WO2019221155A1 - Material for reinforcing carbon-fiber-reinforced plastic and material for reinforcing plastic - Google Patents

Material for reinforcing carbon-fiber-reinforced plastic and material for reinforcing plastic Download PDF

Info

Publication number
WO2019221155A1
WO2019221155A1 PCT/JP2019/019228 JP2019019228W WO2019221155A1 WO 2019221155 A1 WO2019221155 A1 WO 2019221155A1 JP 2019019228 W JP2019019228 W JP 2019019228W WO 2019221155 A1 WO2019221155 A1 WO 2019221155A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
reinforced plastic
fiber reinforced
cellulose
cellulose nanofiber
Prior art date
Application number
PCT/JP2019/019228
Other languages
French (fr)
Japanese (ja)
Inventor
一彰 片桐
俊彦 奥村
真平 山口
卓哉 永廣
園美 川北
粂 和弘
Original Assignee
地方独立行政法人大阪産業技術研究所
美津濃株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人大阪産業技術研究所, 美津濃株式会社 filed Critical 地方独立行政法人大阪産業技術研究所
Priority to JP2019562026A priority Critical patent/JP6664732B1/en
Publication of WO2019221155A1 publication Critical patent/WO2019221155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a carbon fiber reinforced plastic reinforced material and a plastic reinforced material.
  • CFRP carbon fiber reinforced plastic
  • CFRP has light weight and high strength.
  • resin is used as a base material, the impact strength is practically one of the drawbacks due to the low impact strength of the resin. As shown in FIG. The resin on the surface cracks and leads to destruction. Actually, gravel and the like often collide and the surface is cracked. For this reason, one of the drawbacks of CFRP is the impact strength. For this reason, high-strength matrix resins have been studied, but there have been no reports of significant performance improvements.
  • CFRP cellulose nanofiber
  • CNF cellulose nanofiber
  • matrix resin Increasing the impact strength of CFRP is being studied. Since CNF is a biomass resource derived from plant fiber, it can realize a sustainable recycling society without increasing the carbon dioxide causing global warming. However, since CNF has strong hydrogen bonds between the molecular chains, it cannot be dissolved in common organic solvents and is hydrophilic, so it is difficult to disperse CFRP in the matrix resin.
  • hydrophobic treatment for example, chemical modification with a hydrophobic group
  • CNF is dispersed in a CFRP matrix resin without performing the hydrophobic treatment.
  • a hydrophobizing treatment include a method in which CNF is added together with a chemical and reacted by heating. In this case, for example, the heating temperature is 120 ° C., the treatment time is 1 hour, 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (FAS13) or the like is used.
  • FAS13 perfluorooctyltrimethoxysilane
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a carbon fiber reinforced plastic reinforced material that is lightweight and excellent in impact strength. Another object of the present invention is to provide a material for reinforcing a plastic (such as a hydrophobic resin).
  • the present invention includes the following configurations.
  • Item 1. Comprising at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer; At least one cellulose nanofiber layer is disposed adjacent to at least one surface of at least one carbon fiber reinforced plastic layer, The carbon fiber reinforced plastic layer contains carbon fiber reinforced plastic, The cellulose nanofiber layer is a carbon fiber reinforced plastic reinforced material containing cellulose nanofiber and a polymer compound.
  • Item 2. The carbon fiber reinforced plastic reinforcing material according to Item 1, wherein the thermosetting resin that is a matrix of the carbon fiber reinforced plastic is an epoxy resin.
  • Item 3. Item 3.
  • Item 4. Item 4. The carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 3, wherein at least one carbon fiber reinforced plastic layer is disposed between the two cellulose nanofiber layers.
  • Item 5. Item 4. The carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 3, wherein the carbon fiber reinforced plastic layer and the cellulose nanofiber layer are alternately arranged.
  • Item 6. A plastic reinforced material comprising cellulose nanofibers and a polymer compound.
  • Item 7. Item 6.
  • a method for producing a carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 5, (1) a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition solution in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin coating; A manufacturing method provided with the process of forming and heating-hardening a cellulose nanofiber layer on a carbon fiber reinforced plastic or its precursor using the dispersion liquid obtained at the process (1).
  • Item 8. The method according to Item 7, wherein the carbon fiber reinforced plastic or a precursor thereof contains an epoxy resin as a matrix resin.
  • Item 7 A method for producing a plastic reinforced material according to Item 6, (1) A production method comprising a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition liquid in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin paint.
  • Item 11 Item 11. The production method according to any one of Items 7 to 10, wherein the polymer compound in the electrodeposition liquid is an epoxy resin.
  • a carbon fiber reinforced plastic reinforced material that is light in weight and excellent in impact strength can be obtained at low cost without applying a hydrophobic treatment. Further, according to the present invention, a material for reinforcing a plastic (such as a hydrophobic resin) can be obtained.
  • FIG. 1 It is a schematic sectional drawing explaining the process (left figure) which cracks in the resin of the surface of CFRP and leads to destruction, and the reinforcement mechanism (right figure) at the time of compounding CFRP and CNF.
  • the appearance photograph of the sheet obtained as a cellulose nanofiber layer (plastic reinforced material) in Example 1 is shown.
  • 2 is a graph showing the impact strength improvement effect when a cellulose nanofiber layer (plastic reinforced material) is pressure bonded to a carbon fiber prepreg in Example 1.
  • FIG. 6 is a graph showing the impact strength improvement effect when a cellulose nanofiber layer (plastic reinforced material) and a carbon fiber reinforced plastic are pressure-bonded in Example 2.
  • bonding a cellulose nanofiber layer (plastic reinforcement material) to the carbon fiber prepreg in Example 1 and an external appearance photograph are shown.
  • the layer structure of the carbon fiber reinforced plastic reinforced material obtained in Examples 3 to 6 and Comparative Example 1 is shown.
  • the relationship between the CNF content and the bending stiffness of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown.
  • the relationship between the CNF content and bending strength of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown.
  • the photograph of the interface of the prepreg, CNF, and electrodeposition liquid origin resin layer by the digital microscope of the carbon fiber reinforced plastic reinforcement material obtained in Example 5 is shown.
  • carbon fiber reinforced plastic reinforced material means a composite material reinforced with carbon fiber reinforced plastic.
  • plastic reinforced material means a material reinforced with plastic.
  • Carbon fiber reinforced plastic reinforced material and plastic reinforced material comprises at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer, and the carbon fiber reinforced plastic layer comprises: All of them contain carbon fiber reinforced plastic, and all of the cellulose nanofiber layers contain cellulose nanofibers and polymer compounds, and at least one of the carbon fiber reinforced plastic layers contains the cellulose.
  • the nanofiber layer is disposed adjacent to at least one layer.
  • the plastic reinforcing material of the present invention contains cellulose nanofibers and a polymer compound.
  • the carbon fiber reinforced plastic layer contains a carbon fiber reinforced plastic.
  • This carbon fiber reinforced plastic usually employs an autoclave method in which a plurality of prepregs impregnated with a thermosetting resin in carbon fiber and semi-dried are stacked and compressed and heated to cure the thermosetting resin. ing. That is, it has a configuration in which carbon fibers are dispersed in a thermosetting resin as a matrix.
  • the carbon fiber material in this case is not particularly limited as long as it is a structure made of carbon fibers (particularly a structure made of conductive carbon fibers).
  • Examples thereof include a planar carbon fiber sheet, a pipe-shaped carbon fiber sheet, a wing-shaped carbon fiber sheet, an L-shaped carbon fiber sheet, and an H-shaped carbon fiber sheet.
  • a carbon fiber material in which carbon fibers are arranged in a straight line but also a carbon fiber material having a complicated three-dimensional shape can be used.
  • the fiber diameter of one carbon fiber constituting such a carbon fiber material is preferably 0.001 to 50 ⁇ m on average from the viewpoint of more sufficiently depositing a polymer compound and obtaining a carbon fiber prepreg.
  • a known or commercially available product can be used as such a carbon fiber material.
  • thermosetting resin for example, an epoxy resin, a phenol resin (novolak resin etc.), an acrylic resin, a nylon resin, a vinyl resin, a polyamide resin, a polyimide resin, a polyamideimide resin, a polystyrene resin, a polycarbonate
  • thermosetting resins can be used alone or in combination of two or more.
  • thermosetting resins are preferably those having the same functional group as the polymer compound in the cellulose nanofiber layer in consideration of the affinity with the cellulose nanofiber layer described later, and more preferably an epoxy resin.
  • the thickness of the polymer compound covering each carbon fiber is preferably 20 to 200 ⁇ m, more preferably 50 to 100 ⁇ m, from the viewpoint of further improving the strength and affinity with the cellulose nanofiber layer. More preferred.
  • the carbon fiber reinforced plastic layer further improves the strength and from the viewpoint of affinity with the cellulose nanofiber layer, the total amount of carbon fiber and thermosetting resin is 100% by mass, and the carbon fiber content is 20 to 20%. 70% by volume is preferable, and 25 to 60% by volume is more preferable.
  • Such carbon fiber reinforced plastic is not particularly limited, and known or commercially available products can be used.
  • the cellulose nanofiber layer contains cellulose nanofiber and a polymer compound.
  • cellulose nanofibers known ones can be widely used, and there is no particular limitation.
  • cellulose constituting the cellulose nanofiber any of plant-derived cellulose, animal-derived cellulose, and bacteria-derived cellulose can be suitably used. These may be used alone or in combination of two or more.
  • plant-derived cellulose examples include hardwood-derived cellulose (eucalyptus, poplar, etc.), conifer-derived cellulose (pine, fir, cedar, cypress, etc.), herbaceous cellulose (wara, bagasse, reed, kenaf, abaca, sisal, etc.) , And seed hair fibers (such as cotton).
  • the pulp used as a raw material may be mechanical pulp obtained by mechanically treating wood chips, chemical pulp obtained by chemically removing non-cellulose components from wood chips, and dissolution obtained by removing non-cellulose components and purifying them. Pulp may be used.
  • cellulose derived from animals such as sea squirts, cellulose derived from bacteria such as nata deco, and the like can also be used.
  • cellulose does not necessarily need to be comprised only from a pure cellulose component,
  • the non-cellulose component may accompany the cellulose which is a main component. Of course, you may be comprised only with the pure cellulose component.
  • the main non-cellulose component accompanying the cellulose nanofiber is not particularly limited and can be appropriately selected depending on the application.
  • hemicellulose and lignin can be mentioned.
  • the pure cellulose component ratio in the cellulose nanofibers may be set as appropriate according to the application.
  • the pure cellulose component ratio is preferably 70% by mass or more and more preferably 80% by mass or more in 100% by mass of cellulose nanofibers.
  • the upper limit of the pure cellulose component ratio can be 100% by mass.
  • the cellulose ratio is a ratio of a pure cellulose component in which ⁇ -glucose molecules are linearly polymerized by glycosidic bonds with respect to 100% by mass of the whole cellulose nanofiber.
  • a cellulose component having a polymerization degree of 500 or more, particularly 600 or more can be used.
  • the upper limit of the degree of polymerization of the cellulose component is not particularly limited, but can be, for example, 100,000.
  • the crystallinity of the pure cellulose component contained in the cellulose nanofiber is not particularly limited and is preferably 60% or more, more preferably 70% or more.
  • the upper limit of the crystallinity of cellulose is not particularly limited, but can be 99%, for example.
  • Examples of the crystal structure of the cellulose component include type I, type II, type III, and type IV.
  • the size of the cellulose nanofiber is not particularly limited, and when adopting the production method of the present invention described later, the diameter is preferably 4 to 100 nm and the length is preferably 500 nm or more from the viewpoint of dispersion in the electrodeposition solution.
  • the diameter of the cellulose nanofiber is a median diameter obtained by SEM observation of 50 or more randomly extracted cellulose nanofibers.
  • the above-mentioned cellulose nanofiber can form a cellulose nanofiber layer without being subjected to a hydrophobic treatment.
  • the cellulose nanofiber contained in the carbon fiber reinforced plastic reinforced material of the present invention can include those not subjected to a hydrophobic treatment.
  • a high molecular compound For example, an epoxy resin, a phenol resin (novolak resin etc.), an acrylic resin, a nylon resin, a vinyl resin, a polyamide resin, a polyimide resin, a polyamideimide resin, a polystyrene resin, a polycarbonate resin , Polyolefin resin, polyester, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone and the like. These polymer compounds can be used alone or in combination of two or more. These polymer compounds are preferably those having the same functional group as the thermosetting resin in the carbon fiber reinforced plastic layer in consideration of the affinity with the carbon fiber reinforced plastic layer, and more preferably an epoxy resin.
  • the cellulose nanofiber layer further improves the strength and from the viewpoint of affinity with the carbon fiber reinforced plastic layer, the total amount of cellulose nanofiber and carbon fiber reinforced plastic is 100% by mass, and the cellulose nanofiber content is 1 -20% by mass is preferable, and 2-15% by mass is more preferable.
  • the thickness of the cellulose nanofiber layer is, for example, preferably 0.001 to 500 ⁇ m and more preferably 0.001 to 100 ⁇ m from the viewpoint of improving the strength and affinity with the carbon fiber reinforced plastic layer.
  • the carbon fiber reinforced plastic reinforced material of the present invention includes at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer, and at least one carbon fiber. At least one cellulose nanofiber layer is disposed adjacent to at least one side of the reinforced plastic layer. As a result, although the cellulose nanofibers are hydrophilic, the carbon fiber reinforced plastic layer using the thermosetting resin as a matrix and the cellulose nanofiber layer can be firmly bonded. As described above, the carbon fiber reinforced plastic layer is reinforced by the cellulose nanofiber layer, and the impact strength can be particularly improved.
  • the configuration of the carbon fiber reinforced plastic reinforced material of the present invention is not particularly limited as long as at least one cellulose nanofiber layer is disposed adjacent to at least one surface of at least one carbon fiber reinforced plastic layer.
  • a structure in which at least one carbon fiber reinforced plastic layer is disposed between two cellulose nanofiber layers, or a structure in which carbon fiber reinforced plastic layers and cellulose nanofiber layers are alternately disposed for example, It is possible to employ a structure in which a carbon fiber reinforced plastic layer, a cellulose nanofiber layer, a carbon fiber reinforced plastic layer, a cellulose nanofiber layer, and a carbon fiber reinforced plastic layer are formed in this order.
  • a carbon fiber reinforced plastic reinforced material having excellent impact strength can be obtained, it is possible to manufacture a lighter sports equipment that could not be achieved by conventional techniques. Specifically, practical application in golf clubs (entire), tennis rackets (frames, shafts, etc.), baseball / softball bats (overalls), badminton rackets (frames, shafts, etc.) can be expected.
  • baseball / softball bats have a thick carbon fiber layer to increase durability because the surface and the carbon fiber layer break when repeatedly hitting the ball.
  • a carbon fiber reinforced plastic reinforced material excellent in impact strength can be obtained, it is possible to reduce the weight by reducing the number of carbon fiber layers (carbon fiber reinforced plastic layer in the present invention).
  • Carbon fiber reinforced plastic materials are often used in aerospace and industrial applications because of the widespread use in the sports market. For this reason, in addition to the development of applications for sports equipment as described above, it can be applied to automobile bodies and parts, aircraft bodies and parts, aircraft main bars and parts, and highway ETC gate bars that are being further reduced in weight.
  • the plastic reinforcing material of the present invention contains cellulose nanofibers and a polymer compound. What was mentioned above is employable about a cellulose nanofiber and a high molecular compound.
  • the strength of the target polymer compound can be improved, so that it is possible to manufacture lightweight sports equipment that could not be achieved by conventional techniques.
  • the target polymer compound especially plastic
  • cellulose nanofibers can be included to reinforce thin plastic films, such as capacitor insulation and thin film circuit boards, that can be easily broken by plastic alone.
  • Carbon fiber reinforced plastic reinforced material and method for producing plastic reinforced material (1) a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition solution in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin coating; Using the dispersion obtained in the step (1), a step of forming a cellulose nanofiber layer on a carbon fiber reinforced plastic or a precursor thereof and curing it by heating is provided.
  • the method for producing the plastic reinforced material of the present invention includes: (1) A step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition liquid in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin paint.
  • Electrodeposition technology is a technology that has been used in automobile coating, and polymer compounds with epoxy groups are often dispersed in the electrodeposition solution, and the polymer compound is deposited on the surface of the object by electrophoresis. Can be made. From the viewpoint of environmental protection, an electrodeposition solution using water as a solvent has been developed. If the above-mentioned method is adopted, the cellulose nanofibers can be uniformly dispersed in the electrodeposition solution in the step (1) without being hydrophobized.
  • the carbon fiber reinforced plastic reinforced material and the plastic reinforced material of the present invention can be produced at low cost.
  • Step (1) As the polymer compound and the cellulose nanofiber, the polymer compound described in the cellulose nanofiber layer can be used. The preferred embodiments are also the same. In addition, about a high molecular compound, a microgel can also be employ
  • the electrodeposition liquid used in the present invention includes pigments (carbon, titanium oxide, lead silicate, aluminum phosphate, bismuth hydroxide, water) in addition to the polymer compound and solvent (cellosolve solvent, alcohol solvent, etc.). Yttrium oxide, aluminum silicate, talc, etc.), functional agents (microgel, etc.), acids (acetic acid, lactic acid, formic acid, propionic acid, sulfamic acid) and the like can also be included.
  • the electrodeposition liquid used in the present invention is not particularly limited as long as the above-described polymer compound is dissolved or dispersed, and the cellulose nanofibers can be dispersed.
  • An electrodeposition solution is preferred.
  • a cationic electrodeposition solution can be used, and a polymer compound charged negatively ( ⁇ ) is electrodeposited.
  • an anionic electrodeposition solution can be used.
  • Examples of such an electrodeposition liquid include Insuled 1000, Insuled 3000, Insuled 4000, and Eleclon KG400 and Elklon KG550 manufactured by Kansai Paint Co., Ltd.
  • Insuled 1000 and Insuled 3000 contain a phenolic resin (novolac resin) as a polymer compound, and can impart insulation and heat resistance by precipitating an epoxy resin.
  • Insuled 4000 is a polyamide.
  • An imide resin is included, and by precipitating a polyamide-imide resin, insulation, heat resistance, and bending workability can be imparted.
  • Insuled 1000 and Insuled 3000 can deposit an epoxy resin as described above, and are usually sheet-like carbon used in step (2) in which the matrix resin is an epoxy resin. It is preferable from the viewpoint of affinity with the fiber reinforced plastic precursor.
  • the epoxy resin paint used in the present invention is not particularly limited as long as the epoxy resin is dissolved or dispersed and the cellulose nanofibers can be dispersed, but considering the dispersibility of the cellulose nanofibers, an aqueous epoxy resin paint is used. Is preferred.
  • water-based epoxy resin examples include water-based epoxy resin W2801, water-based epoxy resin W2821 R70, water-based epoxy resin W3435 R67, water-based epoxy resin W8735 R70, water-based epoxy resin W1155 R55, etc., manufactured by Mitsubishi Chemical Corporation.
  • a water-based epoxy resin curing agent it can be used in combination with WD11 M60 manufactured by Mitsubishi Chemical Corporation.
  • an epoxy resin paint for example, Epoor series, Eponic series, Brassnon # 21, DNT universal primer, Eco Cool Smile HB, aqueous floor coat primer, Epoti, Kelvin ⁇ 2.5, manufactured by Dainippon Paint Co., Ltd. HERCON CR-3A etc.
  • the contact method between the above-mentioned electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. and cellulose nanofiber is not particularly limited.
  • a method of immersing cellulose nanofibers in the above-described electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. (particularly, cellulose nanofibers are immersed in the above-mentioned electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. and mixed)
  • the electrodeposition liquid described above It is preferable to mix a water-based epoxy resin, an epoxy resin paint or the like with a dispersion of cellulose nanofibers.
  • each component in this case is not restrict
  • the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. are not expected to be coated on the surface of metal or the like by electrodeposition as expected, but the dispersion of the cellulose nanofiber and the polymer compound It is used as a liquid.
  • Step (2) As described above, after the cellulose nanofibers are dispersed in the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. by bringing the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. into contact with the cellulose nanofiber, the carbon A cellulose nanofiber layer is formed on the fiber reinforced plastic or its precursor. At this time, the carbon fiber reinforced plastic or a precursor thereof may be applied and dried, or the cellulose nanofiber layer may be formed into a sheet and then pressed with the carbon fiber reinforced plastic or a precursor thereof. The molding method at this time can be performed by a conventional method.
  • the contact material (particularly the mixture) of the electrodeposition liquid and the cellulose nanofibers contains water, so it can be dried to evaporate the water before heat curing.
  • the cellulose nanofiber layer containing a uniform and strong cellulose nanofiber and a polymer compound can be made into a cellulose nanofiber layer that is easy to handle.
  • the obtained sheet-like material may be laminated on a sheet made of carbon fiber reinforced plastic or a precursor thereof and then dried to evaporate moisture.
  • the obtained sheet-like material is laminated on a sheet made of carbon fiber reinforced plastic or its precursor and then energized, and then dried to evaporate the water, the resulting carbon fiber of the present invention is obtained.
  • the interface strength between the cellulose nanofiber layer and the carbon fiber reinforced plastic layer can be further improved.
  • the carbon fiber reinforced plastic or the precursor thereof on which the cellulose nanofiber layer is formed is cured by heating. When applied and dried in the step (1), it can be cured by heating as it is.
  • the obtained sheet-like material is laminated on a sheet made of carbon fiber reinforced plastic or a precursor thereof, and then energized as necessary, and then dried as it is. Then, the carbon fiber reinforced plastic or its precursor can be heat-cured. When the pressure bonding and heat curing are performed, the polymer compound in the cellulose nanofiber layer and the thermosetting resin in the sheet made of carbon fiber reinforced plastic or its precursor can be firmly bonded.
  • the conditions during crimping there are no particular limitations on the conditions during crimping, and for example, a pressure of 0.01 to 30 MPa, preferably 0.1 to 5 MPa can be applied.
  • the conditions for heat curing are not particularly limited.
  • the heating temperature may be 120 to 250 ° C. (especially 140 to 200 ° C.), and the heating time may be 0.1 to 3 hours (especially 1 to 1.5 hours). it can.
  • the cellulose nanofiber layer and the carbon fiber reinforced plastic layer can be firmly bonded.
  • the above steps can be repeated as many times as necessary.
  • Bending test pieces were cut into 40 ⁇ 10 mm with a rotary cutter, and five pieces were produced for each CNF content.
  • an electroactive electrodeposition liquid (Insuleed 3030, epoxy resin content 20 mass%) manufactured by Nippon Paint Co., Ltd. was used as the electrodeposition liquid.
  • a polymer compound (epoxy resin) having an epoxy group is dispersed, and an irreversible deconducting reaction occurs by energization, and the epoxy resin is deposited on the surface of the material to be treated. It does not contain any physiologically active substances such as isocyanate curing agents, blocking agents, harmful heavy metal catalysts, or substances that are considered to cause harm to the global environment.
  • Cellulose nanofiber is a dispersion of cellulose nanofibers produced from bamboo manufactured by Chuetsu Pulp & Co., Ltd. (cellulose content 2.5% by mass, average fiber diameter 50 nm, average fiber length 100 ⁇ m), or Daio Paper Using a dispersion of cellulose nanofibers produced from broad-leaved trees manufactured by Co., Ltd. (cellulose content 2% by mass, average fiber diameter 50 nm, average fiber length 10 ⁇ m), prepreg is Toho Tenax Q-111-H1280 (resin content 25% by mass) was used.
  • Example 1 When a predetermined amount of cellulose nanofiber dispersion (Chuetsu-CNF or Daio-CNF; average fiber diameter 50 nm, average fiber length 10 ⁇ m) is mixed in the electrodeposition liquid (Insuleed 3030 manufactured by Nippon Paint Co., Ltd.) Out and evenly dispersed. For this reason, it was understood that the cellulose nanofibers were sufficiently dispersed without being subjected to a hydrophobic treatment.
  • the electrodeposition liquid Insuleed 3030 manufactured by Nippon Paint Co., Ltd.
  • the obtained sheet (cellulose nanofiber layer) is used as a cellulose nanofiber layer, and is pressure-bonded to the front and back surfaces of 9 layers of prepreg (Q-111 H1280 made by Toho Tenax), a precursor of carbon fiber reinforced plastic, at a pressure of 1 MPa. Heat curing was performed at 150 ° C. for 1 hour. As a result, a Charpy impact test was conducted, and an impact strength improvement of 20 to 30% was observed compared to the case where cellulose nanofiber was not added. The results are shown in FIG. In FIG. 3, CNF weight fraction means the content (mass%) of cellulose nanofibers, where the total amount of CFRP and cellulose nanofibers is 100 mass%.
  • Example 2 In the same manner as in Example 1, a sheet-like cellulose nanofiber layer was produced.
  • the obtained sheet-like cellulose nanofiber layer was press-bonded at a pressure of 1 MPa on the surface of the resin-impregnated resin impregnated with carbon fiber in an electrodeposition solution, and heat cured at 230 ° C. for 1 hour.
  • CNF weight fraction means the content (mass%) of cellulose inanofiber, where the total amount of CFRP and cellulose nanofiber is 100 mass%.
  • Examples 3-6 and Comparative Examples 1-2 When a predetermined amount of cellulose nanofiber dispersion (Chuetsu-CNF or Daio-CNF; average fiber diameter 50 nm, average fiber length 10 ⁇ m) is mixed in the electrodeposition liquid (Insuleed 3030 manufactured by Nippon Paint Co., Ltd.) Out and evenly dispersed. For this reason, it was understood that the cellulose nanofibers were sufficiently dispersed without being subjected to a hydrophobic treatment. Next, the obtained electrodeposition liquid was applied with a blade to 5 layers of prepreg (manufactured by Mizuno), which is a precursor of carbon fiber reinforced plastic, and dried. The thermosetting conditions were 150 ° C., 1 hour, and atmospheric pressure.
  • the prepreg has a total of 5 layers, Surface type (cellulosic nanofiber layer formed on the outermost surface and outermost surface) and Lamination type (outermost surface and outermost surface are prepregs). A cellulose nanofiber layer was formed immediately inside them, and a prepreg of three layers was formed in the center).
  • the sample preparation conditions of Examples 3 to 6 and Comparative Examples 1 to 3 were such that the mass of the prepreg was constant in 5 layers, that is, the mass of CFRP in the sample after production was constant.
  • samples were prepared by adjusting the amount of CNF and the amount of resin derived from the electrodeposition solution in three stages. Specifically, the sample preparation conditions were as shown in Table 1.
  • the resin in the electrodeposition liquid is hydrophobic, CNF is repelled.
  • the amount of resin derived from the electrodeposition liquid shown in Table 1 is 2-4 g, and it is difficult to spread slightly with respect to the area of the prepreg.
  • the liquid and electrodeposition liquid were mixed and dispersed to make a highly viscous liquid. In particular, it was possible to uniformly distribute CNF without being repelled on the surface of the prepreg by thinly extending the sheet.
  • FIG. 7 shows the relationship between the CNF content and the bending stiffness
  • FIG. 9 shows the relationship between CNF content and bending strength
  • the Lamination type showed a greater tendency to increase and showed a strong linearity as can be seen from the regression coefficient (R 2 value).
  • each plot is obtained by measuring a sample prepared by appropriately changing conditions such as CNF content and resin amount.
  • the prepreg was used for the sample of Example 5 using a digital microscope (VHX-1000, manufactured by Keyence Corporation). And the interface between CNF and the electrodeposition liquid-derived resin layer were observed.
  • Fig. 11 shows a photograph of the interface between the prepreg, CNF, and electrodeposition liquid-derived resin layer. Infiltration of the CNF and electrodeposition liquid-derived resin layer into the surface resin layer of the prepreg could be confirmed (Baffer® Layer shown in FIG. 11).

