WO2019218341A1 - Stable and low cure-temperature 1k polyisocyanate - Google Patents
Stable and low cure-temperature 1k polyisocyanate Download PDFInfo
- Publication number
- WO2019218341A1 WO2019218341A1 PCT/CN2018/087477 CN2018087477W WO2019218341A1 WO 2019218341 A1 WO2019218341 A1 WO 2019218341A1 CN 2018087477 W CN2018087477 W CN 2018087477W WO 2019218341 A1 WO2019218341 A1 WO 2019218341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- amine
- solid polyisocyanate
- deactivated
- grams
- Prior art date
Links
- 0 CC(COC)*(C)N Chemical compound CC(COC)*(C)N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
- C08G18/246—Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/281—Monocarboxylic acid compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/302—Water
- C08G18/307—Atmospheric humidity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/341—Dicarboxylic acids, esters of polycarboxylic acids containing two carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/348—Hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
- C08G18/5027—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/6692—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/798—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8006—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
- C08G18/8009—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
- C08G18/8012—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
- C08G18/8016—Masked aliphatic or cycloaliphatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
Definitions
- This invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same, which are suitable for assembling articles of various substrates such as plastic materials.
- the present invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same which is storage stable at room temperature, can be cured at a temperature lower than 100 °C and meanwhile have excellent adhesion and mechanical properties when cured.
- amine deactivated solid isocyanate system is one of general methods to prepare storage stable polyurethane adhesives. In this process, only a small proportion of isocyanate groups available at the surface of the solid isocyanate react with amine and this leads to superficial stabilization via the formation of a polyurea shell. Then the stabilized isocyanates are dispersed in the isocyanate curable resins for further curing. The stabilized isocyanates are more preferred produced directly in suspension of polyamines/polyols.
- the shell structure When the stabilized dispersion is heated to a certain temperature, the shell structure could be destructed, and inside isocyanates could be released out and react with curing resins to form a whole polyurethane structure. Therefore, this process has several advantages, such as non-sensitive to moisture, fast curing, no volatile molecule emission.
- amine system and alcohol system have been developed according to the curing resins.
- Polyols used in alcohol system should be carefully selected to obtain good storage stability at room temperature. Normally, amine system has much better storage stability.
- polyurethane structure formed from amine system containing more urea bonds and thus has better mechanical properties and thermal stability than that from alcohol system.
- amine system needs higher curing temperature (normally above 100 °C) than alcohol system, which limits its use for plastic related applications, and thus attempts have been made to find improved polyurethane adhesives.
- US 8759455 B2 discloses a single-component composition that can be cured in two stages, comprising at least one isocyanate polyurethane polymer; at least one blocked amine, with at least two blocked amino groups that can be activated hydrolytically; and at least one surface-deactivated polyisocyanate that is solid at room temperature.
- it is required to a higher curing temperature to cure the adhesive composition.
- DE 3228724 A1 discloses heat-curable mixtures of polyisocyanate and polyol which have a long shelf life at room temperature.
- the polyisocyanate is in the form of discrete particles in the polyol, the polyisocyanate particles having been deactivated at their surface by means of compounds containing carboxyl groups, phenolic hydroxyl groups, amide groups or hydrazide groups.
- thermosetting reactive adhesive comprising a surface-modified, finely-divided polyisocyanate wherein part of the isocyanate groups of the unmodified polyisocyanate have been deactivated, and a polyamine.
- curable adhesive compositions based on solid polyisocyanates which are stable at room temperature, can be cured under lower temperature, and meanwhile have excellent adhesive strength and mechanical strength to be used in the application of bonding various substrates, especially plastic materials.
- the present invention provides a stable and low cure-temperature 1 K polyisocyanate, especially a surface-deactivated solid polyisocyanate which overcomes at least one of the abovementioned disadvantages of present solid polyisocyanates.
- the surface-deactivated solid polyisocyanates in this invention could significantly reduce curing temperature when cured compared to conventional polyurethane adhesives.
- the surface-deactivated solid polyisocyanate in this invention is storage stable at room temperature.
- the curable adhesive composition in this invention possesses excellent adhesion strength and mechanical strength when cured.
- the present invention provides a surface-deactivated solid polyisocyanate, which is a reaction product of a solid polyisocyanate with
- the present invention also provides a thermally curable adhesive composition comprising the surface-deactivated solid polyisocyanate, and a cured product of the surface-deactivated solid polyisocyanate or the thermally curable adhesive composition according to the present invention.
- the present invention also provides the use of the surface-deactivated solid polyisocyanate made of composite materials selected from plastic films, metal films, and metalized plastic films, wood, metal, polymeric plastics, glass and textiles.
- surface-deactivated solid polyisocyanate which is a reaction product of a solid polyisocyanate with an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, and optionally a second amine having a weight averaged molecular weight of less than 1,000 g/mol, in which the carboxyl acid has a linear or branched, C 1 -C 20 -alkyl or C 1 -C 20 -alkylene group and is optionally substituted by a primary hydroxyl group.
- polyisocyanate means diisocyanates or higher polyisocyanates, such as triisocyanates, tetraisocyanates, etc.
- Any diisocyanates or higher polyisocyanates or mixtures thereof are suittable as starting components for the surface-deactivated polyisocyanates according to the invention, providing they have a melting point above 40 °C, preferably above 80 °C.
- These isocyanates may be aliphatic, cycloaliphatic, araliphatic, heterocyclic, and, preferably, aromatic polyisocyanates.
- Examples of the (non-deactivated) solid polyisocyanate are toluene diisocyanate (TDI) , diphenylmethane diisocyanate (MDI) , polymethylene polyphenyl isocyanate (PAPI) , naphthalene diisocyanate (NDI) , p-phenylene diisocyanate (PPDI) , dimethyl biphenyl diisocyanate (TODI) , 1, 4-cyclohexane diisocyanate (CHDI) , triphenylmethane triisocyanate (TTI) , 4, 4', 4"-thio-phosphoric acid triphenyl triisocyanate (TPTI) , 2, 2’-dimethyldiphenylmethane-3, 3’, 5, , 5’-tetraisocyanate (TPMMTI) , IPDI trimer, TDI dimer, TDI trimer, MDI trimer.
- PAPI
- the solid polyisocyanate is selected from 2, 4-TDI, 2, 6-TDI, 2, 4-TDI dimer, 2, 6-TDI dimer, and mixture thereof.
- Other suitable examples can be found in US 4585445 A, which is incorporated herein by reference.
- the polyisocyanate that is solid at room temperature is preferably based on fine particles, with an average particle size in the range of 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, particularly 0.3 to 30 ⁇ m.
- TDI dimer such as or urea of TDI or uretdione of TDI represented by Formula (I)
- n and m are identical or different and are 1, 2, 3 or 4, and R and R'are identical or different and are C 1 -C 4 -alkyl.
- the solid polyisocyanate is uretdione of 2, 4-TDI, represented by Formula (II) , and is commercially available, for example from Rhein Chemie Rheinau GmbH as Addolink TT.
- the surface-deactivated polyisocyanate according to the present invention consists of particles of polyisocyanate that are solid at room temperature, the surfaces of which are covered or encapsulated with a varying thickness of a substance that is sufficiently impermeable and stable at room temperature to enclose the isocyanate groups inside the particles, and thus to make them inaccessible to chemical reaction partners, particular to compounds with active hydrogen atoms, and thus the polyisocyanate is surface deactivated.
- the layer on the polyisocyanate particles is damaged to such an extent that the isocyanate groups, within the particles, become accessible to chemical reactants, and hence are "activated” .
- the surface-deactivated solid polyisocyanate is obtained from the reactiion of the solid polyisocyanate with surface-deactivating compound having at least one isocyanate-reactive group, such as amine group.
- surface-deactivating compound having at least one isocyanate-reactive group, such as amine group.
- a layer is formed that is resistant, i.e. impermeable and largely insoluble, at room, or slightly raised, temperature.
- a suitable compound for this reaction comprises (1) an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, in which the carboxyl acid comprises a linear or branched, C 1 -C 20 -alkyl or C 1 -C 20 -alkylene group optionally substituted by a primary hydroxyl group, and optionally (2) a second amine having a weight averaged molecular weight of less than 1,000 g/mol.
- the protective layer formed will be as resistant as possible with regard to all the substances present in the thermally curable adhesive composition in order to prevent the isocyanate groups of the surface-deactivated polyisocyanate from being activated prematurely, and cured during storage. It is also important to decrease the curing temperature of the surface-deactivated polyisocyanate so as to extend the application of the thermally curable adhesive composition based on the surface-deactivated polyisocyanate to lower melting point materials such as plastic materials.
- the inventors have found that the solid polyisocyanate surface deactivated at least by an acid addition salt of a carboxylic acid and a first amine having a longer chain has a lower curing temperature less than 100 °C, and preferably less than 95 °C.
- the solid polyisocyanate is storage stable and not able to be cured at room temperature.
- the acid addition salt When heated at an elevated temperature less than 110 °C, the acid addition salt will release free carboxylic acid which breaks the formed covering layer, and renders the isocyanate groups in the solid particles to quickly react with the amine groups of the first amine.
- the surface-deactivated solid polyisocyanate exhibited excellent adhesion ability such as lap shear strength to various substrates, good mechanical strength such as tensile strength, elongation and hardness.
- the carboxylic acid suitable for the acid addition salt has a linear or branched, C 1 -C 20 -alkyl or C 1 -C 20 -alkylene group and is optionally substituted by a primary hydroxyl group.
- the carboxylic acid has a linear or branched C 1 to C 16 -alkyl group or C 1 to C 16 -alkylene group, optionally substituted by a primary hydroxyl group.
- the carboxylic acid is a monocarboxylic acid having a linear or branched C 1 to C 16 -alkyl group, dicarboxylic acid having a linear or branched C 1 to C 16 -alkylene group, and/or a monocarboxylic acid having a linear or branched C 1 to C 16 -alkyl group substituted by one or more primary hydroxy groups.
- carboxylic acid examples include, but not limited to aliphatic carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, hydroxyacetic acid, propionic acid, isobutyric acid, 2-methylbutyric acid, octylic acid, 2-methylpentanoic acid, isononanoic acid, undecylenic acid, lauric acid, myristic acid, palmitic acid, behenic acid, stearic acid, isostearic acid, methoxyacetic acid, 2-hydroxymethylbutyric acid, dimethylolpropionic acid, dimethylolbutanoic acid, gluconic acid; dicarboxylic acids such as maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, methylsuccinic acid, pemielic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassylic acid, thapsic acid;
- the first amine used for the surface-deactivation of solid polyisocyanates can be any amino-functional compound having a long chain or large structure with higher molecular weight. These are preferably polyfunctional primary and secondary amines, particularly preferably polyfunctional aliphatic or aromatic amines.
- Amines suitable for the first amine of the present invention are particularly those selected from the group of cyclic and aliphatic, straight-chain or branched (C 2 -C 14 ) -alkylamines, -diamines and -polyamines, in particular (C 2 -C 10 ) -alkylamines, -diamines and -polyamines, preferably (C 2 -C 6 ) -alkylamines, -diamines and -polyamines, which is interrupted in the alkyl chain by heteroatoms, in particular oxygen or sulphur, and/or where the alkyl chain can comprise further substituents, e.g. hydroxy groups, carboxy groups, halogen or the like.
