WO2019221062A1 - Method for evaluating medicine - Google Patents

Method for evaluating medicine Download PDF

Info

Publication number
WO2019221062A1
WO2019221062A1 PCT/JP2019/018948 JP2019018948W WO2019221062A1 WO 2019221062 A1 WO2019221062 A1 WO 2019221062A1 JP 2019018948 W JP2019018948 W JP 2019018948W WO 2019221062 A1 WO2019221062 A1 WO 2019221062A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
fluorescent
protein
organelle
evaluating
Prior art date
Application number
PCT/JP2019/018948
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 相宮
古澤 直子
中野 寧
洋 根岸
幸祐 権田
真由美 高野
成史 北村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020519624A priority Critical patent/JPWO2019221062A1/en
Publication of WO2019221062A1 publication Critical patent/WO2019221062A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a drug evaluation method.
  • Cancer is a disease that bisects the cause of death in adults together with vascular diseases such as myocardial infarction and cerebral infarction.
  • vascular diseases such as myocardial infarction and cerebral infarction.
  • the incidence of breast cancer in Japan is lower than in Western countries, but it has been increasing year by year in recent years. In 1998, it surpassed the incidence of gastric cancer and became the first cancer incidence in women. .
  • the annual number of patients with breast cancer exceeds 50,000.
  • the number of breast cancer patients in the world is increasing year by year. According to a 2008 WHO report, breast cancer has the highest incidence among cancers, and the annual number of patients affected is 1.38 million. It accounts for about 23% of women ’s cancer.
  • Organelles are structures that perform various functions in cells, and microtubules, one of which is a fibrous cytoskeleton that exists in eukaryotic cells.
  • a microtubule is composed of two types of proteins called ⁇ -tubulin and ⁇ -tubulin, and the basic unit is a heterodimer in which one molecule is bound to each other.
  • Microtubules are elongated by the addition (polymerization) of this heterodimer and shortened by dissociation.
  • Microtubule elongation and shortening also called microtubule dynamics, has important functions for transporting other various organelles and cell membrane proteins, as well as cell division (mitosis) and cell polarity. It is known to be involved in control.
  • anticancer agents are widely used as anticancer agents because they can inhibit cell growth and cell movement by impairing the structure and control of microtubules.
  • Such drugs include, for example, colchicine and vinca alkaloid anticancer agents (such as vincristine) having an action of suppressing microtubule polymerization, and taxane anticancer having an action of inhibiting microtubule depolymerization.
  • Agents docetaxel, paclitaxel
  • a method for evaluating the drug efficacy of a candidate drug by directly administering the candidate drug screened using cultured cells to a laboratory animal is widely used.
  • a candidate drug is administered to a tumor-bearing model mouse, which is a mouse transplanted with tumor cells, and the efficacy of the candidate drug is evaluated by measuring the size of the tumor after a predetermined time has elapsed.
  • Patent Document 1 a drug that has been shown to have a microtubule inhibitory effect in cell experiments is administered to a model mouse transplanted with breast cancer cells, and the change in tumor volume before and after drug administration is measured.
  • Patent Document 2 discloses a technique for imaging the action of a polypeptide, which is a microtubule elongation inhibitor, using cells expressing CLIP-170, a microtubule-binding protein fused to a fluorescent protein produced by genetic manipulation. Is described.
  • Patent Document 2 directly evaluates the inhibitory action of microtubule elongation by a polypeptide
  • the evaluation is performed using cultured cells instead of mice, and in a more physiological environment. It is not clear whether a similar evaluation can be performed in vivo.
  • the present invention relates to a method for evaluating a drug using a drug that affects the behavior of organelles and a laboratory animal.
  • the present inventors have prepared a specimen from a tissue section collected from a lesioned part of an experimental animal, performed fluorescence imaging, and observed the dynamics of the organelle. It was found that can be evaluated.
  • the present invention provides the following analysis method.
  • a drug evaluation method using an experimental animal having a lesion is A fluorescent protein, A part of transplanted cells expressing a fluorescent protein fused organelle binding protein, which is a protein fused with an organelle binding protein that is a protein that binds to an organelle, Administering to the experimental animal a drug that affects organelle dynamics, A drug evaluation method further comprising the following steps (a) to (c).
  • B A fluorescence imaging step of acquiring a fluorescence image of the specimen.
  • C An information acquisition step of acquiring information based on fluorescent luminescent spots from the image acquired in the imaging step.
  • the information based on the fluorescent bright spot is selected from the number of bright spots of the fluorescent protein, the moving distance and speed of the bright spot of the fluorescent protein, the linearity of the movement, and the distribution and density of the bright spots of the fluorescent protein.
  • the drug evaluation method according to [1] comprising one or more.
  • the drug evaluation method according to any one of [1] to [10], wherein the drug that affects the kinetics of the organelle is a microtubule polymerization inhibitor.
  • a drug evaluation system comprising a fluorescence imaging device and an information processing device
  • the fluorescent photographing device is a device for photographing a fluorescent image
  • the information processing apparatus is Receiving a fluorescence image acquired by the fluorescence imaging device; Obtain information based on the fluorescent luminescent spot from the received fluorescent image, An apparatus for analyzing information based on the fluorescent bright spot, A drug evaluation system for performing the drug evaluation method according to any one of [1] to [16].
  • the drug evaluation system according to [17] further comprising a display device that displays information based on the fluorescent bright spot.
  • the drug evaluation system according to [17] or [18], wherein the information processing apparatus includes an information storage unit that stores information based on the fluorescent bright spot.
  • fluorescence imaging is performed on a specimen prepared from a tissue section collected from a lesioned part of an experimental animal, and the dynamics of organelles are observed, whereby the drug in the lesioned part of the experimental animal is observed. It is possible to evaluate the impact of In addition, since the specimen prepared in the present invention is in a state where the cells remain alive, more detailed information such as the movement distance of the organelle can be acquired.
  • FIG. 1 is a flowchart in the drug evaluation method of the present invention.
  • FIG. 2 is a schematic diagram of a system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart when the medicine evaluation method is performed using the system according to the embodiment of the present invention.
  • the present invention includes a method for evaluating the effect of a drug that affects the organelle dynamics by performing fluorescence imaging using an experimental animal transplanted with cells expressing a fluorescent protein-fused organelle-binding protein.
  • a transplanted lesion part of a cell expressing a fluorescent protein-fused organelle-binding protein which is a protein in which a fluorescent protein and a protein (organelle-binding protein) that binds to an organelle are fused.
  • the experimental animal in the present invention is an experimental animal having a lesioned part, and the lesioned part is a site where cells expressing a fluorescent protein-fused cell organelle binding protein described later are transplanted.
  • the lesion is not particularly limited but is preferably a tumor.
  • the experimental animal is a cancer-bearing animal.
  • the method for transplanting cells expressing the fluorescent protein-fused cell organelle-binding protein is not particularly limited.
  • the cells can be transplanted by subcutaneous injection of a solution in which the cells are suspended.
  • the experimental animal is preferably selected according to the purpose, for example, mouse, rat, rabbit, guinea pig, gerbil, hamster, ferret, dog, minipig, monkey, cow, horse, sheep, etc. Examples include animals that are controlled and have homogeneous genetic requirements. From the viewpoint of establishing an experimental system and facilitating breeding, mice are preferably used. Further, in the present invention, an immunodeficient mouse is preferable because a cell expressing a fluorescent protein-fused cell organelle-binding protein is transplanted. (Fluorescent protein fusion cell organelle binding protein)
  • the fluorescent protein-fused organelle-binding protein of the present invention is a protein in which a fluorescent protein and a protein that binds to an organelle are fused.
  • the structure of the fluorescent protein fusion organelle-binding protein may be selected according to the selected fluorescent protein and organelle-binding protein.
  • GFP is selected as the fluorescent protein
  • EB1 is selected as the organelle-binding protein.
  • the organelle-binding protein is not particularly limited as long as it has a property of binding to an organelle.
  • the organelle-binding protein is preferably a protein that recognizes and binds to the extended end of the microtubule.
  • EB3 end binding protein 3
  • CLIP170 cytoplasmic linker protein 170
  • APC adenomatous polyposis coli
  • STIM1 stromal interaction molecule 1
  • EB1 end binding protein 1
  • the fluorescent protein is not particularly limited as long as it is a fluorescent protein that can be fused and expressed with other proteins. Examples thereof include GFP, RFP, YFP, and the like, and GFP is particularly preferable.
  • the fluorescent protein absorbs energy when irradiated with electromagnetic waves (X-rays, ultraviolet rays, or visible rays) having a predetermined wavelength, and excites electrons to return to the ground state from the excited state. It is a protein that emits (emits) the energy of as “fluorescence”.
  • fluorescence has a broad meaning, and includes phosphorescence that has a relatively long emission lifetime that can continue to emit light even when irradiation of electromagnetic waves for excitation is stopped, and so-called narrow-sense fluorescence that has a relatively short emission lifetime. To do.
  • the cell that expresses the fluorescent protein-fused cell organelle-binding protein is not particularly limited, but is preferably a cultured cell derived from a diseased tissue, and more preferably a cultured cell derived from a tumor tissue. Further, the fluorescent protein-fused organelle-binding protein to be expressed in the cell may be one type or a plurality of types. When multiple types of fluorescent protein-fused organelle-binding proteins are expressed in cells, the fluorescent proteins constituting each fluorescent protein-fused organelle-binding protein are selected from fluorescent proteins that emit fluorescence at different fluorescence wavelengths. It is preferable. In this case, the organelles to which the organelle binding proteins constituting the fluorescent protein fusion organelle binding protein bind may be the same or different.
  • the method for expressing the fluorescent protein-fused organelle-binding protein in the cell is performed by introducing a gene encoding the fluorescent protein-fused organelle-binding protein into the cell.
  • a known method can be used as a method for gene transfer.
  • gene transfer may be performed using a virus particle prepared by a virus vector having a desired gene, or a transfection reagent such as Lipofectamine (registered trademark) may be used.
  • gene transfer may be performed chemically or by a physical method such as electroporation.
  • the step of administering the drug of the present invention is a process of administering a drug that affects the organelle dynamics to the experimental animal.
  • the dosage form, administration route, administration period, number of administrations, etc. of the drug are not particularly limited, and the process of administering the drug may be performed once or multiple times.
  • the drug that affects the organelle dynamics is not particularly limited, but is preferably a drug that affects the microtubule dynamics, more preferably a drug that affects the microtubule polymerization, More preferably, it is a vascular polymerization inhibitor, and specifically, for example, paclitaxel (trade name: paclitaxel, Nippon Kayaku Co., Ltd.), trastuzumab-emtansine (trade name: Kadsaila, Chugai Pharmaceutical Co., Ltd.), brentuximab vedin (product) Name ADCETRIS, Takeda Pharmaceutical Co., Ltd.), Eriblin (trade name Halaven, Eisai Co., Ltd.) and the like.
  • paclitaxel trade name: paclitaxel, Nippon Kayaku Co., Ltd.
  • trastuzumab-emtansine trade name: Kadsaila, Chugai Pharmaceutical Co., Ltd.
  • brentuximab vedin product
  • the amount of the drug is not particularly limited, and an appropriate amount may be administered depending on the type of drug, the weight and age of the experimental animal, the size (volume) of the lesion.
  • the drug is preferably a fluorescently labeled drug labeled with a fluorescent substance.
  • the fluorescent substance can be selected from a group similar to the fluorescent substance used in fluorescent staining described later, such as organic fluorescent dyes, quantum dots, and phosphor integrated nanoparticles described later. It is preferable to select a fluorescent substance that emits fluorescence having a wavelength different from the fluorescence emitted by the fluorescent protein constituting the organelle-binding protein.
  • the method of labeling the drug with a fluorescent substance is not particularly limited, and examples thereof include a method of covalently bonding the drug and the fluorescent substance via a functional group such as an amino group or a hydroxyl group.
  • the drug can be fluorescently labeled using a labeling reagent (kit).
  • sample preparation process In the specimen preparation step in the present invention, a specimen is prepared from a tissue section collected from the lesioned part of the experimental animal.
  • the excised tumor tissue is immersed in a heated gel, and the tumor tissue that has been cooled and solidified is sliced with a scalpel and used as a specimen.
  • the gel is not particularly limited as long as it has a melting temperature higher than room temperature and gels at about room temperature.
  • an agarose gel such as PrimeGel (registered trademark) Agarose or a low melting point acrylamide can be used.
  • the melting temperature is preferably 60 ° C. to 100 ° C., more preferably 65 ° C. to 95 ° C., and still more preferably 65 ° C. to 90 ° C.
  • the solidification temperature is preferably 10 ° C. to 50 ° C., more preferably 20 ° C. to 40 ° C.
  • the concentration of the gel can be appropriately changed depending on the type of gel, environmental conditions such as air temperature, etc. For example, when an agarose gel is used, it is preferably 1% to 2%.
  • the fluorescence emitted from the fluorescent protein by irradiating the sample with excitation light corresponding to the fluorescent protein constituting the fluorescent protein-fused organelle binding protein is obtained as a fluorescent image.
  • Irradiation of these excitation lights can be performed, for example, using a laser light source provided in a fluorescence microscope and an excitation light optical filter that selectively transmits a predetermined wavelength as required.
  • excitation light corresponding to each fluorescent protein is sequentially applied to the specimen sample. By irradiating, the fluorescence emitted from each fluorescent protein can be acquired as a fluorescent image.
  • the excitation light corresponding to the fluorescent substance labeled with the drug and the fluorescent protein constituting the fluorescent protein fusion organelle binding protein The fluorescence emitted from the fluorescent protein and the fluorescent substance by sequentially irradiating the specimen sample with the excitation light can also be acquired as fluorescent images.
  • the sample protein is irradiated with the excitation light corresponding to the fluorescent protein and the excitation light corresponding to the fluorescent substance used for the fluorescent staining in order from the fluorescent protein and the fluorescent substance.
  • the emitted fluorescence can also be acquired as a fluorescence image.
  • the acquisition order of the fluorescent image of the fluorescent protein and the fluorescent image of the fluorescent substance described above is not particularly limited.
  • the first fluorescence imaging step is performed first, and the second is performed next.
  • the fluorescence imaging process, which is performed for the Nth time, may be referred to as the Nth fluorescence imaging process.
  • Fluorescent images can be acquired by, for example, photographing with a digital camera provided in a fluorescence microscope.
  • the fluorescent image may be a still image or a moving image. It is also possible to perform time-lapse photography and acquire a plurality of fluorescent images over time. You may convert the image which carried out the time lapse photography into a moving image using well-known software.
  • a visible light photographing step of obtaining an image by photographing under visible light before or after the fluorescence photographing step may be performed.
  • Information acquisition process In the information acquisition process of the present invention, information based on the fluorescent bright spot is acquired for the image acquired in the fluorescence imaging process.
  • the information based on the fluorescent luminescent spot is preferably derived from the fluorescence emitted by the fluorescent protein constituting the fluorescent protein-fused organelle protein.
  • information derived from the fluorescence emitted by the fluorescent substance used for fluorescent staining for example, the number of bright spots of the fluorescent substance and its localization may be included. .
  • image processing may be performed by any method. For example, when image processing is performed to superimpose images acquired in the first fluorescence imaging step to the Nth fluorescence imaging step, it is possible to observe the mutual positional relationship between the organelles and drugs of the captured cells. it can.
  • image processing is performed using image processing software such as “Imaris” (manufactured by Carl Zeiss) or “ImageJ” (open source), thereby extracting bright spots of a predetermined wavelength (color) from the fluorescent image.
  • image processing software such as “Imaris” (manufactured by Carl Zeiss) or “ImageJ” (open source)
  • the process of calculating the total sum of the brightness, measuring the number of bright spots that exceed the specified brightness, and measuring the movement distance of the bright spots is performed semi-automatically and quickly, so that the desired fluorescence can be obtained. Information based on bright spots can be acquired.
  • the information based on the fluorescent bright spot is not particularly limited, but is selected from the number of bright spots of the fluorescent protein, the moving distance of the bright spot of the fluorescent protein, the moving speed, the linearity of the movement, and the distribution and density of the bright spots of the fluorescent protein. It is preferable to include one or more indexes, and more preferably to include two or more indexes.
  • the linearity of movement can be obtained by quantifying by “linear distance between the starting point and the ending point of the bright spot” ⁇ “moving distance of the bright spot”. The closer the value is to 1, the higher the linearity is.
  • the drug affecting the dynamics of the organelle administered to the experimental animal in the step of administering the drug is a fluorescently labeled drug
  • the number of bright spots derived from the fluorescent substance labeled with the drug is further increased. It is preferable to include.
  • the drug can be evaluated based on the information acquired in the information acquisition process. For example, it can be performed by classifying specimens according to a certain threshold set for arbitrary information, and the rate of change in the number of bright spots is determined to be 50% or more highly effective (Rank A), and 30% to 50%. Less than% can be determined to be moderate (Rank B), and otherwise it can be determined to be less effective (Rank C). In addition, by considering a plurality of pieces of information including information based on fluorescent luminescent spots, more accurate drug evaluation can be performed by making a composite determination.
  • the fluorescence imaging process may optionally be performed again. In this case, a more appropriate image can be taken by changing the fluorescence intensity, the visual field, and the like.
  • the specimen before fluorescence observation may be subjected to fluorescent staining using a fluorescent substance.
  • the target of the fluorescent staining is not particularly limited, but is preferably a drug that affects the organelle dynamics administered to the experimental animal to be evaluated in the present invention.
  • the method of fluorescent staining is not particularly limited, but is preferably fluorescent immunostaining performed using an antibody labeled with a fluorescent substance.
  • the antibody labeled with the fluorescent substance has a configuration of [anti-drug antibody] to [fluorescent substance].
  • the form of the bond represented by “ ⁇ ” is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. It may be through.
  • [Anti-drug antibody] to [fluorescent substance] can be used as long as [anti-drug antibody] to [fluorescent substance] itself, in which a desired fluorescent substance is bound to a desired antibody, is commercially available. Alternatively, it can be prepared using, for example, a commercially available fluorescent labeling reagent (kit) based on a known technique capable of binding a desired fluorescent substance to a desired antibody (protein).
  • kit fluorescent labeling reagent
  • the fluorescent substance used for the fluorescent staining is not particularly limited, but is preferably a fluorescent substance having a fluorescent wavelength different from the fluorescent wavelength of the fluorescent protein, and phosphor integrated particles are used from the viewpoint of luminance and quantitativeness. Is preferred.
  • the phosphor-integrated particles have a structure in which a plurality of phosphors (for example, fluorescent dyes and semiconductor nanoparticles) are encapsulated and / or adsorbed on the surface of the particles, which are made of organic or inorganic substances.
  • Nano-sized particles having Examples of fluorescent dyes constituting the phosphor-integrated nanoparticles include rhodamine dyes, Cy dyes, AlexaFluro (registered trademark) dyes, BODIPY dyes, squarylium dyes, cyanine dyes, aromatic ring dyes, and oxazine dyes. Dyes, carbopyronine dyes, pyromesene dyes, and the like.
  • Examples of the semiconductor nanoparticles constituting the phosphor-integrated nanoparticles include II-VI group semiconductors, III-V group semiconductors, and IV group semiconductors. Can be mentioned.
  • the phosphor-aggregated particles can be produced according to a known method (for example, see JP2013-57937A).
  • a sample preparation method is a method for preparing a sample for performing the drug evaluation method, wherein cells remain alive from a tissue section collected from a lesion of an experimental animal.
  • This is a method for preparing a specimen that can be photographed with fluorescence.
  • a specimen is prepared by coating a tissue section collected from a lesion of an experimental animal with a melted gel and slicing the tissue section covered with the gel at a solidification temperature lower than room temperature.
  • the gel is not particularly limited as long as it has a melting temperature higher than room temperature and a solidification temperature lower than room temperature.
  • an agarose gel such as PrimeGel (registered trademark) Agarose or a low melting point acrylamide can be used.
  • the melting temperature is preferably 60 ° C. to 100 ° C., more preferably 65 ° C. to 95 ° C., and still more preferably 65 ° C. to 90 ° C.
  • the solidification temperature is preferably 10 ° C. to 50 ° C., more preferably 20 ° C. to 40 ° C.
  • a drug evaluation system is a system for performing the drug evaluation method, and is a drug evaluation system including a fluorescence observation apparatus and an information processing apparatus.
  • the fluorescence observation apparatus is an apparatus that captures a fluorescent image
  • the information processing apparatus receives imaging information acquired by the fluorescence observation apparatus, acquires information based on fluorescent luminescent spots from the received imaging information, This is an apparatus for analyzing information based on fluorescent bright spots.
  • the evaluation system of the present invention preferably further includes an input device that controls the system and a display device that outputs information acquired by the information processing device.
  • the fluorescence imaging apparatus is not particularly limited as long as it is an apparatus capable of capturing a fluorescent image, but is preferably a fluorescence microscope equipped with an imaging apparatus, and further a confocal microscope equipped with an imaging apparatus It is more preferable that The imaging device is not particularly limited as long as it can capture a fluorescent image, but it is preferable that it can capture a multicolor time-lapse image or a moving image.
  • the fluorescence image acquired by the fluorescence imaging apparatus is transmitted to the information processing apparatus.
  • the acquired fluorescent image is preferably converted as a digital image, and may be processed or image processed by a known means.
  • the information processing apparatus includes an information storage unit that stores information based on fluorescent bright spots. For example, at the time of measurement, sample ID information and drug ID information are input from an input device or the like, imaging is performed at a plurality of time points, and data is stored in the information processing device, so that a sample is continuously acquired. Information based on the fluorescent bright spot can be referred to, and the amount of change in the measured value, its ratio, fluctuation, etc. can be observed.
  • the evaluation system has a display device that displays information based on the fluorescent bright spot.
  • the display device includes, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and is an image or information processing device photographed by a fluorescence photographing device according to display control of the input device. Display the acquired information.
  • the displayed information may be information that is further organized by an arbitrary method. For example, drug ID (drug name, LOT number, etc.), sample information (mouse ID, cell information transplanted into the mouse, etc.), imaging history, change amount of each information, measurement date / time, captured image, and drug in each sample It is preferable that the determination results and the like are displayed together (see FIG. 2: display device).
  • the program which is one Embodiment of this invention is a program for performing the said chemical
  • a process for causing the fluorescence imaging apparatus to present imaging information to the information processing apparatus a process for causing the information processing apparatus to calculate predetermined information including information based on the fluorescent bright spot from the imaging information received, It is a program for executing a process for calculating a change over time from information calculated at a time point and a process for presenting an evaluation of a drug administered to an experimental animal based on the change.
  • the program may be stored in an information processing apparatus, or other computer-readable recording media such as a magnetic tape (digital data storage (DSS), etc.), a magnetic disk (hard disk drive (HDD), a flexible disk (FD). )), Optical disc (compact disc (CD), digital versatile disc (DVD), Blu-ray disc (BD), etc.), magneto-optical disc (MO), flash memory (SSD (Solid State Drive), memory card, USB memory, etc.)
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the information processing apparatus or the like stores data necessary for executing the program.
  • the program is stored in an information processing apparatus or
  • the drug evaluation can be performed, for example, by classifying specimens according to a certain threshold set for arbitrary information. For example, regarding the rate of change of the number of bright spots, 50% or more is judged to be highly effective (Rank A), and 30% or more and less than 50% is judged to be moderately effective (Rank B). Judged as low (Rank C). Further, by setting threshold values for a plurality of pieces of information and making a composite determination, more accurate drug evaluation can be performed.
  • Human EB1 cDNA was amplified by reverse transcription polymerase chain reaction (Reverse Transcriptase Polymerase Chain Reaction), and the amplified product was inserted into a pEGFP cloning vector (Clontech) to further amplify EB1-EGFP cDNA.
  • the EB1-EGFP cDNA was excised and inserted into a pLNCX2 retrovirus vector (BD Bioscience) to construct a retrovirus vector into which the EB1-EGFP cDNA was inserted.
  • the constructed retroviral vector is transfected into packaging cells (GP2-293 cells) using Xfect Transfection Reagent (Takara Bio Inc.), cultured for 48 hours, and the recombinant supernatant is recovered by filtering the culture supernatant. did.
  • the human breast cancer cell line KPL-4 was transfected with the EB1-EGFP gene.
  • Transfected cells were transformed into single clones by repeated passages at 37 ° C. and 5% CO 2 with DMEM (Gibco) containing 10% FBS (Gibco) and 400 ⁇ g / ml G418. (Hereinafter, single-cloned cells are referred to as EB1-EGFP-KPL cells).
  • mice 5 ⁇ 7 weeks old female immunodeficient mice (BALB-c nu / nu: Charles River) under general anesthesia with a mixture of 1.5% ketamine and 1.0% xylazine, 2 ⁇ 10 Cancer-bearing mice were prepared by transplanting seven EB1-EGFP-KPL cells subcutaneously in the right hips of the mice. Individuals with tumor diameters of 5 to 10 mm 4 to 5 weeks after transplantation were used for the experiments.
  • the cooled solution was dispensed into a plurality of centrifuge tubes and centrifuged at 12,000 rpm for 20 minutes to precipitate Texas red-integrated melamine resin particles contained in the solution as a mixture.
  • the supernatant was removed and the precipitated particles were washed with ethanol and water.
  • SEM observation was performed on 1000 of the obtained Texas Red integrated melamine resin particles, and the average particle size was measured. As a result, the average particle size was 80 nm.
  • the antibody was bound to the surface of the Texas red-integrated melamine resin particles thus produced by the following means.
  • the particles subjected to the above surface amination treatment were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and the final concentration of this solution was 10 mM.
  • SM (PEG) 12 manufactured by Thermo Scientific, succinimidyl-[(N-maleimipropionamido) -dodecaethyleneglycol] ester was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. The washing
  • Anti-human IgG antibody (donkey polyclonal antibody; JacksonJImmunoResearch) was treated with N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column and binding to Texas Red accumulated melamine particles A possible anti-IgG antibody solution was obtained.
  • SATA N-succinimidyl S-acetylthioacetate
  • the Texas Red-integrated melamine particles modified with the maleimide group and the anti-IgG antibody subjected to the thiol group addition treatment were mixed in PBS containing 2 mM of EDTA, reacted at room temperature for 1 hour, and then 10 mM mercaptoethanol. Was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted antibodies and the like were removed using a gel filtration column for purification, and anti-IgG antibody-bound Texas red integrated melamine particles were obtained.
  • Trastuzumab-emtansine 100 ⁇ g (1 mg / mL) (trade name: Kadosaira; Chugai Pharmaceutical Co., Ltd.) was diluted with 100 mM HEPES buffer containing 30% glycerol, and ultrafiltration filter Nanosep 30K (Pall Corporation) was used. Purified.
  • trastuzumab-emtansine 100 ⁇ g (1 mg / mL) with Cy5 ⁇ ⁇ ⁇ NHS ⁇ Ester Mono-reactive dissolved in dimethylsulfoxide (Thermo Fisher) to 8.5 mM for 15 minutes in a 37 °C environment
  • trastuzumab Cy5 was conjugated to the amino group of the lysine residue of emtansine.
  • Cy5-labeled trastuzumab-emtansine was purified according to the procedure described in the kit.
  • Example 1 The tumor-bearing mouse prepared in Preparation Example 1 was anesthetized with 1.5% ketamine + 1% xylazine mixed anesthesia 4-5 weeks after transplantation of GFP-fused EB1-expressing cells, and 1.35 mg with physiological saline.
  • the anticancer drug trastuzumab-emtansine (trade name: Kadsaila; Chugai Pharmaceutical Co., Ltd.) diluted to a concentration of / mL was administered from the tail vein through the tail vein.
  • the same amount of physiological saline (Otsuka raw food injection; Otsuka Pharmaceutical Co., Ltd.) was administered to cancer-bearing mice similarly produced as a control.
  • a culture solution FluoroBrite DMEM Media; Thermo Fisher Scientific
  • the tumor embedded in the gel is sliced with a linear slicer PRO7 (manufactured by Dosaka EM Co., Ltd.) to a thickness of 200 ⁇ m by vibration at 83 to 85 Hz, washed with FluoroBrite (registered trademark) DMEM Media, and 37 ° C. Left in the environment for 1 hour. Thereafter, the tumor slice was placed on a 35 mm glass bottom dish No1.5 containing an appropriate amount of FluoroBrite DMEM Media, and a round cover glass was placed thereon to fix the tumor slice on the dish.
  • the present invention most of the cells remain alive in the tumor section subjected to the above-described treatment, and the living cells are also the object of analysis in the fluorescence observation.
  • Fluorescence is detected using a 488 nm Laser whose output is set to 0.5% as an excitation light source, HV is 75 (au), resolution is 512 ⁇ 512, pixel size is 0.104 ⁇ m / pixel (Zoom 4), Line Average This was done using a resonant vaginal scanner set to 16. Furthermore, Time Lapse photography was performed by continuously photographing for 20 seconds at a scanning speed of 1.07 seconds / 1 frame.
  • the image acquired for 12 cells was analyzed with the image processing software “Imaris”.
  • the number of bright spots observed for each cell during the imaging time (20 seconds) was 2000 per cell in Example 1, and 2710 per cell in the Comparative Example. Of these, 210 per cell in the examples and 400 per cell in the comparative examples were extracted as the number of tracking bright spots.
  • the linear movement distance linear distance of the luminescent spot at the start point and the end point of photographing
  • the moving speed of the luminescent spot and the linearity of the luminescent spot movement were measured, and the average value was calculated.
  • the sum total of the linear movement distances of all bright spots contained in one cell was calculated. The results are shown in Table 1.
  • Example 1 in which trastuzumab-emtansine was administered to a tumor-bearing mouse prepared using KPL-4 cells expressing GFP-fused EB1, the fluorescence emission point was higher than that in Comparative Example 1 in which physiological saline was administered. It was found that the number of points, linear movement distance, and movement speed were greatly reduced. From this, it can be seen that the microtubule polymerization inhibitory action of trastuzumab-emtansine reduces the number of microtubules and also inhibits the movement of microtubules.
  • Example 2 For the tumor-bearing mice prepared in Preparation Example 1, specimen preparation and EB1-EGFP and Cy5 Fluorescence observation was performed by ex vivo imaging.
  • the detection of fluorescence is the same as in Example 1 for EGFP, and for Cy5, the output is set to 4.0% at 640 nm Laser, the excitation light source is HV 80 (au), resolution 512 x 512, pixel This was carried out using a resonant scanner set to a size of 0.104 ⁇ m / pixel (Zoom 4) and Line Average 16.
  • the number of green bright spots (corresponding to GFP) observed for each cell during the imaging time (20 seconds) was 3000 per cell in Example 2 and 5800 per cell in the Comparative Example. Furthermore, a red bright spot (corresponding to Cy5) in each cell was extracted, and their fluorescence intensity was measured. For Cy5, analysis is performed using open software FIJI / ImageJ, and the average signal value of the autofluorescence image is subtracted and normalized per unit area in the region set as the region of interest (ROI). The Cy5 fluorescence intensity of each cell was measured.
  • Example 2 Cells in which green luminescent spots were observed in Example 2 were divided into two groups based on Cy5 fluorescence intensity, and for each group and comparative example, linear movement distances (linear distances of luminescent spots at the start and end points of imaging), luminescent spots The moving speed and the linearity of bright spot movement were measured, and the average value was calculated. Furthermore, the sum total of the linear movement distances of all bright spots contained in one cell was calculated.
  • Example 1 since the moving distance and moving speed of the green fluorescent luminescent spot are greatly reduced, it can be seen that the microtubule polymerization inhibitory action is working. Furthermore, information on the drug that has reached the cell can be obtained simultaneously from the fluorescence of Cy5 labeled with trastuzumab-emtansine. Cells with strong Cy5 fluorescence intensity, that is, cells with a large amount of drug arrival, have a smaller green fluorescent emission distance and movement speed than cells with low Cy5 fluorescence intensity, that is, cells with a small amount of drug arrival, and inhibit microtubule polymerization. It can be seen that the effect is large.
  • Example 3 The cancer-bearing mouse prepared in Preparation Example 1 was administered with a drug (trastuzumab-emtansine) in the same procedure as in Example 1, and a specimen was prepared in the same manner as in Example 1.
  • the prepared specimen was added to the fluorescent staining solution prepared in the culture solution (FluoroBrite DMEM Media; Thermo Fisher Scientific Co., Ltd.) so that the anti-IgG antibody-bound Texas Red-integrated melamine resin particles prepared in Preparation Example 3 were 0.1 nM. Fluorescence staining was performed by immersion and shaking at room temperature for 3 hours. After fluorescent staining, in order to remove excess fluorescent staining solution, it was placed in a tube containing 20 mL of phosphate buffered saline, left at room temperature for 15 minutes, and then immersed in 1 mL of culture solution.
  • the images acquired for 12 cells were analyzed with the image processing software “Imaris” in the same manner as in Example 1.
  • the number of green bright spots (corresponding to GFP) observed at the photographing time (20 seconds) for each cell was 4200 per cell in Example 1, and 6800 per cell in the Comparative Example. Of these, 280 cells per cell were extracted as examples, and 430 cells per cell were extracted as chase points in the comparative example. Further, for each green luminescent spot, the linear movement distance (linear distance of the luminescent spot at the start point and the end point of photographing), the moving speed of the luminescent spot, and the linearity of the luminescent spot movement were measured, and the average value was calculated. Furthermore, the sum total of the linear movement distances of all bright spots contained in one cell was calculated. Further, in addition to the above, the number of red bright spots (corresponding to Texas Red) in each cell was measured, and the average value per cell was calculated. Each result is shown in Table 3.
  • Example 1 since the movement distance and the number of bright spots of the green fluorescent bright spot are greatly reduced as compared with the comparative example, it can be seen that the microtubule polymerization inhibitory action is working. Furthermore, information on the amount of trastuzumab emtansine reaching the cells can be obtained simultaneously from the number of red bright spots indicating Texas Red used for fluorescent staining of trastuzumab emtansine. By staining the microtubule and the drug at the same time in this way, it is possible to understand the relationship between the amount of the drug reaching the cell and the dynamism of the microtubule, and to evaluate the drug more accurately. .

