WO2019221024A1 - Guanosine derivative and production method therefor - Google Patents

Guanosine derivative and production method therefor Download PDF

Info

Publication number
WO2019221024A1
WO2019221024A1 PCT/JP2019/018755 JP2019018755W WO2019221024A1 WO 2019221024 A1 WO2019221024 A1 WO 2019221024A1 JP 2019018755 W JP2019018755 W JP 2019018755W WO 2019221024 A1 WO2019221024 A1 WO 2019221024A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
represented
guanosine derivative
guanosine
derivative
Prior art date
Application number
PCT/JP2019/018755
Other languages
French (fr)
Japanese (ja)
Inventor
岩 徐
匠 石塚
潮達 肖
珮妍 趙
龍一 西井
Original Assignee
国立大学法人 宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 宮崎大学 filed Critical 国立大学法人 宮崎大学
Priority to JP2020519605A priority Critical patent/JPWO2019221024A1/en
Publication of WO2019221024A1 publication Critical patent/WO2019221024A1/en
Priority to JP2023134012A priority patent/JP2023156482A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B51/00Introduction of protecting groups or activating groups, not provided for in the preceding groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a guanosine derivative and a production method thereof. More specifically, the present invention relates to a guanosine derivative having a substituent such as an ethynyl group or a vinyl group at the 8-position.
  • nucleic acids such as RNA and DNA
  • RNA and DNA a technique for binding a derivative to nucleic acid in a cell and fluorescently labeling it has been studied. Since this technology can visualize the behavior and localization of nucleic acids, it is considered to reflect cell proliferation and protein synthesis, and is expected to be useful for nucleic acid analysis and medical diagnosis.
  • RNA requires adenine, guanosine, cytosine, uridine
  • DNA requires adenine, guanosine, cytosine, thymine, and derivatives related to these.
  • 5-EdU deoxy-ethynil-uridine, 5-ethynyl-deoxy-uridine, non-patent documents 1, 2, 4, 5
  • 5-EU 5-ethynil-uridine, 5-ethynyl-uridine, Non-Patent Document 3
  • RNA-type uridine derivative It has been disclosed that these pyrimidine base derivatives are each incorporated into intracellular nucleic acids and can be labeled with fluorescence.
  • many derivatives related to pyrimidine bases have been developed, but purine base derivatives have not yet been developed.
  • an object of the present invention is to develop a purine base derivative.
  • guanosine was used as a starting material for bromination, protection of the hydroxyl group at the sugar site and protection of the nucleobase moiety, coupling reaction using Pd catalyst (introduction of ethynyl group), Through the process, the inventors succeeded in synthesizing a guanosine derivative having an ethynyl group introduced at the 8-position of guanosine and completed the invention. The inventors have also completed the invention by confirming that the synthesized guanosine derivative is incorporated into RNA and that cell labeling is possible by a click reaction.
  • the inventors used deoxyguanosine as a starting material to synthesize deoxyguanosine derivatives in which an ethynyl group was introduced at the 8-position of deoxyguanosine by bromination and coupling reaction using Pd catalyst (introduction of ethynyl group). It has been successful and the invention has been completed. Furthermore, the inventors have conceived a compound developed on the basis of an ethynyl group-introduced guanosine derivative or a vinyl group-introduced guanosine derivative by clarifying the usefulness by completing a vinyl group-introduced guanosine derivative having a vinyl group introduced, The invention has been completed.
  • a first configuration of the present invention is a guanosine derivative compound represented by the following formula, One of R 1 and R 2 is H and the other is represented by one of H, OH, OCH 3 and F; R 3 is represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound, R 4 is represented by any of H, monophosphate, diphosphate, and triphosphate, This is a guanosine derivative compound.
  • one of R 1 and R 2 of the guanosine derivative is one of 1 H, 2 H, and 3 H, and the other is any of 1 H, 2 H, and 3 H.
  • a guanosine derivative according to the first configuration represented by 18 F or 19 F According to a third configuration of the present invention, there is provided a compound having an azido group, wherein R 3 of the guanosine derivative is any one of 11 C, 12 C, 13 C, and 14 C in which C of a double bond or a triple bond is N is a guanosine derivative according to the first or second configuration represented by any one of 13 N, 14 N, and 15 N.
  • R 1 and R 2 are any one of the first to third configurations in which one of them is H and the other is represented by either H or OH. It is a guanosine derivative compound.
  • a fifth configuration of the present invention is the guanosine derivative compound according to any one of the first to fourth configurations in which R 4 is represented by H.
  • a sixth configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, in which R 3 is further represented by any of the following substituents.
  • the seventh configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, wherein R 3 is represented by any of the following substituents.
  • the eighth configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, in which R 3 is represented by the following substituent.
  • a ninth configuration of the present invention is the guanosine derivative according to the sixth configuration, wherein R 3 is a substituent represented by an ethynyl group (A1).
  • a tenth configuration of the present invention is the guanosine derivative according to the seventh configuration, in which R 3 is a substituent represented by a vinyl group (B5).
  • the eleventh configuration of the present invention is a click reaction method in which a click reaction is performed using R 3 of the guanosine derivative of any one of the first to tenth configurations and a reporter compound that reacts therewith.
  • a twelfth configuration of the present invention is the click reaction method according to the eleventh configuration, wherein the reporter compound is a compound having an azide group.
  • the thirteenth configuration of the present invention is the click reaction method according to the twelfth configuration, wherein the compound having an azide group is selected from any one of Azidebenzene, Coumarin Azide, Tetramethylrhodamine (TAMRA) azide, and Biotin azide. is there.
  • the click reaction is a label for labeling a cell or a biological tissue by performing the click reaction method according to any one of the eleventh to thirteenth configurations on the cell or the biological tissue. Is the method.
  • a fifteenth configuration of the present invention is the label according to the fourteenth configuration, wherein the label is selected from a fluorescent label, a label with a luminescent material, a radiolabel, a nuclear magnetic resonance active label, or any one or a plurality thereof Is the method.
  • the sixteenth configuration of the present invention is a cancer imaging agent comprising the guanosine derivative of any of the first to tenth configurations as an active ingredient.
  • a seventeenth configuration of the present invention is the cancer imaging agent according to the sixteenth configuration, wherein the cancer is a cancer in a solid cancer including brain, large intestine, and stomach cancer.
  • the eighteenth configuration of the present invention is a method for producing a guanosine derivative compound represented by the following formula, Bromination step of bromination at the 8-position starting from guanosine, A hydroxyl group protecting step for protecting hydroxyl groups in the sugar skeleton; A carbonyl group protecting step for protecting the carbonyl group of the nucleobase moiety; R 3 introduction step for introducing substituent R 3 by coupling reaction at the 8-position; This is a method for producing a guanosine derivative compound comprising an elimination step for eliminating all protecting groups.
  • R 3 is represented by a substituent represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound
  • a purine base derivative can be provided. That is, a method for synthesizing a guanosine derivative having a substituent at the 8-position is provided by the 8-ethynylguanosine derivative or 8-vinylguanosine derivative completed in the present invention, and nucleic acid labeling is performed using this method. It becomes possible.
  • the guanosine derivative compound of the present invention is defined as a compound represented by the following formula 6 or a salt thereof.
  • one of R 1 and R 2 is H, and the other is represented by any one of H, OH, OCH 3 and F.
  • the compound shown in the following chemical formula 7 is exemplified. That is, when both R 1 and R 2 are H (D1), it is expected to be incorporated into DNA as a deoxyguanosine derivative. When either R 1 or R 2 is OH (D2, D3), it is expected to be incorporated into RNA as a guanosine derivative (non-deoxyguanosine derivative). In addition, when either R 1 or R 2 is OCH 3 (D6), it is expected that the behavior of methyl guanosine derivatives with 2 ′ methylated can be detected. Furthermore, when either R 1 or R 2 is F (D4, D5), it is expected that the behavior of the guanosine derivative can be detected as a label as described later by setting F to 18 F or the like.
  • R 4 is represented by any one of H, monophosphate, diphosphate, and triphosphate. That is, when R 4 is H, it is a nucleic acid derivative, and when R 4 is a monophosphate, diphosphate, or triphosphate, it is a phosphorylated nucleic acid derivative. Etc. can be expected.
  • R 3 is a compound having a double bond or a triple bond, a compound having an azide group, a cyclic compound, or a substituent represented by any of these. That is, R 3 causes a click reaction with a reporter compound described later, thereby enabling a label such as a fluorescent label.
  • R 3 is a compound having a double bond or a triple bond, a compound having an azide group, a cyclic compound, or a substituent represented by any one of these, and a reporter compound for a click reaction.
  • the structure can be changed as appropriate.
  • R 3 for example, a substituent shown in the following chemical formula 8 can be used. That is, the substituents represented by A1 to A8 are a group of substituents that react with a reporter compound having an azide group. R 3 is preferably a substituent represented by A1 (ethynyl group). Thereby, the structure of a guanosine derivative can be made compact, and it has the effect of improving the stability as a compound or nucleic acid uptake.
  • substituents shown in the following chemical formula 9 can be used. That is, the substituents represented by B1 to B8 are a group of substituents that react with a reporter compound having a tetrazine group.
  • R 3 is preferably a substituent (vinyl group) represented by B5.
  • substituents shown in the following chemical formula 10 can be used. That is, such a substituent is a group of substituents that react with a reporter compound having a triple bond such as an ethynyl group.
  • a so-called click reaction can be performed with R 3 of the guanosine derivative of the present invention and a reporter compound that reacts with R 3 . That is, by the click reaction, R 3 of the guanosine derivative and the reporter compound bind each other's molecules to form one compound (for example, FIG. 7a). In addition, by using the click reaction, as illustrated in FIG. 7, the guanosine derivative itself or the reporter compound (azidobenzene) itself does not emit fluorescence.
  • the nucleic acid can be labeled.
  • the structure of the reporter compound can be appropriately changed in consideration of the reactivity with R 3 in the guanosine derivative, the fluorescence when reacted, the labeling technique, and the like.
  • R 3 and a reporter compound an alkyne having a triple bond (straight and cyclic types) and a compound having an azide group, an alkene having a double bond (linear and cyclic types) and a compound having a tetrazine group, A carbonyl compound and a compound having a hetero atom.
  • a compound having an azide group can be preferably used, and examples of such a compound include Azidebenzene, Coumarin Azide, Tetramethylrhodamine (TAMRA) azide, and Biotin azide.
  • the click reaction method is not particularly limited as long as it can cause a click reaction and can be used in various environments, but most preferably, it can be used in cells or living tissues. As a result, the behavior of nucleic acids in cells and living tissues can be visualized, and application to nucleic acid analysis and medical diagnosis can be expected.
  • the labeling method of the present invention is not particularly limited as long as cells or biological tissues can be labeled, and various methods can be used. For example, in vitro labeling using cells or pathological sections, or in vivo labeling for humans or animals.
  • the labeling method of the present invention is not particularly limited as long as cells or biological tissues can be labeled, and various methods can be used. Resonance active labels, any of these can be used alone or in combination.
  • H hydrogen atom
  • 2 H it can be used for diagnosis etc. by detecting MRI as deuterium.
  • 3 H ⁇ - rays are released as tritium, so it can be used as a radiolabeled compound in reagents.
  • one of R 1 and R 2 of the guanosine derivative may be 1 H, 2 H, 3 H, and the other may be H, OH, OCH 3 , F, or the like.
  • 18 F or 19 F is used for F (fluorine atom) used in guanosine derivatives. Since 19 F hardly exists in the body, a guanosine derivative compound containing 19 F can be used as a diagnostic compound for MRI having high background and temporal resolution with little background noise. Since 18 F emits ⁇ + rays as a positron nuclide, it can be used as a diagnostic compound for in vitro detection as a radiolabeled compound. That is, as shown in animal experiments such as Experiment 5 and Experiment 9, since the metabolism of purine base derivatives is accelerated in cancer, the purine base derivatives can be used for PET cancer diagnosis.
  • one of R 1 and R 2 of the guanosine derivative may be 18 F or 19 F and the other may be H.
  • 11 C, 12 C, 13 C, and 14 C are used for C (carbon atom) used in guanosine derivatives.
  • 11 C like 18 F, emits ⁇ + rays as a positron nuclide, so it can be used as a radiolabeled compound for diagnostics for in vitro detection.
  • 13 C has a small abundance ratio compared to 12 C, it can be used as a reagent for NMR and the like by forming a guanosine derivative compound containing 13 C.
  • 14 C like 3 H, emits ⁇ - rays, so it can be used as a radiolabeled compound in reagents.
  • the double bond or triple bond C may be any of 11 C, 12 C, 13 C, and 14 C.
  • the synthesis of 8-vinylguanosine derivatives is relatively easy, it is easy to obtain, and positron-labeled compounds such as 11 C and 18 F are considered very desirable in the medical field.
  • the usage is the same as the conventional positron label, an excellent diagnostic effect can be expected.
  • N nitrogen atom
  • 14 N, and 15 N are used for N (nitrogen atom) used in guanosine derivatives.
  • 13 N like 18 F, emits ⁇ + rays as a positron nuclide, so it can be used as a radiolabeled compound for diagnostics for in vitro detection.
  • 15 N has a lower abundance ratio than 14 N, a guanosine derivative compound containing 13 C can be used as a reagent for NMR and the like.
  • N of the compound having an azide group may be any of 13 N, 14 N, and 15 N.
  • the guanosine derivative of the present invention can be used as a cancer imaging agent containing this as an active ingredient. That is, cancer imaging can be performed by intravenously or locally injecting the guanosine derivative of the present invention and subsequently administering the reporter compound. In such a case, as in Experiment 9, it is possible to perform in vivo imaging of humans and animals (in vivo use). Further, as in Experiment 5, etc., the guanosine derivative can be administered in vivo, and then the tissue can be taken out and reacted with the reporter compound (ex vivo use). Thus, in vivo use, it plays a role as a diagnostic agent for evaluating cancer localization and protein synthesis ability.
  • the cancer at the time of imaging is not particularly limited as long as imaging is possible, but it is preferably a cancer in solid cancer including brain, large intestine and stomach cancer. This has the effect of improving the diagnostic effect of the guanosine derivative of the present invention.
  • the guanosine derivative compound represented by the following formula 11 can be produced by the following series of steps. (1) Bromination step of bromination at position 8 using guanosine as a starting material (2) Hydroxyl protection step for protecting the hydroxyl group in the sugar skeleton (3) Carbonyl group protection step for protecting the carbonyl group of the nucleobase moiety (4) 8 R 3 introduction process to introduce substituent R 3 by coupling reaction at the position (5) Elimination process to remove all protecting groups (In the formula, R 3 is represented by a substituent represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound)
  • the bromination step is a step of brominating the 8-position of guanosine (FIG. 1, a).
  • the bromination step is not particularly limited as long as the 8-position of guanosine can be brominated, and can be performed under various conditions.
  • guanosine is reacted with NBS in a solvent of acetonitrile / water.
  • the hydroxyl group protecting step is a step for protecting the hydroxyl group in the sugar skeleton.
  • the hydroxyl group protecting step is not particularly limited as long as the hydroxyl group in the sugar skeleton can be protected, and can be performed under various conditions.
  • DMF is used as a solvent and TBS is protected in the presence of imidazole (FIG. 1, b).
  • the carbonyl group protecting step is a step of protecting the carbonyl group of the nucleobase moiety.
  • the carbonyl group protecting step is not particularly limited as long as the carbonyl group of the nucleobase moiety can be protected, and can be performed under various conditions.
  • protection is carried out by reacting with trimethylsilylethanol in the presence of triphenylphosphine and diisopropyl azodicarboxylate using dioxane as a solvent (FIG. 1, c).
  • the R 3 introduction step is a step of introducing the substituent R 3 at the 8-position by a coupling reaction.
  • the R 3 introduction step is not particularly limited as long as the substituent R 3 can be introduced by coupling reaction at the 8-position, and can be performed under various conditions.
  • the substituent R 3 may be introduced in a form in which a protecting group is added to the substituent R 3 in consideration of a subsequent elimination step.
  • a substituent R 3 with a protecting group is introduced in the presence of tetrakis (triphenylphosphine) palladium using toluene as a solvent (FIG. 1, d).
  • the desorption step is a step of removing all protecting groups.
  • the elimination step is not particularly limited as long as the protecting group can be eliminated, and can be performed under various conditions.
  • An example of the desorption step is desorption of all protecting groups in the presence of tetra-n-butylammonium fluoride using THF as a solvent (FIG. 1, e).
  • Experiments 1 and 2 made it possible to synthesize 8-ethynylguanosine and 8-ethynyl-2′-deoxyguanosine. Based on these compounds, it is expected to synthesize phosphorylated derivatives.
  • 1,8-bis (dimethylamino) naphthalene (0.15 mmol) is added to 8-ethynyl-2′-deoxyguanosine (8 mmol) or 8-ethynylguanosine (0.1 mmol) and dissolved with 500 ⁇ L of trimethyl phosphate.
  • Add phosphoryl chloride (0.13 mmol) to the solution and stir on ice for 2 hours.
  • a 8-ethynylguanosine
  • b is azidobenzene
  • c is the LC-MS analysis result of the reaction solution.
  • (1) In the presence of copper sulfate, 8-ethynylguanosine and azidobenzene were reacted overnight at 37 ° C.
  • (2) When the reaction solution was analyzed by LC-MS, the 8-ethynylguanosine peak almost disappeared and the azidobenzene peak was low.
  • the component eluted at 20.84 minutes hereinafter referred to as “click reaction compound” had the same molecular weight as the estimated compound.
  • HeLa cells were stained.
  • the components of the cell staining solution are as follows (amount for one 3.5 cm dish). The final concentration is shown in parentheses.
  • the experiment was conducted according to the following.
  • An 8-ethynylguanosine solution (4 mg / mL, 4% DMSO / PBS solution) was administered to one mouse at 0.5 mL (2 mg / body with 8-EG) from the tail vein.
  • a click reaction was performed on thin sliced sections with TMR-N 3 and the nuclei were stained with DAPI mounting medium and observed with a fluorescence microscope.
  • FIGS. FIG. 9 shows the result of the brain
  • FIG. 10 shows the result of the intestine
  • FIG. 11 shows the result of the kidney.
  • These results indicate that 8-EG, after administration, passes through the BBB, migrates to brain tissue, and is incorporated into RNA. In addition, it was confirmed that the click reaction by TMR-azide is possible even in living tissue.
  • a brain tumor cell line (U87 cell) was implanted subcutaneously into a nude mouse, and a mouse cancer model was prepared.
  • the 8-EG or 8-VG solution was administered to the mouse cancer model for 3 days at the tumor site at 5 mg per animal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

