WO2019220874A1 - Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program - Google Patents

Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program Download PDF

Info

Publication number
WO2019220874A1
WO2019220874A1 PCT/JP2019/017010 JP2019017010W WO2019220874A1 WO 2019220874 A1 WO2019220874 A1 WO 2019220874A1 JP 2019017010 W JP2019017010 W JP 2019017010W WO 2019220874 A1 WO2019220874 A1 WO 2019220874A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
terminal
ultrasonic sensor
ultrasonic
indoor unit
Prior art date
Application number
PCT/JP2019/017010
Other languages
French (fr)
Japanese (ja)
Inventor
尚夫 水野
成治 近藤
尚希 西川
真範 丸山
貴夫 桜井
清水 健志
久雄 岩田
英 小野川
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP19804565.0A priority Critical patent/EP3792564B1/en
Priority to CN201980046567.3A priority patent/CN112400085B/en
Publication of WO2019220874A1 publication Critical patent/WO2019220874A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/59Remote control for presetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the present invention relates to an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2018-093758 for which it applied on May 15, 2018, and uses the content here.
  • Patent Document 1 discloses a technique for estimating the position of a user by detecting an indoor temperature distribution.
  • the technique described in Patent Literature 1 estimates the positions of all indoor users, and may not be suitable for providing air conditioning according to a specific user.
  • a technique for estimating a user's position using a position estimation method similar to a position estimation method using a GPS satellite is known. Specifically, an ultrasonic wave is emitted from a terminal such as a smartphone held by a specific user, and the ultrasonic wave is detected by ultrasonic sensors such as a plurality of microphones provided at different positions of the air conditioning indoor unit. The position of the user can be estimated based on the arrival time difference of the ultrasonic wave at each different position of the acoustic wave sensor.
  • An object of the present invention is to provide an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program capable of accurately estimating the position of a user of an air conditioning indoor unit.
  • the air conditioning control device that controls the indoor unit for air conditioning according to the terminal position of the terminal held by the user is the first ultrasonic sensor provided in the indoor unit for air conditioning.
  • an ultrasonic detection processing unit that detects ultrasonic waves emitted from the terminal through a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit, and the first ultrasonic wave
  • An arrival time difference calculating unit that calculates an arrival time difference that is a difference between a time at which the ultrasonic wave is detected by the sensor and a time at which the ultrasonic wave is detected by the second ultrasonic sensor; and based on the arrival time difference,
  • a position estimation unit that estimates a terminal position; and an indoor unit control unit that controls the indoor unit for air conditioning based on the terminal position.
  • the air conditioning control system includes the air conditioning control device according to the first aspect, the terminal, the air conditioning indoor unit, the first ultrasonic sensor, and the second. And an ultrasonic sensor.
  • the second ultrasonic sensor is provided in a remote control device that remotely operates the indoor unit for air conditioning.
  • the second ultrasonic sensor is provided in the fluorescent lamp.
  • the air conditioning control system includes an air conditioning indoor unit different from the air conditioning indoor unit, and the second ultrasonic sensor is It is provided in an indoor unit for air conditioning.
  • the position estimation unit refers to a lookup table and determines the arrival time difference. Based on this, the terminal position of the terminal is estimated.
  • the position estimation unit includes the first ultrasonic sensor and the second ultrasonic sensor.
  • the terminal position of the terminal is estimated based on the position of the ultrasonic sensor and the arrival time difference.
  • the first ultrasonic sensor includes a plurality of ultrasonic sensors provided at different positions of the indoor unit for air conditioning.
  • the ultrasonic detection processing unit detects the ultrasonic wave emitted from the second ultrasonic sensor through the first ultrasonic sensor, and the arrival time difference calculating unit is configured to detect the first ultrasonic sensor.
  • a setting arrival time difference which is a difference between times at which the ultrasonic waves are detected by the plurality of ultrasonic sensors, is calculated, and the position estimation unit includes the positions of the plurality of ultrasonic sensors of the first ultrasonic sensor.
  • the position of the second ultrasonic sensor is estimated based on the setting arrival time difference.
  • an air conditioning control method is an air conditioning control method for controlling an air conditioning indoor unit according to a terminal position of a terminal held by a user, and is provided in the air conditioning indoor unit.
  • An ultrasonic detection processing step of detecting an ultrasonic wave emitted from the terminal through a first ultrasonic sensor and a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit;
  • An arrival time difference calculating step of calculating an arrival time difference which is a difference between a time when the ultrasonic wave is detected by the first ultrasonic sensor and a time when the ultrasonic wave is detected by the second ultrasonic sensor;
  • a position estimation step of estimating the terminal position of the terminal based on the time difference; and an indoor unit control step of controlling the indoor unit for air conditioning based on the terminal position.
  • a program is provided in a computer of an air conditioning control device that controls an indoor unit for air conditioning according to a terminal position of a terminal held by a user.
  • An ultrasonic detection processing step of detecting ultrasonic waves emitted from the terminal through one ultrasonic sensor and a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit;
  • An arrival time difference calculating step of calculating an arrival time difference that is a difference between a time when the ultrasonic wave is detected by the first ultrasonic sensor and a time when the ultrasonic wave is detected by the second ultrasonic sensor;
  • a position estimation step of estimating the terminal position of the terminal based on the terminal position, and an indoor unit control step of controlling the air conditioning indoor unit based on the terminal position.
  • the position of the user of the air conditioning indoor unit can be accurately estimated.
  • FIG. 1 is a schematic diagram showing an overall configuration of an air conditioning control system 1 according to the first embodiment.
  • the air conditioning control system 1 according to the first embodiment is assumed to be used in an indoor space W where a user exists, such as a library, a large store, a warehouse, a factory, and the like.
  • the air-conditioning control system 1 is not limited to the above usage.
  • the air conditioning control system 1 includes an air conditioning control device 10, an air conditioning indoor unit 20, a remote control device 30, a terminal 40 held by a user, and a microphone M1. To M5.
  • the air conditioning control device 10 controls the indoor unit 20 for air conditioning so that the environment (temperature, humidity, air volume, etc.) is optimized according to the position of the user.
  • the indoor unit 20 for air conditioning is installed on the ceiling or the like of the indoor space W where the user exists, and performs various operations for adjusting the environment of the indoor space W according to a control command from the air conditioning control device 10.
  • the air conditioning indoor unit 20 is a ceiling embedded type commercial air conditioning indoor unit.
  • the air conditioning indoor unit 20 is an air conditioning type other than the ceiling embedded type. It may be an indoor unit or an indoor unit for air conditioning for other uses such as home use other than business use.
  • the remote operation device (remote control) 30 is a device for remotely operating the environmental setting of the air conditioning indoor unit 20 by pressing a button or the like.
  • the remote control device 30 according to the first embodiment is provided on the wall of the indoor space W, and is connected to the air conditioning control device 10 by wire. However, the remote control device 30 may be connected to the air conditioning control device 10 wirelessly.
  • the terminal 40 is a sound source that can emit an ultrasonic wave S of a predetermined frequency.
  • the terminal 40 may be an information processing apparatus such as a smartphone.
  • the terminal 40 may be a sound source such as a tablet-type information processing apparatus or a wristwatch-type information processing apparatus. It may be a device.
  • the smart phone which is the terminal 40 emits the predetermined ultrasonic wave S regularly in order to make a user's position to hold
  • the terminal 40 may emit a predetermined ultrasonic wave S non-periodically, for example.
  • the terminal 40 superimposes, for example, information used by the air conditioning control device 10 for controlling the indoor unit 20 for air conditioning (for example, information on the environment (temperature, humidity, air volume, etc.) requested by the user) on the ultrasonic wave S. May be issued.
  • information used by the air conditioning control device 10 for controlling the indoor unit 20 for air conditioning for example, information on the environment (temperature, humidity, air volume, etc.) requested by the user
  • the microphones M1 to M5 are ultrasonic sensors that can detect the ultrasonic wave S emitted from the terminal 40.
  • four microphones M1 to M4 are provided at different positions of the air conditioning indoor unit 20 as first ultrasonic sensors. That is, the first ultrasonic sensor includes four microphones M1 to M4. As shown in FIG. 1, the four microphones M1 to M4 are respectively provided at the four corners of the surface of the air conditioning indoor unit 20 facing the indoor space W.
  • the first ultrasonic sensor may include a number of microphones (ultrasonic sensors) other than four.
  • one microphone M5 is provided in the remote operation device 30 as the second ultrasonic sensor. That is, the second ultrasonic sensor (microphone M5) is provided at a position different from the position of the air conditioning indoor unit 20.
  • the second ultrasonic sensor may include a number of microphones (ultrasonic sensors) other than one.
  • a 2nd ultrasonic sensor is the indoor space W, such as a fluorescent lamp, for example It may be provided in other devices.
  • FIG. 2 is a block diagram illustrating a functional configuration of the air conditioning control device 10 according to the first embodiment.
  • FIG. 2 also shows a connection configuration between the air conditioning control device 10 and the microphones M1 to M5 in order to explain the functions of the air conditioning control device 10.
  • the air conditioning control device 10 includes an ultrasonic detection processing unit 100, an arrival time difference calculation unit 110, a position estimation unit 120, an indoor unit control unit 130, and a storage unit 140.
  • the ultrasonic detection processing unit 100 is configured to detect the ultrasonic wave S emitted from the terminal 40 held by the user through the microphones M1 to M5. As shown in FIG. 2, the ultrasonic waves S detected by the microphones M1 to M4 are sequentially processed by amplifiers A1 to A4, filters F1 to F4, and comparators C1 to C4 provided in the air conditioning indoor unit 20, respectively. Is done. Further, the processing results (detection results) are input to the ultrasonic detection processing unit 100 from Ch1 to Ch4, respectively.
  • the ultrasonic wave S detected by the microphone M5 is sequentially processed by the amplifier A5, the filter F5, and the comparator C5 provided in the remote control device 30, and the processing result (detection result) is converted from Ch5 to ultrasonic detection processing. Input to the unit 100.
  • Amplifiers A1 to A5 amplify ultrasonic S signals detected by the microphones M1 to M5.
  • the filters F1 to F5 extract only a component having a predetermined frequency from the amplified ultrasonic wave S signal.
  • the predetermined frequency is defined in advance as, for example, 5 kHz according to the frequency of the ultrasonic wave S emitted from the terminal 40.
  • the comparators C1 to C5 determine whether or not a component having a predetermined frequency has been extracted, and if not, output a first signal indicating no detection. When a component having a predetermined frequency is extracted, the comparators C1 to C5 output a second signal indicating the presence of detection.
  • the signal level of the first signal is higher than the signal level of the second signal will be described.
  • any signal can be used as the first signal and the second signal as long as the signals can be distinguished from each other.
  • a signal may be used.
  • the ultrasonic detection processing unit 100 When detecting the ultrasonic wave S emitted from the terminal 40 through the microphones M1 to M5, the ultrasonic detection processing unit 100 inputs the time when the ultrasonic wave S is detected by each of the microphones M1 to M5 to the arrival time difference calculating unit 110. Specifically, the time when the signals input from the comparators C1 to C5 are switched from the first signal to the second signal is input to the arrival time difference calculation unit 110.
  • the ultrasonic detection processing unit 100 may store the switched time in the storage unit 140 without directly inputting the time to the arrival time difference calculation unit 110. In this case, the arrival time difference calculation unit 110 acquires each time stored from the storage unit 140.
  • the arrival time difference calculation unit 110 uses the microphone M5 (second ultrasonic sensor) of the microphones M1 to M5 as a reference, the time when the reference microphone M5 detects the ultrasonic wave S, and the other four microphones M1 to M5.
  • the arrival time difference calculation unit 110 inputs the calculated arrival time difference to the position estimation unit 120.
  • the position estimation unit 120 estimates the terminal position of the terminal 40 from which the ultrasonic wave S is emitted based on the arrival time difference calculated by the arrival time difference calculation unit 110.
  • the position estimation unit 120 inputs the estimation result to the indoor unit control unit 130.
  • the indoor unit control unit 130 controls the air conditioning indoor unit 20 based on the estimated terminal position. Specifically, the air conditioner indoor unit 20 is controlled so that the environment (temperature, humidity, air volume, etc.) is optimal, assuming that there is a user holding the terminal 40 at the estimated terminal position.
  • the storage unit 140 stores a lookup table (LUT) that is a correspondence table between the arrival time difference and the estimated terminal position, which is used when the position estimating unit 120 estimates the terminal position of the terminal 40.
  • a conventional air conditioning control system as a comparative example with the air conditioning control system 1 according to the first embodiment will be described with reference to FIGS. 3 to 5.
  • 3 to 5 are first to third explanatory views for explaining a conventional air conditioning control system as a comparative example, respectively.
  • a conventional air conditioning control system as a comparative example includes microphones M1 to M4 (first ultrasonic sensors) as in the air conditioning control system 1 according to the first embodiment, but is different from the air conditioning control system 1.
  • the microphone M5 second ultrasonic sensor
  • FIG. 3 shows the positional relationship between the microphones M1 and M4 and the terminal 40 held by the user in the conventional air conditioning indoor unit provided with the microphones M1 to M4 as in the air conditioning indoor unit 20 shown in FIG. .
  • the conventional air conditioning control system as in the air conditioning control system 1 according to the first embodiment, the time difference between the times at which the ultrasonic waves S emitted from the terminal 40 held by the user reach the microphones M1 to M4 ( The user's position is estimated based on the arrival time difference.
  • the conventional air conditioning control system estimates the position of the user using only four microphones M1 to M4. In the following, with reference to FIGS.
  • the microphones M1 and M4 that are the farthest from each other among the four microphones M1 to M4 will be described as an example. This is because, when the distance between the microphones is farthest, the allowable range of detection error of the arrival time difference of the ultrasonic wave S used for estimating the position of the user is maximized.
  • the horizontal axis x in FIG. 3 indicates a horizontal position x (m) based on a conventional air conditioning indoor unit (the horizontal center position thereof). That is, the distance in the horizontal direction from the conventional indoor unit for air conditioning (the center position in the horizontal direction) to the terminal 40 is x (m). 3 indicates the vertical height (m) from the terminal 40.
  • FIG. 3 shows an example in which the terminal 40 exists at positions x (m) at 0 (m), 1 (m), and 5 (m).
  • a path through which the ultrasonic wave S travels from the terminal 40 to the microphones M1 and M4 is indicated by a dotted line.
  • FIG. 4 specifically calculates the difference (arrival time difference) in which the ultrasonic waves S reach the microphones M1 and M4 from the terminal 40 when the position x (m) of the terminal 40 shown in FIG. 3 is changed.
  • the calculation result is shown.
  • the position x (m) of the terminal 40 when the position x (m) of the terminal 40 is determined, the distance (m) from the terminal 40 to the microphone M1 is determined, so that the ultrasonic wave S is necessary to reach the microphone M1 from the terminal 40.
