BPSD itself. Since BPSD can be predicted in advance, the burden on the caregiver can be reduced.
  • the information processing device 10 has a function F1 for acquiring data, a function F2 for indexing the data, and a BPSD (human The function F3 for predicting the possibility and content of the onset and the timing of the onset of the behavior / psychological symptoms in dementia, the function F4 for outputting the prediction result about the BPSD, and the generation / output of the coping method of the predicted BPSD
  • a function F5 for predicting the possibility and content of the onset and the timing of the onset of the behavior / psychological symptoms in dementia
  • the function F4 for outputting the prediction result about the BPSD
  • a function F5 a function F6 that determines whether or not BPSD has occurred, a function F7 that is verified after symptom confirmation and execution, and a function F7 that learns a prediction algorithm based on the verification result are included.
  • BPSD behavior / psychological symptoms of dementia
  • Behavioral symptoms are symptoms revealed by observation. Evaluation items for behavioral symptoms include, for example, dredging, dangerous operation, concealment, temporary work, trouble, collection, screaming / excitement.
  • Psychological symptoms are symptoms revealed by interviews. As evaluation items for psychological symptoms, for example, depression, delusion, and the like can be given. Behavioral and psychological symptoms may or may not appear depending on the person.
  • Configuration of Information Processing Device is connected to devices connected to various communication networks via a communication network (for example, the Internet) as shown in FIG. Yes.
  • a communication network for example, the Internet
  • various IoT sensors can be applied.
  • An example is a urine volume sensor 60 g.
  • the information processing apparatus 10 includes a data acquisition unit 40, a processing unit 30, a data acquisition unit 40, and a storage unit 20, as shown in FIG.
  • the data acquisition unit 40 acquires at least one selected from the group of human environmental data, human biological data, human behavior data, human image or video data, and human voice data.
  • the data acquisition unit 40 acquires, for example, environmental data and biological data.
  • the environmental data can include the ambient temperature and humidity around the person
  • the biological data can include the person's pulse, respiratory rate, and body temperature.
  • the processing unit 30 includes an indexing unit 30a, a prediction unit 30b, a learning unit 30c, a handling method derivation unit 30d, and a BPSD determination unit 30e.
  • the indexing unit 30a is for indexing the data acquired by the data acquiring unit 40.
  • the prediction unit 30b predicts the onset of BPSD or its onset based on the data acquired by the data acquisition unit 40.
  • the prediction unit 30b may perform prediction regarding BPSD using at least one of inference analysis, regression analysis, HotSpot analysis, proximity analysis, and spatiotemporal analysis.
  • the prediction unit 30b can input the index value indexed by the indexing unit 30a and perform prediction using at least one of the function 20a or the classifier 20b that outputs a prediction value related to BPSD.
  • the classifier 20b can be an SVM (Support Vector Machine), a neural network, or a linear regression model.
  • the function 20a can include a parameter related to a numerical value related to data acquired by the data acquisition unit 40 and a coefficient.
  • the neural network can be a three-layer feedforward neural network including an input layer, an intermediate layer, and an output layer.
  • the learning unit 30c evaluates the difference between the prediction regarding the BPSD of the prediction unit 30b and the actual behavior / psychological symptoms of the person, and learns at least one of the function 20a or the classifier 20b based on the evaluation result.
  • the learning unit 30c can supply the machine learning algorithm to learn the function 20a or the classifier 20b. Specifically, the learning unit 30c evaluates the difference between the prediction about the BPSD predicted by the prediction unit 30b and the actual person's behavior / psychological symptoms, and the prediction about the BPSD of the prediction unit 30b and the actual person's behavior.
  • the function 20a or the classifier 20b can be learned by deep learning in relation to the evaluation content of the difference from the psychological symptom and the information related to the data acquired by the data acquisition unit 40.
  • the learning unit 30c may adjust the coefficient by deep learning.
  • the coping method deriving unit 30d derives a coping method based on the predicted onset possibility and contents of BPSD and the onset time.
  • the BPSD determination unit 30e determines whether the BPSD is based on the input data.
  • a function 20a, a classifier 20b, a correlation table 20c, a correspondence table 20d, and a data storage unit 20e can be stored.
  • the correlation table 20c can be composed of a database configured by associating environmental data and biometric data with information related to BPSD corresponding to the environmental data and biometric data.
  • the correspondence table 20d can be made up of a database configured by associating the predicted presence / absence of BPSD and the timing of the occurrence with the coping method.
  • the data storage unit 20e is the data acquired by the data acquisition unit 40, the data obtained by processing the data by the processing unit 30, the data input by the input unit 52, and is previously referenced for various determinations by the processing unit 30. Data to be stored is stored.
  • the data acquisition unit 40 may acquire processed data, or may acquire raw data (measurement data and input data) and process it by the processing unit 30. Examples of data acquired by the data acquisition unit 40 include the following.
  • the five sense data detects sound source detection, sound type identification, olfactory recognition, face authentication, motion detection, lateral distance function, stereoscopic detection, and the like.
  • the five senses data can be measured with a camera or a microphone. In addition, if it is a device which can acquire such data, it will not specifically limit.
  • the environmental data measures temperature, humidity, illuminance, amount of water, and atmospheric pressure, and detects a moving distance.
  • the environmental data can be measured from a temperature sensor, a humidity sensor, an illuminance sensor, an atmospheric pressure sensor, or the like. In addition, if it is a device which can acquire such data, it will not specifically limit.
  • the biometric data detects, for example, heart rate, respiration, getting out of bed, sleep (non-REM sleep, detection of REM sleep), awakening, excretion, momentum, body temperature, etc., as shown in FIG.
  • the sensor for detecting the biometric data is not particularly limited as long as it can perform such detection, and can be configured by one or a plurality of sensors. Taking sleep as an example, a non-REM sleep state and a REM sleep state can be grasped by a Doppler sensor. About excretion, detect opening / closing sensor of toilet door and human sensor in toilet, or detect excretion timing by analyzing communication function tag (BLE tag) and camera video Can do.
  • BLE tag communication function tag
  • the content of excretion can be detected in consideration of the timing of the night urination time and the time required for excretion.
  • the amount of exercise is calculated using software that calculates calories burned, calculated from the distance traveled by a tag (BLE tag) that has a communication function, or from the caregiver's record, such as exercise, cleaning, washing, etc. You can calculate the amount of exercise and calorie consumption. In addition, if it is a device which can acquire such data, it will not specifically limit.
  • (D) Care Record The items of the care record include, for example, as shown in FIG. 8, the needs of the person receiving the care or the caregiver, the concern of the person receiving the care or the caregiver, the subjective symptoms of the person receiving the care, The caregiver's observation, the condition evaluation of the person receiving the care, the impression of the person receiving the care or the caregiver, the caregiver's response, the call of the caregiver, what the caregiver did, etc. can be mentioned.
  • BPSD In the care record, in order to improve the prediction accuracy of BPSD, it is preferable to have the following record. 1) The occurrence of BPSD 2) The time (time zone) at which the BPSD occurred and the location (the role of the location, the positional relationship of the location, etc.) are clearly recorded 3) Environmental factors at the time of occurrence of the BPSD (Temperature, humidity, illuminance, barometric pressure, noise, off-flavor, presence of person, content of conversation, behavior and attitude of subject) 4) The behavior and attitude of the subject before and after the occurrence of BPSD Be recorded. In addition, the environmental factors must be recorded.
  • the temperature / humidity sensor can transmit the acquisition data at a cycle of 10 minutes from real time by default.
  • Each gateway can acquire the data of the target sensor in association with the user ID.
  • a single gateway can acquire multiple sensor data and support multiple users simultaneously, enabling analysis.
  • an expansion module equipped with an atmospheric pressure sensor and an illuminance sensor can be connected to the IoT gateway, and information on atmospheric pressure and illuminance can be updated in a cycle of 10 minutes from real time.
  • a single gateway can support multiple users' data and can support each analysis.
  • a Doppler sensor unit is installed on the wall around the bed, and the heart rate, breathing rate, sleeping state and bed leaving / landing when landing Time event notification can be performed.
  • Heart rate, respiratory rate, and sleep state are measured every 10 minutes from the real time and can be analyzed by notifying the IoT gateway. The bed leaving / landing state may be notified immediately when an event occurs.
  • the information processing apparatus 10 includes an electronic computer.
  • a large electronic computer such as a supercomputer, an electronic computer equipped with a GPU (Graphics Processing Unit), or a plurality of personal computers. It consists of a quantum computer.
  • the processing unit 30 can be realized by an arithmetic device such as a CPU.
  • the storage unit 20 can be stored in a known storage device such as a ROM, a hard disk, or an external storage device (CD, DVD, etc.).
  • the storage unit 20 may be configured separately from the arithmetic device or may be configured in the arithmetic device.
  • the information processing apparatus 10 may be composed of one electronic computer or a plurality of electronic computers.
  • the program that causes the information processing apparatus 10 to execute information processing can be stored in a storage device (for example, ROM, hard disk) included in the information processing apparatus 10.
  • a storage device for example, ROM, hard disk
  • the data acquisition unit 40 can be constituted by, for example, a reception unit that can receive data from a communication network.
  • the input unit can be composed of a known input device such as a keyboard, a mouse, and a touch panel.
  • a known display such as a liquid crystal display or an organic EL display can be applied to the display unit 54.
  • the transmission unit 56 transmits information to a terminal connected through a communication network, and a known transmission device can be applied.
