WO2019218164A1 - 摩擦发光同位素电池 - Google Patents

摩擦发光同位素电池 Download PDF

Info

Publication number
WO2019218164A1
WO2019218164A1 PCT/CN2018/086917 CN2018086917W WO2019218164A1 WO 2019218164 A1 WO2019218164 A1 WO 2019218164A1 CN 2018086917 W CN2018086917 W CN 2018086917W WO 2019218164 A1 WO2019218164 A1 WO 2019218164A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
disposed
based material
conversion component
cantilever beam
Prior art date
Application number
PCT/CN2018/086917
Other languages
English (en)
French (fr)
Inventor
何佳清
周毅
黎德龙
娄晴
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to PCT/CN2018/086917 priority Critical patent/WO2019218164A1/zh
Priority to US16/656,961 priority patent/US10930408B2/en
Publication of WO2019218164A1 publication Critical patent/WO2019218164A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter
    • G21H1/103Cells provided with thermo-electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0029Transducers for transforming light into mechanical energy or viceversa
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter
    • G21H1/106Cells provided with thermionic generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers

Definitions

  • the present application belongs to the field of friction light-emitting devices, thermoelectric devices, isotope batteries, hybrid power generation systems and micro-nano integration, and in particular relates to friction light-emitting isotope batteries.
  • the atomic nucleus component changes spontaneously, and the isotope that emits radiation is called a radioactive isotope.
  • a radioisotope battery abbreviated as an isotope battery, uses a transducer device to convert the energy released by the radioactive isotope into a power output when it decays, thereby achieving the purpose of power supply. Because isotope batteries have the advantages of long service life, strong environmental adaptability, good work stability, no maintenance, and miniaturization, they are widely used in important fields such as military defense, deep space deep sea, polar exploration, biomedical, and electronics industries. .
  • thermoelectric type thermoelectric/thermoelectric, thermionic emission, Contact potential difference, thermal photovoltaic, alkali metal thermoelectric conversion
  • 2 radiation volt effect Schottky, PN / PIN junction
  • 3 dynamic thermoelectric Brayton cycle, Stirling cycle, Rankine cycle, Magnetic fluid power generation, jet driving piezoelectric type
  • 4 special energy transfer mechanism direct collection, radiant luminescence, external neutron source driven, decay LC circuit coupled resonance, cosmic ray/electromagnetic wave collection, piezoelectric cantilever, magnetic Constrained beta particle electromagnetic radiation, magnetic separation, radiant i
  • thermoelectric isotope batteries show that the low energy conversion efficiency is still the commonality of current isotope batteries.
  • the development of static thermoelectric isotope batteries is mainly due to research and development at the national level.
  • RTG radioisotope thermoelectric generators
  • Energy conversion efficiency is low, even though NASA's newly reported enhanced multi-mission radioisotope thermoelectric generators (eMMRTG) have a conversion efficiency of less than 8%, so its use range is limited and the civilization process is difficult. .
  • Radiation volt effect isotope battery with semiconductor material as a transducing component can realize the miniaturization of isotope battery devices, improve its application in MEMS/NEMS and low-power devices, and with the rapid development of wide-bandgap semiconductors and multi-dimensional structural materials Some research results have been achieved, but the radiation volts effect isotope battery has the problem of degradation of semiconductor material performance under long-term radiation, which reduces the service life of the radiation volts effect isotope battery.
  • Piezoelectric cantilever isotope battery realizes electric energy output through reciprocating mechanical deformation of piezoelectric cantilever beam. It has wide application value in micro-nano device and vacuum leak detection, but battery energy conversion efficiency is low and energy loss is large. In summary, the current research on isotope batteries remains to be deepened.
  • an object of the present application aims to solve at least one of the technical problems in the related art to some extent. Therefore, an object of the present application is to provide a technical bottleneck that can break through the traditional piezoelectric cantilever beam isotope battery, which has a single energy conversion and large energy loss, and greatly improves the energy conversion efficiency of the isotope battery or expands the isotope. Isotope batteries for battery micro-nano applications.
  • the present application provides a friction luminescent isotope battery.
  • the isotope battery includes a housing and a transducing device disposed in the housing, the transducing device comprising: a cantilever beam, one end of the cantilever beam lengthwise being fixed to the shell Forming a fixed end, the other end of the cantilever beam extending in the longitudinal direction of the housing and being suspended to form a free end; a first charge collecting plate, the first charge collecting plate being disposed on the cantilever beam a lower surface of the free end; a second charge collection plate disposed on the housing and disposed opposite the first charge collection plate, and enriched on the second charge collection plate The charge is opposite in polarity to the charge enriched on the first charge collection plate; a source of radiation disposed in the housing for causing the first charge collection plate and the second charge collection The plates are respectively enriched with opposite polarity charges; the friction light emitting assembly is disposed on the fixed end upper surface of the can
  • the radiation source is disposed on a surface of the second charge collection plate away from the housing.
  • the isotope battery further includes a first energy conversion component disposed at a side of the radiation source remote from the first charge collection plate.
  • the first energy conversion component includes any one of a second thermoelectric conversion component, a first radiation volt component, and a first radiation illuminating component.
  • the radiation source is disposed on the first energy conversion component, disposed opposite to the first charge collection plate, and multiplexed into the second charge collection plate.
  • the radiation source is disposed below the fixed end of the cantilever beam, and the second energy conversion component and the third energy conversion component are respectively disposed on the upper surface and the lower surface of the radiation source, A second energy conversion component is electrically coupled to the first charge collection plate, the third energy conversion component being electrically coupled to the second charge collection plate.
  • the second energy conversion component and the third energy conversion component are respectively any one of a third thermoelectric conversion component, a second radiation volt component, and a second radiation illuminating component.
  • the housing includes: a cylindrical housing body and a first rubber seal ring and a second rubber seal ring disposed at both ends of the cylindrical housing body such that the inside of the housing is formed a sealing space, the cantilever beam fixed end is embedded in the first rubber sealing ring, and the second rubber sealing ring is provided with a valve communicating with the sealing space and a gas nozzle communicating with the valve.
  • the inner surface of the housing body is provided with a support pad.
  • the inner surface of the housing body is provided with a nano-lead plexiglass composite coating.
  • the isotope battery further includes a support frame disposed between a lower surface of the fixed end of the cantilever beam and the housing.
  • the radiation source includes at least one of an alpha radiation source and a beta radiation source.
  • the alpha source is selected from the group consisting of 210 Po, Gd 210 Po, Y 210 Po, La 210 Po, Ce 210 Po, Pr 210 Po, Nd 210 Po, Sm 210 Po, Eu 210 Po, Tb 210 Po, Dy 210 Po, Ho 210 Po, Er 210 Po, Tm 210 Po, Yb 210 Po, Lu 210 Po, Pm 210 Po, Sc 210 Po, Gd 3 210 Po, Y 3 210 Po, La 3 210 Po, Ce 3 210 Po, Pr 3 210 Po, Nd 3 210 Po, Sm 3 210 Po, Eu 3 210 Po, Tb 3 210 Po, Dy 3 210 Po, Ho 3 210 Po, Er 3 210 Po, Tm 3 210 Po, Yb 3 210 Po, Lu 3 210 Po, 228 Th, 228 ThO 2 , 235 U, 238 Pu, 238 PuO 2 microspheres, 238 PuO 2 -Mo ceramic
  • the material forming the friction light-emitting assembly is selected from the group consisting of sucrose, D-glucose, lactose, maltose, L-rhamnose, tartaric acid, lithium acetate, potassium hydrogen malonate, vitamin C, sorbitol Acetate, phthalic acid, coumarin, pentane, 9-fluorene-based material, polybutadiene, epoxy resin, yttrium vanadium, copper vanadium, tetrahedral manganese complex, (NH 4 ) 2 C 2 O 4 , LiSO 4 ⁇ H 2 O, Ce(SO 4 ) 3 ⁇ 8H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, (UO 2 )(NO 3 ) 2 ⁇ 6H 2 O, SiC , Si, InP, GaAs, Ge, diamond, MgO, CaO, SrO, NaF, LiF, NaCl, KCl, KI,
  • the material forming the first photoelectric conversion component is selected from the group consisting of Si, GaAs, InP, GaInP, CuInGaSe 2 , CuInSe 2 , CdS, CdTe, dye sensitizing materials, polymer materials, and quantum dot materials. At least one of them.