[Problem] To develop a purine base derivative. [Solution] A guanosine derivative compound characterized by being represented by the formula, wherein one of R1 and R2 is H and the other is any of H, OH, OCH3, and F, R3 is any of a compound having a double bond or triple bond, a compound having an azido group, and a cyclic compound, and R4 is any of H, monophosphoric acid, diphosphoric acid, and triphosphoric acid. Thus, a guanosine derivative having a substituent at the 8-position is provided. Use of the guanosine derivative renders nucleic-acid labeling possible.

Description

グアノシン誘導体及びその製造法Guanosine derivative and process for producing the same
 本発明は,グアノシン誘導体及びその製造法に関する。より詳細にいうと本発明は,8位にエチニル基やビニル基などの置換基を有するグアノシン誘導体等に関する。 The present invention relates to a guanosine derivative and a production method thereof. More specifically, the present invention relates to a guanosine derivative having a substituent such as an ethynyl group or a vinyl group at the 8-position.
 RNAやDNAなどの核酸に関して,誘導体を細胞内の核酸に結合させ,蛍光標識する技術が研究されている。かかる技術は,核酸の挙動や局在などを可視化しうることから,細胞増殖やタンパク合成などを反映すると考えられ,核酸解析や医学的診断に有用と期待されている。 Regarding nucleic acids such as RNA and DNA, a technique for binding a derivative to nucleic acid in a cell and fluorescently labeling it has been studied. Since this technology can visualize the behavior and localization of nucleic acids, it is considered to reflect cell proliferation and protein synthesis, and is expected to be useful for nucleic acid analysis and medical diagnosis.
 このような核酸標識技術のためには,RNAやDNAを構成する核酸塩基に対応した誘導体が必要である。
 すなわち,RNAではアデニン,グアノシン,シトシン,ウリジン,一方,DNAでは,アデニン,グアノシン,シトシン,チミン,これらに関する誘導体が必要である。
For such nucleic acid labeling technology, derivatives corresponding to nucleobases constituting RNA and DNA are required.
That is, RNA requires adenine, guanosine, cytosine, uridine, while DNA requires adenine, guanosine, cytosine, thymine, and derivatives related to these.
 これらのうち,ピリミジン塩基に関する誘導体は,複数,開発されている。
 例えば,DNA型のウリジン誘導体として,5-EdU(5-deoxy-ethynil-uridine, 5-エチニル-デオキシ-ウリジン,非特許文献1,2,4,5)が開発されている。また,RNA型のウリジン誘導体として,5-EU(5-ethynil-uridine, 5-エチニル-ウリジン,非特許文献3)が開発されている。
 これらのピリミジン塩基誘導体は,それぞれ細胞内の核酸に取り込まれ,蛍光により核酸標識が可能なことが開示されている。
 このように,ピリミジン塩基に関する誘導体は多数開発されているものの,プリン塩基の誘導体は,未だ開発されていないのが現状である。
Of these, several derivatives related to pyrimidine bases have been developed.
For example, 5-EdU (5-deoxy-ethynil-uridine, 5-ethynyl-deoxy-uridine, non-patent documents 1, 2, 4, 5) has been developed as a DNA type uridine derivative. Further, 5-EU (5-ethynil-uridine, 5-ethynyl-uridine, Non-Patent Document 3) has been developed as an RNA-type uridine derivative.
It has been disclosed that these pyrimidine base derivatives are each incorporated into intracellular nucleic acids and can be labeled with fluorescence.
As described above, many derivatives related to pyrimidine bases have been developed, but purine base derivatives have not yet been developed.
 プリン塩基誘導体について未だ開発がなされていないのは,一つの要因として,合成の難しさがあると考えられる。
 すなわち,プリン塩基は化合物としての取扱性が悪く,アグリゲーションを起こし,粘性をもった状態となりやすい。このような事情もあって,プリン塩基誘導体の開発が未だなされていないと考えられる。
 上記事情を背景として,本発明では,プリン塩基誘導体の開発を課題とする。
One reason that purine base derivatives have not been developed yet is thought to be the difficulty of synthesis.
That is, purine bases are poorly handled as compounds, cause aggregation, and tend to be viscous. Under such circumstances, it is considered that the purine base derivative has not been developed yet.
Against the background of the above circumstances, an object of the present invention is to develop a purine base derivative.
 発明者らは,鋭意研究の結果,グアノシンを出発物質として,ブロモ化,糖部位の水酸基の保護および核酸塩基部分の保護,Pd触媒を用いたカップリング反応(エチニル基の導入),これら一連の工程により,グアノシンの8位にエチニル基を導入したグアノシン誘導体の合成に成功し,発明を完成させたものである。
 また発明者らは,合成したグアノシン誘導体が,RNAに取り込まれるとともに,クリック反応により細胞標識が可能なことを確認し,発明を完成させたものである。
 同様に発明者らは,デオキシグアノシンを出発物質として,ブロモ化,Pd触媒を用いたカップリング反応(エチニル基の導入)により,デオキシグアノシンの8位にエチニル基を導入したデオキシグアノシン誘導体の合成に成功し,発明を完成させたものである。
 さらに発明者らは,ビニル基を導入したビニル基導入グアノシン誘導体を完成させ有用性を明らかとすることにより,エチニル基導入グアノシン誘導体もしくはビニル基導入グアノシン誘導体を基礎として発展させた化合物に想到し,発明を完成させたものである。
As a result of diligent research, the inventors found that guanosine was used as a starting material for bromination, protection of the hydroxyl group at the sugar site and protection of the nucleobase moiety, coupling reaction using Pd catalyst (introduction of ethynyl group), Through the process, the inventors succeeded in synthesizing a guanosine derivative having an ethynyl group introduced at the 8-position of guanosine and completed the invention.
The inventors have also completed the invention by confirming that the synthesized guanosine derivative is incorporated into RNA and that cell labeling is possible by a click reaction.
Similarly, the inventors used deoxyguanosine as a starting material to synthesize deoxyguanosine derivatives in which an ethynyl group was introduced at the 8-position of deoxyguanosine by bromination and coupling reaction using Pd catalyst (introduction of ethynyl group). It has been successful and the invention has been completed.
Furthermore, the inventors have conceived a compound developed on the basis of an ethynyl group-introduced guanosine derivative or a vinyl group-introduced guanosine derivative by clarifying the usefulness by completing a vinyl group-introduced guanosine derivative having a vinyl group introduced, The invention has been completed.
 本発明は,下記の構成からなる。
 本発明の第一の構成は,下記式で表されるグアノシン誘導体化合物であって,下記式中,
 R1およびR2は,いずれか一方がHであって,他方が,H,OH,OCH3,Fのいずれかで表され,
 R3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物のいずれかで表され,
 R4は,H,一リン酸,二リン酸,三リン酸のいずれかで表される,
ことを特徴とするグアノシン誘導体化合物である。
Figure JPOXMLDOC01-appb-C000006
 