Abstract

This material for reinforcing carbon-fiber-reinforced plastic is lightweight, has excellent impact strength, and includes at least one carbon-fiber-reinforced plastic layer and at least one cellulose nanofiber layer. At least one cellulose nanofiber layer is adjacently disposed on at least one surface of at least one carbon-fiber-reinforced plastic layer. The carbon-fiber-reinforced plastic layer contains carbon-fiber-reinforced plastic. The cellulose nanofiber layer contains cellulose nanofibers and a polymer compound. This material for reinforcing another material contains cellulose nanofibers and a polymer compound, and is used for reinforcing another material (such as a hydrophobic resin).

Description

炭素繊維強化プラスチック強化材料及びプラスチック強化材料Carbon fiber reinforced plastic reinforced material and plastic reinforced material
 本発明は、炭素繊維強化プラスチック強化材料及びプラスチック強化材料に関する。 The present invention relates to a carbon fiber reinforced plastic reinforced material and a plastic reinforced material.
 スポーツ用品では、常に「より軽く強い素材」が求められているので、炭素繊維強化プラスチック(以下、「CFRP」と言うこともある)を使用した製品が多く製造されている。ソフトボールのバットやテニスのラケット等、耐衝撃性の高いCFRPのニーズは高く、潜在需要も大きいため、マトリックス樹脂の改質や強度に優れたフィラーの添加等の研究が盛んに行われている。 In sporting goods, since “lighter and stronger materials” are always required, many products using carbon fiber reinforced plastic (hereinafter sometimes referred to as “CFRP”) are manufactured. There is a great need for CFRP with high impact resistance, such as softball bats and tennis rackets, and there is a great potential demand. Therefore, research on the modification of matrix resins and the addition of fillers with excellent strength has been actively conducted. .
 しかしながら、CFRPは軽量且つ高強度を有するが、樹脂を母材とするため、樹脂の衝撃強度の低さのために、実用上、衝撃強度が欠点の一つであり、図1に示すように、表面の樹脂にクラックが入って破壊に至る。実際は、砂利等が衝突して表面にクラックが入ることが多い。このため、CFRPの欠点の一つは衝撃強度にある。そのため、高強度な母材樹脂が研究されているが、大幅な性能改善の報告例はない。 However, CFRP has light weight and high strength. However, since resin is used as a base material, the impact strength is practically one of the drawbacks due to the low impact strength of the resin. As shown in FIG. The resin on the surface cracks and leads to destruction. Actually, gravel and the like often collide and the surface is cracked. For this reason, one of the drawbacks of CFRP is the impact strength. For this reason, high-strength matrix resins have been studied, but there have been no reports of significant performance improvements.
 ところで、セルロースナノファイバー(以下、「CNF」と言うこともある)は木材から製造でき、軽量でありながら強度に優れるため、CFRPの衝撃強度を向上させる方法として、マトリックス樹脂にCNFを混ぜることでCFRPの衝撃強度を高めることが検討されている。CNFは植物繊維由来であるバイオマス資源であるため、地球温暖化を引き起こす二酸化炭素を増やすことがなく、持続可能な循環型社会を実現することができる。しかしながら、CNFは分子鎖間に強固な水素結合を有しているため一般的な有機溶媒に溶解させることはできず親水性であるため、CFRPのマトリックス樹脂への分散が難しいことから、CNFを薬剤により疎水化処理(例えば、疎水基で化学修飾すること)を施すことが不可欠であり、疎水化処理を施すことなくCNFをCFRPのマトリックス樹脂へ分散させた例は存在しない。このような疎水化処理としては、CNFを薬剤と共に投入して加熱反応させる方法が挙げられるが、その際には、例えば、加熱温度は120℃、処理時間は1時間、処理用の薬剤には1H,1H,2H,2H-パーフルオロオクチルトリメトキシシラン(FAS13)等が用いられている。このような疎水化処理が必要であるためにコスト高となり、CFRPへのCNFの複合化の実用化に妨げとなっているうえに、疎水化処理を施す方法によっても、CFRPの強度を高めるまでには至っていない。 By the way, cellulose nanofiber (hereinafter sometimes referred to as “CNF”) can be manufactured from wood and is lightweight yet excellent in strength. Therefore, as a method to improve the impact strength of CFRP, CNF is mixed with matrix resin. Increasing the impact strength of CFRP is being studied. Since CNF is a biomass resource derived from plant fiber, it can realize a sustainable recycling society without increasing the carbon dioxide causing global warming. However, since CNF has strong hydrogen bonds between the molecular chains, it cannot be dissolved in common organic solvents and is hydrophilic, so it is difficult to disperse CFRP in the matrix resin. It is indispensable to perform a hydrophobic treatment (for example, chemical modification with a hydrophobic group) with a drug, and there is no example in which CNF is dispersed in a CFRP matrix resin without performing the hydrophobic treatment. Examples of such a hydrophobizing treatment include a method in which CNF is added together with a chemical and reacted by heating. In this case, for example, the heating temperature is 120 ° C., the treatment time is 1 hour, 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (FAS13) or the like is used. Such a hydrophobization treatment is necessary, which increases costs, hinders the practical application of CNF complexing to CFRP, and even increases the strength of CFRP by the method of hydrophobization treatment. It has not reached.
 このように、CNFをスポーツ用品に応用することが長期間にわたり検討されてきたが、優れた結果は得られなかった。特に、CFRPへの応用については、CFRPのマトリックス樹脂にCNFを分散させることが非常に困難であり、CFRPの衝撃強度を改善する適切な方法は発見されていない。以上の課題は、CFRPへの応用に関するものであるが、CNFを他材に適用する場合も同様の課題を有する。 Thus, the application of CNF to sports equipment has been studied for a long time, but excellent results have not been obtained. In particular, for application to CFRP, it is very difficult to disperse CNF in the matrix resin of CFRP, and an appropriate method for improving the impact strength of CFRP has not been found. The above problems are related to application to CFRP, but the same problems exist when CNF is applied to other materials.
 本発明は、上記のような課題を解決するためになされたものであり、軽量で衝撃強度に優れた炭素繊維強化プラスチック強化材料を提供することを目的とする。また、本発明は、プラスチック(疎水性樹脂等)を強化するための材料を提供することも目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a carbon fiber reinforced plastic reinforced material that is lightweight and excellent in impact strength. Another object of the present invention is to provide a material for reinforcing a plastic (such as a hydrophobic resin).
 上記目的を鑑み、鋭意検討した結果、炭素繊維強化プラスチックを含有する炭素繊維強化プラスチック層と、セルロースナノファイバー及び高分子化合物を含有するセルロースナノファイバー層とが隣接するように配置することで、疎水化処理を施すことなく、軽量で衝撃強度に優れた炭素繊維強化プラスチック強化材料が低コストに得られることを見出した。なお、CNFをCFRPのマトリックス樹脂に混ぜ込む手法は提案されているが、CNFをシートにしてCFRPの表面に積層する方法は検討すらされてこなかった。また、本発明者らは、セルロースナノファイバー及び高分子化合物を含有するセルロースナノファイバー層は、炭素繊維以外の材料に適用することによっても強度を向上させることができることも見いだした。本発明者らは、さらに研究を重ね、本発明を完成させた。すなわち、本発明は以下の構成を包含する。
項1.少なくとも一層の炭素繊維強化プラスチック層と、少なくとも一層のセルロースナノファイバー層とを備えており、
少なくとも一層の炭素繊維強化プラスチック層の少なくとも片面に、少なくとも一層のセルロースナノファイバー層が隣接するように配置されており、
前記炭素繊維強化プラスチック層は、炭素繊維強化プラスチックを含有しており、
前記セルロースナノファイバー層は、セルロースナノファイバー及び高分子化合物を含有している、炭素繊維強化プラスチック強化材料。
項2.前記炭素繊維強化プラスチックのマトリックスである熱硬化性樹脂がエポキシ樹脂である、項1に記載の炭素繊維強化プラスチック強化材料。
項3.前記セルロースナノファイバー層中の高分子化合物がエポキシ樹脂である、項1又は2に記載の炭素繊維強化プラスチック強化材料。
項4.二層の前記セルロースナノファイバー層の間に、少なくとも一層の炭素繊維強化プラスチック層が配置されている、項1~3のいずれか1項に記載の炭素繊維強化プラスチック強化材料。
項5.前記炭素繊維強化プラスチック層と、前記セルロースナノファイバー層とが交互に配置されている、項1~3のいずれか1項に記載の炭素繊維強化プラスチック強化材料。
項6.セルロースナノファイバー及び高分子化合物を含む、プラスチック強化材料。
項7.項1~5のいずれか1項に記載の炭素繊維強化プラスチック強化材料の製造方法であって、
(1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程、及び
(2)前記工程(1)で得られた分散液を用いて、炭素繊維強化プラスチック又はその前駆体上にセルロースナノファイバー層を形成し加熱硬化させる工程
を備える、製造方法。
項8.炭素繊維強化プラスチック又はその前駆体が、マトリックス樹脂としてエポキシ樹脂を含有する、項7に記載の製造方法。
項9.炭素繊維強化プラスチック又はその前駆体が、炭素繊維強化プラスチック又は炭素繊維プリプレグである、項7又は8に記載の製造方法。
項10.項6に記載のプラスチック強化材料の製造方法であって、
(1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程
を備える、製造方法。
項11.前記電着液中の高分子化合物がエポキシ樹脂である、項7~10のいずれか1項に記載の製造方法。
As a result of intensive investigations in view of the above-mentioned object, it is possible to arrange a carbon fiber reinforced plastic layer containing a carbon fiber reinforced plastic and a cellulose nanofiber layer containing a cellulose nanofiber and a polymer compound so that they are adjacent to each other. It has been found that a carbon fiber reinforced plastic reinforced material that is lightweight and excellent in impact strength can be obtained at low cost without applying a chemical treatment. Although a method of mixing CNF into a CFRP matrix resin has been proposed, a method of laminating CNF as a sheet on the surface of CFRP has not been studied. The inventors have also found that a cellulose nanofiber layer containing cellulose nanofibers and a polymer compound can be improved in strength by being applied to materials other than carbon fibers. The present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
Item 1. Comprising at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer;
At least one cellulose nanofiber layer is disposed adjacent to at least one surface of at least one carbon fiber reinforced plastic layer,
The carbon fiber reinforced plastic layer contains carbon fiber reinforced plastic,
The cellulose nanofiber layer is a carbon fiber reinforced plastic reinforced material containing cellulose nanofiber and a polymer compound.
Item 2. Item 2. The carbon fiber reinforced plastic reinforcing material according to Item 1, wherein the thermosetting resin that is a matrix of the carbon fiber reinforced plastic is an epoxy resin.
Item 3. Item 3. The carbon fiber-reinforced plastic reinforced material according to Item 1 or 2, wherein the polymer compound in the cellulose nanofiber layer is an epoxy resin.
Item 4. Item 4. The carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 3, wherein at least one carbon fiber reinforced plastic layer is disposed between the two cellulose nanofiber layers.
Item 5. Item 4. The carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 3, wherein the carbon fiber reinforced plastic layer and the cellulose nanofiber layer are alternately arranged.
Item 6. A plastic reinforced material comprising cellulose nanofibers and a polymer compound.
Item 7. Item 6. A method for producing a carbon fiber reinforced plastic reinforced material according to any one of Items 1 to 5,
(1) a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition solution in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin coating; A manufacturing method provided with the process of forming and heating-hardening a cellulose nanofiber layer on a carbon fiber reinforced plastic or its precursor using the dispersion liquid obtained at the process (1).
Item 8. Item 8. The method according to Item 7, wherein the carbon fiber reinforced plastic or a precursor thereof contains an epoxy resin as a matrix resin.
Item 9. Item 9. The method according to Item 7 or 8, wherein the carbon fiber reinforced plastic or a precursor thereof is a carbon fiber reinforced plastic or a carbon fiber prepreg.
Item 10. Item 7. A method for producing a plastic reinforced material according to Item 6,
(1) A production method comprising a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition liquid in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin paint.
Item 11. Item 11. The production method according to any one of Items 7 to 10, wherein the polymer compound in the electrodeposition liquid is an epoxy resin.
 本発明によれば、疎水化処理を施すことなく、軽量で衝撃強度に優れた炭素繊維強化プラスチック強化材料が低コストに得られる。また、本発明によれば、プラスチック(疎水性樹脂等)を強化するための材料を得ることもできる。 According to the present invention, a carbon fiber reinforced plastic reinforced material that is light in weight and excellent in impact strength can be obtained at low cost without applying a hydrophobic treatment. Further, according to the present invention, a material for reinforcing a plastic (such as a hydrophobic resin) can be obtained.
CFRPの表面の樹脂にクラックが入って破壊に至る工程(左図)と、CFRPとCNFとを複合化した場合の強化メカニズム(右図)を説明する概略断面図である。It is a schematic sectional drawing explaining the process (left figure) which cracks in the resin of the surface of CFRP and leads to destruction, and the reinforcement mechanism (right figure) at the time of compounding CFRP and CNF. 実施例1でセルロースナノファイバー層(プラスチック強化材料)として得られたシートの外観写真を示す。The appearance photograph of the sheet obtained as a cellulose nanofiber layer (plastic reinforced material) in Example 1 is shown. 実施例1で炭素繊維プリプレグにセルロースナノファイバー層(プラスチック強化材料)を圧着した場合の衝撃強度の改善効果を示すグラフである。2 is a graph showing the impact strength improvement effect when a cellulose nanofiber layer (plastic reinforced material) is pressure bonded to a carbon fiber prepreg in Example 1. FIG. 実施例2でセルロースナノファイバー層(プラスチック強化材料)と炭素繊維強化プラスチックとを圧着した場合の衝撃強度の改善効果を示すグラフである。6 is a graph showing the impact strength improvement effect when a cellulose nanofiber layer (plastic reinforced material) and a carbon fiber reinforced plastic are pressure-bonded in Example 2. FIG. 実施例1で炭素繊維プリプレグにセルロースナノファイバー層(プラスチック強化材料)を圧着した場合の概略断面図と外観写真を示す。The schematic sectional drawing at the time of crimping | bonding a cellulose nanofiber layer (plastic reinforcement material) to the carbon fiber prepreg in Example 1 and an external appearance photograph are shown. 実施例3~6及び比較例1で得た炭素繊維強化プラスチック強化材料の層構成を示す。The layer structure of the carbon fiber reinforced plastic reinforced material obtained in Examples 3 to 6 and Comparative Example 1 is shown. 実施例3~6及び比較例1で得た炭素繊維強化プラスチック強化材料のCNF含有率と曲げ剛性との関係を示す。The relationship between the CNF content and the bending stiffness of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown. 実施例3~6及び比較例1で得た炭素繊維強化プラスチック強化材料のCNF含有率と比曲げ剛性(=曲げ剛性/試料密度)との関係を示す。The relationship between the CNF content and specific bending stiffness (= bending stiffness / sample density) of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown. 実施例3~6及び比較例1で得た炭素繊維強化プラスチック強化材料のCNF含有率と曲げ強度との関係を示す。The relationship between the CNF content and bending strength of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown. 実施例3~6及び比較例1で得た炭素繊維強化プラスチック強化材料のCNF含有率と比曲げ強度(=曲げ強度/試料密度)との関係を示す。The relationship between the CNF content and specific bending strength (= bending strength / sample density) of the carbon fiber reinforced plastic reinforced materials obtained in Examples 3 to 6 and Comparative Example 1 is shown. 実施例5で得た炭素繊維強化プラスチック強化材料のデジタルマイクロスコープによるプリプレグとCNF及び電着液由来樹脂層の界面の写真を示す。The photograph of the interface of the prepreg, CNF, and electrodeposition liquid origin resin layer by the digital microscope of the carbon fiber reinforced plastic reinforcement material obtained in Example 5 is shown. 硬化温度が150℃及び170℃である場合の炭素繊維強化プラスチック強化材料のCNF含有率と曲げ剛性及び比曲げ剛性(=曲げ剛性/試料密度)との関係を示す。The relationship between the CNF content of the carbon fiber reinforced plastic reinforced material, the bending stiffness and the specific bending stiffness (= bending stiffness / sample density) when the curing temperature is 150 ° C. and 170 ° C. is shown. 硬化温度が150℃及び170℃である場合の炭素繊維強化プラスチック強化材料のCNF含有率と曲げ強度及び比曲げ強度(=曲げ強度/試料密度)との関係を示す。The relationship between the CNF content of the carbon fiber reinforced plastic reinforced material when the curing temperature is 150 ° C. and 170 ° C., the bending strength, and the specific bending strength (= bending strength / sample density) is shown.