Abstract

The present invention is a method for evaluating a medicine that influences cell organelle dynamics, by capturing a fluorescent image of cell organelles using laboratory animals for the medicine, the method comprising: a sample preparing step in which a medicine that influences cell organelle dynamics is administered to a laboratory animal having a lesion implanted with cells expressing a fluorescent-protein-fused cell organelle binding protein, and a sample is prepared from a tissue section obtained from the lesion of the laboratory animal; a fluorescent image-capturing step for acquiring a fluorescent image of the sample; and an information acquisition step for acquiring fluorescent-spot-based information from the fluorescence image.

Description

薬剤評価方法Drug evaluation method
 本発明は、薬剤評価方法に関する。 The present invention relates to a drug evaluation method.
 がんは、心筋梗塞や脳梗塞に代表される血管系疾患とともに成人の死亡原因を二分する疾患である。例えば、日本における乳がん罹患率は、欧米諸国に比べて低いものの、近年では年々増加する傾向にあり、1998年には胃がんの罹患率を抜いて女性のがん罹患率の第1位となった。最近の報告である2005年の厚生労働省統計によれば、乳がんの年間患者数は5万人を超えている。世界でも同様に乳がん患者数数は年々増加しており、2008年のWHOの報告によれば、乳がんはがんの中でも罹患率が第1位であり、その年間罹患者数は138万人を超え、女性のがん全体の約23%を占めている。 Cancer is a disease that bisects the cause of death in adults together with vascular diseases such as myocardial infarction and cerebral infarction. For example, the incidence of breast cancer in Japan is lower than in Western countries, but it has been increasing year by year in recent years. In 1998, it surpassed the incidence of gastric cancer and became the first cancer incidence in women. . According to a recent report by the Ministry of Health, Labor and Welfare in 2005, the annual number of patients with breast cancer exceeds 50,000. Similarly, the number of breast cancer patients in the world is increasing year by year. According to a 2008 WHO report, breast cancer has the highest incidence among cancers, and the annual number of patients affected is 1.38 million. It accounts for about 23% of women ’s cancer.
 細胞小器官は細胞内で様々な機能を果たす構造物であり、そのうちの1つである微小管は、真核生物の細胞内に存在する線維状の細胞骨格である。微小管は、α-チューブリンとβ-チューブリンと呼ばれる2種のタンパク質からなり、各1分子ずつが結合したヘテロ2量体がその基本単位である。微小管はこのヘテロ2量体の付加(重合)により伸長し、解離により短縮する。微小管の伸長と短縮は、微小管のダイナミクスとも呼ばれ、他の様々な細胞内小器官や細胞膜タンパク質の輸送等に重要な機能を持つと同時に、細胞分裂(有糸分裂)や細胞極性の制御に関与することが知られている。微小管の動態に影響する物質は、微小管の構造や制御に障害を与えることにより細胞増殖、細胞運動を抑制することができることから、抗がん剤として広く使用されている。そのような薬剤としては例えば、微小管の重合を抑制する作用を有するコルヒチンやビンカアルカロイド系の抗がん剤(ビンクリスチンなど)、微小管の脱重合を阻害する作用を有するタキサン系の抗がん剤(ドセタキセル、パクリタキセル)等が知られている。 Organelles are structures that perform various functions in cells, and microtubules, one of which is a fibrous cytoskeleton that exists in eukaryotic cells. A microtubule is composed of two types of proteins called α-tubulin and β-tubulin, and the basic unit is a heterodimer in which one molecule is bound to each other. Microtubules are elongated by the addition (polymerization) of this heterodimer and shortened by dissociation. Microtubule elongation and shortening, also called microtubule dynamics, has important functions for transporting other various organelles and cell membrane proteins, as well as cell division (mitosis) and cell polarity. It is known to be involved in control. Substances that affect microtubule dynamics are widely used as anticancer agents because they can inhibit cell growth and cell movement by impairing the structure and control of microtubules. Such drugs include, for example, colchicine and vinca alkaloid anticancer agents (such as vincristine) having an action of suppressing microtubule polymerization, and taxane anticancer having an action of inhibiting microtubule depolymerization. Agents (docetaxel, paclitaxel) and the like are known.
 抗がん剤の開発においては、培養細胞を用いてスクリーニングした候補薬剤を実験動物に直接投与することで、候補薬剤の薬効を評価する方法が広く用いられている。例えば、腫瘍細胞を移植したマウスである担がんモデルマウスに候補薬剤を投与して、所定の時間が経過した後に、腫瘍の大きさを測定することで候補薬剤の薬効を評価するという方法がある。特許文献1では細胞実験で微小管阻害作用が示された薬物を乳がん細胞を移植したモデルマウスに投与し、薬物投与前後における腫瘍体積の変化を測定している。 In the development of anticancer agents, a method for evaluating the drug efficacy of a candidate drug by directly administering the candidate drug screened using cultured cells to a laboratory animal is widely used. For example, there is a method in which a candidate drug is administered to a tumor-bearing model mouse, which is a mouse transplanted with tumor cells, and the efficacy of the candidate drug is evaluated by measuring the size of the tumor after a predetermined time has elapsed. is there. In Patent Document 1, a drug that has been shown to have a microtubule inhibitory effect in cell experiments is administered to a model mouse transplanted with breast cancer cells, and the change in tumor volume before and after drug administration is measured.
 また、特許文献2には遺伝子操作により作製された蛍光タンパクに融合した微小管結合タンパク質であるCLIP-170を発現する細胞を用いて、微小管伸長抑制剤であるポリペプチドの作用をイメージングする手法が記載されている。 Patent Document 2 discloses a technique for imaging the action of a polypeptide, which is a microtubule elongation inhibitor, using cells expressing CLIP-170, a microtubule-binding protein fused to a fluorescent protein produced by genetic manipulation. Is described.
特表2012-500180号公報Special table 2012-500180 gazette 特開2011-016730号公報JP 2011-016730 A
 しかしながら、特許文献1に開示された方法では、マウスの腫瘍体積の変化を測定することにより薬剤の評価を行っており、当該薬剤の微小管阻害作用を直接評価してはいない。したがって当該文献の方法では、マウスの体内においても当該薬剤が細胞実験において示したものと同じメカニズムによって、つまり微小管阻害作用によってマウスの腫瘍体積を抑制しているかどうかは明らかではない。 However, in the method disclosed in Patent Document 1, the drug is evaluated by measuring the change in the tumor volume of the mouse, and the microtubule inhibitory action of the drug is not directly evaluated. Therefore, in the method of the document, it is not clear whether the drug suppresses the tumor volume of the mouse in the mouse body by the same mechanism as that shown in the cell experiment, that is, by the microtubule inhibitory action.
 また、特許文献2に記載の手法ではポリペプチドによる微小管伸長の抑制作用を直接評価してはいるが、当該評価はマウスではなく培養細胞を用いて行うものであり、より生理的な環境下であるマウスの生体内で同様の評価が行えるかどうかは明らかではない。 Further, although the method described in Patent Document 2 directly evaluates the inhibitory action of microtubule elongation by a polypeptide, the evaluation is performed using cultured cells instead of mice, and in a more physiological environment. It is not clear whether a similar evaluation can be performed in vivo.
 本発明は、細胞小器官の動態に影響を与える薬剤および実験動物を用いて、当該薬剤を評価する方法に関する。 The present invention relates to a method for evaluating a drug using a drug that affects the behavior of organelles and a laboratory animal.
 本発明者らは、実験動物の病変部から採取した組織切片から検体を作製し、蛍光撮影を行い、細胞小器官の動態を観察することで、細胞小器官の動態に影響を与える薬剤の効果を評価できることを見出した。 The present inventors have prepared a specimen from a tissue section collected from a lesioned part of an experimental animal, performed fluorescence imaging, and observed the dynamics of the organelle. It was found that can be evaluated.
 すなわち、本発明は次のような解析方法を提供する。
[1]
 病変部を有する実験動物を用いた薬剤評価方法であって、
 前記病変部が、
 蛍光タンパク質と、
 細胞小器官に結合するタンパク質である細胞小器官結合タンパク質とが融合したタンパク質である、蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植した部分であって、
 前記実験動物に細胞小器官の動態に影響を与える薬剤を投与する工程を有し、
 さらに以下の工程(a)~(c)を含む薬剤評価方法。
That is, the present invention provides the following analysis method.
[1]
A drug evaluation method using an experimental animal having a lesion,
The lesion is
A fluorescent protein,
A part of transplanted cells expressing a fluorescent protein fused organelle binding protein, which is a protein fused with an organelle binding protein that is a protein that binds to an organelle,
Administering to the experimental animal a drug that affects organelle dynamics,
A drug evaluation method further comprising the following steps (a) to (c).
 (a)前記実験動物の病変部から採取した組織切片から検体を作製する、検体作製工程。
 (b)前記検体の蛍光画像の取得を行う、蛍光撮影工程。
 (c)前記撮影工程において取得した画像から、蛍光輝点に基づく情報を取得する、情報取得工程。
[2]
 前記蛍光輝点に基づく情報が、前記蛍光タンパク質の輝点数、前記蛍光タンパク質の輝点の移動距離、および移動速度、移動の直線性、ならびに前記蛍光タンパク質の輝点の分布、および密度から選ばれる1以上を含む、[1]に記載の薬剤評価方法。
[3]
 前記細胞小器官の動態に影響を与える薬剤が蛍光標識化薬剤である、[1]または[2]に記載の薬剤評価方法。
[4]
 前記蛍光輝点に基づく情報が、蛍光標識化薬剤の輝点数を含む、[3]に記載の薬剤評価方法。
(A) A specimen preparation step of preparing a specimen from a tissue section collected from a lesioned part of the experimental animal.
(B) A fluorescence imaging step of acquiring a fluorescence image of the specimen.
(C) An information acquisition step of acquiring information based on fluorescent luminescent spots from the image acquired in the imaging step.
[2]
The information based on the fluorescent bright spot is selected from the number of bright spots of the fluorescent protein, the moving distance and speed of the bright spot of the fluorescent protein, the linearity of the movement, and the distribution and density of the bright spots of the fluorescent protein. The drug evaluation method according to [1], comprising one or more.
[3]
The drug evaluation method according to [1] or [2], wherein the drug affecting the dynamics of the organelle is a fluorescently labeled drug.
[4]
The drug evaluation method according to [3], wherein the information based on the fluorescent bright spot includes the number of bright spots of the fluorescently labeled drug.
[5]
 前記工程(a)の後であって前記工程(b)の前に、さらに以下の工程(α)を含む、[1]または[2]に記載の薬剤評価方法。
 (α)前記検体に対して、蛍光物質を用いて蛍光染色を行う、蛍光染色工程
[6]
 前記蛍光輝点に基づく情報が、前記蛍光物質の輝点数を含む、[5]に記載の薬剤評価方法。
[7]
 前記蛍光タンパク質融合細胞小器官結合タンパク質が、蛍光タンパク質融合微小管結合タンパク質である、[1]~[6]のいずれか一項に記載の薬剤評価方法。
[8]
 前記蛍光染色が、前記細胞小器官の動態に影響を与える薬剤に対する蛍光染色である、[5]~[7]のいずれか一項に記載の薬剤評価方法。
[5]
The drug evaluation method according to [1] or [2], further comprising the following step (α) after the step (a) and before the step (b).
(Α) Fluorescent staining step [6] in which the specimen is fluorescently stained using a fluorescent substance.
The drug evaluation method according to [5], wherein the information based on the fluorescent bright spot includes the number of bright spots of the fluorescent substance.
[7]
The drug evaluation method according to any one of [1] to [6], wherein the fluorescent protein-fused organelle-binding protein is a fluorescent protein-fused microtubule-binding protein.
[8]
The drug evaluation method according to any one of [5] to [7], wherein the fluorescent staining is fluorescent staining for a drug that affects the dynamics of the organelle.
[9]
 前記細胞小器官の動態に影響を与える薬剤が微小管の動態に影響を与える薬剤である、[1]~[8]のいずれか一項に記載の薬剤評価方法。
[10]
 前記細胞小器官の動態に影響を与える薬剤が微小管の重合に影響を与える薬剤である、[1]~[9]のいずれか一項に記載の薬剤評価方法。
[11]
 前記細胞小器官の動態に影響を与える薬剤が微小管重合阻害剤である、[1]~[10]のいずれか一項に記載の薬剤評価方法。
[12]
 前記病変部が腫瘍部である、[1]~[11]のいずれか一項に記載の薬剤評価方法。
[9]
The drug evaluation method according to any one of [1] to [8], wherein the drug affecting the organelle dynamics is a drug affecting the microtubule dynamics.
[10]
The drug evaluation method according to any one of [1] to [9], wherein the drug that affects the organelle dynamics is a drug that affects microtubule polymerization.
[11]
The drug evaluation method according to any one of [1] to [10], wherein the drug that affects the kinetics of the organelle is a microtubule polymerization inhibitor.
[12]
The drug evaluation method according to any one of [1] to [11], wherein the lesioned part is a tumor part.
[13]
 前記実験動物がマウスである、[1]~[12]のいずれか一項に記載の薬剤評価方法。
[14]
 前記蛍光タンパク質の蛍光波長と前記蛍光物質の蛍光波長とがそれぞれ異なっている、[5]~[13]のいずれか一項に記載の薬剤評価方法。
[15]
 前記蛍光物質が蛍光体集積ナノ粒子である、[5]~[14]のいずれか一項に記載の薬剤評価方法。
[16]
 前記蛍光タンパク質がGFPである、[1]~[15]のいずれか一項に記載の薬剤評価方法。
[13]
The drug evaluation method according to any one of [1] to [12], wherein the experimental animal is a mouse.
[14]
The drug evaluation method according to any one of [5] to [13], wherein a fluorescence wavelength of the fluorescent protein and a fluorescence wavelength of the fluorescent substance are different from each other.
[15]
The method for evaluating a drug according to any one of [5] to [14], wherein the fluorescent substance is a fluorescent substance-integrated nanoparticle.
[16]
The drug evaluation method according to any one of [1] to [15], wherein the fluorescent protein is GFP.
[17]
 蛍光撮影装置と、情報処理装置とを備える薬剤の評価システムであって、
 前記蛍光撮影装置が蛍光画像の撮影を行う装置であって、
 前記情報処理装置が、
 前記蛍光撮影装置により取得された蛍光画像を受け取り、
 受け取った蛍光画像から蛍光輝点に基づく情報を取得し、
 前記蛍光輝点に基づく情報を解析する装置である、
 [1]~[16]のいずれか一項に記載の薬剤評価方法を行うための、薬剤の評価システム。
[18]
 前記蛍光輝点に基づく情報を表示する表示装置をさらに備える、[17]に記載の薬剤の評価システム。
[19]
 前記情報処理装置が、前記蛍光輝点に基づく情報を蓄積する情報蓄積部を含む、[17]または[18]に記載の薬剤の評価システム。
[20]
 [1]~[16]のいずれか一項に記載の薬剤評価方法をコンピュータにより実行させるためのプログラム。
[17]
A drug evaluation system comprising a fluorescence imaging device and an information processing device,
The fluorescent photographing device is a device for photographing a fluorescent image,
The information processing apparatus is
Receiving a fluorescence image acquired by the fluorescence imaging device;
Obtain information based on the fluorescent luminescent spot from the received fluorescent image,
An apparatus for analyzing information based on the fluorescent bright spot,
A drug evaluation system for performing the drug evaluation method according to any one of [1] to [16].
[18]
The drug evaluation system according to [17], further comprising a display device that displays information based on the fluorescent bright spot.
[19]
The drug evaluation system according to [17] or [18], wherein the information processing apparatus includes an information storage unit that stores information based on the fluorescent bright spot.
[20]
[1] A program for causing a computer to execute the drug evaluation method according to any one of [16].
 本発明の評価方法によれば、実験動物の病変部から採取した組織切片から作製した検体について蛍光撮影を行い、細胞小器官の動態を観察することで、実験動物の病変部の細胞における当該薬剤の影響の評価を行うことが可能になる。また、本発明において作製する検体は、細胞が生きたままの状態であるため、細胞小器官の移動距離等、より詳細な情報を取得することができる。 According to the evaluation method of the present invention, fluorescence imaging is performed on a specimen prepared from a tissue section collected from a lesioned part of an experimental animal, and the dynamics of organelles are observed, whereby the drug in the lesioned part of the experimental animal is observed. It is possible to evaluate the impact of In addition, since the specimen prepared in the present invention is in a state where the cells remain alive, more detailed information such as the movement distance of the organelle can be acquired.
図1は本発明の薬剤評価方法におけるフローチャートである。FIG. 1 is a flowchart in the drug evaluation method of the present invention. 図2は本発明の一実施形態であるシステムの模式図である。FIG. 2 is a schematic diagram of a system according to an embodiment of the present invention. 図3は本発明の一実施形態であるシステムを用いて、薬剤評価方法を行った場合におけるフローチャートである。FIG. 3 is a flowchart when the medicine evaluation method is performed using the system according to the embodiment of the present invention.