- the first amine having higher weight averaged molecular weight i.e., 1,000 g/mol or more, preferably 1, 500 g/mol or more, and more preferably 2,000 g/mol or more, as determined by gel permeation chromatography (GPC) using polystyrene standards
- GPC gel permeation chromatography
- the first amine having higher weight averaged molecular weight can be aliphatic, straight-chain or branched (C 2 -C 14 ) -alkylamines, -diamines and -polyamines interrupted by oxygen atoms in the alkyl chain.
- Those are so called polyether amine compounds having higher molecular weight.
- suitable first amines are polyether amines that contain primary and/or secondary amino groups, particularly terminal primary and/or secondary amino groups, attached to a polyether backbone.
- the polyether backbone can be based on repeat units of propylene glycol (PG) , ethylene glycol (EG) , mixed EG/PG, polytetramethylene glycol (PTMEG) , and combinations thereof.
- Polyether amines having this core structure can be monoamines, diamines, or triamines.
- Suitable polyether amines are represented by the following Formula (III) :
- the group R 1 is a monovalent, divalent or trivalent polyether radical having at least 10, at least 15, at least 20, at least 30, at least 40, or at least 50 groups of formula - (R 3 -O) -, where R 3 is a linear or branched alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms or 2 to 3 carbon atoms.
- the group R 2 is hydrogen or alkyl (e.g., an alkyl having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms) .
- the variable m is equal to 1, 2, or 3.
- the number average molecular weight of the second amine is no less than 1,000 grams/mole, preferably no less than 1,500 g/mol, and more preferably no less than 2,000 g/mol.
- the polyether amine of Formula (III) is a polyether monoamine of the following Formula (IV) .
- the group R 4 is an alkyl having 1 to 4 carbon atoms, 1 to 3 carbon atoms or 1 carbon atom.
- Each group R 5 is independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms.
- the variable q is equal to at least 10, at least 15, at least 20, or at least 30, at least 40, or at least 50.
- suitable monoamines of Formula V are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE M-series (e.g., M-1000, M-2005, M-2070) .
- the polyether amine of Formula III is a polyether diamine of the following Formula (V) .
- each group of R 6 and R 7 is each independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms.
- the variable p is equal to at least 10, at least 15, at least 20, at least 30, at least 40, or at least 50.
- suitable diamines of Formula VI are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE D-series (e.g., D-2000, D-4000) , the JEFFAMINE ED-series (e.g., ED-2003) .
- the polyether amiine is a polyether triamine such as those commercially available from Huntsman Corporation under the trade name JEFFAMINE, such as those in the JEFFAMINE T-series (e.g., T-3000, T-5000) and from BASF under the trade name BAXXODUR (e.g., BAXXODUR (e.g., BAXXODUR EC 303, EC 310, and EC 311) .
- the first amine is a polyether triamine represented by Formula (VI)
- R 8 is hydrogen or (C 1 -C 4 ) -alkyl, such as methyl, ethyl, n-propyl, n is from 1 to 10, and the sum of x, y and z is from about 20 to about 100, preferably from about 40 to aboutt 90, such as about 50 or about 85.
- the polyether amine is a polyether diamine or polyether triamine having secondary amine groups.
- These polyether amines are N-alkylated polyether amines commercially available, for example, from Huntsman Corporation under the trade designation JEFFAMINE such as those in the JEFFAMINE SD-series (e.g. SD-2001) .
- the molar ratio of the carboxylic acid to the first amine is in the range of from 0.1 to 10, and preferably from 0.5 to 3.
- the preparation of the acid addition salt of a carboxylic acid and the first amine is known in the art.
- the acid addition salt is prepared by mixing the carboxylic acid and the first amine in a mixer, and mechanical milling/stirring the mixture in sufficient time. Heat may be added to assist in the mixing and shorten the reaction time.
- Commercially available machines can be used for the stirring/milling process, examples being bead mills, dissolvers and/or blade stirrers.
- the solid polyisocyanate may be optionally surface deactivated by a second amine having a weight averaged molecular weight of less than 1,000 g/mol, preferably less than 800, and more preferably less than 600.
- the second amine used for the surface-deactivation of solid polyisocyanates can be any amino-functional compound having a short chain or small structure with lower molecular weight. Similar to the first amine, these are preferably polyfunctional primary and secondary amines, particularly preferably polyfunctional aliphatic or aromatic amines.
- Amines suitable for the second amine of the present invention are particularly those selected from the group of cyclic and aliphatic, straight-chain or branched (C 2 -C 14 ) -alkylamines, -diamines and -polyamines, in particular (C 2 -C 10 ) -alkylamines, -diamines and -polyamines, preferably (C 2 -C 6 ) -alkylamines, -diamines and -polyamines, where there can be at least some, or else full, interruption of the alkyl chain by heteroatoms, in particular oxygen or sulphur, and/or where the alkyl chain can comprise further substituents, e.g. hydroxy groups, carboxy groups, halogen or the like.
- the second amine having lower molecular weight can be aliphatic, straight-chain or branched (C 2 -C 14 ) -alkylamines, -diamines and -polyamines interrupted by oxygen atoms in the alkyl chain.
- Those are so called polyether amine compounds.
- suitable second amine are polyether amines that contain primary and/or secondary amino groups, particularly terminal primary and/or secondary amino groups, attached to a polyether backbone.
- the polyether backbone can be based on repeat units of propylene glycol (PG) , ethylene glycol (EG) , mixed EG/PG, polytetramethylene glycol (PTMEG) , and combinations thereof.
- Polyether amines having this core structure can be monoamines, diamines, or triamines.
- Suitable polyether amines are represented by the following Formula (VII) :
- the group R 9 is a monovalent, divalent or trivalent polyether radical having at least 2, at least 3, at least 5, at least 10, at least 20, or at least 30 groups of formula - (R 9 -O) -, where R 9 is a linear or branched alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms or 2 to 3 carbon atoms.
- the group R 10 is hydrogen or alkyl (e.g., an alkyl having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms) .
- the variable n is equal to 1, 2, or 3.
- the number average molecular weight of the second amine is less than 1,000 grams/mole, preferably less than 800 g/mol, and more preferably less than 600 g/mol.
- the polyether amine of Formula VII is a polyether monoamine of the following Formula VIII.
- the group R 11 is an alkyl having 1 to 4 carbon atoms, 1 to 3 carbon atoms or 1 carbon atom.
- Each group R 12 is independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms.
- the variable q is equal to at least 2, at least 3, at least 5, or at least 10, at least 20, or at least 30.
- suitable monoamines of Formula VIII are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE M-series (e.g., M-600) .
- the polyether amine of Formula VII is a polyether diamine of the following Formula IX.
- each group of R 13 and R 14 is each independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms.
- the variable b is equal to at least 2, at least 3, at least 5, at least 10, at least 20, or at least 30.
- Suitable diamines of Formula IX are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE D-series (e.g., D-230, D400) , JEFFAMINE HK-511, the JEFFAMINE ED-series (e.g., ED-600, ED-900) , the JEFFAMINE EDR series (e.g., EDR-148, and EDR-176) , or the JEFFAMINE THF series (e.g., THF-100, THF-140, and THF-170) .
- Other examples of suitable diamines of Formula VI are commercially available from BASF (Florham Park, N. J.
- BAXXODUR e.g., BAXXODUR EC-130 (4, 7, 10-trioxatridecane-1, 13-diamine)
- EC-280 4, 9-dioxadodecane-1, 12-diamine
- the polyether amine is a polyether triamine such as those commercially available from Huntsman Corporation under the trade name JEFFAMINE, such as those in the JEFFAMINE T-series (e.g., T-403) .
- the second amine is a polyether triamine represented by Formula (X)
- the polyether amine is a polyether diamine or polyether triamine having secondary amine groups.
- These polyether amines are N-alkylated polyether amines commercially available, for example, from Huntsman Corporation under the trade designation JEFFAMINE such as those in the JEFFAMINE SD-series or ST-series (SD-213, SD-401 and ST-404) .
- the polyether amine is products from the addition reaction of primary aliphatic polyamines with Michael acceptors in a reaction like a Michael reaction, such as maleic acid diester, fumaric acid diester, citraconic acid diester, acrylic acid ester, methacrylic acid ester, cinnamic acid ester, itaconic acid diester, vinyl phosphonic acid diester, vinyl sulfonic acid aryl ester, vinyl sulfones, vinyl nitriles, 1-nitroethylenes or Knoevenagel condensation products such as, for example, those from malonic acid diesters and aldehydes such as formaldehyde, acetaldehyde or benzaldehyde as well as commercial secondary aliphatic polyamines such as Gaskamine 240 (from Mitsubishi) , Desmophen NH 1220, NH 1420 and NH 1520 (from Covestro) or F220, F420, F520 (from Feiyang Chemicals) .
- Michael acceptors
- the polyether amine is primary and/or secondary aromatic polyamine such as in particular m-and p-phenylene diamine, 4, 4'-, 2, 4'and 2, 2'-diaminodiphenylmethane, 3, 3'-dichloro-4, 4'-diaminodiphenylmethane (MOCA) , 2, 4-and 2, 6-toluoylene diamine, mixtures of 3, 5-dimethylthio-2, 4-and -2, 6-toluoylene diamiine, mixtures of 3, 5-diethyl-2, 4-and -2, 6-toluoylene diamine (DETDA) , 3, 3', 5, 5'-tetraethyl-4, 4'-diaminodiphenyl methane (M-DEA) , 3, 3', 5, 5'-tetraethyl-2, 2'-dichloro-4, 4'-diaminodiphenyl methane (M-CDEA)
- the mass ratio of the second amine having lower molecular weight to the solid polyisocyanate is in the range of 0 to 0.1, and preferably from 0 to 0.064.
- the molar ratio of the NCO groups to the sum of amine groups in the first amine and second amine is in the range of 0.8 to 10, and preferably from 1.2 to 4.
- the preparation of surface-deactivated solid polyisocyanate is known to the art.
- the surface-deactivated solid polyisocyanate is prepared by mixing the acid addition salt of the first amine with the solid polyisocyanate in a mixer with stirring for sufficient time, for example, from 1 to 12 hours. If present, the second amine can be mixed with the first amine before the solid polysiocyanate is added.
- the surface-deactivated solid polyisocyanate according to the present invention is storage stable under room temperature for at least 14 days.
- the surface-deactivated solid polyisocyanate is in the form of soft paste, it will not become a hard solid during the storage.
- the surface-deactivated solid polyisocyanate according to the present invention can be cured under a temperature of 80 to 100 °C, or even lower than 80 °C, and thus is suitable to be used in the application of bonding plastic materials which have lower melting point.
- the present invention also provides a thermally curable adhesive comprising the surface-deactivated solid polyisocyanate and option additives.
- the additives are selected from the group consisting of catalyst, adhesion promoter, filler and mixture thereof.
- Catalysts may be contained in curable adhesive composition to facilitate the reaction between amines and isocyanates.
