WO2019218827A1 - 基于oct光谱分析应用的激光光源 - Google Patents

基于oct光谱分析应用的激光光源 Download PDF

Info

Publication number
WO2019218827A1
WO2019218827A1 PCT/CN2019/082727 CN2019082727W WO2019218827A1 WO 2019218827 A1 WO2019218827 A1 WO 2019218827A1 CN 2019082727 W CN2019082727 W CN 2019082727W WO 2019218827 A1 WO2019218827 A1 WO 2019218827A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
current
temperature
laser
light source
Prior art date
Application number
PCT/CN2019/082727
Other languages
English (en)
French (fr)
Inventor
许奔
邓仕发
Original Assignee
深圳市太赫兹科技创新研究院
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院, 深圳市太赫兹科技创新研究院有限公司 filed Critical 深圳市太赫兹科技创新研究院
Publication of WO2019218827A1 publication Critical patent/WO2019218827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1028Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • This invention relates to the field of OCT spectroscopy, and more particularly to laser sources based on OCT spectroscopy applications.
  • OCT Optical Coherence Tomography
  • Broadband light source is one of the core components.
  • the demand for material identification and detection in many institutions and institutes has been continuously improved, which has led to the development of OCT spectrum analysis towards real-time, rapid, accurate detection, high detection resolution and low detection cost.
  • it is also hoped that the detection device can be portable, lightweight and small.
  • the actual related products are not standardized and the parts are not standardized, it is not conducive to the industrialization of OCT related products, and is not conducive to the development and maturity of the OCT testing industry.
  • a laser source based on OCT spectral analysis applications comprising:
  • a temperature control circuit connected to the laser module for detecting and adjusting a temperature value of the laser module in real time
  • An MCU module coupled to the temperature control circuit, configured to control the temperature control circuit to adjust a temperature value of the laser module according to the detected temperature value to keep a temperature of the laser module constant;
  • a current control circuit connected to the laser module, configured to collect and adjust a current value of the laser module in real time;
  • the MCU module is connected to the current control circuit, and is further configured to control, according to the collected current value, the current control circuit to adjust a current output to the laser module to keep a current output to the laser module constant .
  • the temperature control circuit includes a temperature acquisition module and a temperature control module, and the temperature acquisition module transmits the collected real-time temperature signal to the MCU module, and the MCU module controls according to the real-time temperature signal.
  • the temperature control module heats or cools to make the temperature of the laser module constant.
  • the temperature acquisition module includes a temperature sensor, a first amplifying unit, and a first analog to digital converter; the temperature sensor detects a temperature signal of the laser module in real time, and the first amplifying unit sets the temperature The signal amplification is converted by the first analog to digital converter and transmitted to the MCU module.
  • the temperature control module includes a temperature adjustment driving unit and a temperature adjustment unit; the temperature adjustment driving unit is respectively connected to the MCU module and the temperature adjustment unit; and the MCU module is according to the real time
  • the temperature signal outputs a temperature control signal, and the temperature adjustment driving unit drives the temperature adjustment unit to heat or cool the laser module after receiving the temperature control signal.
  • the current control circuit includes a current acquisition module and a constant current drive module
  • the current collecting module transmits the collected real-time current signal of the laser module to the MCU module, and the MCU module controls, according to the real-time current signal, a current output by the constant current driving unit to the laser module.
  • the current of the laser module is made constant.
  • the current collecting module includes a current sampling resistor, an I/V conversion unit, a second amplifying unit, and a second analog-to-digital converter; the current sampling resistor collects a current signal of the laser module in real time, The I/V conversion unit converts into a voltage signal, and the second amplified signal converts the voltage signal to be converted by the second analog-to-digital converter and transmitted to the MCU module.
  • the constant current driving module includes a digital to analog converter and a V/I constant current converting unit; the digital to analog converter transmits a voltage signal output by the MCU module to the V/I constant The stream conversion unit converts, and the V/I constant current conversion unit controls the magnitude of the current output to the laser module according to the converted current signal to make the current of the laser module constant.
  • a current limiting protection module is further included; the current limiting protection module includes a current detecting unit, a current limiting unit, and a third analog to digital converter;
  • the current detecting unit detects a current value of the V/I constant current converting unit outputted to the laser module in real time, and transmits the value to the MCU module via the third analog to digital converter, and the MCU module is detected according to the The current value controls the current limiting unit to limit the amount of current output to the laser module to protect the laser module.
  • a light source protection module is further included; the light source protection module is coupled to the laser module for venting an electrostatic charge around the laser module.
  • a power module is further included; the power module is configured to supply power to the laser light source, and the power module adopts DC/DC.
  • the above laser light source based on OCT spectral analysis application includes a laser module, a temperature control circuit, an MCU module, and a current control circuit.
  • the temperature information of the laser module can be collected and adjusted in real time, and the temperature is kept at a constant temperature; the current value of the laser module is collected in real time by combining the current control circuit and the MCU module. And adjusting the control and keeping the current constant; the laser light source can detect the temperature information and current information of the laser module in real time. At the same time, the temperature information and the current information can be kept in a constant state, so that the performance of the laser light source is stable and reliable.
  • the component since the analog-to-digital converter, the amplifying unit, the temperature sensor, the current sampling resistor and the like are all common conventional materials, the component has a long life cycle, which can make the cost relatively low, and is advantageous for long-term stable batch and high efficiency. produce.
  • FIG. 1 is a schematic structural view of a laser light source based on OCT spectral analysis application in an embodiment
  • FIG. 2 is a schematic structural view of a laser light source based on OCT spectral analysis application in another embodiment
  • FIG. 3 is a schematic structural view of a laser light source based on OCT spectral analysis application in still another embodiment
  • FIG. 4 is a real-time data acquisition diagram of a laser light source based on OCT spectral analysis application in an embodiment
  • FIG. 5 is an output spectrum diagram of a laser light source based on OCT spectral analysis application in an embodiment
  • Figure 6 is a schematic illustration of the interference of a laser source based on OCT spectral analysis applications in an embodiment.
  • FIG. 1 is a schematic structural diagram of a laser light source based on OCT spectral analysis application in an embodiment.
  • the laser light source based on the OCT spectral analysis application may include a laser module 10, a temperature control circuit 20, an MCU module 30, and a current control circuit 40.
  • the temperature control circuit 20 is connected to the laser module 10 for detecting and adjusting the temperature value of the laser module 10 in real time.
  • the MCU module 30 is coupled to the temperature control circuit 20 for controlling the temperature control circuit 20 to adjust the temperature value of the laser module 10 based on the detected temperature value to maintain the temperature value of the laser module 10 constant.
  • the current control circuit 40 is coupled to the laser module 10 for collecting and adjusting the current value of the laser module 10 in real time.
  • the MCU module 30 is coupled to the current control circuit 40 and is further configured to control the current control circuit 40 to adjust the magnitude of the current output to the laser module 10 based on the collected current value to maintain a constant current output to the laser module 10.