 本発明は、蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植した実験動物を用いて蛍光撮影を行うことで、細胞小器官の動態に影響を与える薬剤の効果を評価する方法を含む。 The present invention includes a method for evaluating the effect of a drug that affects the organelle dynamics by performing fluorescence imaging using an experimental animal transplanted with cells expressing a fluorescent protein-fused organelle-binding protein.
<薬剤評価方法>
 本発明の評価方法は、蛍光タンパク質と細胞小器官に結合するタンパク質(細胞小器官結合タンパク質)とが融合したタンパク質である、蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を、移植した病変部を有する実験動物に細胞小器官の動態に影響を与える薬剤を投与する工程および、工程(a)検体作製工程、工程(b)蛍光撮影工程、および工程(c)情報取得工程を含み、前記情報取得工程で取得された情報に基づいて薬剤の評価を行う方法である。
<Drug evaluation method>
According to the evaluation method of the present invention, a transplanted lesion part of a cell expressing a fluorescent protein-fused organelle-binding protein, which is a protein in which a fluorescent protein and a protein (organelle-binding protein) that binds to an organelle are fused. And a step (a) a specimen preparation step, a step (b) a fluorescence imaging step, and a step (c) an information acquisition step. This is a method for evaluating a drug based on the information acquired in the acquisition process.
(実験動物)
 本発明における実験動物は、病変部を有する実験動物であって、前記病変部は後述する蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植した部位である。前記病変部は特に限定されないが、腫瘍部であることが好ましく、この場合実験動物は担がん動物となる。蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植する方法は特に限定されないが、例えば該細胞を懸濁した溶液を皮下注射することで移植することができる。
(Experimental animals)
The experimental animal in the present invention is an experimental animal having a lesioned part, and the lesioned part is a site where cells expressing a fluorescent protein-fused cell organelle binding protein described later are transplanted. The lesion is not particularly limited but is preferably a tumor. In this case, the experimental animal is a cancer-bearing animal. The method for transplanting cells expressing the fluorescent protein-fused cell organelle-binding protein is not particularly limited. For example, the cells can be transplanted by subcutaneous injection of a solution in which the cells are suspended.
 前記実験動物は、目的に応じて選択することが好ましく、例えば、マウス、ラット、ウサギ、モルモット、スナネズミ、ハムスター、フェレット、イヌ、ミニブタ、サル、ウシ、ウマ、ヒツジなど、ある程度の遺伝学的な制御がなされており、均質な遺伝的要件を備えている動物が挙げられる。実験系が確立しており、また飼育が容易であるという観点から、マウスが好適に用いられる。また、本発明においては蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植するという理由から、免疫不全マウスであることが好ましい。
(蛍光タンパク質融合細胞小器官結合タンパク質)
 本発明の蛍光タンパク質融合細胞小器官結合タンパク質は、蛍光タンパク質と細胞小器官に結合するタンパク質とが融合したタンパク質である。
The experimental animal is preferably selected according to the purpose, for example, mouse, rat, rabbit, guinea pig, gerbil, hamster, ferret, dog, minipig, monkey, cow, horse, sheep, etc. Examples include animals that are controlled and have homogeneous genetic requirements. From the viewpoint of establishing an experimental system and facilitating breeding, mice are preferably used. Further, in the present invention, an immunodeficient mouse is preferable because a cell expressing a fluorescent protein-fused cell organelle-binding protein is transplanted.
(Fluorescent protein fusion cell organelle binding protein)
The fluorescent protein-fused organelle-binding protein of the present invention is a protein in which a fluorescent protein and a protein that binds to an organelle are fused.
 蛍光タンパク質融合細胞小器官結合タンパク質の構成は選択される蛍光タンパク質および細胞小器官結合タンパク質にしたがって最適なものを選択すればよく、例えば、蛍光タンパク質としてGFPを、細胞小器官結合タンパク質としてEB1を選択する場合には、局在や機能における影響の側面から、EB1のC末端側にGFPが融合した構造をとることが好ましい。 The structure of the fluorescent protein fusion organelle-binding protein may be selected according to the selected fluorescent protein and organelle-binding protein. For example, GFP is selected as the fluorescent protein and EB1 is selected as the organelle-binding protein. In this case, it is preferable to adopt a structure in which GFP is fused to the C-terminal side of EB1 from the aspect of influence on localization and function.
(細胞小器官結合タンパク質)
 前記細胞小器官結合タンパク質は、細胞小器官と結合する性質を持つタンパク質であれば特に限定されない。例えば細胞小器官として微小管を選択する場合、細胞小器官結合タンパク質は微小管の伸長端を認識して結合するタンパク質が好ましく、具体的には例えば、EB3(end binding protein 3)、CLIP170(cytoplasmic linker protein 170)、APC(adenomatous polyposis coli)、STIM1(stromal interaction molecule 1)、EB1(end binding protein 1)が挙げられ、特にEB1が好ましい。
(Organelle-associated protein)
The organelle-binding protein is not particularly limited as long as it has a property of binding to an organelle. For example, when a microtubule is selected as the organelle, the organelle-binding protein is preferably a protein that recognizes and binds to the extended end of the microtubule. Specifically, for example, EB3 (end binding protein 3), CLIP170 (cytoplasmic) linker protein 170), APC (adenomatous polyposis coli), STIM1 (stromal interaction molecule 1), and EB1 (end binding protein 1). EB1 is particularly preferable.
(蛍光タンパク質)
 前記蛍光タンパク質は、他のタンパク質と融合させて発現させることができる蛍光タンパク質であれば特に限定されず、例えばGFP、RFP、YFP等が挙げられ、特にGFPであることが好ましい。本明細書における蛍光タンパク質は、所定の波長の電磁波(X線、紫外線または可視光線)が照射されるとそのエネルギーを吸収することで電子が励起し、その励起状態から基底状態に戻る際に余剰のエネルギーを、「蛍光」として放出(発光)するタンパク質である。また、「蛍光」は広義的な意味を持ち、励起のための電磁波の照射を止めても発光が持続する発光寿命が比較的長い燐光と、発光寿命が比較的短いいわゆる狭義の蛍光とを包含する。
(Fluorescent protein)
The fluorescent protein is not particularly limited as long as it is a fluorescent protein that can be fused and expressed with other proteins. Examples thereof include GFP, RFP, YFP, and the like, and GFP is particularly preferable. In the present specification, the fluorescent protein absorbs energy when irradiated with electromagnetic waves (X-rays, ultraviolet rays, or visible rays) having a predetermined wavelength, and excites electrons to return to the ground state from the excited state. It is a protein that emits (emits) the energy of as “fluorescence”. In addition, “fluorescence” has a broad meaning, and includes phosphorescence that has a relatively long emission lifetime that can continue to emit light even when irradiation of electromagnetic waves for excitation is stopped, and so-called narrow-sense fluorescence that has a relatively short emission lifetime. To do.
(細胞)
 前記蛍光タンパク質融合細胞小器官結合タンパク質を発現させる細胞は、特に限定されないが、病変組織由来の培養細胞であることが好ましく、腫瘍組織由来の培養細胞であることがより好ましい。また、細胞に発現させる蛍光タンパク質融合細胞小器官結合タンパク質は1種類でもよいし、複数の種類でもよい。複数の種類の蛍光タンパク質融合細胞小器官結合タンパク質を細胞に発現させる場合にはそれぞれの蛍光タンパク質融合細胞小器官結合タンパク質を構成する蛍光タンパク質は互いに異なった蛍光波長の蛍光を発する蛍光タンパク質を選択することが好ましい。この場合、蛍光タンパク質融合細胞小器官結合タンパク質を構成する細胞小器官結合タンパク質が結合する細胞小器官は、それぞれ同じものでもよいし、異なっていてもよい。
(cell)
The cell that expresses the fluorescent protein-fused cell organelle-binding protein is not particularly limited, but is preferably a cultured cell derived from a diseased tissue, and more preferably a cultured cell derived from a tumor tissue. Further, the fluorescent protein-fused organelle-binding protein to be expressed in the cell may be one type or a plurality of types. When multiple types of fluorescent protein-fused organelle-binding proteins are expressed in cells, the fluorescent proteins constituting each fluorescent protein-fused organelle-binding protein are selected from fluorescent proteins that emit fluorescence at different fluorescence wavelengths. It is preferable. In this case, the organelles to which the organelle binding proteins constituting the fluorescent protein fusion organelle binding protein bind may be the same or different.
 前記蛍光タンパク質融合細胞小器官結合タンパク質を細胞に発現させる方法は、蛍光タンパク質融合細胞小器官結合タンパク質をコードする遺伝子を細胞に導入することにより行われる。遺伝子導入の方法は公知の手法を用いることができ、例えば所望の遺伝子を有するウイルスベクターにより作製したウイルス粒子により遺伝子導入を行ってもよいし、Lipofectamine(登録商標)等のトランスフェクション用試薬を用いて化学的に遺伝子導入を行ってもよいし、エレクトロポレーション等の物理的な方法で行ってもよい。 The method for expressing the fluorescent protein-fused organelle-binding protein in the cell is performed by introducing a gene encoding the fluorescent protein-fused organelle-binding protein into the cell. A known method can be used as a method for gene transfer. For example, gene transfer may be performed using a virus particle prepared by a virus vector having a desired gene, or a transfection reagent such as Lipofectamine (registered trademark) may be used. Alternatively, gene transfer may be performed chemically or by a physical method such as electroporation.
<薬剤を投与する工程>
 本発明の薬剤を投与する工程は、前記実験動物に、細胞小器官の動態に影響を与える薬剤を投与する工程である。薬剤の投与形態、投与経路、投与期間や投与回数などは、特に制限はなく、薬剤を投与する工程は、一回でもよく、複数回でもよい。
<Process of administering drug>
The step of administering the drug of the present invention is a process of administering a drug that affects the organelle dynamics to the experimental animal. The dosage form, administration route, administration period, number of administrations, etc. of the drug are not particularly limited, and the process of administering the drug may be performed once or multiple times.
 前記細胞小器官の動態に影響を与える薬剤は特に限定されないが、微小管の動態に影響を与える薬剤であることが好ましく、微小管の重合に影響を与える薬剤であることがより好ましく、特に微小管重合阻害薬であることがさらにより好ましく、具体的には例えばパクリタキセル(商品名パクリタキセル、日本化薬株式会社)、トラスツズマブ-エムタンシン(商品名カドサイラ、中外製薬株式会社)、ブレンツキシマブ ベドチン(商品名アドセトリス、武田薬品株式会社)、エリブリン(商品名ハラヴェン、エーザイ株式会社)等が挙げられる。 The drug that affects the organelle dynamics is not particularly limited, but is preferably a drug that affects the microtubule dynamics, more preferably a drug that affects the microtubule polymerization, More preferably, it is a vascular polymerization inhibitor, and specifically, for example, paclitaxel (trade name: paclitaxel, Nippon Kayaku Co., Ltd.), trastuzumab-emtansine (trade name: Kadsaila, Chugai Pharmaceutical Co., Ltd.), brentuximab vedin (product) Name ADCETRIS, Takeda Pharmaceutical Co., Ltd.), Eriblin (trade name Halaven, Eisai Co., Ltd.) and the like.
 薬剤の量は特に限定されず、薬剤の種類や実験動物の体重や年齢、病変部の大きさ(体積)などによって、適切な量を投与すればよい。 The amount of the drug is not particularly limited, and an appropriate amount may be administered depending on the type of drug, the weight and age of the experimental animal, the size (volume) of the lesion.
 本発明の一実施形態においては、前記薬剤が蛍光物質で標識された蛍光標識化薬剤であることが好ましい。前記蛍光物質は、有機蛍光色素、量子ドット、後述する蛍光体集積ナノ粒子等、後述する蛍光染色において用いられる蛍光物質と同様の一群から好適なものを選択することができるが、前記蛍光タンパク質融合細胞小器官結合タンパク質を構成する蛍光タンパク質が発する蛍光とは異なる波長の蛍光を発する蛍光物質を選択することが好ましい。 In one embodiment of the present invention, the drug is preferably a fluorescently labeled drug labeled with a fluorescent substance. The fluorescent substance can be selected from a group similar to the fluorescent substance used in fluorescent staining described later, such as organic fluorescent dyes, quantum dots, and phosphor integrated nanoparticles described later. It is preferable to select a fluorescent substance that emits fluorescence having a wavelength different from the fluorescence emitted by the fluorescent protein constituting the organelle-binding protein.
 前記薬剤を蛍光物質で標識する方法は特に限定されないが、例えば薬剤および蛍光物質の有するアミノ基や水酸基等の官能基を介して両者を共有結合する方法等が挙げられ、例えば市販されている蛍光標識試薬(キット)を利用して薬剤を蛍光標識することができる。 The method of labeling the drug with a fluorescent substance is not particularly limited, and examples thereof include a method of covalently bonding the drug and the fluorescent substance via a functional group such as an amino group or a hydroxyl group. The drug can be fluorescently labeled using a labeling reagent (kit).
<検体作製工程>
 本発明における検体作製工程においては、前記実験動物の病変部から採取した組織切片から検体を作製する。
<Sample preparation process>
In the specimen preparation step in the present invention, a specimen is prepared from a tissue section collected from the lesioned part of the experimental animal.
 薬剤投与後に実験動物を堵殺し、腫瘍部を摘出する。摘出した腫瘍組織を加熱したゲルに浸漬し、冷却して固化させた腫瘍組織をメスで薄切したものを検体とする。 After the drug administration, kill the experimental animal and remove the tumor. The excised tumor tissue is immersed in a heated gel, and the tumor tissue that has been cooled and solidified is sliced with a scalpel and used as a specimen.
 前記ゲルは溶融温度が室温より高く、室温程度でゲル化するものであれば特に限定されず、例えばPrimeGel(登録商標) Agarose等のアガロースゲルや低融点アクリルアミド等を用いることができる。前記溶融温度は60℃~100℃であることが好ましく、65℃~95℃であることがさらに好ましく、65℃~90℃であることがよりさらに好ましい。前記固化温度は10℃~50℃であることが好ましく、20℃~40℃であることがさらに好ましい。 The gel is not particularly limited as long as it has a melting temperature higher than room temperature and gels at about room temperature. For example, an agarose gel such as PrimeGel (registered trademark) Agarose or a low melting point acrylamide can be used. The melting temperature is preferably 60 ° C. to 100 ° C., more preferably 65 ° C. to 95 ° C., and still more preferably 65 ° C. to 90 ° C. The solidification temperature is preferably 10 ° C. to 50 ° C., more preferably 20 ° C. to 40 ° C.
 ゲルの濃度はゲルの種類、気温等の環境条件等によって適宜変更することができ、例えばアガロースゲルを使用する場合には1%~2%であることが好ましい。 The concentration of the gel can be appropriately changed depending on the type of gel, environmental conditions such as air temperature, etc. For example, when an agarose gel is used, it is preferably 1% to 2%.
<蛍光撮影工程>
 本発明における蛍光撮影工程では、蛍光タンパク質融合細胞小器官結合タンパク質を構成している蛍光タンパク質に対応した励起光を検体に照射することで蛍光タンパク質から発せられる蛍光を、蛍光画像として取得する工程である。これらの励起光の照射は、例えば、蛍光顕微鏡が備えるレーザー光源と、必要に応じて所定の波長を選択的に透過させる励起光用光学フィルターを用いて行うことができる。複数の種類の蛍光タンパク質融合細胞小器官結合タンパク質を発現させた細胞を移植した病変部から採取した組織切片から検体を作製した場合は、それぞれの蛍光タンパク質に対応した励起光を、順次標本サンプルに照射することで、それぞれの蛍光タンパク質から発せられる蛍光を蛍光画像として取得することもできる。
<Fluorescence imaging process>
In the fluorescence imaging step in the present invention, the fluorescence emitted from the fluorescent protein by irradiating the sample with excitation light corresponding to the fluorescent protein constituting the fluorescent protein-fused organelle binding protein is obtained as a fluorescent image. is there. Irradiation of these excitation lights can be performed, for example, using a laser light source provided in a fluorescence microscope and an excitation light optical filter that selectively transmits a predetermined wavelength as required. When specimens are prepared from tissue sections collected from lesions transplanted with cells expressing multiple types of fluorescent protein-fused organelle-binding proteins, excitation light corresponding to each fluorescent protein is sequentially applied to the specimen sample. By irradiating, the fluorescence emitted from each fluorescent protein can be acquired as a fluorescent image.
 また、前記薬剤を投与する工程において蛍光標識した薬剤を用いる場合には、薬剤を標識した蛍光物質に対応した励起光と、蛍光タンパク質融合細胞小器官結合タンパク質を構成している蛍光タンパク質に対応した励起光とを、順次標本サンプルに照射することで蛍光タンパク質および蛍光物質から発せられる蛍光を、それぞれ蛍光画像として取得することもできる。 In addition, when a fluorescently labeled drug is used in the step of administering the drug, the excitation light corresponding to the fluorescent substance labeled with the drug and the fluorescent protein constituting the fluorescent protein fusion organelle binding protein The fluorescence emitted from the fluorescent protein and the fluorescent substance by sequentially irradiating the specimen sample with the excitation light can also be acquired as fluorescent images.
