WO2019221123A1 - Method for manufacturing optical laminate and method for manufacturing display device - Google Patents

Method for manufacturing optical laminate and method for manufacturing display device Download PDF

Info

Publication number
WO2019221123A1
WO2019221123A1 PCT/JP2019/019136 JP2019019136W WO2019221123A1 WO 2019221123 A1 WO2019221123 A1 WO 2019221123A1 JP 2019019136 W JP2019019136 W JP 2019019136W WO 2019221123 A1 WO2019221123 A1 WO 2019221123A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical
anisotropic layer
peelable support
laminate
Prior art date
Application number
PCT/JP2019/019136
Other languages
French (fr)
Japanese (ja)
Inventor
直弥 西村
史岳 三戸部
武田 淳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020519857A priority Critical patent/JP7016412B2/en
Publication of WO2019221123A1 publication Critical patent/WO2019221123A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a method for manufacturing an optical laminate and a method for manufacturing a display device.
  • Patent Document 1 a sheet including a polarizing film formed using a dichroic material that is a light absorption anisotropic layer and a sheet including a retardation film that is an optical anisotropic layer are used.
  • An embodiment for producing a circularly polarizing plate is disclosed.
  • an optical laminated body including a light absorption anisotropic layer and an optical anisotropic layer a surface film is often separately disposed on the surface according to various usage environments. Therefore, a method capable of easily producing an optical laminate including a surface film, a light absorption anisotropic layer and an optical anisotropic layer has been desired.
  • an object of the present invention is to provide a method for producing an optical laminate, which can easily produce an optical laminate including a surface film, a light absorption anisotropic layer, and an optical anisotropic layer.
  • Another object of the present invention is to provide a method for manufacturing a display device.
  • the light absorption anisotropic layer is formed using a liquid crystalline composition containing a dichroic substance and a liquid crystalline compound, The manufacturing method of an optical laminated body whose peeling force of a 1st peelable support body is smaller than the peeling force of a 2nd peelable support body.
  • the liquid crystal compound includes a polymer liquid crystal compound containing a repeating unit represented by the formula (4) described later.
  • the log P value of P1, L1, and SP1, and the log P value of M1 The method for producing an optical laminated body according to any one of (1) to (5), wherein the difference is 4 or more.
  • the optical laminate is manufactured so that the display element faces the surface opposite to the surface film side of the optical laminate produced by the production method according to any one of (1) to (10).
  • a method for manufacturing a display device comprising a step of manufacturing a display device by stacking a display element.
  • the manufacturing method of an optical laminated body which can manufacture easily the optical laminated body containing a surface film, a light absorption anisotropic layer, and an optical anisotropic layer can be provided. Further, according to the present invention, a method for manufacturing a display device can be provided.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm. In the present invention, Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience).
  • the average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • an angle for example, an angle such as “90 °” and a relationship thereof (for example, “orthogonal”, “parallel”, and “intersect at 45 °”) are used in the technical field to which the present invention belongs. It shall include the allowable error range. For example, it means that the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • the “absorption axis” of the light absorption anisotropic layer means the direction of highest absorbance.
  • the “transmission axis” means a direction that forms an angle of 90 ° with the “absorption axis”.
  • the (meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin, and includes acrylate / methacrylate derivatives, in particular, acrylate ester / methacrylate ester (co) polymers.
  • the (meth) acryloyl group is a concept including both an acryloyl group and a methacryloyl group.
  • Step 1-1 includes a surface on the light absorption anisotropic layer side of the first optical laminate having the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order, The first optical laminate so that the surface on the optical anisotropic layer A side of the second optical laminate having the peelable support, the second alignment film, and the optical anisotropic layer A in this order faces each other. And a second optical laminate, and a first peelable support is peeled off to obtain a laminate X. More specifically, in this step, as shown in FIG. 1, a first optical laminate having a first peelable support 12, a first alignment film 14, and a light absorption anisotropic layer 16 in this order.
  • a second optical laminate 20 having the body 10, the second peelable support 26, the second alignment film 24, and the optically anisotropic layer A22 in this order is prepared.
  • the surface of the first optical laminate 10 on the light absorption anisotropic layer 16 side and the surface of the second optical laminate 20 on the optical anisotropic layer A22 side are opposed to each other.
  • the first optical laminated body 10 and the second optical laminated body 20 are laminated, and the first peelable support 12 is peeled to obtain a laminated body X30.
  • each member used at this process is explained in full detail first, and the procedure of a process is explained in full detail after that.
  • a 1st peelable support is a member which supports the 1st alignment film and light absorption anisotropic layer which are mentioned later on the surface, and adheres to the 1st alignment film surface so that peeling is possible. As will be described later, when the first peelable support is peeled, peeling occurs between the first peelable support and the first alignment film.
  • Materials constituting the first peelable support include cellulose resin, acrylic resin, methacrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin, cyclic polyolefin resin, glutaric anhydride resin, glutar Examples thereof include imide resins, cellulose resins, polyester resins, and mixed resins of a plurality of resins selected from these, and cellulose resins or polyester resins are preferred.
  • the phase transition of the liquid crystal compound when forming the light absorption anisotropic layer described later may require heating at 120 to 150 ° C., and the heating of the first peelable support during production
  • the material constituting the first peelable support cellulose acylate resin or polyethylene terephthalate is more preferable.
  • a hydrophilic treatment may be given to the surface of a 1st peelable support body. Therefore, cellulose acylate is more preferable as the material constituting the first peelable support because the peel force can be easily adjusted by hydrophilizing the surface of the first peelable support.
  • the first peelable support may have a single layer structure or a multilayer structure.
  • a 1st peelable support body is a multilayer structure
  • positioned on a support body is mentioned.
  • the material constituting the support include the materials constituting the first peelable support described above.
  • the thickness of a support body is not specifically limited, The range similar to the thickness of the 1st peelable support body mentioned later is mentioned.
  • As the support a transparent support is preferable.
  • the coating layer is not particularly limited as long as it is a layer that is detachably adhered to the first alignment film and satisfies the relationship with the peeling force of the second peelable support described later, and includes a resin layer.
  • the thickness of the coating layer is preferably 0.1 to 10 ⁇ m.
  • the thickness of the first peelable support is not particularly limited, but is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 10 to 50 ⁇ m.
  • a 1st alignment film is a layer arrange
  • the first alignment film is separated from the first peelable support together with the light absorption anisotropic layer.
  • the first alignment film may be any layer as long as the liquid crystalline compound contained in the composition containing the dichroic substance and the liquid crystalline compound can be brought into a desired alignment state.
  • the first alignment film is formed by rubbing treatment of an organic compound (preferably polymer) on the film surface, oblique deposition of an inorganic compound, formation of a layer having a microgroove, or an organic compound (Langmuir Blodget method (LB film)). For example, accumulation of ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. Among these, an alignment film formed by rubbing treatment or a photo alignment film formed by light irradiation is preferable.
  • an organic compound preferably polymer
  • the polymer material used for the alignment film formed by the rubbing treatment is described in many documents, and many commercially available products are available.
  • polyvinyl alcohol or polyimide and derivatives thereof (modified products) are preferable.
  • the polymer material which has a polymeric group is preferable, and the polyvinyl alcohol which has a polymeric group is more preferable.
  • the polymerizable group include a (meth) acryloyl group and a vinyl group.
  • the thickness of the alignment film is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m.
  • the coating film formed from the above material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment film.
  • linearly polarized light irradiation and “non-polarized light irradiation” are operations for causing a photoreaction in the photo-alignment material.
  • the wavelength of the light used varies depending on the photo-alignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction.
  • the peak wavelength of light used for light irradiation is preferably 200 to 700 nm, and more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
  • Light sources used for light irradiation include, for example, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps and carbon arc lamps, various lasers [eg, semiconductor lasers, helium neon lasers, argon Ion laser, helium cadmium laser and YAG (yttrium-aluminum-garnet) laser], light emitting diode, and cathode ray tube.
  • various lasers eg, semiconductor lasers, helium neon lasers, argon Ion laser, helium cadmium laser and YAG (yttrium-aluminum-garnet) laser
  • light emitting diode and cathode ray tube.
  • Examples of means for obtaining linearly polarized light include a method using a polarizing plate, a method using a reflective polarizer utilizing a prism element or Brewster angle, and a method using light emitted from a laser light source having polarization. . Moreover, you may selectively irradiate only the light of the required wavelength using a filter or a wavelength conversion element.
  • linearly polarized light a method of irradiating light from the upper surface or the back surface to the coating film surface from the perpendicular or oblique direction is adopted.
  • the incident angle of light varies depending on the photo-alignment material, but is preferably 0 to 90 ° (vertical), and more preferably 40 to 90 °.
  • non-polarized light the non-polarized light is irradiated obliquely to the coating film.
  • the incident angle is preferably 10 to 80 °, more preferably 20 to 60 °, and further preferably 30 to 50 °.
  • the irradiation time is preferably 1 to 60 minutes, and more preferably 1 to 10 minutes.
  • the average refractive index of the first alignment film at a wavelength of 550 nm is not particularly limited, and is often 1.40 to 2.00.
  • the display performance when the optical laminate is disposed in the display element is more excellent.
  • 1.55-1.80 is preferable.
  • the refractive index anisotropy of the first alignment film at a wavelength of 550 nm is not particularly limited, and is preferably 0.1 to 0.3 from the viewpoint that the display performance when the optical laminate is disposed in the display element is more excellent. Since the light absorption anisotropic layer often has a high refractive index anisotropy, the average of the first alignment film is reduced in reducing interface reflection between the first alignment film and the light absorption anisotropic layer.
  • the refractive index and the refractive index anisotropy are high.
  • the average refractive index is measured using a spectroscopic ellipsometry M-2000U manufactured by Woollam.
  • the average refractive index (n ave ) and in-plane refractive index anisotropy ( ⁇ n) in the present invention are represented by the following formulas (1) and (2), respectively.
  • Formula (1) n ave (n x + ny + nz ) / 3
  • Formula (2) ⁇ n n x ⁇ n y
  • the light absorption anisotropic layer is a layer formed using a composition containing a dichroic substance and a liquid crystal compound.
  • the light absorption anisotropic layer is a layer whose degree of light absorption differs depending on the direction, and usually has an absorption axis and a polarization axis (transmission axis).
  • the dichroic substance is not particularly limited, and a visible light absorbing substance (dichroic dye), a light emitting substance (fluorescent substance, phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and an inorganic substance (For example, quantum rods) and the like, and conventionally known dichroic substances (dichroic dyes) can be used.
  • a visible light absorbing substance dichroic dye
  • a light emitting substance fluorescent substance, phosphorescent substance
  • an ultraviolet absorbing substance an infrared absorbing substance
  • nonlinear optical substance a nonlinear optical substance
  • carbon nanotube for example, quantum rods
  • two or more kinds of dichroic substances may be used in combination.
  • at least one kind having a maximum absorption wavelength in the wavelength range of 370 to 550 nm from the viewpoint of making the light absorption anisotropic layer close to black, at least one kind having a maximum absorption wavelength in the wavelength range of 370 to 550 nm.
  • These dye compounds and at least one dye compound having a maximum absorption wavelength in the wavelength range of 500 to 700 nm may be used in combination.
  • the dichroic material may have a crosslinkable group.
  • the crosslinkable group include a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a styryl group, and among them, a (meth) acryloyl group is preferable.
  • a compound represented by the formula (1) is preferable.
  • a 1 , A 2 and A 3 each independently represents a divalent aromatic group which may have a substituent.
  • L 1 and L 2 each independently represent a substituent.
  • m represents an integer of 1 to 4, and when m is an integer of 2 to 4, a plurality of A 2 may be the same or different from each other.
  • m is preferably 1 or 2.
  • the “divalent aromatic group which may have a substituent” represented by A 1 , A 2 and A 3 in the above formula (1) will be described.
  • substituent group G described in paragraphs [0237] to [0240] of JP2011-237513A, among which a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl Group or an aryloxycarbonyl group is preferable, an alkyl group is more preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • Examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • divalent aromatic hydrocarbon group examples include an arylene group having 6 to 12 carbon atoms, and specific examples include a phenylene group, a cumenylene group, a mesitylene group, a tolylene group, and a xylylene group. . Of these, a phenylene group is preferable.
  • the divalent aromatic heterocyclic group is preferably a monocyclic or bicyclic heterocyclic ring-derived group. Examples of atoms other than carbon atoms that constitute the aromatic heterocyclic group include nitrogen atoms, sulfur atoms, and oxygen atoms. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than a carbon atom, these may be the same or different.
  • aromatic heterocyclic group examples include pyridylene group (pyridine-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), benzothiadiazole-diyl group, phthalimido-diyl group And a thienothiazole-diyl group (hereinafter abbreviated as “thienothiazole group”).
  • divalent aromatic groups divalent aromatic hydrocarbon groups are preferred.
  • any one of A 1 , A 2 and A 3 is preferably a divalent thienothiazole group which may have a substituent.
  • the specific example of the substituent of a bivalent thienothiazole group is the same as the substituent in the "divalent aromatic group which may have a substituent" mentioned above, and its preferable aspect is also the same.
  • a 2 is more preferably a divalent thienothiazole group.
  • a 1 and A 3 represent a divalent aromatic group which may have a substituent.
  • a 2 is a divalent thienothiazole group
  • at least one of A 1 and A 3 is a divalent aromatic hydrocarbon group which may have a substituent
  • the “substituent” represented by L 1 and L 2 in the above formula (1) will be described.
  • substituents include a group introduced to enhance solubility or nematic liquid crystal property, an electron donating or electron withdrawing group introduced to adjust the color tone as a pigment, or fixing the orientation. Therefore, a group having a crosslinkable group (polymerizable group) to be introduced is preferable.
  • an alkyl group which may have a substituent an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, a substituent Aryl group which may have a group, alkoxy group which may have a substituent, oxycarbonyl group which may have a substituent, acyloxy group which may have a substituent, substituent An acylamino group which may have a substituent, an amino group which may have a substituent, an alkoxycarbonylamino group which may have a substituent, a sulfonylamino group which may have a substituent, a substituent A sulfamoyl group which may have a group, a carbamoyl group which may have a substituent, an alkylthio group which may have a substituent, a sulfonyl group which may have a substituent, a substituent Have A good ureid
  • At least one of L 1 and L 2 preferably includes a crosslinkable group (polymerizable group), more preferably contains a crosslinkable group in both L 1 and L 2.
  • the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A. From the viewpoint of reactivity and synthesis suitability, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group, or a styryl group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
  • L 1 and L 2 include an alkyl group substituted with the crosslinkable group, a dialkylamino group substituted with the crosslinkable group, and an alkoxy group substituted with the crosslinkable group.
  • a compound represented by the formula (2) is also preferable.
  • C 1 and C 2 each independently represent a monovalent substituent. However, at least one of C 1 and C 2 represents a crosslinkable group.
  • M 1 and M 2 each independently represents a divalent linking group. However, at least one of M 1 and M 2 has 4 or more main chain atoms.
  • Ar 1 and Ar 2 are each independently any one of a phenylene group that may have a substituent, a naphthylene group that may have a substituent, and a biphenylene group that may have a substituent. Represents a group.
  • E represents one of a nitrogen atom, an oxygen atom, and a sulfur atom.
  • R 1 represents a hydrogen atom or a substituent.
  • R 2 represents a hydrogen atom or an alkyl group which may have a substituent.
  • n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
  • the monovalent substituent represented by C 1 and C 2 in formula (2) will be described.
  • Examples of the monovalent substituent represented by C 1 and C 2 include a group introduced to enhance the solubility or nematic liquid crystal property of the azo compound, and an electron donating property and an electron introduced to adjust the color tone as a dye.
  • a group having attraction or a crosslinkable group (polymerizable group) introduced to fix the orientation is preferred.
  • C 1 and C 2 represents a crosslinkable group, and both C 1 and C 2 are crosslinkable groups from the viewpoint that the durability of the light absorption anisotropic layer is more excellent.
  • the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A. From the viewpoint of reactivity and suitability for synthesis, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group or a styryl group is preferred, and an acryloyl group or a methacryloyl group is preferred.
  • the divalent linking group represented by M 1 and M 2 in formula (2) will be described.
  • Examples of the divalent linking group include —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N —, —O—CO—.
  • NR N —, —SO 2 —, —SO—, an alkylene group, a cycloalkylene group, an alkenylene group, a group in which two or more of these groups are combined, and the like can be given.
  • an alkylene group —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N —, —O—CO—NR N —
  • R N represents a hydrogen atom or an alkyl group.
  • At least one of M 1 and M 2 has 4 or more main chain atoms, preferably 7 or more, and more preferably 10 or more. Further, the upper limit of the number of atoms in the main chain is preferably 20 or less, and more preferably 15 or less.
  • the “main chain” in M 1 refers to a portion necessary for directly connecting “C 1 ” and “Ar 1 ” in formula (2), and “the number of atoms in the main chain” means , Refers to the number of atoms constituting the part.
  • the “main chain” in M 2 refers to a part necessary for directly connecting “C 2 ” and “E” in formula (2), and “the number of atoms in the main chain” This refers to the number of atoms constituting the above part.
  • the “number of main chain atoms” does not include the number of branched chain atoms described later.
  • the number of atoms in the main chain of M1 is 6 (the number of atoms in the dotted frame on the left side of the following formula (D7)), and the atoms in the main chain of M2 Is 7 (the number of atoms in the dotted frame on the right side of the following formula (D7)).
  • At least one of M 1 and M 2 may be a group having 4 or more main chain atoms, and if the number of atoms in one main chain of M 1 and M 2 is 4 or more, the other The number of atoms in the main chain may be 3 or less.
  • the total number of atoms in the main chain of M 1 and M 2 is preferably 5 to 30, more preferably 7 to 27.
  • the dichroic material is more easily polymerized, and the total number of atoms in the main chain is 30 or less, so that the degree of orientation is excellent.
  • a light absorption anisotropic layer can be obtained, or a melting point of the dichroic substance can be increased and a light absorption anisotropic layer having excellent heat resistance can be obtained.
  • M 1 and M 2 may have a branched chain.
  • the “branched chain” in M 1 refers to a portion other than the portion necessary for directly connecting C 1 and Ar 1 in Formula (2).
  • the “branched chain” in M 2 refers to a portion other than the portion necessary for directly connecting C 2 and E in Formula (2).
  • the number of branched chain atoms is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched atoms does not include the number of hydrogen atoms.
  • Ar 1 and Ar 2 represent “an optionally substituted phenylene group”, “an optionally substituted naphthylene group”, and “having a substituent.
  • the “biphenylene group” may be described.
  • the substituent is not particularly limited, and is a halogen atom, alkyl group, alkyloxy group, alkylthio group, oxycarbonyl group, thioalkyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group. , A sulfinyl group, a ureido group, and the like.
  • Ar 1 and Ar 2 are a phenylene group that may have a substituent, a naphthylene group that may have a substituent, or a biphenylene group that may have a substituent.
  • a phenylene group is preferable from the viewpoint of easy availability of a raw material which may have a diol and a degree of orientation.
  • "M 1" for coupling the Ar 1 and "N” is preferably located in the para position of Ar 1. Further, “E” and “N” linked to Ar 2 are preferably located at the para position in Ar 1 .
  • E represents one of a nitrogen atom, an oxygen atom and a sulfur atom, and is preferably a nitrogen atom from the viewpoint of suitability for synthesis. Further, from the viewpoint that it becomes easy to make a dichroic substance having absorption on the short wavelength side (for example, having a maximum absorption wavelength in the vicinity of 500 to 530 nm), E in the above formula (2) is And preferably an oxygen atom. On the other hand, from the viewpoint that it becomes easy to make a dichroic substance having absorption on the long wavelength side (for example, having a maximum absorption wavelength in the vicinity of 600 nm), E in the above formula (2) is nitrogen. It is preferably an atom.
  • R 1 represents a hydrogen atom or a substituent.
  • Specific examples and preferred embodiments of the “substituent” represented by R 1 are the same as the substituents in Ar 1 and Ar 2 described above, and the preferred embodiments are also the same, and thus the description thereof is omitted.
  • R 2 have a hydrogen atom or a substituent represents an alkyl group, an alkyl group is preferred which may have a substituent.
  • substituent include a halogen atom, a hydroxyl group, an ester group, an ether group, and a thioether group.
  • alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. Of these, a linear alkyl group having 1 to 6 carbon atoms is preferable, a linear alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group or an ethyl group is further preferable.
  • n 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
  • a compound represented by the formula (3) is also preferable.
  • a and B each independently represent a crosslinkable group.
  • a and b each independently represents 0 or 1; However, a + b ⁇ 1.
  • L 1 represents a monovalent substituent
  • L 2 represents a monovalent substituent
  • L 2 represents a single bond or a divalent linking group.
  • Ar 1 represents an (n1 + 2) -valent aromatic hydrocarbon group or heterocyclic group
  • Ar 2 represents an (n2 + 2) -valent aromatic hydrocarbon group or heterocyclic group
  • Ar 3 represents an (n3 + 2) -valent aromatic group
  • a hydrocarbon group or a heterocyclic group is represented.
  • R 1 , R 2 and R 3 each independently represents a monovalent substituent.
  • the plurality of R 1 may be the same or different from each other, and when n2 ⁇ 2, the plurality of R 2 may be the same or different from each other, and when n3 ⁇ 2
  • the plurality of R 3 may be the same as or different from each other.
  • k represents an integer of 1 to 4.
  • the plurality of Ar 2 may be the same as or different from each other, and the plurality of R 2 may be the same as or different from each other.
  • examples of the crosslinkable group represented by A and B include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A.
  • (meth) acryloyl group, epoxy group, oxetanyl group or styryl group is preferable from the viewpoint of improving reactivity and synthesis suitability, and (meth) acryloyl group is more preferable from the viewpoint of improving solubility. preferable.
  • a and b each independently represent 0 or 1, but a + b ⁇ 1. That is, the compound represented by the formula (3) has at least one crosslinkable group at the terminal.
  • a and b are both 1, that is, a crosslinkable group is introduced at both ends of the compound represented by the formula (3).
  • L 1 represents a monovalent substituent
  • L 2 represents a monovalent substituent
  • L 2 represents a single bond or a divalent linking group
  • L 1 and L 2 are preferably both a single bond or a divalent linking group, and more preferably both are a divalent linking group.
  • the monovalent substituent represented by L 1 and L 2 is a group introduced to increase the solubility of the dichroic substance, or an electron donating or electron introduced to adjust the color tone as a dye.
  • a group having an attractive property is preferred.
  • substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
  • substituents include an R B — (O—R A ) na — group, which is a group in which an alkoxy group is substituted with an alkyl group.
  • R A represents an alkylene group having 1 to 5 carbon atoms
  • R B represents an alkyl group having 1 to 5 carbon atoms
  • na is 1 to 10 (preferably 1 to 5, more preferably 1). Represents an integer of ⁇ 3).
  • examples of the monovalent substituent represented by L 1 and L 2 include an alkyl group, an alkenyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (for example, the above-described R B — (O—R A ) na — group) is preferable, and an alkyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (for example, R B — (O—R A ) na — described above) Group) is more preferred.
  • Examples of the divalent linking group represented by L 1 and L 2 include —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N -, -O-CO-NR N- , -NR N -CO-NR N- , -SO 2- , -SO-, an alkylene group, a cycloalkylene group, an alkenylene group, and two of these groups
  • RN represents a hydrogen atom or an alkyl group. When a plurality of RNs are present, the plurality of RNs may be the same as or different from each other.
  • the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 3 or more, and 5 or more. More preferably, it is more preferably 7 or more, and particularly preferably 10 or more. Further, the upper limit of the number of atoms in the main chain is preferably 20 or less, and more preferably 12 or less. On the other hand, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
  • the "number of the main chain of atoms" in L 1 refers to the number of L 1 containing no branched chain atoms. If B is not present, the "number of the main chain of atoms" in L 2, refers to the number of L 2 containing no branched chain atoms.
  • the number of atoms in the main chain of L 1 is 5 (the number of atoms in the dotted frame on the left side of the following formula (D1)), and the main chain of L 2 The number of atoms is 5 (the number of atoms in the dotted frame on the right side of the following formula (D1)).
  • the number of atoms in the main chain of L 1 is 7 (the number of atoms in the dotted frame on the left side of the following formula (D10)), and the number of atoms in the main chain of L 2 The number is 5 (the number of atoms in the dotted frame on the right side of the following formula (D10)).
  • L 1 and L 2 may have a branched chain.
  • A is present in the formula (3) is directly connected to the "branched” in L 1, and “O" atoms connecting the L 1 in formula (3), "A”, a The part other than the part necessary to do.
  • B when there is B in Equation (3) is directly connected to the "branched” in L 2, and “O” atoms connecting the L 2 in Formula (3), "B”, the The part other than the part necessary to do.
  • A is absent in the formula (3), a "branched” in L 1, wherein the longest chain of atoms (or main extending starting from the "O" atoms connecting the L 1 in (3) The part other than the chain).
  • a "branched" in L 2 is connected to the L 2 in Formula (3) "O" atoms longest atomic chain extending starting (i.e. The part other than the main chain).
  • the number of branched atoms is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched atoms does not include the number of hydrogen atoms.
  • Ar 1 is an (n1 + 2) valence (eg, trivalent when n1 is 1)
  • Ar 2 is an (n2 + 2) valence (eg, trivalent when n2 is 1)
  • Ar 3 Represents an (n3 + 2) -valent aromatic hydrocarbon group or heterocyclic group (for example, trivalent when n3 is 1).
  • Ar 1 to Ar 3 can be rephrased as a divalent aromatic hydrocarbon group or a divalent heterocyclic group each substituted with n1 to n3 substituents (R 1 to R 3 described later).
  • the divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be monocyclic or have a condensed structure of two or more rings.
  • the number of rings of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and still more preferably 1 (that is, a phenylene group) from the viewpoint of further improving the solubility.
  • the divalent aromatic hydrocarbon group include a phenylene group, an azulene-diyl group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, and a tetracene-diyl group, and the solubility is further improved. From this viewpoint, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the divalent heterocyclic group may be either aromatic or non-aromatic, but a divalent aromatic heterocyclic group is preferred from the viewpoint of improving the degree of orientation.
  • the divalent aromatic heterocyclic group may be monocyclic or may have a condensed structure of two or more rings. Examples of atoms other than carbon constituting the aromatic heterocyclic group include nitrogen atom, sulfur atom and oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • aromatic heterocyclic group examples include, for example, pyridylene group (pyridine-diyl group), thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), thiazole- Examples thereof include a diyl group, a benzothiadiazole-diyl group, a phthalimido-diyl group, a thienothiazole-diyl group, a thienothiophene-diyl group, and a thienoxazole-diyl group.
  • the divalent aromatic heterocyclic group is preferably a monocyclic group or a group having a bicyclic condensed ring structure represented by the following structural formula.
  • “*” represents a bonding position with an azo group or an oxygen atom in the general formula (1).
  • Ar 1 to Ar 3 are preferably divalent aromatic hydrocarbon groups, and preferably phenylene groups.
  • Ar 1 is a phenylene group
  • the oxygen atom and azo group bonded to Ar 1 are preferably located at the meta position or para position, and more preferably located at the para position.
  • the orientation degree of a light absorption anisotropic layer improves more.
  • Ar 2 is a phenylene group
  • the two azo groups bonded to Ar 2 are preferably located at the meta position or para position, and more preferably located at the para position.
  • Ar 3 is a phenylene group
  • the oxygen atom and azo group bonded to Ar 3 are preferably located at the meta position or para position, and more preferably located at the para position.
  • the condensed ring structure represented by the formula (Ar-1) Is shown below. That is, when Ar 1 , Ar 2 and Ar 3 have a condensed ring structure, it preferably has a condensed ring structure represented by the following formula (A-1).
  • Ar X , Ar Y and Ar Z each independently represent a benzene ring or a monocyclic heterocyclic ring.
  • n represents an integer of 0 or more.
  • * Represents a bonding position with an azo group or an oxygen atom in the formula (3).
  • the monocyclic heterocycle in the above formula (Ar-1) is preferably a monocyclic aromatic heterocycle.
  • atoms other than carbon constituting the monocyclic aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • Specific examples of the monocyclic aromatic heterocycle include a pyridine ring, a thiophene ring, a thiazole ring, and an oxazole ring.
  • Ar X , Ar Y and Ar Z may have a substituent.
  • substituents include monovalent substituents in R 1 to R 3 described later.
  • n represents an integer of 0 or more, preferably 0 to 2, more preferably 0 to 1, and still more preferably 0.
  • R 1 , R 2 and R 3 each independently represents a monovalent substituent.
  • the monovalent substituent represented by R 1 , R 2 and R 3 is a halogen atom, cyano group, hydroxy group, alkyl group, alkoxy group, fluorinated alkyl group, —O— (C 2 H 4 O) m—R.
  • R ′ represents a hydrogen atom, a methyl group or an ethyl group, and m represents an integer of 1 to 6. These substituents may be further substituted with these substituents.
  • the monovalent substituent represented by R 1 , R 2 and R 3 is a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a propyl group, from the viewpoint that the solubility of the dichroic substance is further improved.
  • Methoxy group, ethoxy group, propoxy group, hydroxy group, trifluoromethyl group, —O— (C 2 H 4 O) m—R ′, or —O— (C 3 H 6 O) m—R ′ is preferable.
  • a trifluoromethyl group, a methoxy group, a hydroxy group, —O— (C 2 H 4 O) m—R ′, or —O— (C 3 H 6 O) m—R ′ is more preferable.
  • the number of atoms in the main chain is from 1 to 2 from the viewpoint of the balance between the solubility of the dichroic material and the orientation of the light absorption anisotropic layer. 15 is preferable and 1 to 12 is more preferable.
  • the “number of main chain atoms” refers to the number of R 1 , R 2 or R 3 atoms not including a branched chain.
  • the “branched chain” refers to a portion other than the longest atomic chain (that is, the main chain) extending from any one of Ar 1 to Ar 3 in the formula (1).
  • Ar 1 is a phenylene group
  • an embodiment in which R 1 is located in the ortho position with respect to the azo group bonded to Ar 1 can be mentioned.
  • condition (R2) there is an embodiment in which when Ar 2 is a phenylene group, R 2 is located in the ortho position with respect to at least one azo group.
  • condition (R3) there is an embodiment in which, when Ar 3 is a phenylene group, R 3 is located at the ortho position with respect to the azo group bonded to Ar 3 .
  • k represents an integer of 1 to 4.
  • k is 2 or more from the viewpoint of excellent light resistance while ensuring excellent solubility.
  • k is 1 from the viewpoint that the solubility of the dichroic material is superior.
  • n1, n2 and n3 each independently represents an integer of 0 to 4, preferably 0 to 3.
  • k 1, n1 + n2 + n3 ⁇ 0. That is, when Formula (3) has a bisazo structure, sufficient solubility can be obtained regardless of the presence or absence of substituents (R 1 to R 3 in Formula (3)), but the solubility is further improved. From the viewpoint, it preferably has a substituent.
  • Formula (3) when Formula (3) has a trisazo structure, a tetrakisazo structure, or a pentakisazo structure, it has at least one substituent (R 1 to R 3 in Formula (3)).
  • R 1 to R 3 substituent
  • n1 + n2 + n3 is preferably 1 to 9, and more preferably 1 to 5.
  • liquid crystal compound When the liquid crystalline composition contains a liquid crystalline compound, the dichroic substance can be aligned with a high degree of orientation while suppressing the precipitation of the dichroic substance.
  • the liquid crystalline compound is a liquid crystalline compound that does not exhibit dichroism.
  • any of a low molecular liquid crystalline compound and a high molecular liquid crystalline compound can be used.
  • the “low molecular weight liquid crystalline compound” refers to a liquid crystalline compound having no repeating unit in the chemical structure.
  • polymer liquid crystalline compound refers to a liquid crystalline compound having a repeating unit in its chemical structure.
  • Examples of the low molecular liquid crystal compound include liquid crystal compounds described in JP 2013-228706 A.
  • Examples of the polymer liquid crystalline compound include the thermotropic liquid crystalline polymers described in JP2011-237513A.
  • the polymer liquid crystalline compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at the terminal.
  • a liquid crystalline compound may be used individually by 1 type, and may use 2 or more types together.
  • the content of the liquid crystal compound is preferably 25 to 2000 parts by weight, more preferably 33 to 1000 parts by weight, and more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the dichroic substance in the liquid crystal composition. Is more preferable. When the content of the liquid crystal compound is within the above range, the degree of orientation of the light absorption anisotropic layer is further improved.
  • a polymer liquid crystalline compound containing a repeating unit represented by the formula (4) (also referred to as “repeating unit (4)” in the present specification) is preferable.
  • the difference between the log P values of P1, L1, and SP1 and the log P value of M1 is 4 or more.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogenic group
  • T1 represents a terminal group.
  • main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D). From the viewpoint of diversity and easy handling, a group represented by the following formula (P1-A) is preferred.
  • “*” represents a bonding position with L1 in the formula (1).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents an alkyl group.
  • the group represented by the formula (P1-A) is preferably a unit of a partial structure of poly (meth) acrylate obtained by polymerization of (meth) acrylate.
  • the group represented by the formula (P1-B) is preferably an ethylene glycol unit in polyethylene glycol obtained by polymerizing ethylene glycol.
  • the group represented by the formula (P1-C) is preferably a propylene glycol unit obtained by polymerizing propylene glycol.
  • the group represented by the formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of silanol.
  • silanol is a compound represented by the formula Si (R 2 ) 3 (OH).
  • R ⁇ 2 > represents a hydrogen atom or an alkyl group each independently. However, at least one of the plurality of R 2 represents an alkyl group.
  • L1 is a single bond or a divalent linking group.
  • the divalent linking group represented by L1 include —C (O) O—, —OC (O) —, —O—, —S—, —C (O) NR 3 —, —NR 3 C (O). -, -S (O) 2- , -NR 3 R 4- and the like.
  • R 3 and R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • the left bond is bonded to P1, and the right bond is bonded to SP1.
  • L1 is preferably a group represented by —C (O) O—.
  • P1 is a group represented by the formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond.
  • the spacer group represented by SP1 is at least selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure, because it easily exhibits liquid crystallinity and the availability of raw materials. It preferably contains one type of structure.
  • the oxyethylene structure represented by SP1 is preferably a group represented by * — (CH 2 —CH 2 O) n1 — *.
  • n1 represents an integer of 1 to 20, and * represents a bonding position with L1 or M1.
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and further preferably 3 for the reason that the effect of the present invention is more excellent.
  • the oxypropylene structure represented by SP1 is preferably a group represented by * — (CH (CH 3 ) —CH 2 O) n2 — *.
  • n2 represents an integer of 1 to 3, and * represents a bonding position with L1 or M1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by * — (Si (CH 3 ) 2 —O) n3 — *.
  • n3 represents an integer of 6 to 10
  • * represents a bonding position with L1 or M1.
  • the fluorinated alkylene structure represented by SP1 is preferably a group represented by * — (CF 2 —CF 2 ) n4 — *.
  • n4 represents an integer of 6 to 10, and * represents a bonding position with L1 or M1.
  • the mesogenic group represented by M1 is a group showing the main skeleton of liquid crystal molecules that contribute to liquid crystal formation.
  • the liquid crystal molecules exhibit liquid crystallinity that is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • the mesogenic group is not particularly limited. For example, “Flushage Kristall in Table II” (VEB Manual Verlag fur Grundoff Industrie, Leipzig, published in 1984). You can refer to the Liquid Crystal Handbook (Maruzen, 2000), especially the description in Chapter 3.
  • As the mesogenic group for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
  • the mesogenic group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, for the reason that the effect of the present invention is more excellent, and has 3 aromatic hydrocarbon groups. More preferably,
  • the mesogenic group the following formula (M1-A) or the following formula (M1-M1) can be used because the liquid crystallinity expression, liquid crystal phase transition temperature adjustment, raw material availability and synthesis suitability are more excellent, and the effects of the present invention are more excellent.
  • a group represented by B) is preferred, and a group represented by formula (M1-B) is more preferred.
  • A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. These groups may be substituted with a substituent such as an alkyl group, a fluorinated alkyl group or an alkoxy group.
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring.
  • the divalent group represented by A1 may be monocyclic or condensed. * Represents a binding position with SP1 or T1.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, and a tetracene-diyl group.
  • a variety of mesogenic skeleton designs and availability of raw materials From the viewpoint of properties, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation of the dichroic substance, a divalent aromatic heterocyclic group. Is preferred.
  • Examples of atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • divalent aromatic heterocyclic group examples include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group).
  • Isoquinolylene group isoquinoline-diyl group
  • oxazole-diyl group thiazole-diyl group
  • oxadiazole-diyl group benzothiazol-diyl group
  • benzothiadiazole-diyl group benzothiadiazole-diyl group
  • phthalimido-diyl group thienothiazole-diyl group
  • Thiazolothiazole-diyl group thienothiophene-diyl group
  • thienoxazole-diyl group thienoxazole-diyl group.
  • divalent alicyclic group represented by A1 examples include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer of 1 to 10.
  • the plurality of A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in the formula (M1-A), and thus description thereof is omitted.
  • a2 represents an integer of 1 to 10, and when a2 is 2 or more, a plurality of A2 may be the same or different, and a plurality of A3 may be the same or different.
  • the plurality of LA1s may be the same or different.
  • a2 is preferably an integer of 2 or more, more preferably 2, for the reason that the effect of the present invention is more excellent.
  • LA1 is a divalent linking group.
  • the plurality of LA1 are each independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group.
  • a2 is 2, for the reason that the effect of the present invention is more excellent, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond.
  • Examples of the (meth) acryloyloxy group-containing group include, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as those of L1 and SP1 described above.
  • A represents (meth) Group represented by acryloyloxy group).
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and further preferably a methoxy group for the reason that the effect of the present invention is more excellent.
  • These terminal groups may be further substituted with these groups or a polymerizable group described in JP 2010-244038 A.
  • the number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 7 for the reason that the effect of the present invention is more excellent.
  • the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the “main chain” in T1 means the longest molecular chain bonded to M1, and hydrogen atoms do not count in the number of atoms in the main chain of T1.
  • T1 is an n-butyl group
  • the number of atoms in the main chain is 4
  • T1 is a sec-butyl group
  • the number of atoms in the main chain is 3.
  • the content of the repeating unit (4) is preferably 20 to 100% by mass and preferably 30 to 99.9% with respect to 100% by mass of all repeating units possessed by the polymer liquid crystalline compound because the effect of the present invention is more excellent. More preferably, it is 40% to 99.0% by weight.
  • the content of each repeating unit contained in the polymer liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (4) may be contained singly or in combination of two or more in the polymer liquid crystalline compound.
  • the polymer liquid crystalline compound contains two or more repeating units (4), there are advantages such as improved solubility of the polymer liquid crystalline compound in a solvent and easy adjustment of the liquid crystal phase transition temperature. is there.
  • the total amount is preferably within the above range.
  • the repeating unit (4) containing no polymerizable group in T1 and the repeating unit (4) containing a polymerizable group in T1 may be used in combination.
  • hardenability of a light absorption anisotropic layer improves more.
  • the repeating unit (4) which does not contain a polymerizable group in / T1 is preferably 0.005 to 4 and more preferably 0.01 to 2.4 in terms of mass ratio.
  • the mass ratio is 4 or less, there is an advantage that the degree of orientation is excellent.
  • the mass ratio is 0.05 or more, the curability of the light absorption anisotropic layer is further improved.
  • logP 1 logP 1
  • logP 2 logP 2
  • logP 1 logP 1
  • logP 2 logP 2
  • the upper limit of the difference is preferably 15 or less, more preferably 12 or less, and even more preferably 10 or less, from the viewpoint of adjusting the liquid crystal phase transition temperature and suitability for synthesis.
  • the log P value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes referred to as a hydrophilic / hydrophobic parameter.
  • the logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver. 4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method 117 or the like.
  • a value calculated by inputting a structural formula of a compound into HSPiP (Ver. 4.1.07) is adopted as a logP value.
  • the logP 1 means the logP values of P1, L1, and SP1, as described above.
  • the “log P value of P1, L1 and SP1” means a logP value of a structure in which P1, L1 and SP1 are integrated, and is not the sum of the logP values of P1, L1 and SP1. Specifically, logP 1 is calculated by inputting a series of structural formulas from P1 to SP1 in formula (4) to the software.
  • P1 ⁇ a series of structural formula to SP1, regarding the portion of the group represented by P1, the structure of the group itself represented by P1 (e.g., the above Expression (P1-A ) To formula (P1-D)) or the structure of a group that can be P1 after polymerizing the monomer used to obtain the repeating unit represented by formula (4). Also good.
  • P1 when P1 is obtained by polymerization of ethylene glycol, it is ethylene glycol, and when P1 is obtained by polymerization of propylene glycol, it is propylene glycol.
  • P1 when P1 is obtained by polycondensation of silanol, a compound represented by silanol (formula Si (R 2 ) 3 (OH).
  • R 2 independently represents a hydrogen atom or an alkyl group.
  • At least one of the plurality of R 2 represents an alkyl group.
  • logP 1 as long the difference between logP 2 described above is four or more, may be lower than the logP 2, may be higher than the logP 2.
  • the log P value (log P 2 described above) of a general mesogen group tends to be in the range of 4-6.
  • the value of logP 1 is preferably 1 or less, 0 or less is more preferable.
  • the value of logP 1 is preferably 8 or more, 9 or more is more preferable.
  • P1 in the formula (1) is obtained by polymerization of (meth) acrylic acid ester, and, if logP 1 is lower than the logP 2 is logP value of SP1 in the formula (1) is 0.7 or less Is preferable, and 0.5 or less is more preferable.
  • the equation P1 is in (4) (meth) obtained by polymerization of acrylic acid esters, and, when logP 1 is higher than the logP 2, the logP value of SP1 in the formula (4), 3. 7 or more is preferable, and 4.2 or more is more preferable.
  • Examples of the structure having a log P value of 1 or less include an oxyethylene structure and an oxypropylene structure.
  • Examples of the structure having a log P value of 6 or more include a polysiloxane structure and an alkylene fluoride structure.
  • the polymer liquid crystalline compound containing the repeating unit (4) may further contain a repeating unit represented by the following formula (5) (also referred to as “repeating unit (5)” in this specification). .
  • a repeating unit represented by the following formula (5) also referred to as “repeating unit (5)” in this specification.
  • the difference between the log P values of P2, L2 and SP2 and the log P value of M2 is less than 4. That is, the repeating unit (2) differs from the repeating unit (1) at least in terms of the difference in log P values in the structure. Note that the definition of “log P values of P2, L2, and SP2” is the same as that of logP 1 described above, and thus the description thereof is omitted.
  • the polymer liquid crystalline compound contains the repeating unit (5)
  • the polymer liquid crystalline compound is a copolymer of the repeating unit (4) and the repeating unit (5), and is a block polymer or an alternating polymer. Any polymer such as a random polymer and a graft polymer may be used.
  • P2 represents the main chain of the repeating unit
  • L2 represents a single bond or a divalent linking group
  • SP2 represents a spacer group
  • M2 represents a mesogenic group
  • T2 represents a terminal group.
  • P2, L2, SP2, M2, and T2 in Formula (5) are the same as P1, L1, SP1, M1, and T1 in Formula (1), respectively.
  • T2 in Formula (5) preferably has a polymerizable group from the viewpoint of improving the strength of the light absorption anisotropic layer.
  • the content is preferably 0.5 to 50% by mass, more preferably 1 to 40% by mass with respect to 100% by mass of all repeating units of the polymer liquid crystalline compound.
  • the repeating unit (5) may be contained singly or in combination of two or more in the polymer liquid crystalline compound.
  • the total amount is preferably within the above range.
  • T2 in the repeating unit (5) has a polymerizable group
  • the content of the repeating unit (5) in which T2 has a polymerizable group is based on 100% by mass of all repeating units of the polymer liquid crystalline compound. 0.5 to 60% by mass is preferable, and 1 to 40% by mass is more preferable.
  • the content of the repeating unit (5) in which T2 has a polymerizable group is 0.5% by mass or more, the strength of the light absorption anisotropic layer is further improved.
  • the content of the repeating unit (5) in which T2 has a polymerizable group is 60% by mass or less, there is an advantage that the degree of orientation is more excellent.
  • the polymer liquid crystalline compound containing the repeating unit (4) may further contain a repeating unit represented by the following formula (6) (also referred to as “repeating unit (6)” in the present specification). .
  • a repeating unit represented by the following formula (6) also referred to as “repeating unit (6)” in the present specification.
  • the repeating unit (6) differs from the repeating unit (4) and the repeating unit (5) in that it does not have at least a mesogenic group.
  • the polymer liquid crystalline compound contains the repeating unit (6)
  • the polymer liquid crystalline compound is a copolymer of the repeating unit (4) and the repeating unit (5) (further, the repeating unit (5) And any other polymer such as a block polymer, an alternating polymer, a random polymer, and a graft polymer.
  • P3 represents the main chain of the repeating unit
  • L3 represents a single bond or a divalent linking group
  • SP3 represents a spacer group
  • T3 represents a terminal group.
  • P3, L3, SP3 and T3 in Formula (6) are the same as P1, L1, SP1 and T1 in Formula (4), respectively.
  • T3 in Formula (6) preferably has a polymerizable group from the viewpoint of improving the strength of the light absorption anisotropic layer.
  • the content is preferably 0.5 to 40% by mass, more preferably 1 to 30% by mass with respect to 100% by mass of all repeating units of the polymer liquid crystalline compound.
  • the repeating unit (6) may be included singly or in combination of two or more in the polymer liquid crystalline compound. When 2 or more types of repeating units (6) are included, the total amount is preferably within the above range.
  • T3 in the repeating unit (6) has a polymerizable group
  • the content of the repeating unit (6) in which T3 has a polymerizable group is based on 100% by mass of all repeating units of the polymer liquid crystalline compound. 0.5 to 60% by mass is preferable, and 1 to 40% by mass is more preferable.
  • strength of a light absorption anisotropic layer improves more that content of the repeating unit (6) in which T3 has a polymeric group is 0.5 mass% or more. There exists an advantage that it is excellent in orientation degree as content of the repeating unit (6) in which T3 has a polymeric group is 60 mass% or less.
  • the liquid crystal composition may contain a solvent, an interface improver, a polymerization initiator, and the like in addition to the components described above.
  • the thickness of the light absorption anisotropic layer is not particularly limited, but is preferably 0.1 to 5.0 ⁇ m, and more preferably 0.3 to 1.5 ⁇ m. Depending on the concentration of the dichroic substance in the liquid crystal composition, when the film thickness is 0.1 ⁇ m or more, a light absorption anisotropic layer with excellent absorbance is obtained, and the film thickness is 5.0 ⁇ m or less. A light-absorbing anisotropic layer having excellent transmittance can be obtained.
  • a step of forming the coating film by applying the liquid crystalline composition on the first alignment film (hereinafter, also referred to as “coating layer forming step”), And a method of orienting a dichroic substance contained in the coating film (hereinafter also referred to as “orientation step”) in this order.
  • a coating film formation process is a process of apply
  • the liquid crystalline composition is applied on the first alignment film by using the liquid crystalline composition containing the solvent described above, or by using the liquid crystalline composition as a liquid such as a melt by heating. It becomes easy.
  • a coating method of the liquid crystalline composition a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spray method, and A known method such as an ink jet method may be used.
  • An orientation process is a process of orienting the dichroic substance contained in a coating film. Thereby, a light absorption anisotropic layer is obtained.
  • the liquid crystal compound is aligned in the same manner as the dichroic material.
  • the alignment step may have a drying process. Components such as a solvent can be removed from the coating film by the drying treatment.
  • the drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and / or blowing.
  • the dichroic substance and the liquid crystalline compound contained in the liquid crystalline composition may be aligned by the above-described coating film forming step or drying treatment.
  • the liquid crystalline composition is prepared as a coating solution containing a solvent
  • the coating film is dried and the solvent is removed from the coating film, whereby a coating film having light absorption anisotropy (that is, light Absorption anisotropic layer) is obtained.
  • the drying treatment is performed at a temperature equal to or higher than the transition temperature of the dichroic substance contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
  • the transition temperature of the dichroic substance contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability.
  • the alignment step preferably includes heat treatment.
  • the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability.
  • the heating time is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
  • the alignment process may have a cooling process performed after the heat treatment.
  • the cooling treatment is a treatment for cooling the heated coating film to about room temperature (20 to 25 ° C.).
  • the cooling means is not particularly limited and can be carried out by a known method.
  • the light absorption anisotropic layer can be obtained by the above steps.
  • examples of the method for orienting the dichroic substance contained in the coating film include a drying treatment and a heat treatment. However, the method is not limited thereto, and can be performed by a known orientation treatment.
  • the method for producing a light absorption anisotropic layer may include a step of curing the light absorption anisotropic layer (hereinafter also referred to as “curing step”) after the alignment step. Thereby, the light absorption anisotropic layer excellent in durability is obtained.
  • the curing step is performed, for example, by heating and / or light irradiation (exposure). Among these, it is preferable that a hardening process is implemented by light irradiation.
  • various light sources such as infrared rays, visible light, and ultraviolet rays can be used, but ultraviolet rays are preferable.
  • the heating temperature during the exposure is preferably 25 to 140 ° C., although it depends on the transition temperature of the dichroic substance contained in the light absorption anisotropic layer to the liquid crystal phase. .
  • the exposure may be performed under a nitrogen atmosphere. When curing of the light absorption anisotropic layer proceeds by radical polymerization, it is preferable to perform exposure in a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.
  • a 2nd peelable support body is a member which supports the 2nd alignment film and optically anisotropic layer A which are mentioned later on the surface, and adhere
  • As a 2nd peelable support body the structure illustrated by the 1st peelable support body is mentioned, The suitable range is the same.
  • a 2nd alignment film is a layer arrange
  • the second alignment film is separated from the second peelable support together with the optically anisotropic layer. Examples of the second alignment film include the embodiments exemplified for the first alignment film, and the preferred ranges thereof are the same.
  • the optically anisotropic layer A is a layer disposed on the second alignment film.
  • the optically anisotropic layer A is a layer that causes a phase difference in the light that has passed through this layer.
  • the value of the in-plane retardation of the optically anisotropic layer A is not particularly limited, and the optically anisotropic layer A is preferably a so-called ⁇ / 4 plate.
  • a ⁇ / 4 plate (a plate having a ⁇ / 4 function) is an optically anisotropic layer having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a layer whose in-plane retardation at a predetermined wavelength ⁇ nm exhibits ⁇ / 4 (or an odd multiple thereof).
  • the in-plane retardation Re (550) at a wavelength of 550 nm is preferably 100 to 200 nm, and more preferably 120 to 160 nm.
  • the optically anisotropic layer A may have a single layer structure or a multilayer structure.
  • a multilayer optically anisotropic layer including a ⁇ / 4 plate and a ⁇ / 2 plate can be used.
  • the optically anisotropic layer A has forward wavelength dispersion (in-plane retardation becomes smaller as the measurement wavelength increases) and reverse wavelength dispersion (in-plane retardation becomes larger as the measurement wavelength increases). ), And preferably exhibit reverse wavelength dispersion.
  • the optically anisotropic layer A is preferably a layer formed using a composition for forming an optically anisotropic layer containing a polymerizable liquid crystalline compound. More specifically, it is a layer formed by orienting a polymerizable liquid crystal compound in a coating film formed by applying a composition for forming an optically anisotropic layer and fixing the state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group.
  • the kind of the polymerizable group is not particularly limited, and a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a (meth) acryloyl group is preferable.
  • the cationic polymerizable group include an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
  • the kind of the liquid crystal compound is not particularly limited, and can be classified into a rod-shaped type (bar-shaped liquid crystal compound) and a disc-shaped type (disc-shaped liquid crystal compound, discotic liquid crystal compound) according to the shape. Furthermore, there are a low molecular type and a high molecular type, respectively.
  • Polymer generally refers to polymers having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). Note that two or more kinds of rod-like liquid crystalline compounds, two or more kinds of disc-like liquid crystalline compounds, or a mixture of a rod-like liquid crystalline compound and a disk-like liquid crystalline compound may be used.
  • the content of the polymerizable liquid crystal compound in the composition for forming an optically anisotropic layer is not particularly limited, and is preferably 75% by mass or more based on the total solid content in the composition for forming an optically anisotropic layer.
  • the mass% or more is more preferable.
  • An upper limit is not specifically limited, 100 mass% is mentioned.
  • the said total solid content intends the component which forms an optically anisotropic layer, and a solvent is not contained.
  • the composition for forming an optically anisotropic layer may contain other components other than the polymerizable liquid crystalline compound.
  • a polymerization initiator may be contained in the composition for forming an optically anisotropic layer.
  • the polymerization initiator to be used is selected according to the type of the polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • the composition for forming an optically anisotropic layer may contain a polymerizable monomer.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds.
  • the composition for forming an optically anisotropic layer may contain a surfactant from the viewpoint of coating uniformity.
  • a fluorine-based compound is preferable.
  • the composition for forming an optically anisotropic layer may contain a solvent, and the solvent is preferably an organic solvent.
  • composition for forming an optically anisotropic layer may contain an adhesion improving agent, a plasticizer, a polymer and the like in addition to the above components.
  • a composition for forming an optically anisotropic layer is applied on the second alignment film, and a coating film is formed on the second alignment film. Then, after aligning the polymerizable liquid crystalline compound in the coating film, a method of forming the optically anisotropic layer A by applying a curing treatment to the coating film can be mentioned.
  • the method for applying the composition for forming an optically anisotropic layer on the second alignment film include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. .
  • the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment, Removal may be performed.
  • the method for aligning the polymerizable liquid crystalline compound in the coating film is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature.
  • the liquid crystal phase formed by the alignment treatment can generally be transferred by a change in temperature.
  • a lyotropic liquid crystalline compound it can also be transferred by a composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, and the heating temperature is preferably 50 to 150 ° C., and the heating time is preferably 10 seconds to 5 minutes.
  • the coating film in which the polymerizable liquid crystalline compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
  • the method of the curing treatment is not particularly limited, and examples thereof include light irradiation treatment and heat treatment, and are preferable to light irradiation.
  • the kind of light at the time of exposure is not specifically limited, Ultraviolet light is preferable.
  • the first optical layered body may include layers other than the first peelable support, the first alignment film, and the light absorption anisotropic layer described above.
  • a protective layer may be further disposed on the surface side of the light absorption anisotropic layer opposite to the first alignment film.
  • An intermediate layer may be disposed between the first peelable support and the first alignment film. When the intermediate layer is disposed, peeling occurs between the first peelable support and the intermediate layer.
  • Examples of the material for the intermediate layer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols, modified polyvinyl alcohols, poly (N--N) described in paragraph [0022] of JP-A-8-338913.
  • Methylolacrylamide methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols, modified polyvinyl alcohols, poly (N--N) described in paragraph [0022] of JP-A-8-338913.
  • Methylolacrylamide methylolacrylamide
  • polyester polyimide
  • vinyl acetate copolymer poly carboxymethylcellulose
  • polycarbonate polycarbonate.
  • a silane coupling agent can also be used.
  • water-soluble polymers for example, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol, and modified polyvinyl alcohol are more preferable
  • modified polyvinyl alcohol is more preferable.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%.
  • the degree of polymerization of polyvinyl alcohol is preferably 100 to 5,000.
  • the intermediate layer may be crosslinked using a crosslinking agent.
  • the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole, and dialdehyde starch.
  • Specific examples of the crosslinking agent include compounds described in paragraphs [0023] to [0024] in JP-A-2002-062426.
  • As a crosslinking agent an aldehyde is preferable and glutaraldehyde is more preferable from the viewpoint of high reaction activity. Two or more crosslinking agents may be used in combination.
  • the addition amount of the crosslinking agent is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 15% by mass, based on the polymer.
  • the content of the unreacted crosslinking agent remaining in the intermediate layer is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less, based on the total mass of the intermediate layer.
  • a solution containing the polymer as a forming material, a crosslinking agent, and an additive that is added as necessary is applied on a substrate (for example, a first peelable support). And a method of drying by heating (crosslinking).
  • the crosslinking reaction may be performed at any time after the solution is applied.
  • the solvent is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water.
  • the mixing mass ratio of water and methanol (water: methanol) is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9.
  • a spin coating method, a dip coating method, a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method is preferable, and a rod coating method is more preferable.
  • the drying temperature is preferably 20 to 110 ° C. From the viewpoint of forming sufficient crosslinks, the temperature is more preferably 60 to 100 ° C, and further preferably 80 to 100 ° C.
  • the drying time is preferably 1 minute to 36 hours, more preferably 1 to 30 minutes.
  • the optimum pH of the solution is selected according to the crosslinking agent to be used. For example, when glutaraldehyde is used, it is preferably 4.5 to 5.5.
  • the second optical layered body may include a layer other than the above-described second peelable support, the second alignment film, and the optically anisotropic layer A.
  • a protective layer may be further disposed on the surface side of the optically anisotropic layer A opposite to the second alignment film.
  • An intermediate layer may be disposed between the second peelable support and the second alignment film. When the intermediate layer is disposed, peeling occurs between the second peelable support and the intermediate layer.
  • the first optical laminate and the first optical laminate are arranged so that the surface on the light absorption anisotropic layer side of the first optical laminate faces the surface on the optical anisotropic layer A side of the second optical laminate.
  • Two optical laminates are laminated, and the first peelable support is peeled off to obtain a laminate X.
  • the first peelable support immediately after laminating the first optical laminate and the second optical laminate, the first peelable support may be peeled, or the first optical laminate and the second optical laminate After laminating, after the predetermined time has elapsed, the first peelable support may be peeled from the laminate.
  • a 1st optical laminated body and a 2nd optical laminated body are made into a roller, for example.
  • the first peelable support is peeled off immediately after the laminated body comes out of the roller after laminating both.
  • the method for laminating the first optical layered body and the second optical layered body is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
  • the first optical laminated body and the second optical laminated body may be laminated via an adhesion layer (bonding layer) as necessary.
  • the component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
  • the polarization axis of the light absorption anisotropic layer in the first optical laminate (axis perpendicular to the absorption axis) and the retardation in the optical anisotropic layer
  • the angle formed with the phase axis is preferably 45 ° ⁇ 10 °.
  • the method for peeling the first peelable support is not particularly limited, and a known method may be mentioned.
  • a claw is inserted between the first peelable support and the first alignment film to give a trigger for peeling, and the first peelable support is moved away from the first alignment film, and the two are separated.
  • a method is mentioned.
  • the peel force of the first peelable support is smaller than the peel force of the second peelable support described later.
  • the second peelable support may be peeled when the first peelable support is peeled off.
  • a predetermined optical layered product cannot be obtained.
  • the peel strength of the first peelable support is the peel force (peel strength) between the first peelable support and the layer adjacent to the first peelable support, and its size is small. It represents that a 1st peelable support body is easy to peel.
  • a 1st orientation film corresponds, for example.
  • the first optical laminate is cut into 150 mm ⁇ 25 mm, and the light absorption anisotropic layer side of the obtained sample is pasted on the glass substrate only at the 80 mm ⁇ 25 mm portion.
  • the peel strength when the first peelable support is peeled in the 90 ° direction at a speed of 300 mm / min in a 25 ° C. environment is measured with a Tensilon universal material tester (Orientec).
  • the peel strength of the first peelable support is not particularly limited, but it is often 0.05 to 0.50 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00. 50 N / 25 mm is more preferable.
  • the peeling force of the first peelable support is 0.50 N / 25 mm or less, when the first peelable support is peeled by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is difficult to cause manufacturing failures such as line stoppage.
  • the peeling force of the first peelable support is 0.10 N / 25 mm or more, the first peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
  • the peeling force of the first peelable support is between the first peelable support and the first alignment film in the laminate of the first optical laminate and the second optical laminate. It is preferable that it is smaller than the peeling force between each other layers.
  • Step 1-2 includes laminating a surface film on the surface of the laminate X on the first alignment film side, peeling the second peelable support, and forming the surface film, the light absorption anisotropic layer, and the optical anisotropic.
  • This is a step of obtaining an optical layered body having the conductive layer A. More specifically, in this step, as shown in FIG. 3, the first alignment film 14, the light absorption anisotropic layer 16, the optical anisotropic layer A22, the second alignment film 24, and the second peeling.
  • the laminated body X30 which has the property support body 26 in this order, and the surface film 40 which has the hard-coat layer 42 and the base material 44 in this order are prepared.
  • the laminate X30 and the surface film 40 are placed so that the surface of the laminate X30 on the first alignment film 14 side and the surface of the surface film 40 on the substrate 44 side face each other.
  • the second peelable support 26 is laminated, and the hard coat layer 42, the base material 44, the first alignment film 14, the light absorption anisotropic layer 16, the optical anisotropic layer A22, and the second alignment are peeled off.
  • An optical laminated body 50 having the film 24 in this order is obtained.
  • a mode in which the surface film 40 includes the hard coat layer 42 and the base material 44 will be described, but the surface film 40 is not limited to this mode as described later. Below, each member used at this process is explained in full detail first, and the procedure of a process is explained in full detail after that.
  • a surface film is a layer arrange
  • FIGS. 3 and 4 describe an embodiment in which the surface film has a hard coat layer and a substrate.
  • Materials constituting the substrate include (meth) acrylic resins, polycarbonate resins, polystyrene resins, polyolefin resins, cyclic polyolefin resins, glutaric anhydride resins, glutarimide resins, cellulose resins, polyesters And mixed resins of a plurality of types of resins selected from these resins, and among them, cyclic polyolefin resins, (meth) acrylic resins, or polyester resins are preferable.
  • the base material may contain an ultraviolet absorber.
  • (Meth) acrylic resins include methacrylic resins and acrylic resins, as well as (meth) acrylic polymers having a ring structure in the main chain, polymers having a lactone ring, and anhydrides having a succinic anhydride ring.
  • a maleic acid polymer, a polymer having a glutaric anhydride ring, and a glutarimide ring-containing polymer are included.
  • the hard coat layer is a layer for imparting hardness or scratch resistance to the optical laminate.
  • a hard-coat layer can be formed by apply
  • the hard coat layer is preferably excellent in scratch resistance. Specifically, it is preferable to achieve 3H or higher when a pencil hardness test that is an index of scratch resistance is performed.
  • the thickness of the hard coat layer is preferably from 0.1 to 6 ⁇ m, more preferably from 3 to 6 ⁇ m.
  • the hard coat layer is preferably formed by curing the curable composition.
  • the curable composition is preferably prepared as a liquid coating composition.
  • An example of the curable composition includes a monomer for forming a matrix binder, an oligomer, or a polymer, and an organic solvent.
  • Knoop hardness of the resulting optical laminate is preferably 235N / mm 2 or more, more preferably 270N / mm 2 or more, more preferably 270 ⁇ 330N / mm 2.
  • the surface film is not limited to an embodiment having a substrate and a hard coat layer, and may be, for example, only the substrate or only the hard coat layer.
  • the surface film is laminated on the surface of the laminate X on the first alignment film side, the second peelable support is peeled off, and the surface film, the light absorption anisotropic layer, and the optical anisotropic layer An optical laminate having A is obtained.
  • the second peelable support may be peeled immediately after the laminate X and the surface film are laminated, or after a predetermined time has elapsed after the laminate X and the surface film are laminated. The second peelable support may be peeled from the obtained laminate.
  • the method for laminating the laminate X and the surface film is not particularly limited, and examples thereof include known methods. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate. Moreover, when laminating
  • the component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
  • the method of peeling a 2nd peelable support body is not specifically limited, A well-known method is mentioned.
  • a claw is inserted between the second peelable support and the second alignment film to give a trigger for peeling, and the second peelable support is moved away from the second alignment film while separating the two.
  • a method is mentioned.
  • the second optical laminate is cut into 150 mm ⁇ 25 mm, and the optically anisotropic layer A side of the obtained sample is pasted on the glass substrate only at the 80 mm ⁇ 25 mm portion. Then, in a 25 ° C. environment, the peel force when the second peelable support is peeled in the 90 ° direction at a speed of 300 mm / min is measured with a Tensilon universal material tester (Orientec).
  • the peel strength of the second peelable support is not particularly limited, but it is often 0.10 to 4.00 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00. 50 N / 25 mm is more preferable.
  • the peeling force of the second peelable support is 0.50 N / 25 mm or less, when the second peelable support is peeled off by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is hard to cause manufacturing failure such as line stoppage.
  • the peeling force of the second peelable support is 0.10 N / 25 mm or more, the second peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
  • the peel strength of the second peelable support is between each layer other than between the second peelable support and the second alignment film in the laminate of the laminate X and the surface film. It is preferably smaller than the peeling force.
  • step 1-1 and step 1-2 various optical laminates may be laminated and a peelable support may be peeled by a so-called roll-to-roll method.
  • the optical laminated body may have layers other than the surface film, the light absorption anisotropic layer, and the optical anisotropic layer A.
  • the optical layered body may have an adhesion layer on the surface side opposite to the light absorption anisotropic layer side of the optical anisotropic layer A. As will be described later, the optical layered body can be fixed on the display element through this adhesion layer.
  • the optical layered body described above is disposed on the display element, and can provide the display element with a function of preventing external light reflection.
  • the display device 60 includes an optical laminate 50 and a display element 62. The viewer visually recognizes the display device 60 from the hard coat layer 42 side.
  • the display element 62 will be mainly described in detail.
  • the type of the display element is not particularly limited, and examples thereof include organic EL (electroluminescence) display elements and image display elements such as liquid crystal display elements, and organic EL display elements are preferably used.
  • the configuration of the organic EL display element is not particularly limited, and usually includes at least an organic light emitting layer and a pair of electrodes that sandwich the organic light emitting layer.
  • the production method of the display device is not particularly limited, and examples thereof include a method of laminating the optical laminate and the display element via an adhesion layer.
  • Second Embodiment a second embodiment of the method for producing an optical layered body of the present invention will be described with reference to the drawings.
  • the second embodiment of the method for producing an optical layered body of the present invention includes steps 2-1 to 2-3 described later. Hereinafter, each process is explained in full detail.
  • Step 2-1 includes the step of the second optical laminate having the second peelable support, the second alignment film, and the optically anisotropic layer A in this order on the optically anisotropic layer A side, The second optical laminate and the third optical laminate so that the surface of the third optical laminate having the peelable support and the optically anisotropic layer B in this order faces the optically anisotropic layer B side. Is laminated, and the second peelable support is peeled off to obtain the laminate Y. More specifically, in this step, as shown in FIG. 6, the second optical laminate having the second peelable support 26, the second alignment film 24, and the optically anisotropic layer A22 in this order.
  • a 3rd peelable support body is a member which supports the optically anisotropic layer B mentioned later on the surface, and adhere
  • the third peelable support include the configurations exemplified for the first peelable support, and the preferred ranges thereof are the same.
  • optically anisotropic layer B is a layer disposed on the third peelable support.
  • the optically anisotropic layer B is a layer that causes a phase difference in the light that has passed through this layer.
  • the value of the in-plane retardation of the optically anisotropic layer B is not particularly limited, and the optically anisotropic layer B may be a ⁇ / 4 plate or a ⁇ / 2 plate. Among these, the optically anisotropic layer B is preferably a positive C plate. When the optically anisotropic layer B is a positive C plate, the in-plane retardation at a wavelength of 550 nm is preferably 0 to 5 nm. Further, the value of retardation in the thickness direction of the optically anisotropic layer B is not particularly limited. When the optically anisotropic layer B is a C plate, the retardation in the thickness direction at a wavelength of 550 nm is preferably ⁇ 300 to 0 nm. -200 to -60 nm is more preferable.
  • C plates There are two types of C plates, a positive C plate (positive C plate) and a negative C plate (negative C plate).
  • the positive C plate satisfies the relationship of the formula (C1).
  • the relationship of Formula (C2) is satisfied.
  • the positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
  • Formula (C1) nz> nx ⁇ ny
  • Formula (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same.
  • nx ⁇ ny ⁇ d (where d is the thickness of the film) is included in “nx ⁇ ny” when 0 to 10 nm, preferably 0 to 5 nm. It is.
  • the optically anisotropic layer B may have a single layer structure or a multilayer structure.
  • the optically anisotropic layer B is preferably a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystalline compound. More specifically, it is a layer formed by orienting a polymerizable liquid crystal compound in a coating film formed by applying a composition for forming an optically anisotropic layer and fixing the state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
  • the composition for forming an optically anisotropic layer used for forming the optically anisotropic layer A is used. It is the same as the component which can be contained in a thing, The suitable aspect is also the same.
  • the manufacturing method of the optically anisotropic layer B includes the same procedure as the manufacturing method of the optically anisotropic layer A.
  • the third optical layered body may include layers other than the third peelable support and the optically anisotropic layer B described above.
  • a third alignment film may be included between the third peelable support and the optically anisotropic layer B.
  • the third alignment film include the embodiments exemplified for the first alignment film, and the preferred ranges thereof are the same.
  • a protective layer may be further disposed on the surface side of the optically anisotropic layer B opposite to the third peelable support.
  • the second optical laminate and the second optical laminate are arranged so that the surface on the optical anisotropic layer A side of the second optical laminate and the surface on the optical anisotropic layer B side of the third optical laminate face each other.
  • Three optical laminates are laminated, and the second peelable support is peeled off to obtain a laminate Y.
  • the second peelable support may be peeled immediately after the second optical laminate and the third optical laminate are laminated, or the second optical laminate and the third optical laminate After laminating, the second peelable support may be peeled from the obtained laminate after a predetermined time has elapsed.
  • a 2nd optical laminated body and a 3rd optical laminated body are made into a roller, for example. There is a method of peeling the second peelable support immediately after the laminated body comes out from the roller after laminating both in between.
  • the method for laminating the second optical laminated body and the third optical laminated body is not particularly limited, and a known method can be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
  • laminating (bonding) the second optical laminated body and the third optical laminated body they may be laminated via an adhesion layer (bonding layer) as necessary.
  • the component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
  • the method for peeling the second peelable support is not particularly limited, and a known method can be mentioned.
  • a claw is inserted between the second peelable support and the second alignment film to give a trigger for peeling, and the second peelable support is moved away from the second alignment film, and the two are separated.
  • a method is mentioned.
  • the peel force of the second peelable support is smaller than the peel force of the third peelable support described later.
  • the third peelable support may be peeled when the second peelable support is peeled off.
  • a predetermined optical layered product cannot be obtained.
  • the peel strength of the second peelable support is the peel force (peel strength) between the second peelable support and the layer adjacent to the second peelable support, and its size is small. It represents that the second peelable support is easily peeled.
  • a 2nd alignment film corresponds as a layer which a 2nd peelable support body adjoins.
  • the measuring method of the peeling force of the second peelable support is as described above. Further, the range of the peeling force of the second peelable support is preferably the range described in the first embodiment.
  • the peel strength of the second peelable support is the second peelable support in the laminate of the second optical laminate and the third optical laminate and the second alignment film. It is preferable that it is smaller than the peeling force between each layer other than between.
  • Step 2-2 is a step of forming the first optical laminated body having the surface of the laminated body Y on the second alignment film side, the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order.
  • the laminated body Y and the first optical laminated body are laminated so that the surface on the light absorption anisotropic layer side faces, and the first peelable support is peeled off to obtain the laminated body Z. More specifically, in this step, as shown in FIG. 8, the first optical laminate having the first peelable support 12, the first alignment film 14, and the light absorption anisotropic layer 16 in this order.
  • a laminate Y80 having the body 10, the second alignment film 24, the optically anisotropic layer A22, the optically anisotropic layer B72, and the third peelable support 74 in this order is prepared.
  • the first optical laminate 10 is arranged such that the surface on the light absorption anisotropic layer 16 side of the first optical laminate 10 and the surface on the second alignment film 24 side of the laminate Y80 face each other.
  • the optical laminated body 10 and the laminated body Y80 are laminated
  • the laminated body Y and the first optical laminated body are arranged so that the surface on the second alignment film side of the laminated body Y faces the surface on the light absorption anisotropic layer side of the first optical laminated body. It laminates
  • the first peelable support may be peeled off, or the laminate Y and the first optical laminate are laminated. Thereafter, the first peelable support may be peeled from the obtained laminate after a predetermined time has elapsed.
  • the method for laminating the laminate Y and the first optical laminate is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate. Further, when the laminated body Y and the first optical laminated body are laminated (bonded), they may be laminated through an adhesion layer (bonding layer) as necessary.
  • the component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
  • the method of peeling a 1st peelable support body is not specifically limited, A well-known method is mentioned. For example, a claw is inserted between the first peelable support and the first alignment film to give a trigger for peeling, and the first peelable support is moved away from the first alignment film, and the two are separated. A method is mentioned.
  • the peel force of the first peelable support is smaller than the peel force of the third peelable support described later.
  • the third peelable support may be peeled when the first peelable support is peeled off. A predetermined optical layered product cannot be obtained.
  • the peel strength of the first peelable support is the peel force (peel strength) between the first peelable support and the layer adjacent to the first peelable support, and its size is small. It represents that a 1st peelable support body is easy to peel.
  • a 1st alignment film corresponds as a layer which a 2nd peelable support body adjoins.
  • the measuring method of the peeling force of the first peelable support is as described above. Further, the range of the peel force of the first peelable support is preferably the range described in the first embodiment.
  • the peel strength of the first peelable support is other than between the first peelable support and the first alignment film in the laminate of the laminate Y and the first optical laminate. It is preferable that it is smaller than the peeling force between these layers.
  • Step 2-3 is a step of laminating a surface film on the surface of the laminated body Z on the first alignment film side, peeling the third peelable support, and forming the surface film, the light absorption anisotropic layer, the optical anisotropic layer
  • Step 2-3 an optical laminate having A and an optically anisotropic layer B is obtained. More specifically, in this step, as shown in FIG. 10, the first alignment film 14, the light absorption anisotropic layer 16, the second alignment film 24, the optical anisotropic layer A22, the optical anisotropic layer A laminate Z90 having B72 and a third peelable support 74 in this order, and a surface film 40 having the hard coat layer 42 and the base material 44 in this order are prepared. Next, as shown in FIG.
  • the laminate Y90 and the surface film 40 are so arranged that the surface of the laminate Y90 on the first alignment film 14 side and the surface of the surface film 40 on the substrate 44 side face each other.
  • the third peelable support 74 is laminated, and the hard coat layer 42, the base material 44, the first alignment film 14, the light absorption anisotropic layer 16, the second alignment film 24, and the optical anisotropic layer A22 are peeled off. And the optical laminated body 100 which has the optically anisotropic layer B72 in this order is obtained.
  • 10 and 11 the form in which the surface film 40 has the hard coat layer 42 and the base material 44 has been described. However, as described above, the surface film 40 is not limited to this form. About each member which comprises the surface film used at this process, it is as having demonstrated in 1st Embodiment, The description is abbreviate
  • a surface film is laminated on the surface of the laminate Z on the first alignment film side, the third peelable support is peeled off, and the surface film, the light absorption anisotropic layer, the optical anisotropic layer A, And the optical laminated body which has the optically anisotropic layer B is obtained.
  • the third peelable support may be peeled immediately after the laminate Z and the surface film are laminated, or after a predetermined time has elapsed after the laminate Z and the surface film are laminated. The third peelable support may be peeled from the obtained laminate.
  • the method for laminating the laminate Z and the surface film is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
  • a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate you may laminate
  • the component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
  • the method for peeling the third peelable support is not particularly limited, and a known method can be mentioned.
  • a claw is inserted between the third peelable support and the optically anisotropic layer B to provide a trigger for peeling, and while moving the third peelable support away from the optically anisotropic layer B, A method for separating the two is mentioned.
  • the third optical laminate is cut into 150 mm ⁇ 25 mm, and the optically anisotropic layer B side of the obtained sample is pasted on the glass substrate only at the 80 mm ⁇ 25 mm portion. Then, in a 25 ° C. environment, the peeling force when peeling the third peelable support in the 90 ° direction at a speed of 300 mm / min is measured with a Tensilon universal material testing machine (Orientec Co., Ltd.).
  • the peel strength of the third peelable support is not particularly limited, but it is often 0.10 to 4.00 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00.
  • the peeling force of the third peelable support is 0.50 N / 25 mm or less, when the third peelable support is peeled off by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is hard to cause manufacturing failure such as line stoppage. Further, when the peeling force of the third peelable support is 0.10 N / 25 mm or more, the third peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
  • the peeling force of a 3rd peelable support body is each other than between the 3rd peelable support body and optically anisotropic layer B in the laminated body of the laminated body Z and a surface film. It is preferable that it is smaller than the peeling force between layers.
  • steps 2-1 to 2-3 various optical laminates may be laminated and the peelable support may be peeled off by a so-called roll-to-roll method.
  • optical laminate having a surface film, a light absorption anisotropic layer, an optical anisotropic layer A, and an optical anisotropic layer B in this order is obtained.
  • the optically anisotropic layer A is a ⁇ / 4 plate and the optically anisotropic layer B is a positive C plate
  • the obtained optical laminate functions more effectively as a so-called circularly polarizing plate.
  • the optical layered body may have a layer other than the surface film, the light absorption anisotropic layer, the optical layered body A, and the optical anisotropic layer B.
  • the optical layered body may have an adhesion layer on the surface side of the optically anisotropic layer B opposite to the optically anisotropic layer A side. As will be described later, the optical layered body can be fixed on the display element through this adhesion layer.
  • the optical layered body described above is disposed on the display element, and can provide the display element with a function of preventing external light reflection.
  • the display device 110 includes an optical laminate 100 and a display element 62.
  • the display device 110 is visually recognized by the observer from the hard coat layer 42 side.
  • the configuration of the display element is as described in the first embodiment.
  • the peel force of the peelable support in each optical laminate shown in the latter part was measured according to the following procedure.
  • the optical laminate was cut into 150 mm ⁇ 25 mm, and the light absorption anisotropic layer side or the optical anisotropic layer of the obtained sample was bonded to the glass substrate only at the 80 mm ⁇ 25 mm portion.
  • the peel force when the peelable support in the sample was peeled in the 90 ° direction at a speed of 300 mm / min was measured with a Tensilon universal material tester (Orientec). .
  • photoalignment material E-1 (1 part by mass) having the following structure, butoxyethanol (41.6 parts by mass), dipropylene glycol monomethyl (41.6 parts by mass), and pure water (15.8 parts by mass) were added.
  • the obtained solution was pressure filtered through a 0.45 ⁇ m membrane filter to prepare composition 1 for forming a photo-alignment film.
  • the obtained composition 1 for photo-alignment film formation was apply
  • the obtained coating film was irradiated with linearly polarized ultraviolet light (illuminance: 4.5 mW, irradiation amount: 400 mJ / cm 2 ) using a polarized ultraviolet light exposure apparatus to obtain an alignment film 11.
  • the following liquid crystalline composition (light absorption anisotropic layer forming composition) 11 was continuously applied with a # 4 wire bar to obtain a coating film.
  • the coating film was heated at 140 ° C. for 90 seconds and cooled to room temperature (23 ° C.).
  • the obtained coating film was heated at 80 ° C. for 60 seconds and cooled again to room temperature.
  • the obtained coating film was irradiated for 60 seconds under an irradiation condition of illuminance of 28 mW / cm 2 using a high-pressure mercury lamp to produce a light absorption anisotropic layer 11 on the alignment film 11, and a sample 101 was prepared. Obtained.
  • the alignment film-forming composition 12 was applied on the intermediate layer 1 obtained in the (preparation of the sample 101). After the transparent support coated with the alignment film forming composition 12 was dried at 100 ° C. for 2 minutes, the obtained coating film was irradiated once with polarized ultraviolet light (20 mJ / cm 2 , wavelength 313 nm standard) and aligned. A film 12 was produced. A sample 106 was obtained on the obtained alignment film 12 by using the liquid crystalline composition 14 used in (Preparation of Sample 104) by the same method as the preparation procedure of Sample 104.
  • liquid crystalline compound M-2 represented by the following formula was synthesized with reference to a synthesis method of the liquid crystalline compound M-1 represented by the above formula.
  • liquid crystal composition 17 The following components were mixed and stirred at 80 ° C. for 1 hour to prepare liquid crystal composition 17.
  • a liquid crystal composition 17 was applied on the alignment film 12 produced during (Production of Sample 106) so as to have a film thickness of 1.8 ⁇ m to form a coating film. Thereafter, the laminate on which the coating film is disposed is heat-dried at 110 ° C. for 2 minutes, and then irradiated with an exposure dose of 1000 mJ / cm 2 (based on a wavelength of 365 nm) using an ultraviolet irradiation device, and the light absorption anisotropic layer 17. A sample 107 having was obtained.
  • the high molecular liquid crystalline compounds P-1 and P-2 (both 4.4) in which the difference in the log P value of the high molecular liquid crystalline compound represented by the formula (4) is 4 or more have a log P value.
  • the orientation was superior to that of the polymer liquid crystalline compound P-3 (0.89) having a difference of less than 1.
  • optical laminates 111 to 112 were produced according to the following procedure.
  • Protective layer composition 1 The following hydrophilic monomer HM-1 29 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 1 part by mass Ethanol 70 parts by mass ⁇ ⁇
  • the film 12 and the intermediate layer were formed in the same manner as in (Preparation of the optical layered body 111) except that a PET film (film 12) having a film thickness of 50 ⁇ m was used instead of the cellulose acylate film 11. 1, an optical laminate 112 including the alignment film 11, the light absorption anisotropic layer 14, and the protective layer 1 was obtained.
  • the film 12 corresponds to a peelable support.
  • optical laminates 201 to 204 were produced according to the following procedure.
  • optically anisotropic layer forming composition 21 having the following composition was prepared.
  • ⁇ Optically anisotropic layer forming composition 21 ⁇ -42.00 parts by mass of the following liquid crystalline compound L-3-42.00 parts by mass of the following liquid crystalline compound L-4-16.00 parts by mass of the following polymerizable compound A-1-6.00 parts by mass of the following low molecular compound B2 -0.50 parts by mass of the following polymerization initiator S-1 (oxime type)-0.20 parts by mass of the following leveling agent G-1-2.00 parts by mass of Hisolv MTEM (manufactured by Toho Chemical Industry Co., Ltd.)-NK ester A-200 (Manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass, methyl ethyl ketone 424.8 parts by mass ⁇ -
  • the groups adjacent to the acryloyloxy groups of the following liquid crystal compounds L-3 and L-4 represent propylene groups (groups in which a methyl group is substituted with an ethylene group), and the following liquid crystal compounds L-3 and L-4 Represents a mixture of positional isomers having different methyl group positions.
  • Core layer cellulose acylate dope ⁇ -100 parts by weight of cellulose acetate having an acetyl substitution degree of 2.88-11 parts by weight of polyester compound B described in Examples of JP-A-2015-227955-430 parts by weight of methylene chloride (first solvent)-Methanol (second Solvent) 64 parts by mass ⁇
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m, and then the core layer cellulose acylate dope and the outer layer cellulose acylate on both sides thereof
  • Three layers of dope were cast simultaneously from a casting port using a band casting machine.
  • the film was peeled off in a state where the solvent content was about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a stretch ratio of 1.1 times.
  • the obtained film was conveyed between rolls of a heat treatment apparatus and further dried to produce an optical film having a thickness of 20 ⁇ m, which was designated as a cellulose acylate film 21 (hereinafter also referred to as film 21).
  • film 21 The in-plane retardation of the obtained cellulose acylate film 21 at a wavelength of 550 nm was 0 nm.
  • the film 21 corresponds to a peelable support.
  • the following alignment film forming composition 21 was applied to one surface of the produced cellulose acylate film 21 with a bar coater, and the obtained coating film was dried at 110 ° C. for 2 minutes. Thereafter, the coating film was rubbed to form an alignment film 21.
  • the optically anisotropic layer forming composition 21 prepared earlier was applied with a bar coater to form a coating film.
  • the obtained coating film was heated to 110 ° C. and then cooled to 60 ° C. to stabilize the orientation. Thereafter, the obtained coating film was kept at 60 ° C., and the orientation was fixed by irradiation with ultraviolet rays (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm), and an optical difference of 2.3 ⁇ m in thickness was obtained.
  • An isotropic layer was formed to produce an optical laminate 201.
  • the in-plane retardation at a wavelength of 550 nm of the optically anisotropic layer in the obtained optical laminate 201 was 140 nm.
  • the slow axis direction of the obtained optically anisotropic layer was aligned parallel to the rubbing direction.
  • PET 1 Polyethylene terephthalate (hereinafter also referred to as PET 1) (90 parts by mass) described in JP-A-2014-206725 and a dried ultraviolet absorber (2,2 ′-(1,4-phenylene) bis (4H ⁇ 3,1-benzoxazinon-4-one)) (10 parts by mass) was mixed, and using a kneading extruder, polyethylene terephthalate containing an ultraviolet absorber (hereinafter also referred to as PET2) was obtained.
  • PET2 polyethylene terephthalate containing an ultraviolet absorber
  • PET1 90 parts by mass
  • PET2 10 parts by mass
  • they are put into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm, and the extruder 1 is heated to 300 ° C. Melted.
  • the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C. and peeled off using a peeling roll to obtain an unstretched polyester film.
  • the unstretched polyester film was guided to a tenter (lateral stretching machine), and stretched 4.7 times in the width direction at 95 ° C. while holding the end of the film with a clip.
  • the following hard coat layer forming composition 1 was prepared as a hard coat layer forming coating solution.
  • the one surface of the transparent substrate 41 produced above was previously corona-treated, and then the hard coat layer forming composition 1 was applied.
  • the obtained coating film was dried at 100 ° C. for 60 seconds, irradiated with ultraviolet rays at 1.5 kW and 300 mJ under a condition of 0.1% or less of nitrogen to cure the coating film, and a hard coat layer having a thickness of 5 ⁇ m.
  • the surface film 41 which consists of the transparent base material 41 and a hard-coat layer was obtained.
  • Example 3 Production of circularly polarizing plate 214> Long samples of the optical laminate 111, the optical laminate 204, and the surface film 41 were prepared, and the following roll-to-roll lamination was performed. Immediately after bonding, the film 11 in the optical layered body 111 is peeled off while bonding the surface of the optical layered body 204 on the optically anisotropic layer side and the surface of the protective layer of the optical layered body 111 with an adhesive. Thus, a laminate X was obtained. Next, the film in the optical laminate 204 is bonded immediately after bonding the surface of the alignment film 11 in the laminate X and the surface of the transparent substrate 41 in the surface film 41 with an adhesive. 24 was peeled off to obtain a circularly polarizing plate 214.
  • the organic EL panel (organic EL display element) -mounted GALAXY S5 manufactured by Samsunung is disassembled, the touch panel with the circularly polarizing plate is peeled off from the organic EL display device, and the circularly polarizing plate is peeled off from the touch panel.
  • the touch panel and the circularly polarizing plate were isolated from each other.
  • the isolated touch panel is bonded again to the organic EL display element, and the circularly polarizing plates 212 to 215 prepared above are bonded to the touch panel with an adhesive so that the optically anisotropic layer side is the panel side.
  • an organic EL display device was produced.
  • the produced organic EL display device was evaluated in the same manner as when pure ace WR (manufactured by Teijin Limited) was used as the optically anisotropic layer ( ⁇ / 4 plate). It was confirmed that the same effect was exhibited.
  • the peeling of the film 22 and the film 23 does not occur when the film 11 is peeled off, but the peeling force of the film 22 and the film 23 exceeds 0.50 N / 25 mm. Therefore, it is a little difficult to peel off.
  • the peeling force of the film 12 in the optical laminated body 112 is smaller than 0.10 N / 25 mm, the film 12 is slightly peeled off, and the handling of the optical laminated body 112 is slightly difficult. Therefore, the peel force of the first peelable support in the first optical laminate and the peel force of the second peelable support in the second optical laminate are both 0.10 to 0.50 N / 25 mm. Thus, failure during roll-to-roll stacking can be further reduced.
  • optical laminates 301 to 303 were produced according to the following procedure.
  • a commercially available triacetyl cellulose film hereinafter also referred to as film 31 “Z-TAC” (manufactured by FUJIFILM Corporation) was used.
  • Z-TAC triacetyl cellulose film
  • the following alignment film forming composition 31 was continuously applied with a # 8 wire bar.
  • the obtained coating film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds to form an alignment film 31.
  • the film 31 corresponds to a peelable support.
  • composition 31 for forming alignment film Polyvinyl alcohol (manufactured by Kuraray, PVA103) 2.4 parts by mass Isopropyl alcohol 1.6 parts by mass Methanol 36 parts by mass Water 60 parts by mass ⁇ ⁇
  • the following optically anisotropic layer forming composition 31 was applied on the alignment film 31 produced above. After the obtained coating film was aged at 60 ° C., it was irradiated with 1000 mJ / cm 2 of ultraviolet rays using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 70 mW / cm 2 under air. By fixing the alignment state, the polymerizable rod-like liquid crystalline compound was vertically aligned to obtain an optical laminate 301 including an optically anisotropic layer (positive C plate film 301). The Rth (550) of the positive C plate film 301 was ⁇ 60 nm.
  • Optically anisotropic layer forming composition 31 Liquid crystalline compound L-1 80 parts by weight Liquid crystalline compound L-2 20 parts by weight Vertical alignment liquid crystalline compound (S01) 1 part by weight vertical alignment agent (S02) 0.5 parts by weight Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass 30 parts by mass of cyclohexanone ⁇
  • optical laminates 302 and 303 The film 31 was subjected to an alkali saponification treatment by adjusting the potassium hydroxide concentration of the alkaline solution 1 in the same manner as described above (production of cellulose acylate films 23 to 24), and cellulose acylate films 32 to 33 (hereinafter referred to as “film cellulose acylate films 23 to 24”). Also referred to as films 32-33).
  • optical laminates 302 to 303 were obtained in the same manner as in (Preparation of optical laminate 301) except that films 32 to 33 were used instead of film 31, respectively.
  • the films 32 to 33 correspond to a peelable support.
  • Example 5 Production of circularly polarizing plate 312> Long samples of the optical laminate 111, the optical laminate 201, the optical laminate 302, and the surface film 41 were prepared, and the following roll-to-roll lamination was performed. The optically anisotropic layer in the optical laminated body 201 and the optically anisotropic layer in the optical laminated body 302 are bonded together via an adhesive, and immediately after bonding, the film 21 of the optical laminated body 201 is peeled off. A laminate B was obtained.
  • the optically anisotropic layer side surface derived from the optical laminate 201 in the laminate B and the surface of the protective layer in the optical laminate 111 are bonded via an adhesive, immediately after bonding,
  • the film 11 of the optical laminate 111 was peeled off.
  • the surface on the intermediate layer side of the optical laminate 111 and the surface of the transparent base material 41 in the surface film 41 are bonded together via an adhesive, and immediately after the bonding, the film 32 is peeled off and the circularly polarized light is bonded.
  • a plate 312 was obtained.
  • the organic phase was taken out, and the organic phase was washed with 0.2% by mass aqueous ammonium nitrate solution until the washed water became neutral. Thereafter, the solvent and water were distilled off from the obtained organic phase under reduced pressure to obtain a polyorganosiloxane having an epoxy group as a viscous transparent liquid.
  • the polyorganosiloxane having an epoxy group had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
  • an acrylic group-containing carboxylic acid Toagosei Co., Ltd., trade name “Aronix M-5300”, acrylic acid ⁇ - 0.5 parts by mass of carboxypolycaprolactone (degree of polymerization n ⁇ 2), 20 parts by mass of butyl acetate, 1.5 parts by mass of cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, and Then, 0.3 part by mass of tetrabutylammonium bromide was charged, and the resulting mixture was stirred at 90 ° C.
  • ⁇ ⁇ Composition 13 for forming photo-alignment film ⁇ ⁇ -Polymer C-2 10.67 parts by mass-Low molecular compound R-1 5.17 parts by mass-Additive (B-1) 0.53 parts by mass-Butyl acetate 8287.37 parts by mass-Propylene glycol monomethyl ether acetate 2071.85 parts by mass ⁇ ⁇
  • Example 7 Production of circularly polarizing plate 401> (Preparation of sample 104), (Preparation of optical laminate 111), and (Preparation of circularly polarizing plate 312), except that composition 13 for photoalignment film formation was used instead of composition 11 for photoalignment film formation.
  • a circularly polarizing plate 401 was obtained according to the same procedure as described above.
  • ⁇ Display performance evaluation> Disassemble the GALAXYS5 manufactured by SAMSUNG equipped with an organic EL panel (organic EL display element), peel off the touch panel with the circularly polarizing plate from the organic EL display device, and further peel off the circularly polarizing plate from the touch panel. Each circularly polarizing plate was isolated. Subsequently, the isolated touch panel is pasted again with the organic EL display element, and the circularly polarizing plates 312 and 401 produced as described above are pasted on the touch panel via an adhesive so that air does not enter. A display device was produced. About the produced organic EL display apparatus, visibility and display quality were evaluated under bright light.
  • the display device was displayed in white, and the reflected light when a fluorescent lamp was projected from the front and a polar angle of 45 degrees was observed.
  • the display quality was evaluated according to the following criteria. The evaluation results are summarized in Table 5.
  • the “average refractive index” column shown in Table 5 shows the average refraction of the alignment film formed using the photo-alignment film forming composition 11 and the alignment film formed using the photo-alignment film forming composition 13. Represents a rate.
  • the “refractive index anisotropy” column shown in Table 5 shows the alignment film formed using the photo-alignment film forming composition 11 and the alignment film formed using the photo-alignment film forming composition 13. Refractive index anisotropy.
  • the measuring method of average refractive index and refractive index anisotropy is as having mentioned above.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are methyl groups
  • cycloolefin resin manufactured by Nippon Zeon Co., Ltd., glass transition temperature 123 ° C.
  • cycloolefin resin manufactured by Nippon Zeon Co., Ltd., glass transition temperature 123 ° C.
  • 7.5 parts of an ultraviolet absorber LA-31, manufactured by ADEKA
  • a transparent support 43 having a film thickness of 40 ⁇ m was obtained by extrusion molding using the kneaded resin.
  • One surface of the transparent supports 42 and 43 prepared above is corona-treated in advance, and then the hard coat layer-forming composition 1 is applied, and a hard coat layer having a thickness of 5 ⁇ m is applied under the same conditions as the surface film 41.
  • the surface films 42 and 43 were obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a method for manufacturing an optical laminate, whereby an optical laminate containing a surface film, a light absorption anisotropic layer, and an optically anisotropic layer can be easily manufactured, and a method for manufacturing a display device. This method for manufacturing an optical laminate comprises: a step for laminating a first optical laminate, which comprises a first peelable support, a first alignment film, and a light absorption anisotropic layer in said order, and a second optical laminate, which comprises a second peelable support, a second alignment film, and an optically anisotropic layer in said order, such that the surface on the light absorption anisotropic layer side of the first optical laminate faces the surface on the optically anisotropic layer A side of the second optical laminate, and peeling off the first peelable support to obtain a laminate X; and a step for laminating a surface film on the surface on the first alignment film side of the laminate X, and peeling off the second peelable support to obtain an optical laminate comprising the surface film, light absorption anisotropic layer, and optically anisotropic layer A.