 本発明の第二の構成は,前記グアノシン誘導体のR1およびR2において,一方が1H,2H,3Hのいずれかであって,他方が,1H,2H,3Hのいずれか,又は,18Fもしくは19Fで表される第一の構成に記載のグアノシン誘導体である。
 本発明の第三の構成は,前記グアノシン誘導体のR3において,二重結合または三重結合のCが,11C,12C,13C,14Cのいずれかであって,アジド基を有する化合物のNが,13N,14N,15Nのいずれかで表される第一又は第二の構成に記載のグアノシン誘導体である。
 本発明の第四の構成は,R1およびR2が,いずれか一方がHであって,他方が,HまたはOHのいずれかで表される第一から第三の構成いずれかに記載のグアノシン誘導体化合物である。
 本発明の第五の構成は,R4が,Hで表される第一から第四の構成いずれかに記載のグアノシン誘導体化合物である。
 本発明の第六の構成は,さらに,R3が,下記置換基のいずれかで表される第一から第五の構成いずれかに記載のグアノシン誘導体である。
Figure JPOXMLDOC01-appb-C000007
 本発明の第七の構成は,さらに,R3が,下記置換基のいずれかで表される第一から第五の構成いずれかに記載のグアノシン誘導体である。
Figure JPOXMLDOC01-appb-C000008
 
 本発明の第八の構成は,さらに,R3が,下記置換基で表される第一から第五の構成いずれかに記載のグアノシン誘導体である。
Figure JPOXMLDOC01-appb-C000009
 本発明の第九の構成は,R3が,エチニル基(A1)で表される置換基である第六の構成に記載のグアノシン誘導体である。
 本発明の第十の構成は,R3が,ビニル基(B5)で表される置換基である第七の構成に記載のグアノシン誘導体である。
The present invention has the following configuration.
A first configuration of the present invention is a guanosine derivative compound represented by the following formula,
One of R 1 and R 2 is H and the other is represented by one of H, OH, OCH 3 and F;
R 3 is represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound,
R 4 is represented by any of H, monophosphate, diphosphate, and triphosphate,
This is a guanosine derivative compound.
Figure JPOXMLDOC01-appb-C000006

According to a second configuration of the present invention, one of R 1 and R 2 of the guanosine derivative is one of 1 H, 2 H, and 3 H, and the other is any of 1 H, 2 H, and 3 H. Or a guanosine derivative according to the first configuration represented by 18 F or 19 F.
According to a third configuration of the present invention, there is provided a compound having an azido group, wherein R 3 of the guanosine derivative is any one of 11 C, 12 C, 13 C, and 14 C in which C of a double bond or a triple bond is N is a guanosine derivative according to the first or second configuration represented by any one of 13 N, 14 N, and 15 N.
According to a fourth configuration of the present invention, R 1 and R 2 are any one of the first to third configurations in which one of them is H and the other is represented by either H or OH. It is a guanosine derivative compound.
A fifth configuration of the present invention is the guanosine derivative compound according to any one of the first to fourth configurations in which R 4 is represented by H.
A sixth configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, in which R 3 is further represented by any of the following substituents.
Figure JPOXMLDOC01-appb-C000007
The seventh configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, wherein R 3 is represented by any of the following substituents.
Figure JPOXMLDOC01-appb-C000008