 また、後述する蛍光染色工程を行う場合には、蛍光タンパク質に対応した励起光と、蛍光染色に用いる蛍光物質に対応した励起光とを、順次標本サンプルに照射することで蛍光タンパク質および蛍光物質から発せられる蛍光を、それぞれ蛍光画像として取得することもできる。 In addition, when performing the fluorescent staining process described later, the sample protein is irradiated with the excitation light corresponding to the fluorescent protein and the excitation light corresponding to the fluorescent substance used for the fluorescent staining in order from the fluorescent protein and the fluorescent substance. The emitted fluorescence can also be acquired as a fluorescence image.
 上述した蛍光タンパク質の蛍光画像および蛍光物質の蛍光画像の取得順序は特に限定されず、本明細書においては最も先に行われるものを第1の蛍光撮影工程、次に行われるものを第2の蛍光撮影工程、N回目に行われるものを第Nの蛍光撮影工程と呼ぶこともある。 The acquisition order of the fluorescent image of the fluorescent protein and the fluorescent image of the fluorescent substance described above is not particularly limited. In this specification, the first fluorescence imaging step is performed first, and the second is performed next. The fluorescence imaging process, which is performed for the Nth time, may be referred to as the Nth fluorescence imaging process.
 蛍光画像は、例えば、蛍光顕微鏡が備えるデジタルカメラによって撮影することによって取得することができる。蛍光画像は静止画であってもよいし、動画であってもよい。またタイムラプス撮影を行い、継時的に複数の蛍光画像を取得することもできる。タイムラプス撮影した画像は公知のソフトを用いて動画に変換してもよい。 Fluorescent images can be acquired by, for example, photographing with a digital camera provided in a fluorescence microscope. The fluorescent image may be a still image or a moving image. It is also possible to perform time-lapse photography and acquire a plurality of fluorescent images over time. You may convert the image which carried out the time lapse photography into a moving image using well-known software.
<可視光撮影工程>
 本発明の薬剤評価方法においては、前記蛍光撮影工程の前または後に可視光下で撮影を行って画像を取得する、可視光撮影工程を行ってもよい。
<Visible light photography process>
In the medicine evaluation method of the present invention, a visible light photographing step of obtaining an image by photographing under visible light before or after the fluorescence photographing step may be performed.
<情報取得工程>
 本発明の情報取得工程においては、前記蛍光撮影工程において取得した画像について、蛍光輝点に基づく情報を取得する。
<Information acquisition process>
In the information acquisition process of the present invention, information based on the fluorescent bright spot is acquired for the image acquired in the fluorescence imaging process.
 前記蛍光輝点に基づく情報は、前記蛍光タンパク質融合細胞小器官タンパク質を構成する蛍光タンパク質が発光する蛍光に由来していることが好ましい。また、後述する蛍光染色工程を行う場合においては、さらに、蛍光染色に用いる蛍光物質が発光する蛍光に由来している情報、例えば蛍光物質の輝点数やその局在などが含まれていてもよい。 The information based on the fluorescent luminescent spot is preferably derived from the fluorescence emitted by the fluorescent protein constituting the fluorescent protein-fused organelle protein. In addition, in the case of performing the fluorescent staining step described later, information derived from the fluorescence emitted by the fluorescent substance used for fluorescent staining, for example, the number of bright spots of the fluorescent substance and its localization may be included. .
 蛍光輝点に基づく情報を取得する際には、任意の方法で画像処理を行ってもよい。例えば、第1の蛍光撮影工程~第Nの蛍光撮影工程において取得した画像を重ねあわせる画像処理を行うと、撮影された細胞の細胞小器官や薬剤等の相互的な位置関係を観察することができる。さらに「Imaris」(カールツァイス社製)や「ImageJ」(オープンソース)のような画像処理ソフトウェアを利用して画像処理を行うことで、蛍光画像から、所定の波長(色)の輝点を抽出してその輝度の総和を算出したり、所定の輝度以上である輝点数を計測したり、また輝点の移動距離を測定する等の処理を半自動的に、迅速に行うことで、所望の蛍光輝点に基づく情報を取得することができる。 When acquiring information based on fluorescent luminescent spots, image processing may be performed by any method. For example, when image processing is performed to superimpose images acquired in the first fluorescence imaging step to the Nth fluorescence imaging step, it is possible to observe the mutual positional relationship between the organelles and drugs of the captured cells. it can. In addition, image processing is performed using image processing software such as “Imaris” (manufactured by Carl Zeiss) or “ImageJ” (open source), thereby extracting bright spots of a predetermined wavelength (color) from the fluorescent image. The process of calculating the total sum of the brightness, measuring the number of bright spots that exceed the specified brightness, and measuring the movement distance of the bright spots is performed semi-automatically and quickly, so that the desired fluorescence can be obtained. Information based on bright spots can be acquired.
 前記蛍光輝点に基づく情報は、特に限定されないが、蛍光タンパク質の輝点数、蛍光タンパク質の輝点の移動距離、移動速度、移動の直線性、ならびに蛍光タンパク質の輝点の分布および密度から選ばれる1以上の指標を含むことが好ましく、2以上の指標を含むことがより好ましい。なお、移動の直線性は「輝点の始点と終点の直線距離」÷「輝点の移動距離」で数値化して求めることができ、値が1に近いほど直線性が高い。また、前述した薬剤を投与する工程において実験動物に投与される細胞小器官の動態に影響を与える薬剤が蛍光標識化薬剤である時には、薬剤を標識している蛍光物質に由来する輝点数をさらに含むことが好ましい。また、後述する蛍光染色を行う場合は蛍光物質の輝点数をさらに含むことが好ましい。 The information based on the fluorescent bright spot is not particularly limited, but is selected from the number of bright spots of the fluorescent protein, the moving distance of the bright spot of the fluorescent protein, the moving speed, the linearity of the movement, and the distribution and density of the bright spots of the fluorescent protein. It is preferable to include one or more indexes, and more preferably to include two or more indexes. The linearity of movement can be obtained by quantifying by “linear distance between the starting point and the ending point of the bright spot” ÷ “moving distance of the bright spot”. The closer the value is to 1, the higher the linearity is. In addition, when the drug affecting the dynamics of the organelle administered to the experimental animal in the step of administering the drug is a fluorescently labeled drug, the number of bright spots derived from the fluorescent substance labeled with the drug is further increased. It is preferable to include. Moreover, when performing fluorescent dyeing mentioned later, it is preferable to further include the number of bright spots of the fluorescent substance.
 本発明の薬剤評価方法においては、情報取得工程において取得した情報に基づいて薬剤の評価を行うことができる。例えば、任意の情報について設定した一定の閾値によって、検体を分類することで行うことができ、輝点数の変化率について、50%以上を効果が高い(Rank A)と判定し、30%以上50%未満を効果は中程度(Rank B)と判定し、それ以外の場合は効果が低い(Rank C)と判定することができる。また蛍光輝点に基づく情報を含む複数の情報を参酌することで、複合的に判断することでより正確な薬剤評価が可能になる。 In the drug evaluation method of the present invention, the drug can be evaluated based on the information acquired in the information acquisition process. For example, it can be performed by classifying specimens according to a certain threshold set for arbitrary information, and the rate of change in the number of bright spots is determined to be 50% or more highly effective (Rank A), and 30% to 50%. Less than% can be determined to be moderate (Rank B), and otherwise it can be determined to be less effective (Rank C). In addition, by considering a plurality of pieces of information including information based on fluorescent luminescent spots, more accurate drug evaluation can be performed by making a composite determination.
 また、情報取得工程において取得した情報が薬剤評価に不足していた場合は、任意で再度蛍光撮影工程を行ってもよい。この場合においては蛍光強度や視野等を変更することで、より適切な画像を撮影することができる。 In addition, when the information acquired in the information acquisition process is insufficient for the drug evaluation, the fluorescence imaging process may optionally be performed again. In this case, a more appropriate image can be taken by changing the fluorescence intensity, the visual field, and the like.
<蛍光染色工程>
 本発明の一実施形態においては、前記検体作製工程の後、蛍光観察する前の検体に対して、蛍光物質を用いた蛍光染色を行ってもよい。前記蛍光染色の対象は、特に限定されないが、本発明の評価対象である実験動物に投与された細胞小器官の動態に影響を与える薬剤であることが好ましい。蛍光染色の方法は、特に限定されないが、蛍光物質で標識した抗体を用いて行う蛍光免疫染色であることが好ましい。例えば実験動物に投与された細胞小器官の動態に影響を与える薬剤に対して蛍光染色を行う場合は、前記蛍光物質で標識した抗体は、[抗薬剤抗体]~[蛍光物質]の構成をとり、ここで、"~"が示す結合の態様としては特に限定されず、例えば、共有結合、イオン結合、水素結合、配位結合、物理吸着または化学吸着等が挙げられ、必要に応じてリンカー分子を介していてもよい。
<Fluorescent staining process>
In one embodiment of the present invention, after the specimen preparation step, the specimen before fluorescence observation may be subjected to fluorescent staining using a fluorescent substance. The target of the fluorescent staining is not particularly limited, but is preferably a drug that affects the organelle dynamics administered to the experimental animal to be evaluated in the present invention. The method of fluorescent staining is not particularly limited, but is preferably fluorescent immunostaining performed using an antibody labeled with a fluorescent substance. For example, when fluorescent staining is performed on a drug that affects the dynamics of an organelle administered to an experimental animal, the antibody labeled with the fluorescent substance has a configuration of [anti-drug antibody] to [fluorescent substance]. Here, the form of the bond represented by “˜” is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. It may be through.
 [抗薬剤抗体]~[蛍光物質]は、あらかじめ所望の抗体に所望の蛍光物質が結合されている[抗薬剤抗体]~[蛍光物質]自体が市販されていれば、それを利用してもよいし、また、所望の抗体(タンパク質)に所望の蛍光物質を結合させることのできる公知の手法に基づいて、 例えば市販されている蛍光標識試薬(キット)を利用して作製することができる。 [Anti-drug antibody] to [fluorescent substance] can be used as long as [anti-drug antibody] to [fluorescent substance] itself, in which a desired fluorescent substance is bound to a desired antibody, is commercially available. Alternatively, it can be prepared using, for example, a commercially available fluorescent labeling reagent (kit) based on a known technique capable of binding a desired fluorescent substance to a desired antibody (protein).
(蛍光物質)
 前記蛍光染色に用いられる蛍光物質は、特に限定されないが、前記蛍光タンパク質の蛍光波長と異なっている蛍光波長の蛍光物質であることが好ましく、輝度や定量性の観点から蛍光体集積粒子を用いることが好ましい。
(Fluorescent substance)
The fluorescent substance used for the fluorescent staining is not particularly limited, but is preferably a fluorescent substance having a fluorescent wavelength different from the fluorescent wavelength of the fluorescent protein, and phosphor integrated particles are used from the viewpoint of luminance and quantitativeness. Is preferred.
 前記蛍光体集積粒子は、有機物または無機物でできた粒子を母体とし、複数の蛍光体(例えば蛍光色素や半導体ナノ粒子)がその中に内包されているおよび/またはその表面に吸着している構造を有する、ナノサイズの粒子である。蛍光体集積ナノ粒子を構成する蛍光色素としては、例えば、ローダミン系色素、Cy系色素、AlexaFluro(登録商標)系色素、BODIPY系色素、スクアリリウム系色素、シアニン系色素、芳香環系色素、オキサジン系色素、カルボピロニン系色素、ピロメセン系色素などが挙げられ、蛍光体集積ナノ粒子を構成する半導体ナノ粒子の素材としては、例えば、II-VI族半導体、III-V族半導体、またはIV族半導体などが挙げられる。 The phosphor-integrated particles have a structure in which a plurality of phosphors (for example, fluorescent dyes and semiconductor nanoparticles) are encapsulated and / or adsorbed on the surface of the particles, which are made of organic or inorganic substances. Nano-sized particles having Examples of fluorescent dyes constituting the phosphor-integrated nanoparticles include rhodamine dyes, Cy dyes, AlexaFluro (registered trademark) dyes, BODIPY dyes, squarylium dyes, cyanine dyes, aromatic ring dyes, and oxazine dyes. Dyes, carbopyronine dyes, pyromesene dyes, and the like. Examples of the semiconductor nanoparticles constituting the phosphor-integrated nanoparticles include II-VI group semiconductors, III-V group semiconductors, and IV group semiconductors. Can be mentioned.
 蛍光体集積粒子は、公知の方法(例えば特開2013-57937号公報参照)に従って作製することができる。 The phosphor-aggregated particles can be produced according to a known method (for example, see JP2013-57937A).
(検体作製方法)
 本発明の一実施形態である検体作製方法は、前記薬剤評価方法を行うための検体を作製するための方法であり、実験動物の病変部から採取した組織切片から、細胞が生きたままの状態で蛍光撮影可能な検体を作製する方法である。具体的には、溶融したゲルで実験動物の病変部から採取した組織切片を被覆し、ゲルで被覆された組織切片を室温より低い固化温度で固化したものを薄切することで検体を作製する方法である。前記ゲルは溶融温度が室温より高く固化温度が室温より低いものであれば特に限定されず、例えばPrimeGel(登録商標) Agarose等のアガロースゲルや低融点アクリルアミド等を用いることができる。前記溶融温度は60℃~100℃であることが好ましく、65℃~95℃であることがさらに好ましく、65℃~90℃であることがよりさらに好ましい。前記固化温度は10℃~50℃であることが好ましく、20℃~40℃であることがさらに好ましい。
(Sample preparation method)
A sample preparation method according to an embodiment of the present invention is a method for preparing a sample for performing the drug evaluation method, wherein cells remain alive from a tissue section collected from a lesion of an experimental animal. This is a method for preparing a specimen that can be photographed with fluorescence. Specifically, a specimen is prepared by coating a tissue section collected from a lesion of an experimental animal with a melted gel and slicing the tissue section covered with the gel at a solidification temperature lower than room temperature. Is the method. The gel is not particularly limited as long as it has a melting temperature higher than room temperature and a solidification temperature lower than room temperature. For example, an agarose gel such as PrimeGel (registered trademark) Agarose or a low melting point acrylamide can be used. The melting temperature is preferably 60 ° C. to 100 ° C., more preferably 65 ° C. to 95 ° C., and still more preferably 65 ° C. to 90 ° C. The solidification temperature is preferably 10 ° C. to 50 ° C., more preferably 20 ° C. to 40 ° C.
(評価システム)
 本発明の一実施形態である薬剤の評価システムは、前記薬剤評価方法を行うためのシステムであり、蛍光観察装置と、情報処理装置とを備える薬剤の評価システムである。前記蛍光観察装置は、蛍光画像の撮影を行う装置であり、前記情報処理装置は、前記蛍光観察装置により取得された撮影情報を受け取り、受け取った撮影情報から蛍光輝点に基づく情報を取得し、蛍光輝点に基づく情報を解析する装置である。本発明の評価システムは、好ましくはさらにシステムを制御する入力装置と、前記情報処理装置により取得された情報を出力する表示装置を備える。
(Evaluation system)
A drug evaluation system according to an embodiment of the present invention is a system for performing the drug evaluation method, and is a drug evaluation system including a fluorescence observation apparatus and an information processing apparatus. The fluorescence observation apparatus is an apparatus that captures a fluorescent image, and the information processing apparatus receives imaging information acquired by the fluorescence observation apparatus, acquires information based on fluorescent luminescent spots from the received imaging information, This is an apparatus for analyzing information based on fluorescent bright spots. The evaluation system of the present invention preferably further includes an input device that controls the system and a display device that outputs information acquired by the information processing device.
<蛍光撮影装置>
 前記蛍光撮影装置は、蛍光画像の撮影を行うことができる装置であれば特に限定されるものではないが、撮影装置を備えた蛍光顕微鏡であることが好ましく、さらに撮影装置を備えた共焦点顕微鏡であることがより好ましい。前記撮影装置は蛍光画像を撮影しうるものであれば特に限定されないが、多色タイムラプス画像や動画が撮影可能なものであることが好ましい。蛍光撮影装置によって取得された蛍光画像は情報処理装置へ伝達される。
<Fluorescence imaging device>
The fluorescence imaging apparatus is not particularly limited as long as it is an apparatus capable of capturing a fluorescent image, but is preferably a fluorescence microscope equipped with an imaging apparatus, and further a confocal microscope equipped with an imaging apparatus It is more preferable that The imaging device is not particularly limited as long as it can capture a fluorescent image, but it is preferable that it can capture a multicolor time-lapse image or a moving image. The fluorescence image acquired by the fluorescence imaging apparatus is transmitted to the information processing apparatus.