  • the laser module 10 can use a single single-tube laser as a light source.
  • a single-tube spectral width is insufficient, a dual-to-three-tube laser combined output can be used. It can be understood that the selection of the laser module 10 can select a laser with suitable optical performance according to actual operation needs.
  • the temperature control circuit 20 can include a temperature acquisition module 210 and a temperature control module 220.
  • the temperature collecting module 210 transmits the collected real-time temperature signal to the MCU module 30, and the MCU module controls the temperature control module 220 to heat or cool according to the real-time temperature signal, so that the temperature of the laser module 10 is constant.
  • the temperature acquisition module 210 can include a temperature sensor 211, a first amplification unit 212, and a first analog to digital converter 213.
  • the temperature sensor 211 may be a thermistor, which may be built in the laser or may be disposed close to the vicinity of the laser. Of course, in order to make the measurement result accurate, the temperature sensor 211 should be placed as close as possible in this case. Laser settings.
  • the temperature sensor 211 detects the temperature signal of the laser module 10 in real time, and the first amplifying unit 212 amplifies the temperature signal by the first analog-to-digital converter 213 and transmits it to the MCU module.
  • the temperature control module 220 can include a temperature adjustment drive unit 221 and a temperature adjustment unit 222.
  • the temperature adjustment driving unit 221 is connected to the MCU module 30 and the temperature adjustment unit 222, respectively.
  • the MCU module 30 outputs a temperature control signal according to the real-time temperature signal, and the temperature adjustment driving unit 221 receives the temperature control signal and drives the temperature adjustment unit 222 to heat or cool the laser module 30.
  • the temperature adjustment unit 222 may include a Peltier and a heat sink, or may be a separate Peltier, and of course may be other semiconductor refrigerators.
  • the temperature adjustment is mainly implemented by a PID control algorithm, and the laser is almost reached. At preset temperatures, reverse control (turning from heating to cooling or from cooling to heating) is required to achieve temperature control.
  • a single-pole double-throw relay is used to switch between the cooling and cooling to heating processes through the switching of the normally closed contact and the normally open contact of the relay, considering the mechanical and mechanical aspects of the relay. The life of the contact electrical appliance is found to be small and the operation time is small.
  • the present invention can use the H-bridge (Wheatstone bridge) instead of the relay for the temperature driving unit, and the control speed of the H-bridge (Wheatstone bridge) can be achieved.
  • the control speed of the mechanical relay is only Hz.
  • the MCU module 30 runs an ADC/DAC control program and an H-bridge (Wheatstone bridge) control program, and the MCU module 30 can perform real-time lasers based on the PID control algorithm and the acquired temperature data and current data. Data acquisition and status control. Since the entire light source operates in a digital state, and the weak signal is collected, it is necessary to avoid the influence of the spike current generated by the switching of the transistor/FET, so it is necessary to isolate the reference ground of the MCU module 30 from the reference ground on the circuit board.
  • ADC/DAC control program and an H-bridge (Wheatstone bridge) control program
  • the current control circuit 40 can include a current acquisition module 410 and a constant current drive module 420; the current acquisition module 410 transmits the real-time current signal of the acquired laser module 10 to the MCU module 30, and the MCU module 30 is based on the real-time current signal.
  • the current output from the constant current driving module 420 to the laser module 10 is controlled such that the current of the laser module 10 is constant.
  • the current collecting module 410 includes a current sampling resistor 411, an I/V converting unit 412, a second amplifying unit 413, and a second analog-to-digital converter 414.
  • the current sampling resistor 411 collects the laser module in real time.
  • the current signal of 10 is converted into a voltage signal by the I/V conversion unit 412, and the second amplification unit 413 amplifies the voltage signal by the second analog-to-digital conversion 414 and transmits it to the MCU module 30.
  • the constant current driving module 420 includes a digital to analog converter 421 and a V/I constant current converting unit 422; the digital to analog converter 421 transmits the voltage signal output by the MCU module 30 to the V/I.
  • the constant current conversion single 422-element conversion, the V/I constant current conversion unit 422 controls the magnitude of the current output to the laser module 10 according to the converted current signal, so that the current of the laser module 10 is constant.
  • the laser light source based on the OCT spectral analysis application may further include a current limiting protection module 50 including a current detecting unit 520, a current limiting unit 530 and a third analog to digital converter. 510.
  • the current detecting unit 520 detects the magnitude of the current value outputted by the V/I constant current converting unit 422 to the laser module 10 in real time, and transmits it to the MCU module 30 via the third analog to digital converter 510, and the MCU module 30 controls the current limiting unit according to the detected current value.
  • the 530 limits the amount of current output to the laser module 10 to protect the laser module 10.
  • the laser light source based on the OCT spectral analysis application may further include a light source protection module (not shown), and the light source protection module (not shown) is connected to the laser module 10 for discharging static electricity around the laser module 10. Charge.
  • the light source protection of the laser may mainly include ESD (electrostatic discharge) protection and prevention of current impact.
  • ESD electrostatic discharge
  • the invention abandons the way that the conventional mechanical relay normally closes the contact to the ground and works to switch to the normally open contact, because the laser diode has one pin.
  • the ground resistance is 1 Ohm of the sampling resistance. This pin and the metal object constitute an "equal body". Therefore, only the ESD (electrostatic discharge) protection of the current input pin needs to be considered, and a 100 Ohm resistance is used to vent the ESD charge.
  • the MCU module 30 controls the analog-to-digital converter slow start mode to significantly improve the stability of the control loop, avoiding the occurrence of overshoot and ringing, and avoiding sudden changes in the operating current of the laser.
  • the laser source based on the OCT spectral analysis application may further include a power module (not shown); the power module (not shown) is used to power the laser source, and the power module (not shown) is DC/DC. .
  • DC/DC is used to improve work efficiency, reduce thermal power consumption, and reduce component heating, while thermal power reduction improves trouble-free operation time and reliability.
  • EMC filter circuit electromagnettic compatibility filter
  • the magnetic beads are added, and the magnetic beads can convert the AC spurious signals at a certain frequency into heat, which can also reduce the spur of the current after passing, and improve the power quality.
  • the common mode current will cause large conduction and radiation spurs due to the common mode current caused by the potential difference between the devices.
  • the detection of weak signals will cause large interference, and may also reduce the acquisition sensitivity of the system.
  • the invention also adds a common mode filter in the power module part; thus the power module has high working efficiency and wideness.
  • the principle of the temperature adjustment of the laser light source is as follows: First, a laser with suitable optical performance is selected according to actual requirements (if the single-tube spectral width is insufficient, the dual- and triple-tube combined output modes can be used), and then according to the laser internal
  • the thermistor (the temperature sensor 211 can also be separately provided) has characteristics and actual laser operating temperature regions that need to be accurately quantized, and the appropriate reference resistor and reference current source are selected in consideration of the input threshold of the subsequent temperature adjusting unit 222.
  • the reference current source generates a reference voltage a from the reference resistor and another reference current source to the thermistor inside the laser to generate a voltage b that varies with the temperature of the laser.
  • the first amplifying unit 212 may be a meter operational amplifier, and the common mode voltage is increased and then sent to the first analog to digital converter 213.