The eighth configuration of the present invention is the guanosine derivative according to any one of the first to fifth configurations, in which R 3 is represented by the following substituent.
Figure JPOXMLDOC01-appb-C000009
A ninth configuration of the present invention is the guanosine derivative according to the sixth configuration, wherein R 3 is a substituent represented by an ethynyl group (A1).
A tenth configuration of the present invention is the guanosine derivative according to the seventh configuration, in which R 3 is a substituent represented by a vinyl group (B5).
 本発明の第十一の構成は,第一ないし第十の構成いずれかのグアノシン誘導体のR3と,これと反応するレポーター化合物とによりクリック反応を行うクリック反応方法である。
 本発明の第十二の構成は,前記レポーター化合物が,アジド基を有する化合物である第十一の構成に記載のクリック反応方法である。
 本発明の第十三の構成は,前記アジド基を有する化合物が,Azidebenzene,Coumarin Azide,Tetramethylrhodamine (TAMRA) azide,Biotin azideのいずれかから選択される第十二の構成に記載のクリック反応方法である。
 本発明の第十四の構成は,前記クリック反応が,第十一から第十三の構成いずれかに記載のクリック反応方法を細胞ないし生体組織において行うことにより,細胞ないし生体組織を標識する標識方法である。
 本発明の第十五の構成は,前記標識が,蛍光標識,発光体による標識,放射標識,核磁気共鳴活性標識,これらのいずれか又は複数から選択される第十四の構成に記載の標識方法である。
The eleventh configuration of the present invention is a click reaction method in which a click reaction is performed using R 3 of the guanosine derivative of any one of the first to tenth configurations and a reporter compound that reacts therewith.
A twelfth configuration of the present invention is the click reaction method according to the eleventh configuration, wherein the reporter compound is a compound having an azide group.
The thirteenth configuration of the present invention is the click reaction method according to the twelfth configuration, wherein the compound having an azide group is selected from any one of Azidebenzene, Coumarin Azide, Tetramethylrhodamine (TAMRA) azide, and Biotin azide. is there.
In a fourteenth configuration of the present invention, the click reaction is a label for labeling a cell or a biological tissue by performing the click reaction method according to any one of the eleventh to thirteenth configurations on the cell or the biological tissue. Is the method.
A fifteenth configuration of the present invention is the label according to the fourteenth configuration, wherein the label is selected from a fluorescent label, a label with a luminescent material, a radiolabel, a nuclear magnetic resonance active label, or any one or a plurality thereof Is the method.
 本発明の第十六の構成は,第一ないし第十の構成いずれかのグアノシン誘導体を有効成分とする癌イメージング剤である。
 本発明の第十七の構成は,前記癌が,脳,大腸,胃癌をはじめとする固形癌における癌である第十六の構成に記載の癌イメージング剤である。
The sixteenth configuration of the present invention is a cancer imaging agent comprising the guanosine derivative of any of the first to tenth configurations as an active ingredient.
A seventeenth configuration of the present invention is the cancer imaging agent according to the sixteenth configuration, wherein the cancer is a cancer in a solid cancer including brain, large intestine, and stomach cancer.
 本発明の第十八の構成は,下記式で表される,グアノシン誘導体化合物の製造方法であって,
 グアノシンを出発物質として8位をブロモ化するブロモ化工程と,
 糖骨格における水酸基を保護する水酸基保護工程と,
 核酸塩基部分のカルボニル基を保護するカルボニル基保護工程と,
 8位をカップリング反応により,置換基R3を導入するR3導入工程と,
 全ての保護基を脱離する脱離工程とからなるグアノシン誘導体化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000010
(式中,R3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物のいずれかで表される置換基で表される)
The eighteenth configuration of the present invention is a method for producing a guanosine derivative compound represented by the following formula,
Bromination step of bromination at the 8-position starting from guanosine,
A hydroxyl group protecting step for protecting hydroxyl groups in the sugar skeleton;
A carbonyl group protecting step for protecting the carbonyl group of the nucleobase moiety;
R 3 introduction step for introducing substituent R 3 by coupling reaction at the 8-position;
This is a method for producing a guanosine derivative compound comprising an elimination step for eliminating all protecting groups.
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 3 is represented by a substituent represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound)
 本発明により,プリン塩基誘導体の提供が可能となった。
 すなわち,本発明で完成された8-エチニルグアノシン誘導体や8-ビニルグアノシン誘導体により,8位に置換基を有するグアノシン誘導体の合成方法が提供されたものであり,これを用いて,核酸標識を行うことが可能となる。
According to the present invention, a purine base derivative can be provided.
That is, a method for synthesizing a guanosine derivative having a substituent at the 8-position is provided by the 8-ethynylguanosine derivative or 8-vinylguanosine derivative completed in the present invention, and nucleic acid labeling is performed using this method. It becomes possible.
8-エチニルグアノシンの合成経路を示した図。The figure which showed the synthetic pathway of 8-ethynyl guanosine. 8-エチニルグアノシンのNMRチャートを示した図。The figure which showed the NMR chart of 8-ethynyl guanosine. 8-エチニル-2’-グアノシンの合成経路を示した図。The figure which showed the synthetic pathway of 8-ethynyl-2'-guanosine. 8-エチニル-2’-グアノシンのNMRチャートを示した図。The figure which showed the NMR chart of 8-ethynyl-2'-guanosine. 8-エチニルグアノシンならびにアジドゼンゼンとの反応生成物のLC-MS分析結果を示した図。The figure which showed the LC-MS analysis result of the reaction product with 8-ethynyl guanosine and azido zensen. 8-エチニルグアノシンならびにアジドゼンゼンとの反応生成物のNMRチャートを示した図。The figure which showed the NMR chart of the reaction product with 8-ethynyl guanosine and azido zensen. 8-エチニルグアノシンならびにアジドゼンゼンとの反応生成物の蛍光の様子を示した図。The figure which showed the mode of fluorescence of the reaction product with 8-ethynyl guanosine and azido sensen. 8-エチニルグアノシンならびにアジドゼンゼンを細胞において反応させた様子を示した図。The figure which showed a mode that 8-ethynyl guanosine and azide zensen were made to react in a cell. 8-エチニルグアノシンを生体内投与した際の脳における分布とクリック反応の結果を示した図。The figure which showed the result in the distribution and click reaction in the brain at the time of administering 8-ethynyl guanosine in vivo. 8-エチニルグアノシンを生体内投与した際の腸における分布とクリック反応の結果を示した図。The figure which showed the result of the distribution and click reaction in the intestine when 8-ethynylguanosine was administered in vivo. 8-エチニルグアノシンを生体内投与した際の腎臓における分布とクリック反応の結果を示した図。The figure which showed the result in the distribution and click reaction in the kidney at the time of administering 8-ethynyl guanosine in vivo. 8-エチニルグアノシン(8EG)とエチニルウリジン(EU)のアラマーブルーアッセイによる細胞毒性評価の結果を示した図。The figure which showed the result of the cytotoxicity evaluation by the alamar blue assay of 8-ethynyl guanosine (8EG) and ethynyl uridine (EU). 8-ビニルグアノシン(8-VG)の合成経路と,8-VGのNMRチャートを示した図。The figure which showed the synthetic | combination route of 8-vinyl guanosine (8-VG), and the NMR chart of 8-VG. 8-ビニルグアノシンならびにFAM Tetrazineを細胞において反応させた様子を示した図。The figure which showed a mode that 8-vinyl guanosine and FAM-Tetrazine were made to react in a cell. インビボ実験の方法を示した図。The figure which showed the method of the in vivo experiment. インビボ実験の結果を示した図。The figure which showed the result of the in vivo experiment. 8-EG又は8-VGの安定性を調べた結果を示した図。The figure which showed the result of having investigated stability of 8-EG or 8-VG.
 本発明のグアノシン誘導体化合物等について説明を行う。 The guanosine derivative compound of the present invention will be described.
 本発明のグアノシン誘導体化合物は,下記式化6で表される化合物ないしこれの塩として定義される。 The guanosine derivative compound of the present invention is defined as a compound represented by the following formula 6 or a salt thereof.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記化6において,R1およびR2は,いずれか一方がHであって,他方が,H,OH,OCH3,Fのいずれかで表される。このような化合物として,下記化7に示す化合物が例示される。
Figure JPOXMLDOC01-appb-C000012
 すなわち,R1およびR2のいずれもがHの場合(D1),デオキシグアノシン誘導体として,DNAに取り込まれることが期待される。また,R1およびR2のいずれかがOHの場合(D2,D3),グアノシン誘導体(非デオキシグアノシン誘導体)として,RNAに取り込まれることが期待される。加えて,R1およびR2のいずれかがOCH3の場合(D6),2’がメチル化されたメチルグアノシン誘導体の挙動を検出できることが期待される。さらに,R1およびR2のいずれかがFの場合(D4,D5),Fを18Fなどとすることにより,後述するように標識体としてグアノシン誘導体の挙動を検出できることが期待される。
In the chemical formula 6, one of R 1 and R 2 is H, and the other is represented by any one of H, OH, OCH 3 and F. As such a compound, the compound shown in the following chemical formula 7 is exemplified.
Figure JPOXMLDOC01-appb-C000012
That is, when both R 1 and R 2 are H (D1), it is expected to be incorporated into DNA as a deoxyguanosine derivative. When either R 1 or R 2 is OH (D2, D3), it is expected to be incorporated into RNA as a guanosine derivative (non-deoxyguanosine derivative). In addition, when either R 1 or R 2 is OCH 3 (D6), it is expected that the behavior of methyl guanosine derivatives with 2 ′ methylated can be detected. Furthermore, when either R 1 or R 2 is F (D4, D5), it is expected that the behavior of the guanosine derivative can be detected as a label as described later by setting F to 18 F or the like.
 前記化6において,R4は,H,一リン酸,二リン酸,三リン酸のいずれかで表される。
 すなわち,R4がHの場合は核酸誘導体として,R4が,一リン酸,二リン酸,三リン酸の場合はリン酸化核酸誘導体として,いずれも核酸への取込や各誘導体の挙動検出などが期待できる。
In the chemical formula 6, R 4 is represented by any one of H, monophosphate, diphosphate, and triphosphate.
That is, when R 4 is H, it is a nucleic acid derivative, and when R 4 is a monophosphate, diphosphate, or triphosphate, it is a phosphorylated nucleic acid derivative. Etc. can be expected.
 前記化6においてR3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物,これらのいずれかで表される置換基である。すなわち,R3は,後述するレポーター化合物とクリック反応を起こし,これにより,蛍光標識等の標識を可能とするものである。
 R3は,かかる機能を果たすため,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物,これらのいずれかで表される置換基であるとともに,クリック反応のためのレポーター化合物の構造に応じ,適宜,その構造を変更することができる。
In the chemical formula 6, R 3 is a compound having a double bond or a triple bond, a compound having an azide group, a cyclic compound, or a substituent represented by any of these. That is, R 3 causes a click reaction with a reporter compound described later, thereby enabling a label such as a fluorescent label.
R 3 is a compound having a double bond or a triple bond, a compound having an azide group, a cyclic compound, or a substituent represented by any one of these, and a reporter compound for a click reaction. Depending on the structure, the structure can be changed as appropriate.
 R3は,例えば,下記化8に示す置換基を用いることができる。
Figure JPOXMLDOC01-appb-C000013
 すなわち,かかるA1からA8に示される置換基は,アジド基を有するレポーター化合物と反応する置換基群である。
 R3は,A1で表される置換基(エチニル基)であることが好ましい。これにより,グアノシン誘導体の構造をコンパクトなものとすることができ,化合物としての安定性ないし核酸取込を向上させる効果を有する。
As R 3 , for example, a substituent shown in the following chemical formula 8 can be used.
Figure JPOXMLDOC01-appb-C000013
That is, the substituents represented by A1 to A8 are a group of substituents that react with a reporter compound having an azide group.
R 3 is preferably a substituent represented by A1 (ethynyl group). Thereby, the structure of a guanosine derivative can be made compact, and it has the effect of improving the stability as a compound or nucleic acid uptake.
 R3のその他の態様として,下記化9に示す置換基を用いることができる。
Figure JPOXMLDOC01-appb-C000014
 すなわち,かかるB1からB8に示される置換基は,テトラジン基を有するレポーター化合物と反応する置換基群である。
 R3は,B5で表される置換基(ビニル基)であることが好ましい。これにより,グアノシン誘導体の構造をコンパクトなものとすることができ,化合物としての安定性ないし核酸取込を向上させる効果を有する。
As other embodiments of R 3 , substituents shown in the following chemical formula 9 can be used.
Figure JPOXMLDOC01-appb-C000014
That is, the substituents represented by B1 to B8 are a group of substituents that react with a reporter compound having a tetrazine group.
R 3 is preferably a substituent (vinyl group) represented by B5. Thereby, the structure of a guanosine derivative can be made compact, and it has the effect of improving the stability as a compound or nucleic acid uptake.
 R3のさらにその他の態様として,下記化10に示す置換基を用いることができる。
Figure JPOXMLDOC01-appb-C000015
 すなわち,かかる置換基は,エチニル基などの三重結合を有するレポーター化合物と反応する置換基群である。
As still another embodiment of R 3 , substituents shown in the following chemical formula 10 can be used.
Figure JPOXMLDOC01-appb-C000015
That is, such a substituent is a group of substituents that react with a reporter compound having a triple bond such as an ethynyl group.
 本発明のグアノシン誘導体のR3と,これと反応するレポーター化合物とによりいわゆるクリック反応を行うことができる。
 すなわち,クリック反応により,グアノシン誘導体のR3とレポーター化合物が,互いの分子を結合させ,一つの化合物となる(例えば,図7a)。また,クリック反応を用いることにより,図7に例示されるように,グアノシン誘導体そのもの,もしくはレポーター化合物(アジドベンゼン)そのものは蛍光を発しないが,これらがクリック反応により一つの化合物となることで蛍光を発するようになり,核酸の標識が可能となる。
A so-called click reaction can be performed with R 3 of the guanosine derivative of the present invention and a reporter compound that reacts with R 3 .
That is, by the click reaction, R 3 of the guanosine derivative and the reporter compound bind each other's molecules to form one compound (for example, FIG. 7a). In addition, by using the click reaction, as illustrated in FIG. 7, the guanosine derivative itself or the reporter compound (azidobenzene) itself does not emit fluorescence. The nucleic acid can be labeled.
 レポーター化合物は,グアノシン誘導体におけるR3との反応性ならびに反応した場合の蛍光性や標識手法などを考慮して,その構造を,適宜,変更することができる。例えば,R3とレポーター化合物の組み合わせとして,三重結合を有するアルキン(直鎖および環状型)とアジド基を有する化合物,二重結合を有するアルケン(直鎖および環状型)とテトラジン基を有する化合物,カルボニル化合物とヘテロ原子を有する化合物などである。
 レポーター化合物として,好ましくは,アジド基を有する化合物を用いることができ,このような化合物として例えば,Azidebenzene,Coumarin Azide,Tetramethylrhodamine (TAMRA) azide,Biotin azideを用いることができる。
The structure of the reporter compound can be appropriately changed in consideration of the reactivity with R 3 in the guanosine derivative, the fluorescence when reacted, the labeling technique, and the like. For example, as a combination of R 3 and a reporter compound, an alkyne having a triple bond (straight and cyclic types) and a compound having an azide group, an alkene having a double bond (linear and cyclic types) and a compound having a tetrazine group, A carbonyl compound and a compound having a hetero atom.
As the reporter compound, a compound having an azide group can be preferably used, and examples of such a compound include Azidebenzene, Coumarin Azide, Tetramethylrhodamine (TAMRA) azide, and Biotin azide.
 本発明においてクリック反応方法は,クリック反応を起こしうる限り特に限定する必要はなく種々の環境で用いることができるが,最も好ましくは,細胞ないし生体組織において用いることができる。これにより,細胞や生体組織における核酸の挙動を可視化でき,核酸解析や医学的診断への適用が期待できる。 In the present invention, the click reaction method is not particularly limited as long as it can cause a click reaction and can be used in various environments, but most preferably, it can be used in cells or living tissues. As a result, the behavior of nucleic acids in cells and living tissues can be visualized, and application to nucleic acid analysis and medical diagnosis can be expected.
 本発明の標識方法においては,細胞ないし生体組織の標識が可能である限り特に限定する必要はなく,種々の手法を用いて行うことができる。
 例えば,細胞や病理切片などを用いたインビトロ標識や,ヒトや動物などのインビボ標識などである。
The labeling method of the present invention is not particularly limited as long as cells or biological tissues can be labeled, and various methods can be used.
For example, in vitro labeling using cells or pathological sections, or in vivo labeling for humans or animals.
 本発明の標識方法については,細胞ないし生体組織の標識が可能である限り特に限定する必要はなく,種々の手法を用いることができ,例えば,蛍光標識,発光体による標識,放射標識,核磁気共鳴活性標識,これらのいずれかを単独もしくは組み合わせて用いることができる。 The labeling method of the present invention is not particularly limited as long as cells or biological tissues can be labeled, and various methods can be used. Resonance active labels, any of these can be used alone or in combination.
 標識方法としては,種々の手法を用いることができる。