(情報処理装置)
 取得された蛍光画像はデジタル画像として変換されていることが好ましく、また公知の手段によって加工または画像処理がされていてもよい。
(Information processing device)
The acquired fluorescent image is preferably converted as a digital image, and may be processed or image processed by a known means.
 前記情報処理装置には、蛍光輝点に基づく情報を蓄積する、情報蓄積部が含まれることが好ましい。例えば、測定時点において、入力装置等から検体のID情報と薬剤のID情報を入力して、複数の時点において撮影を行い、情報処理装置にデータを蓄積することで、ある検体について継時的に蛍光輝点に基づく情報を参照することができ、測定値の変化量やその割合、変動等を観察することができる。 It is preferable that the information processing apparatus includes an information storage unit that stores information based on fluorescent bright spots. For example, at the time of measurement, sample ID information and drug ID information are input from an input device or the like, imaging is performed at a plurality of time points, and data is stored in the information processing device, so that a sample is continuously acquired. Information based on the fluorescent bright spot can be referred to, and the amount of change in the measured value, its ratio, fluctuation, etc. can be observed.
<表示装置>
 前記評価システムは、蛍光輝点に基づく情報を表示する表示装置を有していることが好ましい。表示装置は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニターを備えて構成されており、入力装置の表示制御に従って、蛍光撮影装置によって撮影された画像や情報処理装置で取得された情報を表示する。表示される情報は、さらに任意の方法で整理された情報であってもよい。例えば、薬剤ID(薬剤名、LOT番号等)、検体情報(マウスのID、マウスに移植された細胞情報等)、撮影履歴、各情報の変化量、測定日時、撮影画像、および各検体における薬剤判定結果等が併せて表示されることが好ましい(図2:表示装置参照)。
<Display device>
It is preferable that the evaluation system has a display device that displays information based on the fluorescent bright spot. The display device includes, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and is an image or information processing device photographed by a fluorescence photographing device according to display control of the input device. Display the acquired information. The displayed information may be information that is further organized by an arbitrary method. For example, drug ID (drug name, LOT number, etc.), sample information (mouse ID, cell information transplanted into the mouse, etc.), imaging history, change amount of each information, measurement date / time, captured image, and drug in each sample It is preferable that the determination results and the like are displayed together (see FIG. 2: display device).
(評価プログラム)
 本発明の一実施形態であるプログラムは、前記薬剤評価方法をコンピュータにより実行させるためのプログラムである。例えば、前記評価システムにおいて、蛍光撮影装置に情報処理装置に撮影情報を提示させる処理、ならびに情報処理装置に受け取った撮影情報から蛍光輝点に基づく情報を含む所定の情報を算出させる処理、複数の時点において算出した情報からその継時的な変化を算出させる処理、およびその変化に基づいて実験動物に投与した薬剤の評価を提示させる処理を、実行させるためのプログラムである。
(Evaluation program)
The program which is one Embodiment of this invention is a program for performing the said chemical | medical agent evaluation method by computer. For example, in the evaluation system, a process for causing the fluorescence imaging apparatus to present imaging information to the information processing apparatus, a process for causing the information processing apparatus to calculate predetermined information including information based on the fluorescent bright spot from the imaging information received, It is a program for executing a process for calculating a change over time from information calculated at a time point and a process for presenting an evaluation of a drug administered to an experimental animal based on the change.
 前記プログラムは情報処理装置に記憶されていてもよいし、それ以外のコンピュータ可読記録媒体、例えば、磁気テープ(デジタルデータストレージ(DSS)など)、磁気ディスク(ハードディスクドライブ(HDD)、フレキシブルディスク(FD)など)、光ディスク(コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、ブルーレイディスク(BD)など)、光磁気ディスク(MO)、フラッシュメモリ(SSD(Solid State Drive)、メモリーカード、USBメモリなどに記録されていてもよいし、また独立して提供されるものであってもよい。前記プログラムを情報処理装置や可読媒体に記憶させる場合、当該情報処理装置等はプログラムの実行に必要なデータを併せて記憶していることが好ましい。例えば、患者IDおよび検体情報、薬剤ID等の薬剤情報等が挙げられる。 The program may be stored in an information processing apparatus, or other computer-readable recording media such as a magnetic tape (digital data storage (DSS), etc.), a magnetic disk (hard disk drive (HDD), a flexible disk (FD). )), Optical disc (compact disc (CD), digital versatile disc (DVD), Blu-ray disc (BD), etc.), magneto-optical disc (MO), flash memory (SSD (Solid State Drive), memory card, USB memory, etc.) When the program is stored in an information processing apparatus or a readable medium, the information processing apparatus or the like stores data necessary for executing the program. Are preferably stored together, for example, , Patient ID and sample information, drug information such as drug ID, and the like.
 薬剤の評価に対しては、例えば任意の情報について設定した一定の閾値によって、検体を分類することで行うことができる。例えば、輝点数の変化率について、50%以上を効果が高い(Rank A)と判定し、30%以上50%未満を効果は中程度(Rank B)と判定し、それ以外の場合は効果が低い(Rank C)と判定する。また複数の情報に対して閾値を設定し、複合的に判断することでより正確な薬剤評価が可能になる。 The drug evaluation can be performed, for example, by classifying specimens according to a certain threshold set for arbitrary information. For example, regarding the rate of change of the number of bright spots, 50% or more is judged to be highly effective (Rank A), and 30% or more and less than 50% is judged to be moderately effective (Rank B). Judged as low (Rank C). Further, by setting threshold values for a plurality of pieces of information and making a composite determination, more accurate drug evaluation can be performed.
 以下、実施例に基づいて本発明の好適な態様をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, preferred embodiments of the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
 [作製例1]
<GFP融合微小管結合タンパク質を発現する、担がんマウスの作製>
 EB1-EGFP遺伝子を安定的に細胞に発現させるために、EB1-EGFP cDNAを挿入したレトロウイルスベクターの構築を行った。
[Production Example 1]
<Preparation of a tumor-bearing mouse that expresses a GFP-fused microtubule-binding protein>
In order to stably express the EB1-EGFP gene in cells, a retroviral vector inserted with EB1-EGFP cDNA was constructed.
 逆転写ポリメラーゼ連鎖反応(Reverse Transcriptase Polymerase Chain Reaction)によりヒトEB1のcDNAを増幅し、増幅産物をpEGFPクローニングベクター(Clontech社製)に挿入してEB1-EGFP cDNAをさらに増幅させた。EB1-EGFP cDNAを切り出し、pLNCX2レトロウイルスベクター(BD Bioscience社製)に挿入することでEB1-EGFP cDNAを挿入したレトロウイルスベクターを構築した。 Human EB1 cDNA was amplified by reverse transcription polymerase chain reaction (Reverse Transcriptase Polymerase Chain Reaction), and the amplified product was inserted into a pEGFP cloning vector (Clontech) to further amplify EB1-EGFP cDNA. The EB1-EGFP cDNA was excised and inserted into a pLNCX2 retrovirus vector (BD Bioscience) to construct a retrovirus vector into which the EB1-EGFP cDNA was inserted.
 構築したレトロウイルスベクターをXfect Transfection Reagent(タカラバイオ株式会社)を用いてパッケージング細胞(GP2-293細胞)にトランスフェクトし、48時間培養後、培養上清を濾過することで組み換えウイルス粒子を回収した。当該組換えウイルス粒子を用いて、ヒト乳がん細胞株KPL-4にEB1-EGFP遺伝子をトランスフェクションした。トランスフェクションを行った細胞は10%FBS(Gibco社製)および400μg/ml G418を含むDMEM(Gibco社製)によって37℃、5%CO2の環境下で継代を繰り替えすことで単一クローン化した(以下単一クローン化した細胞をEB1-EGFP-KPL細胞と称する)。 The constructed retroviral vector is transfected into packaging cells (GP2-293 cells) using Xfect Transfection Reagent (Takara Bio Inc.), cultured for 48 hours, and the recombinant supernatant is recovered by filtering the culture supernatant. did. Using the recombinant virus particles, the human breast cancer cell line KPL-4 was transfected with the EB1-EGFP gene. Transfected cells were transformed into single clones by repeated passages at 37 ° C. and 5% CO 2 with DMEM (Gibco) containing 10% FBS (Gibco) and 400 μg / ml G418. (Hereinafter, single-cloned cells are referred to as EB1-EGFP-KPL cells).
 5~7週齢の雌の免疫不全マウス(BALB-c nu/nu:チャールスリバー社)において、1.5%ケタミンと1.0%キシラジンの混合液による全身麻酔下のもと、2×107個のEB1-EGFP-KPL細胞を当該マウス右腰の皮下に移植することで担がんマウスの作製を行った。移植から4~5週間後、腫瘍径が5~10mmになった個体を実験に用いた。 5 × 7 weeks old female immunodeficient mice (BALB-c nu / nu: Charles River) under general anesthesia with a mixture of 1.5% ketamine and 1.0% xylazine, 2 × 10 Cancer-bearing mice were prepared by transplanting seven EB1-EGFP-KPL cells subcutaneously in the right hips of the mice. Individuals with tumor diameters of 5 to 10 mm 4 to 5 weeks after transplantation were used for the experiments.
[作製例2]
<テキサスレッド集積メラミン樹脂粒子の作製>
 テキサスレッド色素「Sulforhodamine 101」(シグマアルドリッチ社)2.5mgを純水22.5mLに溶解した後、ホットスターラーにより溶液の温度を70℃に維持しながら20分間撹拌した。撹拌後の溶液に、メラミン樹脂「ニカラックMX-035」(日本カーバイド工業株式会社)1.5gを加え、さらに同一条件で5分間加熱撹拌した。撹拌後の溶液にギ酸100μLを加え、溶液の温度を60℃に維持しながら20分間攪拌した後、その溶液を放置して室温まで冷却した。冷却した後の溶液を複数の遠心用チューブに分注して、12,000rpmで20分間遠心分離して、溶液に混合物として含まれるテキサスレッド集積メラミン樹脂粒子を沈殿させた。上澄みを除去し、沈殿した粒子をエタノールおよび水で洗浄した。得られたテキサスレッド集積メラミン樹脂粒子の1000個についてSEM観察を行い、平均粒子径を測定したところ、平均粒子径は80nmであった。このようにして作製されたテキサスレッド集積メラミン樹脂粒子の表面に、次の手段で抗体を結合させた。
[Production Example 2]
<Preparation of Texas Red Integrated Melamine Resin Particles>
After 2.5 mg of Texas Red dye “Sulforhodamine 101” (Sigma Aldrich) was dissolved in 22.5 mL of pure water, the solution was stirred for 20 minutes while maintaining the temperature of the solution at 70 ° C. with a hot stirrer. To the stirred solution, 1.5 g of melamine resin “Nicalak MX-035” (Nippon Carbide Industries Co., Ltd.) was added and further heated and stirred under the same conditions for 5 minutes. 100 μL of formic acid was added to the stirred solution and stirred for 20 minutes while maintaining the temperature of the solution at 60 ° C., and then the solution was left to cool to room temperature. The cooled solution was dispensed into a plurality of centrifuge tubes and centrifuged at 12,000 rpm for 20 minutes to precipitate Texas red-integrated melamine resin particles contained in the solution as a mixture. The supernatant was removed and the precipitated particles were washed with ethanol and water. SEM observation was performed on 1000 of the obtained Texas Red integrated melamine resin particles, and the average particle size was measured. As a result, the average particle size was 80 nm. The antibody was bound to the surface of the Texas red-integrated melamine resin particles thus produced by the following means.
[作製例3]
<抗IgG抗体結合テキサスレッド集積メラミン樹脂粒子の作製>
 作製例2で得られたテキサスレッド集積メラミン樹脂粒子0.1mgをEtOH1.5mL中に分散し、アミンプロピルトリメトキシシランLS-3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行った。
[Production Example 3]
<Preparation of anti-IgG antibody-bound Texas Red-integrated melamine resin particles>
0.1 mg of Texas Red-integrated melamine resin particles obtained in Preparation Example 2 was dispersed in 1.5 mL of EtOH, and 2 μL of aminepropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and reacted for 8 hours. Amination treatment was performed.
 次いで、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて上記表面アミノ化処理を行った粒子を3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleimidopropionamido)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行い、マレイミド基で修飾されたテキサスレッド集積メラミン粒子を得た。 Next, the particles subjected to the above surface amination treatment were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and the final concentration of this solution was 10 mM. SM (PEG) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleimipropionamido) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. The washing | cleaning by the same procedure was performed 3 times, and the Texas red accumulation | storage melamine particle | grains modified by the maleimide group were obtained.
 N-succinimidyl S-acetylthioacetate(SATA)を用いて抗ヒトIgG抗体(ロバポリクローナル抗体;Jackson ImmunoResearch社)にチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、テキサスレッド集積メラミン粒子に結合可能な抗IgG抗体溶液を得た。 Anti-human IgG antibody (donkey polyclonal antibody; JacksonJImmunoResearch) was treated with N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column and binding to Texas Red accumulated melamine particles A possible anti-IgG antibody solution was obtained.
 前記マレイミド基で修飾されたテキサスレッド集積メラミン粒子と前記チオール基付加処理を行った抗IgG抗体とを、EDTAを2mM含有したPBS中で混合し、室温で1時間反応させた後、10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応の抗体等を除去し、抗IgG抗体結合テキサスレッド集積メラミン粒子を取得した。 The Texas Red-integrated melamine particles modified with the maleimide group and the anti-IgG antibody subjected to the thiol group addition treatment were mixed in PBS containing 2 mM of EDTA, reacted at room temperature for 1 hour, and then 10 mM mercaptoethanol. Was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted antibodies and the like were removed using a gel filtration column for purification, and anti-IgG antibody-bound Texas red integrated melamine particles were obtained.
[作製例4]
<Cy5標識トラスツズマブ-エムタンシンの作製>
 Biotin Labeling Kit - NH2(株式会社同仁化学研究所製)の、NH2-Reactive Biotinのかわりに、Cy5 NHS Ester Mono-reactive  (GEヘルスケア社製)を用いて、Cy5標識トラスツズマブ-エムタンシンの作製を行った。
[Production Example 4]
<Production of Cy5-labeled trastuzumab-emtansine>
Biotin Labeling Kit-Using Cy5 NHS Ester Mono-reactive (GE Healthcare) instead of NH2-Reactive Biotin from NH2 (Dojindo Laboratories) It was.
 トラスツズマブ-エムタンシン 100μg(1mg/mL)(商品名:カドサイラ;中外製薬株式会社)を、30%グリセロールを含む100mM HEPES緩衝液により希釈して、限外濾過フィルターナノセップ30K(Pall Corporation)を用いて精製した。 Trastuzumab-emtansine 100 μg (1 mg / mL) (trade name: Kadosaira; Chugai Pharmaceutical Co., Ltd.) was diluted with 100 mM HEPES buffer containing 30% glycerol, and ultrafiltration filter Nanosep 30K (Pall Corporation) was used. Purified.
 精製したトラスツズマブ-エムタンシン 100μg(1mg/mL)と、ジメチルスルホキシド(Thermo Fisher社製)で8.5mMになるよう溶解したCy5 NHS Ester Mono-reactiveとを37℃環境で15分間反応させることで、トラスツズマブ-エムタンシンのリシン残基のアミノ基に、Cy5を結合させた。以下、キット記載の手順に従い、Cy5標識トラスツズマブ-エムタンシンを精製した。精製されたCy5標識トラスツズマブ-エムタンシンは、NanoDrop(登録商標)(Thermo Fisher Scientific社製)により280nmとCy5の640nmの吸光度からモル吸光係数に基づいて濃度と標識率(色素と抗体の比)の測定を行った。Cy5モル数/抗体モル数の平均値が3.0±0.3に収まったCy5標識トラスツズマブ-エムタンシンのみを以下の実験に使用した。 By reacting purified trastuzumab-emtansine 100 μg (1 mg / mL) with Cy5 ス ル ホ NHS 製 Ester Mono-reactive dissolved in dimethylsulfoxide (Thermo Fisher) to 8.5 mM for 15 minutes in a 37 ℃ environment, trastuzumab Cy5 was conjugated to the amino group of the lysine residue of emtansine. Hereinafter, Cy5-labeled trastuzumab-emtansine was purified according to the procedure described in the kit. Purified Cy5-labeled trastuzumab-emtansine was measured by NanoDrop (registered trademark) (manufactured by Thermo Fisher Scientific) for concentration and labeling ratio (ratio of dye to antibody) based on the molar extinction coefficient from the absorbance at 280 nm and Cy5 at 640 nm. Went. Only Cy5-labeled trastuzumab-emtansine whose mean value of Cy5 moles / antibody moles was within 3.0 ± 0.3 was used in the following experiments.
 [実施例1]