  • the material forming the thermoelectric conversion module is selected from the group consisting of Bi 2 Te 3 based materials, Sb 2 Se 3 based materials, Sb 2 Te 3 based materials, BiSb based materials, Zn 4 Sb 3 based materials, Mg At least one of 3 Sb 2 based material and Sb 2 Se 3 based material.
  • the material forming the radiation volt component is selected from the group consisting of Ge, Si, InP, GaAs, GaP, SiC, TiO 2 nanotube arrays, ZnO, GaN, ZnS, SiCN, SiCN/Si, diamond, and AlN. At least one of the materials; the luminescent composition is formed from ZnS:Cu, ZnS:Ag, SrAl 2 O 4 :Eu 2+ , SrAl 2 O 4 :Dy 2+ and Y 2 O 2 S:Eu At least one.
  • the isotope battery further includes: a plurality of output wires, the plurality of output wires and the thermoelectric conversion module, the first photoelectric conversion component, the radiation volt component, the radiation The light emitting component is electrically connected, wherein the plurality of output wires are selected from the group consisting of nickel-plated copper core high refractory insulated wires.
  • the number of the transducing devices is plural.
  • the transducing devices are arranged in a column, and the adjacent two columns of the transducing devices constitute a transducing device group, and the free ends of the two columns of transducing devices in each of the transducing device groups are close to each other. Settings.
  • power management is achieved between a plurality of the transducer devices by at least one of series and parallel.
  • the isotope battery provided by the present application uses a friction light-emitting component and a thermoelectric conversion component as a transducing material, and further combines the radiation volt material and the radiation luminescent material to effectively break through the technical bottleneck of the single static energy conversion and energy loss existing in the conventional static isotope battery.
  • the energy conversion efficiency of the static isotope battery is greatly improved, and the energy conversion efficiency is high, the output power is large, the environmental applicability is strong, the work stability is good, the service life is long, and the implementation is easy, and the utility model can be stabilized for a long time.
  • Working in important areas such as military defense, deep-sea deep-sea, polar exploration, biomedical, and electronics industries, it further meets the environmental requirements of energy demand, environmental protection, high efficiency, portability, and universality.
  • This application uses friction luminescent materials, photoelectric materials, thermoelectric materials, radiation volt materials, radiation luminescent materials to achieve cascaded step-change, and designs a new type of isotope battery, which greatly improves the energy conversion efficiency of the battery. Meet the requirements of energy, low carbon, environmental protection, integration and efficiency, and economic universality.
  • This application improves the electrical output characteristics of the battery by large-scale micro-nano integration of the transducing device, and expands the application of the battery in MEMS/NEMS, low-power/ultra-low-power electronic devices.
  • This application adopts cantilever beam, friction illuminating component, thermoelectric conversion component, radiation volt component and radiant illuminating component to realize the conversion of radioactive source decay energy to electric energy.
  • the multi-stage transducing structure plays a better shielding effect on the ray, and the auxiliary surface
  • the nano-lead plexiglass composite coating on the inner surface of the shell further improves the safety of the battery.
  • This application adopts the lateral support pad and the rubber sealing ring to adiabatically fix the internal exchange device and the battery electrode connection and the outer surface of the battery transducing device, which helps to buffer the internal structure of the battery such as the radioactive source and the transducing device.
  • Mechanical extrusion and thermal stress improve battery stability and work better in harsh environments.
  • Figure 1 is a schematic view showing the structure of an isotope battery in an embodiment of the present invention.
  • Fig. 2 is a schematic view showing the operation of an isotope battery in another embodiment of the present invention.
  • Figure 3 is a left side elevational view of a single cantilever beam isotope battery structure in accordance with yet another embodiment of the present invention.
  • FIG. 4 is a left side view showing the structure of a double cantilever beam isotope battery in still another embodiment of the present invention.
  • Fig. 5 is a right side view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of an isotope battery in still another embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of an isotope battery integrated transducing device in still another embodiment of the present invention.
  • Figure 13 is a block diagram showing the structure of an isotope battery integrated transducing device in still another embodiment of the present invention.
  • Embodiments of the present application are described in detail below.
  • the embodiments described below are illustrative and are merely illustrative of the present application and are not to be construed as limiting.
  • specific techniques or conditions are not indicated in the examples, they are carried out according to the techniques or conditions described in the literature in the art or in accordance with the product specifications.
  • the reagents or instruments used are not indicated by the manufacturer, and are conventional products that can be obtained commercially.
  • the application provides an isotope battery.
  • the isotope battery includes a housing and a transducing device disposed in the housing, the transducing device comprising: a cantilever beam, one end of the cantilever beam lengthwise being fixed to the shell Forming a fixed end, the other end of the cantilever beam extending in the longitudinal direction of the housing and being suspended to form a free end; a first charge collecting plate, the first charge collecting plate being disposed on the cantilever beam a lower surface of the free end; a second charge collection plate disposed on the housing and disposed opposite the first charge collection plate, and enriched on the second charge collection plate The charge is opposite in polarity to the charge enriched on the first charge collection plate; a source of radiation disposed in the housing for causing the first charge collection plate and the second charge collection The plates are respectively enriched with opposite polarity charges; the friction light emitting assembly is disposed on the fixed end upper surface of the cantilever beam; the first photo
  • the radiation emitted by the decay of the radiation source is incident on the transducer assembly, and the energy of the radiation is converted into electrical energy and thermal energy through the transducer device (charge enrichment unit, photoelectric conversion).
  • the component, the thermoelectric conversion component realizes the conversion of the decay energy of the radioactive source to electrical energy.
  • the process for realizing the electrical output of the isotope battery of the present application can be described as: collecting the particles released when the radiation source decays by using the first charge collecting plate on the lower surface of the free end of the cantilever beam, the first charge collecting plate and the second electric charge. The charge electrical conductivity of the collector plate is reversed.
  • the free charge on the lower surface of the cantilever beam is dragged by the first charge collecting plate and the cantilever beam is bent to cause the frictional light-emitting component to generate a mechanically deformed emission specific spectrum and realized by the first photoelectric conversion component.
  • Photoelectric conversion when the first charge collecting plate on the lower surface of the free end of the cantilever beam contacts the second charge collecting plate, the Coulomb gravitational force is released, and the electrical output is realized by the reciprocating cycle; and the first thermoelectric conversion component is used to place the cantilever beam and the heat sink The temperature difference between the external environments is converted into electrical energy for electrical output.
  • the housing includes a cylindrical housing body and a first rubber seal and a second rubber seal disposed at both ends of the cylindrical housing body such that the housing interior Forming a sealed space, the cantilever beam fixed end is embedded in the first rubber sealing ring, and the second rubber sealing ring is provided with a valve communicating with the sealing space and a gas nozzle communicating with the valve.
  • the material forming the housing body may be aluminum silicate; the first rubber sealing ring and the second rubber sealing ring are formed of the same material, as long as the material has a certain mechanical strength (the shell of the battery)
  • the body has a supporting effect, a certain heat insulation and radiation shielding effect, such as carbon fiber, rubber and the like;
  • the gas nozzle can be a round hole nozzle;
  • the valve can be a spherical valve. Therefore, the sealing space inside the casing can be formed into a vacuum environment through the valve and the gas nozzle, and the rubber sealing ring can help to buffer the mechanical extrusion and thermal stress existing in the internal structure of the battery, improve the stability of the battery, and work better.