  • the arrival time t1 (ms) can be calculated from the sound speed.
  • the arrival time t4 (ms) required for the ultrasonic wave S to reach the microphone M4 from the terminal 40 can be calculated from the sound speed.
  • the arrival time difference ⁇ t41 (ms) actually used for control is calculated from detection times t1 and t4 when the conventional air conditioning indoor unit detects the ultrasonic waves S with the microphones M1 and M4, respectively.
  • the horizontal axis indicates time
  • the vertical axis indicates the signal level. That is, in FIG. 5, the time when the signal level has increased indicates the detection time of the ultrasonic wave S.
  • FIG. 4 shows the calculation result of the arrival time difference ⁇ t41 (ms) when the position x (m) of the terminal 40 is 0, 1, 2, 3, 4, 5, and 6 (m).
  • ⁇ t41 (ms) is different by 1.29 (ms).
  • the arrival time difference ⁇ t41 (ms) differs only by 0.05 (ms) when the position x (m) of the terminal 40 is 4 (m) and when it is 5 (m). .
  • 0.05 (ms) corresponds to one cycle of 20 (kHz).
  • the arrival time difference ⁇ t41 (ms) differs only by 0.03 (ms) when the position x (m) of the terminal 40 is 5 (m) and 6 (m). Therefore, in order to obtain an accuracy of ⁇ 1 (m) at the position 5 (m) of the terminal 40 under the condition that the distance between the microphones M1 and M4 is 1.19 (m) as shown in FIG. It is understood that it is necessary to suppress the error of the arrival time difference ⁇ t41 (ms) within only 0.03 (ms). 0.03 (ms) corresponds to 0.6 periods of 20 (kHz).
  • the predetermined accuracy required for the position estimation is obtained.
  • the allowable range of detection error of the arrival time difference ⁇ t41 becomes very narrow and strict.
  • the farther the terminal 40 is located from the indoor unit for air conditioning the narrower and stricter the allowable range of detection error becomes.
  • FIG. 6 is a flowchart showing the operation of the air conditioning control device 10 according to the first embodiment. Operation
  • movement of the air-conditioning control apparatus 10 which concerns on 1st Embodiment is demonstrated using FIG.
  • the ultrasonic detection processing unit 100 detects the ultrasonic wave S emitted from the terminal 40 through the first ultrasonic sensor and the second ultrasonic sensor (step S101). Specifically, the detection process is performed according to the following procedure.
  • the microphones M1 to M5 detect the ultrasonic waves S emitted from the terminal 40 held by the user
  • the signals of the detected ultrasonic waves S are amplified by the amplifiers A1 to A5, and then amplified by the filters F1 to F5.
  • a predetermined frequency component is extracted from the ultrasonic S signal.
  • the comparators C1 to C5 input the first signal or the second signal to the ultrasonic detection processing unit 100 depending on whether or not a predetermined frequency component has been extracted.
  • the comparators C1 to C5 input the first signal to the ultrasonic detection processing unit 100, but the microphones M1 to M5.
  • the comparators C1 to C5 input the second signal to the ultrasonic wave detection processing unit 100.
  • the ultrasonic detection processing unit 100 when the signal input from the comparators C1 to C5 is switched from the first signal to the second signal, has a predetermined frequency generated from the user terminal 40. It is determined that the sound wave S has been detected, and the time is input to the arrival time difference calculation unit 110. For example, when the signal input via Ch5 is switched from the first signal to the second signal at time t5, the ultrasonic detection processing unit 100 uses the time t5 as the reception time of the microphone M5, and the arrival time difference calculation unit 110. To enter. Similarly, when the signals input via Ch1 to Ch4 are switched from the first signal to the second signal at times t1 to t4, the ultrasonic detection processing unit 100 determines the reception times of the microphones M1 to M4. Times t1 to t4 are each input to arrival time difference calculation section 110.
  • the arrival time difference calculation unit 110 inputs the calculated arrival time difference to the position estimation unit 120.
  • the position estimation unit 120 estimates the terminal position of the terminal 40 based on the arrival time difference (step S103). Specifically, the position estimation unit 120 refers to the lookup table stored in the storage unit 140, and the first ultrasonic sensor (microphones M1 to M4) input from the arrival time difference calculation unit 110 and the second Terminal position of the terminal 40 is estimated from arrival time differences ( ⁇ t15, ⁇ t25, ⁇ t35, ⁇ t45) with respect to the ultrasonic sensor (microphone M5). Since there may be a plurality of terminal positions corresponding to one arrival time difference in the lookup table, in the first embodiment, the position estimation unit 120 has four arrival time differences ( ⁇ t15, ⁇ t25, ⁇ t35, ⁇ t45). The terminal position is estimated based on However, in other embodiments, the terminal position of the terminal 40 may be estimated based on any number of arrival time differences of one or more. The position estimation unit 120 inputs the estimated terminal position to the indoor unit control unit 130.
  • the indoor unit control unit 130 controls the air conditioning indoor unit 20 based on the estimated terminal position (step S104). Specifically, the air conditioner indoor unit 20 is controlled so that the environment (temperature, humidity, air volume, etc.) is optimal, assuming that there is a user holding the terminal 40 at the estimated terminal position. This is the end of the flow shown in FIG.
  • the air conditioning control device 10 air conditioning control system 1 according to the first embodiment, not only the first ultrasonic sensors (microphones M1 to M4) provided in the air conditioning indoor unit 20 but also air conditioning.
  • the ultrasonic wave S emitted from the terminal 40 is detected through a second ultrasonic sensor (microphone M5) provided at a position different from the position of the indoor unit 20.
  • the distance between the first ultrasonic sensor and the second ultrasonic sensor can be set large and freely without limitation of the size of the indoor unit 20 for air conditioning and the like.
  • the allowable range of the detection error of the arrival time difference of the ultrasonic wave S can be increased as compared with the case where the ultrasonic wave S is detected only by the first ultrasonic sensor, and the accuracy of the estimated position can be improved. Therefore, according to the air conditioning control device 10 (air conditioning control system 1) according to the first embodiment, the position of the user of the air conditioning indoor unit 20 can be accurately estimated.
  • the second ultrasonic sensor (microphone M5) is provided in the remote operation device 30 that remotely operates the indoor unit 20 for air conditioning.
  • the existing remote control device 30 can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone.
  • the second ultrasonic sensor can be easily mounted.
  • the second ultrasonic sensor may be provided in a fluorescent lamp. In this case, since the fluorescent lamp which is the existing equipment can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone. In addition, the second ultrasonic sensor can be easily mounted.
  • the position estimation unit 120 estimates the terminal position of the terminal 40 based on the arrival time difference with reference to the lookup table. Therefore, since the position estimation unit 120 can estimate the terminal position of the terminal 40 only by referring to the lookup table, the processing load of the air conditioning control system 1 is reduced and the terminal position is estimated very quickly. It becomes possible.
  • the terminal position can be estimated more accurately by creating a lookup table for each of various conditions (for example, temperature) in advance.
  • the position estimation unit 120 is input from the arrival time difference calculation unit 110 with reference to the lookup table stored in the storage unit 140 in step S103 of FIG.
  • the terminal position of the terminal 40 is estimated from the arrival time difference between the first ultrasonic sensor (microphones M1 to M4) and the second ultrasonic sensor (microphone M5).
  • the position estimation unit 120 may calculate and estimate the terminal position of the terminal 40 held by the user without using a lookup table.
  • the position estimation unit 120 may estimate the terminal position of the terminal 40 by a method similar to the position estimation method that estimates the position based on the arrival time difference of radio waves received from GPS satellites.
  • the position estimation method using a GPS satellite the position of the receiver is calculated by solving simultaneous equations. Therefore, in the simultaneous equations of the position estimation method using GPS satellites, the position estimation unit 120 can estimate the terminal position of the terminal 40 by switching the transmission side and the reception side.
  • the three-dimensional coordinates of four microphones (for example, microphones M1 to M3 (first ultrasonic sensor) and microphone M5 (second ultrasonic sensor)) at different positions are respectively (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3), and (X4, Y4, Z4), and the three-dimensional coordinates of the terminal 40 are (x, y, z).
  • the reception time of the radio wave S by the two microphones (M1, M2, M3, and M5) is t1, t2, t3, and t4
  • the radio wave transmission time by the terminal 40 is d
  • the radio wave speed is v
  • the simultaneous equations are obtained.
  • the position (x, y, z) of the terminal 40 can be obtained by solving this equation. The solution of this equation is obtained by using an approximate calculation such as Newton-Raphson method.
  • the arrival time differences ( ⁇ t15, ⁇ t25,
  • the terminal position of the terminal 40 is estimated by performing an approximate calculation on the above equation using ⁇ t35).
  • the positions of the first ultrasonic sensor and the second ultrasonic sensor may be stored in advance in the storage unit 140, for example.
  • the four microphones are the microphones M1 to M3 and M5 has been described.
  • the four microphones are any three microphones of the microphones M1 to M4 (first ultrasonic sensor). (Ultrasonic sensor) and M5 (second ultrasonic sensor) may be used.
  • the position estimation unit 120 determines the positions of the first ultrasonic sensor and the second ultrasonic sensor and the arrival time difference. Based on this, the terminal position of the terminal 40 is estimated. This eliminates the need to prepare and prepare a lookup table that is a correspondence table between the arrival time difference and the estimated terminal position, and allows the air conditioning control system 1 to be introduced very easily.
  • the first ultrasonic sensor and the second ultrasonic wave that are used when the position estimation unit 120 estimates the terminal position of the terminal 40 The position of the sensor has been described as being stored in the storage unit 140 in advance.
  • the storage unit 140 stores only the position of the first ultrasonic sensor, and the position of the second ultrasonic sensor is the position of the terminal 40. You may make it estimate in the procedure similar to the procedure which estimates a terminal position.
  • a plurality of ultrasonic sensors (microphones) provided at different positions of the air conditioner indoor unit 20 are emitted from the second ultrasonic sensor (microphone M5) provided in the remote control device 30.
  • the ultrasonic wave S may be detected by the first ultrasonic sensor including M1 to M4), and the position of the second ultrasonic sensor (microphone M5) may be estimated.
  • the ultrasonic detection processing unit 100 detects the ultrasonic wave S emitted from the second ultrasonic sensor (microphone M5) through the first ultrasonic sensors (microphones M1 to M4).
  • the arrival time difference calculation unit 110 calculates an arrival time difference (setting arrival time difference) that is a difference between the times when the ultrasonic waves S are detected by the plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor. calculate.
  • the position estimation unit 120 uses a plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor, similarly to the position estimation method described in the first modification of the first embodiment described above. And the position of the second ultrasonic sensor (microphone M5) are estimated based on the difference between the positions and the setting arrival time difference.
  • the position estimation unit 120 is configured to detect the positions of the plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor. Based on the arrival time difference (setting arrival time difference), the position of the second ultrasonic sensor (microphone M5) is estimated. Thereby, it is not necessary to grasp the position of the second ultrasonic sensor (microphone M5) in advance and store it in the storage unit 140, for example, through the remote operation device 30. Further, even when the position of the second ultrasonic sensor (microphone M5) is moved together with the remote control device 30, the position after the movement of the second ultrasonic sensor (microphone M5) can be accurately acquired. .
  • FIG. 7 is a schematic diagram illustrating the overall configuration of the air conditioning control system 1 according to the second embodiment.
  • the air conditioning control system 1 includes an air conditioning indoor unit 21 different from the air conditioning indoor unit 20.
  • the air conditioning indoor unit 21 is configured in the same manner as the air conditioning indoor unit 20, and the air conditioning indoor unit 21 is provided with four microphones M5 to M7 (second ultrasonic sensors).
  • the point including another air conditioning indoor unit 21 and the second ultrasonic sensor are provided in the air conditioning indoor unit 21 instead of the remote operation device 30. Only the difference is the air conditioning control system 1 according to the first embodiment. Regarding the other points, unless otherwise noted, the air conditioning control system 1 according to the second embodiment is configured and functions in the same manner as the air conditioning control system 1 according to the first embodiment, and thus description thereof is omitted. .
  • the second ultrasonic sensor includes four microphones M5 to M8, but only a part (for example, the microphone M5) may function as the second ultrasonic sensor. .
  • the air conditioning control system 1 includes the air conditioning indoor unit 21 different from the air conditioning indoor unit 20, and the second ultrasonic sensors (microphones M5 to M8). ) Is provided in another indoor unit 21 for air conditioning.
  • the existing air conditioning indoor unit 21 can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone.
  • the second ultrasonic sensor can be easily mounted.
  • the air-conditioning control apparatus 10 optimizes the environment (temperature, humidity, air volume, etc.) not only for the air conditioning indoor unit 20 but also for another air conditioning indoor unit 21 based on the estimated terminal position.
  • the first ultrasonic sensor provided in the air conditioning indoor unit 20 includes a plurality of microphones (M1 to M4), and the second ultrasonic sensor provided in the air conditioning indoor unit 21 includes a plurality of microphones. If the microphones (M5 to M8) are included, the position of the user of the air conditioning indoor unit 20 can be estimated more accurately based on a number of arrival time differences obtained from a number of combinations of microphones. .
  • FIG. 8 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 9 includes a CPU 91, a main storage device 92, an auxiliary storage device 93, and an interface 94.
  • the air conditioning control device 10 described above includes a computer 9.
  • the operation of each processing unit described above is stored in the auxiliary storage device 93 in the form of a program.
  • the CPU 91 reads out the program from the auxiliary storage device 93 and develops it in the main storage device 92, and executes the above processing according to the program.
  • the ultrasonic detection processing unit 100, the arrival time difference calculation unit 110, the position estimation unit 120, and the indoor unit control unit 130 described above may be the CPU 91.
  • the CPU 91 secures a storage area corresponding to each database described above in the main storage device 92 or the auxiliary storage device 93 according to the program.
  • the storage unit 140 described above may be secured in the main storage device 92 or the auxiliary storage device 93.
  • auxiliary storage device 93 examples include an HDD (Hard Disk Drive), an SSD (Solid State Drive), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Versatile Disc Read Only. Memory), semiconductor memory, and the like.
  • the auxiliary storage device 93 may be an internal medium directly connected to the bus of the computer 9 or an external medium connected to the computer 9 via the interface 94 or a communication line. When this program is distributed to the computer 9 through a communication line, the computer 9 that has received the distribution may develop the program in the main storage device 92 and execute the above processing.
  • the auxiliary storage device 93 is a tangible storage medium that is not temporary.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 93.
  • difference file difference program
  • the position of the user of the air conditioning indoor unit can be accurately estimated.
  • Air-conditioning control system 9 Computer 10 Air-conditioning control device 20 Air-conditioning indoor unit 21 (Another) Air-conditioning indoor unit 30 Remote operation device (remote control) 40 terminal 91 CPU 92 Main storage device 93 Auxiliary storage device 94 Interface 100 Ultrasonic detection processing unit 110 Arrival time difference calculation unit 120 Position estimation unit 130 Indoor unit control unit 140 Storage units A1 to A5 Amplifiers C1 to C5 Comparator F1 to F5 Filters M1 to M4 Microphone ( First ultrasonic sensor) M5 to M8 microphone (second ultrasonic sensor) S Ultrasonic wave W Indoor space