- Suitable metallic catalysts catalysts that accelerate the reaction of the isocyanate groups are organotin compounds such as dibutyltin diacetate, dibutyltin dilaurate (DBTDL) , dibutyltin dichloride, dibutyltin diacetylacetonate and dioctyltin dilaurate; compounds of zinc, manganese, iron, chromium, cobalt, copper, nickel, molybdenum, lead, cadmium, mercury, antimony, vanadium, titanium and potassium, especially zinc (II) -acetate, zinc (II) -2-ethylhexanoate, zinc (II) -laurate, zinc (II) -acetylacetonate, iron (III) -2-ethylhexanoate, Cobalt (II) -2-
- the curable adhesive composition can optionally comprise an adhesion promoter or coupling agent which promotes bonding of the composition to a substrate.
- an adhesion promoter or coupling agent which promotes bonding of the composition to a substrate.
- organo-silanes which can link the solid polyisocyanate to the surface such as amino silanes and epoxy silanes.
- Some exemplary aminosilane adhesion promoters include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl-3-aminopropyl) trimethoxysilane, 3-aminopropylmethyldiethoxysilane, 4-amino-3, 3-dimethylbutyltrimethoxysilane, N- (n-butyl) -3-aminopropyltrimethoxysilane, 1-butanamino-4- (dimethoxymethylsilyl) -2, 2-dimethyl, (N-cyclohexylaminomethyl) triethoxysilane, (N-cyclohexylaminomethyl) -methyldiethoxysilane, (N-phenylaminoethyl) trimethoxysilane, (N-phenylaminomethyl) -methyldimethoxysilane or gamma-ureid
- Aminosilanes with oligomeric structures such as Sivo 203 and Dynasylan AMMO from Evonik Corp.
- Particularly preferred amino silanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-Butyl-3- (trimethoxysilyl) propylamine.
- Some exemplary epoxy silane adhesion promoters include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane or beta- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane.
- Other silane adhesion promoters include mercaptosilanes.
- Some exemplary mercaptosilane adhesion promoters include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane or 3-mercaptopropyltriethoxysilane. If used, the level of adhesion promoter employed can be from 0%by weight to about 10%by weight, preferably 0.01%by weight to 5%by weight and more preferably 0.1%by weight to 2%by weight.
- the curable adhesive composition can optionally include filler.
- filler include, for example, lithopone, zirconium silicate, hydroxides, such as hydroxides of calcium, aluminum, magnesium, iron and the like, diatomaceous earth, carbonates, such as sodium, potassium, calcium, and magnesium carbonates, oxides, such as zinc, magnesium, chromic, cerium, zirconium and aluminum oxides, calcium clay, nanosilica, fumed silicas, silicas that have been surface treated with a silane or silazane such as the AEROSIL products available from Evonik Industries or CAB-O-SIL products available from Carbot Corp., silicas that have been surface treated with an acrylate or methacrylate such as AEROSIL R7200 or R711 available from Evonik Industries, precipitated silicas, untreated silicas, graphite, synthetic fibers and mixtures thereof.
- filler can be employed in concentrations effective to provide desired properties in the uncured composition and cured reaction products and typically in concentrations of about
- the curable adhesive composition can optionally include a thixotrope or rheology modifier.
- the thixotropic agent can modify rheological properties of the uncured composition.
- Some useful thixotropic agents include, for example, silicas, such as fused or fumed silicas, that may be untreated or treated so as to alter the chemical nature of their surface. Virtually any reinforcing fused, precipitated silica, fumed silica or surface treated silica may be used.
- treated fumed silicas include polydimethylsiloxane-treated silicas, hexamethyldisilazane-treated silicas and other silazane or silane treated silicas.
- Such treated silicas are commercially available, such as from Cabot Corporation under the tradename CAB-O-SIL ND-TS and Evonik Industries underthe tradename AEROSIL, such as AEROSIL R805.
- AEROSIL such as AEROSIL R805.
- untreated silicas include commercially available amorphous silicas such as AEROSIL 300, AEROSIL 200 and AEROSIL 130.
- hydrous silicas include NIPSIL E150 and NIPSIL E200A manufactured by Japan Silica Kogya Inc.
- the rheology modifier can be employed in concentrations effective to provide desired physical properties in the uncured composition and cured reaction products and typically in concentrations of about 0%to about 70%by weight of composition and advantageously in concentrations of about 0%to about 20%by weight of composition.
- the filler and the rheology modifier can be the same.
- the curable adhesive composition can optionally include an anti-oxidant.
- an anti-oxidant include those available commercially from BASF under the tradename IRGANOX. When used, the antioxidant should be used in the range of about 0 to about 15 weight percent of curable composition, such as about 0.3 to about 1 weight percent of curable composition.
- the curable adhesive composition can optionally include a reaction modifier.
- a reaction modifier is a material that will increase or decrease reaction rate of the curable composition.
- 8-hydroxyquinoline (8-HQ) and derivatives thereof such as 5-hydroxymethyl-8-hydroxyquinoline can be used to adjust the cure speed.
- the reaction modifier can be used in the range of about 0.001 to about 15 weight percent of curable composition.
- the curable adhesive composition can optionally contain a thermoplastic polymer.
- the thermoplastic polymer may be either a functional or a non-functional thermoplastic.
- suitable thermoplastic polymers include acrylic polymer, functional (e.g. containing reactive moieties such as -OH and/or -COOH) acrylic polymer, non-functional acrylic polymer, acrylic block copolymer, acrylic polymer having tertiary-alkyl amide functionality, polysiloxane polymer, polystyrene copolymer, polyvinyl polymer, divinylbenzene copolymer, polyetheramide, polyvinyl acetal, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride, methylene polyvinyl ether, cellulose acetate, styrene acrylonitrile, amorphous polyolefin, olefin block copolymer, polyolefin plastomer, thermoplastic urethane, polyacrylonitrile
- the curable composition can optionally include one or more coloring agents.
- a colored composition can be beneficial to allow for inspection of the applied composition.
- a coloring agent for example a pigment or dye, can be used to provide a desired color beneficial to the intended application.
- Exemplary coloring agents include titanium dioxide, C. I. Pigment Blue 28, C. I. Pigment Yellow 53 and phthalocyanine blue BN.
- a fluorescent dye can be added to allow inspection of the applied composition under UV radiation.
- the coloring agent will be present in amounts sufficient to allow observation or detection, for example about 0.002%or more by weight of total composition. The maximum amount is governed by considerations of cost, absorption of radiation and interference with cure of the composition. More desirably, the coloring agent may be present in amounts of up to about 20%by weight of total composition.
- the curable composition can optionally include from about 0%to about 20%by weight, for example about 1%to about 20%by weight of composition of other additives known in the arts, such as tackifier, plasticizer, flame retardant, moisture scavenger, and combinations of any of the above, to produce desired functional characteristics, providing they do not significantly interfere with the desired properties of the curable composition or cured reaction products of the curable composition.
- additives known in the arts, such as tackifier, plasticizer, flame retardant, moisture scavenger, and combinations of any of the above, to produce desired functional characteristics, providing they do not significantly interfere with the desired properties of the curable composition or cured reaction products of the curable composition.
- the curable adhesive compositions When used as a one-part solid polyisocyanate adhesive, the curable adhesive compositions do not include solvent which is added by intention. This type of adhesives is known as non-solvent adhesives.
- the thermally curable adhesive composition comprises
- Also disclosed in the present invention is a method of preparing a solid polyisocyanate, comprising mixing the carboxylic acid and a first amine to obtain an acid addition salt, and mixing the acid addition salt and optionally the second amine, with the solid polyisocyanate.
- the components are mixed using static mixers or with the aid of dynamic mixers. During mixing, it is to make sure that the components are mixed as homogeneously as possible.
- An additional object of the invention is thus a cured product obtained from the curing of a surface-deactivated solid polyisocyanate or a thermally curable adhesive composition as described in the present document.
- the cured products are storage-stable under room temperature, and have lower curing temperature than conventional polyurethanes and other adhesives.
- the cured products are also expected to have excellent adhesion strength and mechanical strength.
- the disclosed surface-deactivated solid polyisocyanate and curable adhesive compositions will be useful wherever these properties are desirable.
- Adhesive compositions disclosed herein can be used to bond articles together. Under appropriate conditions for the type of composition the adhesive composition is applied to a first article and a second article is disposed in contact with the adhesive composition applied to the first article.
- the adhesive composition may be heated under a temperature higher than the softening point and lower than the curing temperature for the convenience of application. After applied, the adhesive composition is exposed to conditions (such as heating to the curing temperature of from 80 to 100 °C, or even lower than 80 °C) to promote curing. Cured reaction products of the adhesive composition bond the first and second articles.
- the disclosed adhesive compositions are useful for bonding articles composed of a wide variety of substrates (materials) , including but not limited to flexible films such as plastic films, metal films, and metalized plastic films, wood, metal, polymeric plastics, glass and textiles.
- the present adhesive composition is particularly suitable for plastic materials due to the lower curing temperature.
- Plastic materials may be for example polyvinyl chloride (hard and soft PVC) , acrylonitrile-butadiene-styrene copolymers (ABS) , polycarbonate (PC) , polyamide (PA) , polyester, poly (methyl methacrylate) (PMMA) , polyesters, epoxy resins, polyurethanes (PUR) , polyoxymethylene (POM) , polyolefins (PO) , polyethylene (PE) or polypropylene (PP) , ethylene/propylene copolymers (EPM) and ethylene/propylene/diene terpolymers (EPDM) , wherein the plastic materials can preferably be surface-treated with plasma, corona or flame.
- Other applications include adhesives for bonding electronic components in OLEDs and LCDs, bonding hand held electronic devices such as cell phones, bonding photovoltaics, conformal coatings such as for electronic components and adhesives for backbedding or glazing windows.
- the surface-deactivated solid polyisocyanate or the thermally curable adhesive composition comprising the same according to the present invention is stable under room temperature for 14 days or more.
- This article is especially a structure, especially an above-ground or below-ground structure, or an item of industrial or consumer goods, especially a window, a household appliance, a rotor blade of a wind-power plant or a means of transportation, especially a vehicle, preferably an automobile, a bus, a truck, a train or a ship, as well as an airplane or a helicopter; or a mounted part of such an article, or an article from the furniture, textile or packaging industry.
- Acetic acid is commercially available from Aldrich.
- Formic acid is commercially available from Aldrich.
- Hydroxyacetic acid is commercially available from Aldrich.
- Stearic acid is commercially available from Aldrich.
- Succinic acid is commercially available from Aldrich.
- Salicylic acid is commercially available from Aldrich.
- Barbituric acid is commercially available from Aldrich.
- Phosphorous acid is commercially available from Aldrich.
- Aluminium chloride is commercially available from Aldrich.
- Lactic acid is commercially available from Aldrich.
- D-2000 is a polyether diamine having a Mw of about 2,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE D-2000.
- T-5000 is a polyether triamine having a Mw of about 5,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-5000.
- T-3000 is a polyether triamine having a Mw of about 3,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-3000.
- T-403 is a polyether triamine having a Mw of about 440, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-403.
- P-650 is a polytetramethyleneoxide-di-p-aminobenzoate having a Mw of about 830, commercially available from Evonik under the tradename of Versalink P-650.
- F420 is an aspartic ester amine commercially available from Feiyang Chemicals under the tradename of F420.
- Addolink TT is a uretdione of 2, 4-TDI, commercially available, from Rhein Chemie Rheinau GmbH under the trade name of Addolink TT.
- Aluminium hydroxide is commercially available from Huber under the tradename of Martinal OL-107.