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 In the present specification, “containing” is a concept including any of “comprise”, “consistently of”, and “consist of”. In this specification, when the numerical range is indicated by “A to B”, it means A or more and B or less.
 本明細書において、「炭素繊維強化プラスチック強化材料」は、炭素繊維強化プラスチックを強化した複合材料を意味する。また、「プラスチック強化材料」は、プラスチックを強化した材料を意味する。 In this specification, “carbon fiber reinforced plastic reinforced material” means a composite material reinforced with carbon fiber reinforced plastic. The “plastic reinforced material” means a material reinforced with plastic.
 1.炭素繊維強化プラスチック強化材料及びプラスチック強化材料
 本発明の炭素繊維強化プラスチック強化材料は、少なくとも一層の炭素繊維強化プラスチック層と、少なくとも一層のセルロースナノファイバー層とを備え、前記炭素繊維強化プラスチック層は、いずれも、炭素繊維強化プラスチックを含有しており、前記セルロースナノファイバー層は、いずれも、セルロースナノファイバー及び高分子化合物を含有しており、前記炭素繊維強化プラスチック層のうち少なくとも一層は、前記セルロースナノファイバー層のうち少なくとも一層と隣接するように配置されている。また、本発明のプラスチック強化材料は、セルロースナノファイバー及び高分子化合物を含有している。
1. Carbon fiber reinforced plastic reinforced material and plastic reinforced material The carbon fiber reinforced plastic reinforced material of the present invention comprises at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer, and the carbon fiber reinforced plastic layer comprises: All of them contain carbon fiber reinforced plastic, and all of the cellulose nanofiber layers contain cellulose nanofibers and polymer compounds, and at least one of the carbon fiber reinforced plastic layers contains the cellulose. The nanofiber layer is disposed adjacent to at least one layer. The plastic reinforcing material of the present invention contains cellulose nanofibers and a polymer compound.
 このような構成によれば、炭素繊維強化プラスチックに適用した場合には、セルロースナノファイバーを使用することにより劇的に衝撃強度を向上させることが可能である。このことから、逆に、求められる衝撃強度に対して、従来必要であった炭素繊維強化プラスチックの量を削減することも可能であり、省資源化にもつながり得る。また、セルロースナノファイバーは炭素繊維強化プラスチックよりも軽量であるため、製品の軽量化、特に移動体(自動車、航空機等)の場合は燃費向上にもつながり得る。また、プラスチックに対しても、セルロースナノファイバーを使用することにより強度を向上させることが可能である。 According to such a configuration, when applied to carbon fiber reinforced plastic, impact strength can be dramatically improved by using cellulose nanofibers. On the contrary, it is possible to reduce the amount of carbon fiber reinforced plastic that has been conventionally required with respect to the required impact strength, which may lead to resource saving. In addition, since cellulose nanofibers are lighter than carbon fiber reinforced plastics, they can lead to weight reduction of products, particularly in the case of mobile bodies (automobiles, aircrafts, etc.), which can lead to improved fuel economy. Moreover, it is possible to improve the strength of plastics by using cellulose nanofibers.
 (1-1)炭素繊維強化プラスチック層
 本発明において、炭素繊維強化プラスチック層は、炭素繊維強化プラスチックを含有する。
(1-1) Carbon Fiber Reinforced Plastic Layer In the present invention, the carbon fiber reinforced plastic layer contains a carbon fiber reinforced plastic.
 この炭素繊維強化プラスチックは、通常、炭素繊維に熱硬化性樹脂を含浸させて半乾燥させたプリプレグを複数枚重ねて圧縮加熱することで熱硬化性樹脂を硬化させて成形するオートクレーブ法が採用されている。つまり、炭素繊維がマトリックスである熱硬化性樹脂中に分散した構成を有する。 This carbon fiber reinforced plastic usually employs an autoclave method in which a plurality of prepregs impregnated with a thermosetting resin in carbon fiber and semi-dried are stacked and compressed and heated to cure the thermosetting resin. ing. That is, it has a configuration in which carbon fibers are dispersed in a thermosetting resin as a matrix.
 この場合の炭素繊維材料としては、炭素繊維からなる構造体(特に導電性炭素繊維からなる構造体)であれば特に制限されない。例えば、平面状炭素繊維シート、パイプ状炭素繊維シート、翼形状炭素繊維シート、L字型炭素繊維シート、H型炭素繊維シート等が挙げられる。特に、炭素繊維を直線状に配置した炭素繊維材料のみならず、複雑な立体形状の炭素繊維材料も使用することができる。このような炭素繊維材料を構成する炭素繊維1本の繊維径は、より十分に高分子化合物を析出させて炭素繊維プリプレグを得やすい観点から、平均で0.001~50μmが好ましい。このような炭素繊維材料としては、公知又は市販品を使用することができる。 The carbon fiber material in this case is not particularly limited as long as it is a structure made of carbon fibers (particularly a structure made of conductive carbon fibers). Examples thereof include a planar carbon fiber sheet, a pipe-shaped carbon fiber sheet, a wing-shaped carbon fiber sheet, an L-shaped carbon fiber sheet, and an H-shaped carbon fiber sheet. In particular, not only a carbon fiber material in which carbon fibers are arranged in a straight line but also a carbon fiber material having a complicated three-dimensional shape can be used. The fiber diameter of one carbon fiber constituting such a carbon fiber material is preferably 0.001 to 50 μm on average from the viewpoint of more sufficiently depositing a polymer compound and obtaining a carbon fiber prepreg. A known or commercially available product can be used as such a carbon fiber material.
 また、熱硬化性樹脂としては、特に制限はなく、例えば、エポキシ樹脂、フェノール樹脂(ノボラック樹脂等)、アクリル樹脂、ナイロン樹脂、ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン等が挙げられる。これらの熱硬化性樹脂は、単独で用いることもでき、2種以上を組合せて用いることもできる。これら熱硬化性樹脂としては、後述するセルロースナノファイバー層との親和性を考慮して、セルロースナノファイバー層中の高分子化合物と同じ官能基を有するものが好ましく、なかでもエポキシ樹脂がより好ましい。 Moreover, there is no restriction | limiting in particular as a thermosetting resin, For example, an epoxy resin, a phenol resin (novolak resin etc.), an acrylic resin, a nylon resin, a vinyl resin, a polyamide resin, a polyimide resin, a polyamideimide resin, a polystyrene resin, a polycarbonate Examples thereof include resins, polyolefin resins, polyesters, polyethylene terephthalate, polyethylene naphthalate, and polyethersulfone. These thermosetting resins can be used alone or in combination of two or more. These thermosetting resins are preferably those having the same functional group as the polymer compound in the cellulose nanofiber layer in consideration of the affinity with the cellulose nanofiber layer described later, and more preferably an epoxy resin.
 このような炭素繊維強化プラスチックにおいては、強度をより向上させるとともにセルロースナノファイバー層との親和性の観点から各々の炭素繊維を被覆する高分子化合物の厚みは20~200μmが好ましく、50~100μmがより好ましい。 In such a carbon fiber reinforced plastic, the thickness of the polymer compound covering each carbon fiber is preferably 20 to 200 μm, more preferably 50 to 100 μm, from the viewpoint of further improving the strength and affinity with the cellulose nanofiber layer. More preferred.
 また、炭素繊維強化プラスチック層は、強度をより向上させるとともにセルロースナノファイバー層との親和性の観点から炭素繊維と熱硬化性樹脂の合計量を100質量%として、炭素繊維の含有率は20~70体積%が好ましく、25~60体積%がより好ましい。 In addition, the carbon fiber reinforced plastic layer further improves the strength and from the viewpoint of affinity with the cellulose nanofiber layer, the total amount of carbon fiber and thermosetting resin is 100% by mass, and the carbon fiber content is 20 to 20%. 70% by volume is preferable, and 25 to 60% by volume is more preferable.
 このような炭素繊維強化プラスチックとしては、特に制限はなく、公知又は市販品を用いることができる。 Such carbon fiber reinforced plastic is not particularly limited, and known or commercially available products can be used.
 (1-2)セルロースナノファイバー層
 本発明において、セルロースナノファイバー層は、セルロースナノファイバー及び高分子化合物を含有する。
(1-2) Cellulose Nanofiber Layer In the present invention, the cellulose nanofiber layer contains cellulose nanofiber and a polymer compound.
 セルロースナノファイバーは、公知のものを広く採用することが可能であり、特に限定はない。また、セルロースナノファイバーを構成するセルロースとしては、植物由来のセルロース、動物由来のセルロース、及びバクテリア由来のセルロースの何れでも、好適に使用することができる。これらは1種を単独で使用してもよいし、2種以上を併せて使用してもよい。 As the cellulose nanofibers, known ones can be widely used, and there is no particular limitation. As the cellulose constituting the cellulose nanofiber, any of plant-derived cellulose, animal-derived cellulose, and bacteria-derived cellulose can be suitably used. These may be used alone or in combination of two or more.
 植物由来セルロースとしては、例えば、広葉樹由来セルロース(ユーカリ、ポプラ等)、針葉樹由来セルロース(マツ、モミ、スギ、ヒノキ等)、草本類由来セルロース(ワラ、バガス、ヨシ、ケナフ、アバカ、サイザル等)、及び種子毛繊維(コットン等)の中から選択できる。原料となるパルプは、木材チップを機械的に処理した機械パルプであってもよく、木材チップから非セルロース成分を化学的に除去した化学パルプでもよく、さらに非セルロース成分を除去して精製した溶解パルプでもよい。 Examples of plant-derived cellulose include hardwood-derived cellulose (eucalyptus, poplar, etc.), conifer-derived cellulose (pine, fir, cedar, cypress, etc.), herbaceous cellulose (wara, bagasse, reed, kenaf, abaca, sisal, etc.) , And seed hair fibers (such as cotton). The pulp used as a raw material may be mechanical pulp obtained by mechanically treating wood chips, chemical pulp obtained by chemically removing non-cellulose components from wood chips, and dissolution obtained by removing non-cellulose components and purifying them. Pulp may be used.
 その他、ホヤなど動物由来のセルロース、ナタデココ等バクテリア由来のセルロース等を使用することもできる。また、このようなセルロースは、必ずしも純粋なセルロース成分のみから構成される必要はなく、主成分であるセルロースに、非セルロース成分が付随していてもよい。もちろん、純粋なセルロース成分のみにより構成されていてもよい。 In addition, cellulose derived from animals such as sea squirts, cellulose derived from bacteria such as nata deco, and the like can also be used. Moreover, such cellulose does not necessarily need to be comprised only from a pure cellulose component, The non-cellulose component may accompany the cellulose which is a main component. Of course, you may be comprised only with the pure cellulose component.
 セルロースナノファイバーに付随する主な非セルロース成分については、特に限定はなく、用途に応じて適宜選択することができる。例えば、ヘミセルロース及びリグニンを挙げることができる。 The main non-cellulose component accompanying the cellulose nanofiber is not particularly limited and can be appropriately selected depending on the application. For example, hemicellulose and lignin can be mentioned.
 また、セルロースナノファイバー中の純粋なセルロース成分比率に関しても、用途に応じて適宜設定すればよい。例えば、純粋なセルロース成分比率は、セルロースナノファイバー100質量%中に、70質量%以上が好ましく、80質量%以上がより好ましい。純粋なセルロース成分比率の上限としては、100質量%とすることができる。なお、本明細書においてセルロース比率とは、セルロースナノファイバー全体の質量100質量%に対して、βグルコース分子がグリコシド結合により直鎖状に重合した純粋なセルロース成分の比率である。 Moreover, the pure cellulose component ratio in the cellulose nanofibers may be set as appropriate according to the application. For example, the pure cellulose component ratio is preferably 70% by mass or more and more preferably 80% by mass or more in 100% by mass of cellulose nanofibers. The upper limit of the pure cellulose component ratio can be 100% by mass. In the present specification, the cellulose ratio is a ratio of a pure cellulose component in which β-glucose molecules are linearly polymerized by glycosidic bonds with respect to 100% by mass of the whole cellulose nanofiber.
 セルロースナノファイバーに含まれる純粋なセルロース成分の重合度に関しても、用途に応じ、適宜設定すればよい。例えば、重合度500以上、特に600以上のセルロース成分を使用することができる。セルロース成分の重合度の上限値としては特に限定はないが、例えば、10万とすることができる。 What is necessary is just to set suitably also about the polymerization degree of the pure cellulose component contained in a cellulose nanofiber according to a use. For example, a cellulose component having a polymerization degree of 500 or more, particularly 600 or more can be used. The upper limit of the degree of polymerization of the cellulose component is not particularly limited, but can be, for example, 100,000.
 セルロースナノファイバーに含まれる純粋なセルロース成分の結晶化度に関しても、特に制限はなく、60%以上が好ましく、70%以上がより好ましい。セルロースの結晶化度の上限としては、特に限定はないが、例えば、99%とすることができる。セルロース成分の結晶構造は、I型、II型、III型、及びIV型を挙げることができる。 The crystallinity of the pure cellulose component contained in the cellulose nanofiber is not particularly limited and is preferably 60% or more, more preferably 70% or more. The upper limit of the crystallinity of cellulose is not particularly limited, but can be 99%, for example. Examples of the crystal structure of the cellulose component include type I, type II, type III, and type IV.
 セルロースナノファイバーのサイズは特に制限はなく、後述の本発明の製造方法を採用する場合は電着液中に分散させる観点から、直径は4~100nmが好ましく、長さは500nm以上が好ましい。なお、本明細書において、セルロースナノファイバーの直径は、ランダムに抽出した50本以上のセルロースナノファイバーをSEM観察して得られるメジアン径である。 The size of the cellulose nanofiber is not particularly limited, and when adopting the production method of the present invention described later, the diameter is preferably 4 to 100 nm and the length is preferably 500 nm or more from the viewpoint of dispersion in the electrodeposition solution. In the present specification, the diameter of the cellulose nanofiber is a median diameter obtained by SEM observation of 50 or more randomly extracted cellulose nanofibers.