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

This air-conditioning control device controls an air-conditioning indoor unit according to a terminal position of a terminal held by a user, and comprises: an ultrasonic detection processing unit that detects an ultrasonic wave issued from the terminal via a first ultrasonic sensor disposed on the air-conditioning indoor unit and a second ultrasonic sensor disposed at a position different from the position of the air-conditioning indoor unit; an arrival time difference calculation unit that calculates an arrival time difference, which is the difference between the time at which the ultrasonic wave was detected by the first ultrasonic sensor and the time at which the ultrasonic wave was detected by the second ultrasonic sensor; a position estimation unit that estimates the terminal position of the terminal on the basis of the arrival time difference; and an indoor-unit control unit that controls the air-conditioning indoor unit on the basis of the terminal position.

Description

空調制御装置、空調制御システム、空調制御方法、及びプログラムAir conditioning control device, air conditioning control system, air conditioning control method, and program
 本発明は、空調制御装置、空調制御システム、空調制御方法、及びプログラムに関する。
 本願は、2018年5月15日に出願された特願2018-093758号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program.
This application claims priority based on Japanese Patent Application No. 2018-093758 for which it applied on May 15, 2018, and uses the content here.
 エアコン等の空調用室内機で屋内の利用者に応じた空調を提供する場合には、利用者の位置を把握する必要がある。例えば、特許文献1には、屋内の温度分布を検出することにより、利用者の位置を推定する技術が開示されている。しかしながら、特許文献1に記載の技術では、屋内の全ての利用者の位置が推定される為、特定の利用者に応じた空調の提供に適していない可能性がある。 In the case of providing air conditioning according to indoor users with an indoor unit for air conditioning such as an air conditioner, it is necessary to grasp the position of the user. For example, Patent Document 1 discloses a technique for estimating the position of a user by detecting an indoor temperature distribution. However, the technique described in Patent Literature 1 estimates the positions of all indoor users, and may not be suitable for providing air conditioning according to a specific user.
 一方、GPS衛星を用いた位置推定方法と類似の位置推定方法を用いて利用者の位置を推定する技術が知られている。具体的には、特定の利用者が保持するスマートフォン等の端末から超音波を発し、空調用室内機の異なる位置に設けられた複数のマイク等の超音波センサで当該超音波を検知し、超音波センサの異なる各位置における超音波の到達時間差に基づいて利用者の位置を推定することができる。 On the other hand, a technique for estimating a user's position using a position estimation method similar to a position estimation method using a GPS satellite is known. Specifically, an ultrasonic wave is emitted from a terminal such as a smartphone held by a specific user, and the ultrasonic wave is detected by ultrasonic sensors such as a plurality of microphones provided at different positions of the air conditioning indoor unit. The position of the user can be estimated based on the arrival time difference of the ultrasonic wave at each different position of the acoustic wave sensor.
特開2001-304655号公報JP 2001-304655 A
 しかしながら、上述した技術では、音源である利用者の位置が空調用室内機から遠くに位置するほど、検知した超音波の到達時間差に含まれる誤差による影響が大きくなり、利用者の位置を正確に推定できない可能性がある。 However, in the above-described technology, the farther the position of the user as the sound source is from the indoor unit for air conditioning, the greater the influence of the error included in the arrival time difference of the detected ultrasonic wave, and the more accurate the position of the user is. There is a possibility that it cannot be estimated.
 従って、空調用室内機の利用者の位置を正確に推定することが可能な技術が望まれている。本発明の目的は、空調用室内機の利用者の位置を正確に推定することが可能な空調制御装置、空調制御システム、空調制御方法、及びプログラムを提供することにある。 Therefore, a technique capable of accurately estimating the position of the user of the air conditioning indoor unit is desired. An object of the present invention is to provide an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program capable of accurately estimating the position of a user of an air conditioning indoor unit.
 本発明の第1の態様によれば、利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御装置は、前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理部と、前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出部と、前記到達時間差に基づいて前記端末の端末位置を推定する位置推定部と、前記端末位置に基づいて前記空調用室内機を制御する室内機制御部と、を備える。 According to the first aspect of the present invention, the air conditioning control device that controls the indoor unit for air conditioning according to the terminal position of the terminal held by the user is the first ultrasonic sensor provided in the indoor unit for air conditioning. And an ultrasonic detection processing unit that detects ultrasonic waves emitted from the terminal through a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit, and the first ultrasonic wave An arrival time difference calculating unit that calculates an arrival time difference that is a difference between a time at which the ultrasonic wave is detected by the sensor and a time at which the ultrasonic wave is detected by the second ultrasonic sensor; and based on the arrival time difference, A position estimation unit that estimates a terminal position; and an indoor unit control unit that controls the indoor unit for air conditioning based on the terminal position.
 本発明の第2の態様によれば、空調制御システムは、第1の態様に係る空調制御装置と、前記端末と、前記空調用室内機と、前記第1の超音波センサと、前記第2の超音波センサと、を備える。 According to the second aspect of the present invention, the air conditioning control system includes the air conditioning control device according to the first aspect, the terminal, the air conditioning indoor unit, the first ultrasonic sensor, and the second. And an ultrasonic sensor.
 本発明の第3の態様によれば、第2の態様に係る空調制御システムにおいて、前記第2の超音波センサは、前記空調用室内機を遠隔操作する遠隔操作装置に設けられている。 According to the third aspect of the present invention, in the air conditioning control system according to the second aspect, the second ultrasonic sensor is provided in a remote control device that remotely operates the indoor unit for air conditioning.
 本発明の第4の態様によれば、第2の態様に係る空調制御システムにおいて、前記第2の超音波センサは、蛍光灯に設けられている。 According to the fourth aspect of the present invention, in the air conditioning control system according to the second aspect, the second ultrasonic sensor is provided in the fluorescent lamp.
 本発明の第5の態様によれば、第2の態様に係る空調制御システムは、前記空調用室内機とは別の空調用室内機を備え、前記第2の超音波センサは、前記別の空調用室内機に設けられている。 According to the fifth aspect of the present invention, the air conditioning control system according to the second aspect includes an air conditioning indoor unit different from the air conditioning indoor unit, and the second ultrasonic sensor is It is provided in an indoor unit for air conditioning.
 本発明の第6の態様によれば、第2の態様から第5の態様のいずれかの態様に係る空調制御システムにおいて、前記位置推定部は、ルックアップテーブルを参照して、前記到達時間差に基づいて前記端末の端末位置を推定する。 According to a sixth aspect of the present invention, in the air conditioning control system according to any one of the second to fifth aspects, the position estimation unit refers to a lookup table and determines the arrival time difference. Based on this, the terminal position of the terminal is estimated.
 本発明の第7の態様によれば、第2の態様から第5の態様のいずれかの態様に係る空調制御システムにおいて、前記位置推定部は、前記第1の超音波センサ及び前記第2の超音波センサの位置と、前記到達時間差とに基づいて、前記端末の端末位置を推定する。 According to a seventh aspect of the present invention, in the air conditioning control system according to any one of the second aspect to the fifth aspect, the position estimation unit includes the first ultrasonic sensor and the second ultrasonic sensor. The terminal position of the terminal is estimated based on the position of the ultrasonic sensor and the arrival time difference.
 本発明の第8の態様によれば、第7の態様に係る空調制御システムにおいて、前記第1の超音波センサは、前記空調用室内機の異なる位置に設けられた複数の超音波センサを含み、前記超音波検知処理部は、前記第1の超音波センサを通じて、前記第2の超音波センサから発せられた超音波を検知し、前記到達時間差算出部は、前記第1の超音波センサの前記複数の超音波センサで前記超音波を検出した各時刻の差である設定用到達時間差を算出し、前記位置推定部は、前記第1の超音波センサの前記複数の超音波センサの位置と、前記設定用到達時間差とに基づいて前記第2の超音波センサの位置を推定する。 According to an eighth aspect of the present invention, in the air conditioning control system according to the seventh aspect, the first ultrasonic sensor includes a plurality of ultrasonic sensors provided at different positions of the indoor unit for air conditioning. The ultrasonic detection processing unit detects the ultrasonic wave emitted from the second ultrasonic sensor through the first ultrasonic sensor, and the arrival time difference calculating unit is configured to detect the first ultrasonic sensor. A setting arrival time difference, which is a difference between times at which the ultrasonic waves are detected by the plurality of ultrasonic sensors, is calculated, and the position estimation unit includes the positions of the plurality of ultrasonic sensors of the first ultrasonic sensor. The position of the second ultrasonic sensor is estimated based on the setting arrival time difference.
 本発明の第9の態様によれば、空調制御方法は、利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御方法であって、前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理ステップと、前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出ステップと、前記到達時間差に基づいて前記端末の端末位置を推定する位置推定ステップと、前記端末位置に基づいて前記空調用室内機を制御する室内機制御ステップと、を有する。 According to the ninth aspect of the present invention, an air conditioning control method is an air conditioning control method for controlling an air conditioning indoor unit according to a terminal position of a terminal held by a user, and is provided in the air conditioning indoor unit. An ultrasonic detection processing step of detecting an ultrasonic wave emitted from the terminal through a first ultrasonic sensor and a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit; An arrival time difference calculating step of calculating an arrival time difference which is a difference between a time when the ultrasonic wave is detected by the first ultrasonic sensor and a time when the ultrasonic wave is detected by the second ultrasonic sensor; A position estimation step of estimating the terminal position of the terminal based on the time difference; and an indoor unit control step of controlling the indoor unit for air conditioning based on the terminal position.
 本発明の第9の態様によれば、プログラムは、利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御装置のコンピュータに、前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理ステップと、前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出ステップと、前記到達時間差に基づいて前記端末の端末位置を推定する位置推定ステップと、前記端末位置に基づいて前記空調用室内機を制御する室内機制御ステップと、を実行させる。 According to the ninth aspect of the present invention, a program is provided in a computer of an air conditioning control device that controls an indoor unit for air conditioning according to a terminal position of a terminal held by a user. An ultrasonic detection processing step of detecting ultrasonic waves emitted from the terminal through one ultrasonic sensor and a second ultrasonic sensor provided at a position different from the position of the air conditioning indoor unit; An arrival time difference calculating step of calculating an arrival time difference that is a difference between a time when the ultrasonic wave is detected by the first ultrasonic sensor and a time when the ultrasonic wave is detected by the second ultrasonic sensor; And a position estimation step of estimating the terminal position of the terminal based on the terminal position, and an indoor unit control step of controlling the air conditioning indoor unit based on the terminal position.
 上記態様のうち少なくとも1つの態様によれば、空調用室内機の利用者の位置を正確に推定することができる。 According to at least one of the above aspects, the position of the user of the air conditioning indoor unit can be accurately estimated.
第1の実施形態に係る空調制御システムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the air-conditioning control system which concerns on 1st Embodiment. 第1の実施形態に係る空調制御装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the air-conditioning control apparatus which concerns on 1st Embodiment. 比較例としての従来の空調制御システムを説明する第1の説明図である。It is the 1st explanatory view explaining the conventional air-conditioning control system as a comparative example. 比較例としての従来の空調制御システムを説明する第2の説明図である。It is the 2nd explanatory view explaining the conventional air-conditioning control system as a comparative example. 比較例としての従来の空調制御システムを説明する第3の説明図である。It is the 3rd explanatory view explaining the conventional air-conditioning control system as a comparative example. 第1の実施形態に係る空調制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning control apparatus which concerns on 1st Embodiment. 第2の実施形態に係る空調制御システムの全体構成を示す構成図である。It is a block diagram which shows the whole structure of the air-conditioning control system which concerns on 2nd Embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.
<第1の実施形態>
(空調制御システムの全体構成)
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1の実施形態に係る空調制御システム1の全体構成を示す概略図である。第1の実施形態に係る空調制御システム1は、例えば、図書館、大型店舗、倉庫、工場等、利用者が存在する室内空間Wに用いられることを想定している。しかし、他の実施形態においては、空調制御システム1は上記のような使用態様に限定されない。
<First Embodiment>
(Overall configuration of air conditioning control system)
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing an overall configuration of an air conditioning control system 1 according to the first embodiment. The air conditioning control system 1 according to the first embodiment is assumed to be used in an indoor space W where a user exists, such as a library, a large store, a warehouse, a factory, and the like. However, in other embodiment, the air-conditioning control system 1 is not limited to the above usage.
 図1に示すように、第1の実施形態に係る空調制御システム1は、空調制御装置10と、空調用室内機20と、遠隔操作装置30と、利用者が保持する端末40と、マイクM1~M5とを含む。 As shown in FIG. 1, the air conditioning control system 1 according to the first embodiment includes an air conditioning control device 10, an air conditioning indoor unit 20, a remote control device 30, a terminal 40 held by a user, and a microphone M1. To M5.
 空調制御装置10は、利用者の位置に応じて環境(温度、湿度、風量等)が最適となるように空調用室内機20を制御する。 The air conditioning control device 10 controls the indoor unit 20 for air conditioning so that the environment (temperature, humidity, air volume, etc.) is optimized according to the position of the user.
 空調用室内機20は、利用者が存在する室内空間Wの天井等に設置され、空調制御装置10による制御指令に従って、室内空間Wの環境を調整する為の各種動作を行う。第1の実施形態では、空調用室内機20が天井埋め込み式の業務用空調用室内機である場合について説明するが、空調用室内機20は、天井埋め込み式以外の外付け式等の空調用室内機であってもよいし、業務用以外の家庭用等のその他の用途の空調用室内機であってもよい。 The indoor unit 20 for air conditioning is installed on the ceiling or the like of the indoor space W where the user exists, and performs various operations for adjusting the environment of the indoor space W according to a control command from the air conditioning control device 10. In the first embodiment, a description will be given of a case where the air conditioning indoor unit 20 is a ceiling embedded type commercial air conditioning indoor unit. However, the air conditioning indoor unit 20 is an air conditioning type other than the ceiling embedded type. It may be an indoor unit or an indoor unit for air conditioning for other uses such as home use other than business use.
 遠隔操作装置(リモコン)30は、ボタン押下等により空調用室内機20の環境設定を遠隔操作する装置である。第1の実施形態に係る遠隔操作装置30は、室内空間Wの壁に設けられており、有線で空調制御装置10に接続されている。しかしながら、遠隔操作装置30は、無線で空調制御装置10に接続されていてもよい。 The remote operation device (remote control) 30 is a device for remotely operating the environmental setting of the air conditioning indoor unit 20 by pressing a button or the like. The remote control device 30 according to the first embodiment is provided on the wall of the indoor space W, and is connected to the air conditioning control device 10 by wire. However, the remote control device 30 may be connected to the air conditioning control device 10 wirelessly.