  • the invention selects the instrument operational amplifier because the input impedance of the instrument operational amplifier can reach 100G Ohm, so that the influence on the pre-stage circuit after the circuit is inserted is very small, the detection precision of the circuit is ensured, and the temperature of the instrument operational amplifier is floating and common mode. The suppression ratio and the PSRR index of the power supply are very good.
  • the instrument operational amplifiers for voltage a and b processing are in one chip package, so that the two are resistant to external electromagnetic, temperature, and shock shock interference, and are configured to be subtracted.
  • the internal circuit changes the sampling rate to greatly improve the sampling accuracy and resolution near the half-scale value (optimal detection value). However, due to the need to balance the sampling rate, the sampling frequency of the first analog-to-digital converter 213 of the module can be set to 10 Hz.
  • the MCU module 30 compares the detected temperature signal with a preset temperature value, and if the detected temperature signal is lower than the temperature value, The MCU module 30 outputs a temperature increase control signal, and the temperature adjustment drive unit 221 receives the temperature increase control signal to drive the temperature adjustment unit 222 (Peltier) to load the forward voltage, and enters the heating operation state until the temperature of the laser module reaches the preset temperature value and Keep at a constant temperature. If the detected actual temperature signal is higher than the preset temperature value, the MCU module 30 sends a temperature reduction control signal, and the temperature adjustment driving unit 221 drives the temperature adjustment unit 222 (Peltier) to load a reverse voltage to enter the cooling operation state. Until the temperature of the laser module reaches the preset temperature value and remains at a constant temperature. This minimizes the effect of temperature on the spectral wavelength.
  • the principle of current regulation is as follows: First, the current flowing through the sampling resistor 411 is connected in series with the laser module 10, and the currents flowing through are equal. Then, the collected current value is converted by the I/V conversion unit 412, converted into an analog voltage signal, amplified by the second amplifying unit 413, converted by the second analog-to-digital converter 414, and transmitted to the MCU module 30.
  • the MCU module 30 outputs a digital voltage adjustment signal according to the received digital voltage signal, and after being converted by the digital-to-analog converter 421, is transmitted to the V/I constant current conversion unit 422 to be converted into a current signal and controlled to output to the laser module 10 according to the current signal.
  • the current is sized to keep the current of the laser module 10 constant.
  • a finite current protection module 50 is further disposed between the V/I constant current conversion unit 422 and the laser module 10, and the current detecting unit 520 of the current limiting protection module 50 detects the V/I constant in real time.
  • the magnitude of the current value outputted by the stream converting unit 422 to the laser module 10 is converted by the third analog-to-digital converter 510 and transmitted to the MCU module 30.
  • the MCU module 30 controls the current limiting unit 530 to limit the output to the laser according to the detected current value.
  • the current of module 10 is sized to achieve current limiting protection.
  • the maximum value is plus or minus 0.1 °C.
  • the current fluctuation will also affect the output power, because the PI curve of the laser is non-linear, with a large output power/current ratio near 0.8 times the rated output power, and a little current brings a large power. Change; and output power fluctuations will have an adverse effect on the OCT imaging system, the target value is ⁇ 0.01mw.
  • the present invention uses digital closed-loop constant current control for current, and uses low-side detection of current sampling resistor. The lower common-mode voltage minimizes the influence of common-mode voltage on detection accuracy, and takes appropriate sampling resistance.
  • the value ensures that the error rate of the current detecting chip itself is 0.001.
  • the high precision not only ensures that the current corresponding to the rated power is small compared with the laser calibration, but also avoids the possibility of breakdown of the rated output power exceeding the real power under large negative errors.
  • a hardware current limit is adopted for the second amplifying unit, and a power operational amplifier is selected for the second amplifying unit. When the operating current exceeds the hardware preset value, it will output a constant current. If the load continues to increase, the output will be turned off to 0V. After shutting down to 0V, the circuit needs to be manually restarted to restore the power amplifier output.
  • FIG. 4 is a real-time data acquisition diagram of a laser light source based on OCT spectral analysis application in one embodiment.
  • the collected data is uploaded every 3 seconds.
  • the left-hand box in Figure 4 is the constant current control state of the laser in the laser source. It can be seen that during the middle of an OCT acquisition (usually one acquisition period is 1/100K seconds), the current changes within 0.010 mA. Only 2 of the 38 data collected for a long time fluctuated around 0.246 mA, and the actual measured laser output power fluctuated to 0.001 mW. The data shows that the laser source can meet the fluctuation requirement of 0.01 mW required by OCT.
  • 10mV 1 °C.
  • the adjacent collected data differs by 0.001 ° C.
  • the image data is collected in the late normal temperature environment, and the data occasionally has Fluctuation, combined with high and low temperature experimental results, this is the fluctuation of the collected data caused by the temperature change of the ambient airflow.
  • the temperature sensor, the temperature adjustment unit, and the first analog-to-digital converter can stably acquire signals with a difference of 0.010 mV.
  • the above conditions are obtained: the amplitude of the first analog-to-digital converter sample is 0-4096 mV, and the temperature sensor analog voltage is directly sent to the first analog-to-digital converter for sampling. This data is a high indicator without increasing the shield, common 4-layer board, DC/DC power supply, and MCU common board.
  • FIG. 5 is an output spectrum diagram of a laser light source based on OCT spectral analysis application in an embodiment.
  • the darker color is the output spectrum of a standard laser light source
  • the lighter color is the output spectrum of the laser light source of the present invention.
  • the output spectrum width of the laser source of the present invention and a standard laser source are different. If a wider spectral width output and a higher power output are required, a laser with a rated index can be selected, and then the laser current limit can be adjusted to stabilize the operation, thereby outputting a rated broad spectrum, high power laser.
  • FIG. 6 is a schematic diagram of interference of a laser light source based on OCT spectral analysis application in an embodiment.
  • the darker color is the interference spectrum of the test sample of a standard laser light source
  • the lighter color is the interference spectrum of the test sample of the laser light source of the present invention.
  • both laser sources test the same sample under the same conditions.
  • the lighter shape of the map is closer to the Gaussian distribution of the bell-shaped map, the line is sharper, and the test sample is better than the darker interferogram.
  • the laser light source of the present invention can reach the advanced level in the industry.
  • the temperature information of the laser module can be collected and adjusted in real time, and the temperature is maintained at a constant temperature state; and the current of the laser module is also combined by the current control circuit and the MCU module.
  • the value is real-time acquisition and adjustment control and keeps the current constant; the laser light source can detect the temperature information and current information of the laser module in real time. At the same time, the temperature information and the current information can be kept in a constant state, so that the performance of the laser light source is stable and reliable.
  • the component since the analog-to-digital converter, the amplifying unit, the temperature sensor, the current sampling resistor and the like are all common conventional materials, the component has a long life cycle, which can make the cost relatively low, and is advantageous for long-term stable batch and high efficiency. produce.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种基于OCT光谱分析应用的激光光源。所述的激光光源包括:激光模块;温度控制电路,与所述激光模块连接,用于实时检测和调节所述激光模块的温度值;MCU模块,与所述温度控制电路连接,用于根据检测的所述温度值控制所述温度控制电路调节所述激光模块的温度值以使所述激光模块的温度保持恒定;电流控制电路;与所述激光模块连接,用于实时采集和调节所述激光模块的电流值;所述MCU模块与所述电流控制电路连接,还用于根据所述采集的电流值控制所述电流控制电路调节输出至所述激光模块的电流大小以使输出至所述激光模块的电流保持恒定。通过设置温度控制电路和电流控制电路实现了激光模块的恒温恒流控制,使得该激光光源的性能稳定、可靠。

