WO2019218798A1 - 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法 - Google Patents

一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法 Download PDF

Info

Publication number
WO2019218798A1
WO2019218798A1 PCT/CN2019/081530 CN2019081530W WO2019218798A1 WO 2019218798 A1 WO2019218798 A1 WO 2019218798A1 CN 2019081530 W CN2019081530 W CN 2019081530W WO 2019218798 A1 WO2019218798 A1 WO 2019218798A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
steam chamber
injection
slug
Prior art date
Application number
PCT/CN2019/081530
Other languages
English (en)
French (fr)
Inventor
鹿腾
李兆敏
杨建平
王宏远
王诗中
魏耀
王壮壮
侯大炜
徐亚杰
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/605,068 priority Critical patent/US11078768B2/en
Publication of WO2019218798A1 publication Critical patent/WO2019218798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2406Steam assisted gravity drainage [SAGD]
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium

Definitions

  • the invention belongs to the technical field of oil and gas field development engineering, and particularly relates to a super heavy oil development method for strengthening a SAGD steam chamber to break through a low physical reservoir.
  • SAGD Steam-assisted gravity drainage
  • SAGD is a heavy oil thermal recovery technology that combines fluid convection and heat conduction with steam as a heating medium and relies on the gravity of crude oil. Therefore, the expansion of steam chamber in SAGD process is developed for SAGD.
  • Low physical reservoir refers to the relatively low permeability layer distributed inside the unit sandstone layer. The distribution has no layer spacing, the layer is stable, the area is small, the extension is short, and it is mostly inside the sand layer.
  • the thickness is usually several tens of centimeters to several meters, which is not obvious. Prevent or control the movement of fluids, but it can affect the distribution of oil and water in some areas, which has a significant impact on the development and exploitation of steam chambers during SAGD development.
  • the super heavy oil cannot flow under the original reservoir conditions, and the interwell oil layer is preheated by the upper and lower horizontal wellbore steam circulation or steam stimulation method.
  • the upper horizontal well is continuously injected with steam, and the steam injection forms a steam chamber to expand to the upper part of the oil layer, and the lower horizontal well is continuously produced.
  • the steam chamber encounters a low-physical reservoir, the steam will condense to form hot water, which will cause the steam chamber to fail to break through the low-physical reservoir and continue to expand upwards, which will lead to a rapid decrease in oil production rate.
  • the low-physical reservoir can inhibit the rise of the steam chamber, causing the well group to enter the horizontal expansion stage of the steam chamber in advance, so that the heat energy consumption is large, and the output and oil-air ratio are decreased.
  • the object of the present invention is to provide a reinforced SAGD vapor chamber for the low physical reservoir to suppress the rise of the steam chamber, and the steam chamber cannot break through the low-physical reservoir to continuously expand upward, restrict the development height of the steam chamber, and thus affect the development effect.
  • An ultra-heavy oil development method that breaks through low-physical reservoirs. The method can enhance the ability of the steam cavity to break through the low physical reservoir, expand the steam chamber development height, and further improve the development effect of the super heavy oil SAGD.
  • the technical scheme of the present invention is: a method for developing an ultra-heavy oil that strengthens a SAGD steam chamber to break through a low-physical reservoir, and includes the following steps:
  • the oil reservoir is a medium-deep reservoir with a buried depth of ⁇ 1000 m and residual oil saturation >0.5. , oil layer thickness > 20m, horizontal permeability > 1000mD, vertical permeability to horizontal permeability ratio > 0.35, oil layer porosity > 0.20, low or physical reservoirs with continuous or discontinuous development in the oil layer, low physical reservoir permeability >100mD;
  • the steam injection well and the production well form a thermal communication by means of steam stimulation or steam injection preheating. After the heat communication is formed, the steam injection well is continuously injected with high dryness steam, wherein the steam dryness is greater than 70%. The injected steam develops into a steam chamber in the upper part of the oil layer, and the production well is continuously produced;
  • the steam chamber formed in step (3) is continuously expanded.
  • the steam will condense to form hot water, thereby causing the steam chamber to fail to break through the low-physical reservoir and continue to expand upward.
  • the oil production rate is rapidly reduced; wherein the time to reach the low physical reservoir is determined according to the distance between the steam injection well and the low physical reservoir, and the steam injection speed;
  • the steam chamber is strengthened by injecting gas into the steam injection well, so that the steam chamber breaks through the low-physical reservoir and continues to expand upward.
  • the gas in the step (5) is nitrogen, carbon dioxide or flue gas produced by a steam injection boiler.
  • the gas in the step (5) is injected into the steam injection well by simultaneously injecting gas and steam into the steam injection well.