 端末40は、所定の周波数の超音波Sを発することのできる音源である。第1の実施形態では、端末40がスマートフォン等の情報処理装置である場合について説明するが、端末40は、タブレット型の情報処理装置、腕時計型の情報処理装置等のように音源となり得るその他の機器であってもよい。第1の実施形態では、端末40であるスマートフォンは、保持する利用者の位置を特定させる為に定期的に所定の超音波Sを発する。なお、端末40は、例えば、非定期的に所定の超音波Sを発してもよい。また、端末40は、例えば、空調制御装置10が空調用室内機20の制御に用いる情報(例えば、利用者が要求する環境(温度、湿度、風量等)の情報)を超音波Sに重畳させて発してもよい。 The terminal 40 is a sound source that can emit an ultrasonic wave S of a predetermined frequency. In the first embodiment, a case where the terminal 40 is an information processing apparatus such as a smartphone will be described. However, the terminal 40 may be a sound source such as a tablet-type information processing apparatus or a wristwatch-type information processing apparatus. It may be a device. In 1st Embodiment, the smart phone which is the terminal 40 emits the predetermined ultrasonic wave S regularly in order to make a user's position to hold | maintain identify. Note that the terminal 40 may emit a predetermined ultrasonic wave S non-periodically, for example. Further, the terminal 40 superimposes, for example, information used by the air conditioning control device 10 for controlling the indoor unit 20 for air conditioning (for example, information on the environment (temperature, humidity, air volume, etc.) requested by the user) on the ultrasonic wave S. May be issued.
 マイクM1~M5は、端末40が発した超音波Sを検知可能な超音波センサである。第1の実施形態では、第1の超音波センサとして4つのマイクM1~M4が空調用室内機20の異なる位置に各々設けられている。即ち、第1の超音波センサは、4つのマイクM1~M4を含む。図1に示すように、4つのマイクM1~M4は、空調用室内機20の室内空間Wに向く面の四隅に各々設けられている。なお、第1の超音波センサは、4以外の数のマイク(超音波センサ)を含んでよい。 The microphones M1 to M5 are ultrasonic sensors that can detect the ultrasonic wave S emitted from the terminal 40. In the first embodiment, four microphones M1 to M4 are provided at different positions of the air conditioning indoor unit 20 as first ultrasonic sensors. That is, the first ultrasonic sensor includes four microphones M1 to M4. As shown in FIG. 1, the four microphones M1 to M4 are respectively provided at the four corners of the surface of the air conditioning indoor unit 20 facing the indoor space W. The first ultrasonic sensor may include a number of microphones (ultrasonic sensors) other than four.
 第1の実施形態では、第2の超音波センサとして1つのマイクM5が遠隔操作装置30に設けられている。即ち、第2の超音波センサ(マイクM5)は、空調用室内機20の位置とは異なる位置に設けられている。なお、第2の超音波センサは、1以外の数のマイク(超音波センサ)を含んでよい。また、第1の実施形態では、第2の超音波センサが、遠隔操作装置30に設けられている場合について説明するが、第2の超音波センサは、例えば、蛍光灯等、室内空間Wのその他の機器に設けられていてもよい。 In the first embodiment, one microphone M5 is provided in the remote operation device 30 as the second ultrasonic sensor. That is, the second ultrasonic sensor (microphone M5) is provided at a position different from the position of the air conditioning indoor unit 20. The second ultrasonic sensor may include a number of microphones (ultrasonic sensors) other than one. Moreover, although 1st Embodiment demonstrates the case where the 2nd ultrasonic sensor is provided in the remote control apparatus 30, a 2nd ultrasonic sensor is the indoor space W, such as a fluorescent lamp, for example It may be provided in other devices.
(空調制御装置の機能構成)
 図2は、第1の実施形態に係る空調制御装置10の機能構成を示すブロック図である。
 なお、図2には、空調制御装置10の機能を説明する為に、空調制御装置10とマイクM1~M5との接続構成も示されている。
(Functional configuration of air conditioning control device)
FIG. 2 is a block diagram illustrating a functional configuration of the air conditioning control device 10 according to the first embodiment.
FIG. 2 also shows a connection configuration between the air conditioning control device 10 and the microphones M1 to M5 in order to explain the functions of the air conditioning control device 10.
 空調制御装置10は、超音波検知処理部100と、到達時間差算出部110と、位置推定部120と、室内機制御部130と、記憶部140と、を備える。 The air conditioning control device 10 includes an ultrasonic detection processing unit 100, an arrival time difference calculation unit 110, a position estimation unit 120, an indoor unit control unit 130, and a storage unit 140.
 超音波検知処理部100は、利用者が保持する端末40から発せられた超音波Sを、マイクM1~M5を通じて検知するように構成されている。図2に示すように、マイクM1~M4で検知された超音波Sは、各々、空調用室内機20内に設けられた増幅器A1~A4、フィルタF1~F4、及びコンパレータC1~C4で順に処理される。さらに、その処理結果(検知結果)が、各々、Ch1~Ch4から超音波検知処理部100に入力される。同様にマイクM5で検知された超音波Sは、遠隔操作装置30内に設けられた増幅器A5、フィルタF5、及びコンパレータC5で順に処理され、その処理結果(検知結果)がCh5から超音波検知処理部100に入力される。 The ultrasonic detection processing unit 100 is configured to detect the ultrasonic wave S emitted from the terminal 40 held by the user through the microphones M1 to M5. As shown in FIG. 2, the ultrasonic waves S detected by the microphones M1 to M4 are sequentially processed by amplifiers A1 to A4, filters F1 to F4, and comparators C1 to C4 provided in the air conditioning indoor unit 20, respectively. Is done. Further, the processing results (detection results) are input to the ultrasonic detection processing unit 100 from Ch1 to Ch4, respectively. Similarly, the ultrasonic wave S detected by the microphone M5 is sequentially processed by the amplifier A5, the filter F5, and the comparator C5 provided in the remote control device 30, and the processing result (detection result) is converted from Ch5 to ultrasonic detection processing. Input to the unit 100.
 増幅器A1~A5は、マイクM1~M5が検知した超音波Sの信号を増幅する。フィルタF1~F5は、増幅された超音波Sの信号から、所定の周波数の成分だけを抽出する。所定の周波数は、端末40が発する超音波Sの周波数に合わせて、例えば、5kHz等と予め規定されている。コンパレータC1~C5は、所定の周波数の成分が抽出されたか否かを判定し、抽出されていない場合には検出なしを示す第1の信号を出力する。所定の周波数の成分が抽出された場合には、コンパレータC1~C5は、検出有りを示す第2の信号を出力する。第1の実施形態では、第1の信号の信号レベルが第2の信号の信号レベルより高い場合について説明するが、互いに区別できる信号であれば、第1の信号と第2の信号として任意の信号を用いてよい。 Amplifiers A1 to A5 amplify ultrasonic S signals detected by the microphones M1 to M5. The filters F1 to F5 extract only a component having a predetermined frequency from the amplified ultrasonic wave S signal. The predetermined frequency is defined in advance as, for example, 5 kHz according to the frequency of the ultrasonic wave S emitted from the terminal 40. The comparators C1 to C5 determine whether or not a component having a predetermined frequency has been extracted, and if not, output a first signal indicating no detection. When a component having a predetermined frequency is extracted, the comparators C1 to C5 output a second signal indicating the presence of detection. In the first embodiment, the case where the signal level of the first signal is higher than the signal level of the second signal will be described. However, any signal can be used as the first signal and the second signal as long as the signals can be distinguished from each other. A signal may be used.
 超音波検知処理部100は、マイクM1~M5を通じて端末40から発せられた超音波Sを検知すると、各マイクM1~M5により超音波Sを検知した時刻を到達時間差算出部110に入力する。具体的には、コンパレータC1~C5から入力される信号が第1の信号から第2の信号に切替わった時刻を到達時間差算出部110に入力する。他の実施形態では、超音波検知処理部100が、切替わった時刻を到達時間差算出部110に直接的に入力せずに、記憶部140に記憶してもよい。この場合、到達時間差算出部110が記憶された各時刻を記憶部140から取得する。 When detecting the ultrasonic wave S emitted from the terminal 40 through the microphones M1 to M5, the ultrasonic detection processing unit 100 inputs the time when the ultrasonic wave S is detected by each of the microphones M1 to M5 to the arrival time difference calculating unit 110. Specifically, the time when the signals input from the comparators C1 to C5 are switched from the first signal to the second signal is input to the arrival time difference calculation unit 110. In another embodiment, the ultrasonic detection processing unit 100 may store the switched time in the storage unit 140 without directly inputting the time to the arrival time difference calculation unit 110. In this case, the arrival time difference calculation unit 110 acquires each time stored from the storage unit 140.
 到達時間差算出部110は、マイクM1~M5のうちのマイクM5(第2の超音波センサ)を基準として、基準となるマイクM5が超音波Sを検出した時刻と、他の4つのマイクM1~M4(第1の超音波センサ)が超音波Sを検出した時刻との差、即ち、超音波SがマイクM5に到達する時刻と、マイクM1~M4に到達する時刻との時間差(到達時間差)を算出する。到達時間差算出部110は、算出した到達時間差を位置推定部120に入力する。 The arrival time difference calculation unit 110 uses the microphone M5 (second ultrasonic sensor) of the microphones M1 to M5 as a reference, the time when the reference microphone M5 detects the ultrasonic wave S, and the other four microphones M1 to M5. The difference between the time when the ultrasonic wave S is detected by the M4 (first ultrasonic sensor), that is, the time difference between the time when the ultrasonic wave S reaches the microphone M5 and the time when it reaches the microphones M1 to M4 (arrival time difference). Is calculated. The arrival time difference calculation unit 110 inputs the calculated arrival time difference to the position estimation unit 120.
 位置推定部120は、到達時間差算出部110が算出した到達時間差に基づいて、超音波Sが発された端末40の端末位置を推定する。位置推定部120は、推定結果を室内機制御部130に入力する。 The position estimation unit 120 estimates the terminal position of the terminal 40 from which the ultrasonic wave S is emitted based on the arrival time difference calculated by the arrival time difference calculation unit 110. The position estimation unit 120 inputs the estimation result to the indoor unit control unit 130.
 室内機制御部130は、推定された端末位置に基づいて空調用室内機20を制御する。具体的には、推定された端末位置に端末40を保持する利用者が存在するものとして、環境(温度、湿度、風量等)が最適となるように空調用室内機20を制御する。 The indoor unit control unit 130 controls the air conditioning indoor unit 20 based on the estimated terminal position. Specifically, the air conditioner indoor unit 20 is controlled so that the environment (temperature, humidity, air volume, etc.) is optimal, assuming that there is a user holding the terminal 40 at the estimated terminal position.
 記憶部140は、位置推定部120が端末40の端末位置を推定する際に用いる、到達時間差と推定される端末位置との対応表であるルックアップテーブル(LUT)を記憶する。このルックアップテーブルは、マイクM1~M4(第1の超音波センサ)の位置及びマイクM5(第2の超音波センサ)の位置と、音速、距離、及び到達時間の関係(d=vt、dは距離、vは音速、tは到達時間)とから、計算により予め作成することができる。なお、音速は温度によって変化するので、室内空間Wの温度毎のルックアップテーブルを作成し、記憶部140に記憶しておいてもよい。 The storage unit 140 stores a lookup table (LUT) that is a correspondence table between the arrival time difference and the estimated terminal position, which is used when the position estimating unit 120 estimates the terminal position of the terminal 40. This lookup table shows the relationship between the positions of the microphones M1 to M4 (first ultrasonic sensor) and the position of the microphone M5 (second ultrasonic sensor), the sound speed, the distance, and the arrival time (d = vt, d Is a distance, v is a speed of sound, and t is an arrival time). Note that since the speed of sound changes depending on the temperature, a lookup table for each temperature of the indoor space W may be created and stored in the storage unit 140.
(比較例としての従来の空調制御システム)
 図3~図5を用いて、第1の実施形態に係る空調制御システム1との比較例としての従来の空調制御システムを説明する。図3~図5は、各々、比較例としての従来の空調制御システムを説明する第1~第3の説明図である。
 比較例としての従来の空調制御システムは、第1の実施形態に係る空調制御システム1と同様にマイクM1~M4(第1の超音波センサ)を備えているが、空調制御システム1とは異なり、マイクM5(第2の超音波センサ)を備えていない。
(Conventional air conditioning control system as a comparative example)
A conventional air conditioning control system as a comparative example with the air conditioning control system 1 according to the first embodiment will be described with reference to FIGS. 3 to 5. 3 to 5 are first to third explanatory views for explaining a conventional air conditioning control system as a comparative example, respectively.
A conventional air conditioning control system as a comparative example includes microphones M1 to M4 (first ultrasonic sensors) as in the air conditioning control system 1 according to the first embodiment, but is different from the air conditioning control system 1. The microphone M5 (second ultrasonic sensor) is not provided.
 図3は、図1に示す空調用室内機20と同様にマイクM1~M4を備えた従来の空調用室内機において、マイクM1及びM4と、利用者が保持する端末40との位置関係を示す。
 従来の空調制御システムは、第1の実施形態に係る空調制御システム1と同様に、利用者の保持する端末40から発せられた超音波Sが各マイクM1~M4に到達する各時刻の時間差(到達時間差)に基づいて利用者の位置を推定する。しかしながら、従来の空調制御システムでは、第1の実施形態に係る空調制御システム1とは異なり、4つのマイクM1~M4だけを用いて利用者の位置推定を行う。なお、以下では、図3~図5を用いて、4つのマイクM1~M4のうち、互いの距離が最も離れているマイクM1及びM4を例にして説明する。これは、マイク間の距離が最も離れている場合に、利用者の位置の推定に用いる超音波Sの到達時間差の検出誤差の許容範囲が最大となるからである。
FIG. 3 shows the positional relationship between the microphones M1 and M4 and the terminal 40 held by the user in the conventional air conditioning indoor unit provided with the microphones M1 to M4 as in the air conditioning indoor unit 20 shown in FIG. .
In the conventional air conditioning control system, as in the air conditioning control system 1 according to the first embodiment, the time difference between the times at which the ultrasonic waves S emitted from the terminal 40 held by the user reach the microphones M1 to M4 ( The user's position is estimated based on the arrival time difference. However, unlike the air conditioning control system 1 according to the first embodiment, the conventional air conditioning control system estimates the position of the user using only four microphones M1 to M4. In the following, with reference to FIGS. 3 to 5, the microphones M1 and M4 that are the farthest from each other among the four microphones M1 to M4 will be described as an example. This is because, when the distance between the microphones is farthest, the allowable range of detection error of the arrival time difference of the ultrasonic wave S used for estimating the position of the user is maximized.
 図3の横軸xは、従来の空調用室内機(の水平方向の中心位置)を基準とする水平方向の位置x(m)を示す。即ち、従来の空調用室内機(の水平方向の中心位置)から端末40までの水平方向の距離がx(m)である。また、図3の縦軸zは、端末40からの鉛直方向の高さ(m)を示す。 The horizontal axis x in FIG. 3 indicates a horizontal position x (m) based on a conventional air conditioning indoor unit (the horizontal center position thereof). That is, the distance in the horizontal direction from the conventional indoor unit for air conditioning (the center position in the horizontal direction) to the terminal 40 is x (m). 3 indicates the vertical height (m) from the terminal 40.
 図3に示す例では、端末40からの従来の空調用室内機の鉛直方向の高さが1.5(m)であり、マイクM1とM4との水平方向の距離が1.19(m)である。図3には、端末40が位置x(m)が0(m)、1(m)、及び5(m)に存在する例が示されている。図3では、超音波Sが端末40からマイクM1及びM4に進行する経路が点線で示されている。 In the example shown in FIG. 3, the vertical height of the conventional air conditioning indoor unit from the terminal 40 is 1.5 (m), and the horizontal distance between the microphones M1 and M4 is 1.19 (m). It is. FIG. 3 shows an example in which the terminal 40 exists at positions x (m) at 0 (m), 1 (m), and 5 (m). In FIG. 3, a path through which the ultrasonic wave S travels from the terminal 40 to the microphones M1 and M4 is indicated by a dotted line.
 図4は、図3に示す端末40の位置x(m)を変化させた場合における、端末40からマイクM1及びM4に超音波Sが到達する時間の差(到達時間差)を具体的に計算した計算結果を示す。
 図4に示すように、端末40の位置x(m)が決まると、端末40からマイクM1までの距離(m)が決まるので、超音波Sが端末40からマイクM1まで到達するのに必要な到達時間t1(ms)が音速から計算できる。同様に、端末40からマイクM4までの距離(m)が決まるので、超音波Sが端末40からマイクM4まで到達するのに必要な到達時間t4(ms)が音速から計算できる。
FIG. 4 specifically calculates the difference (arrival time difference) in which the ultrasonic waves S reach the microphones M1 and M4 from the terminal 40 when the position x (m) of the terminal 40 shown in FIG. 3 is changed. The calculation result is shown.
As shown in FIG. 4, when the position x (m) of the terminal 40 is determined, the distance (m) from the terminal 40 to the microphone M1 is determined, so that the ultrasonic wave S is necessary to reach the microphone M1 from the terminal 40. The arrival time t1 (ms) can be calculated from the sound speed. Similarly, since the distance (m) from the terminal 40 to the microphone M4 is determined, the arrival time t4 (ms) required for the ultrasonic wave S to reach the microphone M4 from the terminal 40 can be calculated from the sound speed.
 従って、超音波SがマイクM1まで到達するのに要する到達時間t1(ms)と、マイクM4まで到達するのに要する到達時間t4(ms)との時間差である到達時間差Δt41(ms)は、Δt41=t4-t1と計算できる。
 実際に制御に用いる到達時間差Δt41(ms)は、図5に示すように、従来の空調用室内機が、マイクM1及びM4で各々超音波Sを検出した検出時刻t1及びt4から算出する。なお、図5の横軸は時間を示し、縦軸は信号レベルを示す。即ち、図5では、信号レベルの上がった時刻が、超音波Sの検出時刻を示している。
Therefore, the arrival time difference Δt41 (ms), which is the time difference between the arrival time t1 (ms) required for the ultrasonic wave S to reach the microphone M1 and the arrival time t4 (ms) required to reach the microphone M4, is Δt41. = T4-t1.