 例えば,グアノシン誘導体おいて用いるH(水素原子)について,1Hのみならず,2Hや3Hを用いるなどである。
 2Hを用いる場合は,重水素として,MRIなどの検出により,診断等に用いることができる。
 3Hを用いる場合は,トリチウムとしてβ-線を放出することから,放射標識された化合物として試薬などに用いることができる。
 かかる場合,グアノシン誘導体のR1およびR2において,いずれか一方を,これら1H,2H,3Hとし,他方をH,OH,OCH3,Fのいずれかとするなどすればよい。
Various methods can be used as the labeling method.
For example, for H (hydrogen atom) used in guanosine derivatives, not only 1 H but also 2 H and 3 H are used.
When 2 H is used, it can be used for diagnosis etc. by detecting MRI as deuterium.
When 3 H is used, β - rays are released as tritium, so it can be used as a radiolabeled compound in reagents.
In such a case, one of R 1 and R 2 of the guanosine derivative may be 1 H, 2 H, 3 H, and the other may be H, OH, OCH 3 , F, or the like.
 また,標識方法における他の手法として,グアノシン誘導体において用いるF(フッ素原子)について,18Fや19Fを用いるなどである。
 19Fは,体内にほとんど存在しないことから,19Fを含むグアノシン誘導体化合物とすることにより,バックグラウンドノイズの少ない高い空間・時間分解能を有するMRIのための診断化合物として用いることができる。
 18Fは,ポジトロン核種としてβ+線を放出することから,放射標識された化合物として体外検出のための診断薬などに用いることができる。すなわち,実験5や実験9などの動物実験で示される通り,癌においてプリン塩基誘導体の代謝が亢進していることから,プリン塩基誘導体をPET癌診断に利用することができる。特に脳腫瘍では,プリン塩基誘導体を多量に消費していることから、高分解能で疾患に関する情報が得られる。
 かかる場合,グアノシン誘導体のR1およびR2において,いずれか一方を18Fや19Fとし,他方をHとするなどすればよい。
As another method for labeling, 18 F or 19 F is used for F (fluorine atom) used in guanosine derivatives.
Since 19 F hardly exists in the body, a guanosine derivative compound containing 19 F can be used as a diagnostic compound for MRI having high background and temporal resolution with little background noise.
Since 18 F emits β + rays as a positron nuclide, it can be used as a diagnostic compound for in vitro detection as a radiolabeled compound. That is, as shown in animal experiments such as Experiment 5 and Experiment 9, since the metabolism of purine base derivatives is accelerated in cancer, the purine base derivatives can be used for PET cancer diagnosis. In particular, brain tumors consume a large amount of purine base derivatives, so information on diseases can be obtained with high resolution.
In such a case, one of R 1 and R 2 of the guanosine derivative may be 18 F or 19 F and the other may be H.
 加えて,標識方法における他の手法として,グアノシン誘導体において用いるC(炭素原子)について,11C,12C,13C,14Cを用いるなどである。
 11Cは,18Fと同様,ポジトロン核種としてβ+線を放出することから,放射標識された化合物として体外検出のための診断薬などに用いることができる。
 13Cは,12Cと比較すると存在比率が少ないことから,13Cを含むグアノシン誘導体化合物とすることにより,NMRなどに用いるための試薬として用いることができる。
14Cは,3Hと同様,β-線を放出することから,放射標識された化合物として試薬などに用いることができる。
 かかる場合,グアノシン誘導体のR3において,二重結合または三重結合のCを,11C,12C,13C,14Cのいずれかとするなどすればよい。
 特に,また8-ビニルグアノシン誘導体の合成は比較的容易であることから,入手しやすく,11Cや18Fなどのポジトロン標識体は,医療現場では非常に望ましいと考えられる。また使い方はいままでのポジトロン標識体と変わりないので優れた診断効果が期待できる。
In addition, as another method for labeling, 11 C, 12 C, 13 C, and 14 C are used for C (carbon atom) used in guanosine derivatives.
11 C, like 18 F, emits β + rays as a positron nuclide, so it can be used as a radiolabeled compound for diagnostics for in vitro detection.
Since 13 C has a small abundance ratio compared to 12 C, it can be used as a reagent for NMR and the like by forming a guanosine derivative compound containing 13 C.
14 C, like 3 H, emits β - rays, so it can be used as a radiolabeled compound in reagents.
In such a case, in R 3 of the guanosine derivative, the double bond or triple bond C may be any of 11 C, 12 C, 13 C, and 14 C.
In particular, since the synthesis of 8-vinylguanosine derivatives is relatively easy, it is easy to obtain, and positron-labeled compounds such as 11 C and 18 F are considered very desirable in the medical field. In addition, since the usage is the same as the conventional positron label, an excellent diagnostic effect can be expected.
 さらに,標識方法における他の手法として,グアノシン誘導体において用いるN(窒素原子)について,13N,14N,15Nを用いるなどである。
 13Nは,18Fと同様,ポジトロン核種としてβ+線を放出することから,放射標識された化合物として体外検出のための診断薬などに用いることができる。
 15Nは,14Nと比較すると存在比率が少ないことから,13Cを含むグアノシン誘導体化合物とすることにより,NMRなどに用いるための試薬として用いることができる。
 かかる場合,グアノシン誘導体のR3において,アジド基を有する化合物のNを,13N,14N,15Nのいずれかとするなどすればよい。
In addition, as another method of labeling, 13 N, 14 N, and 15 N are used for N (nitrogen atom) used in guanosine derivatives.
13 N, like 18 F, emits β + rays as a positron nuclide, so it can be used as a radiolabeled compound for diagnostics for in vitro detection.
Since 15 N has a lower abundance ratio than 14 N, a guanosine derivative compound containing 13 C can be used as a reagent for NMR and the like.
In such a case, in R 3 of the guanosine derivative, N of the compound having an azide group may be any of 13 N, 14 N, and 15 N.
 本発明のグアノシン誘導体について,これを有効成分とする癌イメージング剤として用いることができる。
 すなわち,本発明のグアノシン誘導体を,静脈注射ないし局所注射などを行い,レポーター化合物を続けて投与することにより,癌のイメージングを行うことができる。かかる場合,実験9などのように,ヒトや動物など,インビボでのイメージングを行うことができる(インビボでの使用)。また,実験5などのように,グアノシン誘導体をインビボで投与を行った後に組織を取り出してレポーター化合物を反応させるなどして用いることができる(ex vivo的使用)。このようにインビボでの使用の場合は癌の局在やタンパク合成能などを評価するための診断薬としての役割を果たすものであり,ex vivo的な使用の場合は,動物実験等の試薬としての役割を果たすものである。
 イメージングを行う際の癌については,イメージングが可能である限り特に限定する必要はないが,脳,大腸,胃癌をはじめとする固形癌における癌であることが好ましい。これにより,本発明のグアノシン誘導体における診断効果を向上させる効果を有する。
The guanosine derivative of the present invention can be used as a cancer imaging agent containing this as an active ingredient.
That is, cancer imaging can be performed by intravenously or locally injecting the guanosine derivative of the present invention and subsequently administering the reporter compound. In such a case, as in Experiment 9, it is possible to perform in vivo imaging of humans and animals (in vivo use). Further, as in Experiment 5, etc., the guanosine derivative can be administered in vivo, and then the tissue can be taken out and reacted with the reporter compound (ex vivo use). Thus, in vivo use, it plays a role as a diagnostic agent for evaluating cancer localization and protein synthesis ability. In ex vivo use, it serves as a reagent for animal experiments. It plays a role.
The cancer at the time of imaging is not particularly limited as long as imaging is possible, but it is preferably a cancer in solid cancer including brain, large intestine and stomach cancer. This has the effect of improving the diagnostic effect of the guanosine derivative of the present invention.
 本発明のグアノシン誘導体のうち下記式化11で表されるグアノシン誘導体化合物は,下記一連の工程により,製造することができる。
 (1) グアノシンを出発物質として8位をブロモ化するブロモ化工程
 (2) 糖骨格における水酸基を保護する水酸基保護工程
 (3) 核酸塩基部分のカルボニル基を保護するカルボニル基保護工程
 (4) 8位をカップリング反応により,置換基R3を導入するR3導入工程
 (5) 全ての保護基を脱離する脱離工程
Figure JPOXMLDOC01-appb-C000016
(式中,R3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物のいずれかで表される置換基で表される)
Of the guanosine derivatives of the present invention, the guanosine derivative compound represented by the following formula 11 can be produced by the following series of steps.
(1) Bromination step of bromination at position 8 using guanosine as a starting material (2) Hydroxyl protection step for protecting the hydroxyl group in the sugar skeleton (3) Carbonyl group protection step for protecting the carbonyl group of the nucleobase moiety (4) 8 R 3 introduction process to introduce substituent R 3 by coupling reaction at the position (5) Elimination process to remove all protecting groups
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 3 is represented by a substituent represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound)
 ブロモ化工程は,グアノシンの8位をブロモ化する工程である(図1,a)。ブロモ化工程は,グアノシンの8位をブロモ化しうる限り特に限定する必要はなく,種々の条件にて行うことができる。
 ブロモ化工程は,一例として,グアノシンを,アセトニトリル/水の溶媒下,NBSと反応させるなどである。
The bromination step is a step of brominating the 8-position of guanosine (FIG. 1, a). The bromination step is not particularly limited as long as the 8-position of guanosine can be brominated, and can be performed under various conditions.
In the bromination step, for example, guanosine is reacted with NBS in a solvent of acetonitrile / water.
 水酸基保護工程は,糖骨格における水酸基を保護する工程である。水酸基保護工程は,糖骨格における水酸基を保護しうる限り特に限定する必要はなく,種々の条件にて行うことができる。
 水酸基保護工程は,一例として,DMFを溶媒として,イミダゾール存在下,TBSにて保護を行うなどである(図1,b)。
The hydroxyl group protecting step is a step for protecting the hydroxyl group in the sugar skeleton. The hydroxyl group protecting step is not particularly limited as long as the hydroxyl group in the sugar skeleton can be protected, and can be performed under various conditions.
In the hydroxyl group protection step, for example, DMF is used as a solvent and TBS is protected in the presence of imidazole (FIG. 1, b).
 カルボニル基保護工程は,核酸塩基部分のカルボニル基を保護する工程である。カルボニル基保護工程は,核酸塩基部分のカルボニル基を保護しうる限り特に限定する必要はなく,種々の条件にて行うことができる。
 カルボニル基保護工程は,一例として,ジオキサンを溶媒として,トリフェニルホスフィンならびにジイソプロピルアゾジカルボキシレート存在下,トリメチルシリルエタノールと反応させ保護を行うなどである(図1,c)。
The carbonyl group protecting step is a step of protecting the carbonyl group of the nucleobase moiety. The carbonyl group protecting step is not particularly limited as long as the carbonyl group of the nucleobase moiety can be protected, and can be performed under various conditions.
In the carbonyl group protecting step, for example, protection is carried out by reacting with trimethylsilylethanol in the presence of triphenylphosphine and diisopropyl azodicarboxylate using dioxane as a solvent (FIG. 1, c).
 R3導入工程は,8位をカップリング反応により,置換基R3を導入する工程である。R3導入工程は,8位をカップリング反応により,置換基R3を導入しうる限り特に限定する必要はなく,種々の条件で行うことができる。また,置換基R3については,その後の脱離工程等を考慮し,置換基R3に保護基を付した形で導入してもよい。
 R3導入工程は,一例として,トルエンを溶媒として,テトラキス(トリフェニルホスフィン)パラジウム存在下,保護基を付した置換基R3を導入するなどである(図1,d)。
The R 3 introduction step is a step of introducing the substituent R 3 at the 8-position by a coupling reaction. The R 3 introduction step is not particularly limited as long as the substituent R 3 can be introduced by coupling reaction at the 8-position, and can be performed under various conditions. In addition, the substituent R 3 may be introduced in a form in which a protecting group is added to the substituent R 3 in consideration of a subsequent elimination step.
In the R 3 introduction step, for example, a substituent R 3 with a protecting group is introduced in the presence of tetrakis (triphenylphosphine) palladium using toluene as a solvent (FIG. 1, d).
 脱離工程は,全ての保護基を脱離する工程である。脱離工程は,保護基の脱離が可能である限り特に限定する必要はなく,種々の条件で行うことができる。
 脱離工程は,一例として,THFを溶媒として,フッ化テトラ-n-ブチルアンモニウム存在下,全ての保護基を脱離するなどである(図1,e)。
The desorption step is a step of removing all protecting groups. The elimination step is not particularly limited as long as the protecting group can be eliminated, and can be performed under various conditions.
An example of the desorption step is desorption of all protecting groups in the presence of tetra-n-butylammonium fluoride using THF as a solvent (FIG. 1, e).
 ここでは,実施例を用いてさらに詳述する。 Here, further detailed description will be made using examples.
<<実験1,8-エチニルグアノシンの合成>>
1.8-エチニルグアノシンについて,図1のスキームに従い,合成を行った。
(1) グアノシンを出発物質として,アセトニトリル/水を溶媒として,NBSと反応させ,8位のブロモ化を行った(a,ブロモ化工程)。
(2) 糖骨格部分の水酸基を,DMFを溶媒として,イミダゾール存在下,TBSにて保護を行った(b,水酸基保護工程)。
(3) 塩基部分のカルボニル基を,ジオキサンを溶媒として,トリフェニルホスフィンならびにジイソプロピルアゾジカルボキシレート存在下,トリメチルシリルエタノールにて保護を行った(c,カルボニル基保護工程)。
(4) トルエンを溶媒として,テトラキス(トリフェニルホスフィン)パラジウム存在下,トリメチルシリルアセチレンと反応させ,8位にエチレン基を導入した(d,R3導入工程)。
(5) THFを溶媒として,フッ化テトラ-n-ブチルアンモニウム存在下,全ての保護基の脱離を行い,8-エチニルグアノシンを得た(e,脱離工程)。
2.合成した化合物のNMRチャートを,図2に示す。
1H-NMR (400 MHz, DMSO-d6) δ 10.85 (s, 1H), 6.56 (s, 2H), 5.78 (d, J = 6.5 Hz, 1H), 5.45 (d, J = 6.2 Hz, 1H), 5.10 (d, J = 5.0 Hz, 1H), 4.96-4.92 (m, 2H), 4.78 (s, 1H), 4.14-4.10 (m, 1H), 3.87-3.84 (m, 1H), 3.66-3.61 (m, 1H), 3.56-3.48 (m, 1H).
<< Experiment 1,8-Ethynylguanosine Synthesis >>
1. 8-Ethynylguanosine was synthesized according to the scheme of FIG.
(1) Bromination at position 8 was performed by reacting with NBS using guanosine as a starting material and acetonitrile / water as a solvent (a, bromination step).
(2) The hydroxyl group of the sugar skeleton was protected with TBS in the presence of imidazole using DMF as a solvent (b, hydroxyl group protection step).
(3) The carbonyl group of the base moiety was protected with trimethylsilylethanol in the presence of triphenylphosphine and diisopropyl azodicarboxylate using dioxane as a solvent (c, carbonyl group protection step).
(4) Using toluene as a solvent, it was reacted with trimethylsilylacetylene in the presence of tetrakis (triphenylphosphine) palladium to introduce an ethylene group at the 8-position (d, R 3 introduction step).
(5) Using THF as a solvent, all protecting groups were removed in the presence of tetra-n-butylammonium fluoride to obtain 8-ethynylguanosine (e, elimination step).
2. An NMR chart of the synthesized compound is shown in FIG.
1 H-NMR (400 MHz, DMSO-d 6 ) δ 10.85 (s, 1H), 6.56 (s, 2H), 5.78 (d, J = 6.5 Hz, 1H), 5.45 (d, J = 6.2 Hz, 1H ), 5.10 (d, J = 5.0 Hz, 1H), 4.96-4.92 (m, 2H), 4.78 (s, 1H), 4.14-4.10 (m, 1H), 3.87-3.84 (m, 1H), 3.66- 3.61 (m, 1H), 3.56-3.48 (m, 1H).
<<実験2,8-エチニル-2’-デオキシグアノシンの合成>>
1.8-エチニル-2’-デオキシグアノシンについて,図3のスキームに従い,合成を行った。
(1) 2’-デオキシグアノシンを出発物質として,アセトニトリル/水を溶媒として,NBSと反応させ,8位のブロモ化を行った(a)。
(2) DMFを溶媒として,テトラキス(トリフェニルホスフィン)パラジウム,ヨウ化銅,鳥エチルアミン存在下,トリメチルシリルアセチレンと反応させ,8位にエチレン基を導入し,さらに,THFを溶媒として,フッ化テトラ-n-ブチルアンモニウム下,反応させ,8-エチニル-2’-デオキシグアノシンを得た。
2.合成した化合物のNMRチャートを,図4に示す。
1H-NMR (400 MHz, DMSO-d6) δ 10.84 (s, 1H), 6.56 (s, 2H), 6.25 (dd, J = 6.5, 8.2 Hz, 1H), 5.27 (d, J = 4.2 Hz, 1H), 4.88 (t, J = 6.0 Hz, 1H), 4.78 (s, 1H), 4.39-4.35 (m, 1H), 3.82-3.78 (m, 1H), 3.64-3.58 (m, 1H), 3.53-3.44 (m, 1H), 3.10-3.03 (m, 1H), 2.10 (ddd, J = 2.7, 6.5, 13.2 Hz, 1H).
<< Experiment 2,8-Ethynyl-2'-deoxyguanosine synthesis >>
1. 8-Ethynyl-2′-deoxyguanosine was synthesized according to the scheme of FIG.
(1) Bromination at position 8 was performed by reacting with NBS using 2'-deoxyguanosine as a starting material and acetonitrile / water as a solvent (a).
(2) Reaction with trimethylsilylacetylene in the presence of tetrakis (triphenylphosphine) palladium, copper iodide and bird ethylamine using DMF as a solvent, introducing an ethylene group at the 8-position, and further using tetrafluoro (tetrafluoride) as a solvent using THF. The reaction was carried out under -n-butylammonium to obtain 8-ethynyl-2'-deoxyguanosine.
2. An NMR chart of the synthesized compound is shown in FIG.
1 H-NMR (400 MHz, DMSO-d 6 ) δ 10.84 (s, 1H), 6.56 (s, 2H), 6.25 (dd, J = 6.5, 8.2 Hz, 1H), 5.27 (d, J = 4.2 Hz , 1H), 4.88 (t, J = 6.0 Hz, 1H), 4.78 (s, 1H), 4.39-4.35 (m, 1H), 3.82-3.78 (m, 1H), 3.64-3.58 (m, 1H), 3.53-3.44 (m, 1H), 3.10-3.03 (m, 1H), 2.10 (ddd, J = 2.7, 6.5, 13.2 Hz, 1H).
 実験1ならびに2により,8-エチニルグアノシンならびに8-エチニル-2’-デオキシグアノシンの合成が可能となった。これらの化合物を基礎として,リン酸化誘導体を合成することが期待できる。
 一例をあげると,8-エチニル-2’-デオキシグアノシンまたは8-エチニルグアノシン(0.1 mmol)に1,8-ビス(ジメチルアミノ)ナフタレン(0.15 mmol)を加え,500μLのリン酸トリメチルで溶解させる。その溶液に氷上,塩化ホスホリル(0.13 mmol)を加え,氷上で2時間撹拌する。反応溶液にn-ブチルアミン(0.5 mmol)を加え,続けて,0.5Mピロリン酸トリブチルアンモニウムのDMF溶液(0.5 mmol)を加える。5分後,0.5M重炭酸トリエチルアンモニウム(TEAB)溶液を500μL加え,反応を停止する。反応物をDEAE Sephadex A-25カラムクロマトグラフィーにより精製する。溶出液は50 mM から1 MのTEABのリニアグラジエントとする。
 その後,必要に応じ,細胞および動物実験用純度とするため,C18の逆相HPLCにより,さらに精製する。溶出液は100 mM酢酸トリエチルアミン含有10%から50%のアセトニトリル水溶液のリニアグラジエントとする。
Experiments 1 and 2 made it possible to synthesize 8-ethynylguanosine and 8-ethynyl-2′-deoxyguanosine. Based on these compounds, it is expected to synthesize phosphorylated derivatives.