  • Various working environments are possible to buffer the mechanical extrusion and thermal stress existing in the internal structure of the battery, improve the stability of the battery, and work better.
  • the inner surface of the housing body is provided with a support pad.
  • the material forming the support pad may be a graphite-epoxy thermally conductive composite (GEC).
  • GEC graphite-epoxy thermally conductive composite
  • the support pad may be disposed between the first rubber sealing ring and the second rubber sealing ring, and the components disposed on the housing (eg, the radiation source, the energy conversion component, the second charge collection plate, etc.) It may be disposed on the support pad or directly on the housing body through the support pad.
  • the components disposed on the housing eg, the radiation source, the energy conversion component, the second charge collection plate, etc. It may be disposed on the support pad or directly on the housing body through the support pad.
  • a nano-lead plexiglass composite coating may be disposed on the inner surface of the casing body, wherein the thickness of the nano-lead plexiglass composite coating may be Flexible adjustment according to the requirements of the actual working environment. Thereby, the ray shielding property and safety of the battery are good.
  • the specific structure, material, shape and the like of the cantilever beam can be flexibly selected according to actual needs.
  • the material forming the cantilever beam may be Si, Au or Cu.
  • the first charge collection plate and the second charge collection plate may be metal film layers, and the specific material may be metal Au, Pd, Pt, Al, Cu, Ni or Ti.
  • the second charge collection plate may also be composed of a radiation source, that is, the radiation source is multiplexed into a second charge collection plate, or the radiation source is simultaneously used as a radiation source and a second charge collection plate.
  • the isotope battery of the present application expands the selection range of the radiation source, which may be an alpha source or a beta source.
  • the alpha source is selected from the group consisting of 210 Po, Gd 210 Po, Y 210 Po, La 210 Po, Ce 210 Po, Pr 210 Po, Nd 210 Po, Sm 210 Po, Eu 210 Po, Tb 210 Po, Dy 210 Po, Ho 210 Po, Er 210 Po, Tm 210 Po, Yb 210 Po, Lu 210 Po, Pm 210 Po, Sc 210 Po, Gd 3 210 Po, Y 3 210 Po, La 3 210 Po Ce 3 210 Po, Pr 3 210 Po, Nd 3 210 Po, Sm 3 210 Po, Eu 3 210 Po, Tb 3 210 Po, Dy 3 210 Po, Ho 3 210 Po, Er 3 210 Po, Tm 3 210 Po , Yb 3 210 Po, Lu 3
  • the source is (C 4 H 3 3 H 5 -) n , it represents deuterated poly 1-ethylethylene, wherein n represents the degree of polymerization, and the selection of specific values has no limitation, and the technology in the art The person can flexibly select the degree of polymerization of the above-mentioned radiation source according to the application field of the battery or the specific parameter requirements.
  • the radiation source may be a radioisotope film, and in actual use, the activity size and physical size of the radioisotope film may be adjusted according to the requirements of the output voltage and current in actual application.
  • the radiation source may have two arrangement modes, one way is to arrange the radiation source opposite to the first charge collection plate, and the first charge collection plate directly absorbs the particle-enriched charge radiated by the radiation source, and secondly
  • the charge collecting plate is directly in contact with the radiation source, such as the radiation source is disposed on the surface of the second charge collecting plate away from the casing; the other way is that the radiation source is not disposed opposite to the first charge collecting plate,
  • a charge collecting plate and a second charge collecting plate are respectively connected to the energy conversion component to enrich the electric charge, such as disposing a radioactive source under the fixed end of the cantilever beam, and the upper surface and the lower surface of the radioactive source are respectively disposed a second energy conversion component and a third energy conversion component, the second energy conversion component being electrically connected to the first charge collection plate, the
  • the isotope battery may further include a first energy conversion component, the first energy conversion component being disposed at the radiation source away from the first charge collection One side of the board.
  • the first energy conversion component can absorb the energy radiated from the side of the radiation source close to the casing and convert it into an electric energy output, thereby effectively improving the energy conversion efficiency of the battery.
  • a variety of energy conversion methods can overcome the problem of single energy conversion and large energy loss.
  • the first energy conversion component includes any one of a second thermoelectric conversion component, a first radiation volt component, and a first radiation illuminating component. Therefore, a plurality of energy conversion modes can overcome the problem of single energy conversion and large energy loss, and the energy conversion efficiency is improved to a large extent, and the requirements of low carbon environmental protection, integration efficiency, and economic universality are met.
  • the second energy conversion component and the third energy conversion component are a third thermoelectric conversion component, a second radiation volt component, and a second radiation, respectively. Any of the light-emitting components. Therefore, a plurality of energy conversion modes can overcome the problem of single energy conversion and large energy loss, and the energy conversion efficiency is improved to a large extent, and the requirements of low carbon environmental protection, integration efficiency, and economic universality are met.
  • thermoelectric conversion components such as the first thermoelectric conversion component, the second thermoelectric conversion component, and the third thermoelectric conversion component, etc.
  • the thermoelectric material of the module is selected from the group consisting of Bi 2 Te 3 based materials, Sb 2 Se 3 based materials, Sb 2 Te 3 based materials, BiSb based materials, Zn 4 Sb 3 based materials, Mg 3 Sb 2 based materials and Sb 2 Se 3 based materials. At least one of the materials.
  • the radiation volt component (such as the first radiation volt component, the second radiation volt component, etc.) described in the present application is a component that can convert the energy radiated by the radiation source into electrical energy based on the radiation volt effect, and the material forming the radiation volt component is selected from the group consisting of At least one of Ge, Si, InP, GaAs, GaP, SiC, TiO 2 nanotube arrays (TNTAs), ZnO, GaN, ZnS, SiCN, SiCN/Si, diamond, and AlN.
  • the material forming the radiation volt component is selected from the group consisting of At least one of Ge, Si, InP, GaAs, GaP, SiC, TiO 2 nanotube arrays (TNTAs), ZnO, GaN, ZnS, SiCN, SiCN/Si, diamond, and AlN.
  • the radiant illuminating component (such as the first radiant illuminating component, the second radiant illuminating component, etc.) described in the present application generally includes a radiant illuminating material and a photoelectric conversion component, the radiant illuminating material absorbs energy radiant of the radiation source, and the photoelectric conversion component illuminates Converted to electrical energy output, the radiation luminescent material may be selected from at least one of ZnS:Cu, ZnS:Ag, SrAl 2 O 4 :Eu 2+ , SrAl 2 O 4 :Dy 2+ and Y 2 O 2 S:Eu
  • the material forming the optoelectronic component (such as the photoelectric conversion component in the first photoelectric conversion component and the radiation emitting component) is selected from the group consisting of Si, GaAs, InP, GaInP, CuInGaSe 2 , CuInSe 2 , CdS, CdTe, dye sensitizing material, polymerization. At least one of a material and a quantum do
  • the friction light-emitting component described in the present application refers to a component that can emit light by friction or force deformation.
  • the material forming the friction light-emitting component is selected from the group consisting of sucrose, D-glucose, lactose, maltose, L-rhamnose, tartaric acid, lithium acetate.
  • a heat sink may be disposed on an upper surface of the first thermoelectric conversion module, whereby a temperature difference between the cantilever beam and the environment may be increased, and energy conversion efficiency is improved.
  • the heat sink may be a graphite heat sink, a copper heat sink, or an aluminum alloy heat sink. Thereby, the heat dissipation effect is better.
  • thermoelectric conversion components the photoelectric conversion components, the radiation volt components, and the radiation illuminating components involved in the present application are provided with an output wire and an output terminal connected to the output wire, so as to effectively output electric energy, that is, an isotope.