As shown in FIG. 5, the arrival time difference Δt41 (ms) actually used for control is calculated from detection times t1 and t4 when the conventional air conditioning indoor unit detects the ultrasonic waves S with the microphones M1 and M4, respectively. In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates the signal level. That is, in FIG. 5, the time when the signal level has increased indicates the detection time of the ultrasonic wave S.
 図4には、端末40の位置x(m)が0、1、2、3、4、5、及び6(m)である場合の到達時間差Δt41(ms)の計算結果が記載されている。例えば、図4に示す到達時間差Δt41(ms)の計算結果から分かるように、端末40の位置x(m)が0(m)である場合と、1(m)である場合とでは、到達時間差Δt41(ms)が1.29(ms)異なっている。これに対し、端末40の位置x(m)が4(m)である場合と、5(m)である場合とでは、到達時間差Δt41(ms)が、0.05(ms)しか異なっていない。これは、端末40が位置4(m)にある場合、図5に示す検出時刻が0.05(ms)ずれるだけで位置推定誤差が1(m)になることを意味する。0.05(ms)は、20(kHz)の1周期分に相当する。 FIG. 4 shows the calculation result of the arrival time difference Δt41 (ms) when the position x (m) of the terminal 40 is 0, 1, 2, 3, 4, 5, and 6 (m). For example, as can be seen from the calculation result of the arrival time difference Δt41 (ms) shown in FIG. 4, the arrival time difference between the case where the position x (m) of the terminal 40 is 0 (m) and the case where it is 1 (m). Δt41 (ms) is different by 1.29 (ms). On the other hand, the arrival time difference Δt41 (ms) differs only by 0.05 (ms) when the position x (m) of the terminal 40 is 4 (m) and when it is 5 (m). . This means that when the terminal 40 is at the position 4 (m), the position estimation error becomes 1 (m) only by the detection time shown in FIG. 5 being deviated by 0.05 (ms). 0.05 (ms) corresponds to one cycle of 20 (kHz).
 さらに、端末40の位置x(m)が5(m)である場合と、6(m)である場合とでは、到達時間差Δt41(ms)が、0.03(ms)しか異なっていない。このことから、図3に示すようにマイクM1とM4との間の距離が1.19(m)である条件で、端末40の位置5(m)で±1(m)の精度を得る為には、到達時間差Δt41(ms)の誤差を僅か0.03(ms)以内に抑える必要があることが分かる。0.03(ms)は、20(kHz)の0.6周期分に相当する。 Furthermore, the arrival time difference Δt41 (ms) differs only by 0.03 (ms) when the position x (m) of the terminal 40 is 5 (m) and 6 (m). Therefore, in order to obtain an accuracy of ± 1 (m) at the position 5 (m) of the terminal 40 under the condition that the distance between the microphones M1 and M4 is 1.19 (m) as shown in FIG. It is understood that it is necessary to suppress the error of the arrival time difference Δt41 (ms) within only 0.03 (ms). 0.03 (ms) corresponds to 0.6 periods of 20 (kHz).
 以上、説明したように、従来の空調制御システムでは、1台の空調用室内機が備える4つのマイクM1~M4だけを用いて利用者の位置推定を行う為、位置推定に必要な所定の精度(例えば、±1(m))を達成しようとする場合には、到達時間差Δt41の検出誤差の許容範囲が非常に狭く厳しくなる。特に、端末40が空調用室内機から遠くに位置すればするほど検出誤差の許容範囲が非常に狭く厳しくなる。 As described above, in the conventional air conditioning control system, since the position of the user is estimated using only the four microphones M1 to M4 provided in one air conditioning indoor unit, the predetermined accuracy required for the position estimation is obtained. When trying to achieve (for example, ± 1 (m)), the allowable range of detection error of the arrival time difference Δt41 becomes very narrow and strict. In particular, the farther the terminal 40 is located from the indoor unit for air conditioning, the narrower and stricter the allowable range of detection error becomes.
(空調制御システムの処理フロー)
 図6は、第1の実施形態に係る空調制御装置10の動作を示すフローチャートである。
 図6を用いて第1の実施形態に係る空調制御装置10の動作を説明する。
(Processing flow of air conditioning control system)
FIG. 6 is a flowchart showing the operation of the air conditioning control device 10 according to the first embodiment.
Operation | movement of the air-conditioning control apparatus 10 which concerns on 1st Embodiment is demonstrated using FIG.
 図6に示す処理フローが開始すると、超音波検知処理部100が、第1の超音波センサと第2の超音波センサとを通じて端末40から発せられた超音波Sを検知する(ステップS101)。
 具体的には、以下の手順で検知処理を行う。利用者が保持する端末40から発せられた超音波Sを各マイクM1~M5が検知すると、検知した超音波Sの信号が増幅器A1~A5で増幅され、次に、フィルタF1~F5で増幅された超音波Sの信号から所定の周波数成分が抽出される。コンパレータC1~C5は、所定の周波数成分が抽出されたか否かに応じて第1の信号又は第2の信号を超音波検知処理部100に入力する。
When the processing flow shown in FIG. 6 starts, the ultrasonic detection processing unit 100 detects the ultrasonic wave S emitted from the terminal 40 through the first ultrasonic sensor and the second ultrasonic sensor (step S101).
Specifically, the detection process is performed according to the following procedure. When the microphones M1 to M5 detect the ultrasonic waves S emitted from the terminal 40 held by the user, the signals of the detected ultrasonic waves S are amplified by the amplifiers A1 to A5, and then amplified by the filters F1 to F5. A predetermined frequency component is extracted from the ultrasonic S signal. The comparators C1 to C5 input the first signal or the second signal to the ultrasonic detection processing unit 100 depending on whether or not a predetermined frequency component has been extracted.
 即ち、マイクM1~M5で所定の周波数の超音波Sを検知していない状態では、コンパレータC1~C5は、超音波検知処理部100に第1の信号を入力しているが、マイクM1~M5で所定の周波数の超音波Sを検知し、所定の周波数成分が抽出された場合には、コンパレータC1~C5は、超音波検知処理部100に第2の信号を入力する。 That is, in a state where the ultrasonic waves S of a predetermined frequency are not detected by the microphones M1 to M5, the comparators C1 to C5 input the first signal to the ultrasonic detection processing unit 100, but the microphones M1 to M5. When the ultrasonic wave S having a predetermined frequency is detected and a predetermined frequency component is extracted, the comparators C1 to C5 input the second signal to the ultrasonic wave detection processing unit 100.
 従って、超音波検知処理部100は、コンパレータC1~C5から入力される信号が第1の信号から第2の信号に切替わった場合に、利用者の端末40から発せられた所定の周波数の超音波Sを検知したと判定し、その時刻を到達時間差算出部110に入力する。例えば、Ch5経由で入力される信号が時刻t5に第1の信号から第2の信号に切替わった場合、超音波検知処理部100は、マイクM5の受信時刻として時刻t5を到達時間差算出部110に入力する。同様に、Ch1~Ch4経由で入力される各信号が時刻t1~t4に第1の信号から第2の信号に切替わった場合、超音波検知処理部100は、マイクM1~M4の受信時刻として時刻t1~t4を各々、到達時間差算出部110に入力する。 Therefore, the ultrasonic detection processing unit 100, when the signal input from the comparators C1 to C5 is switched from the first signal to the second signal, has a predetermined frequency generated from the user terminal 40. It is determined that the sound wave S has been detected, and the time is input to the arrival time difference calculation unit 110. For example, when the signal input via Ch5 is switched from the first signal to the second signal at time t5, the ultrasonic detection processing unit 100 uses the time t5 as the reception time of the microphone M5, and the arrival time difference calculation unit 110. To enter. Similarly, when the signals input via Ch1 to Ch4 are switched from the first signal to the second signal at times t1 to t4, the ultrasonic detection processing unit 100 determines the reception times of the microphones M1 to M4. Times t1 to t4 are each input to arrival time difference calculation section 110.
 次に、到達時間差算出部110が、マイクM1~M4(第1の超音波センサ)で超音波Sを検出した時刻t1~t4とマイクM5(第2の超音波センサ)で超音波Sを検出した時刻t5との差である到達時間差を算出する(ステップS102)。
 例えば、到達時間差算出部110は、マイクM1(第1の超音波センサ)とマイクM5(第2の超音波センサ)との間の到達時間差としてΔt15(=t1-t5)を算出する。同様に、到達時間差算出部110は、マイクM2~M4(第1の超音波センサ)とマイクM5(第2の超音波センサ)との間の到達時間差として、各々、Δt25(=t2-t5)、Δt35(=t3-t5)、及びΔt45(=t4-t5)を算出する。到達時間差算出部110は、算出した到達時間差を位置推定部120に入力する。
Next, the arrival time difference calculation unit 110 detects the ultrasonic waves S from the times t1 to t4 when the ultrasonic waves S are detected by the microphones M1 to M4 (first ultrasonic sensors) and the microphones M5 (second ultrasonic sensors). An arrival time difference that is a difference from the time t5 is calculated (step S102).
For example, the arrival time difference calculation unit 110 calculates Δt15 (= t1−t5) as the arrival time difference between the microphone M1 (first ultrasonic sensor) and the microphone M5 (second ultrasonic sensor). Similarly, the arrival time difference calculation unit 110 sets Δt25 (= t2−t5) as arrival time differences between the microphones M2 to M4 (first ultrasonic sensor) and the microphone M5 (second ultrasonic sensor), respectively. , Δt35 (= t3−t5), and Δt45 (= t4−t5) are calculated. The arrival time difference calculation unit 110 inputs the calculated arrival time difference to the position estimation unit 120.
 次に、位置推定部120が、到達時間差に基づいて端末40の端末位置を推定する(ステップS103)。
 具体的には、位置推定部120は、記憶部140に記憶されているルックアップテーブルを参照し、到達時間差算出部110から入力された第1の超音波センサ(マイクM1~M4)と第2の超音波センサ(マイクM5)との間の到達時間差(Δt15、Δt25、Δt35、Δt45)から端末40の端末位置を推定する。なお、1つの到達時間差と対応する端末位置がルックアップテーブルに複数存在する場合がある為、第1の実施形態では、位置推定部120は、4つの到達時間差(Δt15、Δt25、Δt35、Δt45)に基づいて端末位置を推定する。しかしながら、他の実施形態では、1以上の任意の数の到達時間差に基づいて端末40の端末位置を推定してよい。位置推定部120は、推定した端末位置を室内機制御部130に入力する。
Next, the position estimation unit 120 estimates the terminal position of the terminal 40 based on the arrival time difference (step S103).
Specifically, the position estimation unit 120 refers to the lookup table stored in the storage unit 140, and the first ultrasonic sensor (microphones M1 to M4) input from the arrival time difference calculation unit 110 and the second Terminal position of the terminal 40 is estimated from arrival time differences (Δt15, Δt25, Δt35, Δt45) with respect to the ultrasonic sensor (microphone M5). Since there may be a plurality of terminal positions corresponding to one arrival time difference in the lookup table, in the first embodiment, the position estimation unit 120 has four arrival time differences (Δt15, Δt25, Δt35, Δt45). The terminal position is estimated based on However, in other embodiments, the terminal position of the terminal 40 may be estimated based on any number of arrival time differences of one or more. The position estimation unit 120 inputs the estimated terminal position to the indoor unit control unit 130.
 次に、室内機制御部130は、推定した端末位置に基づいて空調用室内機20を制御する(ステップS104)。具体的には、推定された端末位置に端末40を保持する利用者が存在するものとして、環境(温度、湿度、風量等)が最適となるように空調用室内機20を制御する。以上で、図6に示すフローは終了する。 Next, the indoor unit control unit 130 controls the air conditioning indoor unit 20 based on the estimated terminal position (step S104). Specifically, the air conditioner indoor unit 20 is controlled so that the environment (temperature, humidity, air volume, etc.) is optimal, assuming that there is a user holding the terminal 40 at the estimated terminal position. This is the end of the flow shown in FIG.
(作用・効果)
 以上、第1の実施形態に係る空調制御装置10(空調制御システム1)によれば、空調用室内機20に設けられた第1の超音波センサ(マイクM1~M4)だけでなく、空調用室内機20の位置とは異なる位置に設けられた第2の超音波センサ(マイクM5)を通じて、端末40から発せられた超音波Sを検知する。
 これにより、第1の超音波センサと第2の超音波センサとの距離を、空調用室内機20の大きさ等の制限なしに大きく且つ自由に設定できるので、空調用室内機20に設けられた第1の超音波センサだけで超音波Sを検知する場合よりも超音波Sの到達時間差の検出誤差の許容範囲を大きくすることができ、推定位置の精度を向上させることができる。従って、第1の実施形態に係る空調制御装置10(空調制御システム1)によれば、空調用室内機20の利用者の位置を正確に推定することができる。
(Action / Effect)
As described above, according to the air conditioning control device 10 (air conditioning control system 1) according to the first embodiment, not only the first ultrasonic sensors (microphones M1 to M4) provided in the air conditioning indoor unit 20 but also air conditioning. The ultrasonic wave S emitted from the terminal 40 is detected through a second ultrasonic sensor (microphone M5) provided at a position different from the position of the indoor unit 20.
As a result, the distance between the first ultrasonic sensor and the second ultrasonic sensor can be set large and freely without limitation of the size of the indoor unit 20 for air conditioning and the like. In addition, the allowable range of the detection error of the arrival time difference of the ultrasonic wave S can be increased as compared with the case where the ultrasonic wave S is detected only by the first ultrasonic sensor, and the accuracy of the estimated position can be improved. Therefore, according to the air conditioning control device 10 (air conditioning control system 1) according to the first embodiment, the position of the user of the air conditioning indoor unit 20 can be accurately estimated.
 さらに、第1の実施形態に係る空調制御システム1によれば、第2の超音波センサ(マイクM5)は、空調用室内機20を遠隔操作する遠隔操作装置30に設けられている。
 これにより、既存の遠隔操作装置30を用いることができるので、例えば、第2の超音波センサを単独で新たに設置する場合よりも設置費用及び設置スペースを低減できる。また、第2の超音波センサを容易に実装することが可能になる。
 なお、第1の実施形態に係る空調制御システム1において、第2の超音波センサは、蛍光灯に設けられてもよい。
 この場合、既存の設備である蛍光灯を用いることができるので、例えば、第2の超音波センサを単独で新たに設置する場合よりも設置費用及び設置スペースを低減できる。また、第2の超音波センサを容易に実装することが可能になる。
Furthermore, according to the air conditioning control system 1 according to the first embodiment, the second ultrasonic sensor (microphone M5) is provided in the remote operation device 30 that remotely operates the indoor unit 20 for air conditioning.
Thereby, since the existing remote control device 30 can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone. In addition, the second ultrasonic sensor can be easily mounted.
In the air conditioning control system 1 according to the first embodiment, the second ultrasonic sensor may be provided in a fluorescent lamp.
In this case, since the fluorescent lamp which is the existing equipment can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone. In addition, the second ultrasonic sensor can be easily mounted.
 さらに、第1の実施形態に係る空調制御システム1によれば、位置推定部120は、ルックアップテーブルを参照して、到達時間差に基づいて端末40の端末位置を推定する。
 これにより、位置推定部120は、ルックアップテーブルを参照するだけで端末40の端末位置を推定することができるので、空調制御システム1の処理負荷を軽減し、非常に高速に端末位置を推定することが可能になる。また、例えば、各種の条件(例えば、温度等)別のルックアップテーブルを予め作成しておくことで、端末位置をより正確に推定することができる。
Furthermore, according to the air conditioning control system 1 according to the first embodiment, the position estimation unit 120 estimates the terminal position of the terminal 40 based on the arrival time difference with reference to the lookup table.
Thereby, since the position estimation unit 120 can estimate the terminal position of the terminal 40 only by referring to the lookup table, the processing load of the air conditioning control system 1 is reduced and the terminal position is estimated very quickly. It becomes possible. In addition, for example, the terminal position can be estimated more accurately by creating a lookup table for each of various conditions (for example, temperature) in advance.
<第1の実施形態の変形例>
 以上、第1の実施形態に係る空調制御システム1について詳細に説明したが、空調制御システム1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
<Modification of First Embodiment>
As described above, the air conditioning control system 1 according to the first embodiment has been described in detail. However, specific modes of the air conditioning control system 1 are not limited to the above-described ones, and various types are possible without departing from the gist. It is possible to add design changes.
<第1の実施形態の第1の変形例>
 例えば、第1の実施形態に係る空調制御システム1において、図6のステップS103で、位置推定部120は、記憶部140に記憶されたルックアップテーブルを参照し、到達時間差算出部110から入力された第1の超音波センサ(マイクM1~M4)と第2の超音波センサ(マイクM5)との間の到達時間差から端末40の端末位置を推定するものとして説明した。
 ここで、第1の実施形態の第1の変形例として、位置推定部120は、ルックアップテーブルを用いずに、利用者の保持する端末40の端末位置を算出して推定してもよい。
<First Modification of First Embodiment>
For example, in the air conditioning control system 1 according to the first embodiment, the position estimation unit 120 is input from the arrival time difference calculation unit 110 with reference to the lookup table stored in the storage unit 140 in step S103 of FIG. In the above description, the terminal position of the terminal 40 is estimated from the arrival time difference between the first ultrasonic sensor (microphones M1 to M4) and the second ultrasonic sensor (microphone M5).
Here, as a first modification of the first embodiment, the position estimation unit 120 may calculate and estimate the terminal position of the terminal 40 held by the user without using a lookup table.
 例えば、位置推定部120は、GPS衛星から受信する電波の到達時間差に基づいて位置を推定する位置推定方法と類似の方法により、端末40の端末位置を推定してよい。
 GPS衛星を用いた位置推定方法では、連立方程式を解くことで受信機の位置を算出する。従って、GPS衛星を用いた位置推定方法の連立方程式において、送信側と受信側を入れ替えることにより、位置推定部120は、端末40の端末位置を推定することができる。
For example, the position estimation unit 120 may estimate the terminal position of the terminal 40 by a method similar to the position estimation method that estimates the position based on the arrival time difference of radio waves received from GPS satellites.
