WO2019220534A1 - 誘電加熱装置および誘電加熱電極 - Google Patents
誘電加熱装置および誘電加熱電極 Download PDFInfo
- Publication number
- WO2019220534A1 WO2019220534A1 PCT/JP2018/018756 JP2018018756W WO2019220534A1 WO 2019220534 A1 WO2019220534 A1 WO 2019220534A1 JP 2018018756 W JP2018018756 W JP 2018018756W WO 2019220534 A1 WO2019220534 A1 WO 2019220534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- dielectric heating
- signal source
- ground plane
- frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/46—Dielectric heating
- H05B6/62—Apparatus for specific applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/46—Dielectric heating
- H05B6/54—Electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/46—Dielectric heating
- H05B6/48—Circuits
Definitions
- the present invention relates to a dielectric heating device and a dielectric heating electrode for heating an object to be heated between the electrodes.
- Patent Document 1 discloses an apparatus that heats an object to be heated between opposing electrodes, in which at least one of the electrodes is a conductive material formed on the heat insulating material and the outer surface of the heat insulating material.
- a high-frequency dielectric heating device is described that includes a deformable electrode that has a membrane and abuts against the object to be heated. The high-frequency dielectric heating device enables heating to be performed uniformly and in a short time, and suppresses local temperature rise in the inside and surface of the heating target.
- the present invention has been made to solve the above-described problems, and in a small dielectric heating device, suppresses a decrease in heating efficiency with respect to a heating target, and avoids the configuration of the dielectric heating device from becoming a high temperature state.
- the purpose is to do.
- the dielectric heating device includes two or more electrodes, a ground plane connected to an arbitrary electrode, a signal source that is connected to an electrode other than the electrodes connected to the ground plane, and outputs a high-frequency signal;
- the high-frequency signal output from the signal source by electrical or magnetic coupling between two terminals that are arranged in series between the signal source and the electrode connected to the signal source and are not connected by metal in the element
- the high frequency signal output from the signal source is output to the ground plane by electrical coupling of the two terminals, arranged in series between the first element that passes through and the ground plane and the electrode connected to the ground plane.
- the present invention in a small dielectric heating device, it is possible to suppress the heat from moving from the object to be heated to the constituent circuit and the ground plane through the electrode and the like, and to suppress the heating efficiency from being lowered. Moreover, since it is suppressed that a heat
- FIG. 1 It is a block diagram of the dielectric heating apparatus of the invention which concerns on Embodiment 1.
- FIG. It is a figure which shows the other structural example of the dielectric heating apparatus of the invention which concerns on Embodiment 1.
- FIG. It is a figure which shows the other structural example of the dielectric heating apparatus of the invention which concerns on Embodiment 1.
- FIG. It is a block diagram of the dielectric heating apparatus of the invention which concerns on Embodiment 2.
- FIG. It is a figure which shows the other structural example of the dielectric heating apparatus of the invention which concerns on Embodiment 2.
- FIG. It is a block diagram of the dielectric heating apparatus of the invention which concerns on Embodiment 3.
- FIG. It is a block diagram of the dielectric heating apparatus of the invention which concerns on Embodiment 4.
- FIG. It is the other block diagram of the dielectric heating apparatus of the invention which concerns on Embodiment 1 to Embodiment 4.
- FIG. It is the other block diagram of the dielectric heating apparatus of the
- FIG. 1 is a configuration diagram of a dielectric heating device 100 of the invention according to the first embodiment.
- the dielectric heating device 100 is composed of a dielectric heating electrode 1, a signal source 2, and a ground plane 3, and is an unbalanced circuit connected by unbalanced line paths.
- the dielectric heating electrode 1 includes an electrode 10 and a high-frequency passage heat insulating element 11 that allows only a high-frequency signal to pass therethrough and prevents heat transfer.
- the high-frequency passage heat insulating element 11 has two terminals, i.e., two terminals i and ii.
- the terminal i and the terminal ii do not have a metal continuous structure, and the respective conductors of the terminal i and the terminal ii are in a non-contact structure. Moreover, heat transfer is suppressed by having a heat insulating material with high thermal resistance between the metal of the terminal i and the terminal ii.
- the terminal i and the terminal ii allow only high-frequency signals to pass through by electrical coupling with metal. Since the two terminals are not metallicly continuous, the DC component is not allowed to pass.
- Specific devices include a capacitor, a transformer, a coupler, and the like.
- the degree of electrical coupling between the terminal i and the terminal ii is sufficiently strong, and all signals input from the terminal i are output from the terminal ii without being attenuated and input from the terminal ii. It is assumed that the signal is output from the terminal i without being attenuated. In addition, it is assumed that the thermal resistance between the terminal i and the terminal ii is very high, the heat input from the terminal i does not move to the terminal ii, and the heat input from the terminal ii does not move to the terminal i.
- the dielectric heating device 100 is a small device, and the metal having the largest area in the dielectric heating device 100 and a sufficiently large area with respect to the electrodes 10a and 10b. Is the ground plane 3. Therefore, it is assumed that the relative value of the heat capacity of the ground plane 3 is larger than the heat capacity of the electrodes 10a and 10b and the heating target X. On the other hand, since the entire dielectric heating device 100 is small, the absolute value of the heat capacity of the ground plane 3 is assumed to be small.
- the ground plane 3 can be set as appropriate.
- the dielectric heating device 100 shown in FIG. 1 includes two dielectric heating electrodes 1 a and 1 b, a signal source 2 and a ground plane 3.
- the electrode 10a and the terminal i of the high-frequency passage heat insulation element (first element) 11a are connected by a metal wiring, and one of the signal sources 2 and the terminal ii of the high-frequency passage heat insulation element 11a are metal wiring. Connected by.
- the electrode 10b and the terminal i of the high-frequency passage heat insulation element (second element) 11b are connected by a metal wiring, and the terminal ii of the high-frequency passage heat insulation element 11b is connected to the ground plane 3 and the metal wiring.
- the other of the signal sources 2 is connected to the ground plane 3.
- a high frequency signal is output from the signal source 2.
- the output high frequency signal is input to the terminal ii of the high frequency passage heat insulating element 11a.
- the high frequency passage heat insulating element 11a outputs the high frequency signal input from the terminal ii without being attenuated from the terminal i.
- the high frequency signal output from the terminal i is transmitted to the electrode 10a.
- the high-frequency passage heat insulating element 11b outputs a high-frequency signal input from the terminal i through the electrode 10a and the electrode 10b from the terminal ii.
- the voltage applied by the electrode 10a heats the heating target X, and the temperature of the heated heating target X rises.
- the heat generated in the heating target X moves to the electrodes 10a and 10b, and the electrodes 10a and 10b are heated.
- the heat of the electrodes 10a and 10b heats the terminal i of the high-frequency heat insulating elements 11a and 11b through the metal wiring.
- the high-frequency heat insulating elements 11a and 11b since the terminal i and the terminal ii are only electrically coupled, the heat transfer between the terminal i and the terminal ii is suppressed, and the heat does not move toward the terminal ii.
- the dielectric heating apparatus 100 can heat the heating target X efficiently.
- the dielectric heating apparatus 100 is not provided with the high-frequency heat insulating element 11a, the heat transferred from the heating object X to the electrode 10a moves to the ground plane 3 through the signal source 2. Further, when the high-frequency heat insulating element 11b is not provided, the heat transferred from the heating target X to the electrode 10b moves directly to the ground plane 3. Since the ground plane 3 is the metal having the largest area in the heating object X or the dielectric heating device 100, the heat capacity of the ground plane 3 is larger than the heat capacity of the heating object X. The heating efficiency is deteriorated by the movement of heat to the ground plane 3 via the electrode 10a or the electrode 10b.