- Fumed silica is commercially available from Cabot under the tradename of CAB-O-SIL TS-720.
- Dynasylan AMMO is adhesion promoter commercially available from Evonik.
- HMGPE-5000 is a polyether triol having a Mw of about 5,000, commercially available from Zhejiang Huangma Technology Co., LTD..
- DBTDL is dibutyltin dilaurate commercially available from Aldrich.
- the surface-deactivated solid polyisocyanate obtained in each example was placed in a plastic container under room temperature (about 25°C) for two weeks, and observed whether the solid polyisocyanate was cured on each day. If the paste product became a hard solid, the storage stability was evaluated as “Fail” , and if the paste form was maintained after two weeks, the storage stability was evaluated as “Pass” .
- each surface-deactivated solid polyisocyanate was measure by Differential scanning calorimetry (DSC) with the following ramp program: equilibrating at 20 °C, and heating from 20 °C to 250 °C with a heating rate of 10 °C/min. The temperature indicating the maximum peak was recorded as the curing temperature.
- DSC Differential scanning calorimetry
- the surface-deactivated solid polyisocyanate obtained from each example was cured under a temperature higher than respective curing temperature.
- the hardness of the cured product was measured according to ASTM D2240.
- the tensile strength was measured according to ASTM D412, the elongation at break was measured according to ASTM D412, and the lap shear adhesive strength was measured according to ASTM D1002 (substrate: 6061Al) and D3163 (substrate: PA, PC, PMMA) .
- the results of the evaluation are shown in Tables 1 and 2.
- the cured product was not available for test as it was cured within one hour.
- the surface-deactivated solid polyisocyanates or thermally curable adhesives according to the present invention exhibited a curing temperature of less than 95°C, a storage stability of more than 2 weeks, and good adhesion and mechanical strength when applied onto various substrates.
- the conventional polyisocyanate systems containing polyol (CE 1) , surface-deactivated by amines (CEs 2 and 3) , amines blocked by aromatic carboxyl acid (CE 4) , heterocyclic carboxyl acid (CE 7) , inorganic acids (CEs 8 and 9) and carboxyl acid substituted by secondary hydroxy only (CE 10) , short chain amines blocked by acid (CEs 5 and 6) exhibited at least one of the drawbacks including a significantly higher curing temperature (more than 95°C) , poor storage stability under room temperature (less than 2 weeks) , and poor adhesion and/or mechanical strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
This invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same, which are suitable for assembling articles of various substrates such as plastic materials. In particular, the present invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same which is storage stable at room temperature, can be cured at a temperature lower than 100°C and meanwhile have excellent adhesion and mechanical properties when cured.
Description
This invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same, which are suitable for assembling articles of various substrates such as plastic materials. In particular, the present invention relates to a surface-deactivated solid polyisocyanate and a thermally curable adhesive composition comprising the same which is storage stable at room temperature, can be cured at a temperature lower than 100 ℃ and meanwhile have excellent adhesion and mechanical properties when cured.
In one-component polyurethane adhesive field, amine deactivated solid isocyanate system is one of general methods to prepare storage stable polyurethane adhesives. In this process, only a small proportion of isocyanate groups available at the surface of the solid isocyanate react with amine and this leads to superficial stabilization via the formation of a polyurea shell. Then the stabilized isocyanates are dispersed in the isocyanate curable resins for further curing. The stabilized isocyanates are more preferred produced directly in suspension of polyamines/polyols. When the stabilized dispersion is heated to a certain temperature, the shell structure could be destructed, and inside isocyanates could be released out and react with curing resins to form a whole polyurethane structure. Therefore, this process has several advantages, such as non-sensitive to moisture, fast curing, no volatile molecule emission.
In this system, amine system and alcohol system, have been developed according to the curing resins. Polyols used in alcohol system should be carefully selected to obtain good storage stability at room temperature. Normally, amine system has much better storage stability. Moreover, after curing, polyurethane structure formed from amine system containing more urea bonds, and thus has better mechanical properties and thermal stability than that from alcohol system. However, amine system needs higher curing temperature (normally above 100 ℃) than alcohol system, which limits its use for plastic related applications, and thus attempts have been made to find improved polyurethane adhesives.
For example, US 8759455 B2 discloses a single-component composition that can be cured in two stages, comprising at least one isocyanate polyurethane polymer; at least one blocked amine, with at least two blocked amino groups that can be activated hydrolytically; and at least one surface-deactivated polyisocyanate that is solid at room temperature. However, it is required to a higher curing temperature to cure the adhesive composition.
DE 3228724 A1 discloses heat-curable mixtures of polyisocyanate and polyol which have a long shelf life at room temperature. The polyisocyanate is in the form of discrete particles in the polyol, the polyisocyanate particles having been deactivated at their surface by means of compounds containing carboxyl groups, phenolic hydroxyl groups, amide groups or hydrazide groups.
US 4595445 A discloses a thermosetting reactive adhesive comprising a surface-modified, finely-divided polyisocyanate wherein part of the isocyanate groups of the unmodified polyisocyanate have been deactivated, and a polyamine.
There is still a need to develop curable adhesive compositions based on solid polyisocyanates, which are stable at room temperature, can be cured under lower temperature, and meanwhile have excellent adhesive strength and mechanical strength to be used in the application of bonding various substrates, especially plastic materials.
Summary of the invention
The present invention provides a stable and low cure-temperature 1 K polyisocyanate, especially a surface-deactivated solid polyisocyanate which overcomes at least one of the abovementioned disadvantages of present solid polyisocyanates. The surface-deactivated solid polyisocyanates in this invention could significantly reduce curing temperature when cured compared to conventional polyurethane adhesives. The surface-deactivated solid polyisocyanate in this invention is storage stable at room temperature. Besides, the curable adhesive composition in this invention possesses excellent adhesion strength and mechanical strength when cured.
The present invention provides a surface-deactivated solid polyisocyanate, which is a reaction product of a solid polyisocyanate with
(1) an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, in which the carboxyl acid has a linear or branched, C
1-C
20-alkyl or C
1-C
20-alkylene group and is optionally substituted by a primary hydroxyl group, and
(2) optionally a second amine having a weight averaged molecular weight of less than 1,000 g/mol.
The present invention also provides a thermally curable adhesive composition comprising the surface-deactivated solid polyisocyanate, and a cured product of the surface-deactivated solid polyisocyanate or the thermally curable adhesive composition according to the present invention.
The present invention also provides the use of the surface-deactivated solid polyisocyanate made of composite materials selected from plastic films, metal films, and metalized plastic films, wood, metal, polymeric plastics, glass and textiles.
In the following passages the present invention is described in more detail. Each aspect so described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
In the context of the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise.
As used herein, the singular forms “a” , “an” and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The terms “comprising” , “comprises” and “comprised of” as used herein are synonymous with “including” , “includes” or “containing” , “contains” , and are inclusive or open-ended and do not exclude additional, non-recited members, elements or process steps.
The recitation of numerical end points includes all numbers and fractions subsumed within the respective ranges, as well as the recited end points.
All references cited in the present specification are hereby incorporated by reference in their entirety.
Unless otherwise defined, all terms used in the disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs to. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
According to the present invention, surface-deactivated solid polyisocyanate, which is a reaction product of a solid polyisocyanate with an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, and optionally a second amine having a weight averaged molecular weight of less than 1,000 g/mol, in which the carboxyl acid has a linear or branched, C
1-C
20-alkyl or C
1-C
20-alkylene group and is optionally substituted by a primary hydroxyl group.
As used herein, the term “polyisocyanate” means diisocyanates or higher polyisocyanates, such as triisocyanates, tetraisocyanates, etc.
Any diisocyanates or higher polyisocyanates or mixtures thereof are suittable as starting components for the surface-deactivated polyisocyanates according to the invention, providing they have a melting point above 40 ℃, preferably above 80 ℃. These isocyanates may be aliphatic, cycloaliphatic, araliphatic, heterocyclic, and, preferably, aromatic polyisocyanates.
Examples of the (non-deactivated) solid polyisocyanate are toluene diisocyanate (TDI) , diphenylmethane diisocyanate (MDI) , polymethylene polyphenyl isocyanate (PAPI) , naphthalene diisocyanate (NDI) , p-phenylene diisocyanate (PPDI) , dimethyl biphenyl diisocyanate (TODI) , 1, 4-cyclohexane diisocyanate (CHDI) , triphenylmethane triisocyanate (TTI) , 4, 4', 4"-thio-phosphoric acid triphenyl triisocyanate (TPTI) , 2, 2’-dimethyldiphenylmethane-3, 3’, 5, , 5’-tetraisocyanate (TPMMTI) , IPDI trimer, TDI dimer, TDI trimer, MDI trimer. Preferably, the solid polyisocyanate is selected from 2, 4-TDI, 2, 6-TDI, 2, 4-TDI dimer, 2, 6-TDI dimer, and mixture thereof. Other suitable examples can be found in US 4585445 A, which is incorporated herein by reference.
The polyisocyanate that is solid at room temperature (i.e. 23 ℃) is preferably based on fine particles, with an average particle size in the range of 0.01 to 100 μm, preferably 0.1 to 50 μm, particularly 0.3 to 30 μm.
One particular type of the solid polyisocyanates suitable for the present inventtion is TDI dimer, such as or urea of TDI or uretdione of TDI represented by Formula (I)
wherein X is
where n and m are identical or different and are 1, 2, 3 or 4, and R and R'are identical or different and are C
1-C
4-alkyl.
In one more particular embodiment of the invention, the solid polyisocyanate is uretdione of 2, 4-TDI, represented by Formula (II) , and is commercially available, for example from Rhein Chemie Rheinau GmbH as Addolink TT.
The surface-deactivated polyisocyanate according to the present invention consists of particles of polyisocyanate that are solid at room temperature, the surfaces of which are covered or encapsulated with a varying thickness of a substance that is sufficiently impermeable and stable at room temperature to enclose the isocyanate groups inside the particles, and thus to make them inaccessible to chemical reaction partners, particular to compounds with active hydrogen atoms, and thus the polyisocyanate is surface deactivated. When heating the surface-deactivated polyisocyanate to a temperature of at least 60 ℃, and preferably at least 80 ℃, the layer on the polyisocyanate particles is damaged to such an extent that the isocyanate groups, within the particles, become accessible to chemical reactants, and hence are "activated" .
The surface-deactivated solid polyisocyanate is obtained from the reactiion of the solid polyisocyanate with surface-deactivating compound having at least one isocyanate-reactive group, such as amine group. Through a chemical reaction on the surface of the polyisocyanate particles, a layer ( "protective layer" ) is formed that is resistant, i.e. impermeable and largely insoluble, at room, or slightly raised, temperature. A suitable compound for this reaction, referred to as "a surface-deactivating compound" comprises (1) an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, in which the carboxyl acid comprises a linear or branched, C
1-C
20-alkyl or C
1-C
20-alkylene group optionally substituted by a primary hydroxyl group, and optionally (2) a second amine having a weight averaged molecular weight of less than 1,000 g/mol.