Description

光学積層体の製造方法、表示装置の製造方法Manufacturing method of optical laminate and manufacturing method of display device
 本発明は、光学積層体の製造方法、および、表示装置の製造方法に関する。 The present invention relates to a method for manufacturing an optical laminate and a method for manufacturing a display device.
 近年、2色性物質を用いて形成される光吸収異方性層について種々の検討が行われている。
 例えば、特許文献1では、光吸収異方性層である2色性物質を用いて形成される偏光膜を含むシートと、光学異方性層である位相差膜を含むシートとを用いて、円偏光板を製造する態様が開示されている。
In recent years, various studies have been conducted on a light absorption anisotropic layer formed using a dichroic material.
For example, in Patent Document 1, a sheet including a polarizing film formed using a dichroic material that is a light absorption anisotropic layer and a sheet including a retardation film that is an optical anisotropic layer are used. An embodiment for producing a circularly polarizing plate is disclosed.
特開2016-27431公報JP 2016-27431 A
 一方で、光吸収異方性層および光学異方性層を含む光学積層体においては、種々の使用環境に応じて、その表面に別途表面フィルムを配置する場合が多い。
 そのため、表面フィルム、光吸収異方性層および光学異方性層を含む光学積層体を簡便に製造できる方法が望まれていた。
On the other hand, in an optical laminated body including a light absorption anisotropic layer and an optical anisotropic layer, a surface film is often separately disposed on the surface according to various usage environments.
Therefore, a method capable of easily producing an optical laminate including a surface film, a light absorption anisotropic layer and an optical anisotropic layer has been desired.
 本発明は、上記実情に鑑みて、表面フィルム、光吸収異方性層および光学異方性層を含む光学積層体を簡便に製造できる、光学積層体の製造方法を提供することを目的とする。
 また、本発明は、表示装置の製造方法を提供することも目的とする。
In view of the above circumstances, an object of the present invention is to provide a method for producing an optical laminate, which can easily produce an optical laminate including a surface film, a light absorption anisotropic layer, and an optical anisotropic layer. .
Another object of the present invention is to provide a method for manufacturing a display device.
 本発明者は、従来技術の問題点について鋭意検討した結果、以下の構成により上記目的を達成することができることを見出した。 As a result of intensive studies on the problems of the prior art, the present inventor has found that the above object can be achieved by the following configuration.
(1) 第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の光吸収異方性層側の表面と、第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の光学異方性層A側の表面とが対向するように、第1光学積層体と第2光学積層体とを積層し、第1剥離性支持体を剥離して積層体Xを得る工程と、
 積層体Xの第1配向膜側の表面に表面フィルムを積層し、第2剥離性支持体を剥離して、表面フィルム、光吸収異方性層、および、光学異方性層Aを有する光学積層体を得る工程と、を有し、
 光吸収異方性層が、2色性物質および液晶性化合物を含む液晶性組成物を用いて形成され、
 第1剥離性支持体の剥離力が、第2剥離性支持体の剥離力よりも小さい、光学積層体の製造方法。
(2) 第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の光学異方性層A側の表面と、第3剥離性支持体と、光学異方性層Bとをこの順に有する第3光学積層体の光学異方性層B側の表面とが対向するように、第2光学積層体と第3光学積層体とを積層し、第2剥離性支持体を剥離して積層体Yを得る工程と、
 積層体Yの第2配向膜側の表面と、第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の光吸収異方性層側の表面とが対向するように、積層体Yと第1光学積層体とを積層し、第1剥離性支持体を剥離して積層体Zを得る工程と、
 積層体Zの第1配向膜側の表面に表面フィルムを積層し、第3剥離性支持体を剥離して、表面フィルム、光吸収異方性層、光学異方性層Aおよび光学異方性層Bを有する光学積層体を得る工程と、を有し、
 光吸収異方性層が、2色性物質および液晶性化合物を含む組成物を用いて形成され、
 第1剥離性支持体の剥離力が第3剥離性支持体の剥離力よりも小さく、かつ、第2剥離性支持体の剥離力が第3剥離性支持体の剥離力よりも小さい、光学積層体の製造方法。
(3) 2色性物質が、後述する式(1)で表される化合物を含む、(1)または(2)に記載の光学積層体の製造方法。
(4) 2色性物質が、後述する式(2)で表される化合物を含む、(1)~(3)のいずれかに記載の光学積層体の製造方法。
(5) 2色性物質が、後述する式(3)で表される化合物を含む、(1)~(4)のいずれかに記載の光学積層体の製造方法。
(6) 液晶性化合物が、後述する式(4)で表される繰り返し単位を含む高分子液晶性化合物を含み、式(4)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が、4以上である、(1)~(5)のいずれかに記載の光学積層体の製造方法。
(7) 第1配向膜の波長550nmにおける平均屈折率が1.55~1.80である、(1)~(6)のいずれかに記載の光学積層体の製造方法。
(8) 光学異方性層Aがλ/4板である、(1)~(7)のいずれかに記載の光学積層体の製造方法。
(9) 表面フィルムが、基材とハードコート層とを有する、(1)~(8)のいずれかに記載の光学積層体の製造方法。
(10) 基材が、アクリル系樹脂、メタクリル系樹脂、環状ポリオレフィン系樹脂、および、ポリエステル系樹脂からなる群から選ばれる少なくとも一種を含む、(9)に記載の光学積層体の製造方法。
(11) (1)~(10)のいずれかに記載の製造方法によって製造された光学積層体の表面フィルム側とは反対側の表面と、表示素子とが対向するように、光学積層体と表示素子とを積層して、表示装置を製造する工程を有する、表示装置の製造方法。
(12) 光学積層体と表示素子との間に、密着層が配置される、(11)に記載の表示装置の製造方法。
(1) The surface on the light absorption anisotropic layer side of the first optical laminate having the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order, and the second peel support. The first optical laminate and the second optical laminate so that the surface on the optical anisotropic layer A side of the second optical laminate having the body, the second alignment film, and the optical anisotropic layer A in this order are opposed to each other. A step of laminating an optical layered body, peeling off the first peelable support to obtain a layered product X,
An optical film having a surface film, a light-absorbing anisotropic layer, and an optically anisotropic layer A by laminating a surface film on the surface of the laminate X on the first alignment film side and peeling the second peelable support. Obtaining a laminate, and
The light absorption anisotropic layer is formed using a liquid crystalline composition containing a dichroic substance and a liquid crystalline compound,
The manufacturing method of an optical laminated body whose peeling force of a 1st peelable support body is smaller than the peeling force of a 2nd peelable support body.
(2) The surface on the optically anisotropic layer A side of the second optical laminate having the second peelable support, the second alignment film, and the optically anisotropic layer A in this order, and the third peelable support The second optical laminated body and the third optical laminated body are laminated so that the surface of the third optical laminated body having the optically anisotropic layer B in this order faces the surface on the optical anisotropic layer B side. And peeling the second peelable support to obtain the laminate Y,
The light absorption anisotropic layer of the first optical laminate having the surface of the laminate Y on the second alignment film side, the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order. Laminating the laminate Y and the first optical laminate so that the surface on the side faces, and peeling the first peelable support to obtain the laminate Z;
A surface film is laminated on the surface of the laminated body Z on the first alignment film side, the third peelable support is peeled off, and the surface film, the light absorption anisotropic layer, the optical anisotropic layer A, and the optical anisotropy are separated. Obtaining an optical laminate having layer B, and
The light absorption anisotropic layer is formed using a composition containing a dichroic substance and a liquid crystal compound,
Optical lamination in which the peel strength of the first peelable support is smaller than the peel strength of the third peelable support, and the peel strength of the second peelable support is smaller than the peel strength of the third peelable support Body manufacturing method.
(3) The manufacturing method of the optical laminated body as described in (1) or (2) in which a dichroic substance contains the compound represented by Formula (1) mentioned later.
(4) The method for producing an optical laminated body according to any one of (1) to (3), wherein the dichroic substance contains a compound represented by the formula (2) described later.
(5) The method for producing an optical laminated body according to any one of (1) to (4), wherein the dichroic substance contains a compound represented by the formula (3) described later.
(6) The liquid crystal compound includes a polymer liquid crystal compound containing a repeating unit represented by the formula (4) described later. In the formula (4), the log P value of P1, L1, and SP1, and the log P value of M1 The method for producing an optical laminated body according to any one of (1) to (5), wherein the difference is 4 or more.
(7) The method for producing an optical laminate according to any one of (1) to (6), wherein the average refractive index of the first alignment film at a wavelength of 550 nm is 1.55 to 1.80.
(8) The method for producing an optical laminated body according to any one of (1) to (7), wherein the optically anisotropic layer A is a λ / 4 plate.
(9) The method for producing an optical laminated body according to any one of (1) to (8), wherein the surface film has a base material and a hard coat layer.
(10) The method for producing an optical laminate according to (9), wherein the base material contains at least one selected from the group consisting of an acrylic resin, a methacrylic resin, a cyclic polyolefin resin, and a polyester resin.
(11) The optical laminate is manufactured so that the display element faces the surface opposite to the surface film side of the optical laminate produced by the production method according to any one of (1) to (10). A method for manufacturing a display device, comprising a step of manufacturing a display device by stacking a display element.
(12) The method for manufacturing a display device according to (11), wherein an adhesion layer is disposed between the optical laminate and the display element.
 本発明によれば、表面フィルム、光吸収異方性層および光学異方性層を含む光学積層体を簡便に製造できる、光学積層体の製造方法を提供できる。
 また、本発明によれば、表示装置の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of an optical laminated body which can manufacture easily the optical laminated body containing a surface film, a light absorption anisotropic layer, and an optical anisotropic layer can be provided.
Further, according to the present invention, a method for manufacturing a display device can be provided.
光学積層体の製造方法の第1実施形態の工程を説明するための図である。It is a figure for demonstrating the process of 1st Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第1実施形態で得られる積層体Xの断面図である。It is sectional drawing of the laminated body X obtained by 1st Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第1実施形態の工程を説明するための図である。It is a figure for demonstrating the process of 1st Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第1実施形態で得られる光学積層体の断面図である。It is sectional drawing of the optical laminated body obtained by 1st Embodiment of the manufacturing method of an optical laminated body. 表示装置の第1実施形態の断面図である。It is sectional drawing of 1st Embodiment of a display apparatus. 光学積層体の製造方法の第2実施形態の工程を説明するための図である。It is a figure for demonstrating the process of 2nd Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第2実施形態で得られる積層体Yの断面図である。It is sectional drawing of the laminated body Y obtained by 2nd Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第2実施形態の工程を説明するための図である。It is a figure for demonstrating the process of 2nd Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第2実施形態で得られる積層体Zの断面図である。It is sectional drawing of the laminated body Z obtained by 2nd Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第2実施形態の工程を説明するための図である。It is a figure for demonstrating the process of 2nd Embodiment of the manufacturing method of an optical laminated body. 光学積層体の製造方法の第2実施形態で得られる光学積層体の断面図である。It is sectional drawing of the optical laminated body obtained by 2nd Embodiment of the manufacturing method of an optical laminated body. 表示装置の第2実施形態の断面図である。It is sectional drawing of 2nd Embodiment of a display apparatus.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。 Hereinafter, the present invention will be described in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. First, terms used in this specification will be described.
 本発明において、Re(λ)およびRth(λ)は、それぞれ波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((n+n+n)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((n+n)/2-n)×d
が算出される。
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
In the present invention, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at wavelength λ, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In the present invention, Re (λ) and Rth (λ) are values measured at a wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((n x + n y + n z) / 3) and the thickness (d (μm)) at AxoScan,
Slow axis direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((n x + n y ) / 2−n z ) × d
Is calculated.
Note that R0 (λ) is displayed as a numerical value calculated by AxoScan OPMF-1, and means Re (λ).
 AxoScanにて用いられる平均屈折率は、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。
The average refractive index used in AxoScan is measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) and a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependence, it can be measured in combination with an interference filter using a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.).
Moreover, the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. The average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
 本明細書において、角度(例えば「90°」などの角度)、および、その関係(例えば「直交」、「平行」、および「45°で交差」など)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。 In this specification, an angle (for example, an angle such as “90 °”) and a relationship thereof (for example, “orthogonal”, “parallel”, and “intersect at 45 °”) are used in the technical field to which the present invention belongs. It shall include the allowable error range. For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
 本明細書において、光吸収異方性層の「吸収軸」は、吸光度の最も高い方向を意味する。「透過軸」は、「吸収軸」と90°の角度をなす方向を意味する。 In the present specification, the “absorption axis” of the light absorption anisotropic layer means the direction of highest absorbance. The “transmission axis” means a direction that forms an angle of 90 ° with the “absorption axis”.
 本明細書において、(メタ)アクリル系樹脂は、メタクリル系樹脂とアクリル系樹脂の両方を含む概念であり、アクリレート/メタクリレートの誘導体、特にアクリレートエステル/メタクリレートエステルの(共)重合体も含まれる。
 また、(メタ)アクリロイル基は、アクリロイル基とメタクリロイル基の両方を含む概念である。
In the present specification, the (meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin, and includes acrylate / methacrylate derivatives, in particular, acrylate ester / methacrylate ester (co) polymers.
The (meth) acryloyl group is a concept including both an acryloyl group and a methacryloyl group.
<<第1実施態様>>
 以下、本発明の光学積層体の製造方法の第1実施形態について図面を用いて説明する。
 本発明の光学積層体の製造方法の第1実施形態は、後述する工程1-1および工程1-2を有する。
 以下、各工程について詳述する。
<< First Embodiment >>
Hereinafter, a first embodiment of a method for producing an optical layered body of the present invention will be described with reference to the drawings.
1st Embodiment of the manufacturing method of the optical laminated body of this invention has the process 1-1 and the process 1-2 mentioned later.
Hereinafter, each process is explained in full detail.
<工程1-1>
 工程1-1は、第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の光吸収異方性層側の表面と、第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の光学異方性層A側の表面とが対向するように、第1光学積層体と第2光学積層体とを積層し、第1剥離性支持体を剥離して積層体Xを得る工程である。
 より具体的には、本工程においては、図1に示すように、第1剥離性支持体12と、第1配向膜14と、光吸収異方性層16とをこの順に有する第1光学積層体10、および、第2剥離性支持体26と、第2配向膜24と、光学異方性層A22とをこの順に有する第2光学積層体20を用意する。次に、図2に示すように、第1光学積層体10の光吸収異方性層16側の表面と、第2光学積層体20の光学異方性層A22側の表面とが対向するように、第1光学積層体10と第2光学積層体20とを積層し、第1剥離性支持体12を剥離して積層体X30を得る。
 以下では、まず、本工程で用いられる各部材について詳述し、その後、工程の手順について詳述する。
<Step 1-1>
Step 1-1 includes a surface on the light absorption anisotropic layer side of the first optical laminate having the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order, The first optical laminate so that the surface on the optical anisotropic layer A side of the second optical laminate having the peelable support, the second alignment film, and the optical anisotropic layer A in this order faces each other. And a second optical laminate, and a first peelable support is peeled off to obtain a laminate X.
More specifically, in this step, as shown in FIG. 1, a first optical laminate having a first peelable support 12, a first alignment film 14, and a light absorption anisotropic layer 16 in this order. A second optical laminate 20 having the body 10, the second peelable support 26, the second alignment film 24, and the optically anisotropic layer A22 in this order is prepared. Next, as shown in FIG. 2, the surface of the first optical laminate 10 on the light absorption anisotropic layer 16 side and the surface of the second optical laminate 20 on the optical anisotropic layer A22 side are opposed to each other. First, the first optical laminated body 10 and the second optical laminated body 20 are laminated, and the first peelable support 12 is peeled to obtain a laminated body X30.
Below, each member used at this process is explained in full detail first, and the procedure of a process is explained in full detail after that.
(第1剥離性支持体)
 第1剥離性支持体は、その表面上に後述する第1配向膜および光吸収異方性層を支持する部材であり、第1配向膜表面と剥離可能に密着する。後述するように、第1剥離性支持体を剥離する際には、第1剥離性支持体と第1配向膜との間で剥離が生じる。
(First peelable support)
A 1st peelable support is a member which supports the 1st alignment film and light absorption anisotropic layer which are mentioned later on the surface, and adheres to the 1st alignment film surface so that peeling is possible. As will be described later, when the first peelable support is peeled, peeling occurs between the first peelable support and the first alignment film.
 第1剥離性支持体を構成する材料としては、セルロース系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、グルタル酸無水物系樹脂、グルタルイミド系樹脂、セルロース系樹脂、ポリエステル系樹脂およびこれらから選ばれた複数種の樹脂の混合樹脂が挙げられ、セルロース系樹脂またはポリエステル系樹脂が好ましい。
 なお、後述する光吸収異方性層を形成する際の液晶性化合物の相転移には120~150℃の加温が必要となる場合があり、製造中の第1剥離性支持体の加温による変形を避ける目的で、第1剥離性支持体を構成する材料としては、セルロースアシレート樹脂またはポリエチレンテレフタレートがより好ましい。
 さらに、第1剥離性支持体の剥離力を調整する際には、第1剥離性支持体の表面に親水化処理を施す場合がある。そこで、第1剥離性支持体の表面を親水化処理することで剥離力の調整が容易であることから、第1剥離性支持体を構成する材料としては、セルロースアシレートがさらに好ましい。
Materials constituting the first peelable support include cellulose resin, acrylic resin, methacrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin, cyclic polyolefin resin, glutaric anhydride resin, glutar Examples thereof include imide resins, cellulose resins, polyester resins, and mixed resins of a plurality of resins selected from these, and cellulose resins or polyester resins are preferred.
Note that the phase transition of the liquid crystal compound when forming the light absorption anisotropic layer described later may require heating at 120 to 150 ° C., and the heating of the first peelable support during production For the purpose of avoiding deformation due to the above, as the material constituting the first peelable support, cellulose acylate resin or polyethylene terephthalate is more preferable.
Furthermore, when adjusting the peeling force of a 1st peelable support body, a hydrophilic treatment may be given to the surface of a 1st peelable support body. Therefore, cellulose acylate is more preferable as the material constituting the first peelable support because the peel force can be easily adjusted by hydrophilizing the surface of the first peelable support.
 第1剥離性支持体は、単層構造であっても、多層構造であってもよい。
 例えば、第1剥離性支持体が多層構造である場合は、支持体と、支持体上に配置された被覆層とを含む態様が挙げられる。
 支持体を構成する材料としては、上述した第1剥離性支持体を構成する材料が例示される。また、支持体の厚みも特に限定されず、後述する第1剥離性支持体の厚みと同様の範囲が挙げられる。
 支持体としては、透明支持体が好ましい。
 また、被覆層としては、第1配向膜に剥離可能に密着し、後述する第2剥離性支持体の剥離力との関係を満たす層であれば特に限定されないが、樹脂層が挙げられる。
 被覆層の厚みとしては、0.1~10μmが好ましい。
The first peelable support may have a single layer structure or a multilayer structure.
For example, when a 1st peelable support body is a multilayer structure, the aspect containing a support body and the coating layer arrange | positioned on a support body is mentioned.
Examples of the material constituting the support include the materials constituting the first peelable support described above. Moreover, the thickness of a support body is not specifically limited, The range similar to the thickness of the 1st peelable support body mentioned later is mentioned.
As the support, a transparent support is preferable.
The coating layer is not particularly limited as long as it is a layer that is detachably adhered to the first alignment film and satisfies the relationship with the peeling force of the second peelable support described later, and includes a resin layer.
The thickness of the coating layer is preferably 0.1 to 10 μm.
 第1剥離性支持体の厚みは特に限定されず、100μm以下が好ましく、80μm以下がより好ましく、10~50μmがさらに好ましい。 The thickness of the first peelable support is not particularly limited, but is preferably 100 μm or less, more preferably 80 μm or less, and further preferably 10 to 50 μm.
(第1配向膜)
 第1配向膜は、第1剥離性支持体上に配置される層であり、光吸収異方性層中の液晶性化合物の配向方向を制御する層である。第1配向膜は、光吸収異方性層と共に、第1剥離性支持体から分離される。
 第1配向膜は、2色性物質および液晶性化合物を含む組成物に含まれる液晶性化合物を所望の配向状態とすることができれば、どのような層でもよい。
 第1配向膜は、有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、または、ラングミュアブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与または光照射により、配向機能が生じる配向膜も知られている。なかでも、ラビング処理により形成する配向膜、または、光照射により形成される光配向膜が好ましい。
(First alignment film)
A 1st alignment film is a layer arrange | positioned on a 1st peelable support body, and is a layer which controls the orientation direction of the liquid crystalline compound in a light absorption anisotropic layer. The first alignment film is separated from the first peelable support together with the light absorption anisotropic layer.
The first alignment film may be any layer as long as the liquid crystalline compound contained in the composition containing the dichroic substance and the liquid crystalline compound can be brought into a desired alignment state.
The first alignment film is formed by rubbing treatment of an organic compound (preferably polymer) on the film surface, oblique deposition of an inorganic compound, formation of a layer having a microgroove, or an organic compound (Langmuir Blodget method (LB film)). For example, accumulation of ω-tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. Among these, an alignment film formed by rubbing treatment or a photo alignment film formed by light irradiation is preferable.
 ラビング処理により形成される配向膜に用いられるポリマー材料としては、多数の文献に記載があり、多数の市販品を入手できる。本発明においては、ポリビニルアルコールまたはポリイミド、および、その誘導体(変性体)が好ましい。なかでも、ポリマー材料としては、重合性基を有するポリマー材料が好ましく、重合性基を有するポリビニルアルコールがより好ましい。重合性基としては、例えば、(メタ)アクリロイル基、および、ビニル基などが挙げられる。
 配向膜については国際公開WO01/88574A1号公報の43頁24行~49頁8行の記載を参照できる。
 配向膜の厚さは、0.01~10μmが好ましく、0.01~1μmがより好ましい。
The polymer material used for the alignment film formed by the rubbing treatment is described in many documents, and many commercially available products are available. In the present invention, polyvinyl alcohol or polyimide and derivatives thereof (modified products) are preferable. Especially, as a polymer material, the polymer material which has a polymeric group is preferable, and the polyvinyl alcohol which has a polymeric group is more preferable. Examples of the polymerizable group include a (meth) acryloyl group and a vinyl group.
With respect to the alignment film, reference can be made to the description on page 43, line 24 to page 49, line 8 of International Publication WO01 / 88574A1.
The thickness of the alignment film is preferably 0.01 to 10 μm, and more preferably 0.01 to 1 μm.
 光照射により形成される配向膜に用いられる光配向材料としては、多数の文献に記載がある。例えば、特開2006-285197号公報、特開2007-076839号公報、特開2007-138138号公報、特開2007-094071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、または、特許第4162850号に記載の光架橋性ポリイミド、ポリアミドもしくはエステルが挙げられる。なかでも、アゾ化合物、光架橋性ポリイミド、ポリアミド、または、ポリエステルが好ましい。 A number of documents describe the photo-alignment material used for the alignment film formed by light irradiation. For example, JP 2006-285197 A, JP 2007-076839 A, JP 2007-138138 A, JP 2007-040771 A, JP 2007-121721 A, JP 2007-140465 A, Azo compounds described in JP 2007-156439 A, JP 2007-133184 A, JP 2009-109831 A, JP 3888848 A, Patent 4151746 Aroma described in JP 2002-229039 A Group ester compounds, maleimide and / or alkenyl-substituted nadiimide compounds having photo-alignment units described in JP-A Nos. 2002-265541 and 2002-31703, and light described in Japanese Patent No. 4205195 and Japanese Patent No. 4205198 Crosslinkable silane derivative Kohyo 2003-520878, JP-T-2004-529220 discloses, or photocrosslinkable polyimide described in Japanese Patent No. 4162850, polyamides or esters. Of these, azo compounds, photocrosslinkable polyimides, polyamides, or polyesters are preferable.
 上記材料から形成した塗膜に、直線偏光または非偏光照射を施し、光配向膜を製造する。
 本明細書において、「直線偏光照射」「非偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されない。光照射に用いる光のピーク波長は、200~700nmが好ましく、光のピーク波長が400nm以下の紫外光がより好ましい。
The coating film formed from the above material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment film.
In this specification, “linearly polarized light irradiation” and “non-polarized light irradiation” are operations for causing a photoreaction in the photo-alignment material. The wavelength of the light used varies depending on the photo-alignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction. The peak wavelength of light used for light irradiation is preferably 200 to 700 nm, and more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
 光照射に用いる光源は、例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプおよびカーボンアークランプなどのランプ、各種のレーザー[例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザーおよびYAG(イットリウム-アルミニウム-ガーネット)レーザー]、発光ダイオード、ならびに、陰極線管が挙げられる。 Light sources used for light irradiation include, for example, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps and carbon arc lamps, various lasers [eg, semiconductor lasers, helium neon lasers, argon Ion laser, helium cadmium laser and YAG (yttrium-aluminum-garnet) laser], light emitting diode, and cathode ray tube.
 直線偏光を得る手段としては、偏光板を用いる方法、プリズム系素子もしくはブリュースター角を利用した反射型偏光子を用いる方法、または、偏光を有するレーザー光源から出射される光を用いる方法が挙げられる。また、フィルタまたは波長変換素子などを用いて必要とする波長の光のみを選択的に照射してもよい。 Examples of means for obtaining linearly polarized light include a method using a polarizing plate, a method using a reflective polarizer utilizing a prism element or Brewster angle, and a method using light emitted from a laser light source having polarization. . Moreover, you may selectively irradiate only the light of the required wavelength using a filter or a wavelength conversion element.
 照射する光は、直線偏光の場合には、塗膜に対して上面または裏面から塗膜表面に対して垂直または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、0~90°(垂直)が好ましく、40~90°がより好ましい。
 非偏光の場合には、塗膜に対して、斜めから非偏光を照射する。その入射角度は、10~80°が好ましく、20~60°がより好ましく、30~50°がさらに好ましい。
 照射時間は、1~60分間が好ましく、1~10分間がより好ましい。
In the case of linearly polarized light, a method of irradiating light from the upper surface or the back surface to the coating film surface from the perpendicular or oblique direction is adopted. The incident angle of light varies depending on the photo-alignment material, but is preferably 0 to 90 ° (vertical), and more preferably 40 to 90 °.
In the case of non-polarized light, the non-polarized light is irradiated obliquely to the coating film. The incident angle is preferably 10 to 80 °, more preferably 20 to 60 °, and further preferably 30 to 50 °.
The irradiation time is preferably 1 to 60 minutes, and more preferably 1 to 10 minutes.
 なお、第1配向膜の波長550nmにおける平均屈折率は特に限定されず、1.40~2.00の場合が多く、なかでも、表示素子に光学積層体を配置した際の表示性能がより優れる点で、1.55~1.80が好ましい。
 また、第1配向膜の波長550nmにおける屈折率異方性は特に限定されず、表示素子に光学積層体を配置した際の表示性能がより優れる点で、0.1~0.3が好ましい。
 光吸収異方性層が高い屈折率異方性を有する場合が多いため、第1配向膜と光吸収異方性層との間での界面反射を低減する上で、第1配向膜の平均屈折率および屈折率異方性が高いことが好ましい。
 なお、平均屈折率は、Woollam社製分光エリプソメトリM-2000Uを用いて測定される。面内における屈折率最大となる方向をx軸、それに対し直交する方向をy軸、面内に対し法線方向をz軸とし、それぞれの方向での第1配向膜の屈折率をn、n、nと定義する。本発明における平均屈折率(nave)および面内における屈折率異方性(Δn)は、それぞれ下記式(1)、(2)で表される。
式(1) nave =(n+n+n)/3
式(2) Δn= n-n
The average refractive index of the first alignment film at a wavelength of 550 nm is not particularly limited, and is often 1.40 to 2.00. In particular, the display performance when the optical laminate is disposed in the display element is more excellent. In this respect, 1.55-1.80 is preferable.
In addition, the refractive index anisotropy of the first alignment film at a wavelength of 550 nm is not particularly limited, and is preferably 0.1 to 0.3 from the viewpoint that the display performance when the optical laminate is disposed in the display element is more excellent.
Since the light absorption anisotropic layer often has a high refractive index anisotropy, the average of the first alignment film is reduced in reducing interface reflection between the first alignment film and the light absorption anisotropic layer. It is preferable that the refractive index and the refractive index anisotropy are high.
The average refractive index is measured using a spectroscopic ellipsometry M-2000U manufactured by Woollam. X-axis direction in which the refractive index maximum in a plane, y-axis and the direction perpendicular to it, a normal direction and z-axis relative to the plane, the refractive index of the first alignment layer in each direction n x, n y, is defined as n z. The average refractive index (n ave ) and in-plane refractive index anisotropy (Δn) in the present invention are represented by the following formulas (1) and (2), respectively.
Formula (1) n ave = (n x + ny + nz ) / 3
Formula (2) Δn = n x −n y
(光吸収異方性層)
 光吸収異方性層は、2色性物質および液晶性化合物を含む組成物を用いて形成される層である。光吸収異方性層は、方向によって光吸収の程度が異なる層であって、通常、吸収軸と偏光軸(透過軸)とを有する。
(Light absorption anisotropic layer)
The light absorption anisotropic layer is a layer formed using a composition containing a dichroic substance and a liquid crystal compound. The light absorption anisotropic layer is a layer whose degree of light absorption differs depending on the direction, and usually has an absorption axis and a polarization axis (transmission axis).
 2色性物質は特に限定されず、可視光吸収物質(2色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)などが挙げられ、従来公知の2色性物質(2色性色素)を使用できる。
 具体的には、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-014883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-037353号公報の[0051]~[0065]段落、特開2012-063387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特願2015-001425号公報の[0022]~[0080]段落、特願2016-006502号公報の[0005]~[0051段落]、WO2016/060173号公報の[0005]~[0041]段落、WO2016/136561号公報の[0008]~[0062]段落、特願2016-044909号公報の[0014]~[0033]段落、特願2016-044910号公報の[0014]~[0033]段落、特願2016-095907号公報の[0013]~[0037]段落、および、特願2017-045296号公報の[0014]~[0034]段落などに記載されたものが挙げられる。
The dichroic substance is not particularly limited, and a visible light absorbing substance (dichroic dye), a light emitting substance (fluorescent substance, phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and an inorganic substance (For example, quantum rods) and the like, and conventionally known dichroic substances (dichroic dyes) can be used.
Specifically, paragraphs [0067] to [0071] of JP 2013-228706 A, paragraphs [0008] to [0026] of JP 2013-227532 A, and [0008] of JP 2013-209367 A. [0015] Paragraph, [0045] to [0058] Paragraph of JP2013-014883A, [0012] to [0029] Paragraph of JP2013-109090A, [0009] of JP2013-101328A. ] To [0017] paragraphs, paragraphs [0051] to [0065] of JP 2013-037353 A, paragraphs [0049] to [0073] of JP 2012-063387 A, [11] Paragraphs [0016] to [0018], paragraphs [0009] to [0011] of JP-A-2001-133630. [0030] to [0169] of JP 2011-215337 A, [0021] to [0075] paragraphs of JP 2010-106242 A, and [0011] to [0025] paragraphs of JP 2010-215846 A. [0017] to [0069] paragraphs of JP2011-048411A, paragraphs [0013] to [0133] of JP2011-213610A, and [0074] to [0246] of JP2011-237513A. Paragraphs, paragraphs [0022] to [0080] of Japanese Patent Application No. 2015-001425, paragraphs [0005] to [0051] of Japanese Patent Application No. 2016-006502, and paragraphs [0005] to [0041] of WO 2016/060173. , WO2016 / 136561, paragraphs [0008] to [0062], Japanese Patent Application No. 2 [0014] to [0033] paragraph of Japanese Patent Application No. 16-04909, paragraphs [0014] to [0033] of Japanese Patent Application No. 2016-044910, paragraphs [0013] to [0037] of Japanese Patent Application No. 2016-095907, and And those described in paragraphs [0014] to [0034] of Japanese Patent Application No. 2017-045296.
 本発明においては、2種以上の2色性物質を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、波長370~550nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物と、波長500~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物とを併用してもよい。 In the present invention, two or more kinds of dichroic substances may be used in combination. For example, from the viewpoint of making the light absorption anisotropic layer close to black, at least one kind having a maximum absorption wavelength in the wavelength range of 370 to 550 nm. These dye compounds and at least one dye compound having a maximum absorption wavelength in the wavelength range of 500 to 700 nm may be used in combination.
 2色性物質は、架橋性基を有していてもよい。
 架橋性基としては、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が挙げられ、なかでも、(メタ)アクリロイル基が好ましい。
The dichroic material may have a crosslinkable group.
Examples of the crosslinkable group include a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a styryl group, and among them, a (meth) acryloyl group is preferable.
 2色性物質としては、式(1)で表される化合物が好ましい。 As the dichroic substance, a compound represented by the formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、A、AおよびAは、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。LおよびLは、それぞれ独立に、置換基を表す。mは、1~4の整数を表し、mが2~4の整数の場合、複数のAは互いに同一でも異なっていてもよい。なお、mは、1または2が好ましい。 In formula (1), A 1 , A 2 and A 3 each independently represents a divalent aromatic group which may have a substituent. L 1 and L 2 each independently represent a substituent. m represents an integer of 1 to 4, and when m is an integer of 2 to 4, a plurality of A 2 may be the same or different from each other. In addition, m is preferably 1 or 2.
 上記式(1)中、A、AおよびAが表す「置換基を有していてもよい2価の芳香族基」について説明する。
 上記置換基としては、例えば、特開2011-237513号公報の[0237]~[0240]段落に記載された置換基群Gが挙げられ、なかでも、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、または、アリールオキシカルボニル基が好ましく、アルキル基がより好ましく、炭素数1~5のアルキル基がさらに好ましい。
 2価の芳香族基としては、例えば、2価の芳香族炭化水素基および2価の芳香族複素環基が挙げられる。
 上記2価の芳香族炭化水素基としては、例えば、炭素数6~12のアリーレン基が挙げられ、具体的には、フェニレン基、クメニレン基、メシチレン基、トリレン基、および、キシリレン基が挙げられる。なかでも、フェニレン基が好ましい。
 また、上記2価の芳香族複素環基としては、単環または2環性の複素環由来の基が好ましい。芳香族複素環基を構成する炭素原子以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素原子以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。芳香族複素環基としては、具体的には、ピリジレン基(ピリジン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、および、チエノチアゾール-ジイル基(以下、「チエノチアゾール基」と略す。)が挙げられる。
 上記2価の芳香族基のなかでも、2価の芳香族炭化水素基が好ましい。
The “divalent aromatic group which may have a substituent” represented by A 1 , A 2 and A 3 in the above formula (1) will be described.
Examples of the substituent include substituent group G described in paragraphs [0237] to [0240] of JP2011-237513A, among which a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl Group or an aryloxycarbonyl group is preferable, an alkyl group is more preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
Examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
Examples of the divalent aromatic hydrocarbon group include an arylene group having 6 to 12 carbon atoms, and specific examples include a phenylene group, a cumenylene group, a mesitylene group, a tolylene group, and a xylylene group. . Of these, a phenylene group is preferable.
Further, the divalent aromatic heterocyclic group is preferably a monocyclic or bicyclic heterocyclic ring-derived group. Examples of atoms other than carbon atoms that constitute the aromatic heterocyclic group include nitrogen atoms, sulfur atoms, and oxygen atoms. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than a carbon atom, these may be the same or different. Specific examples of the aromatic heterocyclic group include pyridylene group (pyridine-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), benzothiadiazole-diyl group, phthalimido-diyl group And a thienothiazole-diyl group (hereinafter abbreviated as “thienothiazole group”).
Of the divalent aromatic groups, divalent aromatic hydrocarbon groups are preferred.
 ここで、A、AおよびAのうちいずれか1つが、置換基を有していてもよい2価のチエノチアゾール基であることが好ましい。なお、2価のチエノチアゾール基の置換基の具体例は、上述した「置換基を有していてもよい2価の芳香族基」における置換基と同じであり、好ましい態様も同じである。
 また、A、AおよびAのうち、Aが2価のチエノチアゾール基であることがより好ましい。この場合には、AおよびAは、置換基を有していてもよい2価の芳香族基を表す。
 Aが2価のチエノチアゾール基である場合には、AおよびAの少なくとも一方が置換基を有していてもよい2価の芳香族炭化水素基であることが好ましく、AおよびAの両方が置換基を有していてもよい2価の芳香族炭化水素基であることがより好ましい。
Here, any one of A 1 , A 2 and A 3 is preferably a divalent thienothiazole group which may have a substituent. In addition, the specific example of the substituent of a bivalent thienothiazole group is the same as the substituent in the "divalent aromatic group which may have a substituent" mentioned above, and its preferable aspect is also the same.
Of A 1 , A 2 and A 3 , A 2 is more preferably a divalent thienothiazole group. In this case, A 1 and A 3 represent a divalent aromatic group which may have a substituent.
When A 2 is a divalent thienothiazole group, it is preferable that at least one of A 1 and A 3 is a divalent aromatic hydrocarbon group which may have a substituent, and A 1 and It is more preferable that both of A 3 are divalent aromatic hydrocarbon groups which may have a substituent.
 上記式(1)中、LおよびLが表す「置換基」について説明する。
 上記置換基としては、溶解性もしくはネマティック液晶性を高めるために導入される基、色素としての色調を調節するために導入される電子供与性もしくは電子吸引性を有する基、または、配向を固定化するために導入される架橋性基(重合性基)を有する基が好ましい。
 例えば、置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基、および、シリル基が挙げられる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
The “substituent” represented by L 1 and L 2 in the above formula (1) will be described.
Examples of the substituent include a group introduced to enhance solubility or nematic liquid crystal property, an electron donating or electron withdrawing group introduced to adjust the color tone as a pigment, or fixing the orientation. Therefore, a group having a crosslinkable group (polymerizable group) to be introduced is preferable.
For example, as the substituent, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an oxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group Sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, cyano group, nitro group, hydroxamic acid group, Examples thereof include a sulfino group, a hydrazino group, an imino group, an azo group, a heterocyclic group, and a silyl group.
These substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
 LおよびLが表す置換基として好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいオキシカルボニル基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアシルアミノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシカルボニルアミノ基、置換基を有していてもよいスルホニルアミノ基、置換基を有していてもよいスルファモイル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいスルホニル基、置換基を有していてもよいウレイド基、ニトロ基、ヒドロキシ基、シアノ基、イミノ基、アゾ基、ハロゲン原子、または、ヘテロ環基であり、より好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいオキシカルボニル基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアミノ基、ニトロ基、イミノ基、または、アゾ基である。 As the substituent represented by L 1 and L 2 , an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, a substituent Aryl group which may have a group, alkoxy group which may have a substituent, oxycarbonyl group which may have a substituent, acyloxy group which may have a substituent, substituent An acylamino group which may have a substituent, an amino group which may have a substituent, an alkoxycarbonylamino group which may have a substituent, a sulfonylamino group which may have a substituent, a substituent A sulfamoyl group which may have a group, a carbamoyl group which may have a substituent, an alkylthio group which may have a substituent, a sulfonyl group which may have a substituent, a substituent Have A good ureido group, nitro group, hydroxy group, cyano group, imino group, azo group, halogen atom, or heterocyclic group, more preferably an alkyl group that may have a substituent or a substituent. An alkenyl group that may have a substituent, an aryl group that may have a substituent, an alkoxy group that may have a substituent, an oxycarbonyl group that may have a substituent, and a substituent An acyloxy group which may be substituted, an amino group which may have a substituent, a nitro group, an imino group, or an azo group.
 LおよびLの少なくとも一方は、架橋性基(重合性基)を含むことが好ましく、LおよびLの両方に架橋性基を含むことがより好ましい。
 架橋性基としては、具体的には、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられ、反応性および合成適性の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。
At least one of L 1 and L 2 preferably includes a crosslinkable group (polymerizable group), more preferably contains a crosslinkable group in both L 1 and L 2.
Specific examples of the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A. From the viewpoint of reactivity and synthesis suitability, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group, or a styryl group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
 LおよびLの好適な態様としては、上記架橋性基で置換されたアルキル基、上記架橋性基で置換されたジアルキルアミノ基、および、上記架橋性基で置換されたアルコキシ基が挙げられる。 Preferable embodiments of L 1 and L 2 include an alkyl group substituted with the crosslinkable group, a dialkylamino group substituted with the crosslinkable group, and an alkoxy group substituted with the crosslinkable group. .
 2色性物質としては、式(2)で表される化合物も好ましい。 As the dichroic substance, a compound represented by the formula (2) is also preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、CおよびCは、それぞれ独立に、1価の置換基を表す。ただし、CおよびCの少なくとも一方は、架橋性基を表す。
 MおよびMは、それぞれ独立に、2価の連結基を表す。ただし、MおよびMの少なくとも一方は、主鎖の原子の数が4個以上である。
 ArおよびArは、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基および置換基を有していてもよいビフェニレン基のいずれかの基を表す。
 Eは、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
 Rは、水素原子または置換基を表す。
 Rは、水素原子または置換基を有していてもよいアルキル基を表す。
 nは、0または1を表す。ただし、Eが窒素原子である場合には、nは1であり、Eが酸素原子または硫黄原子である場合には、nは0である。
In the above formula (2), C 1 and C 2 each independently represent a monovalent substituent. However, at least one of C 1 and C 2 represents a crosslinkable group.
M 1 and M 2 each independently represents a divalent linking group. However, at least one of M 1 and M 2 has 4 or more main chain atoms.
Ar 1 and Ar 2 are each independently any one of a phenylene group that may have a substituent, a naphthylene group that may have a substituent, and a biphenylene group that may have a substituent. Represents a group.
E represents one of a nitrogen atom, an oxygen atom, and a sulfur atom.
R 1 represents a hydrogen atom or a substituent.
R 2 represents a hydrogen atom or an alkyl group which may have a substituent.
n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
 式(2)において、CおよびCが表す1価の置換基について説明する。
 CおよびCが表す1価の置換基としては、アゾ化合物の溶解性またはネマチック液晶性を高めるために導入される基、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基、または、配向を固定化するために導入される架橋性基(重合性基)が好ましい。
 例えば、置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基、および、シリル基が挙げられる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
The monovalent substituent represented by C 1 and C 2 in formula (2) will be described.
Examples of the monovalent substituent represented by C 1 and C 2 include a group introduced to enhance the solubility or nematic liquid crystal property of the azo compound, and an electron donating property and an electron introduced to adjust the color tone as a dye. A group having attraction or a crosslinkable group (polymerizable group) introduced to fix the orientation is preferred.
For example, as the substituent, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an oxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group Sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, cyano group, nitro group, hydroxamic acid group, Examples thereof include a sulfino group, a hydrazino group, an imino group, an azo group, a heterocyclic group, and a silyl group.
These substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
 式(2)において、CおよびCの少なくとも一方は、架橋性基を表し、光吸収異方性層の耐久性がより優れるという点から、CおよびCの両方が架橋性基であることが好ましい。
 架橋性基としては、具体的には、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられ、反応性および合成適性の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基が好ましい。
In the formula (2), at least one of C 1 and C 2 represents a crosslinkable group, and both C 1 and C 2 are crosslinkable groups from the viewpoint that the durability of the light absorption anisotropic layer is more excellent. Preferably there is.
Specific examples of the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A. From the viewpoint of reactivity and suitability for synthesis, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group or a styryl group is preferred, and an acryloyl group or a methacryloyl group is preferred.
 式(2)において、MおよびMが表す2価の連結基について説明する。
 2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
 なかでも、アルキレン基と、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-SO-および-SO-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。なお、Rは、水素原子またはアルキル基を表す。
The divalent linking group represented by M 1 and M 2 in formula (2) will be described.
Examples of the divalent linking group include —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N —, —O—CO—. NR N —, —SO 2 —, —SO—, an alkylene group, a cycloalkylene group, an alkenylene group, a group in which two or more of these groups are combined, and the like can be given.
Among them, an alkylene group, —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N —, —O—CO—NR N — , A group in which one or more groups selected from the group consisting of —SO 2 — and —SO— are combined is preferable. Incidentally, R N represents a hydrogen atom or an alkyl group.
 また、MおよびMの少なくとも一方は、主鎖の原子の数が4個以上であり、7個以上であることが好ましく、10個以上であることがより好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、15個以下であることがより好ましい。
 ここで、Mにおける「主鎖」とは、式(2)における「C」と「Ar」とを直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、Mにおける「主鎖」とは、式(2)における「C」と「E」とを直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 具体的には、下記式(D7)においては、M1の主鎖の原子の数は6個(下記式(D7)の左側の点線枠内の原子の数)であり、M2の主鎖の原子の数は7個(下記式(D7)の右側の点線枠内の原子の数)である。
In addition, at least one of M 1 and M 2 has 4 or more main chain atoms, preferably 7 or more, and more preferably 10 or more. Further, the upper limit of the number of atoms in the main chain is preferably 20 or less, and more preferably 15 or less.
Here, the “main chain” in M 1 refers to a portion necessary for directly connecting “C 1 ” and “Ar 1 ” in formula (2), and “the number of atoms in the main chain” means , Refers to the number of atoms constituting the part. Similarly, the “main chain” in M 2 refers to a part necessary for directly connecting “C 2 ” and “E” in formula (2), and “the number of atoms in the main chain” This refers to the number of atoms constituting the above part. The “number of main chain atoms” does not include the number of branched chain atoms described later.
Specifically, in the following formula (D7), the number of atoms in the main chain of M1 is 6 (the number of atoms in the dotted frame on the left side of the following formula (D7)), and the atoms in the main chain of M2 Is 7 (the number of atoms in the dotted frame on the right side of the following formula (D7)).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 MおよびMの少なくとも一方が、主鎖の原子の数が4個以上の基であればよく、MおよびMの一方の主鎖の原子の数が4個以上であれば、他方の主鎖の原子数は3個以下であってもよい。