- the ground plane 3 is the widest metal in the dielectric heating device 100, the heat capacity as an absolute value is not large. Therefore, when the temperature of the heating target X becomes a high temperature of 100 ° C. or higher, the temperature of the ground plane 3 itself also increases due to heat transfer. When the heat of the ground plane 3 moves to the signal source 2, the temperature of the entire dielectric heating device 100 rises and the life of the dielectric heating device 100 is deteriorated.
- the dielectric heating device 100 includes a high-frequency passage heat insulating element 11a that passes only a high-frequency signal in series with the electrode 10a and the signal source 2 and prevents heat transfer, and the electrode 10b A high-frequency heat insulating element 11 b is arranged in series with the ground plane 3. Accordingly, heat transfer to both the signal source 2 and the ground plane 3 can be suppressed without blocking high-frequency transmission, and the heating efficiency of the dielectric heating device with respect to the heating target X can be increased.
- the high-frequency heat insulating element 11a suppresses the direct heat transfer to the signal source 2 through the electrode 10a, thereby preventing the temperature of the signal source 2 from rising and heat to the ground plane 3 through the signal source 2.
- the high-frequency passage heat insulating element 11b prevents the heat transfer to the ground plane 3 by suppressing the heat transfer to the ground plane 3 via the electrode 10b. Thereby, since the operating temperature of the signal source 2 which is a constituent circuit can be kept low, deterioration due to high temperature is suppressed, and the life of the dielectric heating device 100 can be extended.
- FIG. 1 shows an example in which two dielectric heating electrodes 1a and 1b are provided, the number of dielectric heating electrodes can be set as appropriate as long as the number is two or more.
- FIGS. 2 and 3 are diagrams showing another configuration example of the dielectric heating device of the invention according to Embodiment 1.
- FIG. The high-frequency-pass heat insulating elements 11a and 11b of the dielectric heating device 100A shown in FIG. 2 are configured to include a dielectric having a high thermal resistance and a high dielectric constant between two metals, improving the heat insulating performance, and the terminals i and ii. This enhances the high frequency pass attenuation characteristics.
- the high-frequency heat insulating elements 11a and 11b shown in FIG. 2 are configured as a capacitor or a coupler constituted by the element electrode 30a and the element electrode 30b and the dielectric 32a, and are constituted by the element electrode 31a, the element electrode 31b, and the dielectric 32b. Capacitor or coupler.
- the terminal i and the element electrodes 30a and 31b are connected, and the terminal ii and the element electrodes 31a and 30b are connected.
- the element electrodes 30a and 30b and the element electrodes 31a and 31b are configured to sandwich the dielectrics 32a and 32b.
- the high-frequency heat insulating elements 11a and 11b of the dielectric heating device 100B shown in FIG. 3 show a case where the element electrode 30a, the element electrode 30b, and the element electrodes 31a and 31b have a comb-shaped electrode structure having a plurality of protrusions. Yes.
- the protruding portion of the element electrode 30b and the protruding portion of the element electrode 31b are alternately fitted so that the protruding portion of the element electrode 30a and the protruding portion of the element electrode 31a are alternately fitted.
- It is arranged and configured as follows.
- the high-frequency passage heat insulating elements 11a and 11b can increase the electrode area by adopting the comb-shaped electrode structure shown in FIG. Thereby, since the electrical or magnetic coupling between the element electrode 30a and the element electrode 31a and between the element electrode 30b and the element electrode 31b is increased, it is possible to realize a small high-frequency passage heat insulating element 11.
- the high-frequency passage heat insulating elements 11a and 11b are each provided with two element electrodes 31a and 31b.
- the number of electrodes can be set as appropriate as long as the number of electrodes is two or more.
- two or more electrodes 10a and 10b, the ground plane 3 connected to the arbitrary electrode 10b, and the electrodes 10a other than the electrodes connected to the ground plane 3 are connected. Electrical coupling between two terminals that are arranged in series between the signal source 2 that outputs a high-frequency signal and the electrode 10a connected to the signal source 2 and not connected with metal in the element Alternatively, two terminals i are arranged in series between the high-frequency passage heat insulating element 11a that passes a high-frequency signal output from the signal source 2 by magnetic coupling and the ground plane 3 and the electrode 2 connected to the ground plane 3.
- Ii is configured to include a high-frequency passage heat insulating element 11b that outputs a high-frequency signal output from the signal source 2 to the ground plane 3 by electrical coupling, so that the component circuit and the ground plane are connected to the heating target through electrodes and the like. Heat moves Suppressed from that, the heating efficiency can be suppressed. Moreover, since it is suppressed that a heat
- FIG. FIG. 4 is a configuration diagram of the dielectric heating device 100C of the invention according to the second embodiment.
- the signal source 2 of the dielectric heating device 100 shown in the first embodiment is configured by a battery 20, a signal generator 21, and an amplifier 22.
- the same or corresponding parts as those of the dielectric heating device 100 of the invention according to the first embodiment are denoted by the same reference numerals as those used in the first embodiment, and the description thereof is omitted or simplified. Turn into.
- the battery 20 has a plus terminal and a minus terminal, and outputs a constant voltage between the plus terminal and the minus terminal.
- the signal generator 21 generates a high frequency signal.
- the amplifier 22 amplifies the high frequency signal generated by the signal generator 21 to a desired power.
- the signal source 2 and the amplifier 22 are connected by an unbalanced line, and the amplifier 22 is assumed to be an unbalanced circuit capable of high output.
- the signal generator 21 and the amplifier 22 have a plus terminal connected to the plus terminal of the battery 20 and a minus terminal connected to the minus terminal of the battery 20 and the ground plane 3.
- the output of the amplifier 22 is connected to the terminal ii of the high-frequency pass heat insulating element 11a.
- FIG. 5 is a diagram illustrating another configuration example of the dielectric heating device according to the first embodiment.
- the dielectric heating device 100D shown in FIG. 5 shows a case where the signal source 2 of the dielectric heating device 100C according to the second embodiment shown in FIG. 4 is composed of a battery 20, a signal generator 21, and an amplifier 22. Yes.
- the signal source 2 of the dielectric heating apparatus 100B according to the first embodiment shown in FIG. 3 may be configured by the battery 20, the signal generator 21, and the amplifier 22.
- the dielectric heating device 100C can be downsized to a size that can be carried.
- the ground plane 3 is the widest metal in the dielectric heating device 100, the heat capacity as an absolute value is not large. Therefore, when the temperature of the heating target X becomes a high temperature of 100 ° C. or higher, the temperature of the ground plane 3 itself also increases due to heat transfer. Since the heat of the ground plane 3 moves to the signal source 2, the temperature of the entire dielectric heating device 100 rises, so that the life of the battery 20 may be deteriorated or the battery 20 may be deformed.
- the signal source 2 includes the battery 20 that outputs a constant voltage, the signal generator 21 that generates a high-frequency signal based on the voltage output from the battery 20, and the signal generation.
- the amplifier 21 is configured to amplify the high-frequency signal generated by the generator 21, it is possible to suppress heat transfer to the battery, the signal generator, and the amplifier that are constituent circuits.
- the operating temperature of the battery, signal generator and amplifier can be kept low, and the battery, signal generator and amplifier can be prevented from degrading performance due to high temperatures, or the constituent circuits and battery can be deformed, and the life can be extended. Can be realized.
- FIG. FIG. 6 is a configuration diagram of the dielectric heating device 100D of the invention according to the third embodiment.