  • the battery further includes a plurality of output wires, the plurality of output wires including: a first thermoelectric conversion component output wire, the first thermoelectric conversion component output wire is electrically connected to the first thermoelectric conversion component; and the second thermoelectric conversion component output wire, The second thermoelectric conversion module output wire is electrically connected to the second thermoelectric conversion component; the third thermoelectric conversion component output wire, the third thermoelectric conversion component output wire is electrically connected to the third thermoelectric conversion component; a photoelectric conversion component outputting wire, the first photoelectric conversion component output wire being electrically connected to the first photoelectric conversion component; a first radiation volt component output wire, the first radiation volt component output wire and the first radiation volt Component electrical connection; second radiation volt component output lead, said The radiation volt assembly output wire is electrically connected to the second radiation volt component; the first radiant light emitting component output wire, the first radiant light component output wire is electrically connected to the first radiant light emitting component; and the second radiant light emitting component output wire is The second radiation emitting component output wire is electrically connected to the second
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the cantilever beam 11 is freely extended.
  • the fixed end of the cantilever beam 11 is suspended, and the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the casing 15.
  • the friction light-emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction.
  • the first photoelectric conversion component output terminal 34 is electrically connected to the first photoelectric conversion component 32 through the first photoelectric conversion component output wire 33, thereby outputting the light-converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • a second charge collection plate 23 is disposed on the housing 15 and disposed opposite to the first charge collection plate 25, and the charge accumulated on the second charge collection plate 23 and the first charge collection plate
  • the charge enriched on 25 is opposite in polarity (for example, the positive charge 22 is enriched on the second charge collecting plate 23, and the negative charge 24 is enriched on the first charge collecting plate 25), when the first charge collection on the lower surface of the free end of the cantilever beam
  • the plate 25 is in contact with the second charge collecting plate 23, the Coulomb attraction is released, and the electrical output is achieved by the reciprocating cycle.
  • a radioisotope film 21 (radiation source) is deposited on the upper surface of the second charge collection plate 23.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15.
  • the support pad 14 is disposed on the inner surface of the casing 15, and specifically can be disposed on the inner wall of the casing 15 in the first rubber.
  • the second rubber gasket 17 is fitted with a valve 19 communicating with the sealing space and a gas nozzle 18 (such as may be disposed at a central position of the second rubber gasket) for the housing
  • the vacuum chamber 16 is formed inside 15 .
  • the process of realizing the electrical output of the isotope battery of the present application can be described as: collecting the particles released by the radiation source 21 when the first charge collecting plate 25 of the lower end of the cantilever beam 11 is free, the first charge collecting plate 25 is opposite to the charge electrical polarity enriched by the second charge collecting plate 23, under the Coulomb gravitational force, the free end lower surface of the cantilever beam 11 is pulled by the first charge collecting plate 25, and the cantilever beam 11 is bent to cause mechanical deformation emission of the friction light emitting assembly 31.
  • the first thermoelectric conversion assembly 42 converts the temperature difference between the cantilever beam 11 and the external environment in which the heat sink 41 is located into electrical energy to realize electrical output.
  • FIG. 3 and FIG. 4 are left side views of the isotope battery structure of FIG. 1.
  • the end surface of the first rubber gasket 12 is embedded in the housing 15, and the friction light emitting assembly 31 and the first photoelectric conversion assembly 32 are fixed to the upper surface of the cantilever beam 11 and are A rubber gasket 12 is clamped, wherein FIG. 3 is a left side view of a single cantilever beam isotope battery, and FIG. 4 is a left side view of a double cantilever beam isotope battery.
  • Figure 5 is a right side elevational view of the isotope battery structure of Figure 1, with the gas nozzle 18 of the isotope battery clamped and secured by a second rubber gasket 17.
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • a second charge collection plate 23 is disposed on the housing 15 and disposed opposite to the first charge collection plate 25, and the charge accumulated on the second charge collection plate 23 and the first charge collection plate
  • the charge enriched on 25 is opposite in polarity (for example, the positive charge 22 is enriched on the second charge collecting plate 23, and the negative charge 24 is enriched on the first charge collecting plate 25), when the first charge collection on the lower surface of the free end of the cantilever beam
  • the plate 25 is in contact with the second charge collecting plate 23, the Coulomb attraction is released, and the electrical output is achieved by the reciprocating cycle.
  • the upper surface of the second charge collecting plate 23 is provided with a second thermoelectric conversion module 42a as a first energy conversion component, and a radioisotope film 21 (radiation source) is deposited on the surface of the second thermoelectric conversion module 42a, that is, The second thermoelectric conversion module 42a is disposed on a side of the radiation source 21 away from the first charge collection plate 25, and is electrically connected to the second thermoelectric conversion module output terminal 44a through the second thermoelectric conversion assembly output wire 43a, thus, the second thermoelectric conversion The component 42a can absorb the heat radiated from the side of the radiation source 21 close to the housing 15 and convert it into an electrical energy output, thereby effectively improving the energy conversion efficiency of the battery, overcoming the problem of single transduction and large energy loss.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15.
  • the support pad 14 is disposed on the inner surface of the casing 15, and specifically, can be disposed adjacent to the inner wall of the casing 15.
  • the second rubber gasket 17 is fitted with a valve 19 and a gas nozzle 18 communicating with the sealing space 16 (for example, may be disposed at the center of the second rubber gasket 17). It is used to form a vacuum chamber 16 inside the casing 15.
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • the radiation source 21 is also simultaneously disposed as a second charge collection plate on the first radiation volt component 42b as the first energy conversion component (ie, the first energy conversion component is disposed at the radiation source away from the first charge collection plate One side) and disposed opposite the first charge collection plate 25, and the charge enriched on the radiation source 21 is opposite in polarity to the charge enriched on the first charge collection plate 25 (eg, radiation
  • the source 21 is enriched with a positive charge 22, and the first charge collecting plate 25 is enriched with a negative charge 24).
  • the first radiation volt component 42b is electrically connected to the first radiation volt component output terminal 44b through the first radiation volt component output wire 43b, such that the first radiation volt component 42b can absorb radiation from the side of the radiation source 21 close to the housing 15.
  • the particles are converted into electrical energy output, which effectively improves the energy conversion efficiency of the battery and overcomes the problem of single energy conversion and large energy loss.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15.
  • the support pad 14 is disposed on the inner surface of the casing 15, and specifically, can be disposed adjacent to the inner wall of the casing 15.
  • the second rubber gasket 17 is fitted with a valve 19 and a gas nozzle 18 communicating with the sealing space 16 (for example, may be disposed at the center of the second rubber gasket 17). It is used to form a vacuum chamber 16 inside the casing 15.
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • the radiation source 21 is also simultaneously disposed as a second charge collection plate on the first radiation-emitting component 42c as the first energy conversion component (ie, the first energy conversion component is disposed at the radiation source away from the first charge collection plate).
  • the source 21 is enriched with a positive charge 22, and the first charge collecting plate 25 is enriched with a negative charge 24).
  • the first illuminating component 42c is electrically connected to the first illuminating component output terminal 44c through the first illuminating component output wire 43c.
  • the first illuminating component 42c can absorb the radiation source 21 to radiate to the side of the casing 15.
  • the particles are converted into electrical energy output, which effectively improves the energy conversion efficiency of the battery and overcomes the problem of single energy conversion and large energy loss.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the housing 15; the support pad 14 is disposed on the inner surface of the housing 15, and specifically, can be disposed adjacent to the inner wall of the housing 15 Between the first rubber gasket 12 and the second rubber gasket 17; the second rubber gasket 17 is fitted with a valve 19 and a gas nozzle 18 communicating with the sealed space 16 (for example, may be disposed at a central position of the second rubber gasket 17), It is used to form a vacuum chamber 16 inside the casing 15.