In the position estimation method using a GPS satellite, the position of the receiver is calculated by solving simultaneous equations. Therefore, in the simultaneous equations of the position estimation method using GPS satellites, the position estimation unit 120 can estimate the terminal position of the terminal 40 by switching the transmission side and the reception side.
 具体的には、異なる位置にある4つのマイク(例えば、マイクM1~M3(第1の超音波センサ)とマイクM5(第2の超音波センサ))の3次元座標をそれぞれ(X1、Y1、Z1)、(X2、Y2、Z2)、(X3、Y3、Z3)、及び(X4、Y4、Z4)とし、端末40の3次元座標を(x、y、z)とし、異なる位置にある4つのマイク(M1、M2、M3、及びM5)による電波Sの受信時刻をそれぞれt1、t2、t3、及びt4とし、端末40による電波の送信時刻をdとし、電波の速度をvとすると、以下の連立方程式が得られる。
f1=(x-X1)+(y-Y1)+(z-Z1)-(v(t1-d))=0f2=(x-X2)+(y-Y2)+(z-Z2)-(v(t2-d))=0f3=(x-X3)+(y-Y3)+(z-Z3)-(v(t3-d))=0f4=(x-X4)+(y-Y4)+(z-Z4)-(v(t4-d))=0
 端末40の位置(x、y、z)はこの方程式を解くことにより得られる。なお、この方程式の解は、ニュートン-ラプソン法等の近似計算を用いて求める。
Specifically, the three-dimensional coordinates of four microphones (for example, microphones M1 to M3 (first ultrasonic sensor) and microphone M5 (second ultrasonic sensor)) at different positions are respectively (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3), and (X4, Y4, Z4), and the three-dimensional coordinates of the terminal 40 are (x, y, z). When the reception time of the radio wave S by the two microphones (M1, M2, M3, and M5) is t1, t2, t3, and t4, the radio wave transmission time by the terminal 40 is d, and the radio wave speed is v, The simultaneous equations are obtained.
f1 = (x−X1) 2 + (y−Y1) 2 + (z−Z1) 2 − (v (t1-d)) 2 = 0f2 = (x−X2) 2 + (y−Y2) 2 + ( z−Z2) 2 − (v (t2−d)) 2 = 0f3 = (x−X3) 2 + (y−Y3) 2 + (z−Z3) 2 − (v (t3−d)) 2 = 0f4 = (X-X4) 2 + (y-Y4) 2 + (z-Z4) 2- (v (t4-d)) 2 = 0
The position (x, y, z) of the terminal 40 can be obtained by solving this equation. The solution of this equation is obtained by using an approximate calculation such as Newton-Raphson method.
 第1の実施形態の第1の変形例では、電波Sの受信時刻(t1、t2、t3、及びt4)と送信時刻dの代わりに、マイクM1~M3及びM5の到達時間差(Δt15、Δt25、Δt35)を用いて、上記方程式について近似計算することより、端末40の端末位置を推定する。
 なお、第1の超音波センサ及び第2の超音波センサの位置は、例えば、記憶部140に予め記憶しておいてよい。また、上述の説明では、4つのマイクがマイクM1~M3及びM5である場合について説明したが、4つのマイクは、マイクM1~M4(第1の超音波センサ)のうちの任意の3つのマイク(超音波センサ)とM5(第2の超音波センサ)であってもよい。
In the first modification of the first embodiment, instead of the reception time (t1, t2, t3, and t4) of the radio wave S and the transmission time d, the arrival time differences (Δt15, Δt25, The terminal position of the terminal 40 is estimated by performing an approximate calculation on the above equation using Δt35).
Note that the positions of the first ultrasonic sensor and the second ultrasonic sensor may be stored in advance in the storage unit 140, for example. In the above description, the case where the four microphones are the microphones M1 to M3 and M5 has been described. However, the four microphones are any three microphones of the microphones M1 to M4 (first ultrasonic sensor). (Ultrasonic sensor) and M5 (second ultrasonic sensor) may be used.
(作用・効果)
 以上、第1の実施形態の第1の変形例に係る空調制御システム1によれば、位置推定部120は、第1の超音波センサ及び第2の超音波センサの位置と、到達時間差とに基づいて、端末40の端末位置を推定する。
 これにより、到達時間差と推定される端末位置との対応表であるルックアップテーブルを予め作成して準備をする必要がなくなり、非常に容易に空調制御システム1を導入することが可能になる。
(Action / Effect)
As described above, according to the air conditioning control system 1 according to the first modification of the first embodiment, the position estimation unit 120 determines the positions of the first ultrasonic sensor and the second ultrasonic sensor and the arrival time difference. Based on this, the terminal position of the terminal 40 is estimated.
This eliminates the need to prepare and prepare a lookup table that is a correspondence table between the arrival time difference and the estimated terminal position, and allows the air conditioning control system 1 to be introduced very easily.
<第1の実施形態の第2の変形例>
 上述した第1の実施形態の第1の変形例に係る空調制御システム1において、位置推定部120が、端末40の端末位置を推定する際に用いる第1の超音波センサ及び第2の超音波センサの位置は、記憶部140に予め記憶しているものとして説明した。
 ここで、第1の実施形態の第2の変形例として、記憶部140には、第1の超音波センサの位置だけを記憶しておき、第2の超音波センサの位置は、端末40の端末位置を推定する手順と同様の手順で推定するようにしてもよい。
<Second Modification of First Embodiment>
In the air conditioning control system 1 according to the first modified example of the first embodiment described above, the first ultrasonic sensor and the second ultrasonic wave that are used when the position estimation unit 120 estimates the terminal position of the terminal 40. The position of the sensor has been described as being stored in the storage unit 140 in advance.
Here, as a second modification of the first embodiment, the storage unit 140 stores only the position of the first ultrasonic sensor, and the position of the second ultrasonic sensor is the position of the terminal 40. You may make it estimate in the procedure similar to the procedure which estimates a terminal position.
 即ち、遠隔操作装置30に設けられた第2の超音波センサ(マイクM5)から所定の周波数の超音波Sを発し、空調用室内機20の異なる位置に設けられた複数の超音波センサ(マイクM1~M4)を含む第1の超音波センサで超音波Sを検知し、第2の超音波センサ(マイクM5)の位置を推定してよい。 That is, a plurality of ultrasonic sensors (microphones) provided at different positions of the air conditioner indoor unit 20 are emitted from the second ultrasonic sensor (microphone M5) provided in the remote control device 30. The ultrasonic wave S may be detected by the first ultrasonic sensor including M1 to M4), and the position of the second ultrasonic sensor (microphone M5) may be estimated.
 具体的には、超音波検知処理部100が、第1の超音波センサ(マイクM1~M4)を通じて、第2の超音波センサ(マイクM5)から発せられた超音波Sを検知する。次に、到達時間差算出部110が、第1の超音波センサの複数の超音波センサ(マイクM1~M4)で超音波Sを検出した各時刻の差である到達時間差(設定用到達時間差)を算出する。次に、位置推定部120が、上述した第1の実施形態の第1の変形例で説明した位置推定方法と同様に、第1の超音波センサの複数の超音波センサ(マイクM1~M4)の位置と、設定用到達時間差とに基づいて第2の超音波センサ(マイクM5)の位置を推定する。 Specifically, the ultrasonic detection processing unit 100 detects the ultrasonic wave S emitted from the second ultrasonic sensor (microphone M5) through the first ultrasonic sensors (microphones M1 to M4). Next, the arrival time difference calculation unit 110 calculates an arrival time difference (setting arrival time difference) that is a difference between the times when the ultrasonic waves S are detected by the plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor. calculate. Next, the position estimation unit 120 uses a plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor, similarly to the position estimation method described in the first modification of the first embodiment described above. And the position of the second ultrasonic sensor (microphone M5) are estimated based on the difference between the positions and the setting arrival time difference.
(作用・効果)
 以上、第1の実施形態の第2の変形例に係る空調制御システム1によれば、位置推定部120は、第1の超音波センサの複数の超音波センサ(マイクM1~M4)の位置と、到達時間差(設定用到達時間差)とに基づいて、第2の超音波センサ(マイクM5)の位置を推定する。
 これにより、第2の超音波センサ(マイクM5)の位置を予め把握し、例えば、遠隔操作装置30を介して入力する等して、記憶部140に記憶させる必要がなくなる。また、遠隔操作装置30と共に第2の超音波センサ(マイクM5)の位置が移動された場合にも、第2の超音波センサ(マイクM5)の移動後の位置を正確に取得することができる。
(Action / Effect)
As described above, according to the air conditioning control system 1 according to the second modification of the first embodiment, the position estimation unit 120 is configured to detect the positions of the plurality of ultrasonic sensors (microphones M1 to M4) of the first ultrasonic sensor. Based on the arrival time difference (setting arrival time difference), the position of the second ultrasonic sensor (microphone M5) is estimated.
Thereby, it is not necessary to grasp the position of the second ultrasonic sensor (microphone M5) in advance and store it in the storage unit 140, for example, through the remote operation device 30. Further, even when the position of the second ultrasonic sensor (microphone M5) is moved together with the remote control device 30, the position after the movement of the second ultrasonic sensor (microphone M5) can be accurately acquired. .
<第2の実施形態>
 次に、第2の実施形態に係る空調制御システム1について、図7を参照しながら説明する。
 図7は、第2の実施形態に係る空調制御システム1の全体構成を示す概略図である。
<Second Embodiment>
Next, an air conditioning control system 1 according to the second embodiment will be described with reference to FIG.
FIG. 7 is a schematic diagram illustrating the overall configuration of the air conditioning control system 1 according to the second embodiment.
 図7に示すように、第2の実施形態に係る空調制御システム1は、空調用室内機20とは別の空調用室内機21を備えている。空調用室内機21は、空調用室内機20と同様に構成され、空調用室内機21には、4つのマイクM5~M7(第2の超音波センサ)が設けられている。 As shown in FIG. 7, the air conditioning control system 1 according to the second embodiment includes an air conditioning indoor unit 21 different from the air conditioning indoor unit 20. The air conditioning indoor unit 21 is configured in the same manner as the air conditioning indoor unit 20, and the air conditioning indoor unit 21 is provided with four microphones M5 to M7 (second ultrasonic sensors).
 即ち、第2の実施形態に係る空調制御システム1は、別の空調用室内機21を含む点と、第2の超音波センサが、遠隔操作装置30ではなく、空調用室内機21に設けられている点だけが、第1の実施形態に係る空調制御システム1と相異する。その他の点については、特に言及する場合を除き、第2の実施形態に係る空調制御システム1は、第1の実施形態に係る空調制御システム1と同様に構成されて機能するので説明を省略する。 That is, in the air conditioning control system 1 according to the second embodiment, the point including another air conditioning indoor unit 21 and the second ultrasonic sensor are provided in the air conditioning indoor unit 21 instead of the remote operation device 30. Only the difference is the air conditioning control system 1 according to the first embodiment. Regarding the other points, unless otherwise noted, the air conditioning control system 1 according to the second embodiment is configured and functions in the same manner as the air conditioning control system 1 according to the first embodiment, and thus description thereof is omitted. .
 なお、第2の実施形態では、第2の超音波センサが4つのマイクM5~M8を含むが、そのうちの一部(例えば、マイクM5)だけを第2の超音波センサとして機能させてもよい。 In the second embodiment, the second ultrasonic sensor includes four microphones M5 to M8, but only a part (for example, the microphone M5) may function as the second ultrasonic sensor. .
(作用・効果)
 以上、第2の実施形態に係る空調制御システム1によれば、空調制御システム1が空調用室内機20とは別の空調用室内機21を備え、第2の超音波センサ(マイクM5~M8)は、別の空調用室内機21に設けられている。
 これにより、既存の空調用室内機21を用いることができるので、例えば、第2の超音波センサを単独で新たに設置する場合よりも設置費用及び設置スペースを低減できる。また、第2の超音波センサを容易に実装することが可能になる。
 さらに、空調制御装置10は、推定された端末位置に基づいて、空調用室内機20だけでなく、別の空調用室内機21についても環境(温度、湿度、風量等)が最適となるように制御することができるので、非常に効率的に制御を行うことができる。
 さらに、例えば、空調用室内機20に設けられた第1の超音波センサに複数のマイク(M1~M4)が含まれ、且つ空調用室内機21に設けられた第2の超音波センサに複数のマイク(M5~M8)が含まれる場合には、マイク同士の多数の組合せから得られる多数の到達時間差に基づいて、空調用室内機20の利用者の位置をより正確に推定することができる。
(Action / Effect)
As described above, according to the air conditioning control system 1 according to the second embodiment, the air conditioning control system 1 includes the air conditioning indoor unit 21 different from the air conditioning indoor unit 20, and the second ultrasonic sensors (microphones M5 to M8). ) Is provided in another indoor unit 21 for air conditioning.
Thereby, since the existing air conditioning indoor unit 21 can be used, for example, the installation cost and the installation space can be reduced as compared with the case where the second ultrasonic sensor is newly installed alone. In addition, the second ultrasonic sensor can be easily mounted.
Furthermore, the air-conditioning control apparatus 10 optimizes the environment (temperature, humidity, air volume, etc.) not only for the air conditioning indoor unit 20 but also for another air conditioning indoor unit 21 based on the estimated terminal position. Since it can control, it can control very efficiently.
Further, for example, the first ultrasonic sensor provided in the air conditioning indoor unit 20 includes a plurality of microphones (M1 to M4), and the second ultrasonic sensor provided in the air conditioning indoor unit 21 includes a plurality of microphones. If the microphones (M5 to M8) are included, the position of the user of the air conditioning indoor unit 20 can be estimated more accurately based on a number of arrival time differences obtained from a number of combinations of microphones. .
 図8は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ9は、CPU91、主記憶装置92、補助記憶装置93、インタフェース94を備える。
 上述の空調制御装置10は、コンピュータ9を備える。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置93に記憶されている。CPU91は、プログラムを補助記憶装置93から読み出して主記憶装置92に展開し、当該プログラムに従って上記処理を実行する。例えば、上述した超音波検知処理部100と、到達時間差算出部110と、位置推定部120と、室内機制御部130は、CPU91であってよい。
 また、CPU91は、プログラムに従って、上述した各データベースに対応する記憶領域を主記憶装置92または補助記憶装置93に確保する。例えば、上述した記憶部140が、主記憶装置92または補助記憶装置93に確保されてよい。
FIG. 8 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
The computer 9 includes a CPU 91, a main storage device 92, an auxiliary storage device 93, and an interface 94.
The air conditioning control device 10 described above includes a computer 9. The operation of each processing unit described above is stored in the auxiliary storage device 93 in the form of a program. The CPU 91 reads out the program from the auxiliary storage device 93 and develops it in the main storage device 92, and executes the above processing according to the program. For example, the ultrasonic detection processing unit 100, the arrival time difference calculation unit 110, the position estimation unit 120, and the indoor unit control unit 130 described above may be the CPU 91.
Further, the CPU 91 secures a storage area corresponding to each database described above in the main storage device 92 or the auxiliary storage device 93 according to the program. For example, the storage unit 140 described above may be secured in the main storage device 92 or the auxiliary storage device 93.
 補助記憶装置93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置93は、コンピュータ9のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ9に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ9に配信される場合、配信を受けたコンピュータ9が当該プログラムを主記憶装置92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置93は、一時的でない有形の記憶媒体である。 Examples of the auxiliary storage device 93 include an HDD (Hard Disk Drive), an SSD (Solid State Drive), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Versatile Disc Read Only. Memory), semiconductor memory, and the like. The auxiliary storage device 93 may be an internal medium directly connected to the bus of the computer 9 or an external medium connected to the computer 9 via the interface 94 or a communication line. When this program is distributed to the computer 9 through a communication line, the computer 9 that has received the distribution may develop the program in the main storage device 92 and execute the above processing. In at least one embodiment, the auxiliary storage device 93 is a tangible storage medium that is not temporary.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 93.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and gist of the invention.
 上記空調制御装置、空調制御システム、空調制御方法、及びプログラムによれば、空調用室内機の利用者の位置を正確に推定することができる。 According to the air conditioning control device, the air conditioning control system, the air conditioning control method, and the program, the position of the user of the air conditioning indoor unit can be accurately estimated.
1 空調制御システム
9 コンピュータ
10 空調制御装置
20 空調用室内機
21 (別の)空調用室内機
30 遠隔操作装置(リモコン)
40 端末
91 CPU
92 主記憶装置
93 補助記憶装置
94 インタフェース
100 超音波検知処理部
110 到達時間差算出部
120 位置推定部
130 室内機制御部
140 記憶部
A1~A5 増幅器
C1~C5 コンパレータ
F1~F5 フィルタ
M1~M4 マイク(第1の超音波センサ)
M5~M8 マイク(第2の超音波センサ)
S 超音波
W 室内空間
1 Air-conditioning control system 9 Computer 10 Air-conditioning control device 20 Air-conditioning indoor unit 21 (Another) Air-conditioning indoor unit 30 Remote operation device (remote control)
40 terminal 91 CPU
92 Main storage device 93 Auxiliary storage device 94 Interface 100 Ultrasonic detection processing unit 110 Arrival time difference calculation unit 120 Position estimation unit 130 Indoor unit control unit 140 Storage units A1 to A5 Amplifiers C1 to C5 Comparator F1 to F5 Filters M1 to M4 Microphone ( First ultrasonic sensor)
M5 to M8 microphone (second ultrasonic sensor)
S Ultrasonic wave W Indoor space