- the dielectric heating device 100D of the third embodiment has a structure in which the high-frequency passage heat insulation element 11a and the high-frequency passage heat insulation element 11b also serve as an electrode for heating the heating target X.
- the same or corresponding parts as those of the dielectric heating apparatus 100A of the invention according to the first embodiment are denoted by the same reference numerals as those used in the first embodiment, and the description thereof is omitted or simplified. Turn into.
- the electrode 10a and the electrode 10b are electrodes for heating the heating target X.
- the electrode 10a and the electrode 10b have a structure in which part or all of them serve as the electrodes of the high-frequency passage heat insulation element 11c and the high-frequency passage heat insulation element 11d.
- FIG. 6 shows a case where a part of the electrode 10a and the electrode 10b also serves as the electrodes of the high-frequency pass heat insulating element 11a and the high-frequency pass heat insulating element 11b.
- the dielectric 32a (the surface on which the element electrode 30a shown in FIG. 2 is formed) is brought into contact with a part of the electrode 10a so that the element electrode 30a also serves as the electrode 10a.
- the high frequency passage heat insulation element 11c is formed by providing the element electrode 31a on the surface facing the contacted surface.
- the dielectric 32b (the surface on which the element electrode 31b shown in FIG. 2 is formed) is brought into contact with a part of the electrode 10b so that the element electrode 31b also serves as the electrode 10b.
- the high-frequency-pass heat insulating element 11d is formed by providing the element electrode 30b on the surface facing the contacted surface.
- the element electrode 31a is connected to the signal source 2 by wiring.
- the element electrode 30b is connected to the ground plane 3 by wiring.
- the wiring between the high-frequency passage heat insulating element 11c and the electrode 10a and the wiring between the high-frequency passage heat insulating element 11d and the electrode 10b become unnecessary, and the area of the metal surface that touches the heating target X is reduced. It is suppressed. Thereby, the heat transfer 5 from the metal surface to the surrounding environment 4 can be suppressed.
- the surrounding environment 4 is, for example, surrounding structures and air.
- the heat transfer 5 is indicated by an arrow extending from the electrode 10a to the surrounding environment 4 and an arrow extending from the electrode 10b to the surrounding environment 4 in FIG.
- the electrode 10a and the electrode 10b of the dielectric heating apparatus 100B according to the first embodiment shown in FIG. 3 are connected to the electrodes of the high-frequency passage heat insulation element 11a and the high-frequency passage heat insulation element 11a. It is good also as a structure which serves as both.
- the high-frequency passage heat insulating element 11c is composed of two or more element electrodes, at least one element electrode also serves as the electrode 10a, and the second element is equal to or more than two. Since at least one of the element electrodes also serves as the electrode 10b, the wiring between the high-frequency passage heat insulation element 11c and the electrode 10a, and between the high-frequency passage heat insulation element 11d and the electrode 10b This makes it possible to eliminate the wiring, and the area of the metal in contact with the heating target can be reduced. Further, the heat transferred from the metal surface to the surrounding environment can be reduced, and the dielectric heating device can be reduced in size.
- FIG. 7 is a configuration diagram of a dielectric heating device 100F according to the fourth embodiment.
- the signal source 2 of the dielectric heating device 100E shown in the third embodiment is configured by a battery 20, a signal generator 21, and an amplifier 22.
- the same or corresponding parts as those of the dielectric heating device 100C of the invention according to the second embodiment are denoted by the same reference numerals as those used in the second embodiment, and the description thereof is omitted or simplified.
- the same or equivalent parts as those of the dielectric heating device 100D of the invention according to the third embodiment are denoted by the same reference numerals as those used in the third embodiment, and the description thereof is omitted or simplified. .
- the signal source 2 may be composed of a battery 20, a signal generator 21, and an amplifier 22.
- the configuration shown in FIG. 7 eliminates the need for wiring between the high-frequency passage heat insulating element 11c and the electrode 10a and between the high-frequency passage heat insulating element 11d and the electrode 10b, and reduces the area of the metal surface that touches the heating target X. It is suppressed. Thereby, the heat transfer 5 from the metal surface to the surrounding environment 4 can be suppressed.
- the configuration shown in FIG. 7 can reduce the size of the dielectric heating device 100F.
- the heat transfer from the heating object X to the battery 20 can be suppressed, the rise in the operating temperature of the battery 20 can be suppressed, the battery 20 can be prevented from deteriorating due to high temperature, and the life of the battery 20 can be extended. And
- the signal source 2 includes the battery 20 that outputs a constant voltage, the signal generator 21 that generates a high-frequency signal based on the voltage output from the battery 20, and the signal
- the amplifier 22 is configured to amplify the high-frequency signal generated by the generator 21, it is possible to suppress heat transfer to the battery, the signal generator, and the amplifier that are constituent circuits.
- the operating temperatures of the battery, the signal generator and the amplifier can be kept low, the battery, the signal generator and the amplifier can be prevented from deteriorating due to high temperatures, and a long life can be realized.
- the high-frequency passage heat insulating element 11c is composed of two or more element electrodes, at least one element electrode also serves as the other electrode 10a, and the second element has two or more element electrodes. Since it is configured from element electrodes, and at least one element electrode is also configured to serve as one electrode 10b, the wiring between the high-frequency pass heat insulating element 11c and the electrode 10a, and the high-frequency pass heat insulating element 11d and the electrode 10b It becomes possible to delete the wiring between them, and the area of the metal in contact with the object to be heated can be reduced. Further, the heat transferred from the metal surface to the surrounding environment can be reduced, and the dielectric heating device can be reduced in size.
- the dielectric heating devices 100, 100A, 100B, 100C, 100D, 100E, and 100F of the inventions according to the first to fourth embodiments described above can be configured even if there are three or more dielectric heating electrodes.
- 8 and 9 are other configuration diagrams of the dielectric heating device of the invention according to the first to fourth embodiments.
- FIG. 8 shows an example of a dielectric heating device 100G in which a dielectric heating electrode 1c is added to the dielectric heating device 100 of the invention according to the first embodiment shown in FIG.
- FIG. 9 shows an example of a dielectric heating device 100H in which dielectric heating electrodes 1c and 1d are added to the dielectric heating device 100 of the invention according to Embodiment 1 shown in FIG.
- the present invention can be freely combined with each embodiment, modified any component of each embodiment, or omitted any component in each embodiment. Is possible.