 作製例1で作製した担がんマウスについて、GFP融合EB1発現細胞を移植してから4~5週間後、1.5%ケタミン+1%キシラジン混合麻酔により麻酔を行い、生理食塩水によって1.35mg/mL濃度に希釈された抗がん剤トラスツズマブ-エムタンシン(商品名:カドサイラ;中外製薬株式会社)を尾静脈から200μL尾静脈から投与した。コントロールとして同様に作製した担がんマウスに、同量の生理食塩水(大塚生食注;大塚製薬株式会社)を投与した。
[Example 1]
The tumor-bearing mouse prepared in Preparation Example 1 was anesthetized with 1.5% ketamine + 1% xylazine mixed anesthesia 4-5 weeks after transplantation of GFP-fused EB1-expressing cells, and 1.35 mg with physiological saline. The anticancer drug trastuzumab-emtansine (trade name: Kadsaila; Chugai Pharmaceutical Co., Ltd.) diluted to a concentration of / mL was administered from the tail vein through the tail vein. The same amount of physiological saline (Otsuka raw food injection; Otsuka Pharmaceutical Co., Ltd.) was administered to cancer-bearing mice similarly produced as a control.
<検体作製>
 トラスツズマブ-エムタンシン投与から24時間後にマウスを頸椎脱臼により堵殺し、皮下から腫瘍部を採取した。採取した腫瘍部を培養液(FluoroBrite DMEM Media;サーモフィッシャーサイエンティフィック社)で洗浄して、37℃で1時間静置した後、生理食塩水で1.5%(w/v)に希釈された低温融解アガロースゲル(PrimeGel(商標) Agarose LMT 1-20;タカラバイオ社)に浸漬し、包埋した。ゲルに包埋された腫瘍をリニアスライサーPRO7(堂阪イーエム株式会社製)で83~85Hzの振動で厚さ200μmになるように薄切し、FluoroBrite(登録商標) DMEM Mediaで洗浄し、37℃環境で1時間静置した。その後腫瘍切片をFluoroBrite DMEM Mediaを適量入れた35mm ガラスボトムディッシュNo1.5に載せ、その上に丸型カバーガラスを置くことで腫瘍切片をディッシュ上に固定した。なお、本発明においては、上記処理を行った腫瘍切片において細胞の大部分が生存を維持しており、以下蛍光観察においても生きた細胞が解析の対象となる。
<Sample preparation>
Mice were sacrificed by cervical dislocation 24 hours after administration of trastuzumab-emtansine, and tumors were collected subcutaneously. The collected tumor part was washed with a culture solution (FluoroBrite DMEM Media; Thermo Fisher Scientific), allowed to stand at 37 ° C. for 1 hour, and then diluted to 1.5% (w / v) with physiological saline. It was immersed in a low-temperature melting agarose gel (PrimeGel ™ Agarose LMT 1-20; Takara Bio Inc.) and embedded. The tumor embedded in the gel is sliced with a linear slicer PRO7 (manufactured by Dosaka EM Co., Ltd.) to a thickness of 200 μm by vibration at 83 to 85 Hz, washed with FluoroBrite (registered trademark) DMEM Media, and 37 ° C. Left in the environment for 1 hour. Thereafter, the tumor slice was placed on a 35 mm glass bottom dish No1.5 containing an appropriate amount of FluoroBrite DMEM Media, and a round cover glass was placed thereon to fix the tumor slice on the dish. In the present invention, most of the cells remain alive in the tumor section subjected to the above-described treatment, and the living cells are also the object of analysis in the fluorescence observation.
<蛍光観察>
 顕微鏡ステージにインキュベーター(株式会社東海ヒット)を取り付けた共焦点レーザー顕微鏡システムA1R(株式会社ニコンインステック)を用いて、37℃、5%CO2の環境下でEB1-EGFPのex vivo imagingによる蛍光観察を行った。
<Fluorescence observation>
Fluorescence by ex vivo imaging of EB1-EGFP in a 37 ° C, 5% CO 2 environment using a confocal laser microscope system A1R (Nikon Instech Co., Ltd.) with an incubator (Tokai Hit Co., Ltd.) attached to the microscope stage Observations were made.
 蛍光の検出は、出力を0.5%に設定した488nm Laserを励起光源として、HVが75(a.u.)、解像度512×512、ピクセルサイズ0.104μm/pixel(Zoom 4)、Line Average 16に設定したレゾナント スキャナーを用いて行った。さらに1.07秒/1フレームのスキャン速度で20秒間連続撮影することでTime Lapse撮影を行った。 Fluorescence is detected using a 488 nm Laser whose output is set to 0.5% as an excitation light source, HV is 75 (au), resolution is 512 × 512, pixel size is 0.104 μm / pixel (Zoom 4), Line Average This was done using a resonant vaginal scanner set to 16. Furthermore, Time Lapse photography was performed by continuously photographing for 20 seconds at a scanning speed of 1.07 seconds / 1 frame.
 細胞12個について取得した画像について画像処理ソフトウェア「Imaris」で解析を行った。それぞれの細胞について撮影時間(20秒間)に観察された輝点数は、実施例1において1細胞あたり2000個、比較例において1細胞あたり2710個であった。そのうち実施例において1細胞あたり210個、比較例においては1細胞あたり400個を追跡輝点数として抽出した。さらにそれぞれの輝点について直線移動距離(撮影の始点および終点における輝点の直線距離)、輝点の移動速度、輝点移動の直線性を測定し、平均値を算出した。さらに、1細胞に含まれる全輝点の直線移動距離の総和を算出した。それぞれの結果を表1に示す。 The image acquired for 12 cells was analyzed with the image processing software “Imaris”. The number of bright spots observed for each cell during the imaging time (20 seconds) was 2000 per cell in Example 1, and 2710 per cell in the Comparative Example. Of these, 210 per cell in the examples and 400 per cell in the comparative examples were extracted as the number of tracking bright spots. Further, for each luminescent spot, the linear movement distance (linear distance of the luminescent spot at the start point and the end point of photographing), the moving speed of the luminescent spot, and the linearity of the luminescent spot movement were measured, and the average value was calculated. Furthermore, the sum total of the linear movement distances of all bright spots contained in one cell was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 GFP融合EB1を発現するKPL-4細胞を用いて作製した担がんマウスにトラスツズマブ-エムタンシンを投与した実施例1においては、生理食塩水を投与した比較例1と比べて、蛍光輝点の輝点数、直線移動距離、および移動速度が大きく減少していることが判った。ここから、トラスツズマブ-エムタンシンによる微小管重合阻害作用により微小管の数が減少し、また微小管の運動も阻害されていることがわかる。
Figure JPOXMLDOC01-appb-T000001
In Example 1 in which trastuzumab-emtansine was administered to a tumor-bearing mouse prepared using KPL-4 cells expressing GFP-fused EB1, the fluorescence emission point was higher than that in Comparative Example 1 in which physiological saline was administered. It was found that the number of points, linear movement distance, and movement speed were greatly reduced. From this, it can be seen that the microtubule polymerization inhibitory action of trastuzumab-emtansine reduces the number of microtubules and also inhibits the movement of microtubules.
[実施例2]
 作製例1で作製した担がんマウスについて、トラスツズマブ-エムタンシンのかわりに作製例4のCy5標識トラスツズマブ-エムタンシンを投与した以外は、実施例1と同じ手順で検体の作製およびEB1-EGFPおよびCy5のex vivo imagingによる蛍光観察を行った。
[Example 2]
For the tumor-bearing mice prepared in Preparation Example 1, specimen preparation and EB1-EGFP and Cy5 Fluorescence observation was performed by ex vivo imaging.
 蛍光の検出はEGFPについては実施例1と同じ条件で、Cy5については出力を4.0%に設定した640 nm Laserを励起光源としてHVが80(a.u.)、解像度512 x 512、ピクセルサイズ0.104μm/pixel (Zoom 4)、Line Average 16に設定したレゾナントスキャナーを用いて行った。 The detection of fluorescence is the same as in Example 1 for EGFP, and for Cy5, the output is set to 4.0% at 640 nm Laser, the excitation light source is HV 80 (au), resolution 512 x 512, pixel This was carried out using a resonant scanner set to a size of 0.104 μm / pixel (Zoom 4) and Line Average 16.
 細胞12個について取得した画像について、EGFPについては実施例1と同様に画像処理ソフトウェア「Imaris」で解析を行った。 For the images acquired for 12 cells, EGFP was analyzed with the image processing software “Imaris” in the same manner as in Example 1.
 それぞれの細胞について撮影時間(20秒間)に観察された緑色輝点数(GFPに対応する)は、実施例2において1細胞あたり3000個、比較例において1細胞あたり5800個であった。さらに、それぞれの細胞における赤色輝点(Cy5に対応する)を抽出し、それらの蛍光強度を測定した。なお、Cy5については、オープンソフトウェアFIJI/ImageJを用いて解析を行い、関心領域(Region of Interest:ROI)として設定した領域において自家蛍光の画像の平均信号値を差分して単位面積あたりに規格化することによってそれぞれの細胞のCy5蛍光強度を計測した。 The number of green bright spots (corresponding to GFP) observed for each cell during the imaging time (20 seconds) was 3000 per cell in Example 2 and 5800 per cell in the Comparative Example. Furthermore, a red bright spot (corresponding to Cy5) in each cell was extracted, and their fluorescence intensity was measured. For Cy5, analysis is performed using open software FIJI / ImageJ, and the average signal value of the autofluorescence image is subtracted and normalized per unit area in the region set as the region of interest (ROI). The Cy5 fluorescence intensity of each cell was measured.
 実施例2において緑色輝点が観察された細胞をCy5蛍光強度に基づいて2群に分け、それぞれの群および比較例について直線移動距離(撮影の始点および終点における輝点の直線距離)、輝点の移動速度、輝点移動の直線性を測定し、平均値を算出した。さらに、1細胞に含まれる全輝点の直線移動距離の総和を算出した。 Cells in which green luminescent spots were observed in Example 2 were divided into two groups based on Cy5 fluorescence intensity, and for each group and comparative example, linear movement distances (linear distances of luminescent spots at the start and end points of imaging), luminescent spots The moving speed and the linearity of bright spot movement were measured, and the average value was calculated. Furthermore, the sum total of the linear movement distances of all bright spots contained in one cell was calculated.
 それぞれの結果を表2に示す。 Each result is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 実施例1と同様に、緑色蛍光輝点の移動距離および移動速度が大きく減少していることから、微小管重合阻害作用が働いていることがわかる。さらにトラスツズマブ-エムタンシンを標識したCy5の蛍光から、細胞に到達した薬剤に関する情報も同時に得られる。Cy5の蛍光強度の強い細胞、すなわち薬剤到達量が多い細胞は、Cy5の蛍光強度の弱い細胞すなわち薬剤到達量の少ない細胞に比べ緑色蛍光輝点の移動距離および移動速度が小さく、微小管重合阻害作用が大きいことがわかる。
Figure JPOXMLDOC01-appb-T000002
As in Example 1, since the moving distance and moving speed of the green fluorescent luminescent spot are greatly reduced, it can be seen that the microtubule polymerization inhibitory action is working. Furthermore, information on the drug that has reached the cell can be obtained simultaneously from the fluorescence of Cy5 labeled with trastuzumab-emtansine. Cells with strong Cy5 fluorescence intensity, that is, cells with a large amount of drug arrival, have a smaller green fluorescent emission distance and movement speed than cells with low Cy5 fluorescence intensity, that is, cells with a small amount of drug arrival, and inhibit microtubule polymerization. It can be seen that the effect is large.
 このように微小管と薬剤を同時に染色することで、薬剤が細胞に到達した量と微小管のダイナミズムとの関係を理解することができ、より正確に薬剤の評価を行うことができると考えられる。 By staining the microtubule and the drug at the same time in this way, it is possible to understand the relationship between the amount of the drug reaching the cell and the dynamism of the microtubule, and to evaluate the drug more accurately. .
[実施例3]
 作製例1で作製した担がんマウスについて、実施例1と同じ手順で薬剤(トラスツズマブ-エムタンシン)の投与を行い、さらに実施例1と同様の手法で検体を作製した。作製例3で作製した抗IgG抗体結合テキサスレッド集積メラミン樹脂粒子を0.1nMになるように培養液(FluoroBrite DMEM Media;サーモフィッシャーサイエンティフィック社)で調製した蛍光染色液に、作製した検体を浸漬して、室温3時間振とうすることで蛍光染色を行った。蛍光染色後、余分な蛍光染色液を除去するために、リン酸緩衝生理食塩水を20mLいれたチューブにいれ、室温で15分おいた後、培養液1mLに浸漬した。
[Example 3]
The cancer-bearing mouse prepared in Preparation Example 1 was administered with a drug (trastuzumab-emtansine) in the same procedure as in Example 1, and a specimen was prepared in the same manner as in Example 1. The prepared specimen was added to the fluorescent staining solution prepared in the culture solution (FluoroBrite DMEM Media; Thermo Fisher Scientific Co., Ltd.) so that the anti-IgG antibody-bound Texas Red-integrated melamine resin particles prepared in Preparation Example 3 were 0.1 nM. Fluorescence staining was performed by immersion and shaking at room temperature for 3 hours. After fluorescent staining, in order to remove excess fluorescent staining solution, it was placed in a tube containing 20 mL of phosphate buffered saline, left at room temperature for 15 minutes, and then immersed in 1 mL of culture solution.
 上記蛍光染色を行った検体に対して実施例1と同様にEB1-EGFPおよびテキサスレッド集積メラミン樹脂粒子のex vivo imagingによる蛍光観察を行った。 Fluorescence observation of EB1-EGFP and Texas Red-integrated melamine resin particles by ex-vivo-imaging was performed on the specimen subjected to the fluorescent staining in the same manner as in Example 1.
 蛍光の検出はEGFPについては実施例1と同じ条件で、テキサスレッド集積メラミン樹脂粒子については出力を0.5%に設定した561 nm Laserを励起光源としてHVが80(a.u.)、解像度512 x 512、ピクセルサイズ0.104μm/pixel (Zoom 4)、Line Average 16に設定したレゾナント スキャナーを用いて行った。 The detection of fluorescence was performed under the same conditions as in Example 1 for EGFP, and for Texas Red-integrated melamine resin particles, HV was 80 (au) with a 561 nm Laser set as an excitation light source with an output set to 0.5%, resolution. This was carried out using a resonant saddle scanner set to 512 x 512, pixel size 0.104 μm / pixel (Zoom 4), and Line Average 16.
 細胞12個について取得した画像について実施例1と同様に画像処理ソフトウェア「Imaris」で解析を行った。それぞれの細胞について撮影時間(20秒間)に観察された緑色輝点数(GFPに対応する)は、実施例1において1細胞あたり4200個、比較例において1細胞あたり6800個であった。そのうち実施例において1細胞あたり280個、比較例においては1細胞あたり430個を追跡輝点数として抽出した。さらにそれぞれの緑色輝点について直線移動距離(撮影の始点および終点における輝点の直線距離)、輝点の移動速度、輝点移動の直線性を測定し、平均値を算出した。さらに、1細胞に含まれる全輝点の直線移動距離の総和を算出した。また、上記に加えて、それぞれの細胞における赤色輝点(テキサスレッドに対応する)の輝点数を測定し、1細胞あたりの平均値を算出した。それぞれの結果を表3に示す。 The images acquired for 12 cells were analyzed with the image processing software “Imaris” in the same manner as in Example 1. The number of green bright spots (corresponding to GFP) observed at the photographing time (20 seconds) for each cell was 4200 per cell in Example 1, and 6800 per cell in the Comparative Example. Of these, 280 cells per cell were extracted as examples, and 430 cells per cell were extracted as chase points in the comparative example. Further, for each green luminescent spot, the linear movement distance (linear distance of the luminescent spot at the start point and the end point of photographing), the moving speed of the luminescent spot, and the linearity of the luminescent spot movement were measured, and the average value was calculated. Furthermore, the sum total of the linear movement distances of all bright spots contained in one cell was calculated. Further, in addition to the above, the number of red bright spots (corresponding to Texas Red) in each cell was measured, and the average value per cell was calculated. Each result is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 実施例1と同様に、比較例に比べて緑色蛍光輝点の移動距離および輝点数が大きく減少していることから、微小管重合阻害作用が働いていることがわかる。さらにトラスツズマブエムタンシンの蛍光染色に用いたテキサスレッドを示す赤色輝点数から、細胞に到達したトラスツズマブエムタンシンの量に関する情報も同時に得られる。このように微小管と薬剤を同時に染色することで、薬剤が細胞に到達した量と微小管のダイナミズムとの関係を理解することができ、より正確に薬剤の評価を行うことができると考えられる。
Figure JPOXMLDOC01-appb-T000003
As in Example 1, since the movement distance and the number of bright spots of the green fluorescent bright spot are greatly reduced as compared with the comparative example, it can be seen that the microtubule polymerization inhibitory action is working. Furthermore, information on the amount of trastuzumab emtansine reaching the cells can be obtained simultaneously from the number of red bright spots indicating Texas Red used for fluorescent staining of trastuzumab emtansine. By staining the microtubule and the drug at the same time in this way, it is possible to understand the relationship between the amount of the drug reaching the cell and the dynamism of the microtubule, and to evaluate the drug more accurately. .
1・・・蛍光観察装置
5・・・情報処理装置
10・・・表示装置
15・・・入力装置
30・・・制御部
33・・・反射画像生成部
36・・・蛍光画像生成部
50・・・光源
51・・・ミラー
52・・・ハーフミラー
55・・・フィルター
60・・・レンズ
70・・・試料
80・・・ステージ
DESCRIPTION OF SYMBOLS 1 ... Fluorescence observation apparatus 5 ... Information processing apparatus 10 ... Display apparatus 15 ... Input device 30 ... Control part 33 ... Reflection image generation part 36 ... Fluorescence image generation part 50- ..Light source 51 ... Mirror 52 ... Half mirror 55 ... Filter 60 ... Lens 70 ... Sample 80 ... Stage