  • the steps of simultaneously injecting the gas and steam into the steam injection well are as follows: the gas slug and the steam slug are simultaneously injected into the steam injection well, and the gas injection speed (m 3 /d) and the steam injection speed (m) in the oil layer condition during the injection process
  • the ratio of 3 / d) is less than 0.1, and the gas injection amount is less than 0.01 PV.
  • the steam is continuously injected. If the oil production speed is gradually increased, the steam chamber is obviously expanded, indicating that the injected gas strengthens the expansion of the steam chamber and breaks through.
  • a low-physical reservoir no gas is injected, and steam is continuously injected; if the oil production rate and the expansion of the steam chamber are not improved, that is, the oil production speed is not increased, and the steam chamber is not significantly expanded, the injection steam well is simultaneously injected.
  • Gas slug and steam slug the ratio of gas injection rate (m 3 /d) to steam injection speed (m 3 /d) is less than 0.1, gas injection amount is less than 0.01 PV, and gas injection continues after gas injection is completed. Observe the oil production rate and the expansion of the steam chamber.
  • the gas in the step (5) is injected into the steam injection well by alternately injecting gas and steam into the steam injection well.
  • the steps of alternately injecting the gas and steam into the steam injection well are as follows: firstly injecting the gas slug, the gas injection amount is less than 0.01 PV, and then injecting the steam slug, wherein the ratio of the volume of the gas slug to the volume of the steam slug is smaller than that of the oil layer. 0.1, observe the oil production speed and steam chamber expansion of the steam plug after injection of the gas slug. If the oil production speed increases gradually, the steam chamber expands significantly, indicating that the injected gas strengthens the expansion of the steam chamber and breaks the low.
  • the invention has the beneficial effects that the method for developing the super-heavy oil which strengthens the SAGD steam chamber to break through the low-physical reservoir adopts the gas-enhanced SAGD steam chamber to break through the development of the low-physical reservoir, and utilizes the non-condensing property of the gas to maintain the gas.
  • the gas can break through the low-physical reservoir to form the gas passage, which is beneficial to the flow of steam; on the other hand, the gas has a small thermal conductivity, which can inhibit the rapid condensation of steam in the low-physical reservoir to form hot water and maintain the steam state.
  • the method can enhance the steam chamber to break through the low physical reservoir capacity, expand the steam chamber development height, and further improve the development of super heavy oil SAGD.
  • Figure 1 is a schematic diagram of a steam chamber that cannot break through the continuous expansion of low-physical reservoirs.
  • FIG 2 is a schematic view of the gas-enhanced SAGD vapor chamber of the present invention to break through the upward expansion of the low-physical reservoir.
  • the method for strengthening the SAGD steam chamber to break through the ultra-heavy oil development method of the low physical reservoir includes the following steps:
  • Oilfield 1 reservoir has a buried depth of 480m, oil layer thickness of 35m, net total thickness ratio of 0.86, average porosity of 35.7%, average horizontal permeability of 3880mD, and ratio of vertical permeability to horizontal permeability. 0.5, the initial oil saturation is 0.75, and there is a continuous distribution of low-physical reservoirs in the reservoir.
  • the average thickness of low-physical reservoirs is 0.05m, the permeability of low-physical reservoirs is 105mD, and the viscosity of crude oils under oil-layer conditions is 21.5 ⁇ 10 4 mPa. .s, the original reservoir pressure is 4.2 MPa;
  • the reservoir meets the following conditions: reservoir depth ⁇ 1000m, oil saturation>0.5, oil layer thickness>20m, horizontal permeability>1000mD, vertical to horizontal permeability ratio>0.35, oil layer porosity>0.20, continuous in oil layer Low-physical reservoirs with low physical reservoir permeability >100mD;
  • (2) Well Two new horizontal wells are drilled in the oil layer. The positions of the two horizontal wells are up and down. The lower horizontal well is used as the production well, 3m from the bottom of the oil layer, and the upper horizontal well is used as the steam injection well, 7m away from the bottom of the oil layer;
  • step (3) Expansion of steam chamber: The steam chamber formed in step (3) is continuously expanded. After one year of production, the steam chamber will expand to reach the low-physical reservoir, and the steam will condense to form hot water, which will cause the steam chamber to break through the low-physical reservoir. Continue to expand upwards, resulting in a rapid decline in oil production in production wells;
  • the block implemented a nitrogen-enhanced SAGD steam chamber to break through the ultra-heavy oil development method of low-physical reservoirs.
  • the average daily oil production of the four horizontal wells increased from 252t/d before the implementation to the current 395t/d, and the average oil-gas ratio increased from 0.23 to 0.33. , an increase of 43%.
  • the steam chamber continues to expand in the longitudinal direction and rises vertically by 25 m.