  • the data acquisition unit 40 acquires, from an IoT device or the like, five sense data, environmental data, biological data, behavior data, and care records for a person receiving care (S1).
  • the data obtained by the indexing unit 30a is indexed and an evaluation index parameter is calculated (S2).
  • the prediction unit 30b analyzes the evaluation index parameter and predicts BPSD (S3).
  • the coping method deriving unit 30d generates a coping method based on the occurrence and timing of occurrence of BPSD (S4).
  • the data acquisition unit 40 acquires behavior data and the like, and the BPSD determination unit 30e evaluates whether BPSD symptoms actually occur (S5).
  • learning (update) of the function 20a or the discriminator (neural network) is performed based on deep learning (S6).
  • Fig. 11 shows the measurement data and processing data obtained at each stage.
  • Each data of FIG. 11 can be stored in the data storage unit 20e of the storage unit 20 in association with each other.
  • the humidity is between 40% and 70%, it is determined whether the temperature is appropriate using the following formula. It is assumed that when the temperature and humidity are within the range of the mathematical formula, it is comfortable, and when it deviates from this range, it is uncomfortable. When it is determined that it is uncomfortable, the distance from the intersection of the current temperature / humidity line and the comfort range is simply used as an index of the discomfort degree from the center point of the comfort range.
  • the following formula is applied with the standard pressure 1013 hPa as a standard value.
  • the discomfort index is P ′.
  • I 0 As the illuminance I, I ′, which is a discomfort index of illuminance, is calculated.
  • the reference illuminance is calculated as 200 lux during activity, 50 lux during rest, and 20 lux during sleep.
  • Biometric index P ′ is obtained by the following calculation formula, where P is a heart rate per minute and the average heart rate is P 0 .
  • the biometric index B ′ is obtained by the following calculation formula, where B is the respiration rate per minute and B 0 is the average respiration rate.
  • Prediction process (a) Prediction logic
  • P matrix calculation can be performed based on the following formula to calculate P.
  • p1 to p5 represent parameters
  • ⁇ to ⁇ ′ represent the degree of items related to the behavioral / psychological symptoms (BPSD) of dementia.
  • (B) Prediction of the occurrence time of BPSD The prediction of the occurrence time of BPSD can derive the relevance of the time zone based on several reference points. As the index, the following times are listed as candidates as reference points. 1) 0:00 (date change point) 2) Hiji (sunset) 3) Waking up 4) Meals
  • the elapsed time from each reference point can be calculated, and the correlation can be derived from the deviation.
  • Regression analysis can be performed on the timing of occurrence of BPSD and the elapsed time from the reference point to derive the relationship.
  • wake-up may be classified according to whether it is nighttime sleep or nap, and meals may be classified according to types such as breakfast, lunch, dinner, and snacks. If the time when BPSD occurs is point A, 0:00, wake up at night, the elapsed time of breakfast / lunch / dinner close, and if it is after a nap, the elapsed time from a nap, if after a snack The elapsed time from snacking may be used as an additional indicator.
  • a function 20a or a classifier 20b that takes into account the influence of time series.
  • the learning of the function 20a or the classifier 20b is similar to language / audio / video analysis in deep learning (DeepLarning), so it is preferable to learn using LSTM (Longshort-termmemory).
  • Prediction from natural language analysis BPSD can also be analyzed by natural language analysis. This is a method in which a part of speech included in a question or inquiry is identified by natural language processing, a hypothesis is generated, and then the hypothesis is supported or searched for evidence. A response method is assigned based on the onset status of BPSD according to the statistical model method of the evidence weight score.
  • a coping method can be generated based on the function 20a or the classifier 20b. Further, a BPSD coping method may be selected based on the correspondence table 20d between BPSD symptoms and coping methods.
  • a correspondence table 20 d as shown in FIG. 12 may be stored in the storage unit 20.
  • the nutritional calories may be calculated based on the amount of exercise and the calorie consumption and used for the menu.
  • TBS Troublesome Behavior Scale
  • the TBS defines fifteen items describing the destructive behavior and burden behavior of elderly dementia patients and their frequency, and the applicant has reliability and validity as a measure for assessing the transfer of behavior of dementia patients. I confirmed that there was.
  • problem behaviors that are observed relatively well by people with dementia are evaluated (for example, a five-step evaluation) based on the frequency that the caregiver observed in the past predetermined period (for example, the past month), and the prediction results are verified. can do.
  • the frequency can be classified into “at least once a day”, “several times a week”, “several times a month”, and “none”.
  • BPSD analysis can be performed by voice pathological analysis.
  • emotion recognition technology Session Technology
  • Verification of the onset of BPSD may be performed by brain image diagnosis.
  • the BPSD determination unit 30e can make a determination.
  • This BPSD determination algorithm can be learned by the learning unit.
  • the learning of the BPSD determination algorithm can be performed in the same manner as the learning of the prediction algorithm of the prediction unit 30d.
  • the data acquisition unit 40 acquires the data (F11), the indexing unit 30a indexes the data, determines whether the BPSD determination unit 30e is BPSD (F13), and determines whether the data is BPSD. Is output. Learning of the judgment algorithm used when the input actual BPSD status and the result determined by the BPSD determination unit 30e are verified (F15), and the learning unit 30c determines whether the BPSD determination unit 30e is BPSD. (F16). (B) Evaluation of coping method Through the evaluation of coping with BPSD, the degree of reliability is evaluated according to how much evaluation the derivation of the care method has acquired. By running analytics on the massive amount of data collected from care sites, collecting insights and converting them into inspiration can help derive appropriate care methods.
  • the learning unit 30d can learn the derivation algorithm of the coping method derivation unit 30d and update the derivation algorithm.
  • the method of learning the derivation algorithm of the coping method derivation unit 30d can be performed in the same manner as the learning of the prediction algorithm of the prediction unit 30d.
  • the above embodiment can be variously modified within the scope of the gist of the present invention.
  • the behavior / psychological symptoms of human dementia have been described.
  • the present invention is not limited to this and can be widely applied to behaviors / psychological symptoms of animal dementia.
  • AI Artificial Intelligence System is an information processing device formed by a data storage unit, an analysis unit, a sensitivity processing unit, and a planning unit based on a knowledge expression method, and data collected by automatic identification, automatic handling, and automatic notification from an IoT gateway.
  • the care record data collected by human interface, natural language analysis, and speech recognition can be merged, and further, a data mining unit can be configured by statistical analysis.
  • AI Artificial Intelligence System can have the following functions.
  • A Expert system A system that accumulates expert knowledge as rules and solves problems using inference techniques.
  • B Voice recognition Speak to a smartphone or tablet. The computer understands what was spoken and understood what was spoken, and it is written.
  • C Natural language processing The meaning and content of the documented information is sorted and recorded so that the computer can understand the information and the information can be retrieved by the life support recording method of F-SOAIP.
  • D Sensitivity processing Based on knowledge of cognitive science and ergonomics, a feeling that the feeling is warm or cold is received from the environmental sensor and realized on the computer.
  • FTA Fault Tree Analysis
  • HAZOP Hazard and Operability Study
  • Hot Spot Analysis This is an analysis method that regards a space (place) where a past behavior / psychological symptom has occurred as a space (place) where the possibility of occurrence of a behavior / psychological symptom is high.
  • Regression methods In addition to the past BPSD, other variables related to the BPSD such as environment and human relations are used as independent variables, and the future BPSD is predicted by regression analysis.
  • 3) Near-Repeat Methods A future BPSD is predicted based on the spatio-temporal proximity of one BPSD and the next BPSD.
  • K) Multi-agent This is a system that proposes a care method by gathering caregivers who solve BPSD and examining the occurrence of BPSD again with F-SOAIP when information on complicated problems is solved at the care site.
  • Care methods Dementia requires care methods tailored to different behavioral and psychological symptoms. This is because some care methods have different effects on patients with dementia.
  • the information processing apparatus is capable of accumulating various documents and past information covering information on standard care methods and the best interpersonal assistance methods. All of these can identify which care methods provide the best options for caregivers to take in caring for patients with dementia.
  • the IoT service for dementia may collect the knowledge necessary to acquire the skills in the care setting. This is defined as “a corpus of knowledge in dementia care”. The creation of a corpus can be started by loading many relevant documents into a dementia-aware AI.
  • the creation of the corpus can involve the intervention of professional staff to select information or to eliminate all old, inferior, and information unrelated to the problem area. This is defined as “curation of dementia-compatible content”.
  • Indexes and other metadata that are pre-processed by curation and can be linked more efficiently with content can be built from the field using the Life Support Recording Method (F-SOAIP).
  • F-SOAIP Life Support Recording Method
  • a dementia-aware AI trained with question-answer pairs can continue to learn by continuously interacting with the bot.
  • the AI for dementia is also updated, constantly adapting to changes in knowledge and linguistic interpretation in a given field, and identifying new insights and patterns hidden in the information Can be ready to do. It is a method in which a part of speech included in a question or inquiry is identified by natural language processing, a hypothesis is generated, and then the hypothesis is supported or searched for evidence.
  • a response method can be assigned based on the onset state of behavior / psychological symptoms.
  • Dementia-responsive AI can be evaluated for its reliability by the degree of evaluation that the derivation of care methods has gained through successful cases of behavioral and psychological symptoms.
  • AI for dementia enables analytics to be performed on large amounts of data collected from nursing care sites, collecting insights and converting them into inspiration, so that appropriate care methods can always be derived.
  • the present invention can be applied as a management system in the care of dementia patients and animals suffering from dementia.