 MおよびMの主鎖の原子の数の合計は、5~30個が好ましく、7~27個がより好ましい。主鎖の原子の数の合計が5個以上であることで、2色性物質がより重合しやすくなり、主鎖の原子の数の合計が30個以下であることで、配向度に優れた光吸収異方性層が得られたり、2色性物質の融点が上がり耐熱性に優れた光吸収異方性層が得られたりする。
At least one of M 1 and M 2 may be a group having 4 or more main chain atoms, and if the number of atoms in one main chain of M 1 and M 2 is 4 or more, the other The number of atoms in the main chain may be 3 or less.
The total number of atoms in the main chain of M 1 and M 2 is preferably 5 to 30, more preferably 7 to 27. When the total number of atoms in the main chain is 5 or more, the dichroic material is more easily polymerized, and the total number of atoms in the main chain is 30 or less, so that the degree of orientation is excellent. A light absorption anisotropic layer can be obtained, or a melting point of the dichroic substance can be increased and a light absorption anisotropic layer having excellent heat resistance can be obtained.
 MおよびMは、分岐鎖を有していてもよい。ここで、Mにおける「分岐鎖」とは、式(2)におけるCとArとを直接連結するために必要な部分以外の部分をいう。同様に、Mにおける「分岐鎖」とは、式(2)におけるCとEとを直接連結するために必要な部分以外の部分をいう。
 分岐鎖の原子の数は、3個以下であることが好ましい。分岐鎖の原子の数が3個以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
M 1 and M 2 may have a branched chain. Here, the “branched chain” in M 1 refers to a portion other than the portion necessary for directly connecting C 1 and Ar 1 in Formula (2). Similarly, the “branched chain” in M 2 refers to a portion other than the portion necessary for directly connecting C 2 and E in Formula (2).
The number of branched chain atoms is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched atoms does not include the number of hydrogen atoms.
 式(2)におけるArおよびArが表す、「置換基を有していてもよいフェニレン基」、「置換基を有していてもよいナフチレン基」、および、「置換基を有していてもよいビフェニレン基」について説明する。
 置換基としては、特に限定されず、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、オキシカルボニル基、チオアルキル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルフィニル基、および、ウレイド基などが挙げられる。これらの置換基はさらにこれらの置換基で置換されていてもよい。なかでも、アルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、原材料の入手が容易であることおよび配向度の観点から、メチル基およびエチル基がさらに好ましい。
 ArおよびArは、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または、置換基を有していてもよいビフェニレン基であるが、置換基を有していてもよい原材料の入手が容易であることおよび配向度の観点から、フェニレン基であることが好ましい。
 式(2)において、Arと連結する「M」および「N」は、Arにおけるパラ位に位置することが好ましい。また、Arと連結する「E」および「N」は、Arにおけるパラ位に位置することが好ましい。
In the formula (2), Ar 1 and Ar 2 represent “an optionally substituted phenylene group”, “an optionally substituted naphthylene group”, and “having a substituent. The “biphenylene group” may be described.
The substituent is not particularly limited, and is a halogen atom, alkyl group, alkyloxy group, alkylthio group, oxycarbonyl group, thioalkyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group. , A sulfinyl group, a ureido group, and the like. These substituents may be further substituted with these substituents. Of these, an alkyl group is preferable, an alkyl group having 1 to 5 carbon atoms is more preferable, and a methyl group and an ethyl group are further preferable from the viewpoint of easy availability of raw materials and the degree of orientation.
Ar 1 and Ar 2 are a phenylene group that may have a substituent, a naphthylene group that may have a substituent, or a biphenylene group that may have a substituent. A phenylene group is preferable from the viewpoint of easy availability of a raw material which may have a diol and a degree of orientation.
In the formula (2), "M 1" for coupling the Ar 1 and "N" is preferably located in the para position of Ar 1. Further, “E” and “N” linked to Ar 2 are preferably located at the para position in Ar 1 .
 上記式(2)中、Eは、窒素原子、酸素原子および硫黄原子のいずれかの原子を表し、合成適性の観点からは窒素原子であることが好ましい。
 また、2色性物質を短波長側に吸収を持つもの(例えば、500~530nm付近に極大吸収波長を持つもの)にすることが容易になるという観点からは、上記式(2)におけるEは、酸素原子であることが好ましい。
 一方、2色性物質を長波長側に吸収を持つもの(例えば、600nm付近に極大吸収波長を持つもの)にすることが容易になるという観点からは、上記式(2)におけるEは、窒素原子であることが好ましい。
In the above formula (2), E represents one of a nitrogen atom, an oxygen atom and a sulfur atom, and is preferably a nitrogen atom from the viewpoint of suitability for synthesis.
Further, from the viewpoint that it becomes easy to make a dichroic substance having absorption on the short wavelength side (for example, having a maximum absorption wavelength in the vicinity of 500 to 530 nm), E in the above formula (2) is And preferably an oxygen atom.
On the other hand, from the viewpoint that it becomes easy to make a dichroic substance having absorption on the long wavelength side (for example, having a maximum absorption wavelength in the vicinity of 600 nm), E in the above formula (2) is nitrogen. It is preferably an atom.
 上記式(2)中、Rは、水素原子または置換基を表す。
 Rが表す「置換基」の具体例および好適態様は、上述したArおよびArにおける置換基と同じであり、好ましい態様も同じであるので、その説明を省略する。
In the above formula (2), R 1 represents a hydrogen atom or a substituent.
Specific examples and preferred embodiments of the “substituent” represented by R 1 are the same as the substituents in Ar 1 and Ar 2 described above, and the preferred embodiments are also the same, and thus the description thereof is omitted.
 上記式(2)中、Rは、水素原子または置換基を有していてもよいアルキル基を表し、置換基を有していてもよいアルキル基が好ましい。
 置換基としては、例えば、ハロゲン原子、水酸基、エステル基、エーテル基、および、チオエーテル基などが挙げられる。
 アルキル基としては、炭素数1~8の直鎖状、分岐鎖状または環状のアルキル基が挙げられる。なかでも、炭素数1~6の直鎖状のアルキル基が好ましく、炭素数1~3の直鎖状のアルキル基がより好ましく、メチル基またはエチル基がさらに好ましい。
 なお、Rは、Eが窒素原子である場合に式(2)中で存在する基となる(すなわち、n=1の場合を意味する)。一方で、Rは、Eが酸素原子または硫黄原子である場合、式(2)中で存在しない基となる(すなわち、n=0の場合を意味する)。
In the above formula (2), R 2, have a hydrogen atom or a substituent represents an alkyl group, an alkyl group is preferred which may have a substituent.
Examples of the substituent include a halogen atom, a hydroxyl group, an ester group, an ether group, and a thioether group.
Examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. Of these, a linear alkyl group having 1 to 6 carbon atoms is preferable, a linear alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group or an ethyl group is further preferable.
R 2 is a group present in the formula (2) when E is a nitrogen atom (that is, n = 1 is meant). On the other hand, R 2 is a group that does not exist in the formula (2) when E is an oxygen atom or a sulfur atom (that is, n = 0 is meant).
 上記式(2)中、nは、0または1を表す。ただし、Eが窒素原子である場合には、nは1であり、Eが酸素原子または硫黄原子である場合には、nは0である。 In the above formula (2), n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
 2色性物質としては、式(3)で表される化合物も好ましい。 As the dichroic substance, a compound represented by the formula (3) is also preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(3)中、AおよびBは、それぞれ独立に、架橋性基を表す。aおよびbは、それぞれ独立に、0または1を表す。ただし、a+b≧1である。a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。Arは(n1+2)価の芳香族炭化水素基または複素環基を表し、Arは(n2+2)価の芳香族炭化水素基または複素環基を表し、Arは(n3+2)価の芳香族炭化水素基または複素環基を表す。R、RおよびRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。 In formula (3), A and B each independently represent a crosslinkable group. a and b each independently represents 0 or 1; However, a + b ≧ 1. When a = 0, L 1 represents a monovalent substituent, and when a = 1, L 1 represents a single bond or a divalent linking group. Further, when b = 0, L 2 represents a monovalent substituent, and when b = 1, L 2 represents a single bond or a divalent linking group. Ar 1 represents an (n1 + 2) -valent aromatic hydrocarbon group or heterocyclic group, Ar 2 represents an (n2 + 2) -valent aromatic hydrocarbon group or heterocyclic group, and Ar 3 represents an (n3 + 2) -valent aromatic group A hydrocarbon group or a heterocyclic group is represented. R 1 , R 2 and R 3 each independently represents a monovalent substituent. When n1 ≧ 2, the plurality of R 1 may be the same or different from each other, and when n2 ≧ 2, the plurality of R 2 may be the same or different from each other, and when n3 ≧ 2 The plurality of R 3 may be the same as or different from each other. k represents an integer of 1 to 4. When k ≧ 2, the plurality of Ar 2 may be the same as or different from each other, and the plurality of R 2 may be the same as or different from each other. n1, n2 and n3 each independently represents an integer of 0 to 4. However, when k = 1, n1 + n2 + n3 ≧ 0, and when k ≧ 2, n1 + n2 + n3 ≧ 1.
 式(3)において、AおよびBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。なかでも、反応性および合成適性の向上の観点から、(メタ)アクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、溶解性をより向上できるという観点から、(メタ)アクリロイル基がより好ましい。 In the formula (3), examples of the crosslinkable group represented by A and B include polymerizable groups described in paragraphs [0040] to [0050] of JP 2010-244038 A. Of these, (meth) acryloyl group, epoxy group, oxetanyl group or styryl group is preferable from the viewpoint of improving reactivity and synthesis suitability, and (meth) acryloyl group is more preferable from the viewpoint of improving solubility. preferable.
 式(3)において、aおよびbはそれぞれ独立に、0または1を表すが、a+b≧1である。すなわち、式(3)で表される化合物は、末端に少なくとも1つの架橋性基を有する。
 ここで、aおよびbは両方が1であること、すなわち架橋性基が式(3)で表される化合物の両末端に導入されていることが好ましい。
In formula (3), a and b each independently represent 0 or 1, but a + b ≧ 1. That is, the compound represented by the formula (3) has at least one crosslinkable group at the terminal.
Here, it is preferable that a and b are both 1, that is, a crosslinkable group is introduced at both ends of the compound represented by the formula (3).
 式(3)において、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
 LおよびLは、両方が単結合または2価の連結基であることが好ましく、両方が2価の連結基であることがより好ましい。
In Formula (3), when a = 0, L 1 represents a monovalent substituent, and when a = 1, L 1 represents a single bond or a divalent linking group. Further, when b = 0, L 2 represents a monovalent substituent, and when b = 1, L 2 represents a single bond or a divalent linking group.
L 1 and L 2 are preferably both a single bond or a divalent linking group, and more preferably both are a divalent linking group.
 LおよびLが表す1価の置換基としては、2色性物質の溶解性を高めるために導入される基、または、色素としての色調を調節するために導入される電子供与性または電子吸引性を有する基が好ましい。
 例えば、置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヘテロ環基、シリル基、ハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、アゾ基などが挙げられる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 上記置換基がさらに上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、R-(O-Rna-基が挙げられる。ここで、式中、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
 なかでも、LおよびLが表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)が好ましく、アルキル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)がより好ましい。
The monovalent substituent represented by L 1 and L 2 is a group introduced to increase the solubility of the dichroic substance, or an electron donating or electron introduced to adjust the color tone as a dye. A group having an attractive property is preferred.
For example, as the substituent, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an oxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group Sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, heterocyclic group, silyl group, halogen atom, hydroxy group, mercapto group, cyano group, Examples thereof include a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, and an azo group.
These substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
Examples of the group in which the above substituent is further substituted with the above substituent include an R B — (O—R A ) na — group, which is a group in which an alkoxy group is substituted with an alkyl group. Here, in the formula, R A represents an alkylene group having 1 to 5 carbon atoms, R B represents an alkyl group having 1 to 5 carbon atoms, and na is 1 to 10 (preferably 1 to 5, more preferably 1). Represents an integer of ~ 3).
Among them, examples of the monovalent substituent represented by L 1 and L 2 include an alkyl group, an alkenyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (for example, the above-described R B — (O—R A ) na — group) is preferable, and an alkyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (for example, R B — (O—R A ) na — described above) Group) is more preferred.
 LおよびLが表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-NR-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
 なかでも、アルキレン基と、-O-、-COO-、-OCO-および-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
 ここで、Rは、水素原子またはアルキル基を表す。Rが複数存在する場合には、複数のRは互いに同一でも異なっていてもよい。
Examples of the divalent linking group represented by L 1 and L 2 include —O—, —S—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NR N -, -O-CO-NR N- , -NR N -CO-NR N- , -SO 2- , -SO-, an alkylene group, a cycloalkylene group, an alkenylene group, and two of these groups The group combined above is mentioned.
Of these, a group obtained by combining an alkylene group and one or more groups selected from the group consisting of —O—, —COO—, —OCO—, and —O—CO—O— is preferable.
Here, RN represents a hydrogen atom or an alkyl group. When a plurality of RNs are present, the plurality of RNs may be the same as or different from each other.
 式(3)で表される化合物の溶解性がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることがさらに好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
 一方で、光吸収異方性層の配向度がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
 ここで、式(3)におけるAが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(3)におけるBが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 また、Aが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。Bが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。
 具体的には、下記式(D1)においては、Lの主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、Lの主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
From the viewpoint of further improving the solubility of the compound represented by the formula (3), the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 3 or more, and 5 or more. More preferably, it is more preferably 7 or more, and particularly preferably 10 or more. Further, the upper limit of the number of atoms in the main chain is preferably 20 or less, and more preferably 12 or less.
On the other hand, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
Here, if there is A in the formula (3) is the "backbone" of the L 1, and "O" atoms connecting the L 1, needed to join the "A", the direct The term “number of atoms in the main chain” refers to the number of atoms constituting the part. Similarly, if there is a B in the formula (3) is the "backbone" of the L 2, and "O" atoms connecting the L 2, necessary for connection with "B", the direct The term “number of atoms in the main chain” refers to the number of atoms constituting the above-mentioned portion. The “number of main chain atoms” does not include the number of branched chain atoms described later.
Further, when A is not present, the "number of the main chain of atoms" in L 1, refers to the number of L 1 containing no branched chain atoms. If B is not present, the "number of the main chain of atoms" in L 2, refers to the number of L 2 containing no branched chain atoms.
Specifically, in the following formula (D1), the number of atoms in the main chain of L 1 is 5 (the number of atoms in the dotted frame on the left side of the following formula (D1)), and the main chain of L 2 The number of atoms is 5 (the number of atoms in the dotted frame on the right side of the following formula (D1)). In the following formula (D10), the number of atoms in the main chain of L 1 is 7 (the number of atoms in the dotted frame on the left side of the following formula (D10)), and the number of atoms in the main chain of L 2 The number is 5 (the number of atoms in the dotted frame on the right side of the following formula (D10)).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 LおよびLは、分岐鎖を有していてもよい。
 ここで、式(3)においてAが存在する場合には、Lにおける「分岐鎖」とは、式(3)におけるLと連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(3)においてBが存在する場合には、Lにおける「分岐鎖」とは、式(3)におけるLと連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
 また、式(3)においてAが存在しない場合には、Lにおける「分岐鎖」とは、式(3)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(3)においてBが存在しない場合には、Lにおける「分岐鎖」とは、式(3)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
 分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
L 1 and L 2 may have a branched chain.
Here, if A is present in the formula (3) is directly connected to the "branched" in L 1, and "O" atoms connecting the L 1 in formula (3), "A", a The part other than the part necessary to do. Similarly, when there is B in Equation (3) is directly connected to the "branched" in L 2, and "O" atoms connecting the L 2 in Formula (3), "B", the The part other than the part necessary to do.
Further, when A is absent in the formula (3), a "branched" in L 1, wherein the longest chain of atoms (or main extending starting from the "O" atoms connecting the L 1 in (3) The part other than the chain). Similarly, in the absence of B in the formula (3), a "branched" in L 2, is connected to the L 2 in Formula (3) "O" atoms longest atomic chain extending starting (i.e. The part other than the main chain).
The number of branched atoms is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched atoms does not include the number of hydrogen atoms.
 式(3)において、Arは(n1+2)価(例えば、n1が1である時は3価)、Arは(n2+2)価(例えば、n2が1である時は3価)、Arは(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基または複素環基を表す。ここで、Ar~Arはそれぞれ、n1~n3個の置換基(後述するR~R)で置換された2価の芳香族炭化水素基または2価の複素環基と換言できる。
 Ar~Arが表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)がさらに好ましい。
 2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
 2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基が好ましい。
 2価の芳香族複素環基は、単環であってもよいし、2環以上の縮環構造を有していてもよい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、チアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
 上記のなかでも、2価の芳香族複素環基としては、単環または下記構造式で表される2環の縮環構造を有する基が好ましい。なお、下記構造式において、「*」は、一般式(1)におけるアゾ基または酸素原子との結合位置を示す。
In the formula (3), Ar 1 is an (n1 + 2) valence (eg, trivalent when n1 is 1), Ar 2 is an (n2 + 2) valence (eg, trivalent when n2 is 1), Ar 3 Represents an (n3 + 2) -valent aromatic hydrocarbon group or heterocyclic group (for example, trivalent when n3 is 1). Here, Ar 1 to Ar 3 can be rephrased as a divalent aromatic hydrocarbon group or a divalent heterocyclic group each substituted with n1 to n3 substituents (R 1 to R 3 described later).
The divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be monocyclic or have a condensed structure of two or more rings. The number of rings of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and still more preferably 1 (that is, a phenylene group) from the viewpoint of further improving the solubility.
Specific examples of the divalent aromatic hydrocarbon group include a phenylene group, an azulene-diyl group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, and a tetracene-diyl group, and the solubility is further improved. From this viewpoint, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
The divalent heterocyclic group may be either aromatic or non-aromatic, but a divalent aromatic heterocyclic group is preferred from the viewpoint of improving the degree of orientation.
The divalent aromatic heterocyclic group may be monocyclic or may have a condensed structure of two or more rings. Examples of atoms other than carbon constituting the aromatic heterocyclic group include nitrogen atom, sulfur atom and oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
Specific examples of the aromatic heterocyclic group include, for example, pyridylene group (pyridine-diyl group), thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), thiazole- Examples thereof include a diyl group, a benzothiadiazole-diyl group, a phthalimido-diyl group, a thienothiazole-diyl group, a thienothiophene-diyl group, and a thienoxazole-diyl group.
Among the above, the divalent aromatic heterocyclic group is preferably a monocyclic group or a group having a bicyclic condensed ring structure represented by the following structural formula. In the structural formula below, “*” represents a bonding position with an azo group or an oxygen atom in the general formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(3)において、Ar~Arは、2価の芳香族炭化水素基が好ましく、フェニレン基が好ましい。
 ここで、Arがフェニレン基である場合には、Arに結合する酸素原子とアゾ基とが、メタ位またはパラ位に位置することが好ましく、パラ位に位置することがより好ましい。これにより、光吸収異方性層の配向度がより向上する。同様の観点から、Arがフェニレン基である場合には、Arに結合する2つのアゾ基が、メタ位またはパラ位に位置することが好ましく、パラ位に位置することがより好ましい。同様に、Arがフェニレン基である場合には、Arに結合する酸素原子とアゾ基とが、メタ位またはパラ位に位置することが好ましく、パラ位に位置することがより好ましい。
In the formula (3), Ar 1 to Ar 3 are preferably divalent aromatic hydrocarbon groups, and preferably phenylene groups.
Here, when Ar 1 is a phenylene group, the oxygen atom and azo group bonded to Ar 1 are preferably located at the meta position or para position, and more preferably located at the para position. Thereby, the orientation degree of a light absorption anisotropic layer improves more. From the same viewpoint, when Ar 2 is a phenylene group, the two azo groups bonded to Ar 2 are preferably located at the meta position or para position, and more preferably located at the para position. Similarly, when Ar 3 is a phenylene group, the oxygen atom and azo group bonded to Ar 3 are preferably located at the meta position or para position, and more preferably located at the para position.
 式(3)において、Ar、ArおよびArが縮環構造である場合には、縮環構造を構成する複数の環がいずれも、式(3)で表される構造の長手方向に沿って連結していることが好ましい。これにより、2色性物質の分子が長手方向と交差する方向(短手方向)に嵩高くなることを抑制できるので、分子の配向性が良好となり、光吸収異方性層の配向度がより向上する。
 ここで、式(3)で表される構造の長手方向とは、式(3)で表される構造の延びる方向のことをいい、具体的には、Ar、ArおよびArに結合するアゾ基の結合手およびエーテル結合(酸素原子)の結合手が延びる方向のことをいう。
 縮環構造を構成する複数の環の全てが式(3)で表される構造の長手方向に沿って連結している態様の具体例として、式(Ar-1)で表される縮環構造を以下に示す。すなわち、Ar、ArおよびArが縮環構造である場合には、以下の式(A-1)で表される縮環構造を有していることが好ましい。
In Formula (3), when Ar 1 , Ar 2, and Ar 3 have a condensed ring structure, a plurality of rings constituting the condensed ring structure are all in the longitudinal direction of the structure represented by Formula (3). It is preferable to connect along. Thereby, since it can suppress that the molecule | numerator of a dichroic substance becomes bulky in the direction (short direction) which cross | intersects a longitudinal direction, the orientation of a molecule | numerator becomes favorable and the orientation degree of a light absorption anisotropic layer becomes more. improves.
Here, the longitudinal direction of the structure represented by Formula (3) refers to the direction in which the structure represented by Formula (3) extends, and specifically, bonded to Ar 1 , Ar 2, and Ar 3 . This refers to the direction in which the bond of the azo group and the bond of the ether bond (oxygen atom) extend.
As a specific example of an embodiment in which all of a plurality of rings constituting the condensed ring structure are connected along the longitudinal direction of the structure represented by the formula (3), the condensed ring structure represented by the formula (Ar-1) Is shown below. That is, when Ar 1 , Ar 2 and Ar 3 have a condensed ring structure, it preferably has a condensed ring structure represented by the following formula (A-1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(Ar-1)において、Ar、ArおよびArは、それぞれ独立に、ベンゼン環または単環の複素環を表す。nは、0以上の整数を表す。*は、式(3)におけるアゾ基または酸素原子との結合位置を表す。
 上記式(Ar-1)における単環の複素環としては、単環の芳香族複素環が好ましい。単環の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。単環の芳香族複素環としては、具体的には、ピリジン環、チオフェン環、チアゾール環およびオキサゾール環などが挙げられる。
 また、Ar、ArおよびArは、置換基を有していてもよい。このような置換基としては、後述するR~Rにおける1価の置換基が挙げられる。
 nは、0以上の整数を表すが、0~2が好ましく、0~1がより好ましく、0がさらに好ましい。
In the above formula (Ar-1), Ar X , Ar Y and Ar Z each independently represent a benzene ring or a monocyclic heterocyclic ring. n represents an integer of 0 or more. * Represents a bonding position with an azo group or an oxygen atom in the formula (3).
The monocyclic heterocycle in the above formula (Ar-1) is preferably a monocyclic aromatic heterocycle. Examples of atoms other than carbon constituting the monocyclic aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. Specific examples of the monocyclic aromatic heterocycle include a pyridine ring, a thiophene ring, a thiazole ring, and an oxazole ring.
Ar X , Ar Y and Ar Z may have a substituent. Examples of such a substituent include monovalent substituents in R 1 to R 3 described later.
n represents an integer of 0 or more, preferably 0 to 2, more preferably 0 to 1, and still more preferably 0.
 式(3)において、R、RおよびRは、それぞれ独立に、1価の置換基を表す。
 R、RおよびRが表す1価の置換基は、ハロゲン原子、シアノ基、ヒドロキシ基、アルキル基、アルコキシ基、フッ化アルキル基、-O-(CO)m-R’、-O-(CO)m-R’、アルキルチオ基、オキシカルボニル基、チオアルキル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルフィニル基、または、ウレイド基が好ましい。ここで、R’は水素原子、メチル基またはエチル基を表し、mは1~6の整数を表す。これらの置換基は、さらにこれらの置換基で置換されていてもよい。
 なかでも、R、RおよびRが表す1価の置換基は、2色性物質の溶解性がより向上するという観点から、フッ素原子、塩素原子、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、プロポキシ基、ヒドロキシ基、トリフルオロメチル基、-O-(CO)m-R’、または、-O-(CO)m-R’が好ましく、トリフルオロメチル基、メトキシ基、ヒドロキシ基、-O-(CO)m-R’、または、-O-(CO)m-R’がより好ましい。
 R、RおよびRが表す1価の置換基において、主鎖の原子の数は、2色性物質の溶解性および光吸収異方性層の配向性のバランスの観点から、1~15が好ましく、1~12がより好ましい。ここで、R、RおよびRが表す1価の置換基において、「主鎖の原子の数」とは、分岐鎖を含まないR、RまたはRの原子の個数のことをいう。また、「分岐鎖」とは、式(1)におけるAr~Arのいずれかを起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
In formula (3), R 1 , R 2 and R 3 each independently represents a monovalent substituent.
The monovalent substituent represented by R 1 , R 2 and R 3 is a halogen atom, cyano group, hydroxy group, alkyl group, alkoxy group, fluorinated alkyl group, —O— (C 2 H 4 O) m—R. ', -O- (C 3 H 6 O) m-R', alkylthio group, oxycarbonyl group, thioalkyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, sulfinyl group Or a ureido group is preferred. Here, R ′ represents a hydrogen atom, a methyl group or an ethyl group, and m represents an integer of 1 to 6. These substituents may be further substituted with these substituents.
Among them, the monovalent substituent represented by R 1 , R 2 and R 3 is a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a propyl group, from the viewpoint that the solubility of the dichroic substance is further improved. Methoxy group, ethoxy group, propoxy group, hydroxy group, trifluoromethyl group, —O— (C 2 H 4 O) m—R ′, or —O— (C 3 H 6 O) m—R ′ is preferable. , A trifluoromethyl group, a methoxy group, a hydroxy group, —O— (C 2 H 4 O) m—R ′, or —O— (C 3 H 6 O) m—R ′ is more preferable.
In the monovalent substituent represented by R 1 , R 2 and R 3, the number of atoms in the main chain is from 1 to 2 from the viewpoint of the balance between the solubility of the dichroic material and the orientation of the light absorption anisotropic layer. 15 is preferable and 1 to 12 is more preferable. Here, in the monovalent substituent represented by R 1 , R 2 and R 3 , the “number of main chain atoms” refers to the number of R 1 , R 2 or R 3 atoms not including a branched chain. Say. The “branched chain” refers to a portion other than the longest atomic chain (that is, the main chain) extending from any one of Ar 1 to Ar 3 in the formula (1).
 上記式(3)がR、RおよびRから選択される少なくとも1つ以上の置換基を有する場合において、下記条件(R1)~条件(R3)から選択される少なくとも1つの条件を満たすことが好ましい。これにより、式(3)で表される化合物の溶解性がより向上する。
 条件(R1):Arにおいて、少なくとも1つのRと、アゾ基と、が隣り合う位置にあること
 条件(R2):Arにおいて、少なくとも1つのRと、少なくとも1つのアゾ基と、が隣り合う位置にあること
 条件(R3):Arにおいて、少なくとも1つのRと、アゾ基と、が隣り合う位置にあること
 条件(R1)の具体例としては、Arがフェニレン基である場合に、Arに結合するアゾ基に対するオルト位にRが位置する態様が挙げられる。条件(R2)の具体例としては、Arがフェニレン基である場合に、少なくとも1つのアゾ基に対するオルト位にRが位置する態様が挙げられる。条件(R3)の具体例としては、Arがフェニレン基である場合において、Arに結合するアゾ基に対するオルト位にRが位置する態様が挙げられる。
When the formula (3) has at least one substituent selected from R 1 , R 2 and R 3, at least one condition selected from the following conditions (R1) to conditions (R3) is satisfied: It is preferable. Thereby, the solubility of the compound represented by Formula (3) improves more.
Condition (R1): In Ar 1 , at least one R 1 and an azo group are adjacent to each other Condition (R2): In Ar 2 , at least one R 2 and at least one azo group; Condition (R3): In Ar 3 , at least one R 3 and an azo group are adjacent to each other. As a specific example of the condition (R1), Ar 1 is a phenylene group In some cases, an embodiment in which R 1 is located in the ortho position with respect to the azo group bonded to Ar 1 can be mentioned. As a specific example of the condition (R2), there is an embodiment in which when Ar 2 is a phenylene group, R 2 is located in the ortho position with respect to at least one azo group. As a specific example of the condition (R3), there is an embodiment in which, when Ar 3 is a phenylene group, R 3 is located at the ortho position with respect to the azo group bonded to Ar 3 .
 式(3)において、kは1~4の整数を表す。ここで、優れた溶解性を担保しつつ、耐光性にも優れるという観点からはkが2以上であることが好ましい。一方で、2色性物質の溶解性により優れるという観点からは、kが1であることが好ましい。 In the formula (3), k represents an integer of 1 to 4. Here, it is preferable that k is 2 or more from the viewpoint of excellent light resistance while ensuring excellent solubility. On the other hand, it is preferable that k is 1 from the viewpoint that the solubility of the dichroic material is superior.
 式(3)において、n1、n2およびn3は、それぞれ独立に、0~4の整数を表すが、0~3が好ましい。
 ここで、k=1の場合にはn1+n2+n3≧0である。すなわち、式(3)がビスアゾ構造を有する場合には、置換基(式(3)のR~R)の有無に関わらず、十分な溶解性が得られるが、溶解性をより向上する観点からは置換基を有していることが好ましい。
 k=1の場合には、n1+n2+n3は、0~9が好ましく、1~9がより好ましく、1~5がさらに好ましい。
 一方で、k≧2の場合にはn1+n2+n3≧1である。すなわち、式(3)がトリスアゾ構造、テトラキスアゾ構造、またはペンタキスアゾ構造を有する場合には、置換基(式(3)のR~R)を少なくとも1つ有する。
 k≧2の場合には、n1+n2+n3は、1~9が好ましく、1~5がより好ましい。
In the formula (3), n1, n2 and n3 each independently represents an integer of 0 to 4, preferably 0 to 3.
Here, when k = 1, n1 + n2 + n3 ≧ 0. That is, when Formula (3) has a bisazo structure, sufficient solubility can be obtained regardless of the presence or absence of substituents (R 1 to R 3 in Formula (3)), but the solubility is further improved. From the viewpoint, it preferably has a substituent.
In the case of k = 1, n1 + n2 + n3 is preferably 0 to 9, more preferably 1 to 9, and further preferably 1 to 5.
On the other hand, when k ≧ 2, n1 + n2 + n3 ≧ 1. That is, when Formula (3) has a trisazo structure, a tetrakisazo structure, or a pentakisazo structure, it has at least one substituent (R 1 to R 3 in Formula (3)).
In the case of k ≧ 2, n1 + n2 + n3 is preferably 1 to 9, and more preferably 1 to 5.
(液晶性化合物)
 液晶性組成物が液晶性化合物を含むことで、2色性物質の析出を抑止しながら、2色性物質を高い配向度で配向させることができる。
 液晶性化合物は、2色性を示さない液晶性化合物である。
 液晶性化合物としては、低分子液晶性化合物および高分子液晶性化合物のいずれも用いることができる。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
 低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。
 高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、末端に架橋性基(例えば、アクリロイル基およびメタクリロイル基)を有していてもよい。
 液晶性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 液晶性化合物の含有量は、液晶性組成物中の2色性物質の含有量100質量部に対して、25~2000質量部が好ましく、33~1000質量部がより好ましく、50~500質量部がさらに好ましい。液晶性化合物の含有量が上記範囲内にあることで、光吸収異方性層の配向度がより向上する。
(Liquid crystal compound)
When the liquid crystalline composition contains a liquid crystalline compound, the dichroic substance can be aligned with a high degree of orientation while suppressing the precipitation of the dichroic substance.
The liquid crystalline compound is a liquid crystalline compound that does not exhibit dichroism.
As the liquid crystalline compound, any of a low molecular liquid crystalline compound and a high molecular liquid crystalline compound can be used. Here, the “low molecular weight liquid crystalline compound” refers to a liquid crystalline compound having no repeating unit in the chemical structure. The “polymer liquid crystalline compound” refers to a liquid crystalline compound having a repeating unit in its chemical structure.
Examples of the low molecular liquid crystal compound include liquid crystal compounds described in JP 2013-228706 A.
Examples of the polymer liquid crystalline compound include the thermotropic liquid crystalline polymers described in JP2011-237513A. The polymer liquid crystalline compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at the terminal.
A liquid crystalline compound may be used individually by 1 type, and may use 2 or more types together.
The content of the liquid crystal compound is preferably 25 to 2000 parts by weight, more preferably 33 to 1000 parts by weight, and more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the dichroic substance in the liquid crystal composition. Is more preferable. When the content of the liquid crystal compound is within the above range, the degree of orientation of the light absorption anisotropic layer is further improved.
 液晶性化合物としては、式(4)で表される繰り返し単位(本明細書において、「繰り返し単位(4)」ともいう。)を含む高分子液晶性化合物が好ましい。また、繰り返し単位(4)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が4以上である。 As the liquid crystalline compound, a polymer liquid crystalline compound containing a repeating unit represented by the formula (4) (also referred to as “repeating unit (4)” in the present specification) is preferable. In the repeating unit (4), the difference between the log P values of P1, L1, and SP1 and the log P value of M1 is 4 or more.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(4)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。 In formula (4), P1 represents the main chain of the repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogenic group, and T1 represents a terminal group.
 P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。 Specific examples of the main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D). From the viewpoint of diversity and easy handling, a group represented by the following formula (P1-A) is preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(P1-A)~(P1-D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1-A)において、Rは水素原子またはメチル基を表す。式(P1-D)において、Rはアルキル基を表す。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エチレングリコールを重合して得られるポリエチレングリコールにおけるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、プロピレングリコールを重合して得られるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、シラノールの縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、シラノールは、式Si(R(OH)で表される化合物である。式中、複数のRはそれぞれ独立に、水素原子またはアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。
In the formulas (P1-A) to (P1-D), “*” represents a bonding position with L1 in the formula (1). In the formula (P1-A), R 1 represents a hydrogen atom or a methyl group. In the formula (P1-D), R 2 represents an alkyl group.
The group represented by the formula (P1-A) is preferably a unit of a partial structure of poly (meth) acrylate obtained by polymerization of (meth) acrylate.
The group represented by the formula (P1-B) is preferably an ethylene glycol unit in polyethylene glycol obtained by polymerizing ethylene glycol.
The group represented by the formula (P1-C) is preferably a propylene glycol unit obtained by polymerizing propylene glycol.
The group represented by the formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of silanol. Here, silanol is a compound represented by the formula Si (R 2 ) 3 (OH). In formula, several R < 2 > represents a hydrogen atom or an alkyl group each independently. However, at least one of the plurality of R 2 represents an alkyl group.
 L1は、単結合または2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR-、-NRC(O)-、-S(O)-、および、-NR-などが挙げられる。式中、RおよびRはそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1~6のアルキル基を表す。上記2価の連結基の具体例において、左側の結合手がP1と結合し、右側の結合手がSP1と結合する。
 P1が式(P1-A)で表される基である場合には、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、L1は単結合が好ましい。
L1 is a single bond or a divalent linking group.
Examples of the divalent linking group represented by L1 include —C (O) O—, —OC (O) —, —O—, —S—, —C (O) NR 3 —, —NR 3 C (O). -, -S (O) 2- , -NR 3 R 4- and the like. In the formula, R 3 and R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms. In the specific example of the divalent linking group, the left bond is bonded to P1, and the right bond is bonded to SP1.
When P1 is a group represented by the formula (P1-A), L1 is preferably a group represented by —C (O) O—.
When P1 is a group represented by the formulas (P1-B) to (P1-D), L1 is preferably a single bond.
 SP1が表すスペーサー基は、液晶性を発現しやすいこと、および、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*はL1またはM1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることがさらに好ましい。
 また、SP1が表すオキシプロピレン構造は、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
The spacer group represented by SP1 is at least selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure, because it easily exhibits liquid crystallinity and the availability of raw materials. It preferably contains one type of structure.
Here, the oxyethylene structure represented by SP1 is preferably a group represented by * — (CH 2 —CH 2 O) n1 — *. In the formula, n1 represents an integer of 1 to 20, and * represents a bonding position with L1 or M1. n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and further preferably 3 for the reason that the effect of the present invention is more excellent.
The oxypropylene structure represented by SP1 is preferably a group represented by * — (CH (CH 3 ) —CH 2 O) n2 — *. In the formula, n2 represents an integer of 1 to 3, and * represents a bonding position with L1 or M1.
Further, the polysiloxane structure represented by SP1 is preferably a group represented by * — (Si (CH 3 ) 2 —O) n3 — *. In the formula, n3 represents an integer of 6 to 10, and * represents a bonding position with L1 or M1.
In addition, the fluorinated alkylene structure represented by SP1 is preferably a group represented by * — (CF 2 —CF 2 ) n4 — *. In the formula, n4 represents an integer of 6 to 10, and * represents a bonding position with L1 or M1.
 M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に限定されず、例えば、「FlussigeKristalle in Tabellen II」(VEB DeutscheVerlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基は、本発明の効果がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
The mesogenic group represented by M1 is a group showing the main skeleton of liquid crystal molecules that contribute to liquid crystal formation. The liquid crystal molecules exhibit liquid crystallinity that is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state. The mesogenic group is not particularly limited. For example, “Flushage Kristall in Table II” (VEB Deutsche Verlag fur Grundoff Industrie, Leipzig, published in 1984). You can refer to the Liquid Crystal Handbook (Maruzen, 2000), especially the description in Chapter 3.
As the mesogenic group, for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
The mesogenic group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, for the reason that the effect of the present invention is more excellent, and has 3 aromatic hydrocarbon groups. More preferably,
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、ならびに、本発明の効果がより優れるから、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。 As the mesogenic group, the following formula (M1-A) or the following formula (M1-M1) can be used because the liquid crystallinity expression, liquid crystal phase transition temperature adjustment, raw material availability and synthesis suitability are more excellent, and the effects of the present invention are more excellent. A group represented by B) is preferred, and a group represented by formula (M1-B) is more preferred.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基またはアルコキシ基などの置換基で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1またはT1との結合位置を表す。
In the formula (M1-A), A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. These groups may be substituted with a substituent such as an alkyl group, a fluorinated alkyl group or an alkoxy group.
The divalent group represented by A1 is preferably a 4- to 6-membered ring. In addition, the divalent group represented by A1 may be monocyclic or condensed.
* Represents a binding position with SP1 or T1.
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。 Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, and a tetracene-diyl group. A variety of mesogenic skeleton designs and availability of raw materials From the viewpoint of properties, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
 A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、2色性物質の配向度がより向上するという観点から、2価の芳香族複素環基が好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
The divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation of the dichroic substance, a divalent aromatic heterocyclic group. Is preferred.
Examples of atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
Specific examples of the divalent aromatic heterocyclic group include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group). ), Isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazol-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group , Thiazolothiazole-diyl group, thienothiophene-diyl group, and thienoxazole-diyl group.
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。 Specific examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。 In the formula (M1-A), a1 represents an integer of 1 to 10. When a1 is 2 or more, the plurality of A1s may be the same or different.
 式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、本発明の効果がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
In the formula (M1-B), A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in the formula (M1-A), and thus description thereof is omitted.
In formula (M1-B), a2 represents an integer of 1 to 10, and when a2 is 2 or more, a plurality of A2 may be the same or different, and a plurality of A3 may be the same or different. The plurality of LA1s may be the same or different. a2 is preferably an integer of 2 or more, more preferably 2, for the reason that the effect of the present invention is more excellent.
In the formula (M1-B), when a2 is 1, LA1 is a divalent linking group. When a2 is 2 or more, the plurality of LA1 are each independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group. When a2 is 2, for the reason that the effect of the present invention is more excellent, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond.
 式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は、それぞれ独立に、水素原子、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。なかでも、本発明の効果がより優れる理由から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。 In the formula (M1-B), the divalent linking group represented by LA1 includes —O—, — (CH 2 ) g —, — (CF 2 ) g —, —Si (CH 3 ) 2 —, — ( Si (CH 3 ) 2 O) g -,-(OSi (CH 3 ) 2 ) g- (g represents an integer of 1 to 10), -N (Z)-, -C (Z) = C ( Z ′) —, —C (Z) ═N—, —N═C (Z) —, —C (Z) 2 —C (Z ′) 2 —, —C (O) —, —OC (O) -, -C (O) O-, -O-C (O) O-, -N (Z) C (O)-, -C (O) N (Z)-, -C (Z) = C ( Z ′) — C (O) O—, —O—C (O) —C (Z) = C (Z ′) —, —C (Z) = N—, —N═C (Z) —, — C (Z) = C (Z ′) — C (O) N (Z ″) —, —N (Z ″) — C (O) —C (Z) = C (Z ′) —, —C (Z ) = C (Z ′) − (O) -S-, -SC (O) -C (Z) = C (Z ')-, -C (Z) = NN = C (Z')-(Z, Z ', Z Each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom.), —C≡C—, —N═N—, -S-, -S (O)-, -S (O) (O)-,-(O) S (O) O-, -O (O) S (O) O-, -SC (O)- And -C (O) S-, etc. Among them, -C (O) O- is preferable because the effect of the present invention is more excellent LA1 is a combination of two or more of these groups. It may be a group.
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、および、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
 T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
 T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
As the terminal group represented by T1, a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, An alkoxycarbonyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms (ROC (O)-: R is an alkyl group), an acyloxy group having 1 to 10 carbon atoms, and an acylamino group having 1 to 10 carbon atoms An alkoxycarbonyl group having 1 to 10 carbon atoms, an alkoxycarbonylamino group having 1 to 10 carbon atoms, a sulfonylamino group having 1 to 10 carbon atoms, a sulfamoyl group having 1 to 10 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, Examples thereof include a sulfinyl group having 1 to 10 carbon atoms, a ureido group having 1 to 10 carbon atoms, and a (meth) acryloyloxy group-containing group. Examples of the (meth) acryloyloxy group-containing group include, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as those of L1 and SP1 described above. A represents (meth) Group represented by acryloyloxy group).
T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and further preferably a methoxy group for the reason that the effect of the present invention is more excellent. These terminal groups may be further substituted with these groups or a polymerizable group described in JP 2010-244038 A.
The number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 7 for the reason that the effect of the present invention is more excellent. When the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved. Here, the “main chain” in T1 means the longest molecular chain bonded to M1, and hydrogen atoms do not count in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
 繰り返し単位(4)の含有量は、本発明の効果がより優れる理由から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましく、30~99.9質量%がより好ましく、40~99.0質量%がさらに好ましい。
 本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(4)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶性化合物が繰り返し単位(4)を2種以上含むと、高分子液晶性化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(4)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
The content of the repeating unit (4) is preferably 20 to 100% by mass and preferably 30 to 99.9% with respect to 100% by mass of all repeating units possessed by the polymer liquid crystalline compound because the effect of the present invention is more excellent. More preferably, it is 40% to 99.0% by weight.
In the present invention, the content of each repeating unit contained in the polymer liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
The repeating unit (4) may be contained singly or in combination of two or more in the polymer liquid crystalline compound. When the polymer liquid crystalline compound contains two or more repeating units (4), there are advantages such as improved solubility of the polymer liquid crystalline compound in a solvent and easy adjustment of the liquid crystal phase transition temperature. is there. When 2 or more types of repeating units (4) are included, the total amount is preferably within the above range.
 繰り返し単位(4)を2種以上含む場合には、T1に重合性基を含まない繰り返し単位(4)と、T1に重合性基を含む繰り返し単位(4)と、を併用してもよい。これにより、光吸収異方性層の硬化性がより向上する。