Abstract

一种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法。该种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,包括以下步骤:(1)选择开发的油藏;(2)布井;(3)形成蒸汽腔;(4)蒸汽腔扩展;(5)强化蒸汽腔。该方法可以增强蒸汽腔突破低物性储层的能力、扩大蒸汽腔发育高度、进一步改善超稠油SAGD开发效果。

Description

一种强化SAGD蒸汽腔突破低物性储层的超稠油开发方法 技术领域
本发明属于油气田开发工程的技术领域,具体的涉及一种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法。
背景技术
蒸汽辅助重力泄油(SAGD)是通过流体热对流与热传导相结合,以蒸汽作为加热介质,依靠原油的重力作用进行开发的稠油热采技术,因此SAGD过程中蒸汽腔的扩展发育对SAGD开发效果具有重要影响。低物性储层是指在单元砂岩层内部分布的相对低渗透率层,分布没有层间隔,层稳定,面积小,延伸短,多处于砂层内部,厚度通常为几十厘米到几米,不能明显阻止或控制流体的运动,但在局部地区能影响油水的分布,其对SAGD开发过程中蒸汽腔发育及开采效果具有较显著的影响。
超稠油在原始油藏条件下不能流动,通过上、下部水平井井筒蒸汽循环或蒸汽吞吐方法预热井间油层。在注采井间形成热连通后,上部水平井连续注汽,注汽形成蒸汽腔向油层上部扩展,下部水平井连续生产。当蒸汽腔遇到低物性储层后,蒸汽会冷凝形成热水,从而导致蒸汽腔无法突破低物性储层持续向上扩展,这会导致产油速度迅速降低。可见低物性储层可抑制蒸汽腔的上升,造成井组提前进入蒸汽腔横向扩展阶段,使热能消耗大,产量、油汽比下降。
常规的SAGD开发技术要求油层中不存在连续分布的低物性储层,但在新疆、辽河等SAGD开发区块,油层内均存在连续分布的低物性储层,这导致该类区块在SAGD蒸汽腔遇到低物性储层后无法持续扩展,从而影响开发效果。
发明内容
本发明的目的在于针对低物性储层会抑制蒸汽腔的上升,导致蒸汽腔无法突破低物性储层持续向上扩展,制约蒸汽腔发育高度,进而影响开发效果的问题而提供一种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法。该方法可以增强蒸汽腔突破低物性储层的能力、扩大蒸汽腔发育高度、进一步改善超稠油SAGD开发效果。
本发明的技术方案为:一种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,包括以下步骤:
(1)选择开发的油藏:根据油藏地质特征与开发现状,按照以下条件进行粗筛选该开发方法适用的油藏:油层为中深层油藏,埋深<1000m,剩余油饱和度>0.5,油层厚度>20m,水平渗透率>1000mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,油层中存在连续或非连续发育的低物性储层,低物性储层渗透率>100mD;
(2)布井:在油层内钻两口位置上下正对的水平井,上部的水平井为注汽井,下部的水平井为生产井,其中下部的水平井距离油层底部3~5m,两口水平井之间的垂直距离为4~6m;
(3)形成蒸汽腔:注汽井与生产井通过蒸汽吞吐或注蒸汽循环预热的方式形成热连通,热连通形成后,注汽井连续注入高干度蒸汽,其中蒸汽干度大于70%,注入的蒸汽向油层上部发育形成蒸汽腔,生产井连续生产;
(4)蒸汽腔扩展:步骤(3)所形成的蒸汽腔不断扩展,当蒸汽腔扩展到达低物性储层后蒸汽会冷凝形成热水,从而导致蒸汽腔无法突破低物性储层持续向上扩展,致使产油速度迅速降低;其中到达低物性储层的时间根据注汽井与低物性储层的距离、注蒸汽速度确定;
(5)强化蒸汽腔:通过将气体注入注汽井对蒸汽腔进行强化,使得蒸汽腔突破低物性储层持续向上扩展。
所述步骤(5)中的气体为氮气、二氧化碳或注汽锅炉所产烟道气。
所述步骤(5)中的气体注入注汽井的方式为将气体与蒸汽同时注入注汽井。