Abstract

Provided are an information processing device, an information processing method, and a program capable of easily and accurately performing prediction about dementia of a human or an animal. An information processing device 10 comprises: a data acquisition unit 40 that acquires at least one selected from the group consisting of surrounding environment data, biological data, behavior data, image or video data, and sound data about a human or an animal; and a prediction unit 30b that predicts onset of behavioral and psychological symptoms of dementia (BPSD) or the onset timing thereof on the basis of the data acquired by the data acquisition unit 40. The prediction unit 30b can perform BPSD-related prediction by using at least one of reasoning analysis, regression analysis, HotSpot analysis, proximity analysis, and time space analysis. A learning unit 30c that evaluates the difference between the BPSD and the BPSD-related prediction performed by the prediction unit 30b and that learns a function or a classifier on the basis of the evaluation result, is included.

Description

情報処理装置、情報処理方法およびプログラムInformation processing apparatus, information processing method, and program
 本発明は、認知症の予測に関する情報処理装置、情報処理方法およびプログラムに関する。 The present invention relates to an information processing apparatus, an information processing method, and a program related to prediction of dementia.
 認知症の診断を支援する装置が提案されている(特許文献1参照)。 An apparatus that supports diagnosis of dementia has been proposed (see Patent Document 1).
特開2017―217052号公報JP 2017-217052 A
 本発明の目的は、人または動物の認知症の発症に関する予測を容易かつ的確に行うことができる情報処理装置、情報処理方法およびプログラムを提供することにある。 An object of the present invention is to provide an information processing apparatus, an information processing method, and a program capable of easily and accurately predicting the onset of dementia in humans or animals.
1.情報処理装置
 本発明の情報処理装置は、
 人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得するデータ取得部と、
 前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測する予測部とを含む。
1. Information processing apparatus Information processing apparatus of the present invention,
At least selected from the group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal A data acquisition unit for acquiring one type;
A predicting unit that predicts the onset of the behavioral / psychological symptoms in the dementia of the person or animal or the onset time based on the data acquired by the data acquiring unit.
 本発明において、
 前記予測部は、推論分析、回帰分析、HotSpot分析、近接間分析および時空間分析の少なくとも1種を用いて、前記人または動物の認知症における行動・心理症状に関する予測を行うことができる。
In the present invention,
The said prediction part can perform the prediction regarding the behavioral / psychological symptom in the dementia of the said person or animal using at least 1 sort (s) of reasoning analysis, regression analysis, HotSpot analysis, proximity analysis, and spatiotemporal analysis.
 本発明において、
 前記データ取得部が取得したデータを指標化するための指標化部を含み、
 前記予測部は、前記指標化部で指標化された指標値を入力して、前記人または動物の認知症における行動・心理症状に関する予測値を出力する関数または分類器を用いて予測が行われることができる。
In the present invention,
Including an indexing unit for indexing the data acquired by the data acquisition unit,
The prediction unit receives the index value indexed by the indexing unit and performs prediction using a function or a classifier that outputs a prediction value related to behavioral / psychological symptoms in dementia of the person or animal be able to.
 本発明において、前記分類器は、SVM(Support Vector Machine)、ニューラルネットワークまたは線形回帰モデルであることができる。 In the present invention, the classifier may be an SVM (Support Vector Machine), a neural network, or a linear regression model.
 本発明において、前記予測部の前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差を評価し、その評価結果に基づき前記関数または分類器の学習を行う学習部を含むことができる。 In the present invention, the prediction unit evaluates the difference between the prediction of behavior / psychological symptoms in dementia of the person or animal and the actual behavior / psychological symptoms of the person or animal, and based on the evaluation result, the function or A learning unit that performs learning of the classifier can be included.
 本発明において、前記学習部は、前記予測部が予測した前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差を評価し、
 前記予測部の前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差の評価内容と、前記データ取得部が取得したデータに関する情報との関連においてディープラーニングにより前記関数または分類器の学習を行うことができる。
In the present invention, the learning unit evaluates the difference between the prediction of the behavior / psychological symptoms in the human or animal dementia predicted by the prediction unit and the actual behavior / psychological symptoms of the human or animal,
Prediction regarding behavior / psychological symptoms in dementia of the person or animal of the prediction unit, evaluation contents of difference between actual behavior / psychological symptoms of the person or animal, information on data acquired by the data acquisition unit, and In this context, the function or classifier can be learned by deep learning.
 本発明において、前記関数は、前記データ取得部が取得したデータに関する数値に係るパラメータと、係数とを含んで構成され、
 前記学習部は、前記係数をディープラーニングにより調整することができる。
In the present invention, the function includes a parameter relating to a numerical value related to data acquired by the data acquisition unit, and a coefficient,
The learning unit can adjust the coefficient by deep learning.
 本発明において、
 前記データ取得部は、前記環境データと前記生体データとを取得し、
 前記環境データは、前記人または動物の周囲の気温および湿度を含み
 前記生体データは、前記人または動物の脈拍、呼吸数および体温を含むことができる。
In the present invention,
The data acquisition unit acquires the environmental data and the biological data,
The environmental data may include temperature and humidity around the person or animal, and the biological data may include pulse, respiratory rate, and body temperature of the person or animal.
 本発明において、前記環境データおよび前記生体データと、前記環境データおよび前記生体データと対応する前記人または動物の認知症における行動・心理症状に関する情報とが関連づけて記憶されているデータ記憶部を含むことができる。 The present invention includes a data storage unit in which the environmental data and the biological data are stored in association with information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biological data. be able to.
 本発明において、前記環境データおよび前記生体データと、前記環境データおよび前記生体データと対応する前記人または動物の認知症における行動・心理症状に関する情報とが関連づけて構成された相関表が記憶されている記憶部を含むことができる。 In the present invention, a correlation table configured by associating the environmental data and the biometric data with information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biometric data is stored. Can include a storage unit.
 本発明において、前記予測部が予測した前記人または動物の認知症における行動・心理症状に関する予測内容に基づき、対処方法を生成または選択する対処方法導出部を含むことができる。 In the present invention, a coping method deriving unit that generates or selects a coping method can be included based on the prediction content related to the behavioral / psychological symptoms in dementia of the human or animal predicted by the prediction unit.
 本発明において、前記実際の前記人または動物の行動・心理症状は、行動・心理症状判断部により判断アルゴリズムにしたがって判断され、
 前記学習部は、前記行動・心理症状判断部による判断結果と、実際に人が判断した前記人または動物の行動・心理症状の判断結果との差を評価し、その評価結果に基づき前記判断アルゴリズムの学習を行うことができる。
In the present invention, the actual behavior / psychological symptom of the person or animal is determined by a behavior / psychological symptom determination unit according to a determination algorithm,
The learning unit evaluates a difference between the determination result of the behavior / psychological symptom determination unit and the determination result of the behavior / psychological symptom of the person or animal actually determined by the person, and the determination algorithm based on the evaluation result Can learn.
2.情報処理方法
 本発明の情報処理方法は、
 データ取得部が、人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得する工程と、
 予測部が、前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測する工程とを含む。
2. Information processing method The information processing method of the present invention comprises:
A data acquisition unit includes a group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal. Obtaining at least one selected from:
A prediction unit including a step of predicting the onset or the onset time of the behavior / psychological symptoms in dementia of the person or animal based on the data acquired by the data acquisition unit.
3.プログラム
 本発明のプログラムは、
 コンピュータに
 データ取得部が、人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得するステップと、
 予測部が、前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測するステップとを実行させるためのものである。
3. Program The program of the present invention
In the computer, the data acquisition unit includes environmental data around the person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal. Obtaining at least one selected from the group of:
The predicting unit is configured to execute a step of predicting the onset or the onset time of the behavior / psychological symptoms in the dementia of the person or animal based on the data acquired by the data acquiring unit.
 BPSDの発症または発症の時期を予測して、早期の対処により、BPSDの発症を未然に防ぎ、BPSDの発生自体を大幅に減らすことを可能にする。BPSDを事前に予測することができるため、介護者の負担を減らすことができる。 ・ Predicting the onset of BPSD or the time of onset, and taking early measures to prevent the onset of BPSD and to greatly reduce the occurrence of BPSD itself. Since BPSD can be predicted in advance, the burden on the caregiver can be reduced.
情報処理のフローの全体構成を示す図である。It is a figure which shows the whole structure of the flow of information processing. 情報処理装置の構成例を示す図である。It is a figure which shows the structural example of information processing apparatus. 情報処理システムの構成例を示す図である。It is a figure which shows the structural example of an information processing system. 情報処理の処理フローを説明する図である。It is a figure explaining the processing flow of information processing. 五感データのデータ例を示す図である。It is a figure which shows the example of data of five sense data. 環境データのデータ例を示す図である。It is a figure which shows the example of data of environmental data. 生体データのデータ例を示す図である。It is a figure which shows the example of data of biometric data. 介護記録のデータ例を示す図である。It is a figure which shows the example of data of a care record. ニューラルネットワークを模式的に示す図である。It is a figure which shows a neural network typically. 行動とBPSDとの相関を示す図である。It is a figure which shows the correlation of action and BPSD. データ処理における各段階の出力内容を整理した図である。It is the figure which arranged the output content of each step in data processing. BPSDと対処方法との対応表を示す図である。It is a figure which shows the correspondence table of BPSD and a coping method. BPSDの判断および判断アルゴリズムの学習についてのフロー概要図である。It is a flow outline figure about judgment of BPSD and learning of a judgment algorithm.
 以下、本発明の好適な実施の形態について図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 人の認知症における行動・心理症状に関する予測を例にとり、実施の形態について説明する。以下では、人の認知症における行動・心理症状を単に「BPSD」という。
1.情報処理装置の概要
(1)情報処理装置
 情報処理装置10は、図1に示すように、データを取得する機能F1と、そのデータを指標化する機能F2と、予測アルゴリズムに基づきBPSD(人の認知症における行動・心理症状)の発症の可能性および内容ならびに発症の時期の予測を行う機能F3と、BPSDに関する予測結果を出力する機能F4と、予測したBPSDの対処方法の生成・出力をする機能F5と、BPSDが発症したかどうかを判断する機能F6と、症状の確認・実行後に検証する機能F7と、検証結果に基づき、予測アルゴリズムの学習を行う機能F7とを含む。
The embodiment will be described by taking predictions regarding behavioral and psychological symptoms in human dementia as an example. Hereinafter, the behavioral / psychological symptoms in human dementia are simply referred to as “BPSD”.
1. Overview of Information Processing Device (1) Information Processing Device As shown in FIG. 1, the information processing device 10 has a function F1 for acquiring data, a function F2 for indexing the data, and a BPSD (human The function F3 for predicting the possibility and content of the onset and the timing of the onset of the behavior / psychological symptoms in dementia, the function F4 for outputting the prediction result about the BPSD, and the generation / output of the coping method of the predicted BPSD A function F5, a function F6 that determines whether or not BPSD has occurred, a function F7 that is verified after symptom confirmation and execution, and a function F7 that learns a prediction algorithm based on the verification result are included.