- the dielectric heating device according to the present invention is preferably applied to a portable and small heating device.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
2以上の電極(10a,10b)と、任意の電極(10b)に接続される接地面(3)と、接地面(3)に接続された電極以外の電極(10a)に接続され、高周波信号を出力する信号源(2)と、信号源(2)と信号源(2)に接続された電極(10a)との間に直列に配置され、素子内において金属で接続されていない2つの端子(i,ii)間の電気的結合または磁気的結合により信号源(2)から出力された高周波信号を通過させる高周波通過断熱素子(11a)と、接地面(3)と接地面(3)に接続された電極(10b)との間に直列に配置され、2つの端子(i,ii)の電気的結合により信号源(2)から出力された高周波信号を接地面(3)に出力する高周波通過断熱素子(11b)とを備える。
Description
この発明は、加熱対象を電極で挟み加熱する誘電加熱装置および誘電加熱電極に関するものである。
誘電加熱装置では、2つ以上の電極を用いて、加熱対象を挟み、信号源を用いて電極にその電極間に電圧を印加することで加熱対象を加熱する方式が用いられている。
例えば、特許文献1には、対向する電極の間に加熱対象を配置して加熱する装置であって、少なくとも一方の電極が、断熱性材と該断熱性材の外表面に形成された導電性膜とを有し加熱対象に当接する変形可能電極を備える高周波誘電加熱装置が記載されている。当該高周波誘電加熱装置は、均一に、且つ短時間に加熱対象を可能とすると共に、加熱対象物の内部と表面の局所的な温度上昇の抑制を可能としている。
例えば、特許文献1には、対向する電極の間に加熱対象を配置して加熱する装置であって、少なくとも一方の電極が、断熱性材と該断熱性材の外表面に形成された導電性膜とを有し加熱対象に当接する変形可能電極を備える高周波誘電加熱装置が記載されている。当該高周波誘電加熱装置は、均一に、且つ短時間に加熱対象を可能とすると共に、加熱対象物の内部と表面の局所的な温度上昇の抑制を可能としている。
近年、香料や電子タバコ、加熱タバコのエアロゾル発生など、加熱対象を加熱することでエアロゾルを発生させる機器が広まってきている。当該機器は、加熱対象が小さいため、装置も小型となり、また、バッテリを用いた構成となっている。そのため、従来、加熱対象が大きい場合には問題とならなかった、加熱対象から電極と配線を通じて電圧を発生する回路および接地面への熱移動による加熱効率が低下するという課題が生じていた。
上述した特許文献1に記載された高周波誘電加熱装置においても、加熱対象が小さい場合に、上述した加熱効率の低下、および構成回路およびバッテリが高温状態となるという課題が生じる。
上述した特許文献1に記載された高周波誘電加熱装置においても、加熱対象が小さい場合に、上述した加熱効率の低下、および構成回路およびバッテリが高温状態となるという課題が生じる。
この発明は、上記のような課題を解決するためになされたもので、小型な誘電加熱装置において、加熱対象に対する加熱効率の低下を抑制し、誘電加熱装置の構成が高温状態となるのを回避することを目的とする。
この発明に係る発明の誘電加熱装置は、 2以上の電極と、任意の電極に接続される接地面と、接地面に接続された電極以外の電極に接続され、高周波信号を出力する信号源と、信号源と信号源に接続された電極との間に直列に配置され、素子内において金属で接続されていない2つの端子間の電気的結合または磁気的結合により信号源から出力された高周波信号を通過させる第1の素子と、接地面と接地面に接続された電極との間に直列に配置され、2つの端子の電気的結合により信号源から出力された高周波信号を接地面に出力する第2の素子とを備える。
この発明によれば、小型な誘電加熱装置において、加熱対象から電極等通じて構成回路および接地面に熱が移動するのを抑制し、加熱効率が低下するのを抑制することができる。また、構成回路および接地面に熱が移動するのが抑制されるため、構成回路および信号源が高温状態となるのを回避することができる。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る発明の誘電加熱装置100の構成図である。
誘電加熱装置100は、誘電加熱電極1、信号源2、接地面3からなり、それぞれ不平衡線路路で接続された不平衡回路とする。
誘電加熱電極1は、電極10と、高周波信号のみを通過させ、熱移動を阻止する高周波通過断熱素子11からなる。ここで高周波通過断熱素子11は、2つの端子iと端子iiの2つの端子を有している。端子iおよび端子iiは、金属的に連続的な構造を持たず、端子iと端子iiのそれぞれの導体同士が非接触な構造である。また、端子iと端子iiの金属間に熱抵抗の高い断熱材を有することで熱移動を抑制する。一方、端子iと端子iiは、金属による電気的な結合によって、高周波信号のみを通過させる。なお、2つの端子が金属的に連続でないため、直流成分は通過させないという特徴を有し、具体的なデバイスとしてはコンデンサ、トランスまたはカプラ等が挙げられる。
実施の形態1.
図1は、実施の形態1に係る発明の誘電加熱装置100の構成図である。
誘電加熱装置100は、誘電加熱電極1、信号源2、接地面3からなり、それぞれ不平衡線路路で接続された不平衡回路とする。
誘電加熱電極1は、電極10と、高周波信号のみを通過させ、熱移動を阻止する高周波通過断熱素子11からなる。ここで高周波通過断熱素子11は、2つの端子iと端子iiの2つの端子を有している。端子iおよび端子iiは、金属的に連続的な構造を持たず、端子iと端子iiのそれぞれの導体同士が非接触な構造である。また、端子iと端子iiの金属間に熱抵抗の高い断熱材を有することで熱移動を抑制する。一方、端子iと端子iiは、金属による電気的な結合によって、高周波信号のみを通過させる。なお、2つの端子が金属的に連続でないため、直流成分は通過させないという特徴を有し、具体的なデバイスとしてはコンデンサ、トランスまたはカプラ等が挙げられる。
ここでは簡単のため、端子iと端子iiとの電気的な結合の結合度は十分に強く、端子iから入力された信号は減衰することなく全て端子iiから出力され、端子iiから入力された信号も減衰することなく端子iから出力されるものとする。また、端子iと端子iiとの間の熱抵抗は非常に高く、端子iから入力した熱は端子iiまで移動しない、端子iiから入力した熱は端子iまで移動しないものとする。
さらに、この実施の形態の説明では誘電加熱装置100が小型の装置であると想定し、当該誘電加熱装置100の中の最も面積の広く、また、電極10a,10bに対して十分広い面積の金属を接地面3とする。そのため、電極10a,10bおよび加熱対象Xの熱容量に対して、接地面3の熱容量の相対値は大きいものとする。一方、誘電加熱装置100全体が小型であるため、接地面3の熱容量の絶対値は小さいものとする。接地面3は、適宜設定可能である.
さらに、この実施の形態の説明では誘電加熱装置100が小型の装置であると想定し、当該誘電加熱装置100の中の最も面積の広く、また、電極10a,10bに対して十分広い面積の金属を接地面3とする。そのため、電極10a,10bおよび加熱対象Xの熱容量に対して、接地面3の熱容量の相対値は大きいものとする。一方、誘電加熱装置100全体が小型であるため、接地面3の熱容量の絶対値は小さいものとする。接地面3は、適宜設定可能である.