As an example, 1,8-bis (dimethylamino) naphthalene (0.15 mmol) is added to 8-ethynyl-2′-deoxyguanosine (8 mmol) or 8-ethynylguanosine (0.1 mmol) and dissolved with 500 μL of trimethyl phosphate. Add phosphoryl chloride (0.13 mmol) to the solution and stir on ice for 2 hours. Add n-butylamine (0.5 mmol) to the reaction solution, followed by 0.5 M tributylammonium pyrophosphate in DMF (0.5 mmol). After 5 minutes, stop the reaction by adding 500 μL of 0.5 M triethylammonium bicarbonate (TEAB) solution. The reaction is purified by DEAE Sephadex A-25 column chromatography. The eluate should be a linear gradient from 50 mM to 1 M TEAB.
Then, if necessary, further purify by C18 reverse phase HPLC to achieve cell and animal laboratory purity. The eluent is a linear gradient of 10% to 50% aqueous acetonitrile containing 100 mM triethylamine acetate.
<<実験3,8-エチニルグアノシンのクリック反応の確認>>
1.8-エチニルグアノシンとアジドベンゼンとのクリック反応について,確認を行った。
<< Experiment 3, Confirmation of Click Reaction of 8-Ethynylguanosine >>
1. The click reaction between 8-ethynylguanosine and azidobenzene was confirmed.
2.LC-MS解析結果を図5に示す。図中,aが8-エチニルグアノシン,bがアジドベンゼン,cが反応溶液のLC-MS解析結果を示す。
(1) 硫酸銅存在下,8-エチニルグアノシンとアジドベンゼンを37℃,オーバーナイトで反応させた。
(2) 反応溶液をLC-MSにより解析を行ったところ,8-エチニルグアノシンのピークはほぼ消失し,アジドベンゼンのピークは低くなっていた。また,20.84分に溶出された成分(以下,「クリック反応化合物」)が,推定される化合物と分子量が一致していた。
2. The LC-MS analysis results are shown in FIG. In the figure, a is 8-ethynylguanosine, b is azidobenzene, and c is the LC-MS analysis result of the reaction solution.
(1) In the presence of copper sulfate, 8-ethynylguanosine and azidobenzene were reacted overnight at 37 ° C.
(2) When the reaction solution was analyzed by LC-MS, the 8-ethynylguanosine peak almost disappeared and the azidobenzene peak was low. In addition, the component eluted at 20.84 minutes (hereinafter referred to as “click reaction compound”) had the same molecular weight as the estimated compound.
3.NMR分析結果を図6に示す。図5で得られた20.84分のピーク(クリック反応化合物)の分離精製を行い,NMR分析を行ったところ,クリック反応化合物の各プロトンの同定を行い,目的とする化合物であることを確認した。
1H-NMR (400 MHz, DMSO-d6) δ 10.81 (s, 1H), 9.38 (s, 1H), 8.03-8.00 (m, 2H), 7.66-7.62 (m, 2H), 7.57-7.52 (m, 1H), 7.02 (dd, J = 6.7, 7.9 Hz, 1H), 6.42 (s, 2H), 5.20 (s, 1H), 5.00 (s, 1H), 4.44-4.41 (m, 1H), 3.83-3.80 (m, 1H), 3.69-3.62 (m, 1H), 3.53-3.49 (m,1H), 3.23-3.14 (m, 1H), 2.16 (ddd, J = 2.6, 6.6, 13.0 Hz, 1H).
3. The NMR analysis results are shown in FIG. When the 20.84 minute peak (click reaction compound) obtained in FIG. 5 was separated and purified and subjected to NMR analysis, each proton of the click reaction compound was identified and confirmed to be the target compound.
1 H-NMR (400 MHz, DMSO-d 6 ) δ 10.81 (s, 1H), 9.38 (s, 1H), 8.03-8.00 (m, 2H), 7.66-7.62 (m, 2H), 7.57-7.52 ( m, 1H), 7.02 (dd, J = 6.7, 7.9 Hz, 1H), 6.42 (s, 2H), 5.20 (s, 1H), 5.00 (s, 1H), 4.44-4.41 (m, 1H), 3.83 -3.80 (m, 1H), 3.69-3.62 (m, 1H), 3.53-3.49 (m, 1H), 3.23-3.14 (m, 1H), 2.16 (ddd, J = 2.6, 6.6, 13.0 Hz, 1H) .
4.クリック反応化合物の蛍光の様子を図7に示す。
(1) クリック反応化合物は,470nm(λex=342nm)の蛍光を発光することが確認された(c)。
(2) 加えて,UV照射による蛍光検出が可能なことが確認された(b)。
4). The state of fluorescence of the click reaction compound is shown in FIG.
(1) The click reaction compound was confirmed to emit fluorescence at 470 nm (λex = 342 nm) (c).
(2) In addition, it was confirmed that fluorescence detection by UV irradiation was possible (b).
5.これらの結果から,8-エチニルグアノシンは,アジドベンゼンとクリック反応が可能なこと,ならびに反応生成物が蛍光を発するとともに,UV照射による蛍光検出が可能であることが示された。 5. From these results, it was shown that 8-ethynylguanosine can be click-reacted with azidobenzene, and that the reaction product fluoresces and can be detected by UV irradiation.
<<実験4,8-エチニルグアノシンのRNA取込ならびにクリック反応の確認>>
1.8-エチニルグアノシンがRNAに取り込まれること,ならびに取り込まれたのちクリック反応を起こすかどうかを調べるために検討を行った。
<< Experiment 4,8-Ethynylguanosine RNA uptake and confirmation of click reaction >>
1. We examined whether 8-ethynylguanosine is incorporated into RNA and whether it causes a click reaction after incorporation.
2.下記に従い,HeLa細胞の染色を行った。
(1) 10%FBS含DMEM中,5% CO2存在下,37℃でHaLa細胞を5×105培養した。
(2) 終濃度100μMで8-エチニルグアノシン(ストック溶液は10 mM DMSO溶液)を培地に添加し,24時間インキュベーションを行った。
(3) RNase Aを使用する場合は,ここで終濃度200 μg/mLとなるように添加し,45分室温でインキュベーションを行った。
(4) PBSで3回洗浄した。
(5) 細胞染色液の成分は以下の通り(3.5 cm dish一枚分の量)。カッコ内は終濃度を示す。
1.0 M Tris (pH 8.5)を100 μL(100 mM),50 mM CuSO4を20 μL(1.0 mM),10 mM Alexa Fluor 488 azideを2.5 μL(25 μM),Milli Q水を627.5 μL,0.5 M Ascorbic acidを200 μL(100 mM)。
(6) 1時間室温でインキュベーション後,PBSで3回洗浄した。
(7) Hoechst染色を行った。
(8) 蛍光顕微鏡で観察を行った。
2. According to the following, HeLa cells were stained.
(1) 5 × 10 5 HaLa cells were cultured in DMEM containing 10% FBS at 37 ° C. in the presence of 5% CO 2 .
(2) 8-Ethynylguanosine (stock solution is 10 mM DMSO solution) was added to the medium at a final concentration of 100 μM and incubated for 24 hours.
(3) When RNase A was used, it was added to a final concentration of 200 μg / mL and incubated for 45 minutes at room temperature.
(4) Washed 3 times with PBS.
(5) The components of the cell staining solution are as follows (amount for one 3.5 cm dish). The final concentration is shown in parentheses.
1.0 μM Tris (pH 8.5) 100 μL (100 mM), 50 mM CuSO4 20 μL (1.0 mM), 10 mM Alexa Fluor 488 azide 2.5 μL (25 μM), Milli Q water 627.5 μL, 0.5 M Ascorbic 200 μL of acid (100 mM).
(6) After 1 hour incubation at room temperature, the plate was washed 3 times with PBS.
(7) Hoechst staining was performed.
(8) Observation was performed with a fluorescence microscope.
3.結果を図8に示す。
(1) Hoechst染色により,RNaseAの存在下・非存在下,いずれにおいても核が染まっていた(a,d)。
(2) Alexa Fluor 488 azideにより,RNaseA存在下では染色は確認されなかったが(e),RNaseA非存在下においては染色が確認された(b)。
(3) これらの合成画像において,RNAの染色と核の染色は一致していた(c)。
(4) この結果から,8-エチニルグアノシンがRNAに取り込まれており,これがクリック反応により,RNAを染色していることが確認された。
3. The results are shown in FIG.
(1) Nuclei were stained by Hoechst staining in the presence or absence of RNaseA (a, d).
(2) With Alexa Fluor 488 azide, staining was not confirmed in the presence of RNase A (e), but staining was confirmed in the absence of RNase A (b).
(3) In these synthesized images, RNA staining and nuclear staining were consistent (c).
(4) From this result, it was confirmed that 8-ethynylguanosine was incorporated into RNA, and this stained RNA by click reaction.
<<実験5,8-エチニルグアノシンによる生体内RNA標識>>
1.8-エチニルグアノシンが生体内においてRNAに取り込まれること,ならびに取り込まれたのちクリック反応を起こすかどうかを調べるために検討を行った
<< Experimental 5, RNA labeling in vivo with 8-ethynylguanosine >>
1. We examined whether 8-ethynylguanosine is incorporated into RNA in vivo and whether it causes a click reaction after incorporation.
2.下記に従い,実験を行った。
(1) 8-エチニルグアノシン溶液(4mg/mL,4% DMSO/PBS solution)を,マウス1匹に対して0.5mL(8-EGで2mg/body),尾静脈より投与を行った。
(2) イソフルランで麻酔後,頚椎脱臼を行い,各組織を抽出した。
(3) 抽出した組織を,10% ホルマリンで24時間,固定を行い,パラフィン包埋後,1μmの厚さで薄切切片を作製した。
(4) 薄切切片に対して,TMR-N3によりクリック反応を行い,DAPI封入剤により核の染色を行い,蛍光顕微鏡で観察を行った。
2. The experiment was conducted according to the following.
(1) An 8-ethynylguanosine solution (4 mg / mL, 4% DMSO / PBS solution) was administered to one mouse at 0.5 mL (2 mg / body with 8-EG) from the tail vein.
(2) After anesthesia with isoflurane, cervical dislocation was performed, and each tissue was extracted.
(3) The extracted tissue was fixed in 10% formalin for 24 hours, embedded in paraffin, and then sliced into 1 μm thick sections.
(4) A click reaction was performed on thin sliced sections with TMR-N 3 and the nuclei were stained with DAPI mounting medium and observed with a fluorescence microscope.
3.結果を図9から図11に示す。それぞれ図9が脳,図10が腸,図11が腎臓の結果である。
(1) 脳において細胞核の染色が確認されるとともに,TMR-azideにより,細胞核と一致した位置に蛍光が確認された。一方,controlでは細胞核の染色が確認されたにも関わらず,TMR-azideによる蛍光は確認されなかった。このことから,8-EGは,投与後,BBBを通過して,脳組織へ移行し,RNAに組み込まれていることが示された。加えて,TMR-azideによるクリック反応が,生体組織内においても可能であることが確認された。
(2) 腸および腎臓においては,いずれにおいても細胞核の蛍光は確認できるものの,TMR-azideによる蛍光は確認できなかった。このことから,8-EGは,腸ならびに腎臓において,取り込まれていないと考えられた。
3. The results are shown in FIGS. FIG. 9 shows the result of the brain, FIG. 10 shows the result of the intestine, and FIG. 11 shows the result of the kidney.
(1) Staining of cell nuclei was confirmed in the brain, and fluorescence was confirmed by TMR-azide at a position consistent with the cell nuclei. On the other hand, in the control, although fluorescence of the cell nucleus was confirmed, no fluorescence by TMR-azide was confirmed. These results indicate that 8-EG, after administration, passes through the BBB, migrates to brain tissue, and is incorporated into RNA. In addition, it was confirmed that the click reaction by TMR-azide is possible even in living tissue.
(2) In both intestines and kidneys, fluorescence of cell nuclei could be confirmed, but fluorescence from TMR-azide could not be confirmed. This suggests that 8-EG was not taken up in the intestines and kidneys.
<<実験6,8-エチニルグアノシンの細胞毒性評価>>
1.8-エチニルグアノシンの細胞毒性を評価することを目的として検討を行った。
<< Experiment 6, cytotoxicity evaluation of 8-ethynylguanosine >>
1. The study was conducted for the purpose of evaluating the cytotoxicity of 8-ethynylguanosine.
2.アラマーブルーアッセイにより評価を行った。
(1) 細胞としては,HeLaを用い,これを1×10cell/wellで96穴プレートに播種した。
(2) 8-EGまたはcontrolとしてエチニルウリジン(EU)を,各濃度に調製し,37℃で,48時間または72時間,インキュベーションを行い,580/610nmの蛍光を測定した。
2. Evaluation was performed by Alamar Blue assay.
(1) As a cell, HeLa was used and seeded in a 96-well plate at 1 × 10 3 cell / well.
(2) Ethinyluridine (EU) as 8-EG or control was prepared at various concentrations, incubated at 37 ° C for 48 or 72 hours, and fluorescence at 580/610 nm was measured.
3.結果を図12に示す。グラフ中,縦軸が580/610nmの蛍光強度を,横軸がそれぞれの基質濃度(μM)を示す。
(1) 48時間後において,いずれの濃度においても,8EGは,EUよりも蛍光の値が大きく,細胞生存率が高かった(図12,左)。
(2) 72時間後において,1000μMにおいてはEUの方が高かったものの,これより低い濃度においてはほぼ同等,もしくは8EGの方が高い値であった。
(3) これらの結果から,8EGは,EUよりも毒性が低いと考えられた。
3. The results are shown in FIG. In the graph, the vertical axis represents the fluorescence intensity at 580/610 nm, and the horizontal axis represents the respective substrate concentration (μM).
(1) After 48 hours, at any concentration, 8EG had a higher fluorescence value and higher cell viability than EU (FIG. 12, left).
(2) After 72 hours, EU was higher at 1000 μM, but at lower concentrations, it was almost the same or higher at 8EG.
(3) From these results, 8EG was considered less toxic than the EU.
<<実験7,8-ビニルグアノシンの合成>>
1.8-ビニルグアノシンについて,図13のスキームに従い,合成を行った。
(1) グアノシンを出発物質として,アセトニトリル/水を溶媒として,NBSと反応させ,8位のブロモ化を行った(a)。
(2) N-メチルビロリドンを溶媒として,テトラキス(トリフェニルホスフィン)パラジウム存在下,トリブチルビニルチンと反応させ,8位にビニル基を導入した(b)。
2.合成した化合物のNMRチャートを,図13に示す。
1H-NMR (400 MHz, DMSO-d6) δ 10.72 (s, 1H), 6.97 (dd, J = 11.0, 17.0 Hz, 1H), 6.46 (br s, 2H), 6.12 (dd, J = 2.1, 17.0 Hz, 1H), 5.80 (d, J = 7.2 Hz, 1H), 5.42 (dd, J = 2.1, 11.0 Hz, 1H), 5.33 (d, J = 6.2 Hz, 1H), 5.12 (t, J = 5.5 Hz, 1H), 5.06 (d, J = 4.5 Hz, 1H), 4.52 (q, J = 6.5 Hz, 1H), 4.08 (m, 1H), 3.85 (q, J = 3.4 Hz, 1H), 3.64 (m, 1H), 3.59 (m, 1H).
<< Experiment 7, Synthesis of 8-vinylguanosine >>
1.8-vinylguanosine was synthesized according to the scheme of FIG.
(1) Bromination at position 8 was performed by reacting with NBS using guanosine as a starting material and acetonitrile / water as a solvent (a).
(2) Using N-methylpyrrolidone as a solvent, it was reacted with tributylvinyltin in the presence of tetrakis (triphenylphosphine) palladium to introduce a vinyl group at the 8-position (b).
2. An NMR chart of the synthesized compound is shown in FIG.
1 H-NMR (400 MHz, DMSO-d 6 ) δ 10.72 (s, 1H), 6.97 (dd, J = 11.0, 17.0 Hz, 1H), 6.46 (br s, 2H), 6.12 (dd, J = 2.1 , 17.0 Hz, 1H), 5.80 (d, J = 7.2 Hz, 1H), 5.42 (dd, J = 2.1, 11.0 Hz, 1H), 5.33 (d, J = 6.2 Hz, 1H), 5.12 (t, J = 5.5 Hz, 1H), 5.06 (d, J = 4.5 Hz, 1H), 4.52 (q, J = 6.5 Hz, 1H), 4.08 (m, 1H), 3.85 (q, J = 3.4 Hz, 1H), 3.64 (m, 1H), 3.59 (m, 1H).
<<実験8,8-ビニルグアノシンのRNA取込ならびにクリック反応の確認>>
1.8-ビニルグアノシンがRNAに取り込まれること,ならびに取り込まれたのちクリック反応を起こすかどうかを調べるために検討を行った。
<< Experiment 8, 8-vinylguanosine RNA uptake and confirmation of click reaction >>
1. We examined whether 8-vinyl guanosine is incorporated into RNA and whether or not a click reaction occurs after incorporation.
2.実験4に準じて,検討を行った。結果を,図14に示す。
(1) Hoechst染色により,8-ビニルグアノシン(8-VG)の存在下・非存在下,いずれにおいても核が染まっていた。
(2) FAM Tetrazineにより,8-VG非存在下では蛍光は確認されなかったが,8-VG存在下においては蛍光が確認された。
(3) これらの合成画像において,RNAの染色と核の染色は一致していた。
(4) この結果から,8-VGがRNAに取り込まれており,これがクリック反応により,RNAを染色していることが確認された。
2. A study was conducted according to Experiment 4. The results are shown in FIG.
(1) Nuclei were stained by Hoechst staining in the presence or absence of 8-vinylguanosine (8-VG).
(2) With FAM Tetrazine, fluorescence was not confirmed in the absence of 8-VG, but fluorescence was confirmed in the presence of 8-VG.
(3) In these synthesized images, RNA staining and nuclear staining were consistent.
(4) From this result, it was confirmed that 8-VG was incorporated into RNA, and this stained RNA by the click reaction.
<<実験9,マウス癌モデルを用いたインビボでのクリック反応の確認>>
1.マウス癌モデルを用いて,8-EGならびに8-VGが,インビボでのクリック反応が可能かどうかを確認することを目的に検討を行った。
<< Experiment 9, confirmation of click reaction in vivo using mouse cancer model >>
1. A mouse cancer model was used to confirm whether 8-EG and 8-VG can be clicked in vivo.
2.図15に準じて,実験を行った。
(1) ヌードマウスに,脳腫瘍細胞株(U87細胞)を皮下に移植し,マウス癌モデルの作製を行った。
(2) 移植2週間後に,マウス癌モデルに,8-EG又は8-VG溶液を,1個体あたり5mgとなるよう腫瘍部位に3日間投与した。
(3) 8-EG又は8-VGの3日間の投与から24時間後に,BODIPY-Tet及びAlexa-azide溶液を,8-VG又は8-EGを投与したマウスにそれぞれ0.1mgとなるよう尾静脈から投与し,24時間後に,蛍光検出器により撮像を行った。
2. The experiment was conducted according to FIG.
(1) A brain tumor cell line (U87 cell) was implanted subcutaneously into a nude mouse, and a mouse cancer model was prepared.
(2) Two weeks after transplantation, the 8-EG or 8-VG solution was administered to the mouse cancer model for 3 days at the tumor site at 5 mg per animal.
(3) Tail vein so that BODIPY-Tet and Alexa-azide solutions are 0.1 mg each in mice administered 8-VG or 8-EG 24 hours after the 3-day administration of 8-EG or 8-VG 24 hours later, imaging was performed with a fluorescence detector.
3.結果を図16に示す。
(1) 8-VGにおいて,PBSのみ投与では蛍光が検出されなかったものの(a),8-VGを投与したマウスでは明確に検出が可能であった(b,c)。
(2) 同様に,8-EGにおいて,PBSのみ投与では蛍光が検出されなかったものの(e),8-EGを投与したマウスでは明確に検出が可能であった(f,g)。
(3) これらの結果は,実験5における結果と整合するものであり,8-EGならびに8-VGは脳腫瘍を検出しうることが分かった。
3. The results are shown in FIG.
(1) In 8-VG, fluorescence was not detected by administration of PBS alone (a), but it was clearly detectable in mice administered with 8-VG (b, c).
(2) Similarly, in 8-EG, fluorescence was not detected by administration of PBS alone (e), but it was clearly detectable in mice administered with 8-EG (f, g).
(3) These results are consistent with those in Experiment 5, and it was found that 8-EG and 8-VG can detect brain tumors.
<<実験10,8-EGないし8-VGの安定性評価>>
1.8-EGないし8-VGの化合物安定性を調べることを目的に検討を行った。
<< Experiment 10, stability evaluation of 8-EG or 8-VG >>
1. The purpose of this study was to investigate the compound stability of 8-EG or 8-VG.
2.8-EG又は8-VGを,5% DMSO/PBSに溶解させ,これを37℃で72時間インキュベーションを行った。
3.結果を,図17に示す。いずれの化合物も,インキュベーション前(B)と比較して,インキュベーション後(A)のHPLCチャートに変化は認められず,高い純度を保持したままであった。
4.このことから,8-EG及び8-VGが安定であることが示唆された。
 