(2)BPSD(認知症の行動・心理症状)
 行動症状とは、観察によって明らかにされる症状である。行動症状の評価項目として、たとえば、徘徊、危険な操作、隠蔽、仮性作業、トラブル、収集、叫び・興奮を挙げることができる。心理症状とは、面談によって明らかにされる症状である。心理症状の評価項目として、たとえば、抑うつ、妄想などを挙げることができる。行動・心理症状は、人によって出たりで出なかったりするものである。
(2) BPSD (behavior / psychological symptoms of dementia)
Behavioral symptoms are symptoms revealed by observation. Evaluation items for behavioral symptoms include, for example, dredging, dangerous operation, concealment, temporary work, trouble, collection, screaming / excitement. Psychological symptoms are symptoms revealed by interviews. As evaluation items for psychological symptoms, for example, depression, delusion, and the like can be given. Behavioral and psychological symptoms may or may not appear depending on the person.
2.情報処理装置の構成
(1)情報処理装置の機能的構成
 情報処理装置10は、図2に示すように、通信ネットワーク(たとえばインターネット)を介して、種々の通信ネットワークに接続したデバイスと接続されている。デバイスとしては、たとえば、種々のIoTセンサを適用でき、具体的には、環境センサ60a、生体センサ60b、カメラ60c、マイク60d、位置検出センサ(BLEタグなど)60e、ドア開閉センサ60f、膀胱内尿量センサ60gなど
を挙げることができる。
2. Configuration of Information Processing Device (1) Functional Configuration of Information Processing Device Information processing device 10 is connected to devices connected to various communication networks via a communication network (for example, the Internet) as shown in FIG. Yes. As the device, for example, various IoT sensors can be applied. Specifically, the environmental sensor 60a, the biological sensor 60b, the camera 60c, the microphone 60d, the position detection sensor (BLE tag, etc.) 60e, the door open / close sensor 60f, the intravesical An example is a urine volume sensor 60 g.
 情報処理装置10は、図3に示すように、データ取得部40と、処理部30と、データ取得部40と、記憶部20とを含む。 The information processing apparatus 10 includes a data acquisition unit 40, a processing unit 30, a data acquisition unit 40, and a storage unit 20, as shown in FIG.
 データ取得部40は、人の周囲の環境データと、人の生体データ、人の行動データ、人の画像又は映像データおよび人の音声データの群から選択される少なくとも1種を取得する。データ取得部40は、たとえば、環境データと生体データとを取得し、環境データは、人の周囲の気温および湿度を含み、生体データは、人の脈拍、呼吸数および体温を含むことができる。 The data acquisition unit 40 acquires at least one selected from the group of human environmental data, human biological data, human behavior data, human image or video data, and human voice data. The data acquisition unit 40 acquires, for example, environmental data and biological data. The environmental data can include the ambient temperature and humidity around the person, and the biological data can include the person's pulse, respiratory rate, and body temperature.
 処理部30は、指標化部30aと、予測部30bと、学習部30cと、対処方法導出部30dとを、BPSD判断部30eとを含む。 The processing unit 30 includes an indexing unit 30a, a prediction unit 30b, a learning unit 30c, a handling method derivation unit 30d, and a BPSD determination unit 30e.
 指標化部30aは、データ取得部40が取得したデータを指標化するためのものである。 The indexing unit 30a is for indexing the data acquired by the data acquiring unit 40.
 予測部30bは、データ取得部40が取得したデータに基づき、BPSDの発症またはその発症時期を予測する。予測部30bは、推論分析、回帰分析、HotSpot分析、近接間分析および時空間分析の少なくとも1種を用いて、BPSDに関する予測するものとすることができる。 The prediction unit 30b predicts the onset of BPSD or its onset based on the data acquired by the data acquisition unit 40. The prediction unit 30b may perform prediction regarding BPSD using at least one of inference analysis, regression analysis, HotSpot analysis, proximity analysis, and spatiotemporal analysis.
 予測部30bは、指標化部30aで指標化された指標値を入力して、BPSDに関する予測値を出力する関数20aまたは分類器20bの少なくとも一方を用いて予測を行うことができる。 The prediction unit 30b can input the index value indexed by the indexing unit 30a and perform prediction using at least one of the function 20a or the classifier 20b that outputs a prediction value related to BPSD.
 分類器20bは、SVM(Support Vector Machine)、ニューラルネットワークまたは線形回帰モデルとすることができる。関数20aは、データ取得部40が取得したデータに関する数値に係るパラメータと、係数とを含んで構成されることができる。ニューラルネットワークは、たとえば、図9に示すように、入力層、中間層および出力層からなる3層フィードフォワード型ニューラルネットワークとすることができる。 The classifier 20b can be an SVM (Support Vector Machine), a neural network, or a linear regression model. The function 20a can include a parameter related to a numerical value related to data acquired by the data acquisition unit 40 and a coefficient. For example, as shown in FIG. 9, the neural network can be a three-layer feedforward neural network including an input layer, an intermediate layer, and an output layer.
 学習部30cは、予測部30bのBPSDに関する予測と、実際の人の行動・心理症状との差を評価し、その評価結果に基づき関数20aまたは分類器20bの少なくとも一方の学習を行う。学習部30cは、機械学習アルゴリズムに供給して、関数20aまたは分類器20bの学習を行うことができる。具体的には、学習部30cは、予測部30bが予測したBPSDに関する予測と、実際の人の行動・心理症状との差を評価し、予測部30bのBPSDに関する予測と、実際の人の行動・心理症状との差の評価内容と、データ取得部40が取得したデータに関する情報との関連においてディープラーニングにより関数20aまたは分類器20bの学習を行うことができる。学習部30cは、係数をディープラーニングにより調整してもよい。 The learning unit 30c evaluates the difference between the prediction regarding the BPSD of the prediction unit 30b and the actual behavior / psychological symptoms of the person, and learns at least one of the function 20a or the classifier 20b based on the evaluation result. The learning unit 30c can supply the machine learning algorithm to learn the function 20a or the classifier 20b. Specifically, the learning unit 30c evaluates the difference between the prediction about the BPSD predicted by the prediction unit 30b and the actual person's behavior / psychological symptoms, and the prediction about the BPSD of the prediction unit 30b and the actual person's behavior. The function 20a or the classifier 20b can be learned by deep learning in relation to the evaluation content of the difference from the psychological symptom and the information related to the data acquired by the data acquisition unit 40. The learning unit 30c may adjust the coefficient by deep learning.
 対処方法導出部30dは、予測されたBPSDの発症の可能性と内容と発症時期に基づいて、対処方法を導出する。 The coping method deriving unit 30d derives a coping method based on the predicted onset possibility and contents of BPSD and the onset time.
 BPSD判断部30eは、入力されたデータに基づきBPSDかどうかの判断を行うものである。 The BPSD determination unit 30e determines whether the BPSD is based on the input data.
 処理部30の各機能を実現するに当たって、入力したデータの特徴量を抽出し、各機能処理を行うことができる。 In realizing each function of the processing unit 30, it is possible to extract feature amounts of input data and perform each function process.
 記憶部20には、たとえば、関数20a、分類器20b、相関表20c、対応表20dおよびデータ記憶部20eが記憶されていることができる。 In the storage unit 20, for example, a function 20a, a classifier 20b, a correlation table 20c, a correspondence table 20d, and a data storage unit 20e can be stored.
 相関表20cは、環境データおよび生体データと、環境データおよび生体データと対応するBPSDに関する情報とを関連づけて構成されたデータベースからなることができる。対応表20dは、予測したBPSDの発生の有無および発生の時期と、対処方法とを関連づけて構成されたデータベースからなることができる。データ記憶部20eは、データ取得部40が取得したデータ、処理部30によりデータが処理されて得られたデータ、入力部52により入力されたデータ、予め処理部30による種々の判断のために参照されるデータなどが記憶されている。 The correlation table 20c can be composed of a database configured by associating environmental data and biometric data with information related to BPSD corresponding to the environmental data and biometric data. The correspondence table 20d can be made up of a database configured by associating the predicted presence / absence of BPSD and the timing of the occurrence with the coping method. The data storage unit 20e is the data acquired by the data acquisition unit 40, the data obtained by processing the data by the processing unit 30, the data input by the input unit 52, and is previously referenced for various determinations by the processing unit 30. Data to be stored is stored.
 データ取得部40は、加工されたデータを取得してもよいし、生データ(測定データや入力データ)を取得し処理部30で加工してもよい。データ取得部40が取得するデータは、たとえば、次のものを挙げることができる。 The data acquisition unit 40 may acquire processed data, or may acquire raw data (measurement data and input data) and process it by the processing unit 30. Examples of data acquired by the data acquisition unit 40 include the following.
(a)五感データ
 五感データは、たとえば、図5に示すように、音源探知、音種識別、嗅覚認知、顔認証、動作検知、側距機能、立体検知などを検知する。五感データは、カメラやマイクなどで計測することができる。なお、これらのデータを入手できるデバイスであれば特に限定されない。
(A) Five sense data As shown in FIG. 5, for example, the five sense data detects sound source detection, sound type identification, olfactory recognition, face authentication, motion detection, lateral distance function, stereoscopic detection, and the like. The five senses data can be measured with a camera or a microphone. In addition, if it is a device which can acquire such data, it will not specifically limit.
(b)環境データ
 環境データは、たとえば、図6に示すように、温度、湿度、照度、水量、気圧を測定したり、移動距離検知を行う。環境データは、温度センサ、湿度センサ、照度センサ、気圧センサなどから計測することができる。なお、これらのデータを入手できるデバイスであれば特に限定されない。
(B) Environmental data As shown in FIG. 6, for example, the environmental data measures temperature, humidity, illuminance, amount of water, and atmospheric pressure, and detects a moving distance. The environmental data can be measured from a temperature sensor, a humidity sensor, an illuminance sensor, an atmospheric pressure sensor, or the like. In addition, if it is a device which can acquire such data, it will not specifically limit.
(c)生体データ
 生体データは、たとえば、図7に示すように、心拍、呼吸、離床、睡眠(ノンレム睡眠、レム睡眠の検知)、覚醒、排泄、運動量、体温などを検知する。生体データを検知するためのセンサは、これらの検知を行うことができるものであれば特に限定されず、一つまたは複数のセンサにより構成されることができる。睡眠を例にとると、ドップラーセンサーによりノンレム睡眠状態とレム睡眠状態を把握することができる。排泄については、トイレのドアの開閉センサとトイレ内の人感センサを組み合わせて検知したり、通信機能を有するタグ(BLEタグ)やカメラの映像を解析することで、排泄のタイミングを検知することができる。排泄については、夜間排尿時間のタイミングと排泄に要した時間とを考慮して、排泄内容を検知することができる。運動量については、消費カロリーを計算するソフトウェアを利用して算出したり、通信機能を有するタグ(BLEタグ)による移動距離から計算したり、または、介護者の記録から、運動や掃除、洗濯など身体を動かした時間を算出し、運動量と消費カロリー量を計算することができる。なお、これらのデータを入手できるデバイスであれば特に限定されない。
(C) Biometric data The biometric data detects, for example, heart rate, respiration, getting out of bed, sleep (non-REM sleep, detection of REM sleep), awakening, excretion, momentum, body temperature, etc., as shown in FIG. The sensor for detecting the biometric data is not particularly limited as long as it can perform such detection, and can be configured by one or a plurality of sensors. Taking sleep as an example, a non-REM sleep state and a REM sleep state can be grasped by a Doppler sensor. About excretion, detect opening / closing sensor of toilet door and human sensor in toilet, or detect excretion timing by analyzing communication function tag (BLE tag) and camera video Can do. Regarding excretion, the content of excretion can be detected in consideration of the timing of the night urination time and the time required for excretion. The amount of exercise is calculated using software that calculates calories burned, calculated from the distance traveled by a tag (BLE tag) that has a communication function, or from the caregiver's record, such as exercise, cleaning, washing, etc. You can calculate the amount of exercise and calorie consumption. In addition, if it is a device which can acquire such data, it will not specifically limit.
(d)介護記録
 介護記録の項目は、たとえば、図8に示すように、ケアを受ける者または介護者のニーズ、ケアを受ける者または介護者の気がかりなこと、ケアを受ける者の自覚症状、介護者が観察したこと、ケアを受ける者の状態評価、ケアを受ける者または介護者の感想、介護者の対応、介護者の声掛け、介護者が行ったことなどを挙げることができる。
(D) Care Record The items of the care record include, for example, as shown in FIG. 8, the needs of the person receiving the care or the caregiver, the concern of the person receiving the care or the caregiver, the subjective symptoms of the person receiving the care, The caregiver's observation, the condition evaluation of the person receiving the care, the impression of the person receiving the care or the caregiver, the caregiver's response, the call of the caregiver, what the caregiver did, etc. can be mentioned.
 介護記録において、BPSDの予測精度を向上させるために、次の記録があることが好ましい。
1)BPSDが発生したこと
2)BPSDの発生した時間(時間帯)と場所(場所の役割、場所の位置関係など)が明確に記録されていること
3)BPSDの発生した時点での環境要因(気温、湿度、照度、気圧、騒音、異臭、人の存在、会話した内容、被験者の行動や態度)などの状況が記録されていること
4)BPSDの発生した前後における被験者の行動や態度が記録されていること。また、併せて同環境要因が記録されていること。
In the care record, in order to improve the prediction accuracy of BPSD, it is preferable to have the following record.