  • the isotope battery is generally columnar, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • the radiation source 21 is disposed below the fixed end of the cantilever beam 11, and the second energy conversion component and the third energy conversion component are respectively disposed on the upper surface and the lower surface of the radiation source 21, a second energy conversion component is electrically connected to the first charge collection plate, the third energy conversion component is electrically connected to the second charge collection plate, wherein the second energy conversion component and the third energy conversion component are both third
  • the thermoelectric conversion component 42d, the third thermoelectric conversion component 42d is electrically connected to the third thermoelectric conversion component output terminal 44d through the third thermoelectric conversion component output wire 43d, such that the third thermoelectric conversion component 42d can absorb the heat released when the radiation source decays, And convert it into electric energy output, effectively improve the energy conversion efficiency of the battery, and overcome the problem of single energy conversion and large energy loss.
  • the second charge collection plate 23 is disposed on the housing 15 and disposed opposite to the first charge collection plate 25, and the charge enriched on the second charge enrichment 23 and the first charge
  • the charges enriched on the collecting plate 25 are opposite in polarity (for example, the second charge enrichment 23 is enriched in the positive charge 22, and the first charge collecting plate 25 is enriched in the negative charge 24), when the free end of the cantilever beam 11 is free
  • the Coulomb attraction is released, and the electrical output is achieved by the reciprocating cycle.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15, and is located at two sides of the radiation source 21 and the third thermoelectric conversion module 42d;
  • the support pad 14 is disposed on the casing 15 inner surface, in particular, the support pad 14 may be disposed between the first rubber gasket 12 and the second rubber gasket 17 against the inner wall of the casing 15;
  • the second rubber gasket 17 is fitted with the sealing space 16
  • the valve 19 and the gas nozzle 18 (which may be disposed, for example, at a central position of the second rubber gasket 17) are used to form the vacuum chamber 16 inside the casing 15.
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • the radiation source 21 is disposed below the fixed end of the cantilever beam 11, and the second energy conversion component and the third energy conversion component are respectively disposed on the upper surface and the lower surface of the radiation source 21, a second energy conversion component is electrically connected to the first charge collection plate, the third energy conversion component is electrically connected to the second charge collection plate, wherein the second energy conversion component and the third energy conversion component are both
  • the radiation volt component 42e, the second radiation volt component 42e is electrically connected to the second radiation volt component output terminal 44e through the second radiation volt component output wire 43e, such that the second radiation volt component 42e can absorb particles released when the radiation source decays, And convert it into electric energy output, effectively improve the energy conversion efficiency of the battery, and overcome the problem of single energy conversion and large energy loss.
  • the second charge collection plate 23 is disposed on the housing 15 and disposed opposite to the first charge collection plate 25, and the charge enriched on the second charge enrichment 23 and the first charge
  • the charges enriched on the collecting plate 25 are opposite in polarity (for example, the second charge enrichment 23 is enriched in the positive charge 22, and the first charge collecting plate 25 is enriched in the negative charge 24), when the free end of the cantilever beam 11 is free
  • the Coulomb attraction is released, and the electrical output is achieved by the reciprocating cycle.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15, and is located on both sides of the radiation source 21 and the second radiation volt assembly 42e; the support pad 14 is disposed on the casing 15 inner surface, in particular, the support pad 14 may be disposed between the first rubber gasket 12 and the second rubber gasket 17 against the inner wall of the casing 15; the second rubber gasket 17 is fitted with the sealing space 16
  • the valve 19 and the gas nozzle 18 (which may be disposed, for example, at a central position of the second rubber gasket 17) are used to form the vacuum chamber 16 inside the casing 15.
  • the isotope battery is a columnar structure as a whole, and the first rubber gasket 12 and the second rubber gasket 17 are respectively embedded at two ends of the casing 15, and the free end of the cantilever beam 11 extends into the shell.
  • the body 15 is suspended, the fixed end of the cantilever beam 11 is fixed by the first rubber gasket 12 or the housing 15, the friction light emitting assembly 31 is disposed on the upper surface of the fixed end of the cantilever beam 11, and the first photoelectric conversion component 32 is disposed on the friction light emitting component.
  • the upper surface of the 31, the first photoelectric conversion element output terminal 34 is electrically connected to the first photoelectric conversion element 32 through the first photoelectric conversion element output wire 33, thereby outputting the light converted electric energy.
  • the upper end surface and the lower surface of the cantilever beam 11 are respectively equipped with a first thermoelectric conversion assembly 42 and a first charge collection plate 25, and the upper surface of the first thermoelectric conversion assembly 42 is provided with a heat sink 41, the first thermoelectric The conversion component electrical output terminal 44 is connected to the first thermoelectric conversion component 42 through the first thermoelectric conversion component output wire 43 to further convert the thermal difference between the first thermoelectric conversion component 42 and the external environment in which the heat sink 41 is located. Output.
  • the radiation source 21 is disposed below the fixed end of the cantilever beam 11, and the second energy conversion component and the third energy conversion component are respectively disposed on the upper surface and the lower surface of the radiation source 21, a second energy conversion component is electrically connected to the first charge collection plate, the third energy conversion component is electrically connected to the second charge collection plate, wherein the second energy conversion component and the third energy conversion component are both
  • the radiant illuminating component 42f is electrically connected to the second illuminating component output terminal 44f via the second illuminating component output wire 43f.
  • the second illuminating component 42f can absorb particles released when the source decays. And convert it into electric energy output, effectively improve the energy conversion efficiency of the battery, and overcome the problem of single energy conversion and large energy loss.
  • the second charge collection plate 23 is disposed on the housing 15 and disposed opposite to the first charge collection plate 25, and the charge enriched on the second charge enrichment 23 and the first charge
  • the charges enriched on the collecting plate 25 are opposite in polarity (for example, the second charge enrichment 23 is enriched in the positive charge 22, and the first charge collecting plate 25 is enriched in the negative charge 24), when the free end of the cantilever beam 11 is free
  • the Coulomb attraction is released, and the electrical output is achieved by the reciprocating cycle.
  • the support frame 13 is disposed between the lower surface of the fixed end of the cantilever beam 11 and the casing 15, and is located at two sides of the radiation source 21 and the second radiation emitting component 42f;
  • the support pad 14 is disposed on the casing 15 inner surface, in particular, the support pad 14 may be disposed between the first rubber gasket 12 and the second rubber gasket 17 against the inner wall of the casing 15;
  • the second rubber gasket 17 is fitted with the sealing space 16
  • the valve 19 and the gas nozzle 18 (which may be disposed, for example, at a central position of the second rubber gasket 17) are used to form the vacuum chamber 16 inside the casing 15.
  • the friction light emitting unit 30 includes a friction light emitting component 31 and a first photoelectric conversion component 32.
  • the first thermoelectric unit 40 includes a first thermoelectric conversion component 42 and a heat sink 41, and details of respective output wires and output terminals are not shown. Thereby, the requirements for different power output of different isotope batteries can be satisfied.
  • the transducing devices 10 in the integrated transducing device 20 are arranged in a column, and two adjacent columns of transducing devices constitute a transducing device group, that is, the transducing device 10 is along a radioactive source.
  • the 21 length direction presents a modular assembly and forms a transducer set, with the free ends of the two columns of transducers in each transducer set being placed close together.