Description

基于OCT光谱分析应用的激光光源 技术领域
本发明涉及OCT光谱分析领域,特别是涉及基于OCT光谱分析应用的激光光源。
背景技术
光学相干层析成像(Optical Coherence Tomography,OCT)是一门新兴的成像技术,能够对包括生物组织在内的强散射介质进行深度成像。其核心部件是宽带光源、Michelson干涉仪和相机等。
宽带光源作为核心部件之一,目前全球业内只有几个厂家可以提供可靠的商业产品,存在采购须提前预定、供货周期长,价格昂贵等因素。同时随着时代的进步,许多事业单位、院所等在材料识别、检测方面的需求不断提高,催生着OCT光谱分析向着实时化、快速化、检测精确化、检测分辨率高、检测成本低发展,同时还希望检测设备可便携、轻量小体积。但是由于现实的相关产品没有标准化,零部件也没有实现标准化,所以不利于OCT相关产品的产业化,也不利于OCT检测行业的发展、成熟。
发明内容
基于此,有必要针对上述问题,提供一种性能稳定、可靠、成本相对较低的基于OCT光谱分析应用的激光光源。
一种基于OCT光谱分析应用的激光光源,所述的激光光源包括:
激光模块;
温度控制电路,与所述激光模块连接,用于实时检测和调节所述激光模块的温度值;
MCU模块,与所述温度控制电路连接,用于根据检测的所述温度值控制所述温度控制电路调节所述激光模块的温度值以使所述激光模块的温度保持恒定;
电流控制电路;与所述激光模块连接,用于实时采集和调节所述激光模块的电流值;
所述MCU模块与所述电流控制电路连接,还用于根据所述采集的电流值控制所述电流控制电路调节输出至所述激光模块的电流大小以使输出至所述激光模块的电流保持恒定。
在其中一个实施例中,所述温度控制电路包括温度采集模块和温度控制模块,所述温度采集模块将采集的实时温度信号传输至所述MCU模块,所述MCU模块根据所述实时温度信号控制所述温度控制模块加热或制冷,使所述激光模块的温度恒定。
在其中一个实施例中,所述温度采集模块包括温度传感器、第一放大单元以及第一模数转换器;所述温度传感器实时检测所述激光模块的温度信号,第一放大单元将所述温度信号放大经所述第一模数转换器转换后传输至所述MCU模块。
在其中一个实施例中,所述温度控制模块包括温度调节驱动单元、温度调节单元;所述温度调节驱动单元分别与所述MCU模块和所述温度调节单元连接;所述MCU模块根据所述实时温度信号输出温度控制信号,所述温度调节驱动单元接收所述温度控制信号后驱动所述温度调节单元为所述激光模块加热或制冷。
在其中一个实施例中,所述电流控制电路包括电流采集模块和恒流驱动模块;
所述电流采集模块将采集的所述激光模块的实时电流信号传输至所述MCU模块,所述MCU模块根据所述实时电流信号控制所述恒流驱动单元输出至所述激光模块的电流大小,使所述激光模块的电流恒定。
在其中一个实施例中,所述电流采集模块包括电流采样电阻、I/V转换单元、第二放大单元以及第二模数转换器;所述电流采样电阻实时采集所述激光模块的电流信号,经所述I/V转换单元转换成电压信号,第二放大信号将所述电压信号放大经所述第二模数转换器转换后传输至所述MCU模块。
在其中一个实施例中,所述恒流驱动模块包括数模转换器和V/I恒流转换单元;所述数模转换器将所述MCU模块输出的电压信号传输至所述V/I恒流转换单元转换,所述V/I恒流转换单元根据转换后的电流信号控制输出到所述激光模块的电流大小,使所述激光模块的电流恒定。
在其中一个实施例中,还包括限流保护模块;所述限流保护模块包括电流检测单元、限流单元和第三模数转换器;
所述电流检测单元实时检测所述V/I恒流转换单元输出至所述激光模块的电流值大小,经所述第三模数转换器传输至所述MCU模块,所述MCU模块根据检测的电流值控制所述限流单元限制输出至所述激光模块的电流大小以保护所述激光模块。
在其中一个实施例中,还包括光源防护模块;所述光源防护模块与所述激光模块连接,用于泄放所述激光模块周围的静电电荷。
在其中一个实施例中,还包括电源模块;所述电源模块用于为所述激光光源供电,所述电源模块采用DC/DC。
上述基于OCT光谱分析应用的激光光源包括激光模块、温度控制电路、MCU模块和电流控制电路。通过结合温度控制电路和MCU模块,可以对激光模块的温度信息进行实时采集和调节控制,并将温度保持在恒温状态;还通过结合电流控制电路和MCU模块,对激光模块的电流值进行实时采集和调节控制并保持电流的恒定;通过该激光光源可以实时检测激光模块的温度信息、电流信息。同时还可以将温度信息和电流信息保持在恒定的状态下,使得该激光光源的性能稳定、可靠。进一步地,由于采用的模数转换器、放大单元、温度传感器、电流采样电阻等器件都是普通常规材料,元器件生命周期长,可使得成本相对较低,并且有利于长期稳定的批量、高效生产。
附图说明
图1为一实施例中的基于OCT光谱分析应用的激光光源结构示意图;
图2为另一实施例中的基于OCT光谱分析应用的激光光源结构示意图;
图3为又一实施例中的基于OCT光谱分析应用的激光光源结构示意图;
图4为一实施例中的基于OCT光谱分析应用的激光光源实时数据采集图;
图5为一实施例中的基于OCT光谱分析应用的激光光源的输出光谱图;
图6为一实施例中的基于OCT光谱分析应用的激光光源的干涉示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术 领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参照图1,为一实施例中的基于OCT光谱分析应用的激光光源的结构示意图。基于OCT光谱分析应用的激光光源可以包括:激光模块10,温度控制电路20,MCU模块30和电流控制电路40。其中,温度控制电路20与激光模块10连接,用于实时检测和调节激光模块10的温度值。MCU模块30与温度控制电路20连接,用于根据检测的温度值控制温度控制电路20调节激光模块10的温度值以使激光模块10的温度值保持恒定。电流控制电路40与激光模块10连接,用于实时采集和调节激光模块10的电流值。MCU模块30与电流控制电路40连接,还用于根据采集的电流值控制电流控制电路40调节输出至激光模块10的电流大小以使输出至激光模块10的电流保持恒定。