 本発明においては、上記したセルロースナノファイバーは、疎水化処理を施さずともセルロースナノファイバー層を形成することができる。このため、本発明の炭素繊維強化プラスチック強化材料中に含まれるセルロースナノファイバーは、疎水化処理が施されていないものも包含することができる。 In the present invention, the above-mentioned cellulose nanofiber can form a cellulose nanofiber layer without being subjected to a hydrophobic treatment. For this reason, the cellulose nanofiber contained in the carbon fiber reinforced plastic reinforced material of the present invention can include those not subjected to a hydrophobic treatment.
 また、高分子化合物としては、特に制限はなく、例えば、エポキシ樹脂、フェノール樹脂(ノボラック樹脂等)、アクリル樹脂、ナイロン樹脂、ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン等が挙げられる。これらの高分子化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。これら高分子化合物としては、炭素繊維強化プラスチック層との親和性を考慮して、炭素繊維強化プラスチック層中の熱硬化性樹脂と同じ官能基を有するものが好ましく、なかでもエポキシ樹脂がより好ましい。 Moreover, there is no restriction | limiting in particular as a high molecular compound, For example, an epoxy resin, a phenol resin (novolak resin etc.), an acrylic resin, a nylon resin, a vinyl resin, a polyamide resin, a polyimide resin, a polyamideimide resin, a polystyrene resin, a polycarbonate resin , Polyolefin resin, polyester, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone and the like. These polymer compounds can be used alone or in combination of two or more. These polymer compounds are preferably those having the same functional group as the thermosetting resin in the carbon fiber reinforced plastic layer in consideration of the affinity with the carbon fiber reinforced plastic layer, and more preferably an epoxy resin.
 また、セルロースナノファイバー層は、強度をより向上させるとともに炭素繊維強化プラスチック層との親和性の観点からセルロースナノファイバーと炭素繊維強化プラスチックの総量を100質量%として、セルロースナノファイバーの含有率は1~20質量%が好ましく、2~15質量%がより好ましい。 In addition, the cellulose nanofiber layer further improves the strength and from the viewpoint of affinity with the carbon fiber reinforced plastic layer, the total amount of cellulose nanofiber and carbon fiber reinforced plastic is 100% by mass, and the cellulose nanofiber content is 1 -20% by mass is preferable, and 2-15% by mass is more preferable.
 このようなセルロースナノファイバー層の厚みは、より強度を向上させるとともに炭素繊維強化プラスチック層との親和性の観点から、例えば、0.001~500μmが好ましく、0.001~100μmがより好ましい。 The thickness of the cellulose nanofiber layer is, for example, preferably 0.001 to 500 μm and more preferably 0.001 to 100 μm from the viewpoint of improving the strength and affinity with the carbon fiber reinforced plastic layer.
 (1-3)炭素繊維強化プラスチック強化材料
 本発明の炭素繊維強化プラスチック強化材料は、少なくとも一層の炭素繊維強化プラスチック層と、少なくとも一層のセルロースナノファイバー層とを備えており、少なくとも一層の炭素繊維強化プラスチック層の少なくとも片面に、少なくとも一層のセルロースナノファイバー層が隣接するように配置されている。これにより、セルロースナノファイバーが親水性であるにも関わらず、熱硬化性樹脂をマトリックスとする炭素繊維強化プラスチック層とセルロースナノファイバー層とを強固に接合させることができ、図1右図に示されるように、炭素繊維強化プラスチック層がセルロースナノファイバー層により強化され、衝撃強度を特に向上させることが可能である。
(1-3) Carbon Fiber Reinforced Plastic Reinforcing Material The carbon fiber reinforced plastic reinforced material of the present invention includes at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer, and at least one carbon fiber. At least one cellulose nanofiber layer is disposed adjacent to at least one side of the reinforced plastic layer. As a result, although the cellulose nanofibers are hydrophilic, the carbon fiber reinforced plastic layer using the thermosetting resin as a matrix and the cellulose nanofiber layer can be firmly bonded. As described above, the carbon fiber reinforced plastic layer is reinforced by the cellulose nanofiber layer, and the impact strength can be particularly improved.
 このような本発明の炭素繊維強化プラスチック強化材料の構成は、少なくとも一層の炭素繊維強化プラスチック層の少なくとも片面に、少なくとも一層のセルロースナノファイバー層が隣接するように配置されていれば特に制限はなく、二層のセルロースナノファイバー層の間に、少なくとも一層の炭素繊維強化プラスチック層が配置されている構成や、炭素繊維強化プラスチック層と、セルロースナノファイバー層とが交互に配置されている構成(例えば、炭素繊維強化プラスチック層、セルロースナノファイバー層、炭素繊維強化プラスチック層、セルロースナノファイバー層、炭素繊維強化プラスチック層がこの順に形成された構成等)等を採用することが可能である。 The configuration of the carbon fiber reinforced plastic reinforced material of the present invention is not particularly limited as long as at least one cellulose nanofiber layer is disposed adjacent to at least one surface of at least one carbon fiber reinforced plastic layer. A structure in which at least one carbon fiber reinforced plastic layer is disposed between two cellulose nanofiber layers, or a structure in which carbon fiber reinforced plastic layers and cellulose nanofiber layers are alternately disposed (for example, It is possible to employ a structure in which a carbon fiber reinforced plastic layer, a cellulose nanofiber layer, a carbon fiber reinforced plastic layer, a cellulose nanofiber layer, and a carbon fiber reinforced plastic layer are formed in this order.
 このように、本発明によれば、衝撃強度に優れた炭素繊維強化プラスチック強化材料が得られるため、従来の技術では達成できなかった軽量化したスポーツ用品を製造することが可能になる。具体的には、ゴルフクラブ(全体)、テニスラケット(フレーム、シャフト等)、野球・ソフトボールバット(全体)、バドミントンラケット(フレーム、シャフト等)等での実用化が期待できる。 Thus, according to the present invention, since a carbon fiber reinforced plastic reinforced material having excellent impact strength can be obtained, it is possible to manufacture a lighter sports equipment that could not be achieved by conventional techniques. Specifically, practical application in golf clubs (entire), tennis rackets (frames, shafts, etc.), baseball / softball bats (overalls), badminton rackets (frames, shafts, etc.) can be expected.
 例えば、野球・ソフトボールバットは、繰返しボールを打撃していると表面及び炭素繊維の層で破断が起こることから、耐久性を高めるために炭素繊維の層を厚くしている。本発明によれば、衝撃強度に優れた炭素繊維強化プラスチック強化材料が得られるため、炭素繊維の層(本発明における炭素繊維強化プラスチック層)を少なくし軽量化することが可能である。 For example, baseball / softball bats have a thick carbon fiber layer to increase durability because the surface and the carbon fiber layer break when repeatedly hitting the ball. According to the present invention, since a carbon fiber reinforced plastic reinforced material excellent in impact strength can be obtained, it is possible to reduce the weight by reducing the number of carbon fiber layers (carbon fiber reinforced plastic layer in the present invention).
 また、バドミントンラケット等は、シャトルを打撃しているだけではフレーム及びシャフトにおける破断は発生しないものの、誤ってシャトル以外を打撃することも多く、製品としては衝撃強度を確保することが必要となる。また、シャフトを軽量化するために高弾性の炭素繊維を使用することもあるが、その場合は衝撃強度が低くなる傾向にあり耐久性を高めるために炭素繊維の層を厚くしている。本発明によれば、衝撃強度に優れた炭素繊維強化プラスチック強化材料が得られるため、炭素繊維の層(本発明における炭素繊維強化プラスチック層)を少なくし軽量化することが可能である。 In addition, although badminton rackets and the like do not cause breakage in the frame and shaft only by hitting the shuttle, they often hit other than the shuttle accidentally, and it is necessary to ensure impact strength as a product. Further, in order to reduce the weight of the shaft, a highly elastic carbon fiber may be used. In this case, the impact strength tends to be low, and the carbon fiber layer is thickened to increase the durability. According to the present invention, since a carbon fiber reinforced plastic reinforced material excellent in impact strength can be obtained, it is possible to reduce the weight by reducing the number of carbon fiber layers (carbon fiber reinforced plastic layer in the present invention).
 炭素繊維強化プラスチック材料は、これまでスポーツ市場で普及した素材が航空宇宙用途及び産業用途に波及するケースが非常に多い。このため、上記のようなスポーツ用品への用途展開の他、さらなる軽量化を進めている自動車の本体及び部品、航空機の本体及び部品、高速道路ETCのゲートバー等への応用も可能である。 Carbon fiber reinforced plastic materials are often used in aerospace and industrial applications because of the widespread use in the sports market. For this reason, in addition to the development of applications for sports equipment as described above, it can be applied to automobile bodies and parts, aircraft bodies and parts, aircraft main bars and parts, and highway ETC gate bars that are being further reduced in weight.
 また、高齢化社会が益々加速されていく日本国内において、高齢者の健康を持続させることが大きな課題となっている。高齢者は徐々に体力及び筋力低下を起こし、益々移動自体が困難になる状況を招く。高齢者の歩行をサポートするウエア、シューズ、装具等には、本発明の炭素繊維強化プラスチック強化材料を用いれば軽量で耐久性が高い商品を開発することが可能となり、高齢者向け商品にも有用である。 In Japan, where the aging society is increasingly accelerated, it is a major issue to maintain the health of the elderly. Elderly people gradually lose their physical strength and muscle strength, leading to a situation where movement itself becomes more difficult. Using the carbon fiber reinforced plastic reinforced material of the present invention for wear, shoes, orthoses, etc. that support the elderly's walking makes it possible to develop lightweight and highly durable products that are also useful for products for the elderly It is.
 また、本発明のプラスチック強化材料は、セルロースナノファイバー及び高分子化合物を含有している。セルロースナノファイバー及び高分子化合物については上記したものを採用できる。 Further, the plastic reinforcing material of the present invention contains cellulose nanofibers and a polymer compound. What was mentioned above is employable about a cellulose nanofiber and a high molecular compound.
 本発明のプラスチック強化材料によれば、対象となる高分子化合物(特にプラスチック)の強度を向上させることができるため、従来の技術では達成できなかった軽量化したスポーツ用品を製造することが可能になる。具体的には、例えば、野球用ヘルメット、キャッチャー防具、シューズのソール、木製バットの表面強化塗料、高齢者用の杖等での実用化が期待できる。特に、コンデンサーの絶縁や薄膜回路基板等のように、プラスチックのみではすぐに壊れてしまうような薄いプラスチック膜を強化するためにセルロースナノファイバーを含ませることができる。 According to the plastic reinforced material of the present invention, the strength of the target polymer compound (especially plastic) can be improved, so that it is possible to manufacture lightweight sports equipment that could not be achieved by conventional techniques. Become. Specifically, for example, it can be expected to be put to practical use in baseball helmets, catcher armor, shoe soles, wooden bat surface-enhanced paint, and canes for elderly people. In particular, cellulose nanofibers can be included to reinforce thin plastic films, such as capacitor insulation and thin film circuit boards, that can be easily broken by plastic alone.
 2.炭素繊維強化プラスチック強化材料及びプラスチック強化材料の製造方法
 本発明の炭素繊維強化プラスチック強化材料の製造方法は、
(1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程、及び
(2)前記工程(1)で得られた分散液を用いて、炭素繊維強化プラスチック又はその前駆体上にセルロースナノファイバー層を形成し加熱硬化させる工程
を備える。
2. Carbon fiber reinforced plastic reinforced material and method for producing plastic reinforced material
(1) a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition solution in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin coating; Using the dispersion obtained in the step (1), a step of forming a cellulose nanofiber layer on a carbon fiber reinforced plastic or a precursor thereof and curing it by heating is provided.
 また、本発明のプラスチック強化材料の製造方法は、
(1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程
を備える。
Moreover, the method for producing the plastic reinforced material of the present invention includes:
(1) A step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition liquid in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin paint.
 これまで、本発明者らは、CFRPの製造にかかるエネルギ消費の低減や炭素繊維の曲線配置の容易化等に向けて、炭素繊維と樹脂とが強固に結合する活性型の電着技術を用いた樹脂含浸法の開発を進めてきた。電着技術は自動車塗装に用いられてきた技術であり、電着液にはエポキシ基を有する高分子化合物が分散されていることが多く、電気泳動によって高分子化合物を被塗装物の表面に析出させることができる。環境保護の観点から、水を溶媒とする電着液が開発されており、上記した方法を採用すれば、工程(1)においてセルロースナノファイバーを疎水化処理せずとも、電着液中に均一に分散させることが可能であり、低コストで本発明の炭素繊維強化プラスチック強化材料及びプラスチック強化材料を製造することができる。 In the past, the present inventors have used an active electrodeposition technique in which carbon fibers and resin are firmly bonded to reduce energy consumption for manufacturing CFRP and facilitate curve arrangement of carbon fibers. We have been developing a resin impregnation method. Electrodeposition technology is a technology that has been used in automobile coating, and polymer compounds with epoxy groups are often dispersed in the electrodeposition solution, and the polymer compound is deposited on the surface of the object by electrophoresis. Can be made. From the viewpoint of environmental protection, an electrodeposition solution using water as a solvent has been developed. If the above-mentioned method is adopted, the cellulose nanofibers can be uniformly dispersed in the electrodeposition solution in the step (1) without being hydrophobized. The carbon fiber reinforced plastic reinforced material and the plastic reinforced material of the present invention can be produced at low cost.
 また、このような方法を採用すれば、少量のセルロースナノファイバーを使用することにより劇的に衝撃強度を向上させた炭素繊維強化プラスチック強化材料を得ることが可能である。また、このような方法を採用すれば、少量のセルロースナノファイバーを使用することにより、プラスチックの強度を向上させることができるプラスチック強化材料を得ることもできる。このことから、逆に、求められる衝撃強度に対して、従来必要であった炭素繊維強化プラスチックの量を削減することも可能であるし、省資源化にもつながり得る。また、炭素繊維強化プラスチック強化材料については、セルロースナノファイバーは炭素繊維強化プラスチックよりも軽量であるため、製品の軽量化、特に移動体(自動車、航空機等)の場合は燃費向上にもつながり得る。 Further, if such a method is adopted, it is possible to obtain a carbon fiber reinforced plastic reinforced material having dramatically improved impact strength by using a small amount of cellulose nanofibers. Moreover, if such a method is employ | adopted, the plastic reinforcement material which can improve the intensity | strength of a plastic can also be obtained by using a small amount of cellulose nanofiber. On the contrary, it is possible to reduce the amount of carbon fiber reinforced plastic that has been conventionally required for the required impact strength, and it can also lead to resource saving. As for carbon fiber reinforced plastic reinforced materials, since cellulose nanofibers are lighter than carbon fiber reinforced plastics, the weight of products can be reduced, and in particular in the case of mobile objects (automobiles, aircrafts, etc.), this can lead to improved fuel consumption.