In choosing the surface-deactivating compound, it is important that the protective layer formed will be as resistant as possible with regard to all the substances present in the thermally curable adhesive composition in order to prevent the isocyanate groups of the surface-deactivated polyisocyanate from being activated prematurely, and cured during storage. It is also important to decrease the curing temperature of the surface-deactivated polyisocyanate so as to extend the application of the thermally curable adhesive composition based on the surface-deactivated polyisocyanate to lower melting point materials such as plastic materials.
Surprisingly, the inventors have found that the solid polyisocyanate surface deactivated at least by an acid addition salt of a carboxylic acid and a first amine having a longer chain has a lower curing temperature less than 100 ℃, and preferably less than 95 ℃. By the surface deactivation of such acid addition salt, the solid polyisocyanate is storage stable and not able to be cured at room temperature. When heated at an elevated temperature less than 110 ℃, the acid addition salt will release free carboxylic acid which breaks the formed covering layer, and renders the isocyanate groups in the solid particles to quickly react with the amine groups of the first amine. Meanwhile, the surface-deactivated solid polyisocyanate exhibited excellent adhesion ability such as lap shear strength to various substrates, good mechanical strength such as tensile strength, elongation and hardness.
The carboxylic acid suitable for the acid addition salt has a linear or branched, C
1-C
20-alkyl or C
1-C
20-alkylene group and is optionally substituted by a primary hydroxyl group. Preferably, the carboxylic acid has a linear or branched C
1 to C
16-alkyl group or C
1 to C
16-alkylene group, optionally substituted by a primary hydroxyl group. In particular, the carboxylic acid is a monocarboxylic acid having a linear or branched C
1 to C
16-alkyl group, dicarboxylic acid having a linear or branched C
1 to C
16-alkylene group, and/or a monocarboxylic acid having a linear or branched C
1 to C
16-alkyl group substituted by one or more primary hydroxy groups.
Examples of such carboxylic acid include, but not limited to aliphatic carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, hydroxyacetic acid, propionic acid, isobutyric acid, 2-methylbutyric acid, octylic acid, 2-methylpentanoic acid, isononanoic acid, undecylenic acid, lauric acid, myristic acid, palmitic acid, behenic acid, stearic acid, isostearic acid, methoxyacetic acid, 2-hydroxymethylbutyric acid, dimethylolpropionic acid, dimethylolbutanoic acid, gluconic acid; dicarboxylic acids such as maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, methylsuccinic acid, pemielic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassylic acid, thapsic acid; and the like. Preferably, the carboxylic acid is selected from formic acid, acetic acid, hydroxyacetic acid, dimethylolpropanoic acid, dimethylolbutanoic acid, succinic acid, stearic acid, and mixture thereof.
The first amine used for the surface-deactivation of solid polyisocyanates can be any amino-functional compound having a long chain or large structure with higher molecular weight. These are preferably polyfunctional primary and secondary amines, particularly preferably polyfunctional aliphatic or aromatic amines. Amines suitable for the first amine of the present invention are particularly those selected from the group of cyclic and aliphatic, straight-chain or branched (C
2-C
14) -alkylamines, -diamines and -polyamines, in particular (C
2-C
10) -alkylamines, -diamines and -polyamines, preferably (C
2-C
6) -alkylamines, -diamines and -polyamines, which is interrupted in the alkyl chain by heteroatoms, in particular oxygen or sulphur, and/or where the alkyl chain can comprise further substituents, e.g. hydroxy groups, carboxy groups, halogen or the like.
In particular, the first amine having higher weight averaged molecular weight, i.e., 1,000 g/mol or more, preferably 1, 500 g/mol or more, and more preferably 2,000 g/mol or more, as determined by gel permeation chromatography (GPC) using polystyrene standards, can be aliphatic, straight-chain or branched (C
2-C
14) -alkylamines, -diamines and -polyamines interrupted by oxygen atoms in the alkyl chain. Those are so called polyether amine compounds having higher molecular weight. In various embodiments, suitable first amines are polyether amines that contain primary and/or secondary amino groups, particularly terminal primary and/or secondary amino groups, attached to a polyether backbone. The polyether backbone can be based on repeat units of propylene glycol (PG) , ethylene glycol (EG) , mixed EG/PG, polytetramethylene glycol (PTMEG) , and combinations thereof. Polyether amines having this core structure can be monoamines, diamines, or triamines.
Suitable polyether amines are represented by the following Formula (III) :
R
1- (NHR
2)
m (III)
In Formula (III) , the group R
1 is a monovalent, divalent or trivalent polyether radical having at least 10, at least 15, at least 20, at least 30, at least 40, or at least 50 groups of formula - (R
3-O) -, where R
3 is a linear or branched alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms or 2 to 3 carbon atoms. The group R
2 is hydrogen or alkyl (e.g., an alkyl having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms) . The variable m is equal to 1, 2, or 3. The number average molecular weight of the second amine is no less than 1,000 grams/mole, preferably no less than 1,500 g/mol, and more preferably no less than 2,000 g/mol.
In some embodiments, the polyether amine of Formula (III) is a polyether monoamine of the following Formula (IV) .
R
4- (O-R
5)
q-NH
2 (IV)
In Formula (IV) , the group R
4 is an alkyl having 1 to 4 carbon atoms, 1 to 3 carbon atoms or 1 carbon atom. Each group R
5 is independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. The variable q is equal to at least 10, at least 15, at least 20, or at least 30, at least 40, or at least 50. Examples of suitable monoamines of Formula V are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE M-series (e.g., M-1000, M-2005, M-2070) .
In other embodiments, the polyether amine of Formula III is a polyether diamine of the following Formula (V) .
H
2N-R
6- (OR
7)
p-NH
2 (V)
In Formula (V) , each group of R
6 and R
7 is each independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. The variable p is equal to at least 10, at least 15, at least 20, at least 30, at least 40, or at least 50. Examples of suitable diamines of Formula VI are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE D-series (e.g., D-2000, D-4000) , the JEFFAMINE ED-series (e.g., ED-2003) .
In still other embodiments, the polyether amiine is a polyether triamine such as those commercially available from Huntsman Corporation under the trade name JEFFAMINE, such as those in the JEFFAMINE T-series (e.g., T-3000, T-5000) and from BASF under the trade name BAXXODUR (e.g., BAXXODUR (e.g., BAXXODUR EC 303, EC 310, and EC 311) . . In one partiicular embodiment, the first amine is a polyether triamine represented by Formula (VI)
wherein R
8 is hydrogen or (C
1-C
4) -alkyl, such as methyl, ethyl, n-propyl, n is from 1 to 10, and the sum of x, y and z is from about 20 to about 100, preferably from about 40 to aboutt 90, such as about 50 or about 85.
In yet other embodiments, the polyether amine is a polyether diamine or polyether triamine having secondary amine groups. These polyether amines are N-alkylated polyether amines commercially available, for example, from Huntsman Corporation under the trade designation JEFFAMINE such as those in the JEFFAMINE SD-series (e.g. SD-2001) .
According to the present invention, the molar ratio of the carboxylic acid to the first amine is in the range of from 0.1 to 10, and preferably from 0.5 to 3.
The preparation of the acid addition salt of a carboxylic acid and the first amine is known in the art. In general, the acid addition salt is prepared by mixing the carboxylic acid and the first amine in a mixer, and mechanical milling/stirring the mixture in sufficient time. Heat may be added to assist in the mixing and shorten the reaction time. Commercially available machines can be used for the stirring/milling process, examples being bead mills, dissolvers and/or blade stirrers.
In addition to the acid addition salt, the solid polyisocyanate may be optionally surface deactivated by a second amine having a weight averaged molecular weight of less than 1,000 g/mol, preferably less than 800, and more preferably less than 600.
The second amine used for the surface-deactivation of solid polyisocyanates can be any amino-functional compound having a short chain or small structure with lower molecular weight. Similar to the first amine, these are preferably polyfunctional primary and secondary amines, particularly preferably polyfunctional aliphatic or aromatic amines. Amines suitable for the second amine of the present invention are particularly those selected from the group of cyclic and aliphatic, straight-chain or branched (C
2-C
14) -alkylamines, -diamines and -polyamines, in particular (C
2-C
10) -alkylamines, -diamines and -polyamines, preferably (C
2-C
6) -alkylamines, -diamines and -polyamines, where there can be at least some, or else full, interruption of the alkyl chain by heteroatoms, in particular oxygen or sulphur, and/or where the alkyl chain can comprise further substituents, e.g. hydroxy groups, carboxy groups, halogen or the like.
In particular, the second amine having lower molecular weight, i.e., less than 1,000, can be aliphatic, straight-chain or branched (C
2-C
14) -alkylamines, -diamines and -polyamines interrupted by oxygen atoms in the alkyl chain. Those are so called polyether amine compounds. In various non-limiting embodiments, suitable second amine are polyether amines that contain primary and/or secondary amino groups, particularly terminal primary and/or secondary amino groups, attached to a polyether backbone. The polyether backbone can be based on repeat units of propylene glycol (PG) , ethylene glycol (EG) , mixed EG/PG, polytetramethylene glycol (PTMEG) , and combinations thereof. Polyether amines having this core structure can be monoamines, diamines, or triamines.
Suitable polyether amines are represented by the following Formula (VII) :
R
9- (NHR
10)
n (VII)
In Formula (VII) , the group R
9 is a monovalent, divalent or trivalent polyether radical having at least 2, at least 3, at least 5, at least 10, at least 20, or at least 30 groups of formula - (R
9-O) -, where R
9 is a linear or branched alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms or 2 to 3 carbon atoms. The group R
10 is hydrogen or alkyl (e.g., an alkyl having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms) . The variable n is equal to 1, 2, or 3. The number average molecular weight of the second amine is less than 1,000 grams/mole, preferably less than 800 g/mol, and more preferably less than 600 g/mol.
In some embodiments, the polyether amine of Formula VII is a polyether monoamine of the following Formula VIII.
R
11- (O-R
12)
a-NH
2 (VIII)
In Formula VIII, the group R
11 is an alkyl having 1 to 4 carbon atoms, 1 to 3 carbon atoms or 1 carbon atom. Each group R
12 is independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. The variable q is equal to at least 2, at least 3, at least 5, or at least 10, at least 20, or at least 30. Examples of suitable monoamines of Formula VIII are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE M-series (e.g., M-600) .
In other embodiments, the polyether amine of Formula VII is a polyether diamine of the following Formula IX.
H
2N-R
13- (OR
14)
b-NH
2 (IX)
In Formula IX, each group of R
13 and R
14 is each independently a branched or linear alkylene having 1 to 4 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. The variable b is equal to at least 2, at least 3, at least 5, at least 10, at least 20, or at least 30. Examples of suitable diamines of Formula IX are commercially available from Huntsman Corporation under the trade name JEFFAMINE such as those in the JEFFAMINE D-series (e.g., D-230, D400) , JEFFAMINE HK-511, the JEFFAMINE ED-series (e.g., ED-600, ED-900) , the JEFFAMINE EDR series (e.g., EDR-148, and EDR-176) , or the JEFFAMINE THF series (e.g., THF-100, THF-140, and THF-170) . Other examples of suitable diamines of Formula VI are commercially available from BASF (Florham Park, N. J. ) under the trade name BAXXODUR (e.g., BAXXODUR EC-130 (4, 7, 10-trioxatridecane-1, 13-diamine) , and EC-280 (4, 9-dioxadodecane-1, 12-diamine) .