1) The occurrence of BPSD 2) The time (time zone) at which the BPSD occurred and the location (the role of the location, the positional relationship of the location, etc.) are clearly recorded 3) Environmental factors at the time of occurrence of the BPSD (Temperature, humidity, illuminance, barometric pressure, noise, off-flavor, presence of person, content of conversation, behavior and attitude of subject) 4) The behavior and attitude of the subject before and after the occurrence of BPSD Be recorded. In addition, the environmental factors must be recorded.
 これらを組み合わせて、BPSDの発生が場所の持つ役割、場所の存在する距離、生活リズムにおける時間帯、場所と時間に対しての環境要因、その前後の行動内容、その前後における人との関わりなどの観点から、BPSDの発生の可能性が高くなる状況の類推を高い精度で行うことができる。 Combining these, the role of the occurrence of BPSD, the role of the place, the distance in which the place exists, the time zone in the life rhythm, the environmental factors for the place and time, the action content before and after, the relationship with people before and after that From this point of view, it is possible to analogize a situation where the possibility of occurrence of BPSD is high with high accuracy.
(e)データ取得方法
 取得部が取得するデータにおいて、たとえば、次のように取得してもよい。
1)環境データ(温度、湿度、気圧、照度)の周期的な取得
2)生体データ(心拍数、呼吸数、睡眠状態、離床状態)の周期的な取得
3)BLEタグにより対象利用者の位置情報を取得し、移動距離を算出
4)AIカメラと連動して、対象利用者の位置情報取得し、移動距離を算出
5)上記の取得データを利用者IDと結びつけて、情報処理装置へ周期的に送信
(E) Data acquisition method In the data which an acquisition part acquires, you may acquire as follows, for example.
1) Periodic acquisition of environmental data (temperature, humidity, barometric pressure, illuminance) 2) Periodic acquisition of biometric data (heart rate, respiratory rate, sleep state, getting out of bed) 3) Location of target user by BLE tag Acquire information and calculate travel distance 4) Acquire the target user's location information in conjunction with the AI camera and calculate travel distance 5) Link the above acquired data with the user ID and send it to the information processing device periodically Send
 上記の1)温度、湿度の周期的取得において、温湿度センサはデフォルトで実時間から10分周期に取得データを送信することができる。各ゲートウェイは対象となるセンサのデータを、利用者IDと結びつけて取得できるようにすることができる。1台のゲートウェイで複数のセンサデータを取得し、複数人の利用者を同時にサポートができることで、分析が可能となる。 1) In the above periodic acquisition of temperature and humidity, the temperature / humidity sensor can transmit the acquisition data at a cycle of 10 minutes from real time by default. Each gateway can acquire the data of the target sensor in association with the user ID. A single gateway can acquire multiple sensor data and support multiple users simultaneously, enabling analysis.
 上記の2)気圧、照度の周期的取得において、IoTゲートウェイに気圧センサ、照度センサを実装した拡張モジュールを接続し、実時間から10分周期で、気圧、照度の情報を更新することができる。1台のゲートウェイで複数利用者のデータとしてサポートすることができるもので各分析に対応することができる。 In the above 2) periodic acquisition of atmospheric pressure and illuminance, an expansion module equipped with an atmospheric pressure sensor and an illuminance sensor can be connected to the IoT gateway, and information on atmospheric pressure and illuminance can be updated in a cycle of 10 minutes from real time. A single gateway can support multiple users' data and can support each analysis.
 上記の3)心拍数、呼吸数、睡眠状態、離床状態の周期的取得において、ドップラーセンサーユニットをベッド周辺の壁に設置し、着床時の心拍数、呼吸数、睡眠状態と離床/着床時のイベント通知を行うことができる。心拍数、呼吸数、睡眠状態は実時間から10分ごとに測定し、IoTゲートウェイに通知することにより分析が可能となる。離床/着床状態はイベント発生時に即時通知させてもよい。 3) In the periodic acquisition of heart rate, respiratory rate, sleeping state, and bed leaving state, a Doppler sensor unit is installed on the wall around the bed, and the heart rate, breathing rate, sleeping state and bed leaving / landing when landing Time event notification can be performed. Heart rate, respiratory rate, and sleep state are measured every 10 minutes from the real time and can be analyzed by notifying the IoT gateway. The bed leaving / landing state may be notified immediately when an event occurs.
(2)情報処理装置の物理的構成
 情報処理装置10は、電子計算機から構成され、たとえば、スーパーコンピュータなどの大型電子計算機や、GPU(Graphics Processing Unit)を搭載した電子計算機や、複数のパーソナルコンピュータ、量子コンピュータなどから構成される。
(2) Physical configuration of information processing apparatus The information processing apparatus 10 includes an electronic computer. For example, a large electronic computer such as a supercomputer, an electronic computer equipped with a GPU (Graphics Processing Unit), or a plurality of personal computers. It consists of a quantum computer.
 処理部30は、CPUなどの演算装置により実現することができる。記憶部20は、たとえば、ROMやハードディスクや外部記憶装置(CD、DVDなど)の公知の記憶装置に記憶させることができる。記憶部20は演算装置に独立して別体で構成されていても、演算装置内に構成されていてもよい。情報処理装置10は、1つの電子計算機から構成されていても、複数の電子計算機から構成されていてもよい。 The processing unit 30 can be realized by an arithmetic device such as a CPU. The storage unit 20 can be stored in a known storage device such as a ROM, a hard disk, or an external storage device (CD, DVD, etc.). The storage unit 20 may be configured separately from the arithmetic device or may be configured in the arithmetic device. The information processing apparatus 10 may be composed of one electronic computer or a plurality of electronic computers.
 情報処理装置10に対して情報処理を実行させるプログラムは、情報処理装置10に含まれる記憶装置(たとえば、ROM、ハードディスク)などに格納することができる。 The program that causes the information processing apparatus 10 to execute information processing can be stored in a storage device (for example, ROM, hard disk) included in the information processing apparatus 10.
 データ取得部40は、たとえば、通信ネットワークからデータを受信可能な受信部から構成されることができる。 The data acquisition unit 40 can be constituted by, for example, a reception unit that can receive data from a communication network.
 入力部は、たとえば、キーボード、マウス、タッチパネルなど公知の入力装置からなることができる。表示部54は、液晶ディスプレイ、有機ELディスプレイなど公知のディスプレイを適用することができる。送信部56は、通信ネットワークを通じて接続された端末に情報を送信するものであり、公知の送信装置を適用することができる。 The input unit can be composed of a known input device such as a keyboard, a mouse, and a touch panel. A known display such as a liquid crystal display or an organic EL display can be applied to the display unit 54. The transmission unit 56 transmits information to a terminal connected through a communication network, and a known transmission device can be applied.
3.情報処理方法
(1)情報処理方法の概要
 図4を参照しながら、情報処理方法について説明する。
3. Information Processing Method (1) Outline of Information Processing Method The information processing method will be described with reference to FIG.
 データ取得部40が、IoTデバイスなどから、介護を受ける者における、五感データ、環境データ、生体データ、行動データ、介護記録を取得する(S1)。 The data acquisition unit 40 acquires, from an IoT device or the like, five sense data, environmental data, biological data, behavior data, and care records for a person receiving care (S1).
 指標化部30aが取得したデータを指標化し、評価指標パラメータを算出する(S2)。 The data obtained by the indexing unit 30a is indexed and an evaluation index parameter is calculated (S2).
 予測部30bが、評価指標パラメータを解析し、BPSDを予測する(S3)。 The prediction unit 30b analyzes the evaluation index parameter and predicts BPSD (S3).
 対処方法導出部30dが予測したBPSDの発生の有無および発生時期に基づき、対処方法を生成する(S4)。 The coping method deriving unit 30d generates a coping method based on the occurrence and timing of occurrence of BPSD (S4).
 データ取得部40が行動データ等を取得し、BPSD判断部30eにより、実際にBPSDの症状が発生したか評価する(S5)。 The data acquisition unit 40 acquires behavior data and the like, and the BPSD determination unit 30e evaluates whether BPSD symptoms actually occur (S5).
 学習部30cが予測したBPSDと実際の症状との差異に基づいて、ディープラーニングに基づき、関数20aまたは識別器(ニューラルネットワーク)の学習(更新)を行う(S6)。 Based on the difference between the BPSD predicted by the learning unit 30c and the actual symptom, learning (update) of the function 20a or the discriminator (neural network) is performed based on deep learning (S6).
 図11に各段階で得られる計測データや加工データを示す。図11の各データは、それぞれを関連づけて記憶部20のデータ記憶部20eに記憶しておくことができる。 Fig. 11 shows the measurement data and processing data obtained at each stage. Each data of FIG. 11 can be stored in the data storage unit 20e of the storage unit 20 in association with each other.
(2)指標化処理の例
(a)環境指標
 環境指標については、気温+湿度、気圧、照度ごとに算出される不快度を指標とすることができる。まず、気温+湿度については公知の快適範囲を示すグラフを利用し、快適範囲にあるかどうかにより、不快であるかどうかを判断する。
(2) Example of indexing process (a) Environmental index For the environmental index, the degree of discomfort calculated for each temperature + humidity, atmospheric pressure, and illuminance can be used as an index. First, regarding temperature + humidity, a graph indicating a known comfort range is used to determine whether it is uncomfortable depending on whether it is within the comfort range.
 このための処理として、まず、湿度が40~70%の間にあるかどうかを判断し、範囲外の場合には不快であるとする。 As a process for this, it is first determined whether or not the humidity is between 40% and 70%.
 また、湿度が40~70%の間にある場合には以下の数式を使用して適正な気温か判断する。
Figure JPOXMLDOC01-appb-M000001
 この数式の範囲に気温と湿度が存在する場合には快適とし、この範囲を逸脱する場合には不快であるとする。不快であると判断した場合の不快度は簡易的に快適範囲の中心点から現在の気温湿度の直線と快適範囲の交点からの距離を不快度の指標として用いる。
If the humidity is between 40% and 70%, it is determined whether the temperature is appropriate using the following formula.
Figure JPOXMLDOC01-appb-M000001
It is assumed that when the temperature and humidity are within the range of the mathematical formula, it is comfortable, and when it deviates from this range, it is uncomfortable. When it is determined that it is uncomfortable, the distance from the intersection of the current temperature / humidity line and the comfort range is simply used as an index of the discomfort degree from the center point of the comfort range.
 次に、気圧の不快指標については、標準気圧1013hPaを標準値として、以下の数式を当てはめる。
Figure JPOXMLDOC01-appb-M000002
 ここで気圧をPとしたときに不快指標はP’となる。
Next, for the barometric discomfort index, the following formula is applied with the standard pressure 1013 hPa as a standard value.
Figure JPOXMLDOC01-appb-M000002
Here, when the atmospheric pressure is P, the discomfort index is P ′.
 次に、照度の不快指標であるが、こちらは利用者の状態により、基準となる照度が異なる。基準照度をIとして、以下の計算式を用いる。
Figure JPOXMLDOC01-appb-M000003
 照度Iとして、照度の不快指標であるI’を算出する。また、基準照度は活動時200lux、安静時50lux、睡眠時20luxとして計算する。
Next, although it is a discomfort index of illuminance, this is a reference illuminance that varies depending on the state of the user. The following formula is used with the reference illuminance as I 0 .
Figure JPOXMLDOC01-appb-M000003
As the illuminance I, I ′, which is a discomfort index of illuminance, is calculated. The reference illuminance is calculated as 200 lux during activity, 50 lux during rest, and 20 lux during sleep.
(b)生体指標
 心拍数は1分間の心拍数をP、平均の心拍数をPとして生体指標P’は以下の計算式で求める。
Figure JPOXMLDOC01-appb-M000004
(B) Biometric index As for the heart rate, the biometric index P ′ is obtained by the following calculation formula, where P is a heart rate per minute and the average heart rate is P 0 .
Figure JPOXMLDOC01-appb-M000004
 呼吸数については、1分間の呼吸数をB、平均の呼吸数をBとして、生体指標B’は以下の計算式で求める。
Figure JPOXMLDOC01-appb-M000005
As for the respiration rate, the biometric index B ′ is obtained by the following calculation formula, where B is the respiration rate per minute and B 0 is the average respiration rate.
Figure JPOXMLDOC01-appb-M000005
(3)予測処理
(a)予測ロジック
 予測のロジックをPとした場合、以下の式に基づき行列計算を行いPの算出を行うことができる。
Figure JPOXMLDOC01-appb-M000006
 ここでp1~p5は各パラメータ、α~ε’は認知症の行動・心理症状(BPSD)に発生時に関連する項目の度合いを表現する。
(3) Prediction process (a) Prediction logic When the prediction logic is P, matrix calculation can be performed based on the following formula to calculate P.
Figure JPOXMLDOC01-appb-M000006
Here, p1 to p5 represent parameters, and α to ε ′ represent the degree of items related to the behavioral / psychological symptoms (BPSD) of dementia.
(b)BPSDの発生時期の予測
 BPSDの発生時期の予測は、いくつかの基準点を元に時間帯の関連性を導出することができる。その指標として、以下の時刻を基準点として候補に挙げる。
1)0時(日付変更点)
2)日出(日没)
3)起床
4)食事
(B) Prediction of the occurrence time of BPSD The prediction of the occurrence time of BPSD can derive the relevance of the time zone based on several reference points. As the index, the following times are listed as candidates as reference points.
1) 0:00 (date change point)
2) Hiji (sunset)
3) Waking up 4) Meals