Claims (10)

  1.  利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御装置であって、
     前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理部と、
     前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出部と、
     前記到達時間差に基づいて前記端末の端末位置を推定する位置推定部と、
     前記端末位置に基づいて前記空調用室内機を制御する室内機制御部と、
     を備える空調制御装置。
    An air conditioning control device that controls an indoor unit for air conditioning according to a terminal position of a terminal held by a user,
    The ultrasonic wave emitted from the terminal is transmitted through a first ultrasonic sensor provided in the indoor unit for air conditioning and a second ultrasonic sensor provided at a position different from the position of the indoor unit for air conditioning. An ultrasonic detection processing unit to detect;
    An arrival time difference calculating unit for calculating an arrival time difference that is a difference between a time at which the ultrasonic wave is detected by the first ultrasonic sensor and a time at which the ultrasonic wave is detected by the second ultrasonic sensor;
    A position estimation unit that estimates a terminal position of the terminal based on the arrival time difference;
    An indoor unit control unit that controls the indoor unit for air conditioning based on the terminal position;
    An air conditioning control device.
  2.  請求項1に記載の空調制御装置と、
     前記端末と、
     前記空調用室内機と、
     前記第1の超音波センサと、
     前記第2の超音波センサと、
    を備える空調制御システム。
    An air conditioning control device according to claim 1;
    The terminal;
    The indoor unit for air conditioning;
    The first ultrasonic sensor;
    The second ultrasonic sensor;
    An air conditioning control system.
  3.  前記第2の超音波センサは、前記空調用室内機を遠隔操作する遠隔操作装置に設けられている請求項2に記載の空調制御システム。 The air conditioning control system according to claim 2, wherein the second ultrasonic sensor is provided in a remote operation device that remotely operates the indoor unit for air conditioning.
  4.  前記第2の超音波センサは、蛍光灯に設けられている請求項2に記載の空調制御システム。 The air conditioning control system according to claim 2, wherein the second ultrasonic sensor is provided in a fluorescent lamp.
  5.  前記空調用室内機とは別の空調用室内機を備え、
     前記第2の超音波センサは、前記別の空調用室内機に設けられている請求項2に記載の空調制御システム。
    An air conditioning indoor unit different from the air conditioning indoor unit,
    The air conditioning control system according to claim 2, wherein the second ultrasonic sensor is provided in the another indoor unit for air conditioning.
  6.  前記位置推定部は、ルックアップテーブルを参照して、前記到達時間差に基づいて前記端末の端末位置を推定する請求項2から請求項5のいずれか一項に記載の空調制御システム。 The air conditioning control system according to any one of claims 2 to 5, wherein the position estimation unit estimates a terminal position of the terminal based on the arrival time difference with reference to a lookup table.
  7.  前記位置推定部は、前記第1の超音波センサ及び前記第2の超音波センサの位置と、前記到達時間差とに基づいて、前記端末の端末位置を推定する請求項2から請求項5のいずれか一項に記載の空調制御システム。 The said position estimation part estimates the terminal position of the said terminal based on the position of the said 1st ultrasonic sensor and the said 2nd ultrasonic sensor, and the said arrival time difference, Any of the Claims 2-5 The air conditioning control system according to claim 1.
  8.  前記第1の超音波センサは、前記空調用室内機の異なる位置に設けられた複数の超音波センサを含み、
     前記超音波検知処理部は、前記第1の超音波センサを通じて、前記第2の超音波センサから発せられた超音波を検知し、
     前記到達時間差算出部は、前記第1の超音波センサの前記複数の超音波センサで前記超音波を検出した各時刻の差である設定用到達時間差を算出し、
     前記位置推定部は、前記第1の超音波センサの前記複数の超音波センサの位置と、前記設定用到達時間差とに基づいて前記第2の超音波センサの位置を推定する
     請求項7に記載の空調制御システム。
    The first ultrasonic sensor includes a plurality of ultrasonic sensors provided at different positions of the indoor unit for air conditioning,
    The ultrasonic detection processing unit detects ultrasonic waves emitted from the second ultrasonic sensor through the first ultrasonic sensor,
    The arrival time difference calculation unit calculates a setting arrival time difference that is a difference between times at which the ultrasonic waves are detected by the plurality of ultrasonic sensors of the first ultrasonic sensor,
    The position estimation unit estimates the position of the second ultrasonic sensor based on the positions of the plurality of ultrasonic sensors of the first ultrasonic sensor and the setting arrival time difference. Air conditioning control system.
  9.  利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御方法であって、
     前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理ステップと、
     前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出ステップと、
     前記到達時間差に基づいて前記端末の端末位置を推定する位置推定ステップと、
     前記端末位置に基づいて前記空調用室内機を制御する室内機制御ステップと、
     を有する空調制御方法。
    An air conditioning control method for controlling an air conditioning indoor unit according to a terminal position of a terminal held by a user,
    The ultrasonic wave emitted from the terminal is transmitted through a first ultrasonic sensor provided in the indoor unit for air conditioning and a second ultrasonic sensor provided at a position different from the position of the indoor unit for air conditioning. An ultrasonic detection processing step to detect;
    An arrival time difference calculating step of calculating an arrival time difference that is a difference between a time at which the ultrasonic wave is detected by the first ultrasonic sensor and a time at which the ultrasonic wave is detected by the second ultrasonic sensor;
    A position estimation step of estimating a terminal position of the terminal based on the arrival time difference;
    An indoor unit control step for controlling the indoor unit for air conditioning based on the terminal position;
    An air conditioning control method.
  10.  利用者が保持する端末の端末位置に応じて空調用室内機を制御する空調制御装置のコンピュータに、
     前記空調用室内機に設けられた第1の超音波センサと、前記空調用室内機の位置とは異なる位置に設けられた第2の超音波センサとを通じて、前記端末から発せられた超音波を検知する超音波検知処理ステップと、
     前記第1の超音波センサで前記超音波を検出した時刻と前記第2の超音波センサで前記超音波を検出した時刻との差である到達時間差を算出する到達時間差算出ステップと、
     前記到達時間差に基づいて前記端末の端末位置を推定する位置推定ステップと、
     前記端末位置に基づいて前記空調用室内機を制御する室内機制御ステップと、
     を実行させるプログラム。
    In the computer of the air conditioning control device that controls the indoor unit for air conditioning according to the terminal position of the terminal held by the user,
    The ultrasonic wave emitted from the terminal is transmitted through a first ultrasonic sensor provided in the indoor unit for air conditioning and a second ultrasonic sensor provided at a position different from the position of the indoor unit for air conditioning. An ultrasonic detection processing step to detect;
    An arrival time difference calculating step of calculating an arrival time difference that is a difference between a time at which the ultrasonic wave is detected by the first ultrasonic sensor and a time at which the ultrasonic wave is detected by the second ultrasonic sensor;
    A position estimation step of estimating a terminal position of the terminal based on the arrival time difference;
    An indoor unit control step for controlling the indoor unit for air conditioning based on the terminal position;
    A program that executes
PCT/JP2019/017010 2018-05-15 2019-04-22 Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program WO2019220874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19804565.0A EP3792564B1 (en) 2018-05-15 2019-04-22 Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program
CN201980046567.3A CN112400085B (en) 2018-05-15 2019-04-22 Air conditioning control device, air conditioning control system, air conditioning control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093758 2018-05-15
JP2018093758A JP7063716B2 (en) 2018-05-15 2018-05-15 Air conditioning control device, air conditioning control system, air conditioning control method, and program