 (2-1)工程(1)
 高分子化合物及びセルロースナノファイバーとしては、上記セルロースナノファイバー層において説明した高分子化合物を使用することができる。好ましい態様等も同様である。なお、高分子化合物については、マイクロジェルを採用することもできる。
(2-1) Step (1)
As the polymer compound and the cellulose nanofiber, the polymer compound described in the cellulose nanofiber layer can be used. The preferred embodiments are also the same. In addition, about a high molecular compound, a microgel can also be employ | adopted.
 本発明において使用する電着液には、上記高分子化合物及び溶媒(セロソルブ系溶媒、アルコール系溶媒等)の他、顔料(カーボン、酸化チタン、ケイ酸鉛、リン酸アルミニウム、水酸化ビスマス、水酸化イットリウム、ケイ酸アルミニウム、タルク等)、機能剤(マイクロゲル等)、酸(酢酸、乳酸、ギ酸、プロピオン酸、スルファミン酸)等を含むこともできる。 The electrodeposition liquid used in the present invention includes pigments (carbon, titanium oxide, lead silicate, aluminum phosphate, bismuth hydroxide, water) in addition to the polymer compound and solvent (cellosolve solvent, alcohol solvent, etc.). Yttrium oxide, aluminum silicate, talc, etc.), functional agents (microgel, etc.), acids (acetic acid, lactic acid, formic acid, propionic acid, sulfamic acid) and the like can also be included.
 本発明において使用する電着液は、上記した高分子化合物が溶解又は分散しており、セルロースナノファイバーを分散させることができれば特に制限はないが、セルロースナノファイバーの分散性を考慮して水系の電着液が好ましい。例えば、プラス(+)に帯電する高分子化合物を電着させようとする場合はカチオン型電着液を使用することができ、マイナス(-)に帯電する高分子化合物を電着させようとする場合はアニオン型電着液を使用することができる。 The electrodeposition liquid used in the present invention is not particularly limited as long as the above-described polymer compound is dissolved or dispersed, and the cellulose nanofibers can be dispersed. An electrodeposition solution is preferred. For example, in the case of electrodepositing a polymer compound charged positively (+), a cationic electrodeposition solution can be used, and a polymer compound charged negatively (−) is electrodeposited. In some cases, an anionic electrodeposition solution can be used.
 このような電着液としては、例えば、日本ペイント(株)製のインシュリード1000、インシュリード3000、インシュリード4000、関西ペイント(株)製のエレクロンKG400、エレクロンKG550等が挙げられる。なお、インシュリード1000及びインシュリード3000は、高分子化合物としてフェノール樹脂(ノボラック樹脂)を含んでおり、エポキシ樹脂を析出させることによって絶縁性及び耐熱性を付与することができ、インシュリード4000はポリアミドイミド樹脂を含んでおり、ポリアミドイミド樹脂を析出させることにより絶縁性、耐熱性、折り曲げ加工性を付与することができる。なお、これらの電着液のうち、インシュリード1000及びインシュリード3000は、上記の通りエポキシ樹脂を析出させることができ、通常マトリックス樹脂がエポキシ樹脂である工程(2)で使用されるシート状炭素繊維強化プラスチック前駆体との親和性の観点で好ましい。 Examples of such an electrodeposition liquid include Insuled 1000, Insuled 3000, Insuled 4000, and Eleclon KG400 and Elklon KG550 manufactured by Kansai Paint Co., Ltd. Insuled 1000 and Insuled 3000 contain a phenolic resin (novolac resin) as a polymer compound, and can impart insulation and heat resistance by precipitating an epoxy resin. Insuled 4000 is a polyamide. An imide resin is included, and by precipitating a polyamide-imide resin, insulation, heat resistance, and bending workability can be imparted. Of these electrodeposition solutions, Insuled 1000 and Insuled 3000 can deposit an epoxy resin as described above, and are usually sheet-like carbon used in step (2) in which the matrix resin is an epoxy resin. It is preferable from the viewpoint of affinity with the fiber reinforced plastic precursor.
 また、上記した電着液のみに限定されず、水系エポキシ樹脂や、エポキシ樹脂塗料も同様に使用することもできる。 Moreover, it is not limited only to the above-mentioned electrodeposition liquid, and a water-based epoxy resin or an epoxy resin paint can also be used in the same manner.
 本発明において使用するエポキシ樹脂塗料は、エポキシ樹脂が溶解又は分散しており、セルロースナノファイバーを分散させることができれば特に制限はないが、セルロースナノファイバーの分散性を考慮して水系のエポキシ樹脂塗料が好ましい。 The epoxy resin paint used in the present invention is not particularly limited as long as the epoxy resin is dissolved or dispersed and the cellulose nanofibers can be dispersed, but considering the dispersibility of the cellulose nanofibers, an aqueous epoxy resin paint is used. Is preferred.
 上記した水系エポキシ樹脂としては、例えば、三菱ケミカル(株)製の水系エポキシ樹脂W2801、水系エポキシ樹脂W2821 R70、水系エポキシ樹脂W3435 R67、水系エポキシ樹脂W8735 R70、水系エポキシ樹脂W1155 R55等が挙げられ、水系エポキシ樹脂硬化剤として、三菱ケミカル(株)製のWD11 M60等と組合せて使用することができる。また、エポキシ樹脂塗料としては、例えば、大日本塗料(株)製のエポオールシリーズ、エポニックスシリーズ、ブラスノン#21、DNTユニバーサルプライマー、エコクールスマイルHB、水性床コートプライマー、エポティ、ケルビンα2.5、HERCON CR-3A等が挙げられる。 Examples of the water-based epoxy resin include water-based epoxy resin W2801, water-based epoxy resin W2821 R70, water-based epoxy resin W3435 R67, water-based epoxy resin W8735 R70, water-based epoxy resin W1155 R55, etc., manufactured by Mitsubishi Chemical Corporation. As a water-based epoxy resin curing agent, it can be used in combination with WD11 M60 manufactured by Mitsubishi Chemical Corporation. In addition, as an epoxy resin paint, for example, Epoor series, Eponic series, Brassnon # 21, DNT universal primer, Eco Cool Smile HB, aqueous floor coat primer, Epoti, Kelvin α2.5, manufactured by Dainippon Paint Co., Ltd. HERCON CR-3A etc.
 上記した電着液、水系エポキシ樹脂、エポキシ樹脂塗料等とセルロースナノファイバーとの接触方法は特に制限されない。例えば、上記した電着液、水系エポキシ樹脂、エポキシ樹脂塗料等にセルロースナノファイバーを浸漬させる方法(特に、上記した電着液、水系エポキシ樹脂、エポキシ樹脂塗料等にセルロースナノファーバーを浸漬させて混合する方法)を採用することもできるが、後述の工程(2)において炭素繊維強化プラスチック又はその前駆体上にセルロースナノファイバー層を一様に形成することを考慮すれば、上記した電着液、水系エポキシ樹脂、エポキシ樹脂塗料等とセルロースナノファイバーの分散液とを混合することが好ましい。この際の各成分の使用量は特に制限されないが、セルロースナノファイバー及び高分子化合物の比率が上記した範囲となるように調整することができる。セルロースナノファイバーのネットワーク構造(=網目状)に、高分子化合物(特に高分子化合物のマイクロジェル)が入り込み、高分子官能基の作用と相俟って、均一分散されるものと考えられる。つまり、本発明では、電着液、水系エポキシ樹脂、エポキシ樹脂塗料等を、本来期待されるところの電着による金属等の表面へのコーティングという作用ではなく、セルロースナノファイバーと高分子化合物の分散液として用いている。 The contact method between the above-mentioned electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. and cellulose nanofiber is not particularly limited. For example, a method of immersing cellulose nanofibers in the above-described electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. (particularly, cellulose nanofibers are immersed in the above-mentioned electrodeposition liquid, water-based epoxy resin, epoxy resin paint, etc. and mixed) In consideration of the uniform formation of the cellulose nanofiber layer on the carbon fiber reinforced plastic or its precursor in the step (2) described later, the electrodeposition liquid described above, It is preferable to mix a water-based epoxy resin, an epoxy resin paint or the like with a dispersion of cellulose nanofibers. Although the usage-amount of each component in this case is not restrict | limited in particular, it can adjust so that the ratio of a cellulose nanofiber and a high molecular compound may be in an above-described range. It is considered that a polymer compound (particularly, a microgel of a polymer compound) enters the cellulose nanofiber network structure (= network) and is uniformly dispersed in combination with the action of the polymer functional group. In other words, in the present invention, the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. are not expected to be coated on the surface of metal or the like by electrodeposition as expected, but the dispersion of the cellulose nanofiber and the polymer compound It is used as a liquid.
 (2-2)工程(2)
 このように、電着液、水系エポキシ樹脂、エポキシ樹脂塗料等とセルロースナノファイバーとを接触させて、電着液、水系エポキシ樹脂、エポキシ樹脂塗料等中にセルロースナノファイバーを分散させた後に、炭素繊維強化プラスチック又はその前駆体上にセルロースナノファイバー層を形成する。この際、炭素繊維強化プラスチック又はその前駆体上に塗布及び乾燥してもよいし、セルロースナノファイバー層をシート状に成形した後に炭素繊維強化プラスチック又はその前駆体と圧着してもよい。この際の成形方法は常法により行うことができる。
(2-2) Step (2)
As described above, after the cellulose nanofibers are dispersed in the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. by bringing the electrodeposition liquid, the water-based epoxy resin, the epoxy resin paint, etc. into contact with the cellulose nanofiber, the carbon A cellulose nanofiber layer is formed on the fiber reinforced plastic or its precursor. At this time, the carbon fiber reinforced plastic or a precursor thereof may be applied and dried, or the cellulose nanofiber layer may be formed into a sheet and then pressed with the carbon fiber reinforced plastic or a precursor thereof. The molding method at this time can be performed by a conventional method.
 塗布した状態又はシート状に成形した状態では、電着液とセルロースナノファイバーとの接触物(特に混合物)は水分を含んでいるため、加熱硬化させる前に、乾燥させて水分を蒸発させることが好ましい。これにより、厚さが均一で強固なセルロースナノファイバーと高分子化合物とを含有するセルロースナノファイバー層を、ハンドリングの容易なセルロースナノファイバー層とすることができる。或いは、得られたシート状物を炭素繊維強化プラスチック又はその前駆体からなるシートの上に積層した後に乾燥させて水分を蒸発させてもよい。 In an applied state or a sheet-shaped state, the contact material (particularly the mixture) of the electrodeposition liquid and the cellulose nanofibers contains water, so it can be dried to evaporate the water before heat curing. preferable. Thereby, the cellulose nanofiber layer containing a uniform and strong cellulose nanofiber and a polymer compound can be made into a cellulose nanofiber layer that is easy to handle. Alternatively, the obtained sheet-like material may be laminated on a sheet made of carbon fiber reinforced plastic or a precursor thereof and then dried to evaporate moisture.
 なお、シート状に成形した後に乾燥させる前であれば、電着液、水系エポキシ樹脂、エポキシ樹脂塗料等として存在しているために通電することが可能である。このため、得られたシート状物を炭素繊維強化プラスチック又はその前駆体からなるシートの上に積層した後に通電し、その後乾燥させて水分を蒸発させた場合には、得られる本発明の炭素繊維強化プラスチック強化材料を強化した材料において、セルロースナノファイバー層と炭素繊維強化プラスチック層との界面強度をさらに向上させることができる。 It should be noted that, before being dried after being formed into a sheet, it can be energized because it exists as an electrodeposition liquid, a water-based epoxy resin, an epoxy resin paint, or the like. For this reason, when the obtained sheet-like material is laminated on a sheet made of carbon fiber reinforced plastic or its precursor and then energized, and then dried to evaporate the water, the resulting carbon fiber of the present invention is obtained. In the material reinforced with the reinforced plastic reinforced material, the interface strength between the cellulose nanofiber layer and the carbon fiber reinforced plastic layer can be further improved.
 次いで、セルロースナノファイバー層を形成した炭素繊維強化プラスチック又はその前駆体を加熱硬化させる。工程(1)において塗布及び乾燥した場合は、そのまま加熱硬化させることができる。また、工程(1)の後、得られたシート状物を炭素繊維強化プラスチック又はその前駆体からなるシートの上に積層した後に、必要に応じて通電し、その後乾燥させた場合は、そのまま圧着し、次いで、炭素繊維強化プラスチック又はその前駆体を加熱硬化させることができる。圧着及び加熱硬化させる際に、セルロースナノファイバー層中の高分子化合物と、炭素繊維強化プラスチック又はその前駆体からなるシート中の熱硬化性樹脂が強固に接合され得る。 Next, the carbon fiber reinforced plastic or the precursor thereof on which the cellulose nanofiber layer is formed is cured by heating. When applied and dried in the step (1), it can be cured by heating as it is. In addition, after the step (1), the obtained sheet-like material is laminated on a sheet made of carbon fiber reinforced plastic or a precursor thereof, and then energized as necessary, and then dried as it is. Then, the carbon fiber reinforced plastic or its precursor can be heat-cured. When the pressure bonding and heat curing are performed, the polymer compound in the cellulose nanofiber layer and the thermosetting resin in the sheet made of carbon fiber reinforced plastic or its precursor can be firmly bonded.
 圧着の際の条件は特に制限はなく、例えば、0.01~30MPa、好ましくは0.1~5MPaの圧力を印加することができる。また、加熱硬化の際の条件も特に制限はなく、例えば、加熱温度を120~250℃(特に140~200℃)とし、加熱時間を0.1~3時間(特に1~1.5時間)とすることができる。 There are no particular limitations on the conditions during crimping, and for example, a pressure of 0.01 to 30 MPa, preferably 0.1 to 5 MPa can be applied. The conditions for heat curing are not particularly limited. For example, the heating temperature may be 120 to 250 ° C. (especially 140 to 200 ° C.), and the heating time may be 0.1 to 3 hours (especially 1 to 1.5 hours). it can.
 これにより、セルロースナノファイバー層と炭素繊維強化プラスチック層とを強固に接合させることができる。セルロースナノファイバー層及び炭素繊維強化プラスチック層が複数層ある場合は、必要回数だけ、上記の工程を繰り返すことができる。 Thereby, the cellulose nanofiber layer and the carbon fiber reinforced plastic layer can be firmly bonded. When there are a plurality of cellulose nanofiber layers and carbon fiber reinforced plastic layers, the above steps can be repeated as many times as necessary.
 実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 [衝撃強度]
 JIS K 7077に基づいたシャルピー衝撃値を性能指標とし、セルロースナノファイバーを複合化しない炭素繊維強化プラスチックの衝撃強度を既存技術として100%とし、セルロースナノファイバーを複合化した場合の優位性を定量的に評価した。具体的には、試験機としては(株)上島製作所製U-F式衝撃試験機(衝撃速度3.45m/s、10J)を用い、試料は80X10X1tとした。
[Impact strength]
Using Charpy impact value based on JIS K 7077 as a performance index, the impact strength of carbon fiber reinforced plastic that does not combine cellulose nanofiber is assumed to be 100% as existing technology, and the superiority when combining cellulose nanofiber is quantitative Evaluated. Specifically, a UF impact tester manufactured by Ueshima Seisakusho Co., Ltd. (impact speed: 3.45 m / s, 10 J) was used as the tester, and the sample was 80 × 10 × 1t.
 [曲げ強度]
 曲げ試験片は、ロータリーカッターで40×10mmに切断し、それぞれのCNF含有量につき、5枚を製作した。3点曲げ試験は卓上引張圧縮試験機(MCT-2150、株式会社A&D製)を用いて行い、スパンは30mm、負荷速度は10mm/minの一定とした。荷重-たわみ関係のデータを取得し、線形部分の傾きから剛性及び比剛性(=剛性/密度)を、破断荷重から強度と比強度(=強度/密度)を求めた。