所述气体与蒸汽同时注入注汽井的步骤具体如下:气体段塞与蒸汽段塞同时注入注汽井内,注入过程中,油层条件下气体注入速度(m 3/d)与蒸汽注入速度(m 3/d)之比小于0.1,气体注入量小于0.01PV,气体注入完成后,继续注入蒸汽,若产油速度逐渐增大,蒸汽腔明显扩展,说明注入的气体强化了蒸汽腔的扩展,突破了低物性储层,不再注入气体,持续注入蒸汽;若产油速度和蒸汽腔扩展情况未得到改善,即产油速度未增大,蒸汽腔未明显扩展,则向注汽井再同时注入气体段塞和蒸汽段塞,油层条件下气体注入速度(m 3/d)与蒸汽注入速度(m 3/d)之比小于0.1,气体注入量小于0.01PV,气体注入完成后,继续注入蒸汽,观察产油速度和蒸汽腔扩展情况。
所述步骤(5)中的气体注入注汽井的方式为将气体与蒸汽交替注入注汽井。
所述气体与蒸汽交替注入注汽井的步骤具体如下:先注入气体段塞,气体注入量小于0.01PV,再注入蒸汽段塞,其中油层条件下气体段塞体积与蒸汽段塞体积之比小于0.1,观 察注入气体段塞后再注蒸汽段塞的产油速度和蒸汽腔扩展情况,若产油速度逐渐增大,蒸汽腔明显扩展,说明注入的气体强化了蒸汽腔的扩展,突破了低物性储层,不再注入气体,持续注入蒸汽;若产油速度和蒸汽腔扩展情况未得到改善,即产油速度未增大,蒸汽腔未明显扩展,则向注汽井再交替注入气体段塞和蒸汽段塞,先注入气体段塞,气体注入量小于0.01PV,再注入蒸汽段塞,油层条件下气体段塞体积与蒸汽段塞体积之比小于0.1,观察注入气体段塞后再注蒸汽段塞的产油速度和蒸汽腔扩展情况。
本发明的有益效果为:本发明所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法采用气体强化SAGD蒸汽腔突破低物性储层的开发,利用气体的非凝结性质,保持气体状态,气体可以突破低物性储层形成气窜通道,这样有利于蒸汽的流动;另一方面气体导热系数小,可以抑制蒸汽在低物性储层内迅速冷凝形成热水,保持蒸汽状态。这两个因素使得气体可以强化蒸汽腔以突破低物性储层,改善SAGD开发效果。
综上所述,该方法可以增强蒸汽腔突破低物性储层能力、扩大蒸汽腔发育高度、进一步改善超稠油SAGD开发效果。
附图说明
图1为蒸汽腔无法突破低物性储层持续向上扩展的示意图。
图2为本发明气体强化SAGD蒸汽腔以突破低物性储层持续向上扩展的示意图。
具体实施方式
下面通过实施例和说明书附图对本发明进行详细的说明,但不限于此。
实施例1
所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,包括以下步骤:
(1)选择开发的油藏:油田1油藏埋深480m,油层厚度35m,净总厚度比为0.86,平均孔隙度35.7%,平均水平渗透率3880mD,垂向渗透率与水平渗透率的比值为0.5,初始含油饱和度为0.75,油层内发育有连续分布的低物性储层,低物性储层平均厚度0.05m,低物性储层渗透率105mD,油层条件下原油粘度为21.5×10 4mPa.s,油藏原始压力为4.2MPa;
该油藏满足以下条件:油藏埋深<1000m,含油饱和度>0.5,油层厚度>20m,水平渗透率>1000mD,垂直与水平渗透率比值>0.35,油层孔隙度>0.20,油层中存在连续发育的低物性储层,低物性储层渗透率>100mD;
(2)布井:油层内新钻两口水平井,该两口水平井的位置上下正对,下部水平井作为生产井,距离油层底部3m,上部水平井作为注汽井,距离油层底部7m;
(3)形成蒸汽腔:两口水平井采用井筒蒸汽循环的方式预热油层3个月,两口水平井在井间形成热连通后,在注汽井连续注入高干度蒸汽,其中蒸汽干度大于70%,注入的蒸汽向油层上部发育形成蒸汽腔,生产井进行采油连续生产;
(4)蒸汽腔扩展:步骤(3)所形成的蒸汽腔不断扩展,生产1年后,蒸汽腔扩展到达低物性储层后蒸汽会冷凝形成热水,从而导致蒸汽腔无法突破低物性储层持续向上扩展,致使生产井的产油量迅速降低;
(5)强化蒸汽腔:此时开始气体强化SAGD蒸汽腔突破低物性储层的开发,在注汽井中注入氮气段塞,氮气注入量为0.005PV,然后注入蒸汽段塞,蒸汽段塞注入量为0.6PV,注蒸汽发现产油速度没有明显改善,此时再注入第二个氮气段塞,注入量为0.005PV,然后再注蒸汽段塞,蒸汽段塞注入量为0.6PV,发现产油速度明显提高,蒸汽腔发育情况明显改善,这说明注入的氮气强化了蒸汽腔的扩展,改善了SAGD开发效果。
区块实施氮气强化SAGD蒸汽腔突破低物性储层的超稠油开发方法,4口水平井平均日产油由实施前的252t/d上升至目前的395t/d,平均油汽比从0.23上升到0.33,提高了43%。实施后蒸汽腔在纵向上持续扩展,纵向上升了25m。