図1を参照し、誘電加熱装置100の具体的な構成例について説明する。
図1で示した誘電加熱装置100は、2つの誘電加熱電極1a,1b、信号源2および接地面3からなる。誘電加熱電極1aは、電極10aと、高周波通過断熱素子(第1の素子)11aの端子iが金属の配線によって接続され、信号源2の一方と高周波通過断熱素子11aの端子iiが金属の配線によって接続される。誘電加熱電極1bは、電極10bと、高周波通過断熱素子(第2の素子)11bの端子iが金属の配線によって接続され、高周波通過断熱素子11bの端子iiが接地面3と金属配線に接続される。信号源2の他方は、接地面3に接続される。
図1で示した誘電加熱装置100は、2つの誘電加熱電極1a,1b、信号源2および接地面3からなる。誘電加熱電極1aは、電極10aと、高周波通過断熱素子(第1の素子)11aの端子iが金属の配線によって接続され、信号源2の一方と高周波通過断熱素子11aの端子iiが金属の配線によって接続される。誘電加熱電極1bは、電極10bと、高周波通過断熱素子(第2の素子)11bの端子iが金属の配線によって接続され、高周波通過断熱素子11bの端子iiが接地面3と金属配線に接続される。信号源2の他方は、接地面3に接続される。
信号源2をONすると、信号源2から高周波信号が出力される。出力された高周波信号は、高周波通過断熱素子11aの端子iiに入力される。高周波通過断熱素子11aは、端子iiから入力された高周波信号を、端子iから減衰することなく出力する。端子iから出力された高周波信号は電極10aに伝達される。高周波通過断熱素子11bは、電極10aおよび電極10bを介して、端子iから入力された高周波信号を、端子iiから出力する。
一方、電極10aによって印加された電圧は加熱対象Xを加熱し、加熱された加熱対象Xの温度が上昇する。加熱対象Xの温度が上昇すると加熱対象Xで発生した熱が電極10a,10bに移動し、当該電極10a,10bが加熱される。電極10a,10bの熱は金属配線を通じ、高周波通過断熱素子11a,11bの端子iを加熱する。高周波通過断熱素子11a,11bは、端子iと端子iiは電気的のみに結合しているため、端子iと端子iiとの間の熱移動を抑圧し、端子ii側へ熱が移動しない。そのため、電極10a,10bおよび高周波通過断熱素子11a,11bが、加熱対象Xと同一温度になるまで加熱された時点で、加熱対象Xからの熱移動がなくなる。これにより、誘電加熱装置100は、効率よく加熱対象Xを加熱することができる。
仮に、誘電加熱装置100に高周波通過断熱素子11aを設けない場合、加熱対象Xから電極10aに移動した熱は、信号源2を通じて、接地面3へ移動する。また、高周波通過断熱素子11bを設けない場合、加熱対象Xから電極10bに移動した熱は、直接、接地面3に移動する。接地面3は、加熱対象Xまたは誘電加熱装置100の中の最も面積の広い金属であるため、加熱対象Xの熱容量に対して、接地面3の熱容量が大きいため、熱移動によって、加熱対象Xの熱が電極10aまたは電極10bを介して接地面3へ移動することにより加熱効率が劣化する。特に、電極10a,10bおよび加熱対象Xが小型であればあるほど、より熱移動の影響が大きくなり、誘電加熱装置100の加熱効率が劣化する。また、接地面3は誘電加熱装置100内では最も広い金属であるものの、絶対値としての熱容量は大きくない。そのため、加熱対象Xの温度が100℃以上の高温になる場合では、熱移動によって接地面3自身の温度も上昇する。接地面3の熱が信号源2に移動することで、誘電加熱装置100全体の温度が上昇し、誘電加熱装置100の寿命が劣化する。
これに対して、実施の形態1に係る誘電加熱装置100は、電極10aと信号源2に直列に高周波信号のみを通過させ、熱移動を阻止する高周波通過断熱素子11aを配置し、電極10bと接地面3に直列に高周波通過断熱素子11bを配置している。これにより、高周波の伝達を遮ることなく、信号源2および接地面3双方への熱移動を抑圧することができ、誘電加熱装置の加熱対象Xに対する加熱効率を高めることが可能となる。特に高周波通過断熱素子11aは、電極10aを介した信号源2への直接の熱移動を抑圧することで、信号源2の温度上昇を防ぐと共に、信号源2を介して接地面3への熱移動を防止する。また、高周波通過断熱素子11bは電極10bを介した接地面3への熱移動を抑圧することで、接地面3への熱移動を防止する。これにより、構成回路である信号源2の動作温度を低く保てるため、高温による劣化が抑制され誘電加熱装置100の長寿命化が可能となる。
なお、図1では2つの誘電加熱電極1a,1bを設ける場合を例に示したが、誘電加熱電極の配置数は2以上であれば適宜設定可能である。
さらに、図2および図3を参照しながら、誘電加熱装置100のその他の構成例について説明する。
図2および図3は、実施の形態1に係る発明の誘電加熱装置のその他の構成例を示す図である。
図2で示した誘電加熱装置100Aの高周波通過断熱素子11a,11bは、2つの金属間に熱抵抗が高く誘電率の高い誘電体を含む構成とし、断熱性能を向上させ、端子iと端子iiの結合を強化し、高周波数通過減衰特性を向上させている。
図2および図3は、実施の形態1に係る発明の誘電加熱装置のその他の構成例を示す図である。
図2で示した誘電加熱装置100Aの高周波通過断熱素子11a,11bは、2つの金属間に熱抵抗が高く誘電率の高い誘電体を含む構成とし、断熱性能を向上させ、端子iと端子iiの結合を強化し、高周波数通過減衰特性を向上させている。
図2で示した高周波通過断熱素子11a,11bは、素子電極30aおよび素子電極30bと、誘電体32aで構成する容量、またはカプラとし、素子電極31aおよび素子電極31bと、誘電体32bで構成する容量、またはカプラとしたものである。高周波通過断熱素子11a,11bは、端子iと素子電極30a,31bとが接続され、端子iiと素子電極31a,30bとが接続される。素子電極30a,30bと素子電極31a,31bとで、誘電体32a,32bを挟む構造としている。
図3で示した誘電加熱装置100Bの高周波通過断熱素子11a,11bは、素子電極30a,素子電極30bおよび素子電極31a,31bを複数の突出部を有するくし型の電極構造とした場合を示している。くし型の電極構造は、素子電極30aの突出部と素子電極31aの突出部とが交互に嵌め合わされるように、素子電極30bの突出部と素子電極31bの突出部とが交互に嵌め合わされるように配置して構成する。高周波通過断熱素子11a,11bは、図3で示したくし型の電極構造とすることにより、電極面積を増やすことができる。これにより、素子電極30aと素子電極31a、および素子電極30bと素子電極31bの電気的、または磁気的な結合が増えるため小型な高周波通過断熱素子11を実現することが可能となる。
図2および図3では、高周波通過断熱素子11a,11bがそれぞれ2つの素子電極31a,31bを備える構成を示したが、電極数は2以上であれば適宜設定可能である。
以上のように、実施の形態1によれば、2以上の電極10a,10bと、任意の電極10bに接続される接地面3と、接地面3に接続された電極以外の電極10aに接続され、高周波信号を出力する信号源2と、信号源2と信号源2に接続された電極10aとの間に直列に配置され、素子内において金属で接続されていない2つの端子間の電気的結合または磁気的結合により信号源2から出力された高周波信号を通過させる高周波通過断熱素子11aと、接地面3と接地面3に接続された電極2との間に直列に配置され、2つの端子i,iiの電気的結合により信号源2から出力された高周波信号を接地面3に出力する高周波通過断熱素子11bとを備えるように構成したので、加熱対象から電極等通じて構成回路および接地面に熱が移動するのを抑制し、加熱効率が低下するのを抑制することができる。また、構成回路および接地面に熱が移動するのが抑制されるため、構成回路および信号源が高温状態となるのを回避することができ、高温による構成回路および信号源の劣化を抑制し、長寿命化を実現することができる。
実施の形態2.