  • power management is achieved by a plurality of transducing devices between at least one of series and parallel. Therefore, those skilled in the art can flexibly design the circuit of the battery according to actual needs, and meet the needs of various batteries.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供了摩擦发光同位素电池。该摩擦发光同位素电池包括壳体和设置在壳体中的换能器件,换能器件包括:长度方向上的一端固定在壳体上,另一端伸向壳体中并悬空设置的悬臂梁;设置在悬臂梁自由端下表面的第一电荷收集板;设置在壳体上并与第一电荷收集板相对设置的第二电荷收集板,且其富集的电荷与第一电荷收集板富集的电荷极性相反;设置在壳体中的放射源;设置在悬臂梁固定端上表面的摩擦发光组件;设置在摩擦发光组件上表面的第一光电转换组件;设置在悬臂梁自由端上表面的第一热电转换组件;设置在第一热电转换组件上表面的散热片。该电池具有能量转换效率高、输出功率大、环境适用性强、工作稳定性好、使用寿命长的特点。

Description

摩擦发光同位素电池 技术领域
本申请属于摩擦发光器件、热电器件、同位素电池、混合发电系统与微纳集成领域,具体涉及摩擦发光同位素电池。
背景技术
原子核成分(或能态)自发地发生变化,同时放射出射线的同位素称为放射性同位素。放射性同位素电池,简称同位素电池,它是利用换能器件将放射性同位素衰变时释放出射线的能量转换成电能输出,从而达到供电目的。由于同位素电池具有服役寿命长、环境适应性强、工作稳定性好、无需维护、小型化等优点,目前已在军事国防、深空深海、极地探测、生物医疗、电子工业等重要领域被广泛应用。
同位素电池首先由英国物理学家Henry Moseley于1913年提出,而有关同位素电池的研究主要集中在过去的100年。2017年,周毅等人结合不同换能方式下同位素电池换能效率高低与输出功率大小将同位素电池的换能方式分成了四类:①静态型热电式(温差电/热电、热离子发射、接触电势差、热光伏、碱金属热电转换)同位素电池;②辐射伏特效应(肖特基、PN/PIN结)同位素电池;③动态型热电式(布雷顿循环、斯特林循环、朗肯循环、磁流体发电、射流驱动压电式)同位素电池;④特殊换能机理(直接收集、辐射发光、外中子源驱动式、衰变LC电路耦合谐振、宇宙射线/电磁波收集、压电悬臂梁、磁约束下β粒子电磁辐射、磁分离式、辐射电离)同位素电池。
上述四类同位素电池的研究结果表明,能量转化效率低仍是目前同位素电池的共性所在。静态型热电式同位素电池的发展主要得益于国家层面的研究开发,特别是温差式同位素电池(radioisotope thermoelectric generators,RTG)的设计与制造目前在美国已日趋完善,但其基于热电材料换能电池能量转化效率较低,即便NASA最新报道的增强型多任务温差式同位素电池(enhanced multi-mission radioisotope thermoelectric generators,eMMRTG)的换能效率也不足8%,因而其使用范围有限、民用化过程较为困难。辐射伏特效应同位素电池以半导体材料为换能组件,可实现同位素电池器件小型化,提高了其在MEMS/NEMS与低功率器件方面的应用,且随着宽禁带半导体与多维结构材料的快速发展取得了一定的研究成效,但辐射伏特效应同位素电池存在射线长期辐照下半导体材料性能退化问题,降低了辐射伏特效应同位素电池的使用寿命。压电式悬臂梁同位素电池通过压电悬臂梁的往复式机械形变实现电能输出,其在微纳器件和真空检漏方面有广泛应用价值,但电池能量转 化效率较低,能量损耗较大。综上所述,目前同位素电池的相关研究仍有待深入。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种可突破传统压电式悬臂梁同位素电池存在单一换能、能量损失较大的技术瓶颈,较大程度地提高同位素电池的能量转化效率或者扩展了同位素电池微纳应用领域的同位素电池。
在本申请的一个方面,本申请提供了一种摩擦发光同位素电池。根据本申请的实施例,该同位素电池包括壳体和设置在所述壳体中的换能器件,所述换能器件包括:悬臂梁,所述悬臂梁长度方向上的一端固定在所述壳体上形成固定端,所述悬臂梁长度方向上的另一端伸向所述壳体中并悬空设置以形成自由端;第一电荷收集板,所述第一电荷收集板设置在所述悬臂梁自由端的下表面;第二电荷收集板,所述第二电荷收集板设置在所述壳体上,并与所述第一电荷收集板相对设置,且所述第二电荷收集板上富集的电荷与所述第一电荷收集板上富集的电荷极性相反;放射源,所述放射源设置在所述壳体中,用于使得所述第一电荷收集板和所述第二电荷收集板上分别富集极性相反的电荷;摩擦发光组件,所述摩擦发光组件设置在所述悬臂梁的固定端上表面;第一光电转换组件,所述第一光电转换组件设置在所述摩擦发光组件上表面;第一热电转换组件,所述第一热电转换组件设置在所述悬臂梁自由端的上表面;散热片,所述散热片设置在所述第一热电转换组件的上表面。该同位素电池能够突破传统同位素电池存在单一换能、能量损失较大的技术瓶颈,具有能量转化效率高、工作稳定性好、微纳集成度高等特点。
根据本申请的实施例,所述放射源设置在所述第二电荷收集板远离所述壳体的表面上。
根据本申请的实施例,该同位素电池还包括第一能量转换组件,所述第一能量转换组件设置在所述放射源远离所述第一电荷收集板的一侧。
根据本申请的实施例,所述第一能量转换组件包括第二热电转换组件、第一辐射伏特组件、第一辐射发光组件中的任意一种。
根据本申请的实施例,所述放射源设置在所述第一能量转换组件上,与所述第一电荷收集板相对设置,且复用为所述第二电荷收集板。
根据本申请的实施例,所述放射源设置在所述悬臂梁固定端的下方,且所述放射源的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接。
根据本申请的实施例,所述第二能量转换组件和所述第三能量转换组件分别为第三热电转换组件、第二辐射伏特组件和第二辐射发光组件中的任意一种。
根据本申请的实施例,所述壳体包括:圆柱形壳体本体和设置在所述圆柱形壳体本体两端的第一橡胶密封圈和第二橡胶密封圈,以使得所述壳体内部形成密封空间,所述悬臂梁固定端嵌入所述第一橡胶密封圈中,所述第二橡胶密封圈上设置有与所述密封空间相连通的阀门和与所述阀门相连通的气嘴。
根据本申请的实施例,所述壳体本体内表面设置有支撑垫。
根据本申请的实施例,所述壳体本体内表面设置有纳米铅有机玻璃复合材料涂层。
根据本申请的实施例,该同位素电池还包括支撑架,所述支撑架设置在所述悬臂梁固定端的下表面和所述壳体之间。
根据本申请的实施例,所述放射源包括α放射源和β放射源中的至少一种。
根据本申请的实施例,所述α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;所述β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 390SrNO 390SrNO 3/二环己烷并-18-冠醚-6、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm中的至少一种。