 この場合、高分子液晶性化合物中における、T1に重合性基を含まない繰り返し単位(1)に対する、T1に重合性基を含む繰り返し単位(4)の割合(T1に重合性基を含む繰り返し単位(4)/T1に重合性基を含まない繰り返し単位(4))が、質量比で0.005~4が好ましく、0.01~2.4がより好ましい。質量比が4以下であると、配向度に優れるという利点がある。質量比が0.05以上であると、光吸収異方性層の硬化性がより向上する。
When 2 or more types of repeating units (4) are included, the repeating unit (4) containing no polymerizable group in T1 and the repeating unit (4) containing a polymerizable group in T1 may be used in combination. Thereby, the sclerosis | hardenability of a light absorption anisotropic layer improves more.
In this case, the ratio of the repeating unit (4) containing a polymerizable group at T1 to the repeating unit (1) containing no polymerizable group at T1 in the polymer liquid crystalline compound (repeating unit containing a polymerizable group at T1) (4) The repeating unit (4) which does not contain a polymerizable group in / T1 is preferably 0.005 to 4 and more preferably 0.01 to 2.4 in terms of mass ratio. When the mass ratio is 4 or less, there is an advantage that the degree of orientation is excellent. When the mass ratio is 0.05 or more, the curability of the light absorption anisotropic layer is further improved.
 (logP値)
 式(4)において、P1、L1およびSP1のlogP値(以下、「logP」ともいう。)と、M1のlogP値(以下、「logP」ともいう。)との差(|logP-logP|)が4以上であり、光吸収異方性層の配向度がより向上する観点から、4.25以上が好ましく、4.5以上がより好ましい。
 また、上記差の上限値は、液晶相転移温度の調整および合成適性という観点から、15以下が好ましく、12以下がより好ましく、10以下がさらに好ましい。
 ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
(Log P value)
In Formula (4), the difference (| logP 1 − between the logP values of P1, L1 and SP1 (hereinafter also referred to as “logP 1 ”) and the logP value of M1 (hereinafter also referred to as “logP 2 ”). logP 2 |) is 4 or more, and from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, 4.25 or more is preferable, and 4.5 or more is more preferable.
The upper limit of the difference is preferably 15 or less, more preferably 12 or less, and even more preferably 10 or less, from the viewpoint of adjusting the liquid crystal phase transition temperature and suitability for synthesis.
Here, the log P value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes referred to as a hydrophilic / hydrophobic parameter. The logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver. 4.1.07). In addition, OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method 117 or the like. In the present invention, unless otherwise specified, a value calculated by inputting a structural formula of a compound into HSPiP (Ver. 4.1.07) is adopted as a logP value.
 上記logPは、上述したように、P1、L1およびSP1のlogP値を意味する。「P1、L1およびSP1のlogP値」とは、P1、L1およびSP1を一体とした構造のlogP値を意味しており、P1、L1およびSP1のそれぞれのlogP値を合計したものではない。具体的には、logPは、式(4)におけるP1~SP1までの一連の構造式を上記ソフトウェアに入力することで算出される。
 ただし、logPの算出にあたって、P1~SP1までの一連の構造式のうち、P1で表される基の部分に関しては、P1で表される基そのものの構造(例えば、上述した式(P1-A)~式(P1-D)など)を用いてもよいし、式(4)で表される繰り返し単位を得るために使用する単量体を重合した後にP1になりうる基の構造を用いてもよい。
 ここで、後者(P1になりうる基)の具体例は、次の通りである。P1が(メタ)アクリル酸エステルの重合によって得られる場合には、CH=C(R)-で表される基(Rは、水素原子またはメチル基を表す。)である。また、P1がエチレングリコールの重合によって得られる場合にはエチレングリコールであり、P1がプロピレングリコールの重合により得られる場合にはプロピレングリコールである。また、P1がシラノールの重縮合により得られる場合にはシラノール(式Si(R(OH)で表される化合物。複数のRはそれぞれ独立に、水素原子またはアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。)である。
The logP 1 means the logP values of P1, L1, and SP1, as described above. The “log P value of P1, L1 and SP1” means a logP value of a structure in which P1, L1 and SP1 are integrated, and is not the sum of the logP values of P1, L1 and SP1. Specifically, logP 1 is calculated by inputting a series of structural formulas from P1 to SP1 in formula (4) to the software.
However, in calculating the logP 1, P1 ~ a series of structural formula to SP1, regarding the portion of the group represented by P1, the structure of the group itself represented by P1 (e.g., the above Expression (P1-A ) To formula (P1-D)) or the structure of a group that can be P1 after polymerizing the monomer used to obtain the repeating unit represented by formula (4). Also good.
Here, a specific example of the latter (group that can be P1) is as follows. If the P1 is obtained by polymerization of (meth) acrylic acid ester, CH 2 = C (R 1) - group represented by (R 1 represents a hydrogen atom or a methyl group.) Is. Further, when P1 is obtained by polymerization of ethylene glycol, it is ethylene glycol, and when P1 is obtained by polymerization of propylene glycol, it is propylene glycol. In addition, when P1 is obtained by polycondensation of silanol, a compound represented by silanol (formula Si (R 2 ) 3 (OH). Each of R 2 independently represents a hydrogen atom or an alkyl group. , At least one of the plurality of R 2 represents an alkyl group.).
 logPは、上述したlogPとの差が4以上であれば、logPよりも低くてもよいし、logPよりも高くてもよい。
 ここで、一般的なメソゲン基のlogP値(上述したlogP)は、4~6の範囲内になる傾向がある。このとき、logPがlogPよりも低い場合には、logPの値は、1以下が好ましく、0以下がより好ましい。一方で、logPがlogPよりも高い場合には、logPの値は、8以上が好ましく、9以上がより好ましい。
 上記式(1)におけるP1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも低い場合には、上記式(1)におけるSP1のlogP値は、0.7以下が好ましく、0.5以下がより好ましい。一方、上記式(4)におけるP1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも高い場合には、上記式(4)におけるSP1のlogP値は、3.7以上が好ましく、4.2以上がより好ましい。
 なお、logP値が1以下の構造としては、例えば、オキシエチレン構造およびオキシプロピレン構造などが挙げられる。logP値が6以上の構造としては、ポリシロキサン構造およびフッ化アルキレン構造などが挙げられる。
logP 1 as long the difference between logP 2 described above is four or more, may be lower than the logP 2, may be higher than the logP 2.
Here, the log P value (log P 2 described above) of a general mesogen group tends to be in the range of 4-6. At this time, when the logP 1 is lower than the logP 2, the value of logP 1 is preferably 1 or less, 0 or less is more preferable. On the other hand, when the logP 1 is higher than the logP 2, the value of logP 1 is preferably 8 or more, 9 or more is more preferable.
P1 in the formula (1) is obtained by polymerization of (meth) acrylic acid ester, and, if logP 1 is lower than the logP 2 is logP value of SP1 in the formula (1) is 0.7 or less Is preferable, and 0.5 or less is more preferable. On the other hand, the equation P1 is in (4) (meth) obtained by polymerization of acrylic acid esters, and, when logP 1 is higher than the logP 2, the logP value of SP1 in the formula (4), 3. 7 or more is preferable, and 4.2 or more is more preferable.
Examples of the structure having a log P value of 1 or less include an oxyethylene structure and an oxypropylene structure. Examples of the structure having a log P value of 6 or more include a polysiloxane structure and an alkylene fluoride structure.
 繰り返し単位(4)を含む高分子液晶性化合物は、さらに、下記式(5)で表される繰り返し単位(本明細書において、「繰り返し単位(5)」ともいう。)を含んでいてもよい。これにより、高分子液晶性化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。
 式(5)において、P2、L2およびSP2のlogP値と、M2のlogP値との差が、4未満である。すなわち、繰り返し単位(2)は、少なくとも構造中のlogP値の差の点において、上記繰り返し単位(1)と異なる。
 なお、「P2、L2およびSP2のlogP値」の定義は、上述したlogPと同様であるので、その説明を省略する。
 高分子液晶性化合物が繰り返し単位(5)を含む場合には、高分子液晶性化合物は、繰り返し単位(4)と繰り返し単位(5)との共重合体であり、ブロック重合体、交互重合体、ランダム重合体、および、グラフト重合体など、いずれの重合体であってもよい。
The polymer liquid crystalline compound containing the repeating unit (4) may further contain a repeating unit represented by the following formula (5) (also referred to as “repeating unit (5)” in this specification). . Thereby, there are advantages such as improved solubility of the polymer liquid crystalline compound in a solvent and easy adjustment of the liquid crystal phase transition temperature.
In formula (5), the difference between the log P values of P2, L2 and SP2 and the log P value of M2 is less than 4. That is, the repeating unit (2) differs from the repeating unit (1) at least in terms of the difference in log P values in the structure.
Note that the definition of “log P values of P2, L2, and SP2” is the same as that of logP 1 described above, and thus the description thereof is omitted.
When the polymer liquid crystalline compound contains the repeating unit (5), the polymer liquid crystalline compound is a copolymer of the repeating unit (4) and the repeating unit (5), and is a block polymer or an alternating polymer. Any polymer such as a random polymer and a graft polymer may be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(5)中、P2は繰り返し単位の主鎖を表し、L2は単結合または2価の連結基を表し、SP2はスペーサー基を表し、M2はメソゲン基を表し、T2は末端基を表す。
 式(5)におけるP2、L2、SP2、M2およびT2の具体例はそれぞれ、上記式(1)におけるP1、L1、SP1、M1およびT1と同様である。
 ここで、式(5)におけるT2は、光吸収異方性層の強度が向上する観点から、重合性基を有することが好ましい。
In formula (5), P2 represents the main chain of the repeating unit, L2 represents a single bond or a divalent linking group, SP2 represents a spacer group, M2 represents a mesogenic group, and T2 represents a terminal group.
Specific examples of P2, L2, SP2, M2, and T2 in Formula (5) are the same as P1, L1, SP1, M1, and T1 in Formula (1), respectively.
Here, T2 in Formula (5) preferably has a polymerizable group from the viewpoint of improving the strength of the light absorption anisotropic layer.
 繰り返し単位(5)を含む場合の含有量は、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0.5~50質量%が好ましく、1~40質量%がより好ましい。
 繰り返し単位(5)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(5)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 特に、繰り返し単位(5)におけるT2が重合性基を有する場合、T2が重合性基を有する繰り返し単位(5)の含有量は、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0.5~60質量%が好ましく、1~40質量%がより好ましい。T2が重合性基を有する繰り返し単位(5)の含有量が0.5質量%以上であると、光吸収異方性層の強度がより向上する。T2が重合性基を有する繰り返し単位(5)の含有量が60質量%以下であると、配向度により優れるという利点がある。
When the repeating unit (5) is contained, the content is preferably 0.5 to 50% by mass, more preferably 1 to 40% by mass with respect to 100% by mass of all repeating units of the polymer liquid crystalline compound.
The repeating unit (5) may be contained singly or in combination of two or more in the polymer liquid crystalline compound. When 2 or more types of repeating units (5) are included, the total amount is preferably within the above range.
In particular, when T2 in the repeating unit (5) has a polymerizable group, the content of the repeating unit (5) in which T2 has a polymerizable group is based on 100% by mass of all repeating units of the polymer liquid crystalline compound. 0.5 to 60% by mass is preferable, and 1 to 40% by mass is more preferable. When the content of the repeating unit (5) in which T2 has a polymerizable group is 0.5% by mass or more, the strength of the light absorption anisotropic layer is further improved. When the content of the repeating unit (5) in which T2 has a polymerizable group is 60% by mass or less, there is an advantage that the degree of orientation is more excellent.
 繰り返し単位(4)を含む高分子液晶性化合物は、さらに、下記式(6)で表される繰り返し単位(本明細書において、「繰り返し単位(6)」ともいう。)を含んでいてもよい。これにより、高分子液晶性化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。
 繰り返し単位(6)は、少なくともメソゲン基を有しないという点で、上記繰り返し単位(4)および上記繰り返し単位(5)と異なる。
 高分子液晶性化合物が繰り返し単位(6)を含む場合には、高分子液晶性化合物は、繰り返し単位(4)と繰り返し単位(5)との共重合体であり(さらに、繰り返し単位(5)を含む共重合体であってもよい)、ブロック重合体、交互重合体、ランダム重合体、および、グラフト重合体など、いずれの重合体であってもよい。
The polymer liquid crystalline compound containing the repeating unit (4) may further contain a repeating unit represented by the following formula (6) (also referred to as “repeating unit (6)” in the present specification). . Thereby, there are advantages such as improved solubility of the polymer liquid crystalline compound in a solvent and easy adjustment of the liquid crystal phase transition temperature.
The repeating unit (6) differs from the repeating unit (4) and the repeating unit (5) in that it does not have at least a mesogenic group.
When the polymer liquid crystalline compound contains the repeating unit (6), the polymer liquid crystalline compound is a copolymer of the repeating unit (4) and the repeating unit (5) (further, the repeating unit (5) And any other polymer such as a block polymer, an alternating polymer, a random polymer, and a graft polymer.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(6)中、P3は繰り返し単位の主鎖を表し、L3は単結合または2価の連結基を表し、SP3はスペーサー基を表し、T3は末端基を表す。
 式(6)におけるP3、L3、SP3およびT3の具体例はそれぞれ、上記式(4)におけるP1、L1、SP1およびT1と同様である。
 ここで、式(6)におけるT3は、光吸収異方性層の強度が向上する観点から、重合性基を有することが好ましい。
In formula (6), P3 represents the main chain of the repeating unit, L3 represents a single bond or a divalent linking group, SP3 represents a spacer group, and T3 represents a terminal group.
Specific examples of P3, L3, SP3 and T3 in Formula (6) are the same as P1, L1, SP1 and T1 in Formula (4), respectively.
Here, T3 in Formula (6) preferably has a polymerizable group from the viewpoint of improving the strength of the light absorption anisotropic layer.
 繰り返し単位(6)を含む場合の含有量は、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0.5~40質量%が好ましく、1~30質量%がより好ましい。
 繰り返し単位(6)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(6)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 特に、繰り返し単位(6)におけるT3が重合性基を有する場合、T3が重合性基を有する繰り返し単位(6)の含有量は、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0.5~60質量%が好ましく、1~40質量%がより好ましい。T3が重合性基を有する繰り返し単位(6)の含有量が0.5質量%以上であると、光吸収異方性層の強度がより向上する。T3が重合性基を有する繰り返し単位(6)の含有量が60質量%以下であると、配向度に優れるという利点がある。
When the repeating unit (6) is contained, the content is preferably 0.5 to 40% by mass, more preferably 1 to 30% by mass with respect to 100% by mass of all repeating units of the polymer liquid crystalline compound.
The repeating unit (6) may be included singly or in combination of two or more in the polymer liquid crystalline compound. When 2 or more types of repeating units (6) are included, the total amount is preferably within the above range.
In particular, when T3 in the repeating unit (6) has a polymerizable group, the content of the repeating unit (6) in which T3 has a polymerizable group is based on 100% by mass of all repeating units of the polymer liquid crystalline compound. 0.5 to 60% by mass is preferable, and 1 to 40% by mass is more preferable. The intensity | strength of a light absorption anisotropic layer improves more that content of the repeating unit (6) in which T3 has a polymeric group is 0.5 mass% or more. There exists an advantage that it is excellent in orientation degree as content of the repeating unit (6) in which T3 has a polymeric group is 60 mass% or less.
 液晶性組成物は、上述した成分以外に、溶媒、界面改良剤、および、重合開始剤などを含んでいてもよい。 The liquid crystal composition may contain a solvent, an interface improver, a polymerization initiator, and the like in addition to the components described above.
 光吸収異方性層の膜厚は特に限定されず、0.1~5.0μmが好ましく、0.3~1.5μmがより好ましい。液晶性組成物中の2色性物質の濃度によるが、膜厚が0.1μm以上であると、優れた吸光度の光吸収異方性層が得られ、膜厚が5.0μm以下であると、優れた透過率の光吸収異方性層が得られる。 The thickness of the light absorption anisotropic layer is not particularly limited, but is preferably 0.1 to 5.0 μm, and more preferably 0.3 to 1.5 μm. Depending on the concentration of the dichroic substance in the liquid crystal composition, when the film thickness is 0.1 μm or more, a light absorption anisotropic layer with excellent absorbance is obtained, and the film thickness is 5.0 μm or less. A light-absorbing anisotropic layer having excellent transmittance can be obtained.
 光吸収異方性層の製造方法の一例としては、上記液晶性組成物を第1配向膜上に塗布して塗膜を形成する工程(以下、「塗膜形成工程」ともいう。)と、塗膜に含まれる2色性物質を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。 As an example of the method for producing the light absorption anisotropic layer, a step of forming the coating film by applying the liquid crystalline composition on the first alignment film (hereinafter, also referred to as “coating layer forming step”), And a method of orienting a dichroic substance contained in the coating film (hereinafter also referred to as “orientation step”) in this order.
 塗膜形成工程は、上記液晶性組成物を第1配向膜上に塗布して塗膜を形成する工程である。
 上述した溶媒を含む液晶性組成物を用いたり、液晶性組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、第1配向膜上に液晶性組成物を塗布することが容易になる。
 液晶性組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
A coating film formation process is a process of apply | coating the said liquid crystalline composition on a 1st alignment film, and forming a coating film.
The liquid crystalline composition is applied on the first alignment film by using the liquid crystalline composition containing the solvent described above, or by using the liquid crystalline composition as a liquid such as a melt by heating. It becomes easy.
As a coating method of the liquid crystalline composition, a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spray method, and A known method such as an ink jet method may be used.
 配向工程は、塗膜に含まれる2色性物質を配向させる工程である。これにより、光吸収異方性層が得られる。以下の例では、2色性物質が液晶性を有する場合を例にして説明する。なお、液晶性化合物は、2色性物質と同様に配向する。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗膜から除去できる。乾燥処理は、塗膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
 ここで、液晶性組成物に含まれる2色性物質および液晶性化合物は、上述した塗膜形成工程または乾燥処理によって、配向する場合がある。例えば、液晶性組成物が溶媒を含む塗布液として調製されている態様では、塗膜を乾燥して、塗膜から溶媒を除去することで、光吸収異方性を持つ塗膜(すなわち、光吸収異方性層)が得られる。
 乾燥処理が塗膜に含まれる2色性物質の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
An orientation process is a process of orienting the dichroic substance contained in a coating film. Thereby, a light absorption anisotropic layer is obtained. In the following example, the case where the dichroic material has liquid crystal properties will be described as an example. The liquid crystal compound is aligned in the same manner as the dichroic material.
The alignment step may have a drying process. Components such as a solvent can be removed from the coating film by the drying treatment. The drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and / or blowing.
Here, the dichroic substance and the liquid crystalline compound contained in the liquid crystalline composition may be aligned by the above-described coating film forming step or drying treatment. For example, in an embodiment in which the liquid crystalline composition is prepared as a coating solution containing a solvent, the coating film is dried and the solvent is removed from the coating film, whereby a coating film having light absorption anisotropy (that is, light Absorption anisotropic layer) is obtained.
When the drying treatment is performed at a temperature equal to or higher than the transition temperature of the dichroic substance contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
 塗膜に含まれる2色性物質の液晶相への転移温度は、製造適性の面から10~250℃が好ましく、25~190℃がより好ましい。 The transition temperature of the dichroic substance contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability.
 配向工程は、加熱処理を有することが好ましい。これにより、塗膜に含まれる2色性物質を配向させることができるため、加熱処理後の塗膜を光吸収異方性層として好適に使用できる。
 加熱処理は、製造適性の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
The alignment step preferably includes heat treatment. Thereby, since the dichroic substance contained in a coating film can be orientated, the coating film after heat processing can be used conveniently as a light absorption anisotropic layer.
The heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability. The heating time is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗膜に含まれる2色性物質の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性層を得ることができる。
 なお、本態様では、塗膜に含まれる2色性物質を配向する方法として、乾燥処理および加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
The alignment process may have a cooling process performed after the heat treatment. The cooling treatment is a treatment for cooling the heated coating film to about room temperature (20 to 25 ° C.). Thereby, the orientation of the dichroic substance contained in the coating film can be fixed. The cooling means is not particularly limited and can be carried out by a known method.
The light absorption anisotropic layer can be obtained by the above steps.
In this embodiment, examples of the method for orienting the dichroic substance contained in the coating film include a drying treatment and a heat treatment. However, the method is not limited thereto, and can be performed by a known orientation treatment.
 光吸収異方性層の製造方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。これにより、耐久性により優れた光吸収異方性層が得られる。
 硬化工程は、例えば、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、光吸収異方性層に含まれる2色性物質の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって光吸収異方性層の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
The method for producing a light absorption anisotropic layer may include a step of curing the light absorption anisotropic layer (hereinafter also referred to as “curing step”) after the alignment step. Thereby, the light absorption anisotropic layer excellent in durability is obtained.
The curing step is performed, for example, by heating and / or light irradiation (exposure). Among these, it is preferable that a hardening process is implemented by light irradiation.
As a light source used for curing, various light sources such as infrared rays, visible light, and ultraviolet rays can be used, but ultraviolet rays are preferable. Moreover, you may irradiate an ultraviolet-ray while heating at the time of hardening, and may irradiate an ultraviolet-ray through the filter which permeate | transmits only a specific wavelength.
When the exposure is performed while heating, the heating temperature during the exposure is preferably 25 to 140 ° C., although it depends on the transition temperature of the dichroic substance contained in the light absorption anisotropic layer to the liquid crystal phase. .
The exposure may be performed under a nitrogen atmosphere. When curing of the light absorption anisotropic layer proceeds by radical polymerization, it is preferable to perform exposure in a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.
(第2剥離性支持体)
 第2剥離性支持体は、その表面上に後述する第2配向膜および光学異方性層Aを支持する部材であり、第2配向膜表面と剥離可能に密着する。
 第2剥離性支持体としては、第1剥離性支持体で例示した構成が挙げられ、その好適範囲は同じである。
(Second peelable support)
A 2nd peelable support body is a member which supports the 2nd alignment film and optically anisotropic layer A which are mentioned later on the surface, and adhere | attaches on the 2nd alignment film surface so that peeling is possible.
As a 2nd peelable support body, the structure illustrated by the 1st peelable support body is mentioned, The suitable range is the same.
(第2配向膜)
 第2配向膜は、第2剥離性支持体上に配置される層であり、光学異方性層中の液晶性化合物の配向方向を制御する層である。第2配向膜は、光学異方性層と共に、第2剥離性支持体から分離される。
 第2配向膜としては、第1配向膜で例示した態様が挙げられ、その好適範囲は同じである。
(Second alignment film)
A 2nd alignment film is a layer arrange | positioned on a 2nd peelable support body, and is a layer which controls the orientation direction of the liquid crystalline compound in an optically anisotropic layer. The second alignment film is separated from the second peelable support together with the optically anisotropic layer.
Examples of the second alignment film include the embodiments exemplified for the first alignment film, and the preferred ranges thereof are the same.
(光学異方性層A)
 光学異方性層Aは、第2配向膜上に配置される層である。
 光学異方性層Aは、この層を通過した光に位相差を生じさせる層である。
(Optically anisotropic layer A)
The optically anisotropic layer A is a layer disposed on the second alignment film.
The optically anisotropic layer A is a layer that causes a phase difference in the light that has passed through this layer.
 光学異方性層Aの面内レタデーションの値は特に限定されず、光学異方性層Aはいわゆるλ/4板であることが好ましい。
 λ/4板(λ/4機能を有する板)とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する光学異方性層である。より具体的には、所定の波長λnmにおける面内レタデーションがλ/4(または、この奇数倍)を示す層である。
 なかでも、波長550nmにおける面内レタデーションRe(550)は、100~200nmが好ましく、120~160nmがより好ましい。
The value of the in-plane retardation of the optically anisotropic layer A is not particularly limited, and the optically anisotropic layer A is preferably a so-called λ / 4 plate.
A λ / 4 plate (a plate having a λ / 4 function) is an optically anisotropic layer having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a layer whose in-plane retardation at a predetermined wavelength λnm exhibits λ / 4 (or an odd multiple thereof).
In particular, the in-plane retardation Re (550) at a wavelength of 550 nm is preferably 100 to 200 nm, and more preferably 120 to 160 nm.
 光学異方性層Aは、単層構造であっても、多層構造であってもよい。
 光学異方性層Aが多層構造である場合、例えば、λ/4板とλ/2板とを含む複層型の光学異方性層が挙げられる。
The optically anisotropic layer A may have a single layer structure or a multilayer structure.
When the optically anisotropic layer A has a multilayer structure, for example, a multilayer optically anisotropic layer including a λ / 4 plate and a λ / 2 plate can be used.
 光学異方性層Aは、順波長分散性(面内レタデーションが、測定波長が大きくなるにつれて小さくなる特性。)および逆波長分散性(面内レタデーションが、測定波長が大きくなるにつれて大きくなる特性。)のいずれかの性質を示し、逆波長分散性を示すことが好ましい。 The optically anisotropic layer A has forward wavelength dispersion (in-plane retardation becomes smaller as the measurement wavelength increases) and reverse wavelength dispersion (in-plane retardation becomes larger as the measurement wavelength increases). ), And preferably exhibit reverse wavelength dispersion.
 光学異方性層Aは、重合性液晶性化合物を含む光学異方性層形成用組成物を用いて形成される層であることが好ましい。より具体的には、光学異方性層形成用組成物を塗布して形成される塗膜中の重合性液晶性化合物を配向させて、その状態を固定することにより形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。 The optically anisotropic layer A is preferably a layer formed using a composition for forming an optically anisotropic layer containing a polymerizable liquid crystalline compound. More specifically, it is a layer formed by orienting a polymerizable liquid crystal compound in a coating film formed by applying a composition for forming an optically anisotropic layer and fixing the state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
 重合性液晶性化合物とは、重合性基を有する液晶性化合物である。
 重合性基の種類は特に限定されず、ラジカル重合またはカチオン重合が可能な重合性基が好ましい。
 ラジカル重合性基としては、(メタ)アクリロイル基が好ましい。
 カチオン重合性基としては、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などが挙げられる。
The polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group.
The kind of the polymerizable group is not particularly limited, and a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
As the radical polymerizable group, a (meth) acryloyl group is preferable.
Examples of the cationic polymerizable group include an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
 液晶性化合物の種類は特に限定されず、その形状から、棒状タイプ(棒状液晶性化合物)と円盤状タイプ(円盤状液晶性化合物。ディスコティック液晶性化合物)とに分類できる。さらにそれぞれ低分子タイプと高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。なお、2種以上の棒状液晶性化合物、2種以上の円盤状液晶性化合物、または、棒状液晶性化合物と円盤状液晶性化合物との混合物を用いてもよい。 The kind of the liquid crystal compound is not particularly limited, and can be classified into a rod-shaped type (bar-shaped liquid crystal compound) and a disc-shaped type (disc-shaped liquid crystal compound, discotic liquid crystal compound) according to the shape. Furthermore, there are a low molecular type and a high molecular type, respectively. Polymer generally refers to polymers having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). Note that two or more kinds of rod-like liquid crystalline compounds, two or more kinds of disc-like liquid crystalline compounds, or a mixture of a rod-like liquid crystalline compound and a disk-like liquid crystalline compound may be used.
 光学異方性層形成用組成物における重合性液晶性化合物の含有量は特に限定されず、光学異方性層形成用組成物中の全固形分に対して、75質量%以上が好ましく、80質量%以上がより好ましい。上限値は特に限定されず、100質量%が挙げられる。
 なお、上記全固形分とは、光学異方性層を形成する成分を意図し、溶媒は含まれない。
The content of the polymerizable liquid crystal compound in the composition for forming an optically anisotropic layer is not particularly limited, and is preferably 75% by mass or more based on the total solid content in the composition for forming an optically anisotropic layer. The mass% or more is more preferable. An upper limit is not specifically limited, 100 mass% is mentioned.
In addition, the said total solid content intends the component which forms an optically anisotropic layer, and a solvent is not contained.
 光学異方性層形成用組成物には、上記重合性液晶性化合物以外の他の成分が含まれていてもよい。
 光学異方性層形成用組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。
The composition for forming an optically anisotropic layer may contain other components other than the polymerizable liquid crystalline compound.
A polymerization initiator may be contained in the composition for forming an optically anisotropic layer. The polymerization initiator to be used is selected according to the type of the polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
 光学異方性層形成用組成物には、重合性モノマーが含まれていてもよい。重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。
 光学異方性層形成用組成物には、塗工の均一性の点から、界面活性剤が含まれていてもよい。界面活性剤としては、フッ素系化合物が好ましい。
 光学異方性層形成用組成物には溶媒が含まれていてもよく、溶媒としては有機溶媒が好ましい。
The composition for forming an optically anisotropic layer may contain a polymerizable monomer. Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds.
The composition for forming an optically anisotropic layer may contain a surfactant from the viewpoint of coating uniformity. As the surfactant, a fluorine-based compound is preferable.
The composition for forming an optically anisotropic layer may contain a solvent, and the solvent is preferably an organic solvent.
 さらに、光学異方性層形成用組成物には、上記成分以外に、密着改良剤、可塑剤、および、ポリマーなどが含まれていてもよい。 Furthermore, the composition for forming an optically anisotropic layer may contain an adhesion improving agent, a plasticizer, a polymer and the like in addition to the above components.
 光学異方性層Aを形成する具体的な手順の一態様としては、第2配向膜上に光学異方性層形成用組成物を塗布して、第2配向膜上に塗膜を形成して、塗膜中の重合性液晶性化合物を配向させた後、塗膜に対して硬化処理を施して光学異方性層Aを形成する方法が挙げられる。
 第2配向膜上に光学異方性層形成用組成物を塗布する方法としては、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法などが挙げられる。
 光学異方性層形成用組成物を第2配向膜上に塗布後、必要に応じて、光学異方性層形成用組成物が塗布された支持体に対して乾燥処理を施して、溶媒の除去を実施してもよい。
As one aspect of a specific procedure for forming the optically anisotropic layer A, a composition for forming an optically anisotropic layer is applied on the second alignment film, and a coating film is formed on the second alignment film. Then, after aligning the polymerizable liquid crystalline compound in the coating film, a method of forming the optically anisotropic layer A by applying a curing treatment to the coating film can be mentioned.
Examples of the method for applying the composition for forming an optically anisotropic layer on the second alignment film include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. .
After applying the composition for forming an optically anisotropic layer on the second alignment film, if necessary, the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment, Removal may be performed.
 塗膜中の重合性液晶性化合物を配向させる方法(配向処理)は特に限定されず、例えば、塗膜を加熱する方法、および、室温により塗膜を乾燥させる方法が挙げられる。配向処理で形成される液晶相は、サーモトロピック性液晶性化合物の場合、一般に温度の変化により転移させることができる。リオトロピック性液晶性化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に限定されず、加熱温度としては50~150℃が好ましく、加熱時間としては10秒間~5分間が好ましい。
The method for aligning the polymerizable liquid crystalline compound in the coating film (alignment treatment) is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature. In the case of a thermotropic liquid crystalline compound, the liquid crystal phase formed by the alignment treatment can generally be transferred by a change in temperature. In the case of a lyotropic liquid crystalline compound, it can also be transferred by a composition ratio such as the amount of solvent.
The conditions for heating the coating film are not particularly limited, and the heating temperature is preferably 50 to 150 ° C., and the heating time is preferably 10 seconds to 5 minutes.
 次に、重合性液晶性化合物が配向している塗膜に対して硬化処理を施して、光学異方性層を形成する。
 硬化処理の方法は特に限定されず、光照射処理および加熱処理が挙げられ、光照射よりが好ましい。露光の際の光の種類は特に限定されず、紫外光が好ましい。
Next, the coating film in which the polymerizable liquid crystalline compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
The method of the curing treatment is not particularly limited, and examples thereof include light irradiation treatment and heat treatment, and are preferable to light irradiation. The kind of light at the time of exposure is not specifically limited, Ultraviolet light is preferable.
 第1光学積層体には、上述した、第1剥離性支持体、第1配向膜、および、光吸収異方性層以外の他の層が含まれていてもよい。
 例えば、光吸収異方性層の第1配向膜とは反対側の表面側には、保護層がさらに配置されていてもよい。
 また、第1剥離性支持体と第1配向膜との間には、中間層が配置されていてもよい。中間層が配置される場合は、第1剥離性支持体と中間層との間で剥離が生じる。
The first optical layered body may include layers other than the first peelable support, the first alignment film, and the light absorption anisotropic layer described above.
For example, a protective layer may be further disposed on the surface side of the light absorption anisotropic layer opposite to the first alignment film.
An intermediate layer may be disposed between the first peelable support and the first alignment film. When the intermediate layer is disposed, peeling occurs between the first peelable support and the intermediate layer.
 中間層の材料は、例えば、特開平8-338913号公報明細書中の[0022]段落記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、および、ポリカーボネートなどが挙げられる。なお、シランカップリング剤も用いることができる。
 なかでも、水溶性ポリマー(例えば、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールまたは変性ポリビニルアルコールがより好ましく、変性ポリビニルアルコールがさらに好ましい。
 ポリビニルアルコールの鹸化度は、70~100%が好ましく、80~100%がより好ましい。ポリビニルアルコールの重合度は100~5000が好ましい。
Examples of the material for the intermediate layer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols, modified polyvinyl alcohols, poly (N--N) described in paragraph [0022] of JP-A-8-338913. Methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate. A silane coupling agent can also be used.
Among these, water-soluble polymers (for example, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol) are preferable, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol are more preferable, and modified polyvinyl alcohol is more preferable. .
The saponification degree of polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%. The degree of polymerization of polyvinyl alcohol is preferably 100 to 5,000.
 中間層は、架橋剤を用いて架橋されていてもよい。
 架橋剤としては、アルデヒド、N-メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール、および、ジアルデヒド澱粉が挙げられる。
 架橋剤の具体例としては、例えば、特開2002-062426号公報明細書中の[0023]段落~[0024]段落記載の化合物が挙げられる。
 架橋剤としては、反応活性の高い点から、アルデヒドが好ましく、グルタルアルデヒドがより好ましい。
 架橋剤は、2種以上を併用してもよい。
 架橋剤の添加量は、ポリマーに対して、0.1~20質量%が好ましく、0.5~15質量%がより好ましい。中間層に残存する未反応の架橋剤の含有量は、中間層全質量に対して、1.0質量%以下が好ましく、0.5質量%以下がより好ましい。
The intermediate layer may be crosslinked using a crosslinking agent.
Examples of the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole, and dialdehyde starch.
Specific examples of the crosslinking agent include compounds described in paragraphs [0023] to [0024] in JP-A-2002-062426.
As a crosslinking agent, an aldehyde is preferable and glutaraldehyde is more preferable from the viewpoint of high reaction activity.
Two or more crosslinking agents may be used in combination.
The addition amount of the crosslinking agent is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 15% by mass, based on the polymer. The content of the unreacted crosslinking agent remaining in the intermediate layer is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less, based on the total mass of the intermediate layer.
 中間層の形成方法としては、形成材料である上記ポリマー、架橋剤、および、必要に応じて添加される添加剤を含む溶液を基材(例えば、第1剥離性支持体)上に塗布した後、加熱乾燥(架橋させ)する方法が挙げられる。
 架橋反応は、溶液を塗布した後、任意の時期に行なってよい。
 ポリビニルアルコールのような水溶性ポリマーを用いる場合、溶媒としては消泡作用のある有機溶媒(例、メタノール)と水との混合溶媒が好ましい。水とメタノールとの混合質量比率(水:メタノール)は、0:100~99:1が好ましく、0:100~91:9がより好ましい。上記混合質量比率であれば、泡の発生がより抑えられ、中間層、さらには、光吸収異方性層および光学異方層の層表面の欠陥が著しく減少する。
As a method for forming the intermediate layer, a solution containing the polymer as a forming material, a crosslinking agent, and an additive that is added as necessary is applied on a substrate (for example, a first peelable support). And a method of drying by heating (crosslinking).
The crosslinking reaction may be performed at any time after the solution is applied.
When a water-soluble polymer such as polyvinyl alcohol is used, the solvent is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water. The mixing mass ratio of water and methanol (water: methanol) is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9. If it is the said mixing mass ratio, generation | occurrence | production of a bubble will be suppressed more and the defect of the layer surface of an intermediate | middle layer and also a light absorption anisotropic layer and an optically anisotropic layer will reduce remarkably.
 上記溶液の塗布方法としては、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、または、ロールコーティング法が好ましく、ロッドコーティング法がより好ましい。
 加熱乾燥の温度は、20~110℃が好ましく。充分な架橋を形成する点で、60~100℃がより好ましく、80~100℃がさらに好ましい。
 加熱乾燥の時間は、1分間~36時間が好ましく、1~30分間がより好ましい。
 溶液のpHは、使用する架橋剤に応じて最適な値が選択され、例えば、グルタルアルデヒドを使用した場合は、4.5~5.5が好ましい。
As a method for applying the solution, a spin coating method, a dip coating method, a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method is preferable, and a rod coating method is more preferable.
The drying temperature is preferably 20 to 110 ° C. From the viewpoint of forming sufficient crosslinks, the temperature is more preferably 60 to 100 ° C, and further preferably 80 to 100 ° C.
The drying time is preferably 1 minute to 36 hours, more preferably 1 to 30 minutes.
The optimum pH of the solution is selected according to the crosslinking agent to be used. For example, when glutaraldehyde is used, it is preferably 4.5 to 5.5.
 第2光学積層体には、上述した、第2剥離性支持体と、第2配向膜と、光学異方性層A以外の他の層が含まれていてもよい。
 例えば、光学異方性層Aの第2配向膜とは反対側の表面側には、保護層がさらに配置されていてもよい。
 また、第2剥離性支持体と第2配向膜との間には、中間層が配置されていてもよい。中間層が配置される場合は、第2剥離性支持体と中間層との間で剥離が生じる。
The second optical layered body may include a layer other than the above-described second peelable support, the second alignment film, and the optically anisotropic layer A.
For example, a protective layer may be further disposed on the surface side of the optically anisotropic layer A opposite to the second alignment film.
An intermediate layer may be disposed between the second peelable support and the second alignment film. When the intermediate layer is disposed, peeling occurs between the second peelable support and the intermediate layer.
(工程の手順)
 本工程では、第1光学積層体の光吸収異方性層側の表面と、第2光学積層体の光学異方性層A側の表面とが対向するように、第1光学積層体と第2光学積層体とを積層し、第1剥離性支持体を剥離して積層体Xを得る。
 本工程においては、第1光学積層体と第2光学積層体とを積層させた直後に、第1剥離性支持体を剥離してもよいし、第1光学積層体と第2光学積層体とを積層させた後、所定時間経過後、積層体から第1剥離性支持体を剥離してもよい。なお、第1光学積層体と第2光学積層体とを積層させた直後に、第1剥離性支持体を剥離する方法としては、例えば、第1光学積層体と第2光学積層体とをローラー間に通して両者を積層した後、ローラーから積層体が出た直後に第1剥離性支持体を剥離する方法が挙げられる。
(Process procedure)
In this step, the first optical laminate and the first optical laminate are arranged so that the surface on the light absorption anisotropic layer side of the first optical laminate faces the surface on the optical anisotropic layer A side of the second optical laminate. Two optical laminates are laminated, and the first peelable support is peeled off to obtain a laminate X.
In this step, immediately after laminating the first optical laminate and the second optical laminate, the first peelable support may be peeled, or the first optical laminate and the second optical laminate After laminating, after the predetermined time has elapsed, the first peelable support may be peeled from the laminate. In addition, immediately after laminating | stacking a 1st optical laminated body and a 2nd optical laminated body, as a method of peeling a 1st peelable support body, a 1st optical laminated body and a 2nd optical laminated body are made into a roller, for example. There is a method in which the first peelable support is peeled off immediately after the laminated body comes out of the roller after laminating both.
 第1光学積層体と第2光学積層体とを積層する方法は特に限定されず、公知の方法が挙げられる。例えば、加熱および/または加圧したローラーまたは平板で圧着または加熱圧着して、両者を貼り付ける方法が挙げられる。
 また、第1光学積層体と第2光学積層体とを積層する(貼り合せる)際には、必要に応じて、密着層(貼合層)を介して積層してもよい。
 密着層を形成する成分としては、粘着剤であっても、接着剤であってもよい。つまり、密着層は、粘着剤を用いて形成される層(粘着剤層)でも、接着剤を用いて形成される層(接着剤層)でもよい。
The method for laminating the first optical layered body and the second optical layered body is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
Moreover, when laminating (bonding) the first optical laminated body and the second optical laminated body, the first optical laminated body and the second optical laminated body may be laminated via an adhesion layer (bonding layer) as necessary.
The component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
 第1光学積層体と第2光学積層体とを積層する際、第1光学積層体中の光吸収異方性層の偏光軸(吸収軸と直交する軸)と光学異方性層中の遅相軸とのなす角度が、45°±10°であることが好ましい。 When laminating the first optical laminate and the second optical laminate, the polarization axis of the light absorption anisotropic layer in the first optical laminate (axis perpendicular to the absorption axis) and the retardation in the optical anisotropic layer The angle formed with the phase axis is preferably 45 ° ± 10 °.
 また、第1剥離性支持体を剥離する方法は特に限定されず、公知の方法が挙げられる。例えば、第1剥離性支持体と第1配向膜との間につめを差し込んで剥離のきっかけを与え、第1剥離性支持体を第1配向膜から遠ざかるように移動させながら、両者を分離する方法が挙げられる。 Further, the method for peeling the first peelable support is not particularly limited, and a known method may be mentioned. For example, a claw is inserted between the first peelable support and the first alignment film to give a trigger for peeling, and the first peelable support is moved away from the first alignment film, and the two are separated. A method is mentioned.
 なお、第1実施形態においては、第1剥離性支持体の剥離力が、後述する第2剥離性支持体の剥離力よりも小さい。第1剥離性支持体の剥離力が、第2剥離性支持体の剥離力よりも大きい場合、第1剥離性支持体の剥離の際に、第2剥離性支持体の剥離が生じるおそれがあり、所定の光学積層体が得られない。
 なお、第1剥離性支持体の剥離力とは、第1剥離性支持体と、第1剥離性支持体が隣接する層との間の剥離力(剥離強度)であり、その大きさが小さいほど第1剥離性支持体が剥離しやすいことを表す。なお、第1剥離性支持体が隣接する層としては、例えば、図1に示す形態においては、第1配向膜が該当する。
 第1剥離性支持体の剥離力の測定方法としては、第1光学積層体を150mm×25mmに裁断し、得られた試料の光吸収異方性層側をガラス基板に80mm×25mm部分のみ貼合し、25℃環境下にて、速度300mm/分で第1剥離性支持体を90°方向に剥離したときの剥離力をテンシロン万能材料試験機(オリエンテック社製)にて測定する。
In the first embodiment, the peel force of the first peelable support is smaller than the peel force of the second peelable support described later. When the peelability of the first peelable support is greater than the peelability of the second peelable support, the second peelable support may be peeled when the first peelable support is peeled off. A predetermined optical layered product cannot be obtained.
The peel strength of the first peelable support is the peel force (peel strength) between the first peelable support and the layer adjacent to the first peelable support, and its size is small. It represents that a 1st peelable support body is easy to peel. In addition, as a layer which a 1st peelable support body adjoins, in the form shown in FIG. 1, a 1st orientation film corresponds, for example.
As a method for measuring the peel strength of the first peelable support, the first optical laminate is cut into 150 mm × 25 mm, and the light absorption anisotropic layer side of the obtained sample is pasted on the glass substrate only at the 80 mm × 25 mm portion. The peel strength when the first peelable support is peeled in the 90 ° direction at a speed of 300 mm / min in a 25 ° C. environment is measured with a Tensilon universal material tester (Orientec).
 第1剥離性支持体の剥離力は特に制限されないが、0.05~0.50N/25mmの場合が多く、なかでも、0.10~0.50N/25mmが好ましく、0.20~0.50N/25mmがより好ましい。
 第1剥離性支持体の剥離力が0.50N/25mm以下であると、ロールツーロール方式によって第1剥離性支持体を剥離する際に、試料の破断が生じにくく、かつ、装置への負荷がかかりにくく、ラインが停止するなどの製造故障が発生しづらい。また、第1剥離性支持体の剥離力が0.10N/25mm以上であると、長尺状の試料の搬送途中で第1剥離性支持体の剥離が生じにくく、取り扱い性に優れる。
The peel strength of the first peelable support is not particularly limited, but it is often 0.05 to 0.50 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00. 50 N / 25 mm is more preferable.
When the peeling force of the first peelable support is 0.50 N / 25 mm or less, when the first peelable support is peeled by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is difficult to cause manufacturing failures such as line stoppage. Moreover, when the peeling force of the first peelable support is 0.10 N / 25 mm or more, the first peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
 なお、第1実施形態においては、第1剥離性支持体の剥離力は、第1光学積層体と第2光学積層体との積層体における第1剥離性支持体と第1配向膜との間以外の各層間の剥離力よりも小さいことが好ましい。 In the first embodiment, the peeling force of the first peelable support is between the first peelable support and the first alignment film in the laminate of the first optical laminate and the second optical laminate. It is preferable that it is smaller than the peeling force between each other layers.
 上記手順によって、第1配向膜、光吸収異方性層、光学異方性層、第2配向膜、および、第2剥離性支持体をこの順に有する積層体Xが得られる。 According to the above procedure, a laminate X having the first alignment film, the light absorption anisotropic layer, the optical anisotropic layer, the second alignment film, and the second peelable support in this order is obtained.
<工程1-2>
 工程1-2は、積層体Xの第1配向膜側の表面に表面フィルムを積層し、第2剥離性支持体を剥離して、表面フィルム、光吸収異方性層、および、光学異方性層Aを有する光学積層体を得る工程である。
 より具体的には、本工程においては、図3に示すように、第1配向膜14、光吸収異方性層16、光学異方性層A22、第2配向膜24、および、第2剥離性支持体26をこの順に有する積層体X30と、ハードコート層42および基材44をこの順に有する表面フィルム40とを用意する。次に、図4に示すように、積層体X30の第1配向膜14側の表面と、表面フィルム40の基材44側の表面とが対向するように、積層体X30と表面フィルム40とを積層し、第2剥離性支持体26を剥離して、ハードコート層42、基材44、第1配向膜14、光吸収異方性層16、光学異方性層A22、および、第2配向膜24をこの順に有する光学積層体50を得る。
 なお、図3および図4においては、表面フィルム40がハードコート層42および基材44を有する形態について述べるが、後述するように表面フィルム40はこの形態に限定されない。
 以下では、まず、本工程で用いられる各部材について詳述し、その後、工程の手順について詳述する。
<Step 1-2>
Step 1-2 includes laminating a surface film on the surface of the laminate X on the first alignment film side, peeling the second peelable support, and forming the surface film, the light absorption anisotropic layer, and the optical anisotropic This is a step of obtaining an optical layered body having the conductive layer A.
More specifically, in this step, as shown in FIG. 3, the first alignment film 14, the light absorption anisotropic layer 16, the optical anisotropic layer A22, the second alignment film 24, and the second peeling. The laminated body X30 which has the property support body 26 in this order, and the surface film 40 which has the hard-coat layer 42 and the base material 44 in this order are prepared. Next, as shown in FIG. 4, the laminate X30 and the surface film 40 are placed so that the surface of the laminate X30 on the first alignment film 14 side and the surface of the surface film 40 on the substrate 44 side face each other. The second peelable support 26 is laminated, and the hard coat layer 42, the base material 44, the first alignment film 14, the light absorption anisotropic layer 16, the optical anisotropic layer A22, and the second alignment are peeled off. An optical laminated body 50 having the film 24 in this order is obtained.
3 and 4, a mode in which the surface film 40 includes the hard coat layer 42 and the base material 44 will be described, but the surface film 40 is not limited to this mode as described later.
Below, each member used at this process is explained in full detail first, and the procedure of a process is explained in full detail after that.
(表面フィルム)
 表面フィルムは、第1配向膜上に配置される層であり、通常、得られる光学積層体中の最も外側に配置される。
 上述したように、図3および4においては、表面フィルムがハードコート層および基材を有する態様について述べる。
(Surface film)
A surface film is a layer arrange | positioned on a 1st alignment film, and is normally arrange | positioned in the outermost part in the optical laminated body obtained.
As described above, FIGS. 3 and 4 describe an embodiment in which the surface film has a hard coat layer and a substrate.