In still other embodiments, the polyether amine is a polyether triamine such as those commercially available from Huntsman Corporation under the trade name JEFFAMINE, such as those in the JEFFAMINE T-series (e.g., T-403) . In one particular embodiment, the second amine is a polyether triamine represented by Formula (X)
wherein the sum of c, d and e is 5 or 6.
In yet other embodiments, the polyether amine is a polyether diamine or polyether triamine having secondary amine groups. These polyether amines are N-alkylated polyether amines commercially available, for example, from Huntsman Corporation under the trade designation JEFFAMINE such as those in the JEFFAMINE SD-series or ST-series (SD-213, SD-401 and ST-404) .
In yet other embodiments, the polyether amine is products from the addition reaction of primary aliphatic polyamines with Michael acceptors in a reaction like a Michael reaction, such as maleic acid diester, fumaric acid diester, citraconic acid diester, acrylic acid ester, methacrylic acid ester, cinnamic acid ester, itaconic acid diester, vinyl phosphonic acid diester, vinyl sulfonic acid aryl ester, vinyl sulfones, vinyl nitriles, 1-nitroethylenes or Knoevenagel condensation products such as, for example, those from malonic acid diesters and aldehydes such as formaldehyde, acetaldehyde or benzaldehyde as well as commercial secondary aliphatic polyamines such as Gaskamine 240 (from Mitsubishi) , Desmophen NH 1220, NH 1420 and NH 1520 (from Covestro) or F220, F420, F520 (from Feiyang Chemicals) .
In yet other embodiments, the polyether amine is primary and/or secondary aromatic polyamine such as in particular m-and p-phenylene diamine, 4, 4'-, 2, 4'and 2, 2'-diaminodiphenylmethane, 3, 3'-dichloro-4, 4'-diaminodiphenylmethane (MOCA) , 2, 4-and 2, 6-toluoylene diamine, mixtures of 3, 5-dimethylthio-2, 4-and -2, 6-toluoylene diamiine, mixtures of 3, 5-diethyl-2, 4-and -2, 6-toluoylene diamine (DETDA) , 3, 3', 5, 5'-tetraethyl-4, 4'-diaminodiphenyl methane (M-DEA) , 3, 3', 5, 5'-tetraethyl-2, 2'-dichloro-4, 4'-diaminodiphenyl methane (M-CDEA) , 3, 3'-diisopropyl--5, 5'-dimethyl-4, 4'-diaminodiphenyl methane (M-MIPA) , 3, 3', 5, 5'-tetraisopropyl-4, 4'-diaminodiphenyl methane (M-DIPA) , 4, 4'-diamino diphenylsulfone (DDS) , 4-amino-N- (4-aminophenyl) benzene sulfonamide, 5, 5'-methylenedianthranilic acid, dimethyl- (5, 5'-methylene dianthranilate) , 1, 3-propylene-bis- (4-aminobenzoate) , 1, 4-butylene-bis- (4-amiinobenzoate) , polytetramethylene oxide-bis- (4-aminobenzoate) (obtainable as Versalink series from Evonik) , 1, 2-bis- (2-aminophenylthio) ethane, N, N'-dialkyl-p-phenylene diamine diphenyl methane, 2-methylpropyl- (4-chloro-3, 5-diamino benzoate) and tert-butyl- (4-chloro-3, 5-diamino benzoate) .
The mass ratio of the second amine having lower molecular weight to the solid polyisocyanate is in the range of 0 to 0.1, and preferably from 0 to 0.064.
The molar ratio of the NCO groups to the sum of amine groups in the first amine and second amine is in the range of 0.8 to 10, and preferably from 1.2 to 4.
The preparation of surface-deactivated solid polyisocyanate is known to the art. In the present invention, the surface-deactivated solid polyisocyanate is prepared by mixing the acid addition salt of the first amine with the solid polyisocyanate in a mixer with stirring for sufficient time, for example, from 1 to 12 hours. If present, the second amine can be mixed with the first amine before the solid polysiocyanate is added.
The surface-deactivated solid polyisocyanate according to the present invention is storage stable under room temperature for at least 14 days. For example, if the surface-deactivated solid polyisocyanate is in the form of soft paste, it will not become a hard solid during the storage.
The surface-deactivated solid polyisocyanate according to the present invention can be cured under a temperature of 80 to 100 ℃, or even lower than 80 ℃, and thus is suitable to be used in the application of bonding plastic materials which have lower melting point.
To improve the thixotropy performance and adhesion, additives may be added in the surface-deactivated solid polyisocyanate. Therefore, the present invention also provides a thermally curable adhesive comprising the surface-deactivated solid polyisocyanate and option additives. The additives are selected from the group consisting of catalyst, adhesion promoter, filler and mixture thereof.
Catalysts may be contained in curable adhesive composition to facilitate the reaction between amines and isocyanates. Suitable metallic catalysts catalysts that accelerate the reaction of the isocyanate groups, are organotin compounds such as dibutyltin diacetate, dibutyltin dilaurate (DBTDL) , dibutyltin dichloride, dibutyltin diacetylacetonate and dioctyltin dilaurate; compounds of zinc, manganese, iron, chromium, cobalt, copper, nickel, molybdenum, lead, cadmium, mercury, antimony, vanadium, titanium and potassium, especially zinc (II) -acetate, zinc (II) -2-ethylhexanoate, zinc (II) -laurate, zinc (II) -acetylacetonate, iron (III) -2-ethylhexanoate, Cobalt (II) -2-ethylhexanoate, copper (II) -2-ethylhexanoate, nickel (II) -naphthenate, aluminum lactate, aluminum oleate, diisopropoxytitanium-bis- (ethyl acetoacetate) and potassium acetate; tertiary amino group-containing compounds, especially 2, 2'-dimorpholinodiethyl ether, 1, 4-diazabicyclo [2.2.2] octane, N-ethyl-diiso-propylamine, N, N, N', N'-tetramethyl-alkylenediamine, pentamethyl-alkylenetriamine and higher homologs thereof, bis- (N, N-diethylaminoethyl) adipate, tris- (3-dimethyl-aminopropyl) amine, 1, 4-diazabicyclo [2.2.2] octane (DABCO) , 1, 8-diazabicyclo- [5.4.0] undec-7-ene (DBU) , 1, 5-diazabicyclo [4.3.0] non-5-ene (DBN) , N-alkylmorpholines, N, N'-dimethylpiperazine; nitrogenaromatic compounds such as 4-dimethylaminopyridine, N-methylimidazole, N-vinylimidazole or 1, 2-dimethylimidazole; organic ammonium compounds such as benzyltrimethylammonium hydroxide or alkoxylated tertiary amines. From about 0%to 5%by weight, and preferably 0.1%to 1.0%by weight of catalyst are optionally used in the adhesive composition.
The curable adhesive composition can optionally comprise an adhesion promoter or coupling agent which promotes bonding of the composition to a substrate. Examples are organo-silanes which can link the solid polyisocyanate to the surface such as amino silanes and epoxy silanes. Some exemplary aminosilane adhesion promoters include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl-3-aminopropyl) trimethoxysilane, 3-aminopropylmethyldiethoxysilane, 4-amino-3, 3-dimethylbutyltrimethoxysilane, N- (n-butyl) -3-aminopropyltrimethoxysilane, 1-butanamino-4- (dimethoxymethylsilyl) -2, 2-dimethyl, (N-cyclohexylaminomethyl) triethoxysilane, (N-cyclohexylaminomethyl) -methyldiethoxysilane, (N-phenylaminoethyl) trimethoxysilane, (N-phenylaminomethyl) -methyldimethoxysilane or gamma-ureidopropyltrialkoxysilane. Aminosilanes with oligomeric structures such as Sivo 203 and Dynasylan AMMO from Evonik Corp. Particularly preferred amino silanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-Butyl-3- (trimethoxysilyl) propylamine. Some exemplary epoxy silane adhesion promoters include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane or beta- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane. Other silane adhesion promoters include mercaptosilanes. Some exemplary mercaptosilane adhesion promoters include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane or 3-mercaptopropyltriethoxysilane. If used, the level of adhesion promoter employed can be from 0%by weight to about 10%by weight, preferably 0.01%by weight to 5%by weight and more preferably 0.1%by weight to 2%by weight.
The curable adhesive composition can optionally include filler. Some useful fillers include, for example, lithopone, zirconium silicate, hydroxides, such as hydroxides of calcium, aluminum, magnesium, iron and the like, diatomaceous earth, carbonates, such as sodium, potassium, calcium, and magnesium carbonates, oxides, such as zinc, magnesium, chromic, cerium, zirconium and aluminum oxides, calcium clay, nanosilica, fumed silicas, silicas that have been surface treated with a silane or silazane such as the AEROSIL products available from Evonik Industries or CAB-O-SIL products available from Carbot Corp., silicas that have been surface treated with an acrylate or methacrylate such as AEROSIL R7200 or R711 available from Evonik Industries, precipitated silicas, untreated silicas, graphite, synthetic fibers and mixtures thereof. When used, filler can be employed in concentrations effective to provide desired properties in the uncured composition and cured reaction products and typically in concentrations of about 0%to about 80%by weight of composition, more typically 1%to 60%by weight of composition of filler.
The curable adhesive composition can optionally include a thixotrope or rheology modifier. The thixotropic agent can modify rheological properties of the uncured composition. Some useful thixotropic agents include, for example, silicas, such as fused or fumed silicas, that may be untreated or treated so as to alter the chemical nature of their surface. Virtually any reinforcing fused, precipitated silica, fumed silica or surface treated silica may be used.
Examples of treated fumed silicas include polydimethylsiloxane-treated silicas, hexamethyldisilazane-treated silicas and other silazane or silane treated silicas. Such treated silicas are commercially available, such as from Cabot Corporation under the tradename CAB-O-SIL ND-TS and Evonik Industries underthe tradename AEROSIL, such as AEROSIL R805. Also useful are the silicas that have been surface treated with an acrylate or methacrylate such as AEROSIL R7200 or R711 available from Evonik Industries. Examples of untreated silicas include commercially available amorphous silicas such as AEROSIL 300, AEROSIL 200 and AEROSIL 130. Commercially available hydrous silicas include NIPSIL E150 and NIPSIL E200A manufactured by Japan Silica Kogya Inc. The rheology modifier can be employed in concentrations effective to provide desired physical properties in the uncured composition and cured reaction products and typically in concentrations of about 0%to about 70%by weight of composition and advantageously in concentrations of about 0%to about 20%by weight of composition. In certain embodiments the filler and the rheology modifier can be the same.
The curable adhesive composition can optionally include an anti-oxidant. Some useful antioxidants include those available commercially from BASF under the tradename IRGANOX. When used, the antioxidant should be used in the range of about 0 to about 15 weight percent of curable composition, such as about 0.3 to about 1 weight percent of curable composition.
The curable adhesive composition can optionally include a reaction modifier. A reaction modifier is a material that will increase or decrease reaction rate of the curable composition. For example, 8-hydroxyquinoline (8-HQ) and derivatives thereof such as 5-hydroxymethyl-8-hydroxyquinoline can be used to adjust the cure speed. When used, the reaction modifier can be used in the range of about 0.001 to about 15 weight percent of curable composition.