 BPSDの発生に対して、それぞれの基準点からの経過時間を算出し、その偏りから相関を導き出すことができる。BPSDの発生したタイミングと上記基準点からの経過時間に対して回帰分析を行い関連性を導き出すことができる。この時、起床については夜間の睡眠なのか、昼寝なのかを別に、また食事は朝食、昼食、夕食、間食などの種類ごとに分類してもよい。BPSDの発生した時刻をA点としたとき、0時、夜間睡眠の起床、朝食・昼食・夕食の近いものの経過時間と、昼寝の後であれば、昼寝からの経過時間、間食後であれば間食からの経過時間を追加で指標としてもよい。 ∙ With respect to the occurrence of BPSD, the elapsed time from each reference point can be calculated, and the correlation can be derived from the deviation. Regression analysis can be performed on the timing of occurrence of BPSD and the elapsed time from the reference point to derive the relationship. At this time, wake-up may be classified according to whether it is nighttime sleep or nap, and meals may be classified according to types such as breakfast, lunch, dinner, and snacks. If the time when BPSD occurs is point A, 0:00, wake up at night, the elapsed time of breakfast / lunch / dinner close, and if it is after a nap, the elapsed time from a nap, if after a snack The elapsed time from snacking may be used as an additional indicator.
 新しい出来事が生じると、その少し前の出来事を忘れてしまう記憶障害が生じる可能性が高くなる傾向がある。何をしてよいか分からず無気力になる抑うつ状態になると、何かを探そうと同じ行動を繰り返す常同行為を行い、無目的にさまよい歩く徘徊を行う傾向がある。指示命令による過剰な関与から、鬱陶しく目障りに漢字、突然、大声をあげて怒りだす易怒声を行う傾向がある。これらの流れには、特有の時間差があり、時系列を考慮した予測を行うことができる。 新 し い When a new event occurs, there is a tendency that a memory failure that forgets the event just before that increases. When you become depressed and you don't know what to do, you tend to do the habit of wandering unintentionally, doing the same act of repeating the same action as searching for something. There is a tendency to make angry voices that are irritating and annoying because of excessive involvement by directing instructions. These flows have unique time differences, and can be predicted in consideration of time series.
 BPSDの予測に当たって、写真などの画像解析とは異なり、時系列による影響を考慮した関数20aまたは分類器20bを用いるとよい。この関数20aまたは分類器20bの学習は、ディープラーニング(DeepLarning)の中でも言語・音声・映像解析に近いものであるため、LSTM(Longshort-termmemory)を使用して学習するとよい。 In the prediction of BPSD, unlike an image analysis such as a photograph, it is preferable to use a function 20a or a classifier 20b that takes into account the influence of time series. The learning of the function 20a or the classifier 20b is similar to language / audio / video analysis in deep learning (DeepLarning), so it is preferable to learn using LSTM (Longshort-termmemory).
(c)BPSDの環境要因からの予測
 BPSDの発生において、周囲の環境が及ぼす影響は大きいため、BPSD発生時の環境要因、特に気温、湿度、気圧、照度、臭い、騒音について分析を行うことができる。気温、湿度については温湿度の関連に対しての快適性指標グラフを元に、快適性の度合いを診断し、それを指標とすることができる。気圧、照度、臭い、騒音については、それぞれ単一指標としてBPSDの発生との関連性を分析し、それぞれ回帰分析を行うことにより、各指標のBPSDに対する影響と度合を算出することができる。
(C) Prediction from the environmental factors of BPSD Since the influence of the surrounding environment on the occurrence of BPSD is large, it is possible to analyze the environmental factors at the time of BPSD occurrence, especially temperature, humidity, atmospheric pressure, illuminance, smell, and noise. it can. As for the temperature and humidity, the degree of comfort can be diagnosed based on the comfort index graph for the relationship between temperature and humidity and can be used as an index. For atmospheric pressure, illuminance, odor, and noise, the influence and degree of each index on BPSD can be calculated by analyzing the relationship with the occurrence of BPSD as a single index and performing regression analysis.
(d)自然言語解析からの予測
 自然言語解析により、BPSDを解析することもできる。質問や問い合わせに含まれる品詞を自然言語処理にて特定した後、仮説を生成し、次にその仮説を支持または証拠を探すやり方である。証拠加重スコアの統計モデル手法に従って、BPSDの発症状態をベースにして、対応方法を割り当てる。
(D) Prediction from natural language analysis BPSD can also be analyzed by natural language analysis. This is a method in which a part of speech included in a question or inquiry is identified by natural language processing, a hypothesis is generated, and then the hypothesis is supported or searched for evidence. A response method is assigned based on the onset status of BPSD according to the statistical model method of the evidence weight score.
(e)行動からの予測
 図10に示すように、認知症患者の行動から、BPSDの相関がわかる。これによって、認知症患者の行動からBPSDの発症を予測することができる。
(E) Prediction from behavior As shown in FIG. 10, the correlation of BPSD is known from the behavior of a dementia patient. Thereby, the onset of BPSD can be predicted from the behavior of the dementia patient.
(4)対処方法
 BPSDの症状に基づき、関数20aまたは分類器20bに基づき、対処方法を生成することができる。また、BPSDの症状と、対応方法との対応表20dに基づき、BPSDの対処方法を選択してもよい。図12に示すような対応表20dを記憶部20に記憶させておいてもよい。
(4) Coping method Based on the BPSD symptoms, a coping method can be generated based on the function 20a or the classifier 20b. Further, a BPSD coping method may be selected based on the correspondence table 20d between BPSD symptoms and coping methods. A correspondence table 20 d as shown in FIG. 12 may be stored in the storage unit 20.
 なお、対処方法において、食事の献立内容も作成する必要があるときには、運動量や消費カロリーに基づき、栄養カロリーを算出して、献立に役立たせてもよい。 In the coping method, when it is necessary to create the menu contents of a meal, the nutritional calories may be calculated based on the amount of exercise and the calorie consumption and used for the menu.
(5)検証
(a)発生の評価
 BPSD の発症についての検証は、BPSD問題行動の評価尺度(TBS:Troublesome Behavior Scale)により行うことができる。TBS は高齢者認知症患の破壊行動や負担を記述する。
(5) Verification (a) Evaluation of Occurrence Verification of the onset of BPSD can be performed by a BPSD problem behavior evaluation scale (TBS: Troublesome Behavior Scale). TBS describes the destructive behavior and burden of elderly people with dementia.
 TBSは高齢者認知症患者の破壊行動や負担となる行動を記述する15項目とその頻度を定義しており、本出願人は認知症者の行動移譲を評価する尺度として信頼性と妥当性があることを確認した。さらに、認知症者に比較的よく観察される問題行動を、介護者が過去の所定期間(たとえば過去1か月間)に観察した頻度に基づき評価(たとえば5段階評価)を行い、予測結果を検証することができる。頻度は、「日に1回以上」、「週に数回」、「月に数回」、「なし」という評価分けをすることができる。 The TBS defines fifteen items describing the destructive behavior and burden behavior of elderly dementia patients and their frequency, and the applicant has reliability and validity as a measure for assessing the transfer of behavior of dementia patients. I confirmed that there was. In addition, problem behaviors that are observed relatively well by people with dementia are evaluated (for example, a five-step evaluation) based on the frequency that the caregiver observed in the past predetermined period (for example, the past month), and the prediction results are verified. can do. The frequency can be classified into “at least once a day”, “several times a week”, “several times a month”, and “none”.
 音声病態分析で、BPSD解析をすることができる。感情認識技術(Sensibility Technology)を用いて、発話中の「怒」「喜」「悲」「平常」の4感情の割合と「興奮」の程度を解析し、その程度を表示することができる。BPSD発症の検証は、脳の画像診断により行ってもよい。 BPSD analysis can be performed by voice pathological analysis. Using emotion recognition technology (Sensibility Technology), it is possible to analyze the ratio of the four emotions of “anger”, “joy”, “sadness”, and “normal” during utterance and the degree of “excitement” and display the degree. Verification of the onset of BPSD may be performed by brain image diagnosis.
 図13に示すように、BPSDが発症したかどうか、発症した場合にはその発症した内容および発症時期の評価において、認知症患者がBPSDが発症したかどうかをデータ取得部40が取得したデータまたは入力部52により入力されたデータに基づき、BPSD判断部30eが判断することができる。このBPSD判断アルゴリズムを学習部により学習させることができる。BPSD判断アルゴリズムの学習のさせ方は、予測部30dの予測アルゴリズムの学習と同様に行うことができる。 As shown in FIG. 13, in the evaluation of whether or not BPSD has occurred, and when it has occurred, the content and timing of its onset, the data acquired by the data acquisition unit 40 as to whether or not BPSD has occurred in a demented patient or Based on the data input by the input unit 52, the BPSD determination unit 30e can make a determination. This BPSD determination algorithm can be learned by the learning unit. The learning of the BPSD determination algorithm can be performed in the same manner as the learning of the prediction algorithm of the prediction unit 30d.
 具体的には、データ取得部40がデータを取得し(F11)、そのデータを指標化部30aが指標化し、BPSD判断部30eがBPSDかどうかを判断し(F13)、BPSDかどうかの判断結果を出力する。入力された実際のBPSDかどうかの状況と、BPSD判断部30eが判断した結果とを検証し(F15)、学習部30cがBPSD判断部30eがBPSDかどうかを判断する際に用いる判断アルゴリズムの学習を行う(F16)。
(b)対処方法の評価
 BPSD対処の評価を通して、ケア方法の導出が、どの程度の評価を獲得したかによってその信頼度を評価する。介護現場から収集される大量のデータにアナリティクスを実行し、洞察を収集してインスピレーションに変換することで、適切なケア方法を導出できるようにすることができる。BPSDの対処方法の評価において、認知症患者がBPSDが発症したかどうかをデータ取得部40が取得したデータまたは入力部52により入力されたデータに基づき、処理部30において対処方法の是非を検証してもよい。この検証結果に基づき、学習部30dが、対処方法導出部30dの導出アルゴリズムを学習させ、導出アルゴリズムの更新をすることができる。この対処方法導出部30dの導出アルゴリズムの学習のさせ方は、予測部30dの予測アルゴリズムの学習と同様に行うことができる。
Specifically, the data acquisition unit 40 acquires the data (F11), the indexing unit 30a indexes the data, determines whether the BPSD determination unit 30e is BPSD (F13), and determines whether the data is BPSD. Is output. Learning of the judgment algorithm used when the input actual BPSD status and the result determined by the BPSD determination unit 30e are verified (F15), and the learning unit 30c determines whether the BPSD determination unit 30e is BPSD. (F16).
(B) Evaluation of coping method Through the evaluation of coping with BPSD, the degree of reliability is evaluated according to how much evaluation the derivation of the care method has acquired. By running analytics on the massive amount of data collected from care sites, collecting insights and converting them into inspiration can help derive appropriate care methods. In the evaluation of the BPSD coping method, whether the dementia patient has developed BPSD or not is verified by the processing unit 30 based on the data acquired by the data acquiring unit 40 or the data input by the input unit 52. May be. Based on the verification result, the learning unit 30d can learn the derivation algorithm of the coping method derivation unit 30d and update the derivation algorithm. The method of learning the derivation algorithm of the coping method derivation unit 30d can be performed in the same manner as the learning of the prediction algorithm of the prediction unit 30d.
3.作用効果
 BPSDの発症または発症の時期を予測して、早期の対処により、BPSDの発症を未然に防ぎ、BPSDの発生自体を大幅に減らすことを可能にする。BPSDを事前に予測することができるため、介護者の負担を減らすことができる。
3. Effects The occurrence of BPSD or the timing of the onset is predicted, and early treatment can prevent the onset of BPSD in advance and greatly reduce the occurrence of BPSD itself. Since BPSD can be predicted in advance, the burden on the caregiver can be reduced.
 上記の実施の形態は、本発明の要旨の範囲内で種々の変更が可能である。上記の実施の形態においては、人の認知症の行動・心理症状について述べたが、これに限定されず動物の認知症の行動・心理症状についても広く適用することができる。 The above embodiment can be variously modified within the scope of the gist of the present invention. In the above embodiment, the behavior / psychological symptoms of human dementia have been described. However, the present invention is not limited to this and can be widely applied to behaviors / psychological symptoms of animal dementia.
4.応用例
(1)AI人工知能システム
 本実施の形態に係る情報処理装置は、次のAI(Artificial Intelligence)人工知能システムに適用することができる。すなわち、AI人工知能システムは、知識表現方式によるデータ蓄積部・解析部・感性処理部・プランニング部から形成される情報処理装置と、IoTゲータウェイから自動識別・自動対処・自動通知により収集されるデータおよびヒューマンインターファース・自然言語解析・音声認識により収集される介護記録データとを融合し、更に統計学的解析によるデータマイニング部から構成することができる。
4). Application Example (1) AI Artificial Intelligence System The information processing apparatus according to the present embodiment can be applied to the following AI (Artificial Intelligence) artificial intelligence system. In other words, the AI artificial intelligence system is an information processing device formed by a data storage unit, an analysis unit, a sensitivity processing unit, and a planning unit based on a knowledge expression method, and data collected by automatic identification, automatic handling, and automatic notification from an IoT gateway. Furthermore, the care record data collected by human interface, natural language analysis, and speech recognition can be merged, and further, a data mining unit can be configured by statistical analysis.
 ケアに使えそうな知識データをもとに、認知症高齢者の状態を継続的に把握し状態の変化から特有のBPSD発症予測を行い予め格納されている適切な対応方法を示唆することができる。次の効果がある。
(a)介護者だけでなく認知症の人にも焦点を当てる
(b)多次元的に柔軟に、介護者と認知症の人のニーズに合わせて行う
(c)薬物療法の適応の場合には組み合わせる
(d)情報共有においては、以下の(a)~(c)の情報を基に留意しながら、IoT情報から得られるデータと相関し分析することができる。
1)具体的なBPSDへの対処情報