 基材を構成する材料としては、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、グルタル酸無水物系樹脂、グルタルイミド系樹脂、セルロース系樹脂、ポリエステル系樹脂およびこれらから選ばれた複数種の樹脂の混合樹脂が挙げられ、なかでも、環状ポリオレフィン系樹脂、(メタ)アクリル系樹脂、または、ポリエステル系樹脂が好ましい。
 基材は、紫外線吸収剤を含んでいてもよい。
Materials constituting the substrate include (meth) acrylic resins, polycarbonate resins, polystyrene resins, polyolefin resins, cyclic polyolefin resins, glutaric anhydride resins, glutarimide resins, cellulose resins, polyesters And mixed resins of a plurality of types of resins selected from these resins, and among them, cyclic polyolefin resins, (meth) acrylic resins, or polyester resins are preferable.
The base material may contain an ultraviolet absorber.
 (メタ)アクリル系樹脂は、メタクリル系樹脂、アクリル系樹脂の他に、主鎖に環構造を有する(メタ)アクリル系重合体も含み、ラクトン環を有する重合体、無水コハク酸環を有する無水マレイン酸系重合体、無水グルタル酸環を有する重合体、グルタルイミド環含有重合体を含む。 (Meth) acrylic resins include methacrylic resins and acrylic resins, as well as (meth) acrylic polymers having a ring structure in the main chain, polymers having a lactone ring, and anhydrides having a succinic anhydride ring. A maleic acid polymer, a polymer having a glutaric anhydride ring, and a glutarimide ring-containing polymer are included.
 ハードコート層は、光学積層体に硬度または耐傷性を付与するための層である。ハードコート層は、例えば、ハードコート層形成用組成物を基材上に塗布し、硬化させることによって形成できる。
 また、他の機能を付加することを目的として、ハードコート層上に、他の機能層を積層してもよい。また、ハードコート層にフィラーまたは添加剤を加えることで、機械的、電気的、または、光学的な物理的な性能、および、撥水・撥油性などの化学的な性能をハードコート層自体に付与できる。
 ハードコート層は、耐擦傷性に優れるのが好ましい。具体的には、耐擦傷性の指標となる鉛筆硬度試験を実施した場合に、3H以上を達成するのが好ましい。
 ハードコート層の厚みは、0.1~6μmが好ましく、3~6μmがより好ましい。
The hard coat layer is a layer for imparting hardness or scratch resistance to the optical laminate. A hard-coat layer can be formed by apply | coating the composition for hard-coat layer formation on a base material, and making it harden | cure, for example.
Moreover, you may laminate | stack another functional layer on a hard-coat layer for the purpose of adding another function. In addition, by adding fillers or additives to the hard coat layer, the mechanical, electrical, or optical physical performance, and chemical performance such as water and oil repellency are added to the hard coat layer itself. Can be granted.
The hard coat layer is preferably excellent in scratch resistance. Specifically, it is preferable to achieve 3H or higher when a pencil hardness test that is an index of scratch resistance is performed.
The thickness of the hard coat layer is preferably from 0.1 to 6 μm, more preferably from 3 to 6 μm.
 ハードコート層は、硬化性組成物を硬化することで形成するのが好ましい。硬化性組成物は、液状の塗布組成物として調製されるのが好ましい。硬化性組成物の一例は、マトリックス形成バインダー用モノマー、オリゴマー、または、ポリマーと、有機溶媒とを含む。 The hard coat layer is preferably formed by curing the curable composition. The curable composition is preferably prepared as a liquid coating composition. An example of the curable composition includes a monomer for forming a matrix binder, an oligomer, or a polymer, and an organic solvent.
 得られる光学積層体のKnoop硬度は、235N/mm以上が好ましく、270N/mm以上がより好ましく、270~330N/mmがさらに好ましい。 Knoop hardness of the resulting optical laminate is preferably 235N / mm 2 or more, more preferably 270N / mm 2 or more, more preferably 270 ~ 330N / mm 2.
 上述したように、本発明において表面フィルムは基材とハードコート層とを有する態様に限定されず、例えば、基材のみであってもよい、ハードコート層のみであってもよい。 As described above, in the present invention, the surface film is not limited to an embodiment having a substrate and a hard coat layer, and may be, for example, only the substrate or only the hard coat layer.
(工程の手順)
 本工程では、積層体Xの第1配向膜側の表面に表面フィルムを積層し、第2剥離性支持体を剥離して、表面フィルム、光吸収異方性層、および、光学異方性層Aを有する光学積層体を得る。
 本工程においては、積層体Xと表面フィルムとを積層させた直後に、第2剥離性支持体を剥離してもよいし、積層体Xと表面フィルムとを積層させた後、所定時間経過後、得られた積層体から第2剥離性支持体を剥離してもよい。なお、積層体Xと表面フィルムとを積層させた直後に、第2剥離性支持体を剥離する方法としては、例えば、積層体Xと表面フィルムとをローラー間に通して両者を積層した後、ローラーから積層体が出た直後に第2剥離性支持体を剥離する方法が挙げられる。
(Process procedure)
In this step, the surface film is laminated on the surface of the laminate X on the first alignment film side, the second peelable support is peeled off, and the surface film, the light absorption anisotropic layer, and the optical anisotropic layer An optical laminate having A is obtained.
In this step, the second peelable support may be peeled immediately after the laminate X and the surface film are laminated, or after a predetermined time has elapsed after the laminate X and the surface film are laminated. The second peelable support may be peeled from the obtained laminate. In addition, as a method of peeling the second peelable support immediately after laminating the laminate X and the surface film, for example, after laminating the laminate X and the surface film between rollers, The method of peeling a 2nd peelable support body immediately after a laminated body comes out from a roller is mentioned.
 積層体Xと表面フィルムとを積層する方法は特に限定されず、公知の方法が挙げられる。例えば、加熱および/または加圧したローラーまたは平板で圧着または加熱圧着して、両者を貼り付ける方法が挙げられる。
 また、積層体Xと表面フィルムとを積層する(貼り合せる)際には、必要に応じて、密着層(貼合層)を介して積層してもよい。
 密着層を形成する成分としては、粘着剤であっても、接着剤であってもよい。つまり、密着層は、粘着剤を用いて形成される層(粘着剤層)でも、接着剤を用いて形成される層(接着剤層)でもよい。
The method for laminating the laminate X and the surface film is not particularly limited, and examples thereof include known methods. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
Moreover, when laminating | stacking the laminated body X and a surface film (bonding), you may laminate | stack via an adhesion layer (bonding layer) as needed.
The component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
 また、第2剥離性支持体を剥離する方法は特に限定されず、公知の方法が挙げられる。例えば、第2剥離性支持体と第2配向膜との間につめを差し込んで剥離のきっかけを与え、第2剥離性支持体を第2配向膜から遠ざかるように移動させながら、両者を分離する方法が挙げられる。
 第2剥離性支持体の剥離力の測定方法としては、第2光学積層体を150mm×25mmに裁断し、得られた試料の光学異方性層A側をガラス基板に80mm×25mm部分のみ貼合し、25℃環境下にて、速度300mm/分で第2剥離性支持体を90°方向に剥離したときの剥離力をテンシロン万能材料試験機(オリエンテック社製)にて測定する。
Moreover, the method of peeling a 2nd peelable support body is not specifically limited, A well-known method is mentioned. For example, a claw is inserted between the second peelable support and the second alignment film to give a trigger for peeling, and the second peelable support is moved away from the second alignment film while separating the two. A method is mentioned.
As a method for measuring the peel strength of the second peelable support, the second optical laminate is cut into 150 mm × 25 mm, and the optically anisotropic layer A side of the obtained sample is pasted on the glass substrate only at the 80 mm × 25 mm portion. Then, in a 25 ° C. environment, the peel force when the second peelable support is peeled in the 90 ° direction at a speed of 300 mm / min is measured with a Tensilon universal material tester (Orientec).
 第2剥離性支持体の剥離力は特に制限されないが、0.10~4.00N/25mmの場合が多く、なかでも、0.10~0.50N/25mmが好ましく、0.20~0.50N/25mmがより好ましい。
 第2剥離性支持体の剥離力が0.50N/25mm以下であると、ロールツーロール方式によって第2剥離性支持体を剥離する際に、試料の破断が生じにくく、かつ、装置への負荷がかかりにくく、ラインが停止するなどの製造故障が発生しづらい。また、第2剥離性支持体の剥離力が0.10N/25mm以上であると、長尺状の試料の搬送途中で第2剥離性支持体の剥離が生じにくく、取り扱い性に優れる。
The peel strength of the second peelable support is not particularly limited, but it is often 0.10 to 4.00 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00. 50 N / 25 mm is more preferable.
When the peeling force of the second peelable support is 0.50 N / 25 mm or less, when the second peelable support is peeled off by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is hard to cause manufacturing failure such as line stoppage. Moreover, when the peeling force of the second peelable support is 0.10 N / 25 mm or more, the second peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
 なお、第1実施形態においては、第2剥離性支持体の剥離力は、積層体Xと表面フィルムとの積層体における第2剥離性支持体と第2配向膜との間以外の各層間の剥離力よりも小さいことが好ましい。 In the first embodiment, the peel strength of the second peelable support is between each layer other than between the second peelable support and the second alignment film in the laminate of the laminate X and the surface film. It is preferably smaller than the peeling force.
 なお、工程1-1および工程1-2は、いわゆるロールツーロール方式にて、各種光学積層体の積層、および、剥離性支持体の剥離を実施してもよい。 In addition, in step 1-1 and step 1-2, various optical laminates may be laminated and a peelable support may be peeled by a so-called roll-to-roll method.
 上記手順によって、表面フィルム、光吸収異方性層、および、光学異方性層Aをこの順に有する光学積層体が得られる。
 光学異方性層Aがλ/4板である場合、得られる光学積層体はいわゆる円偏光板として機能し得る。
 なお、光学積層体は、表面フィルム、光吸収異方性層、および、光学異方性層A以外の層を有していてもよい。例えば、光学積層体は、光学異方性層Aの光吸収異方性層側とは反対側の表面側に密着層を有していてもよい。後述するように、この密着層を介して、光学積層体を表示素子上に固定できる。
By the above procedure, an optical laminate having a surface film, a light absorption anisotropic layer, and an optical anisotropic layer A in this order is obtained.
When the optically anisotropic layer A is a λ / 4 plate, the obtained optical laminate can function as a so-called circularly polarizing plate.
In addition, the optical laminated body may have layers other than the surface film, the light absorption anisotropic layer, and the optical anisotropic layer A. For example, the optical layered body may have an adhesion layer on the surface side opposite to the light absorption anisotropic layer side of the optical anisotropic layer A. As will be described later, the optical layered body can be fixed on the display element through this adhesion layer.
 上述した光学積層体は、表示素子上に配置されて、外光反射の防止機能を表示素子に付与できる。特に、上述したように、光学異方性層Aがλ/4板である場合、その効果に優れる。
 具体的には、図5に示すように、表示装置60は、光学積層体50と、表示素子62とを含む。表示装置60は、ハードコート層42側から観察者が視認する。
 以下では、主に、表示素子62について詳述する。
The optical layered body described above is disposed on the display element, and can provide the display element with a function of preventing external light reflection. In particular, as described above, when the optically anisotropic layer A is a λ / 4 plate, the effect is excellent.
Specifically, as shown in FIG. 5, the display device 60 includes an optical laminate 50 and a display element 62. The viewer visually recognizes the display device 60 from the hard coat layer 42 side.
Hereinafter, the display element 62 will be mainly described in detail.
 表示素子の種類は特に限定されず、例えば、有機EL(エレクトロルミネッセンス)表示素子、および、液晶表示素子などの画像表示素子が挙げられ、有機EL表示素子が好適に用いられる。
 有機EL表示素子の構成は特に限定されず、通常、有機発光層と、有機発光層を挟持する一対の電極とを少なくとも含む。
The type of the display element is not particularly limited, and examples thereof include organic EL (electroluminescence) display elements and image display elements such as liquid crystal display elements, and organic EL display elements are preferably used.
The configuration of the organic EL display element is not particularly limited, and usually includes at least an organic light emitting layer and a pair of electrodes that sandwich the organic light emitting layer.
 表示装置の製造方法は特に限定されず、密着層を介して、光学積層体および表示素子を積層する方法が挙げられる。 The production method of the display device is not particularly limited, and examples thereof include a method of laminating the optical laminate and the display element via an adhesion layer.
<<第2実施形態>>
 以下、本発明の光学積層体の製造方法の第2実施形態について図面を用いて説明する。
 本発明の光学積層体の製造方法の第2実施形態は、後述する工程2-1~工程2-3を有する。
 以下、各工程について詳述する。
<< Second Embodiment >>
Hereinafter, a second embodiment of the method for producing an optical layered body of the present invention will be described with reference to the drawings.
The second embodiment of the method for producing an optical layered body of the present invention includes steps 2-1 to 2-3 described later.
Hereinafter, each process is explained in full detail.
<工程2-1>
 工程2-1は、第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の光学異方性層A側の表面と、第3剥離性支持体と、光学異方性層Bとをこの順に有する第3光学積層体の光学異方性層B側の表面とが対向するように、第2光学積層体と第3光学積層体とを積層し、第2剥離性支持体を剥離して積層体Yを得る工程である。
 より具体的には、本工程においては、図6に示すように、第2剥離性支持体26と、第2配向膜24と、光学異方性層A22とをこの順に有する第2光学積層体20、および、光学異方性層B72と第3剥離性支持体74とをこの順に有する第3光学積層体70を用意する。次に、図7に示すように、第2光学積層体20の光学異方性層A22側の表面と、第3光学積層体70の光学異方性層B72側の表面とが対向するように、第2光学積層体20と第3光学積層体70とを積層し、第2剥離性支持体26を剥離して積層体Y80を得る。
 以下では、まず、本工程で用いられる各部材について詳述し、その後、工程の手順について詳述する。
 なお、第2光学積層体を構成する各部材に関しては、第1実施形態で説明した通りであり、その説明を省略する。
<Step 2-1>
Step 2-1 includes the step of the second optical laminate having the second peelable support, the second alignment film, and the optically anisotropic layer A in this order on the optically anisotropic layer A side, The second optical laminate and the third optical laminate so that the surface of the third optical laminate having the peelable support and the optically anisotropic layer B in this order faces the optically anisotropic layer B side. Is laminated, and the second peelable support is peeled off to obtain the laminate Y.
More specifically, in this step, as shown in FIG. 6, the second optical laminate having the second peelable support 26, the second alignment film 24, and the optically anisotropic layer A22 in this order. 20, and a third optical laminate 70 having the optically anisotropic layer B72 and the third peelable support 74 in this order are prepared. Next, as shown in FIG. 7, the surface on the optical anisotropic layer A22 side of the second optical laminate 20 and the surface on the optical anisotropic layer B72 side of the third optical laminate 70 are opposed to each other. The second optical laminate 20 and the third optical laminate 70 are laminated, and the second peelable support 26 is peeled off to obtain a laminate Y80.
Below, each member used at this process is explained in full detail first, and the procedure of a process is explained in full detail after that.
In addition, about each member which comprises a 2nd optical laminated body, it is as having demonstrated in 1st Embodiment, The description is abbreviate | omitted.
(第3剥離性支持体)
 第3剥離性支持体は、その表面上に後述する光学異方性層Bを支持する部材であり、第2配向膜表面と剥離可能に密着する。
 第3剥離性支持体としては、第1剥離性支持体で例示した構成が挙げられ、その好適範囲は同じである。
(Third peelable support)
A 3rd peelable support body is a member which supports the optically anisotropic layer B mentioned later on the surface, and adhere | attaches on the 2nd alignment film surface so that peeling is possible.
Examples of the third peelable support include the configurations exemplified for the first peelable support, and the preferred ranges thereof are the same.
(光学異方性層B)
 光学異方性層Bは、第3剥離性支持体上に配置される層である。
 光学異方性層Bは、この層を通過した光に位相差を生じさせる層である。
(Optically anisotropic layer B)
The optically anisotropic layer B is a layer disposed on the third peelable support.
The optically anisotropic layer B is a layer that causes a phase difference in the light that has passed through this layer.
 光学異方性層Bの面内レタデーションの値は特に限定されず、光学異方性層Bはλ/4板またはλ/2板であってもよい。
 なかでも、光学異方性層Bとしては、ポジティブCプレートであることが好ましい。
 なお、光学異方性層BがポジティブCプレートである場合、波長550nmにおける面内レタデーションは、0~5nmが好ましい。
 また、光学異方性層Bの厚み方向のレタデーションの値は特に限定されず、光学異方性層BがCプレートである場合、波長550nmにおける厚み方向のレタデーションは、-300~0nmが好ましく、-200~-60nmがより好ましい。
The value of the in-plane retardation of the optically anisotropic layer B is not particularly limited, and the optically anisotropic layer B may be a λ / 4 plate or a λ / 2 plate.
Among these, the optically anisotropic layer B is preferably a positive C plate.
When the optically anisotropic layer B is a positive C plate, the in-plane retardation at a wavelength of 550 nm is preferably 0 to 5 nm.
Further, the value of retardation in the thickness direction of the optically anisotropic layer B is not particularly limited. When the optically anisotropic layer B is a C plate, the retardation in the thickness direction at a wavelength of 550 nm is preferably −300 to 0 nm. -200 to -60 nm is more preferable.
 Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
There are two types of C plates, a positive C plate (positive C plate) and a negative C plate (negative C plate). The positive C plate satisfies the relationship of the formula (C1). The relationship of Formula (C2) is satisfied. The positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
Formula (C1) nz> nx≈ny
Formula (C2) nz <nx≈ny
The above “≈” includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means that, for example, (nx−ny) × d (where d is the thickness of the film) is included in “nx≈ny” when 0 to 10 nm, preferably 0 to 5 nm. It is.
 光学異方性層Bは、単層構造であっても、多層構造であってもよい。 The optically anisotropic layer B may have a single layer structure or a multilayer structure.
 光学異方性層Bは、重合性液晶性化合物を含む光学異方性層形成用組成物を用いて形成される層であることが好ましい。より具体的には、光学異方性層形成用組成物を塗布して形成される塗膜中の重合性液晶性化合物を配向させて、その状態を固定することにより形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
 光学異方性層形成用組成物に含まれ得る各成分(重合性液晶性化合物、重合開始剤など)としては、光学異方性層Aの形成に使用される光学異方性層形成用組成物に含まれ得る成分と同じであり、その好適態様も同じである。
 また、光学異方性層Bの製造方法は、光学異方性層Aの製造方法と同様の手順が挙げられる。
The optically anisotropic layer B is preferably a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystalline compound. More specifically, it is a layer formed by orienting a polymerizable liquid crystal compound in a coating film formed by applying a composition for forming an optically anisotropic layer and fixing the state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
As each component (polymerizable liquid crystalline compound, polymerization initiator, etc.) that can be contained in the composition for forming an optically anisotropic layer, the composition for forming an optically anisotropic layer used for forming the optically anisotropic layer A is used. It is the same as the component which can be contained in a thing, The suitable aspect is also the same.
Moreover, the manufacturing method of the optically anisotropic layer B includes the same procedure as the manufacturing method of the optically anisotropic layer A.
 第3光学積層体には、上述した、第3剥離性支持体、および、光学異方性層B以外の他の層が含まれていてもよい。
 例えば、第3剥離性支持体と光学異方性層Bとの間には、第3配向膜が含まれていてもよい。第3配向膜としては、第1配向膜で例示した態様が挙げられ、その好適範囲は同じである。
 また、例えば、光学異方性層Bの第3剥離性支持体とは反対側の表面側には、保護層がさらに配置されていてもよい。
The third optical layered body may include layers other than the third peelable support and the optically anisotropic layer B described above.
For example, a third alignment film may be included between the third peelable support and the optically anisotropic layer B. Examples of the third alignment film include the embodiments exemplified for the first alignment film, and the preferred ranges thereof are the same.
Further, for example, a protective layer may be further disposed on the surface side of the optically anisotropic layer B opposite to the third peelable support.
(工程の手順)
 本工程では、第2光学積層体の光学異方性層A側の表面と、第3光学積層体の光学異方性層B側の表面とが対向するように、第2光学積層体と第3光学積層体とを積層し、第2剥離性支持体を剥離して積層体Yを得る。
 本工程においては、第2光学積層体と第3光学積層体とを積層させた直後に、第2剥離性支持体を剥離してもよいし、第2光学積層体と第3光学積層体とを積層させた後、所定時間経過後に、得られた積層体から第2剥離性支持体を剥離してもよい。なお、第2光学積層体と第3光学積層体とを積層させた直後に、第2剥離性支持体を剥離する方法としては、例えば、第2光学積層体と第3光学積層体とをローラー間に通して両者を積層した後、ローラーから積層体が出た直後に第2剥離性支持体を剥離する方法が挙げられる。
(Process procedure)
In this step, the second optical laminate and the second optical laminate are arranged so that the surface on the optical anisotropic layer A side of the second optical laminate and the surface on the optical anisotropic layer B side of the third optical laminate face each other. Three optical laminates are laminated, and the second peelable support is peeled off to obtain a laminate Y.
In this step, the second peelable support may be peeled immediately after the second optical laminate and the third optical laminate are laminated, or the second optical laminate and the third optical laminate After laminating, the second peelable support may be peeled from the obtained laminate after a predetermined time has elapsed. In addition, immediately after laminating | stacking a 2nd optical laminated body and a 3rd optical laminated body, as a method of peeling a 2nd peelable support body, a 2nd optical laminated body and a 3rd optical laminated body are made into a roller, for example. There is a method of peeling the second peelable support immediately after the laminated body comes out from the roller after laminating both in between.
 第2光学積層体と第3光学積層体とを積層する方法は特に限定されず、公知の方法が挙げられる。例えば、加熱および/または加圧したローラーまたは平板で圧着または加熱圧着して、両者を貼り付ける方法が挙げられる。
 また、第2光学積層体と第3光学積層体とを積層する(貼り合せる)際には、必要に応じて、密着層(貼合層)を介して積層してもよい。
 密着層を形成する成分としては、粘着剤であっても、接着剤であってもよい。つまり、密着層は、粘着剤を用いて形成される層(粘着剤層)でも、接着剤を用いて形成される層(接着剤層)でもよい。
The method for laminating the second optical laminated body and the third optical laminated body is not particularly limited, and a known method can be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
Moreover, when laminating (bonding) the second optical laminated body and the third optical laminated body, they may be laminated via an adhesion layer (bonding layer) as necessary.
The component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
 また、第2剥離性支持体を剥離する方法は特に限定されず、公知の方法が挙げられる。例えば、第2剥離性支持体と第2配向膜との間につめを差し込んで剥離のきっかけを与え、第2剥離性支持体を第2配向膜から遠ざかるように移動させながら、両者を分離する方法が挙げられる。 Further, the method for peeling the second peelable support is not particularly limited, and a known method can be mentioned. For example, a claw is inserted between the second peelable support and the second alignment film to give a trigger for peeling, and the second peelable support is moved away from the second alignment film, and the two are separated. A method is mentioned.
 なお、本第2実施形態において、第2剥離性支持体の剥離力が、後述する第3剥離性支持体の剥離力よりも小さい。第2剥離性支持体の剥離力が、第3剥離性支持体の剥離力よりも大きい場合、第2剥離性支持体の剥離の際に、第3剥離性支持体の剥離が生じるおそれがあり、所定の光学積層体が得られない。
 なお、第2剥離性支持体の剥離力とは、第2剥離性支持体と、第2剥離性支持体が隣接する層との間の剥離力(剥離強度)であり、その大きさが小さいほど第2剥離性支持体が剥離しやすいことを表す。なお、第2剥離性支持体が隣接する層としては、例えば、図6に示す形態においては、第2配向膜が該当する。
 第2剥離性支持体の剥離力の測定方法は、上述した通りである。
 また、第2剥離性支持体の剥離力の範囲は、第1実施形態で述べた範囲が好ましい。
In the second embodiment, the peel force of the second peelable support is smaller than the peel force of the third peelable support described later. When the peelability of the second peelable support is greater than the peelability of the third peelable support, the third peelable support may be peeled when the second peelable support is peeled off. A predetermined optical layered product cannot be obtained.
The peel strength of the second peelable support is the peel force (peel strength) between the second peelable support and the layer adjacent to the second peelable support, and its size is small. It represents that the second peelable support is easily peeled. In addition, as a layer which a 2nd peelable support body adjoins, in the form shown in FIG. 6, for example, a 2nd alignment film corresponds.
The measuring method of the peeling force of the second peelable support is as described above.
Further, the range of the peeling force of the second peelable support is preferably the range described in the first embodiment.
 なお、第2実施形態においては、第2剥離性支持体の剥離力は、第2光学積層体と第3光学積層体との積層体中における第2剥離性支持体と第2配向膜との間以外の各層間の剥離力よりも小さいことが好ましい。 In the second embodiment, the peel strength of the second peelable support is the second peelable support in the laminate of the second optical laminate and the third optical laminate and the second alignment film. It is preferable that it is smaller than the peeling force between each layer other than between.
 上記手順によって、第2配向膜、光学異方性層A、光学積層体B、および、第3剥離性支持体をこの順に有する積層体Yが得られる。 According to the above procedure, a laminate Y having the second alignment film, the optically anisotropic layer A, the optical laminate B, and the third peelable support in this order is obtained.
<工程2-2>
 工程2-2は、積層体Yの第2配向膜側の表面と、第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の光吸収異方性層側の表面とが対向するように、積層体Yと第1光学積層体とを積層し、第1剥離性支持体を剥離して積層体Zを得る工程である。
 より具体的には、本工程においては、図8に示すように、第1剥離性支持体12と、第1配向膜14と、光吸収異方性層16とをこの順に有する第1光学積層体10、および、第2配向膜24と、光学異方性層A22と、光学異方性層B72と、第3剥離性支持体74とをこの順に有する積層体Y80を用意する。次に、図9に示すように、第1光学積層体10の光吸収異方性層16側の表面と、積層体Y80の第2配向膜24側の表面とが対向するように、第1光学積層体10と積層体Y80とを積層し、第1剥離性支持体12を剥離して積層体Y90を得る。
 本工程で用いられる第1光学積層体を構成する各部材に関しては、第1実施形態で説明した通りであり、その説明を省略する。
<Step 2-2>
Step 2-2 is a step of forming the first optical laminated body having the surface of the laminated body Y on the second alignment film side, the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order. In this step, the laminated body Y and the first optical laminated body are laminated so that the surface on the light absorption anisotropic layer side faces, and the first peelable support is peeled off to obtain the laminated body Z.
More specifically, in this step, as shown in FIG. 8, the first optical laminate having the first peelable support 12, the first alignment film 14, and the light absorption anisotropic layer 16 in this order. A laminate Y80 having the body 10, the second alignment film 24, the optically anisotropic layer A22, the optically anisotropic layer B72, and the third peelable support 74 in this order is prepared. Next, as shown in FIG. 9, the first optical laminate 10 is arranged such that the surface on the light absorption anisotropic layer 16 side of the first optical laminate 10 and the surface on the second alignment film 24 side of the laminate Y80 face each other. The optical laminated body 10 and the laminated body Y80 are laminated | stacked, the 1st peelable support body 12 is peeled, and the laminated body Y90 is obtained.
About each member which comprises the 1st optical laminated body used at this process, it is as having demonstrated in 1st Embodiment, The description is abbreviate | omitted.
(工程の手順)
 本工程では、積層体Yの第2配向膜側の表面と、第1光学積層体の光吸収異方性層側の表面とが対向するように、積層体Yと第1光学積層体とを積層し、第1剥離性支持体を剥離して積層体Zを得る。
 本工程においては、積層体Yと第1光学積層体とを積層させた直後に、第1剥離性支持体を剥離してもよいし、積層体Yと第1光学積層体とを積層させた後、所定時間経過後に、得られた積層体から第1剥離性支持体を剥離してもよい。なお、積層体Yと第1光学積層体とを積層させた直後に、第1剥離性支持体を剥離する方法としては、例えば、積層体Yと第1光学積層体とをローラー間に通して両者を積層した後、ローラーから積層体が出た直後に第1剥離性支持体を剥離する方法が挙げられる。
(Process procedure)
In this step, the laminated body Y and the first optical laminated body are arranged so that the surface on the second alignment film side of the laminated body Y faces the surface on the light absorption anisotropic layer side of the first optical laminated body. It laminates | stacks and the 1st peelable support body is peeled, and the laminated body Z is obtained.
In this step, immediately after the laminate Y and the first optical laminate are laminated, the first peelable support may be peeled off, or the laminate Y and the first optical laminate are laminated. Thereafter, the first peelable support may be peeled from the obtained laminate after a predetermined time has elapsed. In addition, immediately after laminating the laminated body Y and the 1st optical laminated body, as a method of peeling a 1st peelable support body, let the laminated body Y and a 1st optical laminated body pass between rollers, for example. After laminating both, the method of peeling a 1st peelable support body immediately after a laminated body comes out from a roller is mentioned.
 積層体Yと第1光学積層体とを積層する方法は特に限定されず、公知の方法が挙げられる。例えば、加熱および/または加圧したローラーまたは平板で圧着または加熱圧着して、両者を貼り付ける方法が挙げられる。
 また、積層体Yと第1光学積層体とを積層する(貼り合せる)際には、必要に応じて、密着層(貼合層)を介して積層してもよい。
 密着層を形成する成分としては、粘着剤であっても、接着剤であってもよい。つまり、密着層は、粘着剤を用いて形成される層(粘着剤層)でも、接着剤を用いて形成される層(接着剤層)でもよい。
The method for laminating the laminate Y and the first optical laminate is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
Further, when the laminated body Y and the first optical laminated body are laminated (bonded), they may be laminated through an adhesion layer (bonding layer) as necessary.
The component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
 また、第1剥離性支持体を剥離する方法は特に限定されず、公知の方法が挙げられる。例えば、第1剥離性支持体と第1配向膜との間につめを差し込んで剥離のきっかけを与え、第1剥離性支持体を第1配向膜から遠ざかるように移動させながら、両者を分離する方法が挙げられる。
 なお、本第2実施形態において、第1剥離性支持体の剥離力が、後述する第3剥離性支持体の剥離力よりも小さい。第1剥離性支持体の剥離力が、第3剥離性支持体の剥離力よりも大きい場合、第1剥離性支持体の剥離の際に、第3剥離性支持体の剥離が生じるおそれがあり、所定の光学積層体が得られない。
 なお、第1剥離性支持体の剥離力とは、第1剥離性支持体と、第1剥離性支持体が隣接する層との間の剥離力(剥離強度)であり、その大きさが小さいほど第1剥離性支持体が剥離しやすいことを表す。なお、第2剥離性支持体が隣接する層としては、例えば、図8に示す形態においては、第1配向膜が該当する。
 第1剥離性支持体の剥離力の測定方法は、上述した通りである。
 また、第1剥離性支持体の剥離力の範囲は、第1実施形態で述べた範囲が好ましい。
Moreover, the method of peeling a 1st peelable support body is not specifically limited, A well-known method is mentioned. For example, a claw is inserted between the first peelable support and the first alignment film to give a trigger for peeling, and the first peelable support is moved away from the first alignment film, and the two are separated. A method is mentioned.
In the second embodiment, the peel force of the first peelable support is smaller than the peel force of the third peelable support described later. When the peel strength of the first peelable support is greater than the peel strength of the third peelable support, the third peelable support may be peeled when the first peelable support is peeled off. A predetermined optical layered product cannot be obtained.
The peel strength of the first peelable support is the peel force (peel strength) between the first peelable support and the layer adjacent to the first peelable support, and its size is small. It represents that a 1st peelable support body is easy to peel. In addition, as a layer which a 2nd peelable support body adjoins, in the form shown in FIG. 8, for example, a 1st alignment film corresponds.
The measuring method of the peeling force of the first peelable support is as described above.
Further, the range of the peel force of the first peelable support is preferably the range described in the first embodiment.
 なお、第2実施形態においては、第1剥離性支持体の剥離力は、積層体Yと第1光学積層体との積層体中における第1剥離性支持体と第1配向膜との間以外の各層間の剥離力よりも小さいことが好ましい。 In the second embodiment, the peel strength of the first peelable support is other than between the first peelable support and the first alignment film in the laminate of the laminate Y and the first optical laminate. It is preferable that it is smaller than the peeling force between these layers.
 上記手順によって、第1配向膜、光吸収異方性層、第2配向膜、光学異方性層A、光学積層体B、および、第3剥離性支持体をこの順に有する積層体Zが得られる。 By the above procedure, a laminate Z having the first alignment film, the light absorption anisotropic layer, the second alignment film, the optical anisotropic layer A, the optical laminate B, and the third peelable support in this order is obtained. It is done.
<工程2-3>
 工程2-3は、積層体Zの第1配向膜側の表面に表面フィルムを積層し、第3剥離性支持体を剥離して、表面フィルム、光吸収異方性層、光学異方性層Aおよび光学異方性層Bを有する光学積層体を得る工程である。
 より具体的には、本工程においては、図10に示すように、第1配向膜14、光吸収異方性層16、第2配向膜24,光学異方性層A22、光学異方性層B72、および、第3剥離性支持体74をこの順に有する積層体Z90と、ハードコート層42および基材44をこの順に有する表面フィルム40とを用意する。次に、図11に示すように、積層体Y90の第1配向膜14側の表面と、表面フィルム40の基材44側の表面とが対向するように、積層体Y90と表面フィルム40とを積層し、第3剥離性支持体74を剥離して、ハードコート層42、基材44、第1配向膜14、光吸収異方性層16、第2配向膜24、光学異方性層A22、および、光学異方性層B72をこの順に有する光学積層体100を得る。
 なお、図10および図11においては、表面フィルム40がハードコート層42および基材44を有する形態について述べたが、上述したように、表面フィルム40はこの形態に限定されない。
 本工程で用いられる表面フィルムを構成する各部材に関しては、第1実施形態で説明した通りであり、その説明を省略する。
<Step 2-3>
Step 2-3 is a step of laminating a surface film on the surface of the laminated body Z on the first alignment film side, peeling the third peelable support, and forming the surface film, the light absorption anisotropic layer, the optical anisotropic layer In this step, an optical laminate having A and an optically anisotropic layer B is obtained.
More specifically, in this step, as shown in FIG. 10, the first alignment film 14, the light absorption anisotropic layer 16, the second alignment film 24, the optical anisotropic layer A22, the optical anisotropic layer A laminate Z90 having B72 and a third peelable support 74 in this order, and a surface film 40 having the hard coat layer 42 and the base material 44 in this order are prepared. Next, as shown in FIG. 11, the laminate Y90 and the surface film 40 are so arranged that the surface of the laminate Y90 on the first alignment film 14 side and the surface of the surface film 40 on the substrate 44 side face each other. The third peelable support 74 is laminated, and the hard coat layer 42, the base material 44, the first alignment film 14, the light absorption anisotropic layer 16, the second alignment film 24, and the optical anisotropic layer A22 are peeled off. And the optical laminated body 100 which has the optically anisotropic layer B72 in this order is obtained.
10 and 11, the form in which the surface film 40 has the hard coat layer 42 and the base material 44 has been described. However, as described above, the surface film 40 is not limited to this form.
About each member which comprises the surface film used at this process, it is as having demonstrated in 1st Embodiment, The description is abbreviate | omitted.
(工程の手順)
 本工程では、積層体Zの第1配向膜側の表面に表面フィルムを積層し、第3剥離性支持体を剥離して、表面フィルム、光吸収異方性層、光学異方性層A、および、光学異方性層Bを有する光学積層体を得る。
 本工程においては、積層体Zと表面フィルムとを積層させた直後に、第3剥離性支持体を剥離してもよいし、積層体Zと表面フィルムとを積層させた後、所定時間経過後、得られた積層体から第3剥離性支持体を剥離してもよい。なお、積層体Zと表面フィルムとを積層させた直後に、第3剥離性支持体を剥離する方法としては、例えば、積層体Zと表面フィルムとをローラー間に通して両者を積層した後、ローラーから積層体が出た直後に第3剥離性支持体を剥離する方法が挙げられる。
(Process procedure)
In this step, a surface film is laminated on the surface of the laminate Z on the first alignment film side, the third peelable support is peeled off, and the surface film, the light absorption anisotropic layer, the optical anisotropic layer A, And the optical laminated body which has the optically anisotropic layer B is obtained.
In this step, the third peelable support may be peeled immediately after the laminate Z and the surface film are laminated, or after a predetermined time has elapsed after the laminate Z and the surface film are laminated. The third peelable support may be peeled from the obtained laminate. In addition, immediately after laminating the laminate Z and the surface film, as a method of peeling the third peelable support, for example, after laminating the laminate Z and the surface film between rollers, The method of peeling a 3rd peelable support body immediately after a laminated body comes out from a roller is mentioned.
 積層体Zと表面フィルムとを積層する方法は特に限定されず、公知の方法が挙げられる。例えば、加熱および/または加圧したローラーまたは平板で圧着または加熱圧着して、両者を貼り付ける方法が挙げられる。
 また、積層体Zと表面フィルムとを積層する(貼り合せる)際には、必要に応じて、密着層(貼合層)を介して積層してもよい。
 密着層を形成する成分としては、粘着剤であっても、接着剤であってもよい。つまり、密着層は、粘着剤を用いて形成される層(粘着剤層)でも、接着剤を用いて形成される層(接着剤層)でもよい。
The method for laminating the laminate Z and the surface film is not particularly limited, and a known method may be mentioned. For example, there may be mentioned a method in which both are bonded by pressure or thermocompression bonding with a heated and / or pressurized roller or flat plate.
Moreover, when laminating the laminated body Z and the surface film (bonding), you may laminate | stack via an adhesion layer (bonding layer) as needed.
The component forming the adhesion layer may be an adhesive or an adhesive. That is, the adhesion layer may be a layer (adhesive layer) formed using an adhesive or a layer (adhesive layer) formed using an adhesive.
 また、第3剥離性支持体を剥離する方法は特に限定されず、公知の方法が挙げられる。例えば、第3剥離性支持体と光学異方性層Bとの間につめを差し込んで剥離のきっかけを与え、第3剥離性支持体を光学異方性層Bから遠ざかるように移動させながら、両者を分離する方法が挙げられる。 Further, the method for peeling the third peelable support is not particularly limited, and a known method can be mentioned. For example, a claw is inserted between the third peelable support and the optically anisotropic layer B to provide a trigger for peeling, and while moving the third peelable support away from the optically anisotropic layer B, A method for separating the two is mentioned.
 第3剥離性支持体の剥離力の測定方法としては、第3光学積層体を150mm×25mmに裁断し、得られた試料の光学異方性層B側をガラス基板に80mm×25mm部分のみ貼合し、25℃環境下にて、速度300mm/分で第3剥離性支持体を90°方向に剥離したときの剥離力をテンシロン万能材料試験機(オリエンテック社製)にて測定する。
 第3剥離性支持体の剥離力は特に制限されないが、0.10~4.00N/25mmの場合が多く、なかでも、0.10~0.50N/25mmが好ましく、0.20~0.50N/25mmがより好ましい。
 第3剥離性支持体の剥離力が0.50N/25mm以下であると、ロールツーロール方式によって第3剥離性支持体を剥離する際に、試料の破断が生じにくく、かつ、装置への負荷がかかりにくく、ラインが停止するなどの製造故障が発生しづらい。また、第3剥離性支持体の剥離力が0.10N/25mm以上であると、長尺状の試料の搬送途中で第3剥離性支持体の剥離が生じにくく、取り扱い性に優れる。
As a method for measuring the peel strength of the third peelable support, the third optical laminate is cut into 150 mm × 25 mm, and the optically anisotropic layer B side of the obtained sample is pasted on the glass substrate only at the 80 mm × 25 mm portion. Then, in a 25 ° C. environment, the peeling force when peeling the third peelable support in the 90 ° direction at a speed of 300 mm / min is measured with a Tensilon universal material testing machine (Orientec Co., Ltd.).
The peel strength of the third peelable support is not particularly limited, but it is often 0.10 to 4.00 N / 25 mm, particularly preferably 0.10 to 0.50 N / 25 mm, and 0.20 to 0.00. 50 N / 25 mm is more preferable.
When the peeling force of the third peelable support is 0.50 N / 25 mm or less, when the third peelable support is peeled off by the roll-to-roll method, the sample is hardly broken and the load on the apparatus It is hard to cause manufacturing failure such as line stoppage. Further, when the peeling force of the third peelable support is 0.10 N / 25 mm or more, the third peelable support is hardly peeled off during the conveyance of the long sample, and the handleability is excellent.
 なお、第2実施形態においては、第3剥離性支持体の剥離力は、積層体Zと表面フィルムとの積層体における第3剥離性支持体と光学異方性層Bとの間以外の各層間の剥離力よりも小さいことが好ましい。 In addition, in 2nd Embodiment, the peeling force of a 3rd peelable support body is each other than between the 3rd peelable support body and optically anisotropic layer B in the laminated body of the laminated body Z and a surface film. It is preferable that it is smaller than the peeling force between layers.
 なお、工程2-1~工程2-3は、いわゆるロールツーロール方式にて、各種光学積層体の積層、および、剥離性支持体の剥離を実施してもよい。 In steps 2-1 to 2-3, various optical laminates may be laminated and the peelable support may be peeled off by a so-called roll-to-roll method.
 上記手順によって、表面フィルム、光吸収異方性層、光学異方性層A、および、光学異方性層Bをこの順に有する光学積層体が得られる。
 光学異方性層Aがλ/4板であり、光学異方性層BがポジティブCプレートである場合、得られる光学積層体はいわゆる円偏光板としてより効果的に機能する。
 なお、光学積層体は、表面フィルム、光吸収異方性層、光学積層体A、および、光学異方性層B以外の層を有していてもよい。例えば、光学積層体は、光学異方性層Bの光学異方性層A側とは反対側の表面側に密着層を有していてもよい。後述するように、この密着層を介して、光学積層体を表示素子上に固定できる。
By the above procedure, an optical laminate having a surface film, a light absorption anisotropic layer, an optical anisotropic layer A, and an optical anisotropic layer B in this order is obtained.
When the optically anisotropic layer A is a λ / 4 plate and the optically anisotropic layer B is a positive C plate, the obtained optical laminate functions more effectively as a so-called circularly polarizing plate.
The optical layered body may have a layer other than the surface film, the light absorption anisotropic layer, the optical layered body A, and the optical anisotropic layer B. For example, the optical layered body may have an adhesion layer on the surface side of the optically anisotropic layer B opposite to the optically anisotropic layer A side. As will be described later, the optical layered body can be fixed on the display element through this adhesion layer.
 上述した光学積層体は、表示素子上に配置されて、外光反射の防止機能を表示素子に付与できる。特に、上述したように、光学異方性層Aがλ/4板であり、光学異方性層BがポジティブCプレートである場合、その効果に優れる。
 具体的には、図12に示すように、表示装置110は、光学積層体100と、表示素子62とを含む。表示装置110は、ハードコート層42側から観察者が視認する。
 表示素子の構成は、第1実施態様で説明した通りである。
The optical layered body described above is disposed on the display element, and can provide the display element with a function of preventing external light reflection. In particular, as described above, when the optically anisotropic layer A is a λ / 4 plate and the optically anisotropic layer B is a positive C plate, the effect is excellent.
Specifically, as shown in FIG. 12, the display device 110 includes an optical laminate 100 and a display element 62. The display device 110 is visually recognized by the observer from the hard coat layer 42 side.
The configuration of the display element is as described in the first embodiment.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing contents, and processing procedures shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below.
<剥離力の評価>
 後段で示す、各光学積層体中の剥離性支持体の剥離力は、以下の手順に従って測定した。
 光学積層体を150mm×25mmに裁断し、得られた試料の光吸収異方性層側または光学異方性層をガラス基板に80mm×25mm部分のみを貼合した。次に、25℃環境下にて、速度300mm/分で試料中の剥離性支持体を90°方向に剥離したときの剥離力を、テンシロン万能材料試験機(オリエンテック社製)にて測定した。
<Evaluation of peel strength>
The peel force of the peelable support in each optical laminate shown in the latter part was measured according to the following procedure.
The optical laminate was cut into 150 mm × 25 mm, and the light absorption anisotropic layer side or the optical anisotropic layer of the obtained sample was bonded to the glass substrate only at the 80 mm × 25 mm portion. Next, in a 25 ° C. environment, the peel force when the peelable support in the sample was peeled in the 90 ° direction at a speed of 300 mm / min was measured with a Tensilon universal material tester (Orientec). .
<試料101~107の作製>
(試料101の作製)
 透明支持体として厚み40μmのセルロースアシレートフィルム11(フィルム11)(TG40、富士フイルム社製)を用い、透明支持体上に中間層形成用組成物1を#8のワイヤーバーで連続的に塗布した。その後、中間層形成用組成物1が塗布された透明支持体を100℃の温風で2分間乾燥することにより、透明支持体上に中間層(厚み:0.8μm)を形成した。
 なお、中間層形成用組成物1での変性ポリビニルアルコールの固形分濃度は4質量%であった。
 また、フィルム11が、剥離性支持体に該当する。
―――――――――――――――――――――――――
中間層形成用組成物1
―――――――――――――――――――――――――
下記の変性ポリビニルアルコール
水 70質量部
メタノール 30質量部
―――――――――――――――――――――――――
<Preparation of Samples 101 to 107>
(Preparation of sample 101)
Using a cellulose acylate film 11 (film 11) (TG40, manufactured by Fuji Film Co., Ltd.) having a thickness of 40 μm as a transparent support, the intermediate layer forming composition 1 is continuously applied onto the transparent support with a # 8 wire bar. did. Then, the intermediate support (thickness: 0.8 micrometer) was formed on the transparent support body by drying the transparent support body with which the composition 1 for intermediate | middle layer formation was apply | coated with 100 degreeC warm air for 2 minutes.
The solid content concentration of the modified polyvinyl alcohol in the intermediate layer forming composition 1 was 4% by mass.
Moreover, the film 11 corresponds to a peelable support.
―――――――――――――――――――――――――
Intermediate layer forming composition 1
―――――――――――――――――――――――――
The following modified polyvinyl alcohol water 70 parts by mass Methanol 30 parts by mass ―――――――――――――――――――――――――
 変性ポリビニルアルコール Modified polyvinyl alcohol
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 下記構造の光配向材料E-1(1質量部)に、ブトキシエタノール(41.6質量部)、ジプロピレングリコールモノメチル(41.6質量部)、および、純水(15.8質量部)を加え、得られた溶液を0.45μmメンブレンフィルターで加圧ろ過して、光配向膜形成用組成物1を調製した。
 次いで、得られた光配向膜形成用組成物1を上記中間層1上に塗布し、60℃で1分間乾燥した。その後、得られた塗膜に、偏光紫外線露光装置を用いて直線偏光紫外線(照度4.5mW、照射量400mJ/cm)を照射し、配向膜11を得た。
To photoalignment material E-1 (1 part by mass) having the following structure, butoxyethanol (41.6 parts by mass), dipropylene glycol monomethyl (41.6 parts by mass), and pure water (15.8 parts by mass) were added. In addition, the obtained solution was pressure filtered through a 0.45 μm membrane filter to prepare composition 1 for forming a photo-alignment film.
Subsequently, the obtained composition 1 for photo-alignment film formation was apply | coated on the said intermediate | middle layer 1, and it dried at 60 degreeC for 1 minute. Thereafter, the obtained coating film was irradiated with linearly polarized ultraviolet light (illuminance: 4.5 mW, irradiation amount: 400 mJ / cm 2 ) using a polarized ultraviolet light exposure apparatus to obtain an alignment film 11.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 得られた配向膜11上に、下記の液晶性組成物(光吸収異方性層形成用組成物)11を#4のワイヤーバーで連続的に塗布し、塗膜を得た。次に、塗膜を140℃で90秒間加熱し、室温(23℃)になるまで冷却した。次に、得られた塗膜を80℃で60秒間加熱し、再び室温になるまで冷却した。その後、得られた塗膜に対して、高圧水銀灯を用いて照度28mW/cmの照射条件で60秒間照射して、配向膜11上に光吸収異方性層11を作製し、試料101を得た。
――――――――――――――――――――――――――――――――
液晶性組成物11
――――――――――――――――――――――――――――――――
・下記イエローアゾ色素Y-1            7.1質量部
・下記シアンアゾ色素D-1             9.1質量部
・下記高分子液晶性化合物P-1         101.1質量部
・重合開始剤IRGACURE819(BASF社製) 1.0質量部
・下記界面改良剤F-1               0.3質量部
・シクロペンタノン               617.0質量部
・テトラヒドロフラン              264.4質量部
――――――――――――――――――――――――――――――――
On the resulting alignment film 11, the following liquid crystalline composition (light absorption anisotropic layer forming composition) 11 was continuously applied with a # 4 wire bar to obtain a coating film. Next, the coating film was heated at 140 ° C. for 90 seconds and cooled to room temperature (23 ° C.). Next, the obtained coating film was heated at 80 ° C. for 60 seconds and cooled again to room temperature. Thereafter, the obtained coating film was irradiated for 60 seconds under an irradiation condition of illuminance of 28 mW / cm 2 using a high-pressure mercury lamp to produce a light absorption anisotropic layer 11 on the alignment film 11, and a sample 101 was prepared. Obtained.
――――――――――――――――――――――――――――――――
Liquid crystalline composition 11
――――――――――――――――――――――――――――――――
-7.1 parts by weight of the following yellow azo dye Y-1-9.1 parts by weight of the following cyanazo dye D-1-101.1 parts by weight of the following polymer liquid crystalline compound P-1-Polymerization initiator IRGACURE819 (manufactured by BASF) 1.0 part by mass, the following surface modification agent F-1 0.3 part by mass, cyclopentanone 617.0 parts by mass, tetrahydrofuran 264.4 parts by mass -------- ――――――――――――――――
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(試料102の作製)
 液晶性組成物11の高分子液晶性化合物P-1の代わりに、等質量の下記高分子液晶性化合物P-2が含まれる液晶性組成物12を、液晶性組成物11の代わりに用いた以外は、(試料101の作製)と同様の手順に従って、光吸収異方性層12を有する試料102を得た。
(Preparation of sample 102)
Instead of the liquid crystal composition P-1 of the liquid crystal composition 11, a liquid crystal composition 12 containing an equal mass of the following polymer liquid crystal compound P-2 was used instead of the liquid crystal composition 11. Except for the above, a sample 102 having the light absorption anisotropic layer 12 was obtained according to the same procedure as in (Preparation of Sample 101).
高分子液晶性化合物P-2 Polymer liquid crystalline compound P-2
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(試料103の作製)
 液晶性組成物12中のイエローアゾ色素Y-1の代わりに、等質量の下記イエローアゾ色素Y-2を含む液晶性組成物13を、液晶性組成物11の代わりに用いた以外は、(試料101の作製)と同様の手順に従って、光吸収異方性層13を有する試料103を得た。
(Preparation of sample 103)
A liquid crystal composition 13 containing an equal mass of the following yellow azo dye Y-2 instead of the yellow azo dye Y-1 in the liquid crystal composition 12 was used in place of the liquid crystal composition 11 ( The sample 103 having the light absorption anisotropic layer 13 was obtained according to the same procedure as in the preparation of the sample 101).
 イエローアゾ色素Y-2 Yellow azo dye Y-2
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(試料104の作製)
 液晶性組成物13中のシアンアゾ色素D-1の代わりに、等質量の下記シアンアゾ色素D-2を含む液晶性組成物14を、液晶性組成物11の代わりに用いた以外は、(試料101の作製)と同様の手順に従って、光吸収異方性層14を有する試料104を得た。
(Preparation of sample 104)
Except that the liquid crystalline composition 14 containing an equal mass of the following cyanazo dye D-2 in place of the cyanazo dye D-1 in the liquid crystalline composition 13 was used in place of the liquid crystalline composition 11 (Sample 101 The sample 104 having the light-absorbing anisotropic layer 14 was obtained according to the same procedure as in (Preparation)
 シアンアゾ色素D-2 Cyanazo dye D-2