[Bending strength]
Bending test pieces were cut into 40 × 10 mm with a rotary cutter, and five pieces were produced for each CNF content. The three-point bending test was performed using a desktop tensile and compression tester (MCT-2150, manufactured by A & D Co., Ltd.), and the span was constant at 30 mm and the load speed was 10 mm / min. Data on the load-deflection relationship was acquired, and stiffness and specific stiffness (= rigidity / density) were obtained from the slope of the linear portion, and strength and specific strength (= strength / density) were obtained from the breaking load.
 以下の実施例では、電着液は、日本ペイント株式会社製の電解活性型電着液(Insuleed 3030、エポキシ樹脂含有量20質量%)を用いた。この電着液は、エポキシ基を有する高分子化合物(エポキシ樹脂)が分散され、通電によって不可逆的な不導体化反応が起こり、エポキシ樹脂が被処理材の表面に析出する。なお、イソシアナート硬化剤、ブロック剤、有害重金属触媒等、生理活性の強い物質や地球環境に害を及ぼすと考えられる物質は全く含まれていない。 In the following examples, an electroactive electrodeposition liquid (Insuleed 3030, epoxy resin content 20 mass%) manufactured by Nippon Paint Co., Ltd. was used as the electrodeposition liquid. In this electrodeposition solution, a polymer compound (epoxy resin) having an epoxy group is dispersed, and an irreversible deconducting reaction occurs by energization, and the epoxy resin is deposited on the surface of the material to be treated. It does not contain any physiologically active substances such as isocyanate curing agents, blocking agents, harmful heavy metal catalysts, or substances that are considered to cause harm to the global environment.
 また、セルロースナノファイバー(CNF)は、中越パルプ工業株式会社が製造した竹から生成したセルロースナノファイバーの分散液(セルロース含有量2.5質量%、平均繊維径50nm、平均繊維長100μm)、又は大王製紙株式会社が製造した広葉樹より生成したセルロースナノファイバーの分散液(セルロース含有量2質量%、平均繊維径50nm、平均繊維長10μm)を用い、プリプレグは東邦テナックス製のQ-111 H1280(樹脂含有量25質量%)を用いた。 Cellulose nanofiber (CNF) is a dispersion of cellulose nanofibers produced from bamboo manufactured by Chuetsu Pulp & Co., Ltd. (cellulose content 2.5% by mass, average fiber diameter 50 nm, average fiber length 100 μm), or Daio Paper Using a dispersion of cellulose nanofibers produced from broad-leaved trees manufactured by Co., Ltd. (cellulose content 2% by mass, average fiber diameter 50 nm, average fiber length 10 μm), prepreg is Toho Tenax Q-111-H1280 (resin content 25% by mass) was used.
 [実施例1]
 電着液(日本ペイント株式会社製のInsuleed3030)にセルロースナノファイバー分散液(Chuetsu-CNF又はDaio-CNF;平均繊維径50nm、平均繊維長10μm)を所定量混合し、攪拌すると、適度な粘度が出て、一様に分散した。このため、セルロースナノファイバーに疎水化処理を施さなくとも、十分に分散することが理解できた。次に、得られた電着液をテフロン(登録商標)シートの上に流しこむと、広がって厚さが一定となり、乾燥後、厚さが均一で、セルロースナノファーバーと電着液中のエポキシ樹脂とからなる、半透明で均質なシートとなった。このことから、得られたシートは、セルロースナノファイバーが一様に分散していると考えられ、シートの厚さ0.3mmでも、強度が十分で、ハンドリングが容易であった。得られたシートの外観写真を図2に示す。
[Example 1]
When a predetermined amount of cellulose nanofiber dispersion (Chuetsu-CNF or Daio-CNF; average fiber diameter 50 nm, average fiber length 10 μm) is mixed in the electrodeposition liquid (Insuleed 3030 manufactured by Nippon Paint Co., Ltd.) Out and evenly dispersed. For this reason, it was understood that the cellulose nanofibers were sufficiently dispersed without being subjected to a hydrophobic treatment. Next, when the obtained electrodeposition liquid is poured onto a Teflon (registered trademark) sheet, it spreads to have a constant thickness, and after drying, the thickness is uniform, and the cellulose nanofiber and the epoxy in the electrodeposition liquid It became a translucent and homogeneous sheet made of resin. From this, it was considered that the cellulose nanofibers were uniformly dispersed in the obtained sheet, and even with a sheet thickness of 0.3 mm, the strength was sufficient and handling was easy. An appearance photograph of the obtained sheet is shown in FIG.
 得られたシート(セルロースナノファイバー層)をセルロースナノファイバー層として、炭素繊維強化プラスチックの前駆体であるプリプレグ(東邦テナックス製のQ-111 H1280)9層の表裏両面に、圧力1MPaで圧着し、150℃で1時間、加熱硬化させた。これにより、シャルピー衝撃試験を行ったところ、セルロースナノファイバーを添加しない場合に比べて、20~30%の衝撃強度の向上が見られた。結果を図3に示す。なお、図3において、CNF weight fractionは、CFRPとセルロースナノファイバーの合計量を100質量%としてセルロースナノファイバーの含有量(質量%)を意味する。 The obtained sheet (cellulose nanofiber layer) is used as a cellulose nanofiber layer, and is pressure-bonded to the front and back surfaces of 9 layers of prepreg (Q-111 H1280 made by Toho Tenax), a precursor of carbon fiber reinforced plastic, at a pressure of 1 MPa. Heat curing was performed at 150 ° C. for 1 hour. As a result, a Charpy impact test was conducted, and an impact strength improvement of 20 to 30% was observed compared to the case where cellulose nanofiber was not added. The results are shown in FIG. In FIG. 3, CNF weight fraction means the content (mass%) of cellulose nanofibers, where the total amount of CFRP and cellulose nanofibers is 100 mass%.
 [実施例2]
 実施例1と同様に、シート状のセルロースナノファイバー層を作製した。
[Example 2]
In the same manner as in Example 1, a sheet-like cellulose nanofiber layer was produced.
 電着液に炭素繊維を浸し、通電して樹脂含浸したものの表面に、得られたシート状のセルロースナノファイバー層を、圧力1MPaで圧着し、230℃で1時間、加熱硬化させた。この際、二層のセルロースナノファイバー層の間に、三層の炭素繊維強化プラスチックを挟んだ場合(Surface;CNF5質量%又は13質量%)、炭素繊維強化プラスチック層、セルロースナノファイバー層、炭素繊維強化プラスチック層、セルロースナノファイバー層、炭素繊維強化プラスチック層をこの順に積層した場合(Laminate;CNF5質量%)のいずれも、衝撃強度の改善効果が見られた。結果を図4に示す。なお、図4において、CNF weight fractionは、CFRPとセルロースナノファイバーの合計量を100質量%としてセルロースイナノファイバーの含有量(質量%)を意味する。 The obtained sheet-like cellulose nanofiber layer was press-bonded at a pressure of 1 MPa on the surface of the resin-impregnated resin impregnated with carbon fiber in an electrodeposition solution, and heat cured at 230 ° C. for 1 hour. At this time, when three layers of carbon fiber reinforced plastic are sandwiched between two layers of cellulose nanofiber layers (Surface; CNF 5 mass% or 13 mass%), carbon fiber reinforced plastic layer, cellulose nanofiber layer, carbon fiber When the reinforced plastic layer, the cellulose nanofiber layer, and the carbon fiber reinforced plastic layer were laminated in this order (Laminate; CNF 5 mass%), an effect of improving the impact strength was observed. The results are shown in FIG. In FIG. 4, CNF weight fraction means the content (mass%) of cellulose inanofiber, where the total amount of CFRP and cellulose nanofiber is 100 mass%.
 [実施例3~6及び比較例1~2]
 電着液(日本ペイント株式会社製のInsuleed3030)にセルロースナノファイバー分散液(Chuetsu-CNF又はDaio-CNF;平均繊維径50nm、平均繊維長10μm)を所定量混合し、攪拌すると、適度な粘度が出て、一様に分散した。このため、セルロースナノファイバーに疎水化処理を施さなくとも、十分に分散することが理解できた。次に、得られた電着液を、炭素繊維強化プラスチックの前駆体であるプリプレグ(ミズノ製)5層にブレードで塗布し、乾燥させた。なお、熱硬化条件は、150℃、1時間、大気圧雰囲気とした。セルロースナノファイバー層の外観は、図5に示すように、乾燥させると透明となった。また、図6に示すように、プリプレグは合計5層を積層し、Surface型(最表面及び最裏面にセルロースナノファイバー層を形成したもの)と、Lamination型(最表面及び最裏面はプリプレグであり、それらのすぐ内側にセルロースナノファイバー層を形成し、中心部は3層のプリプレグを形成したもの)とを製造した。
[Examples 3-6 and Comparative Examples 1-2]
When a predetermined amount of cellulose nanofiber dispersion (Chuetsu-CNF or Daio-CNF; average fiber diameter 50 nm, average fiber length 10 μm) is mixed in the electrodeposition liquid (Insuleed 3030 manufactured by Nippon Paint Co., Ltd.) Out and evenly dispersed. For this reason, it was understood that the cellulose nanofibers were sufficiently dispersed without being subjected to a hydrophobic treatment. Next, the obtained electrodeposition liquid was applied with a blade to 5 layers of prepreg (manufactured by Mizuno), which is a precursor of carbon fiber reinforced plastic, and dried. The thermosetting conditions were 150 ° C., 1 hour, and atmospheric pressure. The appearance of the cellulose nanofiber layer became transparent when dried, as shown in FIG. In addition, as shown in FIG. 6, the prepreg has a total of 5 layers, Surface type (cellulosic nanofiber layer formed on the outermost surface and outermost surface) and Lamination type (outermost surface and outermost surface are prepregs). A cellulose nanofiber layer was formed immediately inside them, and a prepreg of three layers was formed in the center).
 なお、実施例3~6及び比較例1~3のそれぞれの試料作製条件は、プリプレグの質量は5層で一定、つまり、製造後の試料におけるCFRPの質量は一定とした。また、CNF量と電着液由来の樹脂量をそれぞれ3段階の調整して試料を作製した。具体的には、試料作製条件は、表1に示すとおりとした。なお、電着液中の樹脂は疎水性であるためCNFを弾くうえに、表1に示す電着液由来の樹脂量2~4gは、プリプレグの面積に対して少なすく広がりにくいため、CNF分散液と電着液とを混合・分散し,高粘性液体とした。特に,薄く延ばしてシート化することにより、CNFがプリプレグ表面で弾かれることなく,一様分布させることが可能であった。 The sample preparation conditions of Examples 3 to 6 and Comparative Examples 1 to 3 were such that the mass of the prepreg was constant in 5 layers, that is, the mass of CFRP in the sample after production was constant. In addition, samples were prepared by adjusting the amount of CNF and the amount of resin derived from the electrodeposition solution in three stages. Specifically, the sample preparation conditions were as shown in Table 1. In addition, since the resin in the electrodeposition liquid is hydrophobic, CNF is repelled. In addition, the amount of resin derived from the electrodeposition liquid shown in Table 1 is 2-4 g, and it is difficult to spread slightly with respect to the area of the prepreg. The liquid and electrodeposition liquid were mixed and dispersed to make a highly viscous liquid. In particular, it was possible to uniformly distribute CNF without being repelled on the surface of the prepreg by thinly extending the sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた試料について曲げ試験を行った。図7にCNF含有率と曲げ剛性、図8にCNF含有率と比曲げ剛性(=曲げ剛性/試料密度)の関係をそれぞれ示す。CNF含有量の増加に伴い、曲げ剛性及び比曲げ剛性は増加傾向を示した。また、積層構成に関しては、Surface型と比較して、Lamination型の方が増加傾向は顕著であった。一方、図9にCNF含有率と曲げ強度、図10にCNF含有率と比曲げ強度(=曲げ強度/試料密度)の関係をそれぞれ示す。CNF含有量の増加に伴い、曲げ強度及び比曲げ強度は増加した。積層構成に関しては、Lamination型の方が増加傾向は顕著であり、回帰係数 (R2値) から分かるように強い線形性を示した。特に、比強度はR2=0.98となった。なお、図7~10において、各プロットはCNF含有量、樹脂量等の条件を適宜変更して作製した試料を測定したものである。 The obtained sample was subjected to a bending test. FIG. 7 shows the relationship between the CNF content and the bending stiffness, and FIG. 8 shows the relationship between the CNF content and the specific bending stiffness (= bending stiffness / sample density). With increasing CNF content, bending stiffness and specific bending stiffness showed an increasing trend. Regarding the laminated structure, the increasing tendency was more remarkable in the Lamination type than in the Surface type. On the other hand, FIG. 9 shows the relationship between CNF content and bending strength, and FIG. 10 shows the relationship between CNF content and specific bending strength (= bending strength / sample density). With increasing CNF content, bending strength and specific bending strength increased. Regarding the layered structure, the Lamination type showed a greater tendency to increase and showed a strong linearity as can be seen from the regression coefficient (R 2 value). In particular, the specific strength was R 2 = 0.98. 7 to 10, each plot is obtained by measuring a sample prepared by appropriately changing conditions such as CNF content and resin amount.
 次に、プリプレグの表面樹脂層へのCNF及び電着液由来樹脂層の浸潤を確認するため、実施例5の試料について、デジタルマイクロスコープ(VHX-1000、株式会社キーエンス製)を用いて、プリプレグとCNF及び電着液由来樹脂層の界面の観察を行った。 Next, in order to confirm the infiltration of the CNF and electrodeposition liquid-derived resin layer into the surface resin layer of the prepreg, the prepreg was used for the sample of Example 5 using a digital microscope (VHX-1000, manufactured by Keyence Corporation). And the interface between CNF and the electrodeposition liquid-derived resin layer were observed.
 図11にプリプレグとCNF及び電着液由来樹脂層の界面の写真を示す。プリプレグの表面樹脂層へのCNF及び電着液由来樹脂層の浸潤を確認することができた(図11に示したBaffer Layer)。 Fig. 11 shows a photograph of the interface between the prepreg, CNF, and electrodeposition liquid-derived resin layer. Infiltration of the CNF and electrodeposition liquid-derived resin layer into the surface resin layer of the prepreg could be confirmed (Baffer® Layer shown in FIG. 11).
 次いで、硬化温度を150℃ではなく170℃としたこと以外は上記と同様にSurface型の試料(Surface2)を作製し、曲げ試験を同様に行った。図12にCNF含有率と曲げ剛性、CNF含有率と比曲げ剛性(=曲げ剛性/試料密度)の関係をそれぞれ示す。170℃の試料においても、CNF含有量の増加に伴い、曲げ剛性及び比曲げ剛性は増加傾向を示した。また、170℃で硬化させたほうが150℃の試料と比較すると増加傾向は顕著であった。一方、図13にCNF含有率と曲げ強度、CNF含有率と比曲げ強度(=曲げ強度/試料密度)の関係をそれぞれ示す。170℃の試料においても、CNF含有量の増加に伴い、曲げ強度及び比曲げ強度は増加した。また、170℃で硬化させたほうが150℃の試料と比較すると増加傾向は顕著であった。 Next, a surface type sample (Surface 2) was prepared in the same manner as described above except that the curing temperature was set to 170 ° C. instead of 150 ° C., and the bending test was performed in the same manner. FIG. 12 shows the relationship between the CNF content and the bending rigidity, and the CNF content and the specific bending rigidity (= bending rigidity / sample density). Even in the sample at 170 ° C., the bending stiffness and the specific bending stiffness showed an increasing trend as the CNF content increased. In addition, the tendency to increase at 170 ° C. was more remarkable than that at 150 ° C. On the other hand, FIG. 13 shows the relationship between CNF content and bending strength, and CNF content and specific bending strength (= bending strength / sample density). Even in the 170 ° C. sample, the bending strength and specific bending strength increased with increasing CNF content. In addition, the tendency to increase at 170 ° C. was more remarkable than that at 150 ° C.