Claims (20)

  1.  病変部を有する実験動物を用いた薬剤評価方法であって、
     前記病変部が、
     蛍光タンパク質と、
     細胞小器官に結合するタンパク質である細胞小器官結合タンパク質とが融合したタンパク質である、蛍光タンパク質融合細胞小器官結合タンパク質を発現する細胞を移植した部分であって、
     前記実験動物に細胞小器官の動態に影響を与える薬剤を投与する工程を有し、
     さらに以下の工程(a)~(c)を含む薬剤評価方法。
     (a)前記実験動物の病変部から採取した組織切片から検体を作製する、検体作製工程。
     (b)前記検体の蛍光画像の取得を行う、蛍光撮影工程。
     (c)前記撮影工程において取得した画像から、蛍光輝点に基づく情報を取得する、情報取得工程。
    A drug evaluation method using an experimental animal having a lesion,
    The lesion is
    A fluorescent protein,
    A part of transplanted cells expressing a fluorescent protein fused organelle binding protein, which is a protein fused with an organelle binding protein that is a protein that binds to an organelle,
    Administering to the experimental animal a drug that affects organelle dynamics,
    A drug evaluation method further comprising the following steps (a) to (c).
    (A) A specimen preparation step of preparing a specimen from a tissue section collected from a lesioned part of the experimental animal.
    (B) A fluorescence imaging step of acquiring a fluorescence image of the specimen.
    (C) An information acquisition step of acquiring information based on fluorescent luminescent spots from the image acquired in the imaging step.
  2.  前記蛍光輝点に基づく情報が、前記蛍光タンパク質の輝点数、前記蛍光タンパク質の輝点の移動距離、移動速度、および移動の直線性、ならびに前記蛍光タンパク質の輝点の分布、および密度から選ばれる1以上の指標を含む、請求項1に記載の薬剤評価方法。 The information based on the fluorescent bright spot is selected from the number of bright spots of the fluorescent protein, the moving distance, moving speed, and linearity of the bright spot of the fluorescent protein, and the distribution and density of the bright spots of the fluorescent protein. The method for evaluating a drug according to claim 1, comprising one or more indices.
  3.  前記細胞小器官の動態に影響を与える薬剤が蛍光標識化薬剤である、請求項1または2に記載の薬剤評価方法。 The method for evaluating a drug according to claim 1 or 2, wherein the drug affecting the dynamics of the organelle is a fluorescently labeled drug.
  4.  前記蛍光輝点に基づく情報が、蛍光標識化薬剤の輝点数を含む、請求項3に記載の薬剤評価方法。 The drug evaluation method according to claim 3, wherein the information based on the fluorescent bright spot includes the number of bright spots of the fluorescently labeled drug.
  5.  前記工程(a)の後であって前記工程(b)の前に、さらに以下の工程(α)を含む、請求項1または2に記載の薬剤評価方法。
     (α)前記検体に対して、蛍光物質を用いて蛍光染色を行う、蛍光染色工程
    The medicine evaluation method according to claim 1 or 2, further comprising the following step (α) after the step (a) and before the step (b).
    (Α) Fluorescent staining step of performing fluorescent staining on the specimen using a fluorescent substance
  6.  前記蛍光輝点に基づく情報が、前記蛍光物質の輝点数を含む、請求項5に記載の薬剤評価方法。 The method for evaluating a drug according to claim 5, wherein the information based on the fluorescent luminescent spot includes the number of bright spots of the fluorescent substance.
  7.  前記蛍光タンパク質融合細胞小器官結合タンパク質が、蛍光タンパク質融合微小管結合タンパク質である、請求項1~6のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 6, wherein the fluorescent protein-fused organelle-binding protein is a fluorescent protein-fused microtubule-binding protein.
  8.  前記蛍光染色が、前記細胞小器官の動態に影響を与える薬剤に対する蛍光染色である、請求項5~7のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 5 to 7, wherein the fluorescent staining is a fluorescent staining for a drug affecting the dynamics of the organelle.
  9.  前記細胞小器官の動態に影響を与える薬剤が微小管の動態に影響を与える薬剤である、請求項1~8のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 8, wherein the drug affecting the dynamics of organelles is a drug affecting the dynamics of microtubules.
  10.  前記細胞小器官の動態に影響を与える薬剤が微小管の重合に影響を与える薬剤である、請求項1~9のいずれか一項に記載の薬剤評価方法。 The drug evaluation method according to any one of claims 1 to 9, wherein the drug affecting the kinetics of the organelle is a drug affecting microtubule polymerization.
  11.  前記細胞小器官の動態に影響を与える薬剤が微小管重合阻害剤である、請求項1~10のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 10, wherein the drug affecting the kinetics of the organelle is a microtubule polymerization inhibitor.
  12.  前記病変部が腫瘍部である、請求項1~11のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 11, wherein the lesioned part is a tumor part.
  13.  前記実験動物がマウスである、請求項1~12のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 12, wherein the experimental animal is a mouse.
  14.  前記蛍光タンパク質の蛍光波長と前記蛍光物質の蛍光波長とがそれぞれ異なっている、請求項5~13のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 5 to 13, wherein a fluorescence wavelength of the fluorescent protein and a fluorescence wavelength of the fluorescent substance are different from each other.
  15.  前記蛍光物質が蛍光体集積ナノ粒子である、請求項5~14のいずれか一項に記載の薬剤評価方法。 The drug evaluation method according to any one of claims 5 to 14, wherein the fluorescent substance is a phosphor-integrated nanoparticle.
  16.  前記蛍光タンパク質がGFPである、請求項1~15のいずれか一項に記載の薬剤評価方法。 The method for evaluating a drug according to any one of claims 1 to 15, wherein the fluorescent protein is GFP.
  17.  蛍光撮影装置と、情報処理装置とを備える薬剤の評価システムであって、
     前記蛍光撮影装置が蛍光画像の撮影を行う装置であって、
     前記情報処理装置が、
     前記蛍光撮影装置により取得された蛍光画像を受け取り、
     受け取った蛍光画像から蛍光輝点に基づく情報を取得し、
     前記蛍光輝点に基づく情報を解析する装置である、
     請求項1~16のいずれか一項に記載の薬剤評価方法を行うための、薬剤の評価システム。
    A drug evaluation system comprising a fluorescence imaging device and an information processing device,
    The fluorescent photographing device is a device for photographing a fluorescent image,
    The information processing apparatus is
    Receiving a fluorescence image acquired by the fluorescence imaging device;
    Obtain information based on the fluorescent luminescent spot from the received fluorescent image,
    An apparatus for analyzing information based on the fluorescent bright spot,
    A drug evaluation system for performing the drug evaluation method according to any one of claims 1 to 16.
  18.  前記蛍光輝点に基づく情報を表示する表示装置をさらに備える、請求項17に記載の薬剤の評価システム。 The drug evaluation system according to claim 17, further comprising a display device for displaying information based on the fluorescent bright spot.
  19.  前記情報処理装置が、前記蛍光輝点に基づく情報を蓄積する情報蓄積部を含む、請求項17または18に記載の薬剤の評価システム。 The drug evaluation system according to claim 17 or 18, wherein the information processing device includes an information storage unit that stores information based on the fluorescent bright spots.
  20.  請求項1~16のいずれか一項に記載の薬剤評価方法をコンピュータにより実行させるためのプログラム。 A program for causing a computer to execute the drug evaluation method according to any one of claims 1 to 16.
PCT/JP2019/018948 2018-05-17 2019-05-13 Method for evaluating medicine WO2019221062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519624A JPWO2019221062A1 (en) 2018-05-17 2019-05-13 Drug evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095274 2018-05-17
JP2018095274 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221062A1 true WO2019221062A1 (en) 2019-11-21