Publications (1)

Publication Number Publication Date
WO2019220874A1 true WO2019220874A1 (en) 2019-11-21

Family

ID=68540192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017010 WO2019220874A1 (en) 2018-05-15 2019-04-22 Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program

Country Status (4)

Country Link
EP (1) EP3792564B1 (en)
JP (1) JP7063716B2 (en)
CN (1) CN112400085B (en)
WO (1) WO2019220874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165902A (en) * 2021-11-25 2022-03-11 北京正源物联科技有限公司 Control device and method for air conditioning equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304655A (en) 2000-04-26 2001-10-31 Mitsubishi Electric Corp Human body detection device and air conditioner
JP2006084150A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Air-conditioning system
JP2008032272A (en) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd Control system
JP2010134367A (en) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp Electric equipment
JP2017514139A (en) * 2014-04-25 2017-06-01 フィリップス ライティング ホールディング ビー ヴィ Zone-based lighting access
JP2018093758A (en) 2016-12-09 2018-06-21 株式会社サタケ Microorganism examination method and device therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241208A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Position detecting method for remote controller, and air conditioner using it
JP5426235B2 (en) * 2009-05-27 2014-02-26 パナソニック株式会社 Air conditioner
WO2013108243A1 (en) * 2012-01-18 2013-07-25 Weisman Israel Hybrid-based system and method for indoor localization
KR20140123237A (en) * 2013-04-12 2014-10-22 (주)한양세미텍 System for estimating location of indoor object
JP5975973B2 (en) * 2013-12-10 2016-08-23 三菱電機株式会社 Air conditioning control device and air conditioning system
CN103698747A (en) * 2013-12-12 2014-04-02 中国科学院自动化研究所 Frequency division type ultrasonic positioning system and method
WO2016157384A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air blowing system
JP2019015414A (en) * 2017-07-03 2019-01-31 三菱重工サーマルシステムズ株式会社 Air conditioning control device, environment setting terminal, air conditioning control method, and program
CN107656244A (en) * 2017-08-24 2018-02-02 南京安璞信息技术有限公司 Based on the critical indoor locating system and method for listening domain ultrasonic wave reaching time-difference

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304655A (en) 2000-04-26 2001-10-31 Mitsubishi Electric Corp Human body detection device and air conditioner
JP2006084150A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Air-conditioning system
JP2008032272A (en) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd Control system
JP2010134367A (en) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp Electric equipment
JP2017514139A (en) * 2014-04-25 2017-06-01 フィリップス ライティング ホールディング ビー ヴィ Zone-based lighting access
JP2018093758A (en) 2016-12-09 2018-06-21 株式会社サタケ Microorganism examination method and device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792564A4

Also Published As

Publication number Publication date
EP3792564A1 (en) 2021-03-17
CN112400085A (en) 2021-02-23
CN112400085B (en) 2022-04-19
JP7063716B2 (en) 2022-05-09
EP3792564B1 (en) 2024-07-03
JP2019199982A (en) 2019-11-21
EP3792564A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
KR100785794B1 (en) Node and clustering for localization and localization method
EP2681581B1 (en) Rssi-based indoor positioning in the presence of dynamic transmission power control access points
TWI549549B (en) Method for mobile device position detection and the mobile devices and computer-readable storage medium thereof
WO2017047133A1 (en) Computer-readable program, audio controller, and wireless audio system
US10051412B2 (en) Locational information transmission system, locational information transmission apparatus, and information processing device
KR101453651B1 (en) System and method for the automatic indoor positioning system using global and local position information
JP6852856B2 (en) Control device, control method, control program
KR102281655B1 (en) In-vehicle wireless communication management system and method for controlling thereof
US20180216953A1 (en) Audio-guided navigation device
CN105850158B (en) Information processing device, information processing method, target terminal, communication method, and program
WO2019220874A1 (en) Air-conditioning control device, air-conditioning control system, air-conditioning control method, and program
KR20190021957A (en) Method and apparatus for positioning terminal moving indoors
KR101581619B1 (en) Sound Collecting Terminal, Sound Providing Terminal, Sound Data Processing Server and Sound Data Processing System using thereof
KR101168743B1 (en) microphone module, apparatus for measuring location of sound source using the module and method thereof
JP2014200064A (en) Broadcast system sound output controller and method for controlling sound output
CN111226125B (en) Air conditioning system and air conditioning control method
EP2963439B1 (en) Indoor position information providing apparatus, position notifier apparatus and program
TW201621273A (en) Mobile positioning apparatus and positioning method thereof
JP2014197771A (en) Broadcast system sound output controller and method for controlling sound output
EP3116272A1 (en) Locating method and device
JP7215567B2 (en) SOUND RECOGNITION DEVICE, SOUND RECOGNITION METHOD, AND PROGRAM
JP2007166448A (en) Radio communication system and base station switching apparatus
KR102013438B1 (en) Method and apparatus for spatial filtering using difference between PROPAGATION Delay of electromagnetic signal and ACOUSTIC signal
US9816817B2 (en) Method for estimating location of user terminal using difference between true north and magnetic north and the user terminal thereof
Nakamura et al. Indoor localization using multiple stereo speakers for smartphones.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019804565

Country of ref document: EP

Effective date: 20201215