Claims (11)

  1. 少なくとも一層の炭素繊維強化プラスチック層と、少なくとも一層のセルロースナノファイバー層とを備えており、
    少なくとも一層の炭素繊維強化プラスチック層の少なくとも片面に、少なくとも一層のセルロースナノファイバー層が隣接するように配置されており、
    前記炭素繊維強化プラスチック層は、炭素繊維強化プラスチックを含有しており、
    前記セルロースナノファイバー層は、セルロースナノファイバー及び高分子化合物を含有している、炭素繊維強化プラスチック強化材料。
    Comprising at least one carbon fiber reinforced plastic layer and at least one cellulose nanofiber layer;
    At least one cellulose nanofiber layer is disposed adjacent to at least one surface of at least one carbon fiber reinforced plastic layer,
    The carbon fiber reinforced plastic layer contains carbon fiber reinforced plastic,
    The cellulose nanofiber layer is a carbon fiber reinforced plastic reinforced material containing cellulose nanofiber and a polymer compound.
  2. 前記炭素繊維強化プラスチックのマトリックスである熱硬化性樹脂がエポキシ樹脂である、請求項1に記載の炭素繊維強化プラスチック強化材料。 The carbon fiber reinforced plastic reinforcing material according to claim 1, wherein the thermosetting resin that is a matrix of the carbon fiber reinforced plastic is an epoxy resin.
  3. 前記セルロースナノファイバー層中の高分子化合物がエポキシ樹脂である、請求項1又は2に記載の炭素繊維強化プラスチック強化材料。 The carbon fiber reinforced plastic reinforced material according to claim 1 or 2, wherein the polymer compound in the cellulose nanofiber layer is an epoxy resin.
  4. 二層の前記セルロースナノファイバー層の間に、少なくとも一層の炭素繊維強化プラスチック層が配置されている、請求項1~3のいずれか1項に記載の炭素繊維強化プラスチック強化材料。 The carbon fiber reinforced plastic reinforced material according to any one of claims 1 to 3, wherein at least one carbon fiber reinforced plastic layer is disposed between the two cellulose nanofiber layers.
  5. 前記炭素繊維強化プラスチック層と、前記セルロースナノファイバー層とが交互に配置されている、請求項1~3のいずれか1項に記載の炭素繊維強化プラスチック強化材料。 The carbon fiber reinforced plastic reinforced material according to any one of claims 1 to 3, wherein the carbon fiber reinforced plastic layer and the cellulose nanofiber layer are alternately arranged.
  6. セルロースナノファイバー及び高分子化合物を含む、プラスチック強化材料。 A plastic reinforced material comprising cellulose nanofibers and a polymer compound.
  7. 請求項1~5のいずれか1項に記載の炭素繊維強化プラスチック強化材料の製造方法であって、
    (1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程、及び
    (2)前記工程(1)で得られた分散液を用いて、炭素繊維強化プラスチック又はその前駆体上にセルロースナノファイバー層を形成し加熱硬化させる工程
    を備える、製造方法。
    A method for producing a carbon fiber reinforced plastic reinforced material according to any one of claims 1 to 5,
    (1) a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition solution in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin coating; A manufacturing method provided with the process of forming and heating-hardening a cellulose nanofiber layer on a carbon fiber reinforced plastic or its precursor using the dispersion liquid obtained at the process (1).
  8. 炭素繊維強化プラスチック又はその前駆体が、マトリックス樹脂としてエポキシ樹脂を含有する、請求項7に記載の製造方法。 The production method according to claim 7, wherein the carbon fiber reinforced plastic or a precursor thereof contains an epoxy resin as a matrix resin.
  9. 炭素繊維強化プラスチック又はその前駆体が、炭素繊維強化プラスチック又は炭素繊維プリプレグである、請求項7又は8に記載の製造方法。 The manufacturing method of Claim 7 or 8 whose carbon fiber reinforced plastic or its precursor is a carbon fiber reinforced plastic or a carbon fiber prepreg.
  10. 請求項6に記載のプラスチック強化材料の製造方法であって、
    (1)高分子化合物が溶解又は分散している電着液、水系エポキシ樹脂、及びエポキシ樹脂塗料よりなる群から選ばれる少なくとも1種と、セルロースナノファイバーとを接触させる工程
    を備える、製造方法。
    A method for producing a plastic reinforced material according to claim 6,
    (1) A production method comprising a step of bringing cellulose nanofibers into contact with at least one selected from the group consisting of an electrodeposition liquid in which a polymer compound is dissolved or dispersed, an aqueous epoxy resin, and an epoxy resin paint.
  11. 前記電着液中の高分子化合物がエポキシ樹脂である、請求項7~10のいずれか1項に記載の製造方法。 The production method according to any one of claims 7 to 10, wherein the polymer compound in the electrodeposition liquid is an epoxy resin.
PCT/JP2019/019228 2018-05-15 2019-05-15 Material for reinforcing carbon-fiber-reinforced plastic and material for reinforcing plastic WO2019221155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562026A JP6664732B1 (en) 2018-05-15 2019-05-15 Carbon fiber reinforced plastic reinforced material and plastic reinforced material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018094175 2018-05-15
JP2018-094175 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019221155A1 true WO2019221155A1 (en) 2019-11-21