在一个实施例中,激光模块10可以采用单独的单管激光器作为光源,当然,如果单管谱宽不够的情况下还可以采用双、三管激光器合路输出的方式。可以理解,对于激光模块10的选取可以根据实际操作需要选择合适光学性能的激光器。
在一个实施例中,请辅助参阅图2,为另一个实施例中的基于OCT光谱应用的激光光源结构示意图。温度控制电路20可以包括温度采集模块210和温度控制模块220。温度采集模块210将采集的实时温度信号传输至MCU模块30,MCU模块根据实时温度信号控制温度控制模块220加热或制冷,使激光模块10的温度恒定。
请参阅图3,为一个实施例中的基于OCT光谱分析应用的激光光源结构示意图。温度采集模块210可以包括温度传感器211、第一放大单元212以及第一模 数转换器213。温度传感器211可以为热敏电阻,其可以是内置于激光器中,也可以是单独设置靠近激光器的附近,当然,为了使得测量结果的精确,在这种情况下应当将温度传感器211尽可能的靠近激光器设置。温度传感器211实时检测激光模块10的温度信号,第一放大单元212将温度信号放大经第一模数转换器213转换后传输至MCU模块。
在一个实施例中,同样参阅图3,温度控制模块220可以包括温度调节驱动单221和温度调节单元222。温度调节驱动单元221分别与MCU模块30和温度调节单元222连接。MCU模块30根据实时温度信号输出温度控制信号,温度调节驱动单元221接收温度控制信号后驱动温度调节单元222为激光模块30加热或制冷。
具体地,温度调节单元222可以包括帕尔贴和散热器,也可以是单独的帕尔贴,当然还可以是其他半导体制冷器,对于温度的调节主要采用PID控制算法来实现,在激光器快要达到预设的温度时,需要反向控制(由加热转向到制冷或由制冷转向到加热),来实现温度的控制。现较于传统的做法是采用一个单刀双掷的继电器,通过继电器的常闭触点和常开触点的切换来完成加热到制冷和制冷到加热两个流程的互相切换,考虑继电器的机械和触点电器寿命发现无故障运行时长偏小,为了提高可靠性,本发明对于温度驱动单元可以采用H桥(惠斯通电桥)来替代继电器,H桥(惠斯通电桥)的控制速度可以达到250KHz级别,机械继电器的控制速度只有Hz级别,用H桥(惠斯通电桥)替换后可使得温度控制环路的响应时间大大缩短,执行效能大大提高。
在一个实施例中,MCU模块30中运行着ADC/DAC控制程序和H桥(惠斯通电桥)控制程序,MCU模块30可以根据PID控制算法和采集的温度数据、电流数据对激光器进行实时的数据采集和状态控制。由于整个光源工作在数字状态,而采集微弱信号时需要避免晶体管/场效应管的开关瞬间产生的尖刺电流影响,因此需要将MCU模块30的参考地和电路板上的参考地进行隔离。
在一个实施例中,电流控制电路40可以包括电流采集模块410和恒流驱动模块420;电流采集模块410将采集的激光模块10的实时电流信号传输至MCU 模块30,MCU模块30根据实时电流信号控制恒流驱动模块420输出至激光模块10的电流大小,使激光模块10的电流恒定。
在一个实施例中,同样参阅图3,电流采集模块410包括电流采样电阻411、I/V转换单元412、第二放大单元413以及第二模数转换器414;电流采样电阻411实时采集激光模块10的电流信号,经I/V转换单元412转换成电压信号,第二放大单元413将电压信号放大经第二模数转换414器转换后传输至MCU模块30。
在一个实施例中,同样参阅图3,恒流驱动模块420包括数模转换器421和V/I恒流转换单元422;数模转换器421将MCU模块30输出的电压信号传输至V/I恒流转换单422元转换,V/I恒流转换单元422根据转换后的电流信号控制输出到激光模块10的电流大小,使激光模块10的电流恒定。
在一个实施例中,同样参阅图3,基于OCT光谱分析应用的激光光源还可以包括限流保护模块50,限流保护模块50包括电流检测单元520,限流单元530和第三模数转换器510。电流检测单元520实时检测V/I恒流转换单元422输出至激光模块10的电流值大小,经第三模数转换器510传输至MCU模块30,MCU模块30根据检测的电流值控制限流单元530限制输出至激光模块10的电流大小以保护激光模块10。
在一个实施例中,基于OCT光谱分析应用的激光光源还可以包括光源防护模块(图未标示),光源防护模块(图未标示)与激光模块10连接,用于泄放激光模块10周围的静电电荷。
具体地,激光器的光源防护主要可以包括ESD(静电释放)防护和防止电流冲击,本发明摒弃传统机械继电器常闭触点到地、工作切换到常开触点的方式,由于激光二极管一个管脚对地阻值是取样电阻1Ohm一下,此管脚和金属客体构成“等势体”,这样只需要考虑电流输入管脚的ESD(静电释放)防护,采取一个100Ohm电阻倒地泄放ESD电荷,再增加一颗0.1uF电容来吸收ESD脉冲,这样实用,且体积小、可在线实时防护(相比继电器常闭管脚防护,工作时切换到常开管脚就失去ESD(静电释放)防护)、且避免了继电器触点长时间工作失效对激光器的影响。而MCU模块30控制模数转换器缓启动方式显著提高了控 制环路的稳定性,避免了过冲和振铃的发生,避免激光器工作电流的瞬间突变。
在一个实施例中,基于OCT光谱分析应用的激光光源还可以包括电源模块(图未标示);电源模块(图未标示)用于为激光光源供电,电源模块(图未标示)采用DC/DC。
具体地,采用DC/DC是为了提高工作效率,降低热功耗,降低元器件发热,而热功率的降低提高了无故障运行时间和可靠性。同时在输入部分还增加了EMC滤波电路(电磁兼容型滤波器),进一步提高外部设备连入激光光源时对电源模块造成的传导杂散干扰,同时也可以滤除外部电路对设备传导杂散干扰,增加了磁珠,磁珠可以将一定频率内的交流杂散信号转换为热量,这样也可以减小通过后电流的杂散,提高电源质量。一般的使用过程中,考虑到设备通常作为一个模块或部件放入到系统中或机箱中,通常由于设备间电势差造成共模电流,共模电流会造成较大的传导、辐射杂散,这对微弱信号的检测会造成较大的干扰、并且还可能会降低了系统的采集灵敏度,为此本发明还在电源模块部分增加了共模滤波器;这样电源模块便有了高的工作效率、宽的电压输入范围、强的抗干扰能力、低的传导辐射,以满足电源模块较强适应性、低功耗、高灵敏度性能。