Claims (6)

  1. 一种强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,包括以下步骤:
    (1)选择开发的油藏:根据油藏地质特征与开发现状,按照以下条件进行粗筛选该开发方法适用的油藏:油层为中深层油藏,埋深<1000m,剩余油饱和度>0.5,油层厚度>20m,水平渗透率>1000mD,垂向渗透率与水平渗透率比值>0.35,油层孔隙度>0.20,油层中存在连续或非连续发育的低物性储层,低物性储层渗透率>100mD;
    (2)布井:在油层内钻两口位置上下正对的水平井,上部的水平井为注汽井,下部的水平井为生产井,其中下部的水平井距离油层底部3~5m,两口水平井之间的垂直距离为4~6m;
    (3)形成蒸汽腔:注汽井与生产井通过蒸汽吞吐或注蒸汽循环预热的方式形成热连通,热连通形成后,注汽井连续注入高干度蒸汽,其中蒸汽干度大于70%,注入的蒸汽向油层上部发育形成蒸汽腔,生产井连续生产;
    (4)蒸汽腔扩展:步骤(3)所形成的蒸汽腔不断扩展,当蒸汽腔扩展到达低物性储层后蒸汽会冷凝形成热水,从而导致蒸汽腔无法突破低物性储层持续向上扩展;
    (5)强化蒸汽腔:通过将气体注入注汽井对蒸汽腔进行强化,使得蒸汽腔突破低物性储层持续向上扩展。
  2. 根据权利要求1所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,其特征在于,所述步骤(5)中的气体为氮气、二氧化碳或注汽锅炉所产烟道气。
  3. 根据权利要求1所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,其特征在于,所述步骤(5)中气体注入注汽井的方式为将气体与蒸汽同时注入注汽井。
  4. 根据权利要求3所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,其特征在于,所述气体与蒸汽同时注入注汽井的步骤具体如下:气体段塞与蒸汽段塞同时注入注汽井内,注入过程中,油层条件下气体注入速度与蒸汽注入速度之比小于0.1,气体注入量小于0.01PV,气体注入完成后,继续注入蒸汽,若产油速度逐渐增大,蒸汽腔明显扩展,说明注入的气体强化了蒸汽腔的扩展,突破了低物性储层,不再注入气体,持续注入蒸汽;若产油速度和蒸汽腔扩展情况未得到改善,即产油速度未增大,蒸汽腔未明显扩展,则向注汽井再同时注入气体段塞和蒸汽段塞,油层条件下气体注入速度与蒸汽注入速度之比小于0.1,气体注入量小于0.01PV,气体注入完成后,继续注入蒸汽,观察产油速度和蒸汽腔扩展情况。
  5. 根据权利要求1所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,其特征在于,所述步骤(5)中气体注入注汽井的方式为将气体与蒸汽交替注入注汽井。
  6. 根据权利要求5所述强化SAGD蒸汽腔以突破低物性储层的超稠油开发方法,其特征在于,所述气体与蒸汽交替注入注汽井的步骤具体如下:先注入气体段塞,气体注入量小于0.01PV,再注入蒸汽段塞,其中在油层条件下气体段塞体积与蒸汽段塞体积之比小于0.1,观察注入气体段塞后再注入蒸汽段塞的产油速度和蒸汽腔的扩展情况,若产油速度逐渐增大,蒸汽腔明显扩展,说明注入的气体强化了蒸汽腔的扩展,突破了低物性储层,不再注入气体,持续注入蒸汽;若产油速度和蒸汽腔扩展情况未得到改善,则向注汽井再交替注入气体段塞和蒸汽段塞,先注入气体段塞,气体注入量小于0.01PV,再注入蒸汽段塞,油层条件下气体段塞体积与蒸汽段塞体积之比小于0.1,观察注入气体段塞后再注入蒸汽段塞的产油速度和蒸汽腔扩展情况。
PCT/CN2019/081530 2018-05-14 2019-04-04 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法 WO2019218798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/605,068 US11078768B2 (en) 2018-05-14 2019-04-04 Super heavy oil development method for strengthening SAGD steam chamber to break through low physical property reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810454246.4A CN108708699B (zh) 2018-05-14 2018-05-14 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法
CN201810454246.4 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019218798A1 true WO2019218798A1 (zh) 2019-11-21

Family

ID=63868992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081530 WO2019218798A1 (zh) 2018-05-14 2019-04-04 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法

Country Status (3)

Country Link
US (1) US11078768B2 (zh)
CN (1) CN108708699B (zh)
WO (1) WO2019218798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382451A (zh) * 2020-10-19 2022-04-22 中国石油天然气股份有限公司 一种sagd采油方法及强化采油井网

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108708699B (zh) * 2018-05-14 2019-04-16 中国石油大学(华东) 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法
CN113882842A (zh) * 2020-07-01 2022-01-04 中国石油天然气股份有限公司 一种早期蒸汽腔沿水平井发育规模检测方法
CN114790879B (zh) * 2021-01-26 2023-09-26 中国石油天然气股份有限公司 裂缝性油藏蒸汽辅助重力泄油井下开采方法及系统
CN114352249B (zh) * 2021-12-17 2023-10-24 常州大学 一种稠油蒸汽辅助重力泄油实验装置及其使用方法
CN115422859B (zh) * 2022-11-07 2023-01-24 西南石油大学 一种定量评价厚层稠油注蒸汽吞吐纵向波及系数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500012A (zh) * 2014-11-24 2015-04-08 中国石油天然气股份有限公司 一种夹层非均质稠油油藏sagd启动方法
CN104632164A (zh) * 2015-01-29 2015-05-20 中国石油天然气股份有限公司 双水平井sagd开采中突破油层中隔夹层的方法
CN104895541A (zh) * 2015-04-13 2015-09-09 中国石油天然气股份有限公司 双水平井sagd开采中突破油层中隔夹层的方法
US9267367B2 (en) * 2011-04-26 2016-02-23 Conocophillips Company Method for steam assisted gravity drainage with pressure differential injection
CA2898897A1 (en) * 2015-07-29 2017-01-29 Alberta Innovates - Technology Futures Partial height steam chamber sagd
CN108708699A (zh) * 2018-05-14 2018-10-26 中国石油大学(华东) 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090014B2 (en) * 1999-10-26 2006-08-15 Alberta Science And Research Authority Process for sequentially applying SAGD to adjacent sections of a petroleum reservoir
CN101592028B (zh) * 2008-05-28 2012-01-11 中国石油天然气股份有限公司 一种气体辅助sagd开采超稠油的方法
CA2645703C (en) * 2008-11-03 2011-08-02 Laricina Energy Ltd. Passive heating assisted recovery methods
US9388676B2 (en) * 2012-11-02 2016-07-12 Husky Oil Operations Limited SAGD oil recovery method utilizing multi-lateral production wells and/or common flow direction
CN103615224B (zh) * 2013-11-08 2016-02-10 中国石油天然气股份有限公司 溶剂改善蒸汽辅助重力泄油开采稠油藏的方法及井网结构
US9845669B2 (en) * 2014-04-04 2017-12-19 Cenovus Energy Inc. Hydrocarbon recovery with multi-function agent
CA2852766C (en) * 2014-05-29 2021-09-28 Chris Elliott Thermally induced expansion drive in heavy oil reservoirs
CN104373097A (zh) * 2014-11-12 2015-02-25 中国石油天然气股份有限公司 Sagd联合蒸汽驱提高中深层超稠油油藏采收率方法
CN106640002A (zh) * 2015-11-03 2017-05-10 中国石油天然气股份有限公司 稠油的开采方法
CN106121609B (zh) * 2016-08-09 2018-12-25 中国石油天然气股份有限公司 破坏水平井附近夹层的方法
CN106593368B (zh) * 2016-12-07 2019-05-07 中国石油天然气股份有限公司 一种改善sagd开发效果的预处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267367B2 (en) * 2011-04-26 2016-02-23 Conocophillips Company Method for steam assisted gravity drainage with pressure differential injection
CN104500012A (zh) * 2014-11-24 2015-04-08 中国石油天然气股份有限公司 一种夹层非均质稠油油藏sagd启动方法
CN104632164A (zh) * 2015-01-29 2015-05-20 中国石油天然气股份有限公司 双水平井sagd开采中突破油层中隔夹层的方法
CN104895541A (zh) * 2015-04-13 2015-09-09 中国石油天然气股份有限公司 双水平井sagd开采中突破油层中隔夹层的方法
CA2898897A1 (en) * 2015-07-29 2017-01-29 Alberta Innovates - Technology Futures Partial height steam chamber sagd
CN108708699A (zh) * 2018-05-14 2018-10-26 中国石油大学(华东) 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382451A (zh) * 2020-10-19 2022-04-22 中国石油天然气股份有限公司 一种sagd采油方法及强化采油井网

Also Published As

Publication number Publication date
US11078768B2 (en) 2021-08-03
CN108708699B (zh) 2019-04-16
CN108708699A (zh) 2018-10-26
US20210131244A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2019218798A1 (zh) 一种强化sagd蒸汽腔突破低物性储层的超稠油开发方法
CN102900415B (zh) 深层及超深层稠油油藏双水平井火驱泄油开采方法
CN103225497B (zh) 微波原位汽化地层水并驱替稠油的开采方法
CN103939071B (zh) 一种水平井蒸汽驱井网结构及蒸汽驱方法
CN105649588A (zh) 利用sagd开采稠油油藏的方法
CN103174403A (zh) 厚层含隔夹层普通稠油油藏的重力与蒸汽驱联合开采方法
CN107091074B (zh) 开采深层底水稠油油藏的方法
CN104265253A (zh) 稠油油藏sagd开采方法
US20140000876A1 (en) Sagd control in leaky reservoirs
CN110284862A (zh) 注非凝结气或就地燃烧开采底水稠油油藏中剩余油的方法
CN106593368B (zh) 一种改善sagd开发效果的预处理方法
CN108131124A (zh) 一种利用溶剂和过热蒸汽辅助重力泄油的方法
CA2871568C (en) Waste heat recovery from depleted reservoir
CN108316905B (zh) 一种抑制sagd蒸汽腔纵向突进的方法
EA037125B1 (ru) Способ добычи с нагнетанием растворителя
CN104265258A (zh) 一种压裂辅助火烧油层吞吐开采稠油的方法
CN104373097A (zh) Sagd联合蒸汽驱提高中深层超稠油油藏采收率方法
US20140000887A1 (en) Sagdox operation in leaky bitumen reservoirs
Doan et al. Performance of the SAGD Process in the Presence of a Water Sand-a Preliminary Investigation
CN107558975B (zh) 一种使用降粘剂改善蒸汽辅助重力泄油后期开发的方法
CN115324545B (zh) 变压式蒸汽辅助重力泄油的稠油开采方法
RU2555163C1 (ru) Способ разработки залежи высоковязкой нефти горизонтальными скважинами
RU2643056C1 (ru) Способ разработки залежей сверхтяжелой нефти или природного битума
US20120318512A1 (en) Thermally assisted gravity drainage (tagd)
CN109388771B (zh) 一种深层稠油泡沫油降粘吞吐井生产参数的计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804262

Country of ref document: EP

Kind code of ref document: A1