図4は、実施の形態2に係る発明の誘電加熱装置100Cの構成図である。
実施の形態2の誘電加熱装置100Cは、実施の形態1で示した誘電加熱装置100の信号源2をバッテリ20、信号発生器21および増幅器22で構成している。
なお、以下では、実施の形態1に係る発明の誘電加熱装置100の構成要素と同一または相当する部分には、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
図4は、実施の形態2に係る発明の誘電加熱装置100Cの構成図である。
実施の形態2の誘電加熱装置100Cは、実施の形態1で示した誘電加熱装置100の信号源2をバッテリ20、信号発生器21および増幅器22で構成している。
なお、以下では、実施の形態1に係る発明の誘電加熱装置100の構成要素と同一または相当する部分には、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
バッテリ20は、プラス端子とマイナス端子を有し、プラス端子とマイナス端子間で一定の電圧を出力する。バッテリ20で構成することにより、誘電加熱装置100Cが小型化され、携帯可能となる。信号発生器21は、高周波信号を発生させる。増幅器22は信号発生器21が発生させた高周波信号を所望の電力まで増幅させる。信号源2および増幅器22は不平衡線路で接続されており、増幅器22は高出力が可能な不平衡回路を想定している。
信号発生器21および増幅器22は、プラス端子がバッテリ20のプラス端子と接続され、マイナス端子がバッテリ20のマイナス端子および接地面3に接続される。増幅器22の出力は、高周波通過断熱素子11aの端子iiに接続される。
信号発生器21および増幅器22は、プラス端子がバッテリ20のプラス端子と接続され、マイナス端子がバッテリ20のマイナス端子および接地面3に接続される。増幅器22の出力は、高周波通過断熱素子11aの端子iiに接続される。
図5は、実施の形態1に係る誘電加熱装置のその他の構成例を示す図である。
図5で示した誘電加熱装置100Dは、図4で示した実施の形態2に係る発明の誘電加熱装置100Cの信号源2をバッテリ20、信号発生器21および増幅器22で構成した場合を示している。
また、図示していないが、図3で示した実施の形態1に係る発明の誘電加熱装置100Bの信号源2をバッテリ20、信号発生器21および増幅器22で構成してもよい。
図5で示した誘電加熱装置100Dは、図4で示した実施の形態2に係る発明の誘電加熱装置100Cの信号源2をバッテリ20、信号発生器21および増幅器22で構成した場合を示している。
また、図示していないが、図3で示した実施の形態1に係る発明の誘電加熱装置100Bの信号源2をバッテリ20、信号発生器21および増幅器22で構成してもよい。
図4および図5で示した構成により、誘電加熱装置100Cを携帯することが可能な大きさまで小型化することができる。また、実施の形態1で述べたように接地面3は誘電加熱装置100内では最も広い金属であるものの、絶対値としての熱容量は大きくない。そのため、加熱対象Xの温度が100℃以上の高温になる場合では、熱移動によって接地面3自身の温度も上昇する。当該接地面3の熱が信号源2に移動することで、誘電加熱装置100全体の温度が上昇するため、バッテリ20の寿命が劣化するまたはバッテリ20が変形する可能性がある。本実施の形態では、加熱対象Xから電極10a、増幅器22、または信号源2に接続された+端子、または-端子を介したバッテリ20への熱移動、または、電極10bを介して接地面3を介したバッテリ20への熱移動を抑制することができる。これにより、バッテリ20の動作温度の上昇を抑制し、バッテリ20が高温により劣化するのを抑制し、バッテリ20の長寿命化を可能とする。
以上のように、実施の形態2によれば、信号源2を、一定の電圧を出力するバッテリ20と、バッテリ20が出力した電圧に基づいて高周波信号を発生させる信号発生器21と、信号発生器21が発生させた高周波信号を増幅させる増幅器22で構成した場合に、構成回路であるバッテリ、信号発生器および増幅器へ熱が移動するのを抑制することができる。これにより、バッテリ、信号発生器および増幅器の動作温度を低く保つことができ、バッテリ、信号発生器および増幅器が高温による性能の劣化、または構成回路およびバッテリが変形することを防止し、長寿命化を実現することができる。
実施の形態3.
図6は、実施の形態3に係る発明の誘電加熱装置100Dの構成図である。
実施の形態3の誘電加熱装置100Dは、高周波通過断熱素子11aおよび高周波通過断熱素子11bが加熱対象Xを加熱する電極を兼ねる構造を有している。
なお、以下では、実施の形態1に係る発明の誘電加熱装置100Aの構成要素と同一または相当する部分には、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
図6は、実施の形態3に係る発明の誘電加熱装置100Dの構成図である。
実施の形態3の誘電加熱装置100Dは、高周波通過断熱素子11aおよび高周波通過断熱素子11bが加熱対象Xを加熱する電極を兼ねる構造を有している。
なお、以下では、実施の形態1に係る発明の誘電加熱装置100Aの構成要素と同一または相当する部分には、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
電極10aおよび電極10bは、加熱対象Xを加熱する電極である。電極10aおよび電極10bは、一部または全部を、高周波通過断熱素子11cおよび高周波通過断熱素子11dの電極と兼ねる構造を有している。図6は、電極10aおよび電極10bの一部を高周波通過断熱素子11aおよび高周波通過断熱素子11bの電極と兼ねる場合を示している。
図6では、電極10aの一部に誘電体32a(図2で示した素子電極30aを形成した面)を接触させて、素子電極30aが電極10aを兼ねる構成としている。また、当該接触させた面と対抗する面に素子電極31aを設けることにより、高周波通過断熱素子11cを形成している。
同様に、電極10bの一部に誘電体32b(図2で示した素子電極31bを形成した面)を接触させて、素子電極31bが電極10bを兼ねる構成としている。また、当該接触させた面と対抗する面に素子電極30bを設けることにより、高周波通過断熱素子11dを形成している。
素子電極31aは、配線によって信号源2と接続される。素子電極30bは、配線によって接地面3と接続される。
同様に、電極10bの一部に誘電体32b(図2で示した素子電極31bを形成した面)を接触させて、素子電極31bが電極10bを兼ねる構成としている。また、当該接触させた面と対抗する面に素子電極30bを設けることにより、高周波通過断熱素子11dを形成している。
素子電極31aは、配線によって信号源2と接続される。素子電極30bは、配線によって接地面3と接続される。
図6で示した構成により、高周波通過断熱素子11cと電極10aとの間の配線、および高周波通過断熱素子11dと電極10bとの間の配線が不要となり、加熱対象Xに触れる金属面の面積が抑制される。これにより、金属面から周辺環境4への熱移動5を抑制することができる。周辺環境4は、例えば周囲の構造物および空気である。熱移動5は、図6において電極10aから周辺環境4に延びる矢印、および電極10bから周辺環境4に延びる矢印で示している。
図示していないが、図3で示した実施の形態1に係る発明の誘電加熱装置100Bの電極10aおよび電極10bの一部または全部を、高周波通過断熱素子11aおよび高周波通過断熱素子11aの電極と兼ねる構造としてもよい。
以上のように、この実施の形態3によれば、高周波通過断熱素子11cは、2以上の素子電極から構成され、少なくとも一方の素子電極が、電極10aを兼ね、第2の素子は、2以上の素子電極から構成され、少なくとも一方の素子電極が、電極10bを兼ねるように構成したので、高周波通過断熱素子11cと電極10aとの間の配線、および高周波通過断熱素子11dと電極10bとの間の配線を削除することが可能となり、加熱対象に接触する金属の面積を狭く抑制することができる。また、金属面から周辺環境に移動する熱を低減することができ、誘電加熱装置の小型化を実現することができる。
実施の形態4.