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(試料105の作製)
 液晶性組成物14中の高分子液晶性化合物P-1の代わりに、等質量の下記高分子液晶性化合物P-3を含む液晶性組成物15を、液晶性組成物11の代わりに用いた以外は、(試料101の作製)と同様の手順に従って、光吸収異方性層15を有する試料105を得た。
(Preparation of sample 105)
Instead of the liquid crystal composition P-1 in the liquid crystal composition 14, a liquid crystal composition 15 containing an equal mass of the following polymer liquid crystal compound P-3 was used instead of the liquid crystal composition 11. Except for the above, a sample 105 having the light absorption anisotropic layer 15 was obtained according to the same procedure as in (Preparation of Sample 101).
高分子液晶性化合物P-3 Polymer liquid crystalline compound P-3
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(試料106の作製)
 下記光配向ポリマーE-2(2質量部)およびo-キシレン(98質量部)を混合し、80℃で1時間撹拌して、配向膜形成用組成物12を得た。
(Preparation of sample 106)
The following photo-alignment polymer E-2 (2 parts by mass) and o-xylene (98 parts by mass) were mixed and stirred at 80 ° C. for 1 hour to obtain an alignment film forming composition 12.
光配向ポリマーE-2 Photo-alignment polymer E-2
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 (試料101の作製)の際の得た中間層1上に、上記配向膜形成用組成物12を塗布した。配向膜形成用組成物12が塗布された透明支持体を100℃で2分間乾燥した後、得られた塗膜に偏光紫外線照射(20mJ/cm、波長313nm基準)を1回施して、配向膜12を作製した。
 得られた配向膜12上に、(試料104の作製)の際に用いた液晶性組成物14を用いて、試料104の作製の手順と同じ方法にて、試料106を得た。
The alignment film-forming composition 12 was applied on the intermediate layer 1 obtained in the (preparation of the sample 101). After the transparent support coated with the alignment film forming composition 12 was dried at 100 ° C. for 2 minutes, the obtained coating film was irradiated once with polarized ultraviolet light (20 mJ / cm 2 , wavelength 313 nm standard) and aligned. A film 12 was produced.
A sample 106 was obtained on the obtained alignment film 12 by using the liquid crystalline composition 14 used in (Preparation of Sample 104) by the same method as the preparation procedure of Sample 104.
(試料107の作製)
 Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)記載の方法で、下記式で表される液晶性化合物M-1を合成した。
(Preparation of sample 107)
Lube et al. Rec1. Trav. Chim. A liquid crystalline compound M-1 represented by the following formula was synthesized by the method described in Pays-Bas, 115, 321-328 (1996).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 次いで、上記式で表される液晶性化合物M-1の合成方法を参考に、下記式で表される液晶性化合物M-2を合成した。 Next, a liquid crystalline compound M-2 represented by the following formula was synthesized with reference to a synthesis method of the liquid crystalline compound M-1 represented by the above formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 下記の成分を混合し、80℃で1時間撹拌することで、液晶性組成物17を調製した。 The following components were mixed and stirred at 80 ° C. for 1 hour to prepare liquid crystal composition 17.
―――――――――――――――――――――――――――――――
液晶性組成物17
―――――――――――――――――――――――――――――――
液晶性化合物M-1                50部質量部
液晶性化合物M-2                50部質量部
下記アゾ色素D-3                2.5質量部
下記アゾ色素D-4                2.5質量部
下記アゾ色素D-5                2.5質量部
重合開始剤イルガキュア369(BASF社製)     6質量部
ポリアクリレート化合物
(BYK-361N;BYK-Chemie社製)  1.2質量部
O-キシレン                   250質量部
―――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――
Liquid crystalline composition 17
―――――――――――――――――――――――――――――――
Liquid crystalline compound M-1 50 parts by mass Liquid crystalline compound M-2 50 parts by mass Azo dye D-3 2.5 parts by mass Azo dye D-4 2.5 parts by mass Azo dye D-5 5 parts by mass polymerization initiator Irgacure 369 (manufactured by BASF) 6 parts by mass polyacrylate compound (BYK-361N; manufactured by BYK-Chemie) 1.2 parts by mass O-xylene 250 parts by mass ――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 (試料106の作製)の際に作製した配向膜12上に、液晶性組成物17を膜厚が1.8μmになるように塗布して、塗膜を形成した。その後、塗膜が配置された積層体を110℃で2分間加熱乾燥した後、紫外線照射装置を用いて、露光量1000mJ/cm(波長365nm基準)を照射し、光吸収異方性層17を有する試料107を得た。 A liquid crystal composition 17 was applied on the alignment film 12 produced during (Production of Sample 106) so as to have a film thickness of 1.8 μm to form a coating film. Thereafter, the laminate on which the coating film is disposed is heat-dried at 110 ° C. for 2 minutes, and then irradiated with an exposure dose of 1000 mJ / cm 2 (based on a wavelength of 365 nm) using an ultraviolet irradiation device, and the light absorption anisotropic layer 17. A sample 107 having was obtained.
<配向度の評価>
 光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の光源側に直線偏光子を挿入した状態で、光吸収異方性層を含む試料101~107をそれぞれサンプル台にセットし、マルチチャンネル分光器(Ocean Optics社製、製品名「QE65000」)を用いて、400~700nmの波長域における光吸収異方性層の吸光度を測定し、以下の式により配向度を算出した。結果を下記表1に示す。
  配向度:S=[(Az0/Ay0)-1]/[(Az0/Ay0)+2]
  Az0:光吸収異方性層の吸収軸方向の偏光に対する吸光度
  Ay0:光吸収異方性層の偏光軸方向の偏光に対する吸光度
<Evaluation of orientation>
With a linear polarizer inserted on the light source side of an optical microscope (product name “ECLIPSE E600 POL” manufactured by Nikon Corporation), each of the samples 101 to 107 including the light absorption anisotropic layer is set on the sample stage and Using a channel spectrometer (product name “QE65000” manufactured by Ocean Optics, Inc.), the absorbance of the light absorption anisotropic layer in the wavelength region of 400 to 700 nm was measured, and the degree of orientation was calculated by the following equation. The results are shown in Table 1 below.
Orientation degree: S = [(Az0 / Ay0) -1] / [(Az0 / Ay0) +2]
Az0: Absorbance with respect to polarized light in the absorption axis direction of the light absorption anisotropic layer Ay0: Absorbance with respect to polarization in the polarization axis direction of the light absorption anisotropic layer
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1の結果から、式(4)に示す高分子液晶性化合物のlogP値の差が4以上である高分子液晶性化合物P-1およびP-2(いずれも4.4)は、logP値の差が1未満である高分子液晶性化合物P-3(0.89)より配向性に優れていた。 From the results shown in Table 1, the high molecular liquid crystalline compounds P-1 and P-2 (both 4.4) in which the difference in the log P value of the high molecular liquid crystalline compound represented by the formula (4) is 4 or more have a log P value. The orientation was superior to that of the polymer liquid crystalline compound P-3 (0.89) having a difference of less than 1.
<第1光学積層体の作製>
 第1光学積層体として、光学積層体111~112を以下の手順に従って作製した。
<Production of first optical laminate>
As the first optical laminate, optical laminates 111 to 112 were produced according to the following procedure.
(光学積層体111の作製)
 試料104中の光吸収異方性層14上に、下記保護層組成物1を#2のワイヤーバーで連続的に塗布し、60℃で5分間乾燥を行った。
 その後、塗膜が配置された試料104に対して、高圧水銀灯を用いて照度28mW/cmの照射条件で60秒間照射し、塗膜を硬化させ、光吸収異方性層14上に保護層1が形成された光学積層体111を作製した。
(Preparation of optical laminate 111)
On the light absorption anisotropic layer 14 in the sample 104, the following protective layer composition 1 was continuously applied with a # 2 wire bar and dried at 60 ° C. for 5 minutes.
Thereafter, the sample 104 on which the coating film is disposed is irradiated for 60 seconds under an irradiation condition of illuminance of 28 mW / cm 2 using a high-pressure mercury lamp, the coating film is cured, and a protective layer is formed on the light absorption anisotropic layer 14. The optical laminated body 111 in which 1 was formed was produced.
――――――――――――――――――――――――――――――――
保護層組成物1
――――――――――――――――――――――――――――――――
下記親水性モノマーHM-1              29質量部
重合開始剤IRGACURE819(BASF社製)    1質量部
エタノール                      70質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Protective layer composition 1
――――――――――――――――――――――――――――――――
The following hydrophilic monomer HM-1 29 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 1 part by mass Ethanol 70 parts by mass ――――――――――――――――――――――― ――――――――
 親水性モノマーHM-1 Hydrophilic monomer HM-1
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(光学積層体112の作製)
 光学積層体111において、セルロースアシレートフィルム11の代わりに、膜厚50μmのPETフィルム(フィルム12)を用いた以外は、(光学積層体111の作製)と同様の手順に従って、フィルム12、中間層1、配向膜11、光吸収異方性層14、および保護層1を含む光学積層体112を得た。
 なお、フィルム12は、剥離性支持体に該当する。
(Preparation of optical laminate 112)
In the optical layered body 111, the film 12 and the intermediate layer were formed in the same manner as in (Preparation of the optical layered body 111) except that a PET film (film 12) having a film thickness of 50 μm was used instead of the cellulose acylate film 11. 1, an optical laminate 112 including the alignment film 11, the light absorption anisotropic layer 14, and the protective layer 1 was obtained.
The film 12 corresponds to a peelable support.
<第2光学積層体の作製>
 第2光学積層体として、光学積層体201~204を以下の手順に従って作製した。
<Preparation of second optical laminate>
As the second optical laminate, optical laminates 201 to 204 were produced according to the following procedure.
(光学積層体201の作製)
 下記組成の光学異方性層形成用組成物21を調製した。
――――――――――――――――――――――――――――――――
光学異方性層形成用組成物21
――――――――――――――――――――――――――――――――
・下記液晶性化合物L-3            42.00質量部
・下記液晶性化合物L-4            42.00質量部
・下記重合性化合物A-1            16.00質量部
・下記低分子化合物B2              6.00質量部
・下記重合開始剤S-1(オキシム型)       0.50質量部
・下記レベリング剤G-1             0.20質量部
・ハイソルブMTEM(東邦化学工業社製)     2.00質量部
・NKエステルA-200(新中村化学工業社製)  1.00質量部
・メチルエチルケトン              424.8質量部
――――――――――――――――――――――――――――――――
(Preparation of optical laminate 201)
An optically anisotropic layer forming composition 21 having the following composition was prepared.
――――――――――――――――――――――――――――――――
Optically anisotropic layer forming composition 21
――――――――――――――――――――――――――――――――
-42.00 parts by mass of the following liquid crystalline compound L-3-42.00 parts by mass of the following liquid crystalline compound L-4-16.00 parts by mass of the following polymerizable compound A-1-6.00 parts by mass of the following low molecular compound B2 -0.50 parts by mass of the following polymerization initiator S-1 (oxime type)-0.20 parts by mass of the following leveling agent G-1-2.00 parts by mass of Hisolv MTEM (manufactured by Toho Chemical Industry Co., Ltd.)-NK ester A-200 (Manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass, methyl ethyl ketone 424.8 parts by mass ―――――――――――――――――――――――――――――― -
 なお、下記液晶性化合物L-3およびL-4のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、下記液晶性化合物L-3およびL-4は、メチル基の位置が異なる位置異性体の混合物を表す。 The groups adjacent to the acryloyloxy groups of the following liquid crystal compounds L-3 and L-4 represent propylene groups (groups in which a methyl group is substituted with an ethylene group), and the following liquid crystal compounds L-3 and L-4 Represents a mixture of positional isomers having different methyl group positions.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 下記の組成物をミキシングタンクに投入し、撹拌して、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
───────────────────────────────
コア層セルロースアシレートドープ
───────────────────────────────
・アセチル置換度2.88のセルロースアセテート  100質量部
・特開2015-227955号公報の実施例に
記載されたポリエステル化合物B           11質量部
・メチレンクロライド(第1溶媒)         430質量部
・メタノール(第2溶媒)              64質量部
───────────────────────────────
The following composition was put into a mixing tank and stirred to prepare a cellulose acetate solution used as a core layer cellulose acylate dope.
───────────────────────────────
Core layer cellulose acylate dope───────────────────────────────
-100 parts by weight of cellulose acetate having an acetyl substitution degree of 2.88-11 parts by weight of polyester compound B described in Examples of JP-A-2015-227955-430 parts by weight of methylene chloride (first solvent)-Methanol (second Solvent) 64 parts by mass ───────────────────────────────
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
────────────────────────────────
マット剤溶液
────────────────────────────────
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)  2質量部
・メチレンクロライド(第1溶媒)           76質量部
・メタノール(第2溶媒)               11質量部
・上記のコア層セルロースアシレートドープ        1質量部
────────────────────────────────
10 parts by mass of the following matting agent solution was added to 90 parts by mass of the core layer cellulose acylate dope to prepare a cellulose acetate solution used as an outer layer cellulose acylate dope.
────────────────────────────────
Matting agent solution ────────────────────────────────
Silica particles having an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass. 76 parts by mass of methylene chloride (first solvent). 11 parts by mass of methanol (second solvent). Rate dope 1 part by mass────────────────────────────────
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープとを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルタでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口からバンド流延機を用いて流延した。
 次いで、溶媒含有率略20質量%の状態でフィルムを剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。
 その後、得られたフィルムを熱処理装置のロール間を搬送して、さらに乾燥し、厚み20μmの光学フィルムを作製し、これをセルロースアシレートフィルム21(以後、フィルム21とも記す。)とした。得られたセルロースアシレートフィルム21の波長550nmにおける面内レタデーションは0nmであった。
 なお、フィルム21は、剥離性支持体に該当する。
The core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 μm and a sintered metal filter having an average pore size of 10 μm, and then the core layer cellulose acylate dope and the outer layer cellulose acylate on both sides thereof Three layers of dope were cast simultaneously from a casting port using a band casting machine.
Next, the film was peeled off in a state where the solvent content was about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a stretch ratio of 1.1 times.
Thereafter, the obtained film was conveyed between rolls of a heat treatment apparatus and further dried to produce an optical film having a thickness of 20 μm, which was designated as a cellulose acylate film 21 (hereinafter also referred to as film 21). The in-plane retardation of the obtained cellulose acylate film 21 at a wavelength of 550 nm was 0 nm.
The film 21 corresponds to a peelable support.
 作製したセルロースアシレートフィルム21の片側の面に、下記の配向膜形成用組成物21をバーコーターで塗布し、得られた塗膜を110℃で2分間乾燥した。その後、塗膜に対して、ラビング処理を施して、配向膜21を形成した。 The following alignment film forming composition 21 was applied to one surface of the produced cellulose acylate film 21 with a bar coater, and the obtained coating film was dried at 110 ° C. for 2 minutes. Thereafter, the coating film was rubbed to form an alignment film 21.
―――――――――――――――――――――――――――――――――
配向膜形成用組成物21
―――――――――――――――――――――――――――――――――
・変性ビニルアルコール(下記式(PVA-1)参照) 2.00質量部
・水                       74.08質量部
・メタノール                   23.86質量部
・光重合開始剤
(IRGACURE2959、BASF社製)     0.06質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Alignment film forming composition 21
―――――――――――――――――――――――――――――――――
・ Modified vinyl alcohol (refer to the following formula (PVA-1)) 2.00 parts by mass, water 74.08 parts by mass, methanol 23.86 parts by mass, photopolymerization initiator (IRGACURE2959, manufactured by BASF) 0.06 parts by mass ―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 次いで、配向膜21上に、先に調製した光学異方性層形成用組成物21をバーコーターで塗布し、塗膜を形成した。得られた塗膜を110℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、得られた塗膜を60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの光学異方性層を形成し、光学積層体201を作製した。得られた光学積層体201中の光学異方性層の波長550nmにおける面内レタデーションは140nmであった。得られた光学異方性層の遅相軸方向はラビング方向に対して平行に配向していた。
Next, on the alignment film 21, the optically anisotropic layer forming composition 21 prepared earlier was applied with a bar coater to form a coating film. The obtained coating film was heated to 110 ° C. and then cooled to 60 ° C. to stabilize the orientation.
Thereafter, the obtained coating film was kept at 60 ° C., and the orientation was fixed by irradiation with ultraviolet rays (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm), and an optical difference of 2.3 μm in thickness was obtained. An isotropic layer was formed to produce an optical laminate 201. The in-plane retardation at a wavelength of 550 nm of the optically anisotropic layer in the obtained optical laminate 201 was 140 nm. The slow axis direction of the obtained optically anisotropic layer was aligned parallel to the rubbing direction.
(光学積層体202~204の作製)
 セルロースアシレートフィルム21の代わりに後述する手順にて作製されるセルロースアシレートフィルム22~24(以後、フィルム22~24とも記す。)を用いた以外は、(光学積層体201の作製)と同様の手順に従って、光学積層体202~204を作製した。
 なお、フィルム22~24は、剥離性支持体に該当する。
(Production of optical laminates 202 to 204)
Similar to (Preparation of optical laminate 201), except that cellulose acylate films 22 to 24 (hereinafter also referred to as films 22 to 24) prepared by the procedure described below are used instead of cellulose acylate film 21. Optical laminates 202 to 204 were prepared according to the procedure described above.
The films 22 to 24 correspond to a peelable support.
(セルロースアシレートフィルム22の作製)
 セルロースアシレートフィルム21の長尺フィルムを温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液1を、バーコーターを用いて塗布量14ml/mで塗布した。その後、得られたフィルムを110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、得られたフィルムに純水を3ml/m塗布した。次いで、得られたフィルムに対して、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、得られたフィルムを70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルム22を作製した。
────────────────────────────────
アルカリ溶液1
────────────────────────────────
水酸化カリウム                   4.7質量部
水                        15.8質量部
イソプロパノール                 63.7質量部
含フッ素界面活性剤SF-1
(C1429O(CHCHO)20H)        1.0質量部
プロピレングリコール               14.8質量部
────────────────────────────────
(Preparation of cellulose acylate film 22)
After passing the long film of the cellulose acylate film 21 through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkali solution 1 having the composition shown below is applied to one side of the film by a bar coater. Was applied at a coating amount of 14 ml / m 2 . Thereafter, the obtained film was heated to 110 ° C. and conveyed under a steam far-infrared heater manufactured by Noritake Company Limited for 10 seconds. Subsequently, using a bar coater, 3 ml / m 2 of pure water was applied to the obtained film. Next, the obtained film was washed with a fountain coater and drained with an air knife three times, and then the obtained film was transported to a drying zone at 70 ° C. for 10 seconds to be dried. A rate film 22 was produced.
────────────────────────────────
Alkaline solution 1
────────────────────────────────
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Fluorine-containing surfactant SF-1
(C 14 H 29 O (CH 2 CH 2 O) 20 H) 1.0 part by mass propylene glycol 14.8 parts by mass ────────────────────── ──────────
(セルロースアシレートフィルム23~24の作製)
 セルロースアシレートフィルム22において、アルカリ溶液1の水酸化カリウム濃度を調整し、セルロースアシレートフィルム23~24を得た。
(Preparation of cellulose acylate films 23 to 24)
In the cellulose acylate film 22, the potassium hydroxide concentration of the alkaline solution 1 was adjusted to obtain cellulose acylate films 23-24.
<表面フィルム41の作製>
 特開2014―206725号公報に記載のポリエチレンテレフタレート(以後、PET1とも記す。)(90質量部)、および、乾燥させた紫外線吸収剤(2,2'-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン))(10質量部)を混合し、混練押出機を用い、紫外線吸収剤を含むポリエチレンテレフタレート(以後、PET2とも記す)を得た。
 PET1(90質量部)と、PET2(10質量部)とを、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した。ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルムを得た。
 未延伸ポリエステルフィルムをテンター(横延伸機)に導き、フィルムの端部をクリップで把持しながら、95℃で幅方向に4.7倍に横延伸した。次に、得られたフィルムの膜面温度を180℃に制御しながら、熱固定処理を行った。さらに得られたフィルムを170℃、幅方向に2%で緩和し、冷却して、厚さ40μmのポリエステル系の透明基材41を得た。
<Preparation of surface film 41>
Polyethylene terephthalate (hereinafter also referred to as PET 1) (90 parts by mass) described in JP-A-2014-206725 and a dried ultraviolet absorber (2,2 ′-(1,4-phenylene) bis (4H −3,1-benzoxazinon-4-one)) (10 parts by mass) was mixed, and using a kneading extruder, polyethylene terephthalate containing an ultraviolet absorber (hereinafter also referred to as PET2) was obtained.
After drying PET1 (90 parts by mass) and PET2 (10 parts by mass) to a moisture content of 20 ppm or less, they are put into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm, and the extruder 1 is heated to 300 ° C. Melted. The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C. and peeled off using a peeling roll to obtain an unstretched polyester film.
The unstretched polyester film was guided to a tenter (lateral stretching machine), and stretched 4.7 times in the width direction at 95 ° C. while holding the end of the film with a clip. Next, heat setting treatment was performed while controlling the film surface temperature of the obtained film at 180 ° C. Furthermore, the obtained film was relaxed at 170 ° C. and 2% in the width direction and cooled to obtain a polyester-based transparent base material 41 having a thickness of 40 μm.
 ハードコート層形成用の塗布液として、下記ハードコート層形成用組成物1を調製した。 The following hard coat layer forming composition 1 was prepared as a hard coat layer forming coating solution.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記にて作製した透明基材41の一方の表面を予めコロナ処理した後、上記ハードコート層形成用組成物1を塗布した。次に、得られた塗膜を100℃で60秒乾燥し、窒素0.1%以下の条件で紫外線を1.5kW、300mJにて照射し、塗膜を硬化させ、厚み5μmのハードコート層を形成し、透明基材41とハードコート層とからなる表面フィルム41を得た。 The one surface of the transparent substrate 41 produced above was previously corona-treated, and then the hard coat layer forming composition 1 was applied. Next, the obtained coating film was dried at 100 ° C. for 60 seconds, irradiated with ultraviolet rays at 1.5 kW and 300 mJ under a condition of 0.1% or less of nitrogen to cure the coating film, and a hard coat layer having a thickness of 5 μm. The surface film 41 which consists of the transparent base material 41 and a hard-coat layer was obtained.
<実施例3:円偏光板214の作製>
 光学積層体111、光学積層体204および表面フィルム41の長尺試料をそれぞれ準備し、以下のロールツーロールの積層を実施した。
 光学積層体204の光学異方性層側の表面と光学積層体111の保護層の表面とを粘着剤を介して貼り合わせながら、貼り合わせた直後に、光学積層体111中のフィルム11を剥離して積層体Xを得た。
 次に、積層体X中の配向膜11の表面と、表面フィルム41中の透明基材41の表面とを粘着剤を介して貼り合わせながら、貼り合わせた直後に、光学積層体204中のフィルム24を剥離して、円偏光板214を得た。
<Example 3: Production of circularly polarizing plate 214>
Long samples of the optical laminate 111, the optical laminate 204, and the surface film 41 were prepared, and the following roll-to-roll lamination was performed.
Immediately after bonding, the film 11 in the optical layered body 111 is peeled off while bonding the surface of the optical layered body 204 on the optically anisotropic layer side and the surface of the protective layer of the optical layered body 111 with an adhesive. Thus, a laminate X was obtained.
Next, the film in the optical laminate 204 is bonded immediately after bonding the surface of the alignment film 11 in the laminate X and the surface of the transparent substrate 41 in the surface film 41 with an adhesive. 24 was peeled off to obtain a circularly polarizing plate 214.
<実施例1、2、4:円偏光板212、213、215の作製>
 表3に示す第1光学積層体および第2光学積層体をそれぞれ用い、それぞれの光学積層体に含まれる剥離性支持体の剥離を実施した以外は、(円偏光板214の作製)と同様の手順に従って、円偏光板212~213、円偏光板215を得た。
<Examples 1, 2, and 4: Production of circularly polarizing plates 212, 213, and 215>
Except that each of the first optical laminate and the second optical laminate shown in Table 3 was used, and the peelable support contained in each optical laminate was peeled off, the same as (preparation of circularly polarizing plate 214). According to the procedure, circularly polarizing plates 212 to 213 and a circularly polarizing plate 215 were obtained.
<比較例1:円偏光板211の作製>
 光学積層体204の代わりに、光学積層体201を用いた以外は、(円偏光板214の作製)と同様の手順に従って、円偏光板の作製を試みたところ、フィルム11の剥離の際にフィルム21にも剥離がみられ、所定の円偏光板が作製できなかった。
<Comparative Example 1: Production of circularly polarizing plate 211>
Except for using the optical laminate 201 instead of the optical laminate 204, an attempt was made to produce a circularly polarizing plate according to the same procedure as in (Preparation of the circularly polarizing plate 214). 21 also peeled off, and a predetermined circularly polarizing plate could not be produced.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 なお、有機ELパネル(有機EL表示素子)搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示素子、タッチパネルおよび円偏光板をそれぞれ単離した。次いで、単離したタッチパネルを有機EL表示素子と再度貼合し、さらに上記作製した円偏光板212~215を光学異方性層側がパネル側になるようにタッチパネル上に粘着剤を介して貼合し、有機EL表示装置を作製した。
 作製した有機EL表示装置について、光学異方性層(λ/4板)として、ピュアエースWR(帝人株式会社製)を用いた場合と同様の評価を行ったところ、外光の反射防止に対し同様の効果が発揮されることを確認した。
In addition, the organic EL panel (organic EL display element) -mounted GALAXY S5 manufactured by Samsunung is disassembled, the touch panel with the circularly polarizing plate is peeled off from the organic EL display device, and the circularly polarizing plate is peeled off from the touch panel. The touch panel and the circularly polarizing plate were isolated from each other. Next, the isolated touch panel is bonded again to the organic EL display element, and the circularly polarizing plates 212 to 215 prepared above are bonded to the touch panel with an adhesive so that the optically anisotropic layer side is the panel side. Thus, an organic EL display device was produced.
The produced organic EL display device was evaluated in the same manner as when pure ace WR (manufactured by Teijin Limited) was used as the optically anisotropic layer (λ / 4 plate). It was confirmed that the same effect was exhibited.
 なお、円偏光板212および213の作製の際、フィルム11を剥離する際にはフィルム22およびフィルム23の剥離は生じないものの、フィルム22およびフィルム23の剥離力が0.50N/25mmを超えているため、やや剥離がしづらい。
 また、光学積層体112におけるフィルム12の剥離力は0.10N/25mmより小さいため、フィルム12がやや剥離しやすく、光学積層体112の取り扱いがややしづらい。
 よって、第1光学積層体における第1剥離性支持体の剥離力と、第2光学積層体における第2剥離性支持体の剥離力とは、共に、0.10~0.50N/25mmであれば、ロールツーロールでの積層時の故障をより低減できる。
In the production of the circularly polarizing plates 212 and 213, the peeling of the film 22 and the film 23 does not occur when the film 11 is peeled off, but the peeling force of the film 22 and the film 23 exceeds 0.50 N / 25 mm. Therefore, it is a little difficult to peel off.
Moreover, since the peeling force of the film 12 in the optical laminated body 112 is smaller than 0.10 N / 25 mm, the film 12 is slightly peeled off, and the handling of the optical laminated body 112 is slightly difficult.
Therefore, the peel force of the first peelable support in the first optical laminate and the peel force of the second peelable support in the second optical laminate are both 0.10 to 0.50 N / 25 mm. Thus, failure during roll-to-roll stacking can be further reduced.
<第3光学積層体の作製>
 第3光学積層体として、光学積層体301~303を以下の手順に従って作製した。
<Production of third optical laminate>
As the third optical laminate, optical laminates 301 to 303 were produced according to the following procedure.
(光学積層体301の作製)
 透明支持体として、市販されているトリアセチルセルロースフィルム(以後、フィルム31とも記す。)「Z-TAC」(富士フイルム社製)を用いた。フィルム31上に、下記の配向膜形成用組成物31を#8のワイヤーバーで連続的に塗布した。得られた塗膜を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、配向膜31を形成した。
 なお、フィルム31は、剥離性支持体に該当する。
───────────────────────────────
配向膜形成用組成物31
───────────────────────────────
ポリビニルアルコール(クラレ製、PVA103)  2.4質量部
イソプロピルアルコール              1.6質量部
メタノール                     36質量部
水                         60質量部
───────────────────────────────
(Preparation of optical laminate 301)
As the transparent support, a commercially available triacetyl cellulose film (hereinafter also referred to as film 31) “Z-TAC” (manufactured by FUJIFILM Corporation) was used. On the film 31, the following alignment film forming composition 31 was continuously applied with a # 8 wire bar. The obtained coating film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds to form an alignment film 31.
The film 31 corresponds to a peelable support.
───────────────────────────────
Composition 31 for forming alignment film
───────────────────────────────
Polyvinyl alcohol (manufactured by Kuraray, PVA103) 2.4 parts by mass Isopropyl alcohol 1.6 parts by mass Methanol 36 parts by mass Water 60 parts by mass ────────────────────── ─────────
 上記で作製した配向膜31上に、下記光学異方性層形成用組成物31を塗布した。得られた塗膜を60℃で熟成させた後に、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより、重合性棒状液晶性化合物を垂直配向させ、光学異方性層(ポジティブCプレートフィルム301)を含む光学積層体301を得た。なお、ポジティブCプレートフィルム301のRth(550)は、-60nmであった。 The following optically anisotropic layer forming composition 31 was applied on the alignment film 31 produced above. After the obtained coating film was aged at 60 ° C., it was irradiated with 1000 mJ / cm 2 of ultraviolet rays using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 70 mW / cm 2 under air. By fixing the alignment state, the polymerizable rod-like liquid crystalline compound was vertically aligned to obtain an optical laminate 301 including an optically anisotropic layer (positive C plate film 301). The Rth (550) of the positive C plate film 301 was −60 nm.
──────────────────────────────────
光学異方性層形成用組成物31
──────────────────────────────────
液晶性化合物L-1                    80質量部
液晶性化合物L-2                    20質量部
垂直配液晶性化合物向剤(S01)              1質量部
垂直配向剤(S02)                  0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製)            8質量部
イルガキュア907(BASF製)              3質量部
カヤキュアーDETX(日本化薬(株)製)          1質量部
化合物B03                      0.4質量部
メチルエチルケトン                   170質量部
シクロヘキサノン                     30質量部
──────────────────────────────────
──────────────────────────────────
Optically anisotropic layer forming composition 31
──────────────────────────────────
Liquid crystalline compound L-1 80 parts by weight Liquid crystalline compound L-2 20 parts by weight Vertical alignment liquid crystalline compound (S01) 1 part by weight vertical alignment agent (S02) 0.5 parts by weight Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass 30 parts by mass of cyclohexanone ───────────────────────────────────
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(光学積層体302および303の作製)
 フィルム31に対して、上述した(セルロースアシレートフィルム23~24の作製)と同様にアルカリ溶液1の水酸化カリウム濃度を調整してアルカリ鹸化処理を行い、セルロースアシレートフィルム32~33(以後、フィルム32~33とも記す。)を得た。
 次に、フィルム31の代わりにフィルム32~33をそれぞれ用いた以外は、(光学積層体301の作製)と同様の手順に従って、光学積層体302~303を得た。
 なお、フィルム32~33は、剥離性支持体に該当する。
(Production of optical laminates 302 and 303)
The film 31 was subjected to an alkali saponification treatment by adjusting the potassium hydroxide concentration of the alkaline solution 1 in the same manner as described above (production of cellulose acylate films 23 to 24), and cellulose acylate films 32 to 33 (hereinafter referred to as “film cellulose acylate films 23 to 24”). Also referred to as films 32-33).
Next, optical laminates 302 to 303 were obtained in the same manner as in (Preparation of optical laminate 301) except that films 32 to 33 were used instead of film 31, respectively.
The films 32 to 33 correspond to a peelable support.
<第2光学積層体の作製>
(光学積層体205の作製)
 セルロースアシレートフィルム22において、アルカリ溶液1の水酸化カリウム濃度を調整し、セルロースアシレートフィルム25(以後、フィルム25とも記す。)を得た。
 セルロースアシレートフィルム21の代わりにセルロースアシレートフィルム25を用いた以外は、(光学積層体201の作製)と同様の手順に従って、光学積層体205を得た。
 なお、フィルム25は、剥離性支持体に該当する。
<Preparation of second optical laminate>
(Preparation of optical laminate 205)
In the cellulose acylate film 22, the potassium hydroxide concentration of the alkaline solution 1 was adjusted to obtain a cellulose acylate film 25 (hereinafter also referred to as film 25).
An optical laminate 205 was obtained according to the same procedure as (Preparation of optical laminate 201) except that the cellulose acylate film 25 was used instead of the cellulose acylate film 21.
The film 25 corresponds to a peelable support.
<第1光学積層体の作製>
(光学積層体113の作製)
 セルロースアシレートフィルム11において、アルカリ溶液1の水酸化カリウム濃度を調整し、セルロースアシレートフィルム13(以後、フィルム13とも記す。)を得た。
 セルロースアシレートフィルム11の代わりにセルロースアシレートフィルム13を用いた以外は、(光学積層体111の製造)と同様の手順に従って、光学積層体113を得た。
 なお、フィルム13は、剥離性支持体に該当する。
<Production of first optical laminate>
(Preparation of optical laminate 113)
In the cellulose acylate film 11, the potassium hydroxide concentration of the alkaline solution 1 was adjusted to obtain a cellulose acylate film 13 (hereinafter also referred to as film 13).
An optical laminate 113 was obtained according to the same procedure as (Manufacturing of the optical laminate 111) except that the cellulose acylate film 13 was used instead of the cellulose acylate film 11.
The film 13 corresponds to a peelable support.
<実施例5:円偏光板312の作製>
 光学積層体111、光学積層体201、光学積層体302および表面フィルム41の長尺試料を準備し、以下のロールツーロールの積層を実施した。
 光学積層体201中の光学異方性層と光学積層体302中の光学異方性層とを粘着剤を介して貼り合わせ、貼り合わせた直後に、光学積層体201のフィルム21を剥離して、積層体Bを得た。
 次に、積層体B中の光学積層体201由来の光学異方性層側の表面と、光学積層体111中の保護層の表面とを粘着剤を介して貼り合わせ、貼り合わせた直後に、光学積層体111のフィルム11を剥離した。
 さらに、光学積層体111の中間層側の表面と、表面フィルム41中の透明基材41の表面とを粘着剤を介して貼り合わせ、貼り合わせた直後に、フィルム32を剥離して、円偏光板312を得た。
<Example 5: Production of circularly polarizing plate 312>
Long samples of the optical laminate 111, the optical laminate 201, the optical laminate 302, and the surface film 41 were prepared, and the following roll-to-roll lamination was performed.
The optically anisotropic layer in the optical laminated body 201 and the optically anisotropic layer in the optical laminated body 302 are bonded together via an adhesive, and immediately after bonding, the film 21 of the optical laminated body 201 is peeled off. A laminate B was obtained.
Next, the optically anisotropic layer side surface derived from the optical laminate 201 in the laminate B and the surface of the protective layer in the optical laminate 111 are bonded via an adhesive, immediately after bonding, The film 11 of the optical laminate 111 was peeled off.
Furthermore, the surface on the intermediate layer side of the optical laminate 111 and the surface of the transparent base material 41 in the surface film 41 are bonded together via an adhesive, and immediately after the bonding, the film 32 is peeled off and the circularly polarized light is bonded. A plate 312 was obtained.
<実施例6:円偏光板313の作製>
 光学積層体201の代わりに光学積層体205を用いた以外は、(円偏光板312の作製)と同様の手順に従って、円偏光板313を得た。
<Example 6: Production of circularly polarizing plate 313>
A circularly polarizing plate 313 was obtained according to the same procedure as (preparing the circularly polarizing plate 312) except that the optical laminated body 205 was used instead of the optical laminated body 201.
<比較例2:円偏光板311の作製>
 光学積層体302の代わりに光学積層体301を用いた以外は、(円偏光板312の作製)と同様の手順に従って、円偏光板の作製を試みたところ、フィルム21の剥離の際にフィルム31にも剥離がみられ、所定の円偏光板が作製できなかった。
<Comparative Example 2: Production of circularly polarizing plate 311>
Except for using the optical laminate 301 instead of the optical laminate 302, an attempt was made to produce a circularly polarizing plate according to the same procedure as in (Preparation of the circularly polarizing plate 312). Also, peeling was observed, and a predetermined circularly polarizing plate could not be produced.
<比較例3:円偏光板314の作製>
 光学積層体111の代わりに光学積層体113を用い、光学積層体302の代わりに光学積層体303を用いた以外は、(円偏光板312の作製)と同様の手順に従って、円偏光板の作製を試みたところ、フィルム13の剥離の際にフィルム33にも剥離がみられ、所定の円偏光板が作製できなかった。
<Comparative Example 3: Production of circularly polarizing plate 314>
Preparation of a circularly polarizing plate according to the same procedure as in (Preparation of circularly polarizing plate 312) except that optical layered body 113 was used instead of optical layered body 111 and optical layered body 303 was used instead of optical layered body 302. As a result, when the film 13 was peeled off, the film 33 was peeled off, and a predetermined circularly polarizing plate could not be produced.
 上記結果を表4にまとめて示す。 The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 第3剥離性支持体の剥離力と、第1剥離性支持体および第2剥離性支持体の剥離力とが所定の関係である場合、所望の効果が得られることが確認された。 It was confirmed that the desired effect was obtained when the peel force of the third peelable support and the peel forces of the first peelable support and the second peelable support were in a predetermined relationship.
(配向膜形成用組成物13の調製)
 撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10.0質量部を仕込み、室温で混合物を撹拌した。次に、脱イオン水100質量部を滴下漏斗より30分かけて得られた混合物に滴下した後、還流下で混合物を混合しつつ、80℃で6時間反応させた。反応終了後、有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで有機相を洗浄した。その後、得られた有機相から減圧下で溶媒および水を留去し、エポキシ基を有するポリオルガノシロキサンを粘調な透明液体として得た。
 このエポキシ基を有するポリオルガノシロキサンについて、H-NMR(Nuclear Magnetic Resonance)分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ基を有するポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
 次に、100mLの三口フラスコに、上記で得たエポキシ基を有するポリオルガノシロキサン10.1質量部、アクリル基含有カルボン酸(東亞合成株式会社、商品名「アロニックスM-5300」、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.5質量部、酢酸ブチル20質量部、特開2015-26050号公報の合成例1の方法で得られた桂皮酸誘導体1.5質量部、および、テトラブチルアンモニウムブロミド0.3質量部を仕込み、得られた混合物を90℃で12時間撹拌した。撹拌後、得られた混合物と等量(質量)の酢酸ブチルで混合物を希釈し、さらに希釈された混合物を3回水洗した。得られた混合物を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、最終的に、光配向性基を有するポリオルガノシロキサン(下記重合体C-2)を含む溶液を得た。この重合体C-2の重量平均分子量Mwは9,000であった。また、H-NMR分析の結果、重合体C-2中のシンナメート基を有する成分は23.7質量%であった。
(Preparation of alignment film forming composition 13)
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 parts by mass of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 parts by mass of methyl isobutyl ketone, and 10 parts of triethylamine 0.0 part by mass was charged and the mixture was stirred at room temperature. Next, 100 parts by mass of deionized water was added dropwise to the resulting mixture from the dropping funnel over 30 minutes, and then reacted at 80 ° C. for 6 hours while mixing the mixture under reflux. After completion of the reaction, the organic phase was taken out, and the organic phase was washed with 0.2% by mass aqueous ammonium nitrate solution until the washed water became neutral. Thereafter, the solvent and water were distilled off from the obtained organic phase under reduced pressure to obtain a polyorganosiloxane having an epoxy group as a viscous transparent liquid.
The polyorganosiloxane having an epoxy group was analyzed by 1 H-NMR (Nuclear Magnetic Resonance). As a result, a peak based on the oxiranyl group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction of the epoxy group occurred. The polyorganosiloxane having an epoxy group had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
Next, 10.1 parts by mass of the above-obtained polyorganosiloxane having an epoxy group, an acrylic group-containing carboxylic acid (Toagosei Co., Ltd., trade name “Aronix M-5300”, acrylic acid ω- 0.5 parts by mass of carboxypolycaprolactone (degree of polymerization n≈2), 20 parts by mass of butyl acetate, 1.5 parts by mass of cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, and Then, 0.3 part by mass of tetrabutylammonium bromide was charged, and the resulting mixture was stirred at 90 ° C. for 12 hours. After stirring, the mixture was diluted with an equal amount (mass) of butyl acetate to the obtained mixture, and the diluted mixture was washed with water three times. The operation of concentrating the obtained mixture and diluting with butyl acetate was repeated twice to finally obtain a solution containing a polyorganosiloxane having a photoalignable group (the following polymer C-2). The weight average molecular weight Mw of the polymer C-2 was 9,000. As a result of 1 H-NMR analysis, the component having a cinnamate group in the polymer C-2 was 23.7% by mass.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 以下の成分を混合して、光配向膜形成用組成物13を調製した。
―――――――――――――――――――――――――――――――───
光配向膜形成用組成物13
―――――――――――――――――――――――――――――――───
・重合体C-2                   10.67質量部
・低分子化合物R-1                 5.17質量部
・添加剤(B-1)                  0.53質量部
・酢酸ブチル                  8287.37質量部
・プロピレングリコールモノメチルエーテルアセテート
                        2071.85質量部
―――――――――――――――――――――――――――――――───
The following components were mixed to prepare a photoalignment film-forming composition 13.
――――――――――――――――――――――――――――――― ───
Composition 13 for forming photo-alignment film
――――――――――――――――――――――――――――――― ───
-Polymer C-2 10.67 parts by mass-Low molecular compound R-1 5.17 parts by mass-Additive (B-1) 0.53 parts by mass-Butyl acetate 8287.37 parts by mass-Propylene glycol monomethyl ether acetate 2071.85 parts by mass ――――――――――――――――――――――――――――――― ───
<実施例7:円偏光板401の作製>
 光配向膜形成用組成物11の代わりに、光配向膜形成用組成物13を用いた以外は、(試料104の作製)、(光学積層体111の作製)および(円偏光板312の作製)と同様の手順に従って、円偏光板401を得た。
<Example 7: Production of circularly polarizing plate 401>
(Preparation of sample 104), (Preparation of optical laminate 111), and (Preparation of circularly polarizing plate 312), except that composition 13 for photoalignment film formation was used instead of composition 11 for photoalignment film formation. A circularly polarizing plate 401 was obtained according to the same procedure as described above.
<表示性能評価>
 有機ELパネル(有機EL表示素子)搭載のSAMSUNG社製GALAXYS5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示素子、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示素子と再度貼合し、さらに上記作製した円偏光板312および401を空気が入らないようにしてタッチパネル上に粘着剤を介して貼合し、有機EL表示装置を作製した。
 作製した有機EL表示装置について、明光下にて視認性および表示品位を評価した。表示装置を白表示にして、正面および極角45度から蛍光灯を映しこんだときの反射光を観察した。表示品位を下記の基準で評価した。評価結果を表5にまとめて示す。
A:黒色で色づきが全く視認されない。
B:着色が視認され、かつ反射率が高い。
<Display performance evaluation>
Disassemble the GALAXYS5 manufactured by SAMSUNG equipped with an organic EL panel (organic EL display element), peel off the touch panel with the circularly polarizing plate from the organic EL display device, and further peel off the circularly polarizing plate from the touch panel. Each circularly polarizing plate was isolated. Subsequently, the isolated touch panel is pasted again with the organic EL display element, and the circularly polarizing plates 312 and 401 produced as described above are pasted on the touch panel via an adhesive so that air does not enter. A display device was produced.
About the produced organic EL display apparatus, visibility and display quality were evaluated under bright light. The display device was displayed in white, and the reflected light when a fluorescent lamp was projected from the front and a polar angle of 45 degrees was observed. The display quality was evaluated according to the following criteria. The evaluation results are summarized in Table 5.
A: Black color is not visually recognized at all.
B: Coloring is visually recognized and the reflectance is high.
 表5に示す「平均屈折率」欄は、光配向膜形成用組成物11を用いて形成される配向膜、および、光配向膜形成用組成物13を用いて形成される配向膜の平均屈折率を表す。
 表5に示す「屈折率異方性」欄は、光配向膜形成用組成物11を用いて形成される配向膜、および、光配向膜形成用組成物13を用いて形成される配向膜の屈折率異方性を表す。
 なお、平均屈折率および屈折率異方性の測定方法は、上述した通りである。
The “average refractive index” column shown in Table 5 shows the average refraction of the alignment film formed using the photo-alignment film forming composition 11 and the alignment film formed using the photo-alignment film forming composition 13. Represents a rate.
The “refractive index anisotropy” column shown in Table 5 shows the alignment film formed using the photo-alignment film forming composition 11 and the alignment film formed using the photo-alignment film forming composition 13. Refractive index anisotropy.
In addition, the measuring method of average refractive index and refractive index anisotropy is as having mentioned above.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
(表面フィルム42および43の作製)
 下記式(A)で表されるアクリル系樹脂90質量部と、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン社製)10質量部との混合物のペレットを2軸押し出し機に供給し、約280℃でシート状に溶融押し出しして、ラクトン環構造を有する(メタ)アクリル系樹脂シートを得た。この未延伸シートを、160℃の温度条件下、縦および横に延伸して膜厚40μmの透明支持体42を得た。
(Preparation of surface films 42 and 43)
Pellets of a mixture of 90 parts by mass of an acrylic resin represented by the following formula (A) and 10 parts by mass of acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are supplied to a twin screw extruder. Then, it was melt extruded into a sheet at about 280 ° C. to obtain a (meth) acrylic resin sheet having a lactone ring structure. This unstretched sheet was stretched longitudinally and laterally under a temperature condition of 160 ° C. to obtain a transparent support 42 having a thickness of 40 μm.
 式(A) Formula (A)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 上記一般式(6)中、Rは水素原子、RおよびRはメチル基であるラクトン環構造を有する(メタ)アクリル系樹脂(共重合モノマー質量比=メタクリル酸メチル/2-(ヒドロキシメチル)アクリル酸メチル=8/2、ラクトン環化率約100%、ラクトン環構造の含有割合19.4%、質量平均分子量133000、メルトフローレート6.5g/10分(240℃、10kgf)、Tg131℃)。 In the above general formula (6), R 1 is a hydrogen atom, R 2 and R 3 are methyl groups, and a (meth) acrylic resin having a lactone ring structure (copolymerization monomer mass ratio = methyl methacrylate / 2- (hydroxy Methyl) methyl acrylate = 8/2, lactone cyclization rate about 100%, lactone ring structure content 19.4%, mass average molecular weight 133000, melt flow rate 6.5 g / 10 min (240 ° C., 10 kgf), Tg 131 ° C.).
 2軸押出機にて、シクロオレフィン系樹脂(日本ゼオン社製、ガラス転移温度123℃)を、特開2015―160324号公報に記載の条件で、シクロオレフィン系樹脂100部に対してベンゾトリアゾール系紫外線吸収剤(LA-31、ADEKA社製)7.5部を混練した。混練した樹脂を用いて、押し出し成形により、膜厚40μmの透明支持体43を得た。 In a twin screw extruder, cycloolefin resin (manufactured by Nippon Zeon Co., Ltd., glass transition temperature 123 ° C.) is benzotriazole based on 100 parts of cycloolefin resin under the conditions described in JP-A-2015-160324. 7.5 parts of an ultraviolet absorber (LA-31, manufactured by ADEKA) was kneaded. A transparent support 43 having a film thickness of 40 μm was obtained by extrusion molding using the kneaded resin.
 上記にて作製した透明支持体42および43の一方の表面を予めコロナ処理した後、ハードコート層形成用組成物1を塗布し、表面フィルム41と同様の条件で、厚み5μmを有するハードコート層を形成し、表面フィルム42および43を得た。 One surface of the transparent supports 42 and 43 prepared above is corona-treated in advance, and then the hard coat layer-forming composition 1 is applied, and a hard coat layer having a thickness of 5 μm is applied under the same conditions as the surface film 41. The surface films 42 and 43 were obtained.
<実施例8~9:円偏光板の作製>
 実施例5の円偏光板312において、表面フィルム41の代わりに、表面フィルム42および表面フィルム43をそれぞれ使用した以外は、(円偏光板312の作製)と同様の手順に従って、円偏光板502および503を作製した。
 得られた円偏光板502および503を用いて、上述した<表示性能評価>を実施したところ、反射光観察で良好な結果を得た。
<Examples 8 to 9: Production of circularly polarizing plate>
In the circularly polarizing plate 312 of Example 5, the circularly polarizing plate 502 and the circularly polarizing plate 502 and 503 was produced.
When the above-described <display performance evaluation> was performed using the obtained circularly polarizing plates 502 and 503, good results were obtained by reflected light observation.
 なお、上述した実施例においては、試料104を用いた態様について述べたが、他の試料101~103、105~107を用いた場合も、同様の結果が得られた。 In the above-described embodiment, the embodiment using the sample 104 has been described. However, similar results were obtained when the other samples 101 to 103 and 105 to 107 were used.
 10  第1光学積層体
 12  第1剥離性支持体
 14  第1配向膜
 16  光吸収異方性層
 20  第2光学積層体
 22  第2剥離性支持体
 24  第2配向膜
 26  光学異方性層A
 30  積層体X
 40  表面フィルム
 42  ハードコート層
 44  基材
 50,100  光学積層体
 60,110  表示装置
 62  表示素子
 70  第3光学積層体
 72  光学異方性層B
 74  第3剥離性支持体
 80  積層体Y
 90  積層体Z
DESCRIPTION OF SYMBOLS 10 1st optical laminated body 12 1st peelable support body 14 1st alignment film 16 Light absorption anisotropic layer 20 2nd optical laminated body 22 2nd peelable support body 24 2nd alignment film 26 Optical anisotropic layer A
30 Laminate X
40 surface film 42 hard coat layer 44 base material 50,100 optical laminate 60,110 display device 62 display element 70 third optical laminate 72 optical anisotropic layer B
74 Third peelable support 80 Laminate Y
90 Laminate Z