The curable adhesive composition can optionally contain a thermoplastic polymer. The thermoplastic polymer may be either a functional or a non-functional thermoplastic. Example of suitable thermoplastic polymers include acrylic polymer, functional (e.g. containing reactive moieties such as -OH and/or -COOH) acrylic polymer, non-functional acrylic polymer, acrylic block copolymer, acrylic polymer having tertiary-alkyl amide functionality, polysiloxane polymer, polystyrene copolymer, polyvinyl polymer, divinylbenzene copolymer, polyetheramide, polyvinyl acetal, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride, methylene polyvinyl ether, cellulose acetate, styrene acrylonitrile, amorphous polyolefin, olefin block copolymer, polyolefin plastomer, thermoplastic urethane, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl acetate terpolymers, functional ethylene vinyl acetate, ethylene acrylate copolymer, ethylene acrylate terpolymer, ethylene butadiene copolymer and/or block copolymer, styrene butadiene block copolymer, and mixtures of any of the above.
The curable composition can optionally include one or more coloring agents. For some applications a colored composition can be beneficial to allow for inspection of the applied composition. A coloring agent, for example a pigment or dye, can be used to provide a desired color beneficial to the intended application.
Exemplary coloring agents include titanium dioxide, C. I. Pigment Blue 28, C. I. Pigment Yellow 53 and phthalocyanine blue BN. In some applications a fluorescent dye can be added to allow inspection of the applied composition under UV radiation. The coloring agent will be present in amounts sufficient to allow observation or detection, for example about 0.002%or more by weight of total composition. The maximum amount is governed by considerations of cost, absorption of radiation and interference with cure of the composition. More desirably, the coloring agent may be present in amounts of up to about 20%by weight of total composition.
The curable composition can optionally include from about 0%to about 20%by weight, for example about 1%to about 20%by weight of composition of other additives known in the arts, such as tackifier, plasticizer, flame retardant, moisture scavenger, and combinations of any of the above, to produce desired functional characteristics, providing they do not significantly interfere with the desired properties of the curable composition or cured reaction products of the curable composition.
When used as a one-part solid polyisocyanate adhesive, the curable adhesive compositions do not include solvent which is added by intention. This type of adhesives is known as non-solvent adhesives.
In one particular embodiment, the thermally curable adhesive composition comprises
(1) 20%to 80%, preferably 40%to 60%by weight of a surface-deactivated solid polyisocyanate according to the present invention,
(2) 0%to 5%, preferably 0.1%to 1%by weight of a catalyst,
(3) 0%to 10%, preferably 0.01%to 5%by weight of an adhesion promoter, and
(4) 0%to 80%, preferably 1%to 60%by weight of a filler.
Also disclosed in the present invention is a method of preparing a solid polyisocyanate, comprising mixing the carboxylic acid and a first amine to obtain an acid addition salt, and mixing the acid addition salt and optionally the second amine, with the solid polyisocyanate. Typically the components are mixed using static mixers or with the aid of dynamic mixers. During mixing, it is to make sure that the components are mixed as homogeneously as possible.
An additional object of the invention is thus a cured product obtained from the curing of a surface-deactivated solid polyisocyanate or a thermally curable adhesive composition as described in the present document. The cured products are storage-stable under room temperature, and have lower curing temperature than conventional polyurethanes and other adhesives. The cured products are also expected to have excellent adhesion strength and mechanical strength. The disclosed surface-deactivated solid polyisocyanate and curable adhesive compositions will be useful wherever these properties are desirable.
Adhesive compositions disclosed herein can be used to bond articles together. Under appropriate conditions for the type of composition the adhesive composition is applied to a first article and a second article is disposed in contact with the adhesive composition applied to the first article. The adhesive composition may be heated under a temperature higher than the softening point and lower than the curing temperature for the convenience of application. After applied, the adhesive composition is exposed to conditions (such as heating to the curing temperature of from 80 to 100 ℃, or even lower than 80 ℃) to promote curing. Cured reaction products of the adhesive composition bond the first and second articles. The disclosed adhesive compositions are useful for bonding articles composed of a wide variety of substrates (materials) , including but not limited to flexible films such as plastic films, metal films, and metalized plastic films, wood, metal, polymeric plastics, glass and textiles. The present adhesive composition is particularly suitable for plastic materials due to the lower curing temperature. Plastic materials may be for example polyvinyl chloride (hard and soft PVC) , acrylonitrile-butadiene-styrene copolymers (ABS) , polycarbonate (PC) , polyamide (PA) , polyester, poly (methyl methacrylate) (PMMA) , polyesters, epoxy resins, polyurethanes (PUR) , polyoxymethylene (POM) , polyolefins (PO) , polyethylene (PE) or polypropylene (PP) , ethylene/propylene copolymers (EPM) and ethylene/propylene/diene terpolymers (EPDM) , wherein the plastic materials can preferably be surface-treated with plasma, corona or flame. Other applications include adhesives for bonding electronic components in OLEDs and LCDs, bonding hand held electronic devices such as cell phones, bonding photovoltaics, conformal coatings such as for electronic components and adhesives for backbedding or glazing windows.
In one embodiment, the surface-deactivated solid polyisocyanate or the thermally curable adhesive composition comprising the same according to the present invention is stable under room temperature for 14 days or more.
The use of the solid composition results in an article containing the cured product. This article is especially a structure, especially an above-ground or below-ground structure, or an item of industrial or consumer goods, especially a window, a household appliance, a rotor blade of a wind-power plant or a means of transportation, especially a vehicle, preferably an automobile, a bus, a truck, a train or a ship, as well as an airplane or a helicopter; or a mounted part of such an article, or an article from the furniture, textile or packaging industry.
The following examples are intended to assist one skilled in the art to better understand and practice the present invention. The scope of the invention is not limited by the examples but is defined in the appended claims. All parts and percentages are based on weight unless otherwise stated.
Examples
The following materials were used in the examples.
Acetic acid is commercially available from Aldrich.
Formic acid is commercially available from Aldrich.
Hydroxyacetic acid is commercially available from Aldrich.
Stearic acid is commercially available from Aldrich.
Succinic acid is commercially available from Aldrich.
2, 2-dimethylolbutanoic acid is commercially available from Aldrich.
2, 2-dimethylolpropanoic acid is commercially available from Aldrich.
Salicylic acid is commercially available from Aldrich.
Barbituric acid is commercially available from Aldrich.
Phosphorous acid is commercially available from Aldrich.
Aluminium chloride is commercially available from Aldrich.
Lactic acid is commercially available from Aldrich.
D-2000 is a polyether diamine having a Mw of about 2,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE D-2000.
T-5000 is a polyether triamine having a Mw of about 5,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-5000.
T-3000 is a polyether triamine having a Mw of about 3,000, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-3000.
T-403 is a polyether triamine having a Mw of about 440, commercially available from Huntsman Corporation under the trade name JEFFAMINE T-403.
P-650 is a polytetramethyleneoxide-di-p-aminobenzoate having a Mw of about 830, commercially available from Evonik under the tradename of Versalink P-650.
F420 is an aspartic ester amine commercially available from Feiyang Chemicals under the tradename of F420.
Addolink TT is a uretdione of 2, 4-TDI, commercially available, from Rhein Chemie Rheinau GmbH under the trade name of Addolink TT.
Aluminium hydroxide is commercially available from Huber under the tradename of Martinal OL-107.
Fumed silica is commercially available from Cabot under the tradename of CAB-O-SIL TS-720.
Dynasylan AMMO is adhesion promoter commercially available from Evonik.
HMGPE-5000 is a polyether triol having a Mw of about 5,000, commercially available from Zhejiang Huangma Technology Co., LTD..
DBTDL is dibutyltin dilaurate commercially available from Aldrich.
Example 1 (Ex 1)
1.14 grams of acetic acid and 34 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, and 5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. . ) to obtain a white paste product.
Example 2
1.14 grams of acetic acid and 19 grams of T-3000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt and 5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 3
0.44 grams of formic acid and 17 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403 and 2.5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 4
0.72 grams of hydroxyacetic acid and 17 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 40 ℃ and stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403 and 2.5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. . ) to obtain a white paste product.
Example 5
2.71 grams of stearic acid and 17 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 80 ℃ and stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403, 2.5 grams of Addolink TT, 8 grams of aluminium hydroxide, 2 grams of fumed silica, and 0.06 grams of Dynasylan AMMO were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 6
0.56 grams of succinic acid and 17 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 140℃ and stirred until all of the solid dissolved. The mixture was cooled to 60 ℃ and stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403 and 2.5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 7
2.82 grams of 2, 2-dimethylolbutanoic acid and 34 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 110 ℃ and stirred until all of the solid dissolved. The mixture was cooled to 60 ℃ and stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 8
2.55 grams of 2, 2-dimethylolpropanoic acid and 34 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 140 ℃ and stirred until all of the solid dissolved. The mixture was cooled to 60 ℃ and stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 9
1.14 grams of acetic acid and 19.04 grams of D-2000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Example 10
0.57 grams of acetic acid and 17.0 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403, 2.5 grams of Addolink TT, 8 grams of aluminium hydroxide, 2 grams of fumed silica, and 0.06 grams of Dynasylan AMMO were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 1 (CE 1)
34 grams of HMGPE-5000, 5.0 grams of Addolink TT, and 0.08 grams of DBTDL were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 2
19 grams of T-3000 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 3
34 grams of T-5000, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 4
1.31 grams of salicylic acid and 17.0 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 140 ℃ and stirred until all of the solid dissolved. The mixture was cooled to 60 ℃ and stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403 and 2.5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 5
2.14 grams of acetic acid and 7.92 grams of P-650 were added in a 100-mL flask. The mixture was heated to 40 ℃ and stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 6
1.15 grams of acetic acid and 5.27 grams of F420 were added in a 100-mL flask. The mixture was heated to 40 ℃ and stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 7
2.44 grams of barbituric acid and 34 grams of T-5000 were added in a 100-mL flask. The mixture was heated to 120 ℃ and stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 8
0.74 grams of phosphorous acid and 34 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 9
2.54 grams of aluminium chloride and 34 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.08 grams of T-403 and 5.0 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Comparative Example 10
0.86 grams of lactic acid and 17 grams of T-5000 were added in a 100-mL flask. The mixture was stirred overnight. Then resulting acid addition salt, 0.04 grams of T-403 and 2.5 grams of Addolink TT were added in a Speed mixer Max40 (from FlackTek Inc. ) , and then mixed by a Speed mixer DAC400 (from FlackTek Inc. ) to obtain a white paste product.
Performance evaluation
Storage stability
The surface-deactivated solid polyisocyanate obtained in each example was placed in a plastic container under room temperature (about 25℃) for two weeks, and observed whether the solid polyisocyanate was cured on each day. If the paste product became a hard solid, the storage stability was evaluated as “Fail” , and if the paste form was maintained after two weeks, the storage stability was evaluated as “Pass” .
Curing temperature
The curing temperature of each surface-deactivated solid polyisocyanate was measure by Differential scanning calorimetry (DSC) with the following ramp program: equilibrating at 20 ℃, and heating from 20 ℃ to 250 ℃ with a heating rate of 10 ℃/min. The temperature indicating the maximum peak was recorded as the curing temperature.