図7は、実施の形態4に係る誘電加熱装置100Fの構成図である。
実施の形態4の誘電加熱装置100Fは、実施の形態3で示した誘電加熱装置100Eの信号源2をバッテリ20、信号発生器21および増幅器22で構成している。
なお、以下では、実施の形態2に係る発明の誘電加熱装置100Cの構成要素と同一または相当する部分には、実施の形態2で使用した符号と同一の符号を付して説明を省略または簡略化する。同様に、実施の形態3に係る発明の誘電加熱装置100Dの構成要素と同一または相当する部分には、実施の形態3で使用した符号と同一の符号を付して説明を省略または簡略化する。
図7は、実施の形態4に係る誘電加熱装置100Fの構成図である。
実施の形態4の誘電加熱装置100Fは、実施の形態3で示した誘電加熱装置100Eの信号源2をバッテリ20、信号発生器21および増幅器22で構成している。
なお、以下では、実施の形態2に係る発明の誘電加熱装置100Cの構成要素と同一または相当する部分には、実施の形態2で使用した符号と同一の符号を付して説明を省略または簡略化する。同様に、実施の形態3に係る発明の誘電加熱装置100Dの構成要素と同一または相当する部分には、実施の形態3で使用した符号と同一の符号を付して説明を省略または簡略化する。
図示していないが、図3で示した実施の形態1に係る発明の誘電加熱装置100Bの電極10aおよび電極10bの一部または全部を、高周波通過断熱素子11aおよび高周波通過断熱素子11aの電極と兼ねる構造とし、信号源2をバッテリ20、信号発生器21および増幅器22で構成してもよい。
図7で示した構成により、高周波通過断熱素子11cと電極10aとの間の配線、および高周波通過断熱素子11dと電極10bとの間の配線が不要となり、加熱対象Xに触れる金属面の面積が抑制される。これにより、金属面から周辺環境4への熱移動5を抑制することができる。
また、図7で示した構成により、誘電加熱装置100Fを小型化することができる。また、加熱対象Xからバッテリ20への熱移動を抑制することができ、バッテリ20の動作温度の上昇を抑制し、バッテリ20が高温により劣化するのを抑制し、バッテリ20の長寿命化を可能とする。
また、図7で示した構成により、誘電加熱装置100Fを小型化することができる。また、加熱対象Xからバッテリ20への熱移動を抑制することができ、バッテリ20の動作温度の上昇を抑制し、バッテリ20が高温により劣化するのを抑制し、バッテリ20の長寿命化を可能とする。
以上のように、この実施の形態4によれば、信号源2を、一定の電圧を出力するバッテリ20と、バッテリ20が出力した電圧に基づいて高周波信号を発生させる信号発生器21と、信号発生器21が発生させた高周波信号を増幅させる増幅器22で構成した場合に、構成回路であるバッテリ、信号発生器および増幅器へ熱が移動するのを抑制することができる。これにより、バッテリ、信号発生器および増幅器の動作温度を低く保つことができ、バッテリ、信号発生器および増幅器が高温により劣化するのを抑制し、長寿命化を実現することができる。
また、この実施の形態4によれば、高周波通過断熱素子11cは、2以上の素子電極から構成され、少なくとも一方の素子電極が、他方の電極10aを兼ね、第2の素子は、2以上の素子電極から構成され、少なくとも一方の素子電極が、一方の電極10bを兼ねるように構成したので、高周波通過断熱素子11cと電極10aとの間の配線、および高周波通過断熱素子11dと電極10bとの間の配線を削除することが可能となり、加熱対象に接触する金属の面積を狭く抑制することができる。また、金属面から周辺環境に移動する熱を低減することができ、誘電加熱装置の小型化を実現することができる。
上述した実施の形態1から実施の形態4に係る発明の誘電加熱装置100,100A,100B,100C,100D,100E,100Fは、誘電加熱電極が3つ以上であっても構成可能である。
図8および図9は、実施の形態1から実施の形態4に係る発明の誘電加熱装置のその他の構成図である。
図8では、図1で示した実施の形態1に係る発明の誘電加熱装置100に対して、誘電加熱電極1cが追加された誘電加熱装置100Gを例に示している。
図9では、図1で示した実施の形態1に係る発明の誘電加熱装置100に対して、誘電加熱電極1c,1dが追加された誘電加熱装置100Hを例に示している。
図8および図9は、実施の形態1から実施の形態4に係る発明の誘電加熱装置のその他の構成図である。
図8では、図1で示した実施の形態1に係る発明の誘電加熱装置100に対して、誘電加熱電極1cが追加された誘電加熱装置100Gを例に示している。
図9では、図1で示した実施の形態1に係る発明の誘電加熱装置100に対して、誘電加熱電極1c,1dが追加された誘電加熱装置100Hを例に示している。
上記以外にも、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明に係る発明の誘電加熱装置は、特に携帯可能な小型の加熱装置に適用するのが好ましい。
1,1a,1b 誘電加熱電極、2 信号源、3 接地面、4 周辺環境、5 熱移動、10,10a,10b 電極、11,11a,11b,11c,11d 高周波通過断熱素子、30a,30b,31a,31b 素子電極、20 バッテリ、21 信号発生器、22 増幅器、32a,32b 誘電体、100,100A,100B,100C,100D,100E,100F,100G,100H 誘電加熱装置。
Claims (4)
- 2以上の電極と、
任意の前記電極に接続される接地面と、
前記接地面に接続された電極以外の電極に接続され、高周波信号を出力する信号源と、
前記信号源と前記信号源に接続された電極との間に直列に配置され、素子内において金属で接続されていない2つの端子間の電気的結合または磁気的結合により前記信号源から出力された前記高周波信号を通過させる第1の素子と、
前記接地面と前記接地面に接続された電極との間に直列に配置され、2つの端子の電気的結合により前記信号源から出力された前記高周波信号を前記接地面に出力する第2の素子とを備えた誘電加熱装置。 - 前記第1の素子は、素子内において金属で接続されていない2以上の素子電極から構成され、少なくとも一方の素子電極が、前記信号源に接続された電極を兼ね、
前記第2の素子は、2以上の素子電極から構成され、少なくとも一方の素子電極が、前記接地面に接続された電極を兼ねることを特徴とする請求項1記載の誘電加熱装置。 - 前記信号源は、
一定の電圧を出力するバッテリと、
前記バッテリが出力した電圧に基づいて前記高周波信号を発生させる信号発生器と、
前記信号発生器が発生させた前記高周波信号を増幅させる増幅器とで構成されることを特徴とする請求項1または請求項2記載の誘電加熱装置。 - 2以上の電極と、
高周波信号を出力する信号源と当該信号源に接続された電極との間に直列に配置され、素子内において金属で接続されていない2つの端子間の電気的結合または磁気的結合により前記信号源から出力された前記高周波信号を通過させる第1の素子と、
接地面と当該接地面に接続された電極との間に直列に配置され、2つの端子の電気的結合により前記信号源から出力された前記高周波信号を前記接地面に出力する第2の素子とを備えた誘電加熱電極。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/018756 WO2019220534A1 (ja) | 2018-05-15 | 2018-05-15 | 誘電加熱装置および誘電加熱電極 |
CN201880093312.8A CN112106442B (zh) | 2018-05-15 | 2018-05-15 | 介电加热装置以及介电加热电极 |
EP18919096.0A EP3780908B1 (en) | 2018-05-15 | 2018-05-15 | Dielectric heating device and dielectric heating electrode |
JP2018553251A JP6463570B1 (ja) | 2018-05-15 | 2018-05-15 | 誘電加熱装置および誘電加熱電極 |
US17/038,510 US11297695B2 (en) | 2018-05-15 | 2020-09-30 | Dielectric heating device and dielectric heating electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/018756 WO2019220534A1 (ja) | 2018-05-15 | 2018-05-15 | 誘電加熱装置および誘電加熱電極 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/038,510 Continuation US11297695B2 (en) | 2018-05-15 | 2020-09-30 | Dielectric heating device and dielectric heating electrodes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019220534A1 true WO2019220534A1 (ja) | 2019-11-21 |
Family
ID=65270590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018756 WO2019220534A1 (ja) | 2018-05-15 | 2018-05-15 | 誘電加熱装置および誘電加熱電極 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11297695B2 (ja) |
EP (1) | EP3780908B1 (ja) |
JP (1) | JP6463570B1 (ja) |
CN (1) | CN112106442B (ja) |
WO (1) | WO2019220534A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230048111A1 (en) * | 2019-12-23 | 2023-02-16 | crop.zone GmbH | Apparatus for Applying Contact Resistance-Reducing Media and Applying Current to Plants |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12057561B1 (en) | 2019-07-12 | 2024-08-06 | Ampcera Inc. | Systems and methods for induction heating of electrolytes |
US11936028B1 (en) | 2020-07-13 | 2024-03-19 | Ampcera Inc. | Systems and methods for heating electrochemical systems |
JP7309096B2 (ja) * | 2021-04-22 | 2023-07-14 | 三菱電機株式会社 | 誘電加熱電極及び誘電加熱装置 |
CN113712265B (zh) * | 2021-10-08 | 2024-08-13 | 海南摩尔兄弟科技有限公司 | 气溶胶生成品、电子雾化器和雾化系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246164A (ja) * | 2001-02-21 | 2002-08-30 | Matsushita Electric Ind Co Ltd | 高周波解凍装置 |
JP2002334775A (ja) * | 2001-05-09 | 2002-11-22 | Nissei Co Ltd | 連続高周波加熱装置および連続高周波加熱方法 |
JP2004349116A (ja) * | 2003-05-22 | 2004-12-09 | Mitsubishi Electric Corp | 誘電加熱装置 |