基于上述实施例的描述,本激光光源温度调节的原理为:首先,根据实际要求选用合适光学性能的激光器(若单管谱宽不够可以采用双、三管合路输出方式),然后根据激光器内部的热敏电阻(也可以单独设置的温度传感器211)特性和实际需要精确量化的激光器工作温度区、考虑后续温度调节单元222输入门限情况下选择合适的基准电阻、基准电流源。
其次,基准电流源一路到基准电阻产生一个基准电压a、另一路基准电流源到激光器内部的热敏电阻后产生一个随激光器温度变化而变化的电压b。
然后,将电压a和电压b送入第一放大单元212,第一放大单元212可以是仪表运算放大器,增加共模电压后送入第一模数转换器213。本发明选择仪表运算放大器是因为仪表运算放大器的输入阻抗可达100G Ohm,这样接入电路后对前级电路的影响非常小,保证了电路的检测精度,同时仪表运算放大器的温飘、共模抑制比、对电源的PSRR指标均非常好,对电压a和b处理的仪表运算放大 器均处于一个芯片封装内,这样两者的抗外界电磁、温度、震动冲击干扰均相同,配置成减法运算时可最小化这些不利因素的影响,性能、成本、体积较分离方案优秀许多。仪表运算放大器的输出偏执根据激光光源参考电压可以配置成第一模数转换器213的1/2量程处,这样在25℃时有:a-b=0V;第一放大单元输出电压可以表示为:(a-b)+1/2*Vref=1/2*Vref;这个第一模数转换器213半量程值就是第一模数转换器213最佳检测值,还可以通过设置第一模数转换器213的内部电路来改变采样率,以此来将半量程值(最佳检测值)附近的采样精度和分辨率大大提高。但是由于需要平衡采样速率,本模块第一模数转换器213采样频率可以设定为10Hz。
最后,当温度传感器211检测到激光模块的温度信号时,其MCU模块30将检测到的温度信号与预设温度值进行比较判定,若其检测到的温度信号低于设于温度值时,其MCU模块30就会输出升温控制信号,温度调节驱动单元221接收升温控制信号驱动温度调节单元222(帕尔贴)加载正向电压,进入加热工作状态,直到激光模块的温度达到预设温度值并保持恒温状态。若检测的实际温度信号高于预设温度值时,通过其MCU模块30发出降温控制信号,通过温度调节驱动单元221驱动温度调节单元222(帕尔贴)加载一个反向电压,进入冷却工作状态,直到激光模块的温度达到预设温度值并保持恒温状态。从而使得温度对光谱波长的影响达到最低。
电流调节的原理为:首先,通过电流采样电阻411与激光模块10串联,流过的电流相等。然后,将采集到的电流值经过I/V转换单元412进行转换,转换成模拟电压信号之后,经过第二放大单元413放大并经第二模数转换器414转换后传输给MCU模块30。MCU模块30根据接收到的数字电压信号来输出数字电压调节信号,经过数模转换器421转换之后,传输到V/I恒流转换单元422转换成电流信号并根据电流信号控制输出到激光模块10的电流大小,从而保持激光模块10的电流恒定。为了使得电流不超过预设的电流值,在V/I恒流转换单元422与激光模块10之间还设置有限流保护模块50,限流保护模块50的电流检测单元520实时检测V/I恒流转换单元422输出至激光模块10的电流值大小,经过第三模数转换器510转换后传输至MCU模块30,最后,MCU模块30根 据检测到的电流值控制限流单元530限制输出到激光模块10的电流大小以实现限流保护。
进一步地,考虑激光器短期温度稳定波动最大值是正负0.1℃。激光器工作时,电流的波动也会影响着输出功率,因为激光器的P-I曲线是非线性的,在0.8倍于额定输出功率附近有着较大的输出功率/电流比率,增加一点电流带来较大的功率改变;而输出功率波动会对OCT成像系统带来不利的影响,目标值是≤0.01mw。为了便于控制和处理,本发明对电流采用数字闭环恒流控制,且采用电流取样电阻低端检测,较低的共模电压会使共模电压对检测精度的影响最小化,取合适的取样电阻值,保证电流检测芯片自身的误差率在0.001。高的精度既可以保证额定功率所对应的电流与激光器标定出厂时的差别小,也避免了大的负误差下额定输出功率超出真实功率的击穿可能性。进一步地,对第二放大单元采用了硬件电流限制,第二放大单元可以选用功率运算放大器。当工作电流超过硬件预设值时,会恒定电流输出,继续增加负载会关闭输出到0V,关闭到0V后需要手动重启电路恢复功率运算放大器输出。
请参阅图4,为一个实施例中的基于OCT光谱分析应用的激光光源实时数据采集图。采集到的数据每3秒钟上传一次。图4中靠左的一个方框是激光光源中激光器运行时的恒流控制状态,可以看到在一个OCT的采集中期中(通常一个采集周期是1/100K秒)电流的变化在0.010mA以内,长期采集的38次数据中仅有2次波动在0.246mA左右,实际测试的激光器输出功率波动为0.001mW。从数据表明本激光光源可以满足OCT要求的0.01mW左右波动要求。在“SLD_Temp”参数中可以看到最大的波动范围是0.87mV,根据信号调理电路参数4.39mV对应0.1℃可以等效为温度波动:0.87mV/(4.39mV/0.1℃)=0.019818℃;由于这个温度波动对光谱中心波长的影响非常小,在后面的图中可以明显看到该激光器应用实际系统中和某标准激光光源的比对图结果。
图4中靠右的一个方框是一个温度传感器采集到的温度数据,该温度传感器的参数是10mV=1℃。在一次高低温的实验降温环节中,可以看到满屏的数据是缓慢降低,没有出现数据的波动,基本上相邻采集数据相差0.001℃,本图片数据在后期常温环境下采集,数据偶尔有波动,结合高低温的实验结果看这个 是环境气流温度变化造成的采集数据波动。以高低温相邻采集数据0.001℃分析,本发明温度传感器、第一模数转换器以及温度调节单元的最大波动值为:0.001℃/(1℃/10mV)=0.010mV;从计算结果可以说明该温度传感器、温度调节单元、第一模数转换器均可以稳定采集相差0.010mV的信号。以上得出的条件是:第一模数转换器采样的幅度是0-4096mV、温度传感器模拟电压直接送到第一模数转换器采样。这个数据在没有增加屏蔽罩、普通4层板、DC/DC电源、MCU共板情况下是很高的指标。