Family

ID=68539974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018948 WO2019221062A1 (en) 2018-05-17 2019-05-13 Method for evaluating medicine

Country Status (2)

Country Link
JP (1) JPWO2019221062A1 (en)
WO (1) WO2019221062A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059601A1 (en) * 2020-09-16 2022-03-24 コニカミノルタ株式会社 Visualization method and information acquisition method
WO2022059510A1 (en) * 2020-09-18 2022-03-24 コニカミノルタ株式会社 Drug distribution information processing device, drug distribution information processing method, and drug distribution information processing program
WO2022059509A1 (en) * 2020-09-18 2022-03-24 コニカミノルタ株式会社 Drug distribution state analysis method and drug distribution state analysis system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016730A (en) * 2009-07-07 2011-01-27 Japan Health Science Foundation Method of screening microtubule growth inhibitor, and microtubule growth inhibitor
WO2016013541A1 (en) * 2014-07-23 2016-01-28 コニカミノルタ株式会社 Labeling reagent containing a molecularly targeted drug
WO2017126420A1 (en) * 2016-01-19 2017-07-27 コニカミノルタ株式会社 Image processing device and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016730A (en) * 2009-07-07 2011-01-27 Japan Health Science Foundation Method of screening microtubule growth inhibitor, and microtubule growth inhibitor
WO2016013541A1 (en) * 2014-07-23 2016-01-28 コニカミノルタ株式会社 Labeling reagent containing a molecularly targeted drug
WO2017126420A1 (en) * 2016-01-19 2017-07-27 コニカミノルタ株式会社 Image processing device and program

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIGUCHI'S GROUP: "Development of in vivo nano-imaging technology and elucidation of the organism motion mechanism", STRATEGIC BASIC RESEARCH PROGRAMS 2010, CREST ANNUAL REPORT, 2011 *
KIYOSUE YUKO: "Bioimaging: Toward an integrated understanding of the life function", PHARMA VISION NEWS, vol. 7, 2006, pages 2 - 8 *
KOBIRUMAKI FUYU ET AL.: "Analysis of microtubule growing ends dynamics by fluorescence imaging of EB1-GFP in mice tumor cells", SEIBUTSU BUTSURI, vol. 50, no. 2, 2010, pages S77 - S78 *
KOBIRUMAKI FUYU: "Analysis of cell dynamics using intravital nano-imaging", FINAL RESEARCH REPORT ON GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, 2015 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059601A1 (en) * 2020-09-16 2022-03-24 コニカミノルタ株式会社 Visualization method and information acquisition method
WO2022059510A1 (en) * 2020-09-18 2022-03-24 コニカミノルタ株式会社 Drug distribution information processing device, drug distribution information processing method, and drug distribution information processing program
WO2022059509A1 (en) * 2020-09-18 2022-03-24 コニカミノルタ株式会社 Drug distribution state analysis method and drug distribution state analysis system

Also Published As

Publication number Publication date
JPWO2019221062A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7384789B2 (en) Methods for labeling, clearing and imaging large tissues
WO2019221062A1 (en) Method for evaluating medicine
Cai et al. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging
Wu et al. Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging
Yang et al. Mapping sentinel lymph node metastasis by dual-probe optical imaging
Pansieri et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting
JP6648842B2 (en) Method for detecting constituents of antibody-drug conjugate
Saban et al. VEGF receptors and neuropilins are expressed in the urothelial and neuronal cells in normal mouse urinary bladder and are upregulated in inflammation
JP2011506418A (en) Fluorescent markers for cell death in the eye
US20140093458A1 (en) In vivo selection of therapeutically active antibodies
Yang et al. A zwitterionic near-infrared dye linked TrkC targeting agent for imaging metastatic breast cancer
JP7140103B2 (en) How to predict therapeutic efficacy
Satpathy et al. Optical imaging of ovarian cancer using HER-2 affibody conjugated nanoparticles
JP2009300110A (en) Optical detection method or imaging method of transplantation cell
JP6346202B2 (en) Methods for detecting shed or circulating tumor cells in biological fluids
Conti et al. Optical imaging detection of microscopic mammary cancer in ErbB‐2 transgenic mice through the DA364 probe binding αvβ3 integrins
EP4245771A1 (en) Novel protein specifically binding to calreticulin and having human fibronectin domain iii scaffold and use thereof
WO2018030193A1 (en) Method relating to evaluation of tumor tissue of experimental animal
Hudecz et al. Two peptides targeting endothelial receptors are internalized into murine brain endothelial cells
WO2019098385A1 (en) Drug evaluation method
US20220193271A1 (en) Detection of colonic neoplasia in vivo using near-infrared peptide targeted against overexpressed cmet
US20220211877A1 (en) Compound for intraoperative molecular bioimaging, method of making the same, use thereof in intraoperative molecular bioimaging and surgical method comprising intraoperative molecular bioimaging
Perro et al. Intravital Microscopy
JP2020500306A (en) Identification and treatment of tumors characterized by neonatal Fc receptor overexpression
EA044968B1 (en) HUMANIZED ANTIBODY AND METHOD OF ITS APPLICATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802507

Country of ref document: EP

Kind code of ref document: A1