Hardness, tensile strength, elongation at break and lap shear strength
The surface-deactivated solid polyisocyanate obtained from each example was cured under a temperature higher than respective curing temperature. The hardness of the cured product was measured according to ASTM D2240. The tensile strength was measured according to ASTM D412, the elongation at break was measured according to ASTM D412, and the lap shear adhesive strength was measured according to ASTM D1002 (substrate: 6061Al) and D3163 (substrate: PA, PC, PMMA) . The results of the evaluation are shown in Tables 1 and 2.
Table 1. Results of evaluation on storage stability and curing temperature
1. The cured product was not available for test as it was cured within one hour.
Table 2. Results of evaluation on hardness, elongation, tensile strength and lap shear strength
2. The value was lower than the detection limit.
As shown in Tables 1 and 2, the surface-deactivated solid polyisocyanates or thermally curable adhesives according to the present invention exhibited a curing temperature of less than 95℃, a storage stability of more than 2 weeks, and good adhesion and mechanical strength when applied onto various substrates. Compared to the inventive examples, the conventional polyisocyanate systems containing polyol (CE 1) , surface-deactivated by amines (CEs 2 and 3) , amines blocked by aromatic carboxyl acid (CE 4) , heterocyclic carboxyl acid (CE 7) , inorganic acids (CEs 8 and 9) and carboxyl acid substituted by secondary hydroxy only (CE 10) , short chain amines blocked by acid (CEs 5 and 6) exhibited at least one of the drawbacks including a significantly higher curing temperature (more than 95℃) , poor storage stability under room temperature (less than 2 weeks) , and poor adhesion and/or mechanical strength.
Claims (15)
- A surface-deactivated solid polyisocyanate, which is a reaction product of a solid polyisocyanate with(1) an acid addition salt of a carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more, in which the carboxyl acid has a linear or branched, C 1-C 20-alkyl or C 1-C 20-alkylene group and is optionally substituted by a primary hydroxyl group, and(2) optionally a second amine having a weight averaged molecular weight of less than 1,000 g/mol.
- The surface-deactivated solid polyisocyanate according to claim 1, wherein the solid polyisocyante is selected from 2, 4-TDI, 2, 6-TDI, 2, 4-TDI dimer, 2, 6-TDI dimer, and mixture thereof, and preferably is uretdione of 2, 4-TDI.
- The surface-deactivated solid polyisocyanate according to claim 1 or 2, wherein the second amine is a polyether amine having a weight averaged molecular weight of less than 800, preferably less than 600.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, wherein the first amine is a polyether amine having a weight averaged molecular weight of 1,500 or more, preferably 2,000 or more.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, wherein the carboxylic acid selected from a monocarboxylic acid having a linear or branched C 1 to C 16-alkyl group, dicarboxylic acid having a linear or branched C 1 to C 16-alkylene group, a monocarboxylic acid having a linear or branched C 1 to C 16-alkyl group substituted by one or more primary hydroxy groups, and mixture thereof.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, wherein the carboxylic acid is selected from formic acid, hydroxyacetic acid, dimethylolpropanoic acid, dimethylolbutanoic acid, succinic acid, stearic acid, and mixture thereof.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, wherein the weight ratio of the carboxylic acid to the first amine is in the range of from 0.1 to 10, and preferably from 0.5 to 3.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, wherein the weight ratio of the second amine to the solid polyisocyanate is in the range of from 0 to 0.1, and preferably from 0 to 0.064.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, which is stable under room temperature for 14 days or more.
- The surface-deactivated solid polyisocyanate according to any of the preceding claims, which is able to be cured under a temperature lower than 100℃, and preferably lower than 95℃.
- A thermally curable adhesive composition, comprising the surface-deactivated solid polyisocyanate according to any of the preceding claims, and optionally an additive.
- A cured product of the surface-deactivated solid polyisocyanate according to any of claims 1 to 10 or the thermally curable adhesive composition according to claim 11.
- A method for bonding articles, comprising:(a) applying the thermally curable adhesive composition to a first substrate,(b) bringing the first substrate and a second substrate into intimate contact to form an assembly, and(c) subjecting the assembly to a temperature of from 80 to 100 ℃ to cure the thermally curable adhesive composition.
- The use of the surface-deactivated solid polyisocyanate according to any one of claims 1 to 10 in bonding articles having substrates made of composite materials selected from plastic films, metal films, and metalized plastic films, wood, metal, polymeric plastics, glass and textiles.
- A method of preparing a solid polyisocyanate, comprising,(a) mixing the carboxylic acid and a first amine having a weight averaged molecular weight of 1,000 g/mol or more to obtain an acid addition salt, and(b) mixing the acid addition salt and optionally the second amine having a weight averaged molecular weight of less than 1,000 g/mol, with the solid polyisocyanate.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/087477 WO2019218341A1 (en) | 2018-05-18 | 2018-05-18 | Stable and low cure-temperature 1k polyisocyanate |
CN201880093586.7A CN112135853A (en) | 2018-05-18 | 2018-05-18 | Stable and low-curing-temperature 1K polyisocyanates |
EP18918823.8A EP3794051A4 (en) | 2018-05-18 | 2018-05-18 | Stable and low cure-temperature 1k polyisocyanate |
US17/096,736 US20210061943A1 (en) | 2018-05-18 | 2020-11-12 | Stable and Low Cure-Temperature 1K Polyisocyanate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/087477 WO2019218341A1 (en) | 2018-05-18 | 2018-05-18 | Stable and low cure-temperature 1k polyisocyanate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/096,736 Continuation US20210061943A1 (en) | 2018-05-18 | 2020-11-12 | Stable and Low Cure-Temperature 1K Polyisocyanate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019218341A1 true WO2019218341A1 (en) | 2019-11-21 |
Family
ID=68539260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/087477 WO2019218341A1 (en) | 2018-05-18 | 2018-05-18 | Stable and low cure-temperature 1k polyisocyanate |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210061943A1 (en) |
EP (1) | EP3794051A4 (en) |
CN (1) | CN112135853A (en) |
WO (1) | WO2019218341A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483974A (en) * | 1982-08-18 | 1984-11-20 | Bayer Aktiengesellschaft | Process for the production of stabilized polyisocyanates, the polyisocyanates so-stabilized and their use in the production of polyurethanes |
CN1568338A (en) * | 2001-08-16 | 2005-01-19 | 拜尔材料科学股份公司 | One-component isocyanate-crosslinked two-phase system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3403500A1 (en) * | 1984-02-02 | 1985-08-08 | Bayer Ag, 5090 Leverkusen | METHOD FOR THE PRODUCTION OF STABILIZED POLYISOCYANATES, STABILIZED ISOCYANATE RATARDIZED REACTIVITY AND THEIR USE FOR THE PRODUCTION OF POLYURETHANE |
DE3403499A1 (en) * | 1984-02-02 | 1985-08-08 | Bayer Ag, 5090 Leverkusen | USE OF HEAT-CURABLE POLYURETHANE RESIN REACTIVE ADHESIVES |
JPH03500303A (en) * | 1987-09-21 | 1991-01-24 | ザ ダウ ケミカル カンパニー | Amino-functional polyethers containing urea, burette, thiourea, dithioburet, thioamide and/or amide components in their main chains, and urethane/urea prepolymers and polymers produced therefrom |
DE3919696A1 (en) * | 1989-06-16 | 1991-01-10 | Bayer Ag | POLYURETHANE-BASED REACTIVE ADHESIVES |
DE4407490A1 (en) * | 1994-03-07 | 1995-09-14 | Bayer Ag | Process for the preparation of thermosetting one-component polyurethane reactive compositions |
DE102004026118A1 (en) * | 2004-05-28 | 2005-12-15 | Bayer Materialscience Ag | adhesives |
DE102006058527A1 (en) * | 2006-12-12 | 2008-06-19 | Bayer Materialscience Ag | adhesives |
US8574394B2 (en) * | 2007-12-21 | 2013-11-05 | Henkel Ag & Co. Kgaa | Method for preparing a moisture curable hot melt adhesive |
EP2236534A1 (en) * | 2009-03-31 | 2010-10-06 | Sika Technology AG | Composition curable in two stages comprising a surface deactivated polyisocyanate |
DK2236533T3 (en) * | 2009-03-31 | 2012-02-20 | Sika Technology Ag | Heat-curing or heat-activatable composition containing a surface-activated polyisocyanate |
EP2423186B1 (en) * | 2010-08-30 | 2017-05-31 | LANXESS Deutschland GmbH | New adhesion promoter bsed on carbodiimides, adhesive, aqueous resorcinol-formaldehyde-latex dispersions, fibers with improved adhesion, process for their preparation and use thereof. |
-
2018
- 2018-05-18 CN CN201880093586.7A patent/CN112135853A/en active Pending
- 2018-05-18 WO PCT/CN2018/087477 patent/WO2019218341A1/en active Application Filing
- 2018-05-18 EP EP18918823.8A patent/EP3794051A4/en not_active Withdrawn
-
2020
- 2020-11-12 US US17/096,736 patent/US20210061943A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483974A (en) * | 1982-08-18 | 1984-11-20 | Bayer Aktiengesellschaft | Process for the production of stabilized polyisocyanates, the polyisocyanates so-stabilized and their use in the production of polyurethanes |
CN1568338A (en) * | 2001-08-16 | 2005-01-19 | 拜尔材料科学股份公司 | One-component isocyanate-crosslinked two-phase system |
Non-Patent Citations (1)
Title |
---|
See also references of EP3794051A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN112135853A (en) | 2020-12-25 |
US20210061943A1 (en) | 2021-03-04 |
EP3794051A4 (en) | 2022-01-05 |
EP3794051A1 (en) | 2021-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107142068B (en) | Thermosetting single-component polyurethane composition and preparation method thereof | |
EP1671996B1 (en) | Polyurethane reactive composition | |
JP5254804B2 (en) | Moisture curable hot melt adhesive comprising at least one silane functional polyurethane prepolymer | |
KR100331668B1 (en) | Thermosetting, one component polyurethane reaction composition | |
CN102421816B (en) | Hot curing or heat-activated composition containing a surface-deactivated polyisocyanate | |
US10487171B2 (en) | Hydrophobic polyols | |
JP6336381B2 (en) | Adhesives useful in vehicle window mounting that provide quick travel time | |
JP6171330B2 (en) | Adhesive composition | |
JP7379356B2 (en) | adhesive composition | |
JP6171302B2 (en) | Urethane adhesive composition | |
JP5385252B2 (en) | Polyurethane reactive composition | |
JP6011317B2 (en) | Adhesive composition | |
US20210061943A1 (en) | Stable and Low Cure-Temperature 1K Polyisocyanate | |
JPH10114813A (en) | One-pack type urethane resin composition | |
WO2016179256A1 (en) | Adhesive formulation | |
CN112771092A (en) | Use of polyvinyl acetate polymers or copolymers for increasing the viscosity of the isocyanate component of two-component curable polymer systems | |
WO2024020932A1 (en) | One-component polyurethane sealant composition, article thereof and method for manufacturing the same | |
US20230026948A1 (en) | Polyol compositions and methods | |
EP1632515A2 (en) | Polyurethane reactive composition | |
JP2021014524A (en) | Curable composition | |
WO2024191613A1 (en) | Two-component polyurethane adhesive with durable adhesion to inorganic substrates | |
CN116144313A (en) | Single-component polyurethane low-temperature thermal-curing structural adhesive and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18918823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018918823 Country of ref document: EP |