Family

ID=68539773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019228 WO2019221155A1 (en) 2018-05-15 2019-05-15 Material for reinforcing carbon-fiber-reinforced plastic and material for reinforcing plastic

Country Status (2)

Country Link
JP (1) JP6664732B1 (en)
WO (1) WO2019221155A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070232A (en) * 2019-10-31 2021-05-06 グローブライド株式会社 Fiber-reinforced prepreg and method for manufacturing the same
IT202000018310A1 (en) * 2020-07-28 2022-01-28 Noxi S R L SPORTS EQUIPMENT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148214A (en) * 2010-01-22 2011-08-04 Doshisha Fiber-reinforced composite
JP2012236983A (en) * 2011-04-28 2012-12-06 Nagoya Univ Electroconductive composition
JP2013036035A (en) * 2011-07-14 2013-02-21 Mitsubishi Chemicals Corp Method for producing dispersion of fine cellulose fiber
JP2016006131A (en) * 2014-06-20 2016-01-14 学校法人同志社 Prepreg laminate
JP2018176583A (en) * 2017-04-14 2018-11-15 スターライト工業株式会社 Laminate having adhesive reinforcement layer and production method of laminate
JP2019093646A (en) * 2017-11-24 2019-06-20 株式会社三五 Intermediate base material formed of composite material containing reinforcement fiber and resin and molded body, method for manufacturing the molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148214A (en) * 2010-01-22 2011-08-04 Doshisha Fiber-reinforced composite
JP2012236983A (en) * 2011-04-28 2012-12-06 Nagoya Univ Electroconductive composition
JP2013036035A (en) * 2011-07-14 2013-02-21 Mitsubishi Chemicals Corp Method for producing dispersion of fine cellulose fiber
JP2016006131A (en) * 2014-06-20 2016-01-14 学校法人同志社 Prepreg laminate
JP2018176583A (en) * 2017-04-14 2018-11-15 スターライト工業株式会社 Laminate having adhesive reinforcement layer and production method of laminate
JP2019093646A (en) * 2017-11-24 2019-06-20 株式会社三五 Intermediate base material formed of composite material containing reinforcement fiber and resin and molded body, method for manufacturing the molded body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATAGIRI, KAZUAKI ET AL.: "Enhancement of mechanical properties of CFRP manufactured by using electro-activated deposition resin molding method with the application of CNF without hydrophobic treatment", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 169, 1 January 2019 (2019-01-01), pages 203 - 208, XP055655078, ISSN: 0266-3538, DOI: 10.1016/j.compscitech.2018.10.030 *
KATAGIRI, KAZUAKI ET AL.: "Strength properties of CFRP manufactured by using electrodeposition resin molding method", PROCEEDING OF THE 59TH JSASS STRUCTURES CONFERENCE, August 2017 (2017-08-01), pages 237 - 239 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070232A (en) * 2019-10-31 2021-05-06 グローブライド株式会社 Fiber-reinforced prepreg and method for manufacturing the same
JP7239251B2 (en) 2019-10-31 2023-03-14 グローブライド株式会社 Fiber-reinforced prepreg and its manufacturing method
IT202000018310A1 (en) * 2020-07-28 2022-01-28 Noxi S R L SPORTS EQUIPMENT
WO2022023991A1 (en) * 2020-07-28 2022-02-03 NOXI S.r.l. Sports equipment

Also Published As

Publication number Publication date
JP6664732B1 (en) 2020-03-13
JPWO2019221155A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Arpitha et al. Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites
Rahman et al. Tensile properties of natural and synthetic fiber-reinforced polymer composites
Ramesh et al. Evaluation of mechanical and interfacial properties of sisal/jute/glass hybrid fiber reinforced polymer composites
Jawaid et al. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites
Asim et al. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites
EP2799470B1 (en) Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
KR0139918B1 (en) Improved laminate composites and method for making the same
Swain et al. Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler
Ramlee et al. Effect of surface treatment on mechanical, physical and morphological properties of oil palm/bagasse fiber reinforced phenolic hybrid composites for wall thermal insulation application
CN104884512B (en) Conductive fibers enhance polymer composite body and multi-functional complex
CN102015259B (en) Composite coating base material and mouldable composite
KR20140079819A (en) Composite laminate having improved impact strength and the use thereof
JP6471377B2 (en) Prepreg laminate
Abd El-Baky et al. Mechanical properties evaluation of sugarcane bagasse-glass/polyester composites
KR101498559B1 (en) Carbon fiber reinforced plastics using polydopamine and the manufacturing method thereof
Kwon et al. Tensile shear strength of wood bonded with urea–formaldehyde with different amounts of microfibrillated cellulose
JP2010024413A (en) Fiber-reinforced composite material and method for producing the same
WO2019221155A1 (en) Material for reinforcing carbon-fiber-reinforced plastic and material for reinforcing plastic
Kushwaha et al. Studies on performance of acrylonitrile-pretreated bamboo-reinforced thermosetting resin composites
WO2008121914A1 (en) Biodegradable plyboard and method of manufacture
Ren et al. Hybrid effect on mechanical properties of M40‐T300 carbon fiber reinforced Bisphenol A Dicyanate ester composites
JP5341787B2 (en) Fiber reinforced composite bat
Karri et al. Bond quality of poplar plywood reinforced with hemp fibers and lignin-phenolic adhesives
JP4164572B2 (en) Composite material and manufacturing method thereof
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019562026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803768

Country of ref document: EP

Kind code of ref document: A1