Claims (12)

  1.  第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の前記光吸収異方性層側の表面と、第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の前記光学異方性層A側の表面とが対向するように、前記第1光学積層体と前記第2光学積層体とを積層し、前記第1剥離性支持体を剥離して積層体Xを得る工程と、
     前記積層体Xの前記第1配向膜側の表面に表面フィルムを積層し、前記第2剥離性支持体を剥離して、前記表面フィルム、前記光吸収異方性層、および、前記光学異方性層Aを有する光学積層体を得る工程と、を有し、
     前記光吸収異方性層が、2色性物質および液晶性化合物を含む液晶性組成物を用いて形成され、
     前記第1剥離性支持体の剥離力が、前記第2剥離性支持体の剥離力よりも小さい、光学積層体の製造方法。
    A surface on the light absorption anisotropic layer side of the first optical laminate having a first peelable support, a first alignment film, and a light absorption anisotropic layer in this order; a second peelability support; The first optical laminate and the first optical laminate so that the surface on the optical anisotropic layer A side of the second optical laminate having the second alignment film and the optical anisotropic layer A in this order face each other. Stacking two optical laminates, peeling the first peelable support to obtain a laminate X,
    A surface film is laminated on the surface of the laminate X on the first alignment film side, the second peelable support is peeled off, the surface film, the light absorption anisotropic layer, and the optical anisotropic Obtaining an optical layered body having a conductive layer A,
    The light absorption anisotropic layer is formed using a liquid crystalline composition containing a dichroic substance and a liquid crystalline compound,
    The manufacturing method of an optical laminated body whose peeling force of a said 1st peelable support body is smaller than the peeling force of a said 2nd peelable support body.
  2.  第2剥離性支持体と、第2配向膜と、光学異方性層Aとをこの順に有する第2光学積層体の前記光学異方性層A側の表面と、第3剥離性支持体と、光学異方性層Bとをこの順に有する第3光学積層体の前記光学異方性層B側の表面とが対向するように、前記第2光学積層体と前記第3光学積層体とを積層し、前記第2剥離性支持体を剥離して積層体Yを得る工程と、
     前記積層体Yの前記第2配向膜側の表面と、第1剥離性支持体と、第1配向膜と、光吸収異方性層とをこの順に有する第1光学積層体の前記光吸収異方性層側の表面とが対向するように、前記積層体Yと前記第1光学積層体とを積層し、第1剥離性支持体を剥離して積層体Zを得る工程と、
     前記積層体Zの前記第1配向膜側の表面に表面フィルムを積層し、前記第3剥離性支持体を剥離して、前記表面フィルム、前記光吸収異方性層、前記光学異方性層Aおよび前記光学異方性層Bを有する光学積層体を得る工程と、を有し、
     前記光吸収異方性層が、2色性物質および液晶性化合物を含む組成物を用いて形成され、
     前記第1剥離性支持体の剥離力が前記第3剥離性支持体の剥離力よりも小さく、かつ、前記第2剥離性支持体の剥離力が第3剥離性支持体の剥離力よりも小さい、光学積層体の製造方法。
    A surface on the optically anisotropic layer A side of the second optical laminate having the second peelable support, the second alignment film, and the optically anisotropic layer A in this order; a third peelable support; The second optical laminate and the third optical laminate are arranged such that the surface of the third optical laminate having the optical anisotropic layer B in this order faces the optical anisotropic layer B side. Laminating and peeling the second peelable support to obtain a laminate Y;
    The light absorption difference of the first optical laminate having the surface of the laminate Y on the second alignment film side, the first peelable support, the first alignment film, and the light absorption anisotropic layer in this order. Laminating the laminate Y and the first optical laminate so that the surface on the side of the isotropic layer faces, and peeling off the first peelable support to obtain a laminate Z;
    A surface film is laminated on the surface of the laminate Z on the first alignment film side, the third peelable support is peeled off, and the surface film, the light absorption anisotropic layer, the optical anisotropic layer are separated. Obtaining an optical laminate having A and the optically anisotropic layer B, and
    The light absorption anisotropic layer is formed using a composition containing a dichroic substance and a liquid crystal compound,
    The peel force of the first peelable support is smaller than the peel force of the third peelable support, and the peel force of the second peelable support is smaller than the peel force of the third peelable support. The manufacturing method of an optical laminated body.
  3.  前記2色性物質が、式(1)で表される化合物を含む、請求項1または2に記載の光学積層体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、A、AおよびAは、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。
     LおよびLは、それぞれ独立に、置換基を表す。
     mは、1~4の整数を表し、mが2~4の整数の場合、複数のAは互いに同一でも異なっていてもよい。
    The manufacturing method of the optical laminated body of Claim 1 or 2 with which the said dichroic substance contains the compound represented by Formula (1).
    Figure JPOXMLDOC01-appb-C000001