2)認知症の人の身体的な安全とウェルビーイングを確保するための情報
3)難しいADL(日常生活動作)情報に対処する情報
Based on knowledge data that can be used for care, it is possible to continuously grasp the state of elderly people with dementia and predict the onset of specific BPSD from changes in the state, suggesting an appropriate pre-stored response method . Has the following effects.
(A) Focus not only on caregivers but also on people with dementia (b) Multidimensionally and flexibly to meet the needs of caregivers and people with dementia (c) In the case of drug therapy indications (D) Information sharing can be analyzed in correlation with data obtained from IoT information while paying attention to the following information (a) to (c).
1) Information to deal with specific BPSD 2) Information to ensure physical safety and well-being of people with dementia 3) Information to deal with difficult ADL (daily life movement) information
 AIの基礎研究は推論や学習を基盤に認知症の行動・心理症状(BPSD)の対応に応用して活用され得るものになる。 基礎 Basic research on AI can be applied to responding to behavioral and psychological symptoms (BPSD) of dementia based on inference and learning.
 (2)AI人工知能システムの機能
 AI人工知能システムは、次の機能を有することができる。
(a)エキスパートシステム
 専門家の知見をルールとして蓄積し、推論の手法を用いて問題を解決するシステムで以下の参考文献を辞書化される。
(b)音声認識
 スマートフォンやタブレットに向かって話す。誰が話しているかを特定し話した内容をコンピュータが理解し文章化される。
(c)自然言語処理
 文章化された情報の意味内容をコンピュータに理解させF-SOAIPの生活支援記録法に情報検索できるように仕分けして記録される。
(d)感性処理
 認知科学や人間工学の知見を基に、感じが温かいとか冷たいと言った感覚を環境センサから受け取りコンピュータ上に実現される。
(e)画像認識
 カメラなどで撮った内容をコンピュータに理解させ、居室の明るさや色調を快・不快に仕分けされる。
(f)機械学習
 IoTセンサや介護記録で収集されたデータの中から、一貫性のある規則(パターン)を見つけ出すシステムである。数学の統計の分野と強い関連があり、たとえば、次の統計的手法を用いて解析されて整理される。
(2) Functions of AI Artificial Intelligence System The AI artificial intelligence system can have the following functions.
(A) Expert system A system that accumulates expert knowledge as rules and solves problems using inference techniques.
(B) Voice recognition Speak to a smartphone or tablet. The computer understands what was spoken and understood what was spoken, and it is written.
(C) Natural language processing The meaning and content of the documented information is sorted and recorded so that the computer can understand the information and the information can be retrieved by the life support recording method of F-SOAIP.
(D) Sensitivity processing Based on knowledge of cognitive science and ergonomics, a feeling that the feeling is warm or cold is received from the environmental sensor and realized on the computer.
(E) Image recognition Lets the computer understand the contents taken by the camera, etc., and sorts the brightness and color tone of the living room pleasantly and unpleasantly.
(F) Machine learning A system that finds consistent rules (patterns) from data collected by IoT sensors and nursing care records. It is strongly related to the field of mathematics statistics. For example, it is analyzed and arranged using the following statistical methods.
1)FTA(Fault Tree Analysis)分析
 結果から原因を探る分析方法で、発生が好ましくない事象について、発生経路、発生原因及び発生確率を解析する。BPSDの発生を発生頻度の分析のために、原因の潜在的な危険(フォールト)を論理的にたどり(ここで言う「フォールト」とは、環境やヒューマンエラー等のイベントを指す。)、それぞれの発生確率を加算し、基本的な事象が起こりうる確率を算出する。
2)ETA(Event tree analysis)解析
 危険予知解析とも言われ、BPSDが発生するまでの過程を発生確率とその対策(ケア)の反応が成功もしくは失敗などを踏まえて解析する。
3)HAZOP(Hazard and Operability Study)分析
 経験則から分析する方法で、行動・心理症状を発症している場面において、対象者の振舞や性格特性を表すパラメータに対して、その状態は適切なケアを行わなかった場合の影響の結果として生まれたかどうかを分析する方法である。
 ここでいうパラメータは、IoTゲータウェイより得られた、体温・呼吸・脈拍・温度・湿度・気圧・睡眠時間などのデータと、その事象が繰返し起こっているかどうかなどガイドワードも含めて分析される。
4)情報検索
 蓄積されたデータの中から認知症ケアに必要とするものを見つけ出すシステムである。
1) FTA (Fault Tree Analysis) analysis This is an analysis method that searches for the cause from the results, and analyzes the path, cause, and probability of occurrence of an undesirable event. In order to analyze the occurrence frequency of BPSD, the potential danger (fault) of the cause is logically traced (here, “fault” refers to an event such as an environment or a human error). The probability of occurrence is added to calculate the probability that a basic event can occur.
2) ETA (Event tree analysis) analysis It is also called risk prediction analysis, and analyzes the process up to the occurrence of BPSD based on the probability of occurrence and the response of its countermeasure (care) based on success or failure.
3) HAZOP (Hazard and Operability Study) analysis This is an analysis based on empirical rules, and in situations where behavioral and psychological symptoms occur, the condition is appropriate for the parameters that represent the behavior and personality characteristics of the subject. It is a method of analyzing whether it was born as a result of the effect of not doing.
The parameters here are analyzed including data such as body temperature, breathing, pulse, temperature, humidity, barometric pressure, and sleep time obtained from the IoT gateway, and a guide word such as whether the event has occurred repeatedly.
4) Information search It is a system to find out what is needed for dementia care from the accumulated data.
(g)推論
 いろいろなパターンからある法則を統合して矛盾のない答えを導き出すためのシステムである。
1)ホットスポット分析(Hot Spot Analysis)
 過去の行動・心理症状の発生している空間(場所)を、行動・心理症状発生の可能性が高い空間(場所)とみなす分析方法である。
2)回帰分析(Regression Methods)
 過去のBPSDに加え、環境や人間関係等のBPSDに関連するその他の変数を独立変数とし、回帰分析によって将来のBPSDを予測する。
3)近接反復被害法(Near-Repeat Methods)
 1件のBPSDと次のBPSDの時空間的な近接性に基づいて、将来のBPSDを予測する。
4)時空間分析(Spatiotemporal Analysis)
 BPSDの発生の時間変化に伴う移動パターンやそれに影響する諸要因から、行動・心理症状を予測する。
5)リスク面分析(Risk Terrain Analysis)
 BPSDに影響する空間的要因との近接性からリスク面を作成し、将来のBPSDの発生を予測する。
(G) Inference This is a system for deriving consistent answers by integrating laws from various patterns.
1) Hot Spot Analysis
This is an analysis method that regards a space (place) where a past behavior / psychological symptom has occurred as a space (place) where the possibility of occurrence of a behavior / psychological symptom is high.
2) Regression methods
In addition to the past BPSD, other variables related to the BPSD such as environment and human relations are used as independent variables, and the future BPSD is predicted by regression analysis.
3) Near-Repeat Methods
A future BPSD is predicted based on the spatio-temporal proximity of one BPSD and the next BPSD.
4) Spatiotemporal Analysis
The behavioral / psychological symptoms are predicted from the movement pattern accompanying the time change of the occurrence of BPSD and various factors affecting it.
5) Risk Terrain Analysis
A risk aspect is created based on the proximity to the spatial factors that affect BPSD, and the future occurrence of BPSD is predicted.
(h)データマイニング
 データベース技術と機械学習を結び付けて、大量の整理されていないデータから役に立つと思われる情報を見つけ出すシステムで、クラス分類やクラスタリン グなどのデータマイニング手法によってBPSDを予測し対応方法を導出する。
(i)ヒューマンインターフェース
 介護者がより簡単にコンピュータなどの装置を操作できるようにしたスマートフォンやタブレット機器を適用することができる。
(j)プランニング
 BPSDの適切なケア対応の導出に当たって、ケアをどのような順序で行えば良いのかを決めるためのシステムを適用することができる。
(k)マルチエージェント
 BPSDを解決する介護者が集まって、複雑な問題を介護現場で解決したときの情報をF-SOAIPで再度BPSD発生を調べケアの方法を提案するシステムである。
(H) Data mining A system that links database technology and machine learning to find useful information from a large amount of unorganized data. Predicts and responds to BPSD by data mining techniques such as classification and clustering. Is derived.
(I) Human interface Smartphones and tablet devices that allow caregivers to more easily operate devices such as computers can be applied.
(J) Planning A system for determining the order in which care should be performed can be applied in deriving an appropriate care response of BPSD.
(K) Multi-agent This is a system that proposes a care method by gathering caregivers who solve BPSD and examining the occurrence of BPSD again with F-SOAIP when information on complicated problems is solved at the care site.
 上記内容を活用して、推論や学習を基盤に認知症のBPSDの対応に応用して活用することができる。 し て Utilizing the above contents, it can be applied to support BPSD for dementia based on inference and learning.
 (3)ケア方法
 認知症には異なる行動・心理症状に合わせたケア方法が必要である。ケア方法によっては、認知症患者に異なる影響を及ぼすからである。情報処理装置は、標準的なケア方法や最も優れた対人援助方法に関する情報を網羅した様々な文献と過去の情報の蓄積をすることができる。これらすべてから、認知症患者を介護するにあたり介護者に採用すべき最善の選択肢を提供するケア方法がどれかを特定することができる。介護の専門家の指導により、認知症対応型IoTサービスは介護現場での能力を獲るのに必要な知識を収集してもよい。これを「認知症ケアにおける知識のコーパス」と定義する。コーパスの作成は、多くの関連性のある文献を認知症対応型AIにロードすることによって開始することができる。
(3) Care methods Dementia requires care methods tailored to different behavioral and psychological symptoms. This is because some care methods have different effects on patients with dementia. The information processing apparatus is capable of accumulating various documents and past information covering information on standard care methods and the best interpersonal assistance methods. All of these can identify which care methods provide the best options for caregivers to take in caring for patients with dementia. Under the guidance of care professionals, the IoT service for dementia may collect the knowledge necessary to acquire the skills in the care setting. This is defined as “a corpus of knowledge in dementia care”. The creation of a corpus can be started by loading many relevant documents into a dementia-aware AI.
 また、コーパスの作成には、情報を選択するため、あるいは古い情報、劣っているとみなされる情報、問題の分野に無関係な情報をすべて排除するために、専門職員の介入もさせることができる。これを「認知症対応型コンテンツのキュレーション」と定義する。 Also, the creation of the corpus can involve the intervention of professional staff to select information or to eliminate all old, inferior, and information unrelated to the problem area. This is defined as “curation of dementia-compatible content”.
 キュレーションによって前処理され、コンテンツとより効率的に連携できるようにする索引やその他のメタデータを現場から生活支援記録法(F-SOAIP)で構築していくことができる。質問と回答のペアで訓練された認知症対応型AIはボットで継続的に対話を行うことで、学習し続けることができる。さらに、新しい情報が公開されると、認知症対応型AIも更新されて、所定の分野での知識と言語的解釈の変化に常に適応していき、情報に隠された新しい洞察やパターンを特定する準備をすることができる。それは、質問や問い合わせに含まれる品詞を自然言語処理にて特定した後、仮説を生成し、次にその仮説を支持または証拠を探すやり方である。 Indexes and other metadata that are pre-processed by curation and can be linked more efficiently with content can be built from the field using the Life Support Recording Method (F-SOAIP). A dementia-aware AI trained with question-answer pairs can continue to learn by continuously interacting with the bot. In addition, when new information is released, the AI for dementia is also updated, constantly adapting to changes in knowledge and linguistic interpretation in a given field, and identifying new insights and patterns hidden in the information Can be ready to do. It is a method in which a part of speech included in a question or inquiry is identified by natural language processing, a hypothesis is generated, and then the hypothesis is supported or searched for evidence.
 証拠加重スコアの統計モデル手法に従って、行動・心理症状の発症状態をベースにして、対応方法を割り当てることができる。認知症対応型AIは、行動・心理症状対応の成功例を通して、ケア方法の導出が、どの程度の評価を獲得したかによってその信頼度を評価することができる。要するに認知症対応型AIは、介護現場から収集される大量のデータにアナリティクスを実行し、洞察を収集してインスピレーションに変換することで、適切なケア方法を常に導出できるようにする。 対 応 According to the statistical model method of evidence weighted score, a response method can be assigned based on the onset state of behavior / psychological symptoms. Dementia-responsive AI can be evaluated for its reliability by the degree of evaluation that the derivation of care methods has gained through successful cases of behavioral and psychological symptoms. In short, AI for dementia enables analytics to be performed on large amounts of data collected from nursing care sites, collecting insights and converting them into inspiration, so that appropriate care methods can always be derived.
 上記の実施の形態は、本発明の要旨の範囲内で種々の変更が可能である。 The above embodiment can be variously modified within the scope of the gist of the present invention.
 本発明は、認知症患者や認知症を患った動物などのケアにおけるマネージメントシステムとして適用可能である。 The present invention can be applied as a management system in the care of dementia patients and animals suffering from dementia.
10 情報処理装置
20 記憶部
20a 関数
20b 分類器
20c 相関表
20d 対応表
20e データ記憶部
30 処理部
30a 指標化部
30b 予測部
30c 学習部
30d 対処法生成部
30e BPSD判断部
40 データ取得部
52 入力部
54 表示部
56 送信部
70 通信ネットワーク
 