 

 
2. 8-EG or 8-VG was dissolved in 5% DMSO / PBS and incubated at 37 ° C. for 72 hours.
3. The results are shown in FIG. None of the compounds remained high in purity after the incubation (A) as compared to that before the incubation (B).
4). This suggests that 8-EG and 8-VG are stable.



Claims (18)

  1. 下記式で表されるグアノシン誘導体化合物であって,下記式中,
     R1およびR2は,いずれか一方がHであって,他方が,H,OH,OCH3,Fのいずれかで表され,
     R3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物のいずれかで表され,
     R4は,H,一リン酸,二リン酸,三リン酸のいずれかで表される,
    ことを特徴とするグアノシン誘導体化合物。
    Figure JPOXMLDOC01-appb-C000001
     
     
    A guanosine derivative compound represented by the following formula:
    One of R 1 and R 2 is H and the other is represented by one of H, OH, OCH 3 and F;
    R 3 is represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound,
    R 4 is represented by any of H, monophosphate, diphosphate, and triphosphate,
    The guanosine derivative compound characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001

  2. 前記グアノシン誘導体のR1およびR2において,
     一方が1H,2H,3Hのいずれかであって,
     他方が,1H,2H,3Hのいずれか,又は,18Fもしくは19F,
    で表される請求項1に記載のグアノシン誘導体。
     