请参阅图5,为一实施例中的基于OCT光谱分析应用的激光光源的输出光谱图。其中,颜色较深为某标准激光光源的输出光谱图,颜色较浅为本发明的激光光源的输出光谱图。可以看出本发明的激光光源和某标准的激光光源的输出光谱宽度不一样。而如果需要更宽谱宽输出和更高的功率输出,可以选择额定指标的激光器,然后调节激光器限流后即可稳定工作,从而输出额定的宽谱、高功率激光。
请参阅图6,为一实施例中的基于OCT光谱分析应用的激光光源的干涉示意图。颜色较深为某标准激光光源的测试样品干涉图谱,颜色较浅为本发明的激光光源的测试样品干涉图谱。其中,两个激光光源都在同等条件下来测试同一样品。从图中可以看出,颜色较浅的图谱形状更靠近于高斯分布的钟形图谱,谱线更加尖一些、测试样品的效果相比于颜色较深的干涉图谱更好一些。从而可以证明本发明的激光光源可以达到业内的先进水平。
上述实施例,通过结合温度控制电路和MCU模块,可以对激光模块的温度信息进行实时采集和调节控制,并将温度保持在恒温状态;还通过结合电流控制电路和MCU模块,对激光模块的电流值进行实时采集和调节控制并保持电流的恒定;通过该激光光源可以实时检测激光模块的温度信息、电流信息。同时还可以将温度信息和电流信息保持在恒定的状态下,使得该激光光源的性能稳定、可靠。进一步地,由于采用的模数转换器、放大单元、温度传感器、电流采样电阻等器件都是普通常规材料,元器件生命周期长,可使得成本相对较低,并且有利于长期稳定的批量、高效生产。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于OCT光谱分析应用的激光光源,其特征在于,所述的激光光源包括:
    激光模块;
    温度控制电路,与所述激光模块连接,用于实时检测和调节所述激光模块的温度值;
    MCU模块,与所述温度控制电路连接,用于根据检测的所述温度值控制所述温度控制电路调节所述激光模块的温度值以使所述激光模块的温度保持恒定;
    电流控制电路;与所述激光模块连接,用于实时采集和调节所述激光模块的电流值;
    所述MCU模块与所述电流控制电路连接,还用于根据所述采集的电流值控制所述电流控制电路调节输出至所述激光模块的电流大小以使输出至所述激光模块的电流保持恒定。
  2. 根据权利要求1所述的基于OCT光谱分析应用的激光光源,其特征在于,所述温度控制电路包括温度采集模块和温度控制模块,所述温度采集模块将采集的实时温度信号传输至所述MCU模块,所述MCU模块根据所述实时温度信号控制所述温度控制模块加热或制冷,使所述激光模块的温度恒定。
  3. 根据权利要求2所述的基于OCT光谱分析应用的激光光源,其特征在于,所述温度采集模块包括温度传感器、第一放大单元以及第一模数转换器;所述温度传感器实时检测所述激光模块的温度信号,第一放大单元将所述温度信号放大经所述第一模数转换器转换后传输至所述MCU模块。
  4. 根据权利要求2所述的基于OCT光谱分析应用的激光光源,其特征在于,所述温度控制模块包括温度调节驱动单元、温度调节单元;所述温度调节驱动单元分别与所述MCU模块和所述温度调节单元连接;所述MCU模块根据所述实 时温度信号输出温度控制信号,所述温度调节驱动单元接收所述温度控制信号后驱动所述温度调节单元为所述激光模块加热或制冷。
  5. 根据权利要求1所述的基于OCT光谱分析应用的激光光源,其特征在于,所述电流控制电路包括电流采集模块和恒流驱动模块;
    所述电流采集模块将采集的所述激光模块的实时电流信号传输至所述MCU模块,所述MCU模块根据所述实时电流信号控制所述恒流驱动模块输出至所述激光模块的电流大小,使所述激光模块的电流恒定。
  6. 根据权利要求5所述的基于OCT光谱分析应用的激光光源,其特征在于,所述电流采集模块包括电流采样电阻、I/V转换单元、第二放大单元以及第二模数转换器;所述电流采样电阻实时采集所述激光模块的电流信号,经所述I/V转换单元转换成电压信号,第二放大信号将所述电压信号放大经所述第二模数转换器转换后传输至所述MCU模块。
  7. 根据权利要求5所述的基于OCT光谱分析应用的激光光源,其特征在于,所述恒流驱动模块包括数模转换器和V/I恒流转换单元;所述数模转换器将所述MCU模块输出的电压信号传输至所述V/I恒流转换单元转换,所述V/I恒流转换单元根据转换后的电流信号控制输出到所述激光模块的电流大小,使所述激光模块的电流恒定。
  8. 根据权利要求7所述的基于OCT光谱分析应用的激光光源,其特征在于,还包括限流保护模块;所述限流保护模块包括电流检测单元、限流单元和第三模数转换器;
    所述电流检测单元实时检测所述V/I恒流转换单元输出至所述激光模块的电流值大小,经所述第三模数转换器传输至所述MCU模块,所述MCU模块根据检测的电流值控制所述限流单元限制输出至所述激光模块的电流大小以保护所 述激光模块。
  9. 根据权利要求8所述的基于OCT光谱分析应用的激光光源,其特征在于,还包括光源防护模块;所述光源防护模块与所述激光模块连接,用于泄放所述激光模块周围的静电电荷。
  10. 根据权利要求1-9任一项所述的基于OCT光谱分析应用的激光光源,其特征在于,还包括电源模块;所述电源模块用于为所述激光光源供电,所述电源模块采用DC/DC。
PCT/CN2019/082727 2018-05-16 2019-04-15 基于oct光谱分析应用的激光光源 WO2019218827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810469120.4 2018-05-16
CN201810469120.4A CN108767645A (zh) 2018-05-16 2018-05-16 基于oct光谱分析应用的激光光源