 
DESCRIPTION OF SYMBOLS 10 Information processing apparatus 20 Storage part 20a Function 20b Classifier 20c Correlation table 20d Correspondence table 20e Data storage part 30 Processing part 30a Indexing part 30b Prediction part 30c Learning part 30d Countermeasure generation part 30e BPSD judgment part 40 Data acquisition part 52 Input Unit 54 display unit 56 transmission unit 70 communication network

Claims (14)

  1.  人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得するデータ取得部と、
     前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測する予測部とを含む、情報処理装置。
    At least selected from the group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal A data acquisition unit for acquiring one type;
    An information processing apparatus, comprising: a prediction unit that predicts the onset or the onset time of behavior / psychological symptoms in dementia of the person or animal based on the data acquired by the data acquisition unit.
  2.  請求項1において、
     前記予測部は、推論分析、回帰分析、HotSpot分析、近接間分析および時空間分析の少なくとも1種を用いて、前記人または動物の認知症における行動・心理症状に関する予測を行う情報処理装置。
    In claim 1,
    The information processing apparatus that predicts behavior / psychological symptoms in dementia of the human or animal using at least one of inference analysis, regression analysis, HotSpot analysis, proximity analysis, and spatiotemporal analysis.
  3.  請求項1または2において、
     前記データ取得部が取得したデータを指標化するための指標化部を含み、
     前記予測部は、前記指標化部で指標化された指標値を入力して、前記人または動物の認知症における行動・心理症状に関する予測値を出力する関数または分類器を用いて予測が行われる情報処理装置。
    In claim 1 or 2,
    Including an indexing unit for indexing the data acquired by the data acquisition unit,
    The prediction unit receives the index value indexed by the indexing unit and performs prediction using a function or a classifier that outputs a prediction value related to behavioral / psychological symptoms in dementia of the person or animal Information processing device.
  4.  請求項1または2において、
     前記分類器は、SVM(Support Vector Machine)、ニューラルネットワークまたは線形回帰モデルである情報処理装置。
    In claim 1 or 2,
    The classifier is an information processing apparatus that is an SVM (Support Vector Machine), a neural network, or a linear regression model.
  5.  請求項1または2において、
     前記予測部の前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差を評価し、その評価結果に基づき前記関数または分類器の学習を行う学習部を含む情報処理装置。
    In claim 1 or 2,
    The prediction unit evaluates the difference between the prediction of the behavior or psychological symptoms of the person or animal dementia and the actual behavior or psychological symptoms of the person or animal, and learns the function or classifier based on the evaluation result An information processing apparatus including a learning unit for performing.
  6.  請求項5において、
     前記学習部は、前記予測部が予測した前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差を評価し、
     前記予測部の前記人または動物の認知症における行動・心理症状に関する予測と、実際の前記人または動物の行動・心理症状との差の評価内容と、前記データ取得部が取得したデータに関する情報との関連においてディープラーニングにより前記関数または分類器の学習を行う情報処理装置。
    In claim 5,
    The learning unit evaluates the difference between the prediction of behavior / psychological symptoms in the human or animal dementia predicted by the prediction unit and the actual behavior / psychological symptoms of the human or animal,
    Prediction regarding behavior / psychological symptoms in dementia of the person or animal of the prediction unit, evaluation contents of difference between actual behavior / psychological symptoms of the person or animal, information on data acquired by the data acquisition unit, and An information processing apparatus that learns the function or classifier by deep learning in relation to the above.
  7.  請求項5において、
     前記関数は、前記データ取得部が取得したデータに関する数値に係るパラメータと、係数とを含んで構成され、
     前記学習部は、前記係数をディープラーニングにより調整する情報処理装置。
    In claim 5,
    The function includes a parameter related to a numerical value related to data acquired by the data acquisition unit, and a coefficient,
    The learning unit is an information processing apparatus that adjusts the coefficient by deep learning.
  8.  請求項1、2、6または7において、
     前記データ取得部は、前記環境データと前記生体データとを取得し、
     前記環境データは、前記人または動物の周囲の気温および湿度を含み
     前記生体データは、前記人または動物の脈拍、呼吸数および体温を含む情報処理装置。
    In claim 1, 2, 6 or 7,
    The data acquisition unit acquires the environmental data and the biological data,
    The environmental data includes an ambient temperature and humidity around the person or animal, and the biological data includes an information processing apparatus including a pulse, respiratory rate, and body temperature of the person or animal.
  9.  請求項8において、
     前記環境データおよび前記生体データと、前記環境データおよび前記生体データと対応する前記人または動物の認知症における行動・心理症状に関する情報とが関連づけて記憶されているデータ記憶部を含む情報処理装置。
    In claim 8,
    An information processing apparatus comprising: a data storage unit in which the environmental data and the biological data, and information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biological data are stored in association with each other.
  10.  請求項8において、
     前記環境データおよび前記生体データと、前記環境データおよび前記生体データと対応する前記人または動物の認知症における行動・心理症状に関する情報とが関連づけて構成された相関表が記憶されている記憶部を含む情報処理装置。
    In claim 8,
    A storage unit storing a correlation table configured by associating the environmental data and the biological data with information related to behavioral and psychological symptoms in dementia of the person or animal corresponding to the environmental data and the biological data; Including information processing apparatus.
  11.  請求項1、2、6、7、9または10において、
     前記予測部が予測した前記人または動物の認知症における行動・心理症状に関する予測内容に基づき、対処方法を生成または選択する対処方法導出部を含む情報処理装置。
    In claim 1, 2, 6, 7, 9 or 10,
    An information processing apparatus including a coping method derivation unit that generates or selects a coping method based on the prediction content related to the behavioral / psychological symptoms in dementia of the human or animal predicted by the prediction unit.
  12.  請求項5において、
     前記実際の前記人または動物の行動・心理症状は、行動・心理症状判断部により判断アルゴリズムにしたがって判断され、
     前記学習部は、前記行動・心理症状判断部による判断結果と、実際に人が判断した前記人または動物の行動・心理症状の判断結果との差を評価し、その評価結果に基づき前記判断アルゴリズムの学習を行う情報処理装置。
    In claim 5,
    The actual behavior / psychological symptoms of the person or animal are determined according to a determination algorithm by the behavior / psychological symptom determination unit,
    The learning unit evaluates a difference between the determination result of the behavior / psychological symptom determination unit and the determination result of the behavior / psychological symptom of the person or animal actually determined by the person, and the determination algorithm based on the evaluation result Information processing device that learns.
  13.  データ取得部が、人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得する工程と、
     予測部が、前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測する工程とを含む、情報処理方法。
    A data acquisition unit includes a group of environmental data around a person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal. Obtaining at least one selected from:
    A prediction unit predicting the onset or the onset time of the behavioral / psychological symptoms in dementia of the person or animal based on the data acquired by the data acquisition unit.
  14.  コンピュータに
     データ取得部が、人または動物の周囲の環境データと、前記人または動物の生体データ、前記人または動物の行動データ、前記人または動物の画像又は映像データおよび前記人または動物の音声データの群から選択される少なくとも1種を取得するステップと、
     予測部が、前記データ取得部が取得したデータに基づき、前記人または動物の認知症における行動・心理症状の発症またはその発症時期を予測するステップとを実行させるためのプログラム。

     
     
    In the computer, the data acquisition unit includes environmental data around the person or animal, biological data of the person or animal, behavior data of the person or animal, image or video data of the person or animal, and audio data of the person or animal. Obtaining at least one selected from the group of:
    A program for causing the prediction unit to execute the step of predicting the onset or the onset time of behavioral / psychological symptoms in dementia of the person or animal based on the data acquired by the data acquisition unit.


PCT/JP2019/019591 2018-05-17 2019-05-16 Information processing device, information processing method, and program WO2019221252A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980033077.XA CN112135568A (en) 2018-05-17 2019-05-16 Information processing apparatus, information processing method, and program
KR1020207036191A KR20210010548A (en) 2018-05-17 2019-05-16 Information processing device, information processing method and program
JP2020519931A JP7285046B2 (en) 2018-05-17 2019-05-16 Information processing device, information processing method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095748 2018-05-17
JP2018095748 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221252A1 true WO2019221252A1 (en) 2019-11-21

Family

ID=68540146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019591 WO2019221252A1 (en) 2018-05-17 2019-05-16 Information processing device, information processing method, and program

Country Status (4)

Country Link
JP (1) JP7285046B2 (en)
KR (1) KR20210010548A (en)
CN (1) CN112135568A (en)
WO (1) WO2019221252A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010168A1 (en) * 2020-07-10 2022-01-13 연세대학교 산학협력단 Method for predicting risk of dementia in parkinson's disease patient and device for predicting risk of dementia
WO2022010282A1 (en) * 2020-07-10 2022-01-13 서울대학교산학협력단 Voice characteristic-based method and device for predicting alzheimer's disease
WO2022054677A1 (en) * 2020-09-08 2022-03-17 テルモ株式会社 Program, information processing device, information processing method, and information processing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008471A (en) * 2002-06-06 2004-01-15 Seiko Instruments Inc Behavior conditions monitoring device, behavior conditions analysis apparatus, and behavior conditions analysis system
JP2012105795A (en) * 2010-11-17 2012-06-07 Nippon Tect Co Ltd Cognitive function prediction system
JP2016012175A (en) * 2014-06-27 2016-01-21 吉田 一雄 Watching system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346688B2 (en) * 2009-11-25 2013-01-01 International Business Machines Corporation Predicting states of subjects
KR20160005924A (en) * 2014-07-08 2016-01-18 한국전자통신연구원 Dementia Patient Management System and method thereof
CN107438398A (en) * 2015-01-06 2017-12-05 大卫·伯顿 Portable wearable monitoring system
CN105078449B (en) * 2015-08-24 2018-07-20 华南理工大学 Senile dementia monitor system based on health service robot
JP6712502B2 (en) * 2016-06-03 2020-06-24 一生 重松 Dementia diagnosis support device, its operation method and operation program, and dementia diagnosis support system
KR20180002234A (en) * 2016-06-29 2018-01-08 원시스템주식회사 A smart examination apparatus for dementia early diagnosis and the method by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008471A (en) * 2002-06-06 2004-01-15 Seiko Instruments Inc Behavior conditions monitoring device, behavior conditions analysis apparatus, and behavior conditions analysis system
JP2012105795A (en) * 2010-11-17 2012-06-07 Nippon Tect Co Ltd Cognitive function prediction system
JP2016012175A (en) * 2014-06-27 2016-01-21 吉田 一雄 Watching system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010168A1 (en) * 2020-07-10 2022-01-13 연세대학교 산학협력단 Method for predicting risk of dementia in parkinson's disease patient and device for predicting risk of dementia
WO2022010282A1 (en) * 2020-07-10 2022-01-13 서울대학교산학협력단 Voice characteristic-based method and device for predicting alzheimer's disease
KR20220007228A (en) * 2020-07-10 2022-01-18 연세대학교 산학협력단 Method for predicting risk for developing dementia in parkinson's disease and device using the same
KR102387586B1 (en) * 2020-07-10 2022-04-15 연세대학교 산학협력단 Method for predicting risk for developing dementia in parkinson's disease and device using the same
WO2022054677A1 (en) * 2020-09-08 2022-03-17 テルモ株式会社 Program, information processing device, information processing method, and information processing program

Also Published As

Publication number Publication date
CN112135568A (en) 2020-12-25
KR20210010548A (en) 2021-01-27
JP7285046B2 (en) 2023-06-01
JPWO2019221252A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
Mathew et al. Chatbot for disease prediction and treatment recommendation using machine learning
Enshaeifar et al. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
CN108780663B (en) Digital personalized medical platform and system
US11410540B2 (en) System and method for event prevention and prediction
Enshaeifar et al. Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia
US10726846B2 (en) Virtual health assistant for promotion of well-being and independent living
JP2020509498A (en) Method and apparatus for assessing developmental diseases and providing control over coverage and reliability
US20160034663A1 (en) Method to increase efficiency, coverage, and quality of direct primary care
WO2019221252A1 (en) Information processing device, information processing method, and program
Jayalakshmi et al. Fuzzy logic-based health monitoring system for COVID’19 patients
Rajawat et al. Depression detection for elderly people using AI robotic systems leveraging the Nelder–Mead Method
JP2023547875A (en) Personalized cognitive intervention systems and methods
Lopez-Guede et al. Lynx: automatic elderly behavior prediction in home telecare
Harish et al. Smart home based prediction of symptoms of Alzheimer’s disease using machine learning and contextual approach
Wu et al. A precision health service for chronic diseases: development and cohort study using wearable device, machine learning, and deep learning
Tekemetieu et al. Context modelling in ambient assisted living: Trends and lessons
US20200075160A1 (en) Systems and methods for seva: senior's virtual assistant
Abbasi et al. A model for identifying the behavior of Alzheimer’s disease patients in smart homes
Kaddachi et al. Technological approach for early and unobtrusive detection of possible health changes toward more effective treatment
Alimoradi et al. Intelligence complements from the built environment: A review of smart building technologies for cognitively declined occupants
Kadri et al. An hybrid deep learning approach for prediction and binary classification of student’s stress
Jage et al. Predicting Mental Health Illness using Machine Learning
KR102656184B1 (en) Server and method for providing infomration for companion animal care
US11972336B2 (en) Machine learning platform and system for data analysis
Lozano et al. Observations of Caregivers of Persons with Dementia: A Qualitative Study to Assess the Feasibility of Behavior Recognition Using AI for Supporting At-Home Care

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207036191

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19804245

Country of ref document: EP

Kind code of ref document: A1