根据本申请的实施例,形成所述摩擦发光组件的材料选自蔗糖、D-葡萄糖、乳糖、麦芽糖、L-鼠李糖、酒石酸、乙酸锂、丙二酸氢钾、维生素C、山梨醇六乙酸酯、邻苯二甲酸、香豆素、蔡嵌戊烷、9-蒽甲醇基材料、聚丁二烯、环氧树脂、铕钒、铜钒、四面体锰配合物、(NH 4) 2C 2O 4、LiSO 4·H 2O、Ce(SO 4) 3·8H 2O、Zn(NO 3) 2·6H 2O、(UO 2)(NO 3) 2·6H 2O、SiC、Si、InP、GaAs、Ge、金刚石、MgO、CaO、SrO、NaF、LiF、NaCl、KCl、KI、CsI、RbI、KBr、RbBr、BaAl 2Si 2O 8基材料、Sr 3Al 2O 6基材料、SrAl 2O 4基材料、Ca 2SrMgSi 2O 7基材料、Ca 2MgSi 2O 7基材料、SrMgAl 10O 17基材料、Sr 2Mg 2(PO 4) 2基材料、BaFCl基材料、BaFBr基材料、K 2Mg 2(SO 4) 3基材料、BaSi 2O 2N 2基材料、CaO·Nb 2O 5基材料、ZnGa 2O 4基材料、MgGa 2O 4基材料、ZnAl 2O 4基材料、LiNbO 3基材料、SrAl 2O 4基材料和ZnS基材料中的至少一种。
根据本申请的实施例,形成所述第一光电转换组件的材料选自Si、GaAs、InP、GaInP、CuInGaSe 2、CuInSe 2、CdS、CdTe、染料敏化材料、聚合物材料和量子点材料中的至少一种。
根据本申请的实施例,形成所述热电转换组件的材料选自Bi 2Te 3基材料、Sb 2Se 3基材料、Sb 2Te 3基材料、BiSb基材料、Zn 4Sb 3基材料、Mg 3Sb 2基材料和Sb 2Se 3基材料中的至少 一种。
根据本申请的实施例,形成所述辐射伏特组件的材料选自Ge、Si、InP、GaAs、GaP、SiC、TiO 2纳米管阵列、ZnO、GaN、ZnS、SiCN、SiCN/Si、金刚石和AlN中的至少一种;形成所述辐射发光组件材料选自ZnS:Cu、ZnS:Ag、SrAl 2O 4:Eu 2+、SrAl 2O 4:Dy 2+和Y 2O 2S:Eu中的至少一种。
根据本申请的实施例,所述同位素电池进一步包括:多根输出导线,所述多根输出导线分别与所述热电转换组件、所述第一光电转换组件、所述辐射伏特组件、所述辐射发光组件电连接,其中,所述多根输出导线选自镀镍铜芯高耐火绝缘导线。
根据本申请的实施例,所述换能器件的数量为多个。
根据本申请的实施例,所述换能器件成列分布,相邻两列所述换能器件构成换能器件组,每个所述换能器件组中的两列换能器件的自由端靠近设置。
根据本申请的实施例,多个所述换能器件之间通过串联和并联中的至少一种的方式实现电源管理。
本申请提供的同位素电池通过采用摩擦发光组件、热电转换组件为换能材料,进一步结合辐射伏特材料与辐射发光材料有效突破了传统静态型同位素电池存在的单一换能、能量损失较大的技术瓶颈,同时较大程度地提升了静态型同位素电池的能量转化效率,具有能量转化效率高、输出功率大、环境适用性强、工作稳定性好、使用寿命长、易于实施等特点,可长时间稳定工作于军事国防、深空深海、极地探测、生物医疗、电子工业等重要领域,进一步满足了能源需求的环保、高效、便携、普适。
与相关技术相比,本申请至少具有以下有益效果:
1、本申请采用摩擦发光材料、光电材料、热电材料、辐射伏特材料、辐射发光材料等方式实现级联梯级换能,设计了一种新型同位素电池,较大程度地提高了电池能量转化效率,满足能源低碳环保、集成高效、经济普适的要求。
2、本申请通过对换能器件进行大规模微纳集成,提高了电池的电学输出特性,扩大电池在MEMS/NEMS、低功率/超低功率电子器件等方面的应用。
3、本申请分别采用悬臂梁、摩擦发光组件、热电转换组件、辐射伏特组件、辐射发光组件实现放射源衰变能向电能转化,多级换能结构对射线起到较好屏蔽作用,辅之曲面壳体本体内表面的纳米铅有机玻璃复合材料涂层,进一步提高了电池的安全性。
4、本申请采用横向支撑垫和橡胶密封圈对电池内部换能器件与电池电极连接处、电池换能器件外表面进行绝热固定,有助于缓冲放射源与换能器件等电池内部结构存在的机械挤压与热应力,提高电池稳定性,并且更好的工作于各种恶劣环境。
附图说明
图1是本发明一个实施例中同位素电池的结构示意图。
图2是本发明另一个实施例中同位素电池的工作原理图。
图3是本发明又一个实施例中单悬臂梁同位素电池结构左视图。
图4是本发明又一个实施例中双悬臂梁同位素电池结构左视图。
图5是本发明又一个实施例中同位素电池结构右视图。
图6是本发明又一个实施例中同位素电池的结构示意图。
图7是本发明又一个实施例中同位素电池的结构示意图。
图8是本发明又一个实施例中同位素电池的结构示意图。
图9是本发明又一个实施例中同位素电池的结构示意图。
图10是本发明又一个实施例中同位素电池的结构示意图。
图11是本发明又一个实施例中同位素电池的结构示意图。
图12是本发明又一个实施例中同位素电池集成换能器件的结构示意图。
图13是本发明又一个实施例中同位素电池集成换能器件的结构示意图。
具体实施方式
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本申请的一个方面,本申请提供了一种同位素电池。根据本申请的实施例,该同位素电池包括壳体和设置在所述壳体中的换能器件,所述换能器件包括:悬臂梁,所述悬臂梁长度方向上的一端固定在所述壳体上形成固定端,所述悬臂梁长度方向上的另一端伸向所述壳体中并悬空设置以形成自由端;第一电荷收集板,所述第一电荷收集板设置在所述悬臂梁自由端的下表面;第二电荷收集板,所述第二电荷收集板设置在所述壳体上,并与所述第一电荷收集板相对设置,且所述第二电荷收集板上富集的电荷与所述第一电荷收集板上富集的电荷极性相反;放射源,所述放射源设置在所述壳体中,用于使得所述第一电荷收集板和所述第二电荷收集板上分别富集极性相反的电荷;摩擦发光组件,所述摩擦发光组件设置在所述悬臂梁的固定端上表面;第一光电转换组件,所述第一光电转换组件设置在所述摩擦发光组件上表面;第一热电转换组件,所述第一热电转换组件设置在所述悬臂梁自由端的上表面;散热片,所述散热片设置在所述第一热电转换组件的上表面。该同位素电池能够突破传统同位素电池存在单一换能、能量损失较大的技术瓶颈,具有能量转化效率高、工作稳定性好、微纳集成度高等特点。
本申请的同位素电池中,放射源(或称放射性同位素)发生衰变所释放出的射线入射到换能组件中,射线的能量转化为电能与热能,通过换能器件(电荷富集单元、光电转换组件、热电转换组件)实现放射源衰变能向电能的转化。具体的,本申请的同位素电池实现电学输出的过程可以描述为:采用悬臂梁自由端下表面第一电荷收集板对放射源衰变时释放出的粒子进行收集,第一电荷收集板与第二电荷收集板富集的电荷电学极性相反,在库伦引力作用下悬臂梁自由端下表面第一电荷收集板拖动悬臂梁弯曲使摩擦发光组件产生机械形变发射特定光谱并通过第一光电转换组件实现光电转换,当悬臂梁自由端下表面第一电荷收集板同第二电荷收集板接触时释放库仑引力,以此往复循环实现电学输出;同时采用第一热电转换组件将悬臂梁与散热片所处外部环境之间的温差转换成电能,实现电学输出。
根据申请的实施例,壳体的具体结构、形状等可以根据实际需要灵活选择。在本申请的一些实施例中,所述壳体包括圆柱形壳体本体和设置在所述圆柱形壳体本体两端的第一橡胶密封圈和第二橡胶密封圈,以使得所述壳体内部形成密封空间,所述悬臂梁固定端嵌入所述第一橡胶密封圈中,所述第二橡胶密封圈上设置有与所述密封空间相连通的阀门和与所述阀门相连通的气嘴。在本申请的一些实施例中,形成壳体本体的材质可以为硅酸铝;形成第一橡胶密封圈和第二橡胶密封圈的材料相同,该材料只要具有一定的机械强度(对电池的壳体具有支撑作用)、一定的隔热和射线屏蔽效果即可,比如可以为碳纤维、橡胶等材料;气嘴可以为圆孔形气嘴;阀门可以为球形阀。由此,通过阀门和气嘴可以使得壳体内部密封空间形成真空环境,采用橡胶密封圈可以有助于缓冲电池内部结构存在的机械挤压与热应力,提高电池稳定性,以更好的工作于各种工作环境。