    In R 1 and R 2 of the guanosine derivative,
    One is 1 H, 2 H, or 3 H,
    The other is 1 H, 2 H, 3 H, or 18 F or 19 F,
    The guanosine derivative | guide_body of Claim 1 represented by these.
  3. 前記グアノシン誘導体のR3において,
     二重結合または三重結合のCが,11C,12C,13C,14Cのいずれかであって,
     アジド基を有する化合物のNが,13N,14N,15Nのいずれかであって,
    で表される請求項1又は2に記載のグアノシン誘導体。
     
    In R 3 of the guanosine derivative,
    The double bond or triple bond C is either 11 C, 12 C, 13 C, 14 C,
    N of the compound having an azide group is any one of 13 N, 14 N, and 15 N,
    The guanosine derivative | guide_body of Claim 1 or 2 represented by these.
  4. R1およびR2が,いずれか一方がHであって,他方が,HまたはOHのいずれかで表される請求項1から3のいずれかに記載のグアノシン誘導体化合物。
     
    The guanosine derivative compound according to any one of claims 1 to 3, wherein one of R 1 and R 2 is H and the other is represented by either H or OH.
  5. R4が,Hで表される請求項1から4のいずれかに記載のグアノシン誘導体化合物。
     
    The guanosine derivative compound according to any one of claims 1 to 4, wherein R 4 is represented by H.
  6. さらに,R3が,下記置換基のいずれかで表される請求項1から5のいずれかに記載のグアノシン誘導体。
    Figure JPOXMLDOC01-appb-C000002
    Furthermore, the guanosine derivative in any one of Claim 1 to 5 by which R < 3 > is represented by either of the following substituents.
    Figure JPOXMLDOC01-appb-C000002
  7. さらに,R3が,下記置換基のいずれかで表される請求項1から5のいずれかに記載のグアノシン誘導体。
    Figure JPOXMLDOC01-appb-C000003
     
    Furthermore, the guanosine derivative in any one of Claim 1 to 5 by which R < 3 > is represented by either of the following substituents.
    Figure JPOXMLDOC01-appb-C000003
  8. さらに,R3が,下記置換基で表される請求項1から5のいずれかに記載のグアノシン誘導体。
    Figure JPOXMLDOC01-appb-C000004
     
    Furthermore, the guanosine derivative in any one of Claim 1 to 5 by which R < 3 > is represented by the following substituent.
    Figure JPOXMLDOC01-appb-C000004
  9. R3が,エチニル基(A1)で表される置換基である請求項6に記載のグアノシン誘導体。
     
    The guanosine derivative according to claim 6, wherein R 3 is a substituent represented by an ethynyl group (A1).
  10. R3が,ビニル基(B5)で表される置換基である請求項7に記載のグアノシン誘導体。
     
    The guanosine derivative according to claim 7, wherein R 3 is a substituent represented by a vinyl group (B5).
  11. 請求項1ないし10のグアノシン誘導体のR3と,これと反応するレポーター化合物とによりクリック反応を行うクリック反応方法。
     
    11. A click reaction method in which a click reaction is carried out using R 3 of the guanosine derivative according to claim 1 and a reporter compound that reacts therewith.
  12. 前記レポーター化合物が,アジド基を有する化合物である請求項11に記載のクリック反応方法。
     
    The click reaction method according to claim 11, wherein the reporter compound is a compound having an azide group.
  13. 前記アジド基を有する化合物が,Azidebenzene,Coumarin Azide,Tetramethylrhodamine (TAMRA) azide,Biotin azideのいずれかから選択される請求項12に記載のクリック反応方法。
     
    The click reaction method according to claim 12, wherein the compound having an azide group is selected from any of Azidebenzene, Coumarin Azide, Tetramethylrhodamine (TAMRA) azide, and Biotin azide.
  14. 請求項11から13に記載のクリック反応方法を,細胞ないし生体組織において行うことにより,細胞ないし生体組織を標識する標識方法。
     
    A labeling method for labeling a cell or a living tissue by performing the click reaction method according to claim 11 on the cell or the living tissue.
  15. 前記標識が,蛍光標識,発光体による標識,放射標識,核磁気共鳴活性標識,これらのいずれか又は複数から選択される請求項14に記載の標識方法。
     
    The labeling method according to claim 14, wherein the label is selected from one or more of a fluorescent label, a label with a luminescent material, a radiolabel, a nuclear magnetic resonance active label.
  16. 請求項1ないし10のグアノシン誘導体を有効成分とする癌イメージング剤。
     
    A cancer imaging agent comprising the guanosine derivative according to claim 1 as an active ingredient.
  17. 前記癌が,脳,大腸,胃癌をはじめとする固形癌である請求項16に記載の癌イメージング剤。
     
    The cancer imaging agent according to claim 16, wherein the cancer is a solid cancer including brain, large intestine, and stomach cancer.
  18. 下記式で表される,グアノシン誘導体化合物の製造方法であって,
     グアノシンを出発物質として8位をブロモ化するブロモ化工程と,
     糖骨格における水酸基を保護する水酸基保護工程と,
     核酸塩基部分のカルボニル基を保護するカルボニル基保護工程と,
     8位をカップリング反応により,置換基R3を導入するR3導入工程と,
     全ての保護基を脱離する脱離工程とからなるグアノシン誘導体化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中,R3は,二重結合または三重結合を有する化合物,アジド基を有する化合物,環状化合物のいずれかで表される置換基で表される)
     
    A method for producing a guanosine derivative compound represented by the following formula:
    Bromination step of bromination at the 8-position starting from guanosine,
    A hydroxyl group protecting step for protecting hydroxyl groups in the sugar skeleton;
    A carbonyl group protecting step for protecting the carbonyl group of the nucleobase moiety;
    R 3 introduction step for introducing substituent R 3 by coupling reaction at the 8-position;
    A method for producing a guanosine derivative compound comprising an elimination step for eliminating all protecting groups.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 3 is represented by a substituent represented by either a compound having a double bond or a triple bond, a compound having an azide group, or a cyclic compound)
PCT/JP2019/018755 2018-05-14 2019-05-10 Guanosine derivative and production method therefor WO2019221024A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020519605A JPWO2019221024A1 (en) 2018-05-14 2019-05-10 Guanosine derivative and its manufacturing method
JP2023134012A JP2023156482A (en) 2018-05-14 2023-08-21 Guanosine derivative and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093159 2018-05-14
JP2018-093159 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221024A1 true WO2019221024A1 (en) 2019-11-21

Family

ID=68540010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018755 WO2019221024A1 (en) 2018-05-14 2019-05-10 Guanosine derivative and production method therefor

Country Status (2)

Country Link
JP (2) JPWO2019221024A1 (en)
WO (1) WO2019221024A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051881A1 (en) * 2001-12-17 2003-06-26 Ribapharm Inc. Substituted purine nucleoside libraries and compounds by solid-phase combinatorial strategies
JP2009114171A (en) * 2007-10-18 2009-05-28 Institute Of Physical & Chemical Research New purine nucleoside compound, method for isomerizing the same and changing optical characteristic thereof, and optical switching type device material
CN101550175A (en) * 2009-05-11 2009-10-07 中国科学院广州生物医药与健康研究院 Kit and method for modifying vitro synthesized RNA
CN101921835A (en) * 2010-05-19 2010-12-22 广州市锐博生物科技有限公司 Method and kit for marking nucleic acid in living cell
JP2011037796A (en) * 2009-08-17 2011-02-24 Nihon Univ C8-substituted purine base derivative and fluorescent probe using the same
WO2017040510A1 (en) * 2015-08-31 2017-03-09 Life Technologies Corporation Colorimetric labeling and detection methods and compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051881A1 (en) * 2001-12-17 2003-06-26 Ribapharm Inc. Substituted purine nucleoside libraries and compounds by solid-phase combinatorial strategies
JP2009114171A (en) * 2007-10-18 2009-05-28 Institute Of Physical & Chemical Research New purine nucleoside compound, method for isomerizing the same and changing optical characteristic thereof, and optical switching type device material
CN101550175A (en) * 2009-05-11 2009-10-07 中国科学院广州生物医药与健康研究院 Kit and method for modifying vitro synthesized RNA
JP2011037796A (en) * 2009-08-17 2011-02-24 Nihon Univ C8-substituted purine base derivative and fluorescent probe using the same
CN101921835A (en) * 2010-05-19 2010-12-22 广州市锐博生物科技有限公司 Method and kit for marking nucleic acid in living cell
WO2017040510A1 (en) * 2015-08-31 2017-03-09 Life Technologies Corporation Colorimetric labeling and detection methods and compositions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HOLZBERGER, B. ET AL.: "Enzymatic synthesis of 8- viny 1- and 8-styryl-2'-deoxyguanosine modified DNA-novel fluorescent molecular probes", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 22, no. 9, 2012, pages 3136 - 3139, XP0028410871 *
ISHIZUKA, T. ET AL.: "RNA imaging in vivo with 8- position modified guanosine derivatives", THE 45TH INTERNATIONAL SYMPOSIUM ON NUCLEIC ACIDS CHEMISTRY AND THE 2ND ANNUAL MEETING OF JAPAN SOCIEITY OF NUCLEIC ACIDS CHEMISTRY, 7 November 2018 (2018-11-07), pages 150 - 151 *
NADLER, A. ET AL.: "8-Viny 1-2'-deoxyguanosine as a Fluorescent 2'-Deoxyguanosine Mimic for Investigating DNA Hybridization and Topology", ANGEW. CHEM. INT. ED., vol. 50, no. 23, 2011, pages 5392 - 5396 *
NAGESH, N. ET AL.: "A useful method for the synthesis of 8 azido-guanosine tri- and tetraphosphate: important substrates for many enzymic reactions", JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, vol. 35, no. 1, 1997, pages 61 - 66, XP055653535 *
SCHULZ, B. S. ET AL.: "A new synthesis of 9-B-D-ribofuranosyluric acid and its 5'- monophosphate", TETRAHEDRON LETTERS, vol. 26, no. 44, 1985, pages 5421 - 5424, XP055653554 *

Also Published As

Publication number Publication date
JPWO2019221024A1 (en) 2021-07-29
JP2023156482A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP5208328B1 (en) Radioactive fluorine-labeled compound
JPH05505178A (en) Boranophosphates of oligoribonucleosides and oligodeoxyribonucleosides
James et al. A ‘click chemistry’approach to the efficient synthesis of modified nucleosides and oligonucleotides for PET imaging
WO2014111906A1 (en) Bioluminescence imaging of small biomolecules
Toyohara et al. Feasibility studies of 4′-[methyl-11C] thiothymidine as a tumor proliferation imaging agent in mice
JP5851493B2 (en) PET radiopharmaceutical for differential diagnosis between bilateral and unilateral states of primary hyperaldosteronism
CN111909105B (en) Prostate specific membrane antigen inhibitor, metal marker thereof, preparation method and application
WO2014109256A1 (en) Triazole-linked cyclic dinucleotide analogue
EP3293167A1 (en) [18f]-labelled lactate derivative as pet radiotracer
WO2019221024A1 (en) Guanosine derivative and production method therefor
Huynh et al. Labeling of Cellular DNA with a Cyclosal Phosphotriester Pronucleotide Analog of 5‐ethynyl‐2′‐deoxyuridine
WO2020002469A1 (en) Methods and reagents for cross-linking cellular dna and rna via strain-promoted double-click reactions
Shen et al. 5′-OD-valyl ara A, a potential prodrug for improving oral bioavailability of the antiviral agent vidarabine
Olesiak et al. Synthesis and biological activity of borane phosphonate DNA
Toyohara et al. Alkyl-fluorinated thymidine derivatives for imaging cell proliferation: II. Synthesis and evaluation of N3-(2-[18F] fluoroethyl)-thymidine
EP2900278B1 (en) Radiopharmaceutical products for diagnosis and therapy of adrenal carcinoma
JP5973425B2 (en) Method for producing phosphate compound having isotope
JP5184351B2 (en) 6-thioguanosine triphosphate analogues, their use in the medical field and improvements to their preparation methods
WO2016097339A1 (en) Labelled coumarin derivatives
De Cabrera Nucleoside Analogues for Positron Emission Tomography Imaging and to Study Radiation Mediated Generation of Radicals from Azides
Prior et al. Fluorine-19F NMR Spectroscopy and Imaging In-Vivo
CN103788159B (en) Avrmectin B 1afluorescent marker and application thereof
Paolillo et al. Optimization of precursor synthesis, formulation and stability of 1′-[18 F] fluoroethyl-β-D-lactose ([18 F] FEL) for preclinical studies in detection of pancreatic cancer
TWI394587B (en) A radiolabeled nucleoside analogue, a method for preparing the same and the use thereof
JP4841231B2 (en) Tissue proliferative diagnostic agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020519605

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19803562

Country of ref document: EP

Kind code of ref document: A1