JP2011061753A (ja) | 2009-10-08 | 2011-03-24 | Mitsubishi Electric Corp | デジタル放送受信装置 |
WO2014147384A1 (en) * | 2013-03-18 | 2014-09-25 | Wayv Technologies Limited | Microwave heating apparatus |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2436732A (en) * | 1944-05-12 | 1948-02-24 | Carborundum Co | High-frequency electric field heating |
US2521797A (en) * | 1945-08-02 | 1950-09-12 | Rca Corp | Electronic heating method and apparatus |
US2508382A (en) * | 1946-10-10 | 1950-05-23 | Armstrong Cork Co | Method and apparatus for dielectric heating |
US2727212A (en) * | 1950-10-27 | 1955-12-13 | Westinghouse Electric Corp | Constant load voltage circuit |
BE510618A (ja) * | 1951-04-14 | |||
GB794443A (en) * | 1955-08-02 | 1958-05-07 | Radio Heaters Ltd | Improvements in or relating to high frequency heating equipment |
US3518396A (en) * | 1968-05-27 | 1970-06-30 | Chemetron Corp | Dielectric heating apparatus |
US5641423A (en) * | 1995-03-23 | 1997-06-24 | Stericycle, Inc. | Radio frequency heating apparatus for rendering medical materials |
US6657173B2 (en) * | 1998-04-21 | 2003-12-02 | State Board Of Higher Education On Behalf Of Oregon State University | Variable frequency automated capacitive radio frequency (RF) dielectric heating system |
US7883609B2 (en) * | 1998-06-15 | 2011-02-08 | The Trustees Of Dartmouth College | Ice modification removal and prevention |
US6169278B1 (en) * | 1999-03-19 | 2001-01-02 | Rockwell Collins, Inc. | Dielectric heating using spread-spectrum energy |
US6417499B2 (en) * | 2000-07-06 | 2002-07-09 | Heatwave Drying Systems Ltd. | Dielectric heating using inductive coupling |
EP1386710B1 (en) | 2001-05-09 | 2007-06-27 | Nissei Kabushiki Kaisha | Method of manufacturing hot formed objects, and device for continuous high-frequency heating |
US7091460B2 (en) * | 2004-03-15 | 2006-08-15 | Dwight Eric Kinzer | In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating |
JP5768972B2 (ja) | 2011-09-30 | 2015-08-26 | 東洋製罐株式会社 | 高周波誘電加熱装置 |
KR20180023904A (ko) * | 2015-07-03 | 2018-03-07 | 도요세이칸 그룹 홀딩스 가부시키가이샤 | 고주파 유전 가열 장치 |
-
2018
- 2018-05-15 JP JP2018553251A patent/JP6463570B1/ja active Active
- 2018-05-15 EP EP18919096.0A patent/EP3780908B1/en active Active
- 2018-05-15 WO PCT/JP2018/018756 patent/WO2019220534A1/ja unknown
- 2018-05-15 CN CN201880093312.8A patent/CN112106442B/zh active Active
-
2020
- 2020-09-30 US US17/038,510 patent/US11297695B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246164A (ja) * | 2001-02-21 | 2002-08-30 | Matsushita Electric Ind Co Ltd | 高周波解凍装置 |
JP2002334775A (ja) * | 2001-05-09 | 2002-11-22 | Nissei Co Ltd | 連続高周波加熱装置および連続高周波加熱方法 |
JP2004349116A (ja) * | 2003-05-22 | 2004-12-09 | Mitsubishi Electric Corp | 誘電加熱装置 |
JP2011061753A (ja) | 2009-10-08 | 2011-03-24 | Mitsubishi Electric Corp | デジタル放送受信装置 |
WO2014147384A1 (en) * | 2013-03-18 | 2014-09-25 | Wayv Technologies Limited | Microwave heating apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP3780908A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230048111A1 (en) * | 2019-12-23 | 2023-02-16 | crop.zone GmbH | Apparatus for Applying Contact Resistance-Reducing Media and Applying Current to Plants |
Also Published As
Publication number | Publication date |
---|---|
US20210014942A1 (en) | 2021-01-14 |
JPWO2019220534A1 (ja) | 2020-05-28 |
US11297695B2 (en) | 2022-04-05 |
EP3780908A4 (en) | 2021-04-21 |
JP6463570B1 (ja) | 2019-02-06 |
CN112106442A (zh) | 2020-12-18 |
EP3780908B1 (en) | 2022-06-08 |
CN112106442B (zh) | 2022-08-19 |
EP3780908A1 (en) | 2021-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6463570B1 (ja) | 誘電加熱装置および誘電加熱電極 | |
TWI680642B (zh) | 固態微波產生器及功率放大器 | |
WO2019092103A3 (en) | Power distribution unit and fuse management for an electric mobile application | |
JP4269081B2 (ja) | 伝送線変圧器 | |
EP2810287B1 (en) | Variable vacuum capacitor | |
US2399930A (en) | Energy dissipator | |
US2644926A (en) | Electronic switch for highfrequency power | |
CN1520634A (zh) | 热分布式达林顿放大器 | |
JP2008034166A (ja) | マイクロ波発生装置 | |
Hong et al. | Ultra‐compact pulse compressor for generating ultrawideband short pulses | |
JP5411987B2 (ja) | カスケード電圧増幅器およびカスケード電子管を起動する方法 | |
US10355669B2 (en) | Filtering system and an associated method thereof | |
Firrao et al. | On the minimum number of states for switchable matching networks | |
JP5330523B2 (ja) | 通信装置 | |
JP4566895B2 (ja) | インピーダンス変換器 | |
EP4243264A1 (en) | Switching circuit and power supply device | |
JP2020150139A (ja) | 熱電変換モジュール | |
WO2015098336A1 (ja) | 電力変換装置の絶縁構造 | |
JP5988525B2 (ja) | 合成器の冷却構造 | |
JP6275404B2 (ja) | 合成器 | |
Golestanifar et al. | RF power amplifier design using microstrip ring resonator based on image parameter method | |
Santos et al. | Onto a higher power handling for very high frequency direct antenna modulation | |
Alaria et al. | P2-12: Thermal analysis of slow wave structure for a space helix TWT | |
JP2023506868A (ja) | 高周波高電圧導通装置 | |
Lotfi et al. | Design of linearity and efficiency improved Doherty PA using microstrip resonant cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018553251 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18919096 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018919096 Country of ref document: EP Effective date: 20201105 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |