WO2019218690A1 - 一种基于ase噪声的分布式光纤拉曼测温装置及方法 - Google Patents

一种基于ase噪声的分布式光纤拉曼测温装置及方法 Download PDF

Info

Publication number
WO2019218690A1
WO2019218690A1 PCT/CN2019/000080 CN2019000080W WO2019218690A1 WO 2019218690 A1 WO2019218690 A1 WO 2019218690A1 CN 2019000080 W CN2019000080 W CN 2019000080W WO 2019218690 A1 WO2019218690 A1 WO 2019218690A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
output
optical filter
optical
tunable optical
Prior art date
Application number
PCT/CN2019/000080
Other languages
English (en)
French (fr)
Inventor
张建忠
冯昌坤
张明江
李梦文
李健
乔丽君
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Publication of WO2019218690A1 publication Critical patent/WO2019218690A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering

Definitions

  • the invention relates to a distributed optical fiber sensing system, in particular to a distributed optical fiber Raman temperature measuring device and method based on ASE noise.
  • distributed optical fiber sensing temperature measurement system based on Raman scattering can realize temperature information measurement on long-distance continuous optical path, and has low system cost and high cost performance, so it is widely used.
  • the distributed fiber Raman temperature sensing system developed by Jin Zhongyu and others from Chongqing University has achieved a spatial resolution of 1 m and a measurement distance of less than 5 km [Zhu Haipeng, Jin Zhongyu.
  • the receiver For pulsed lasers, on the one hand, the receiver has high response accuracy requirements and signal acquisition is difficult; on the other hand, the system monitoring distance is proportional to the pulse width, and the spatial resolution is inversely proportional to the pulse width. If the pulse width is narrowed to improve spatial resolution. This will result in a reduction in the monitoring distance, resulting in a contradiction between the monitoring distance and the spatial resolution.
  • the distributed optical fiber Raman sensing system based on pulsed laser has a spatial resolution of more than 1 meter, which is difficult to meet the needs of practical applications.
  • chaotic laser is usually injected by optical feedback or light, or The optical feedback combined with the light injection is generated by the perturbed semiconductor laser, which will contain periodic signals introduced by light injection and optical feedback, which will seriously affect the spatial resolution of the Raman temperature measurement system.
  • a chaotic laser signal with adjustable spectrum and controllable coherence length is generated, and multiple parameters need to be adjusted, and the structure and implementation process of the light source are complicated and time consuming.
  • the present invention provides a distributed fiber Raman temperature measurement device and method based on ASE noise.
  • a distributed fiber Raman temperature measuring device based on ASE noise signal comprising ASE noise source, first tunable optical filter, first 1 ⁇ 2 fiber coupler, photodetector, optical circulator, second 1 ⁇ 2 fiber coupler, second tunable optical filter, first avalanche photodetector, first low noise amplifier, third tunable optical filter, second avalanche photodetector, second low noise amplifier, data acquisition card , computer, sensing fiber;
  • the output end of the ASE noise source is connected to the input end of the first tunable optical filter through a common single mode fiber jumper, and the output end of the first tunable optical filter passes the common single mode fiber jumper and the first 1 ⁇ 2
  • the incident end of the fiber coupler is connected, one of the output ends of the first 1 ⁇ 2 fiber coupler is connected to the input end of the photodetector, and the output end of the photodetector passes through the coaxial cable and the first input end of the data acquisition card Connected; the other output end of the first 1 ⁇ 2 fiber coupler is connected to the incident end of the optical circulator through a common single-mode fiber jumper, and the reflective end of the optical circulator is connected to the sensing fiber through a common single-mode fiber jumper.
  • the output end of the optical circulator is connected to the incident end of the second 1 ⁇ 2 fiber coupler through a common single mode fiber jumper, and one of the outputs of the second 1 ⁇ 2 fiber coupler is connected to the second tunable optical filter.
  • the output end of the second tunable optical filter is connected to the input end of the first avalanche photodetector through a common single mode fiber jumper, and the output of the first avalanche photodetector passes through the coaxial cable and the first low noise amplifier
  • the output of the first low noise amplifier is connected to the second input of the data acquisition card through a coaxial cable; the other output of the second 1 ⁇ 2 fiber coupler is connected to the third tunable optical filter,
  • the output of the three tunable optical filter is connected to the input end of the second avalanche photodetector through a common single mode fiber jumper, and the output of the second avalanche photodetector is connected to the second low noise amplifier through a coaxial cable.
  • a distributed fiber Raman temperature measurement method based on ASE noise signal the specific working process of the method is as follows:
  • the noise signal generated by the ASE noise source passes through the first tunable optical filter to generate a noise optical signal with a suitable spectral bandwidth, and then is divided into two paths by a 1 ⁇ 2 fiber coupler, wherein one optical signal is used as a reference light, and The photoelectric detector converts into an electrical signal and then inputs it to the data acquisition card; the other optical signal acts as pump light, enters the sensing fiber through the optical circulator, and generates Raman backscattered light at each point of the optical fiber, and then pulls The manned backscattered light is injected into the optical circulator through the reflective end of the optical circulator and then output through the output of the optical circulator; the output Raman backscattered light is split into two paths through the second 1 ⁇ 2 fiber coupler.
  • One of the optical signals passes through the second tunable optical filter to filter out the backward Stokes light, and the filtered Stokes light is converted into an electrical signal by the first avalanche photodetector, and then passes through the first low
  • the noise amplifier is amplified and input to the data acquisition card;
  • the other optical signal output through the second fiber coupler filters out the anti-Stokes light through the third tunable optical filter, and then passes through the second avalanche photodetection Into an electric signal, then amplified through a second low noise amplifier, and then input to the data acquisition card, after A / D conversion is input to the computer;
  • the intensity of the anti-Stokes light obtained by the backscattering of the pump light linearly changes with temperature, and the intensity of the anti-Stokes light and Stokes light is calculated.
  • the temperature information of each segment of the sensing fiber is obtained.
  • the distributed fiber Raman temperature measuring device and method based on ASE noise source has the following advantages compared with the existing distributed fiber Raman temperature measuring system:
  • the spatial resolution determines the minimum distance between two different temperature zones on the sensing fiber that the distributed sensing system can recognize. It is a key technical indicator of the distributed sensing temperature measurement system. For pulsed light-based Raman temperature measurement systems, it is determined by the width of the light pulse injected into the fiber; increasing the pulse width will increase the monitoring distance, but will result in a decrease in spatial resolution, thus monitoring distance and spatial resolution. The problem is contradictory; the invention adopts the ASE noise signal, and the correlation curve exhibits a shape like a ⁇ function, and the spatial resolution is determined by the full width at half maximum of the correlation peak between the Stokes optical signal and the reference optical signal.
  • the monitoring distance is determined by the power of the signal source, which fundamentally solves the problem between the monitoring distance and the spatial resolution in the existing distributed optical fiber Raman temperature measurement system based on pulsed light detection. Contradictory issues.
  • the measurement distance can reach more than 100 kilometers, and the spatial resolution can reach the order of centimeters.
  • the invention patent (ZL 201110227239.9) provides a distributed fiber Raman temperature measurement system based on chaotic laser, which can solve the problem between monitoring distance and spatial resolution in distributed fiber Raman temperature measurement system based on pulsed light detection. Contradictions.
  • chaotic lasers are usually generated by optical feedback or light injection, or optical feedback combined with light injection to perturb the semiconductor laser, which will contain periodic signals introduced by light injection and optical feedback, which will seriously affect the spatial resolution of the Raman temperature measurement system.
  • a chaotic laser signal with adjustable spectrum and controllable coherence length is generated, and multiple parameters need to be adjusted, and the structure and implementation process of the light source are complicated and time consuming.
  • the ASE noise optical signal used in the present invention is generated by an erbium doped fiber amplifier or a semiconductor optical amplifier.
  • the adjustment of its spectral width (or coherence length) can be achieved simply by a tunable optical filter, and therefore the spatial resolution of the sensing system described herein (determined by the coherence length of the ASE noise) is easier to control. It can be seen that the use of the ASE noise source not only fundamentally solves the problem of limited spatial resolution, but also makes the system structure simpler and the system cost lower.
  • FIG. 1 is a schematic structural view of a distributed fiber Raman temperature measuring device based on ASE noise according to the present invention.
  • 1-ASE noise source 2-first tunable optical filter, 3-first 1 ⁇ 2 fiber coupler, 4-photodetector, 5-optical circulator, 6-second 1 ⁇ 2 fiber Coupler, 7-second tunable optical filter, 8-first avalanche photodetector, 9-first low noise amplifier, 10-third tunable optical filter, 11-second avalanche photodetector, 12 - Second low noise amplifier, 13-data acquisition card, 14-computer, 15-sensor fiber.
  • a distributed fiber Raman temperature measuring device based on ASE noise comprising ASE noise source, first tunable optical filter, first 1 ⁇ 2 fiber coupler, photodetector, optical circulator, second 1 ⁇ 2 a fiber coupler, a second tunable optical filter, a first avalanche photodetector, a first low noise amplifier, a third tunable optical filter, a second avalanche photodetector, a second low noise amplifier, a data acquisition card, Computer, sensing fiber.
  • the output end of the ASE noise source 1 is connected to the input end of the first tunable filter 2 through a common single mode jumper.
  • the output end of the first tunable optical filter 2 passes through a common single mode fiber jumper and the first 1 ⁇ . 2
  • the incident end of the fiber coupler 3 is connected, one of the output ends of the first 1 ⁇ 2 fiber coupler 3 is connected to the input end of the photodetector 4, and the output end of the photodetector 4 passes through the coaxial cable and the data acquisition card
  • One of the input terminals of 13 is connected; the other output end of the first 1 ⁇ 2 fiber coupler 3 is connected to the incident end of the optical circulator 5 through a common single mode fiber jumper, and the reflective end of the optical circulator 5 passes through a common single mode.
  • the fiber jumper is connected to the sensing fiber 15, and the output end of the optical circulator 5 is connected to the incident end of the second 1 ⁇ 2 fiber coupler 6 through a common single mode fiber jumper, wherein the second 1 ⁇ 2 fiber coupler 6 is One output is connected to the second tunable optical filter 7, and the output of the second tunable optical filter 7 is connected to the input of the first avalanche photodetector 8 through a common single mode fiber jumper, the first avalanche photoelectric
  • the output of the detector 8 passes through the coaxial cable and the first
  • the low noise amplifier 9 is connected, the output end of the first low noise amplifier 9 is connected to one input end of the data acquisition card 13 through a coaxial cable; the other output end of the second 1 ⁇ 2 fiber coupler 6 and the third
  • the tuned optical filter 10 is connected, and the output end of the third tunable optical filter 10 is connected to the input end of the second avalanche photodetector 11 through a common single mode fiber jumper, and the output of the second ava
  • the noise signal generated by the ASE noise source 1 passes through the first tunable optical filter 2 to generate a noise light signal with a suitable spectral bandwidth, and then is split into two paths through a 1 ⁇ 2 fiber coupler 3, one of which is an optical signal (lower) As the reference light, it is converted into an electrical signal by the photodetector 4, and then input to the data acquisition card 13; the other optical signal (on the road) is used as the pump light, enters the sensing fiber 15 through the optical circulator 5, and Raman backscattered light is generated at each point of the optical fiber, and then Raman backscattered light is injected into the optical circulator 5 through the reflective end of the optical circulator 5, and then output through the output end of the optical circulator 5.
  • the output Raman backscattered light is split into two paths through the second 1 ⁇ 2 fiber coupler 6, wherein one optical signal (left) passes through the second tunable optical filter 7 to filter out the backward Stokes Light, the filtered Stokes light enters the first avalanche photodetector 8, converts the optical signal into an electrical signal, and then is amplified by the first low noise amplifier 9 and then input to the data acquisition card 13;
  • the other optical signal (right path) output by the coupler 6 filters out the anti-Stokes light through the third tunable optical filter 10, and then converts it into an electrical signal through the second avalanche photodetector 11, and passes through the second low
  • the noise amplifier 12 is amplified, input to the data acquisition card 13, and input to the computer 14 after A/D conversion;
  • the intensity of the anti-Stokes light obtained by the backscattering of the pump light linearly changes with temperature, by calculating the anti-Stokes light and the Stokes light
  • the intensity ratio obtains the temperature information of each segment of the fiber; by performing a cross-correlation operation between the Stokes optical signal and the reference optical signal, the position signal of the fiber temperature can be determined.
  • the center wavelength of the ASE noise source 1 is 1550 nm, and the spectral bandwidth is 5-30 GHz;
  • the first tunable optical filter 2, the second tunable optical filter 7, and the third tunable optical filter 10 are TM- Type 50 wavelength and bandwidth tunable optical filter;
  • first 1 ⁇ 2 fiber coupler 3 and second 1 ⁇ 2 fiber coupler 6 coupling ratio is 50:50;
  • the detector 11 uses an Avalanche photodetector of Fby photoelectric, DTS1550-DA-MM type;
  • the sensing fiber 15 uses a multimode fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种基于ASE噪声的分布式光纤拉曼测温装置及方法。装置包括ASE噪声光源(1)、第一可调谐光滤波器(2)、第一1×2光纤耦合器(3)、光电探测器(4)、光环行器(5)、第二1×2光纤耦合器(6)、第二可调谐光滤波器(7)、第一雪崩光电探测器(8)、第一低噪放大器(9)、第三可调谐光滤波器(10)、第二雪崩光电探测器(11)、第二低噪放大器(12)、数据采集卡(13)、计算机(14)、传感光纤(15)。该装置和方法解决了现有的基于脉冲光的分布式光纤拉曼测温系统中存在的空间分辨率与测量距离之间的矛盾,克服了基于混沌激光的分布式光纤拉曼测温系统中由于混沌激光作为传感信号本身带来系统性能下降的问题。

Description

一种基于ASE噪声的分布式光纤拉曼测温装置及方法 技术领域
本发明涉及到分布式光纤传感系统,具体是一种基于ASE噪声的分布式光纤拉曼测温装置及方法。
背景技术
大型建筑物如海底隧道、桥梁隧道、摩天大楼、巨型工厂等越来越多,一旦这些场所发生火灾等事故,不但会给国家造成重大的经济损失,还会带来巨大的人员伤亡。例如:2004年3月15日11时许,吉林省吉林市中百商厦发生特大火灾,火灾最终造成54人死亡,70与人受伤,直接经济损失426万元;2008年11月22日,山西省吕梁市离石区金田商务大厦发生火灾,8人死亡;2010年11月15日14时,上海余姚路胶州路一栋高层公寓起火,大火最终导致58人遇难,另有70余人受伤。任何事故都不可能是突然发生的,特别是火灾等事故在发生之前,都会有一些预兆,比如温度会明显高于工作时间的温度或者温度突然上升,及时地发现这些温度变化就会避免事故的发生。因此,发展一个可靠的测温系统对于火灾等事故的预防显得尤为重要。
目前,基于拉曼散射的分布式光纤传感测温系统,能够实现长距离连续光路上的温度信息测量,并且系统成本较低,具有较高的性价比,因此得到广泛的应用。比如,重庆大学金钟燮等人研制的分布式光纤拉曼温度传感系统,实现了1m的空间分辨率,测量距离小于5km[朱海鹏,金钟燮.基于多模光纤的分布式喇曼测温系统,光子学报,2015,44(01),75-79];中国计量大学张在宣研究团队研制出一套30km远程分布光纤拉曼温度传感器系 统,空间分辨率达到4m[张在宣,王剑锋,刘红林,余向东,郭宁,Insoo S.KIM,30km远程分布光纤拉曼温度传感器系统,光电子·激光,2004(10),1174-1177]。现有的分布式光纤拉曼传感技术所使用的激光源主要为脉冲激光。对于脉冲激光,一方面接收端响应精度要求高,信号捕获困难;另一方面,系统监测距离与脉宽成正比,空间分辨率与脉宽成反比,如果为了提高空间分辨率而压窄脉宽会造成监测距离的减小,从而导致监测距离与空间分辨率之间的矛盾问题。目前基于脉冲激光的分布式光纤拉曼传感系统,其空间分辨率均在1米以上,难以满足实际应用的需求。为了解决空间分辨率和监测距离矛盾的问题,一种基于混沌激光的分布式光纤拉曼测温系统被提出[中国专利:ZL 201110227239.9],但是,混沌激光通常是由光反馈或光注入,或者是光反馈联合光注入扰动半导体激光器产生,会含有光注入、光反馈引入的周期信号,这会严重影响拉曼测温系统的空间分辨率。同时,产生光谱可调节、相干长度可控的混沌激光信号,需配合调节多个参数,光源结构和实现过程复杂、费时。
因此,有必要发展一种新的拉曼测温系统,使其不但可以解决传统拉曼测温系统存在的空间分辨率和监测距离之间的矛盾,也可以克服由于混沌激光作为传感信号而本身带来系统性能下降的问题。
发明内容
本发明为了解决现有分布式拉曼测温系统中存在的问题,提供了一种基于ASE噪声的分布式光纤拉曼测温装置及方法。
本发明采用如下技术方案实现:
一种基于ASE噪声信号的分布式光纤拉曼测温装置,包括ASE噪声光源、第一可调谐光滤波器、第一1×2光纤耦合器、光电探测器、光环行器、 第二1×2光纤耦合器、第二可调谐光滤波器、第一雪崩光电探测器、第一低噪放大器、第三可调谐光滤波器、第二雪崩光电探测器、第二低噪放大器、数据采集卡、计算机、传感光纤;
其中ASE噪声光源的输出端通过普通单模光纤跳线与第一可调谐光滤波器的输入端相连,第一可调谐光滤波器的输出端通过普通单模光纤跳线与第一1×2光纤耦合器的入射端相连,第一1×2光纤耦合器的其中一个输出端与光电探测器的输入端相连,光电探测器的输出端通过同轴电缆线与数据采集卡的第一输入端相连;第一1×2光纤耦合器的另一个输出端通过普通单模光纤跳线与光环行器的入射端相连,光环行器的反射端通过普通单模光纤跳线与传感光纤相连,光环行器的输出端通过普通单模光纤跳线与第二1×2光纤耦合器的入射端相连,第二1×2光纤耦合器的其中一个输出端与第二可调谐光滤波器相连,第二可调谐光滤波器的输出端通过普通单模光纤跳线与第一雪崩光电探测器的输入端相连,第一雪崩光电探测器的输出端通过同轴电缆线与第一低噪放大器相连,第一低噪放大器的输出端通过同轴电缆线与数据采集卡的第二输入端相连;第二1×2光纤耦合器的另一个输出端与第三可调谐光滤波器相连,第三可调谐光滤波器的输出端通过普通单模光纤跳线与第二雪崩光电探测器的输入端相连,第二雪崩光电探测器的输出端通过同轴电缆线与第二低噪放大器相连,第二低噪放大器的输出端通过同轴电缆线与数据采集卡的第三输入端相连;数据采集卡的输出端与计算机相连接。
一种基于ASE噪声信号的分布式光纤拉曼测温方法,该方法具体工作过程如下:
a.ASE噪声光源产生的噪声信号,经过第一可调谐光滤波器,产生光 谱带宽合适的噪声光信号,然后通过1×2光纤耦合器分为两路,其中一路光信号作为参考光,并经光电探测器转换为电信号,再输入到数据采集卡;另一路光信号作为泵浦光,通过光环行器进入传感光纤,并在光纤各点处产生拉曼后向散射光,然后拉曼后向散射光通过光环行器的反射端注入到光环行器中,再经光环行器的输出端输出;输出的拉曼后向散射光通过第二1×2光纤耦合器分为两路,其中一路光信号通过第二可调谐光滤波器,滤出后向的斯托克斯光,滤出的斯托克斯光由第一雪崩光电探测器转换为电信号,然后经过第一低噪放大器进行放大,再输入到数据采集卡;经过第二光纤耦合器输出的另一路光信号通过第三可调谐光滤波器滤出反斯托克斯光,然后通过第二雪崩光电探测器转换为电信号,再经过第二低噪放大器进行放大,再输入到数据采集卡中,经过A/D转换之后输入到计算机中;
b.计算机在相应软件的支持下,利用泵浦光后向散射得到的反斯托克斯光的强度随温度线性变化的特性,通过计算反斯托克斯光与斯托克斯光的强度比得到传感光纤各段的温度信息;通过对斯托克斯光信号与参考光信号之间作互相关运算处理,就可以确定出光纤温度的位置信号。
基于上述过程,与现有的分布式光纤拉曼测温系统相比,本发明所述的一种基于ASE噪声源的分布式光纤拉曼测温装置及方法具有如下优点:
(1)空间分辨率决定了分布式传感系统能够识别的在传感光纤上两个温度不同区域之间的最小距离,是分布式传感测温系统的一个关键技术指标。对于基于脉冲光的拉曼测温系统,它是由注入光纤中光脉冲的宽度决定;增加脉冲宽度,会增大监测距离,但是又会导致空间分辨率的降低,因而存在监测距离和空间分辨率矛盾的问题;而本发明采用ASE噪声信号, 其相关曲线呈现类δ函数的形状,空间分辨率是由斯托克斯光信号与参考光信号之间互相关曲线上相关峰的半高全宽决定的,而与传感距离无关,监测距离长度由信号源的功率大小决定,这从根本上解决了现有基于脉冲光探测的分布式光纤拉曼测温系统中监测距离和空间分辨率之间的矛盾问题。可使测量距离达到100公里以上,空间分辨率达到厘米量级。
(2)发明专利(ZL 201110227239.9)提供了一种基于混沌激光的分布式光纤拉曼测温系统,可以解决基于脉冲光探测的分布式光纤拉曼测温系统中监测距离和空间分辨率之间的矛盾。但是,混沌激光通常是由光反馈或光注入,或者是光反馈联合光注入扰动半导体激光器产生,会含有光注入、光反馈引入的周期信号,这会严重影响拉曼测温系统的空间分辨率。同时,产生光谱可调节、相干长度可控的混沌激光信号,需配合调节多个参数,光源结构和实现过程复杂、费时。而本发明所用的ASE噪声光信号,通过掺铒光纤放大器或半导体光放大器产生。其光谱宽度(或相干长度)的调节,可简单地通过可调光滤波器实现,因此,本申请所述的传感系统的空间分辨率(由ASE噪声的相干长度决定)更容易控制。由此可见,采用ASE噪声光源不但从根本上有效解决空间分辨率受限的问题,而且可以使系统结构更简单,系统成本更低。
附图说明
图1是本发明所述的一种基于ASE噪声的分布式光纤拉曼测温装置的结构示意图。
图中:1-ASE噪声光源、2-第一可调谐光滤波器、3-第一1×2光纤耦合器、4-光电探测器、5-光环行器、6-第二1×2光纤耦合器、7-第二可调谐光滤波器、8-第一雪崩光电探测器、9-第一低噪放大器、10-第三可调谐光滤 波器、11-第二雪崩光电探测器、12-第二低噪放大器、13-数据采集卡、14-计算机、15-传感光纤。
具体实施方式
一种基于ASE噪声的分布式光纤拉曼测温装置,包括ASE噪声光源、第一可调谐光滤波器、第一1×2光纤耦合器、光电探测器、光环行器、第二1×2光纤耦合器、第二可调谐光滤波器、第一雪崩光电探测器、第一低噪放大器、第三可调谐光滤波器、第二雪崩光电探测器、第二低噪放大器、数据采集卡、计算机、传感光纤。
其中ASE噪声光源1的输出端通过普通单模跳线与第一可调滤波器2的输入端相连,第一可调谐光滤波器2的输出端通过普通单模光纤跳线与第一1×2光纤耦合器3的入射端相连,第一1×2光纤耦合器3的其中一个输出端与光电探测器4的输入端相连,光电探测器4的输出端通过同轴电缆线与数据采集卡13的其中一个输入端相连;第一1×2光纤耦合器3的另一个输出端通过普通单模光纤跳线与光环行器5的入射端相连,光环行器5的反射端通过普通单模光纤跳线与传感光纤15相连,光环行器5的输出端通过普通单模光纤跳线与第二1×2光纤耦合器6的入射端相连,第二1×2光纤耦合器6的其中的一个输出端与第二可调谐光滤波器7相连,第二可调谐光滤波器7的输出端通过普通单模光纤跳线与第一雪崩光电探测器8的输入端相连,第一雪崩光电探测器8的输出端通过同轴电缆线与第一低噪放大器9相连,第一低噪放大器9的输出端通过同轴电缆线与数据采集卡13的其中一个输入端相连;第二1×2光纤耦合器6的另一个输出端与第三可调谐光滤波器10相连,第三可调谐光滤波器10的输出端通过普通单模光纤跳线与第二雪崩光电探测器11的输入端相连,第二雪崩光电探测器 11的输出端通过同轴电缆线与第二低噪放大器12相连,第二低噪放大器12的输出端通过同轴电缆线与数据采集卡13的其中一个输入端相连;数据采集卡的输出端与计算机14相连接。
一种基于ASE噪声的分布式光纤拉曼测温方法,该方法具体工作过程如下:
a.ASE噪声光源1产生的噪声信号,经过第一可调谐光滤波器2,产生光谱带宽合适的噪声光信号,然后通过1×2光纤耦合器3分为两路,其中一路光信号(下路)作为参考光,并经光电探测器4转换为电信号,再输入到数据采集卡13;另一路光信号(上路)作为泵浦光,通过光环行器5进入传感光纤15,并在光纤各点处产生拉曼后向散射光,然后拉曼后向散射光通过光环行器5的反射端注入到光环行器5中,再经光环行器5的输出端输出。输出的拉曼后向散射光通过第二1×2光纤耦合器6分为两路,其中一路光信号(左路)通过第二可调谐光滤波器7,滤出后向的斯托克斯光,滤出的斯托克斯光进入第一雪崩光电探测器8,将光信号转换为电信号,然后经过第一低噪放大器9进行放大,再输入到数据采集卡13;经过第二光纤耦合器6输出的另一路光信号(右路)通过第三可调谐光滤波器10滤出反斯托克斯光,然后通过第二雪崩光电探测器11转换为电信号,再经过第二低噪放大器12进行放大,再输入到数据采集卡13中,经过A/D转换之后输入到计算机14中;
b.计算机在Matlab软件的支持下,利用泵浦光后向散射得到的反斯托克斯光的强度随温度线性变化的特性,通过计算反斯托克斯光与与斯托克斯光的强度比得到光纤各段的温度信息;通过对斯托克斯光信号与参考光信号之间作互相关运算处理,就可以确定出光纤温度的位置信号。
具体实施时,ASE噪声光源1的中心波长为1550nm,光谱带宽为5~30GHz;第一可调谐光滤波器2、第二可调谐光滤波器7、第三可调谐光滤波器10采用TM-50型的波长和带宽可调谐光滤波器;第一1×2光纤耦合器3和第二1×2光纤耦合器6耦合比为50∶50;第一雪崩光电探测器8和第二雪崩光电探测器11采用Fby photoelectric,DTS1550-DA-MM型的雪崩光电探测器;传感光纤15采用多模光纤。

Claims (2)

  1. 一种基于ASE噪声信号的分布式光纤拉曼测温装置,其特征在于:包括ASE噪声光源(1)、第一可调谐光滤波器(2)、第一1×2光纤耦合器(3)、光电探测器(4)、光环行器(5)、第二1×2光纤耦合器(6)、第二可调谐光滤波器(7)、第一雪崩光电探测器(8)、第一低噪放大器(9)、第三可调谐光滤波器(10)、第二雪崩光电探测器(11)、第二低噪放大器(12)、数据采集卡(13)、计算机(14)、传感光纤(15);
    其中ASE噪声光源(1)的输出端通过普通单模光纤跳线与第一可调谐光滤波器(2)的输入端相连,第一可调谐光滤波器(2)的输出端通过普通单模光纤跳线与第一1×2光纤耦合器(3)的入射端相连,第一1×2光纤耦合器(3)的其中一个输出端与光电探测器(4)的输入端相连,光电探测器(4)的输出端通过同轴电缆线与数据采集卡(13)的第一输入端相连;第一1×2光纤耦合器(3)的另一个输出端通过普通单模光纤跳线与光环行器(5)的入射端相连,光环行器(5)的反射端通过普通单模光纤跳线与传感光纤(15)相连,光环行器(5)的输出端通过普通单模光纤跳线与第二1×2光纤耦合器(6)的入射端相连,第二1×2光纤耦合器(6)的其中一个输出端与第二可调谐光滤波器(7)相连,第二可调谐光滤波器(7)的输出端通过普通单模光纤跳线与第一雪崩光电探测器(8)的输入端相连,第一雪崩光电探测器(8)的输出端通过同轴电缆线与第一低噪放大器(9)相连,第一低噪放大器(9)的输出端通过同轴电缆线与数据采集卡(13)的第二输入端相连;第二1×2光纤耦合器(6)的另一个输出端与第三可调谐光滤波器(10)相连,第三可调谐光滤波器(10)的输出端通过普通单模光纤跳线与第二雪崩光电探测器(11)的输入端相连,第二雪崩光电探测器(11)的输出端通过同轴电缆线与第二低噪放大器(12)相连,第二低噪放大器(12)的输出端通过同轴电缆线与数据采集卡(13)的第三输 入端相连;数据采集卡(13)的输出端与计算机(14)相连接。
  2. 一种基于ASE噪声信号的分布式光纤拉曼测温方法,采用权利要求1所述的装置来实现,其特征在于:该方法具体工作过程如下:
    a.ASE噪声光源(1)产生的噪声信号,经过第一可调谐光滤波器(2),产生光谱带宽合适的噪声光信号,然后通过1×2光纤耦合器(3)分为两路,其中一路光信号作为参考光,并经光电探测器(4)转换为电信号,再输入到数据采集卡(13);另一路光信号作为泵浦光,通过光环行器(5)进入传感光纤(15),并在光纤各点处产生拉曼后向散射光,然后拉曼后向散射光通过光环行器(5)的反射端注入到光环行器(5)中,再经光环行器(5)的输出端输出;输出的拉曼后向散射光通过第二1×2光纤耦合器(6)分为两路,其中一路光信号通过第二可调谐光滤波器(7),滤出后向的斯托克斯光,滤出的斯托克斯光由第一雪崩光电探测器(8)转换为电信号,然后经过第一低噪放大器(9)进行放大,再输入到数据采集卡(13);经过第二光纤耦合器(6)输出的另一路光信号通过第三可调谐光滤波器(10)滤出反斯托克斯光,然后通过第二雪崩光电探测器(11)转换为电信号,再经过第二低噪放大器(12)进行放大,再输入到数据采集卡(13)中,经过A/D转换之后输入到计算机(14)中;
    b.计算机(14)在相应软件的支持下,利用泵浦光后向散射得到的反斯托克斯光的强度随温度线性变化的特性,通过计算反斯托克斯光与斯托克斯光的强度比得到传感光纤(15)各段的温度信息;通过对斯托克斯光信号与参考光信号之间作互相关运算处理,就可以确定出光纤温度的位置信号。
PCT/CN2019/000080 2018-05-18 2019-04-29 一种基于ase噪声的分布式光纤拉曼测温装置及方法 WO2019218690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810482262.4 2018-05-18
CN201810482262.4A CN108760080B (zh) 2018-05-18 2018-05-18 一种基于ase噪声的分布式光纤拉曼测温装置及方法

Publications (1)

Publication Number Publication Date
WO2019218690A1 true WO2019218690A1 (zh) 2019-11-21

Family

ID=64008612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000080 WO2019218690A1 (zh) 2018-05-18 2019-04-29 一种基于ase噪声的分布式光纤拉曼测温装置及方法

Country Status (2)

Country Link
CN (1) CN108760080B (zh)
WO (1) WO2019218690A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112132256A (zh) * 2020-08-05 2020-12-25 芯华创(武汉)光电科技有限公司 一种基于神经网络的拉曼分布式温度传感方法和系统
CN112556875A (zh) * 2020-12-01 2021-03-26 太原理工大学 面向燃气管网泄漏的分布式光纤拉曼传感系统和方法
CN112880866A (zh) * 2021-03-25 2021-06-01 太原理工大学 长距离高空间分辨率的拉曼光纤多参量传感系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760080B (zh) * 2018-05-18 2019-10-08 太原理工大学 一种基于ase噪声的分布式光纤拉曼测温装置及方法
CN112378432B (zh) * 2020-10-29 2023-08-15 太原理工大学 基于噪声匹配滤波的分布式光纤拉曼传感装置和方法
CN113091947B (zh) * 2021-04-19 2023-06-30 太原理工大学 Ase时域相关压缩的分布式光纤拉曼温度传感装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310925A1 (en) * 2010-06-22 2011-12-22 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
CN102680138A (zh) * 2012-06-07 2012-09-19 北京航空航天大学 一种双向四通道耦合的分布式光纤拉曼测温系统
CN105043586A (zh) * 2015-05-28 2015-11-11 华中科技大学 一种基于少模光纤的拉曼分布式测温系统和测温方法
CN105136179A (zh) * 2015-08-27 2015-12-09 太原理工大学 基于ase噪声相干探测的分布式光纤传感装置及方法
CN105784195A (zh) * 2016-05-10 2016-07-20 太原理工大学 单端混沌布里渊光时域分析的分布式光纤传感装置及方法
CN107664541A (zh) * 2017-09-18 2018-02-06 南京大学 一种分布式光纤振动和温度融合传感系统及方法
CN108760080A (zh) * 2018-05-18 2018-11-06 太原理工大学 一种基于ase噪声的分布式光纤拉曼测温装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972403B2 (ja) * 2012-03-02 2016-08-17 オーエフエス ファイテル,エルエルシー Tdmおよびwdmベースのfbgセンサアレイシステム
CN102680137B (zh) * 2012-06-07 2014-08-13 北京航空航天大学 一种可级联分布式光纤拉曼测温系统
JP6206351B2 (ja) * 2014-07-15 2017-10-04 横河電機株式会社 光ファイバ温度分布測定装置
JP6428350B2 (ja) * 2015-02-18 2018-11-28 富士通株式会社 温度測定システム、温度測定方法及びプログラム
CN205562071U (zh) * 2016-04-28 2016-09-07 山西大同大学 一种新型分布式光纤传感温度报警系统
CN105783762B (zh) * 2016-05-10 2018-04-06 太原理工大学 混沌相关法定位的布里渊分布式光纤传感装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310925A1 (en) * 2010-06-22 2011-12-22 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
CN102680138A (zh) * 2012-06-07 2012-09-19 北京航空航天大学 一种双向四通道耦合的分布式光纤拉曼测温系统
CN105043586A (zh) * 2015-05-28 2015-11-11 华中科技大学 一种基于少模光纤的拉曼分布式测温系统和测温方法
CN105136179A (zh) * 2015-08-27 2015-12-09 太原理工大学 基于ase噪声相干探测的分布式光纤传感装置及方法
CN105784195A (zh) * 2016-05-10 2016-07-20 太原理工大学 单端混沌布里渊光时域分析的分布式光纤传感装置及方法
CN107664541A (zh) * 2017-09-18 2018-02-06 南京大学 一种分布式光纤振动和温度融合传感系统及方法
CN108760080A (zh) * 2018-05-18 2018-11-06 太原理工大学 一种基于ase噪声的分布式光纤拉曼测温装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112132256A (zh) * 2020-08-05 2020-12-25 芯华创(武汉)光电科技有限公司 一种基于神经网络的拉曼分布式温度传感方法和系统
CN112132256B (zh) * 2020-08-05 2023-12-08 芯华创(武汉)光电科技有限公司 一种基于神经网络的拉曼分布式温度传感方法和系统
CN112556875A (zh) * 2020-12-01 2021-03-26 太原理工大学 面向燃气管网泄漏的分布式光纤拉曼传感系统和方法
CN112880866A (zh) * 2021-03-25 2021-06-01 太原理工大学 长距离高空间分辨率的拉曼光纤多参量传感系统及方法
CN112880866B (zh) * 2021-03-25 2023-09-12 太原理工大学 长距离高空间分辨率的拉曼光纤多参量传感系统及方法

Also Published As

Publication number Publication date
CN108760080A (zh) 2018-11-06
CN108760080B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2019218690A1 (zh) 一种基于ase噪声的分布式光纤拉曼测温装置及方法
CN105043586B (zh) 一种基于少模光纤的拉曼分布式测温系统和测温方法
CN108180853B (zh) 一种基于混沌调制的布里渊光时域反射应变检测装置
CN104864979B (zh) 一种分布式拉曼光纤测温系统测量误差的修正方法
CN103616091B (zh) 一种分布式光纤温度和应力传感装置
CN203605976U (zh) 一种分布式光纤温度和应力传感装置
CN102506906B (zh) 一种提高ф-otdr分布式光纤传感系统性能的方法及系统
CN103152097A (zh) 一种采用随机激光放大的长距离偏振及相位敏感光时域反射计
CN202204524U (zh) 一种布里渊和拉曼同时检测的分布式光纤传感装置
CN105973501B (zh) 长距离高空间分辨率拉曼测温传感器及其实现方法
WO2013020276A1 (zh) 混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器
CN203310428U (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN104697558A (zh) 光纤分布式多参量传感测量系统
WO2013123655A1 (zh) 融合光纤拉曼频移器和拉曼放大器的全分布式光纤传感器
CN105136337A (zh) 一种基于模式复用的拉曼分布式测温系统和测温方法
CN103323041A (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN204087417U (zh) 光纤感温火灾探测器系统
CN110307920A (zh) 基于噪声调制的光纤温度、应力传感系统及测量方法
CN102680137A (zh) 一种可级联分布式光纤拉曼测温系统
Liu et al. Application of distributed optical fiber temperature sensing system based on Raman scattering in coal mine safety monitoring
CN102116684B (zh) 可自校正的全分布式光纤拉曼散射传感器
CN201731956U (zh) 一种采用序列脉冲编码解码的分布式光纤拉曼温度传感器
CN112880866B (zh) 长距离高空间分辨率的拉曼光纤多参量传感系统及方法
CN107727122B (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN112880865B (zh) 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802607

Country of ref document: EP

Kind code of ref document: A1