    In formula (1), A 1 , A 2 and A 3 each independently represents a divalent aromatic group which may have a substituent.
    L 1 and L 2 each independently represent a substituent.
    m represents an integer of 1 to 4, and when m is an integer of 2 to 4, a plurality of A 2 may be the same or different from each other.
  4.  前記2色性物質が、式(2)で表される化合物を含む、請求項1~3のいずれか1項に記載の光学積層体の製造方法。
    Figure JPOXMLDOC01-appb-C000002

     式(2)中、CおよびCは、それぞれ独立に、1価の置換基を表す。ただし、CおよびCの少なくとも一方は、架橋性基を表す。
     MおよびMは、それぞれ独立に、2価の連結基を表す。ただし、MおよびMの少なくとも一方は、主鎖の原子の数が4個以上である。
     ArおよびArは、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基および置換基を有していてもよいビフェニレン基のいずれかの基を表す。
     Eは、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
     Rは、水素原子または置換基を表す。
     Rは、水素原子または置換基を有していてもよいアルキル基を表す。
     nは、0または1を表す。ただし、Eが窒素原子である場合には、nは1であり、Eが酸素原子または硫黄原子である場合には、nは0である。
    The method for producing an optical laminate according to any one of claims 1 to 3, wherein the dichroic substance contains a compound represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000002

    In formula (2), C 1 and C 2 each independently represent a monovalent substituent. However, at least one of C 1 and C 2 represents a crosslinkable group.
    M 1 and M 2 each independently represents a divalent linking group. However, at least one of M 1 and M 2 has 4 or more main chain atoms.
    Ar 1 and Ar 2 are each independently any one of a phenylene group that may have a substituent, a naphthylene group that may have a substituent, and a biphenylene group that may have a substituent. Represents a group.
    E represents one of a nitrogen atom, an oxygen atom, and a sulfur atom.
    R 1 represents a hydrogen atom or a substituent.
    R 2 represents a hydrogen atom or an alkyl group which may have a substituent.
    n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
  5.  前記2色性物質が、式(3)で表される化合物を含む、請求項1~4のいずれか1項に記載の光学積層体の製造方法。
    Figure JPOXMLDOC01-appb-C000003

     式(3)中、AおよびBは、それぞれ独立に、架橋性基を表す。
     aおよびbは、それぞれ独立に、0または1を表す。ただし、a+b≧1である。
     a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
     Arは(n1+2)価の芳香族炭化水素基または複素環基を表し、Arは(n2+2)価の芳香族炭化水素基または複素環基を表し、Arは(n3+2)価の芳香族炭化水素基または複素環基を表す。
     R、RおよびRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。
     kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。
     n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
    The method for producing an optical laminated body according to any one of claims 1 to 4, wherein the dichroic substance contains a compound represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000003

    In formula (3), A and B each independently represent a crosslinkable group.
    a and b each independently represents 0 or 1; However, a + b ≧ 1.
    When a = 0, L 1 represents a monovalent substituent, and when a = 1, L 1 represents a single bond or a divalent linking group. Further, when b = 0, L 2 represents a monovalent substituent, and when b = 1, L 2 represents a single bond or a divalent linking group.
    Ar 1 represents an (n1 + 2) -valent aromatic hydrocarbon group or heterocyclic group, Ar 2 represents an (n2 + 2) -valent aromatic hydrocarbon group or heterocyclic group, and Ar 3 represents an (n3 + 2) -valent aromatic group A hydrocarbon group or a heterocyclic group is represented.
    R 1 , R 2 and R 3 each independently represents a monovalent substituent. When n1 ≧ 2, the plurality of R 1 may be the same or different from each other, and when n2 ≧ 2, the plurality of R 2 may be the same or different from each other, and when n3 ≧ 2 The plurality of R 3 may be the same as or different from each other.
    k represents an integer of 1 to 4. When k ≧ 2, the plurality of Ar 2 may be the same as or different from each other, and the plurality of R 2 may be the same as or different from each other.
    n1, n2 and n3 each independently represents an integer of 0 to 4. However, when k = 1, n1 + n2 + n3 ≧ 0, and when k ≧ 2, n1 + n2 + n3 ≧ 1.
  6.  前記液晶性化合物が、式(4)で表される繰り返し単位を含む高分子液晶性化合物を含み、式(4)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が、4以上である、請求項1~5のいずれか1項に記載の光学積層体の製造方法。
    Figure JPOXMLDOC01-appb-C000004

     式(4)中、P1は繰り返し単位の主鎖を表す。L1は、単結合または2価の連結基を表す。SP1は、スペーサー基を表す。M1は、メソゲン基を表す。T1は、末端基を表す。
    The liquid crystal compound includes a polymer liquid crystal compound including a repeating unit represented by the formula (4). In the formula (4), the difference between the log P value of P1, L1, and SP1 and the log P value of M1 is The method for producing an optical laminate according to any one of claims 1 to 5, wherein the number is 4 or more.
    Figure JPOXMLDOC01-appb-C000004

    In formula (4), P1 represents the main chain of a repeating unit. L1 represents a single bond or a divalent linking group. SP1 represents a spacer group. M1 represents a mesogenic group. T1 represents a terminal group.
  7.  前記第1配向膜の波長550nmにおける平均屈折率が1.55~1.80である、請求項1~6のいずれか1項に記載の光学積層体の製造方法。 The method for producing an optical laminated body according to any one of claims 1 to 6, wherein an average refractive index of the first alignment film at a wavelength of 550 nm is 1.55 to 1.80.
  8.  前記光学異方性層Aがλ/4板である、請求項1~7のいずれか1項に記載の光学積層体の製造方法。 The method for producing an optical laminated body according to any one of claims 1 to 7, wherein the optically anisotropic layer A is a λ / 4 plate.
  9.  前記表面フィルムが、基材とハードコート層とを有する、請求項1~8のいずれか1項に記載の光学積層体の製造方法。 The method for producing an optical laminate according to any one of claims 1 to 8, wherein the surface film has a base material and a hard coat layer.
  10.  前記基材が、アクリル系樹脂、メタクリル系樹脂、環状ポリオレフィン系樹脂、および、ポリエステル系樹脂からなる群から選ばれる少なくとも一種を含む、請求項9に記載の光学積層体の製造方法。 The method for producing an optical laminate according to claim 9, wherein the base material contains at least one selected from the group consisting of an acrylic resin, a methacrylic resin, a cyclic polyolefin resin, and a polyester resin.
  11.  請求項1~10のいずれか1項に記載の製造方法によって製造された光学積層体の前記表面フィルム側とは反対側の表面と、表示素子とが対向するように、前記光学積層体と前記表示素子とを積層して、表示装置を製造する工程を有する、表示装置の製造方法。 The optical laminate and the optical laminate manufactured by the manufacturing method according to any one of claims 1 to 10, such that the surface opposite to the surface film side of the optical laminate and the display element face each other. A method for manufacturing a display device, comprising a step of manufacturing a display device by stacking a display element.
  12.  前記光学積層体と前記表示素子との間に、密着層が配置される、請求項11に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 11, wherein an adhesion layer is disposed between the optical laminate and the display element.
PCT/JP2019/019136 2018-05-14 2019-05-14 Method for manufacturing optical laminate and method for manufacturing display device WO2019221123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519857A JP7016412B2 (en) 2018-05-14 2019-05-14 Manufacturing method of optical laminate, manufacturing method of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093264 2018-05-14
JP2018-093264 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221123A1 true WO2019221123A1 (en) 2019-11-21

Family

ID=68540027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019136 WO2019221123A1 (en) 2018-05-14 2019-05-14 Method for manufacturing optical laminate and method for manufacturing display device

Country Status (2)

Country Link
JP (1) JP7016412B2 (en)
WO (1) WO2019221123A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237928A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimensional image display system
JP2016027431A (en) * 2013-08-09 2016-02-18 住友化学株式会社 Optical anisotropic sheet
WO2017154695A1 (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Coloring composition, light-absorbing anisotropic film, layered body, and image display device
WO2017170036A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Colored composition, light-absorbing anisotropic film, layered product, and image display device
WO2017195833A1 (en) * 2016-05-12 2017-11-16 富士フイルム株式会社 Colored composition, dichroic dye compound, light absorption anisotropy film, layered product, and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237928A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimensional image display system
JP2016027431A (en) * 2013-08-09 2016-02-18 住友化学株式会社 Optical anisotropic sheet
WO2017154695A1 (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Coloring composition, light-absorbing anisotropic film, layered body, and image display device
WO2017170036A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Colored composition, light-absorbing anisotropic film, layered product, and image display device
WO2017195833A1 (en) * 2016-05-12 2017-11-16 富士フイルム株式会社 Colored composition, dichroic dye compound, light absorption anisotropy film, layered product, and image display device

Also Published As

Publication number Publication date
JPWO2019221123A1 (en) 2021-05-13
JP7016412B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
KR102417155B1 (en) Light absorption anisotropic film, three-dimensional light absorption anisotropic film, and fabrication methods thereof
KR102059695B1 (en) Circular polarizing plate and display device
TWI723200B (en) Elliptically polarizing plate
JP5688333B2 (en) Polymer film, retardation film, polarizing plate, liquid crystal display device, Rth enhancer and merocyanine compound
TWI712636B (en) Liquid crystal cured film, optical film including the liquid crystal cured film, and display device
KR101962461B1 (en) Polarizing film, circular polarizing plate and organic el image display device using the same
JP6483486B2 (en) Polarizing plate and circularly polarizing plate
US9599759B2 (en) Patterned polarizing film and its production process
TWI732772B (en) Laminated body, circularly polarizing plate including laminated body, display device including laminated body
CN110799868A (en) Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device
KR20150018428A (en) Laminate
KR20150093591A (en) Process for producing long polarizing film
CN114966942A (en) Polarizing film, circularly polarizing plate and display device
CN110720064B (en) Polymerizable liquid crystal composition and retardation plate
JP7271721B2 (en) organic electroluminescence display
KR20160063258A (en) Optical film
JP2019194685A (en) Polarizing plate
JPWO2015046399A1 (en) Manufacturing method of polarizing plate
WO2019208299A1 (en) Polarizing plate
CN113661420A (en) Laminate and composition for forming vertically aligned liquid crystal cured film
JP6394592B2 (en) Alignment layer for optically anisotropic film
WO2019221123A1 (en) Method for manufacturing optical laminate and method for manufacturing display device
KR102030270B1 (en) Method of manufacturing organic el image display device
WO2020195881A1 (en) Manufacturing method for polarizing film, and polarizing film
JP2023032330A (en) Manufacturing method of long-sized film laminate, manufacturing method of image display device and long-sized film laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804503

Country of ref document: EP

Kind code of ref document: A1