Publications (1)

Publication Number Publication Date
WO2019218827A1 true WO2019218827A1 (zh) 2019-11-21

Family

ID=64007996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082727 WO2019218827A1 (zh) 2018-05-16 2019-04-15 基于oct光谱分析应用的激光光源

Country Status (2)

Country Link
CN (1) CN108767645A (zh)
WO (1) WO2019218827A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767645A (zh) * 2018-05-16 2018-11-06 深圳市太赫兹科技创新研究院 基于oct光谱分析应用的激光光源
CN111327812B (zh) * 2018-12-14 2022-03-04 杭州海康威视数字技术股份有限公司 一种摄像机组件及摄像机控制方法
CN110707513A (zh) * 2019-10-09 2020-01-17 深圳市欧深特信息技术有限公司 一种激光器的温度调节方法及系统、计算机可读存储介质
CN111106530A (zh) * 2019-12-06 2020-05-05 广东九联科技股份有限公司 一种激光二极管的发射功率自动调整电路及方法
CN111579531B (zh) * 2020-05-29 2024-03-22 湖北鑫英泰系统技术股份有限公司 一种光声池单元的激光器电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290705A (zh) * 2011-06-23 2011-12-21 哈尔滨工业大学 输出光功率连续可调的高可靠恒压模式半导体激光驱动器
CN205248613U (zh) * 2015-11-08 2016-05-18 中国计量学院 一种半导体激光器电源驱动和温度控制装置
CN107069424A (zh) * 2017-06-15 2017-08-18 上海理工大学 高功率低功耗可调谐dfb激光器驱动装置
CN108767645A (zh) * 2018-05-16 2018-11-06 深圳市太赫兹科技创新研究院 基于oct光谱分析应用的激光光源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436756B (zh) * 2008-11-20 2010-07-07 武汉凌云光电科技有限责任公司 大功率半导体激光器电源驱动装置
CN102064467B (zh) * 2010-12-13 2012-08-29 赵智亮 连续可调节小功率半导体激光器驱动源装置
CN102306903B (zh) * 2011-08-24 2013-01-23 苏州生物医学工程技术研究所 一种数字式大功率半导体激光电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290705A (zh) * 2011-06-23 2011-12-21 哈尔滨工业大学 输出光功率连续可调的高可靠恒压模式半导体激光驱动器
CN205248613U (zh) * 2015-11-08 2016-05-18 中国计量学院 一种半导体激光器电源驱动和温度控制装置
CN107069424A (zh) * 2017-06-15 2017-08-18 上海理工大学 高功率低功耗可调谐dfb激光器驱动装置
CN108767645A (zh) * 2018-05-16 2018-11-06 深圳市太赫兹科技创新研究院 基于oct光谱分析应用的激光光源

Also Published As

Publication number Publication date
CN108767645A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019218827A1 (zh) 基于oct光谱分析应用的激光光源
US9835655B2 (en) Output current monitoring circuit
CN115047925B (zh) 一种基于pid控制器的被动辐射式恒温控制系统及控制方法
TWI440394B (zh) Optical power compensation circuit and device, detection module
CN102364405B (zh) 光源驱动电路温控性能检测装置
JPH0361843A (ja) ガスの熱伝導率測定方法およびその装置
CN105045308A (zh) 一种应用于空间环境的半导体制冷器闭环控制方法
CN110514854B (zh) 一种提高全自动免疫分析仪测量稳定性的装置及控制方法
Lee et al. Complete gas sensor circuit using nondispersive infrared (NDIR)
WO2015131539A1 (zh) 一种温度测量装置
CN1863014B (zh) 无制冷激光器的消光比参数的温度补偿方法及装置
CN113465737A (zh) 宽波段光电探测器测试装置
CN114370945B (zh) 加热装置及红外测温装置、标定方法及测温方法
RU2292067C2 (ru) Инфракрасный коллиматор
Eppeldauer Temperature-monitored/controlled silicon photodiodes for standardization
CN105067126B (zh) 红外焦平面模拟前端电路
CN205581683U (zh) 一种用于光学微球腔的高精度温控系统
JPH051991B2 (zh)
CN211265967U (zh) 一种基于SoPC的半导体激光器驱动装置
Tian et al. Drive design and performance test of a tunable DFB laser
Eppeldauer Electronic characteristics of Ge and InGaAs radiometers
KR101881461B1 (ko) 마이크로 볼로미터 기반 적외선 검출기
CN107302181B (zh) 激光芯片的贴片装置和方法
CN202857050U (zh) 基于温度及功率反馈控制的sled光源
CN112033901A (zh) 一种光源零点补偿装置、传感器及其光源零点补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804024

Country of ref document: EP

Kind code of ref document: A1