根据本申请的实施例,所述壳体本体内表面设置有支撑垫。在本申请一些实施例中,形成支撑垫的材料可以是石墨-环氧树脂导热复合材料(GEC)。由此,可以对电池内部换能器件与电池电极连接处、电池换能器件外表面进行绝热固定,有助于缓冲电池内部结构存在的机械挤压与热应力,提高电池稳定性,并且更好的工作于各种恶劣环境。在本申请一些实施例中,支撑垫可以设置在第一橡胶密封圈和第二橡胶密封圈之间,设置在壳体上的部件(如放射源、能量转换组件、第二电荷收集板等)可以设置在支撑垫上,也可以穿过支撑垫直接设置在壳体本体上。
根据本申请的实施例,为了提高射线屏蔽作用,提高电池的安全性,壳体本体的内表面上可以设置纳米铅有机玻璃复合材料涂层,其中,纳米铅有机玻璃复合材料涂层的厚度可以根据实际工作环境的要求灵活调整。由此,电池的射线屏蔽性和安全性较好。
根据本申请的实施例,悬臂梁的具体结构、材质、形状等可以根据实际需要灵活选择。在本申请的一些实施例中,形成悬臂梁的材质可以为Si、Au或Cu。由此,材料来源广泛, 成本较低,且机械性能、抗疲劳性能较好,使得电池的稳定性较好,使用寿命较长。
根据本申请的实施例,第一电荷收集板和第二电荷收集板可以为金属膜层,具体材质可以为金属Au、Pd、Pt、Al、Cu、Ni或Ti。在本申请一些实施例中,第二电荷收集板也可以由放射源构成,即放射源复用为第二电荷收集板,或者说放射源同时作为放射源和第二电荷收集板使用。
根据本申请的实施例,本申请的同位素电池扩大了放射源的选择范围,放射源可以为α放射源,也可以为β放射源。在本申请的一些具体实施例中,α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 390SrNO 390SrNO 3/二环己烷并-18-冠醚-6、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm中的至少一种。
需要说明的是,当放射源为(C 4H 3 3H 5-) n时,表示氚化聚1-乙基乙烯,其中,n代表聚合度,具体值的选择没有限制要求,本领域技术人员可以根据电池的应用领域或具体参数要求灵活选择上述放射源的聚合度。
根据本申请的实施例,放射源可以为放射性同位素薄膜,且实际使用中,可根据实际应用时输出电压电流的要求,调整放射性同位素薄膜的活度大小和物理尺寸等。
根据本申请的实施例,放射源只要能够辐射能量且辐射的能量可以被转换为电能输出,其具体设置位置可以根据实际情况灵活选择。本申请的实施例中,放射源可以有两种设置方式,一种方式为将放射源与第一电荷收集板相对设置,第一电荷收集板直接吸收放射源辐射的粒子富集电荷,第二电荷收集板直接与放射源相接触,如将放射源设置在所述第二电荷收集板远离所述壳体的表面上;另一种方式为放射源不与第一电荷收集板相对设置,第一电荷收集板和第二电荷收集板分别与能量转换组件相连以富集电荷,如将放射源设置在所述悬臂梁固定端的下方,且所述放射源的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接。
根据本申请的实施例,放射源按照第一种方式进行设置时,该同位素电池还可以包括第一能量转换组件,所述第一能量转换组件设置在所述放射源远离所述第一电荷收集板的一侧。由此,第一能量转换组件可以吸收放射源靠近壳体的一侧辐射的能量,并将其转换 为电能输出,有效提高电池的能量转化效率。且采用多种换能方式可以克服单一换能、能量损失较大的问题。
根据本申请的一些实施例,所述第一能量转换组件包括第二热电转换组件、第一辐射伏特组件、第一辐射发光组件中的任意一种。由此,采用多种换能方式可以克服单一换能、能量损失较大的问题,且较大程度的提高了能量转化效率,满足低碳环保、集成高效、经济普适的要求。
根据本申请的实施例,放射源按照第二种方式进行设置时,所述第二能量转换组件和所述第三能量转换组件分别为第三热电转换组件、第二辐射伏特组件和第二辐射发光组件中的任意一种。由此,采用多种换能方式可以克服单一换能、能量损失较大的问题,且较大程度的提高了能量转化效率,满足低碳环保、集成高效、经济普适的要求。
本申请中所述的热电转换组件(如第一热电转换组件、第二热电转换组件和第三热电转换组件等)是指可以将热量转换为电能(如温差热电转换)的组件,形成热电转换组件的热电材料选自Bi 2Te 3基材料、Sb 2Se 3基材料、Sb 2Te 3基材料、BiSb基材料、Zn 4Sb 3基材料、Mg 3Sb 2基材料和Sb 2Se 3基材料中的至少一种。
本申请中所述的辐射伏特组件(如第一辐射伏特组件、第二辐射伏特组件等)是可以基于辐射伏特效应将放射源辐射的能量转换为电能的组件,形成辐射伏特组件的材料选自Ge、Si、InP、GaAs、GaP、SiC、TiO 2纳米管阵列(TNTAs)、ZnO、GaN、ZnS、SiCN、SiCN/Si、金刚石和AlN中的至少一种。
本申请中所述的辐射发光组件(如第一辐射发光组件、第二辐射发光组件等)一般包括辐射发光材料和光电转换组件,辐射发光材料吸收放射源辐射的能量发光,光电转换组件将光转换为电能输出,可以采用的辐射发光材料选自ZnS:Cu,ZnS:Ag,SrAl 2O 4:Eu 2+,SrAl 2O 4:Dy 2+和Y 2O 2S:Eu中的至少一种,形成光电组件(如第一光电转换组件、辐射发光组件中的光电转换组件)的材料选自Si、GaAs、InP、GaInP、CuInGaSe 2、CuInSe 2、CdS、CdTe、染料敏化材料、聚合物材料和量子点材料中的至少一种。
本申请中所述的摩擦发光组件是指通过摩擦或力致形变可以发光的组件,形成摩擦发光组件的材料选自蔗糖、D-葡萄糖、乳糖、麦芽糖、L-鼠李糖、酒石酸、乙酸锂、丙二酸氢钾、维生素C、山梨醇六乙酸酯、邻苯二甲酸、香豆素、蔡嵌戊烷、9-蒽甲醇基材料、聚丁二烯、环氧树脂、铕钒、铜钒、四面体锰配合物、(NH 4) 2C 2O 4、LiSO 4·H 2O、Ce(SO 4) 3·8H 2O、Zn(NO 3) 2·6H 2O、(UO 2)(NO 3) 2·6H 2O、SiC、Si、InP、GaAs、Ge、金刚石、MgO、CaO、SrO、NaF、LiF、NaCl、KCl、KI、CsI、RbI、KBr、RbBr、BaAl 2Si 2O 8基材料、Sr 3Al 2O 6基材料、SrAl 2O 4基材料、Ca 2SrMgSi 2O 7基材料、Ca 2MgSi 2O 7基材料、SrMgAl 10O 17基材料、Sr 2Mg 2(PO 4) 2基材料、BaFCl基材料、BaFBr基材料、K 2Mg 2(SO 4) 3基材料、BaSi 2O 2N 2基材 料、CaO·Nb 2O 5基材料、ZnGa 2O 4基材料、MgGa 2O 4基材料、ZnAl 2O 4基材料、LiNbO 3基材料、SrAl 2O 4基材料和ZnS基材料中的至少一种。具体的,通过悬臂梁的往复运动挤压摩擦发光组件形变发光,第一光电转换组件(可与前文描述的光电转换组件一致)可以将光转换成电能输出。
根据本申请的实施例,可以在第一热电转换组件的上表面设置散热片,由此可以增大悬臂梁和环境之间的温差,提高能量转化效率。在本申请的一些实施例中,散热片可以为石墨散热片、铜散热片或铝合金散热。由此,散热效果较佳。
本领域技术人员可以理解,本申请中涉及的所有热电转换组件、光电转换组件、辐射伏特组件、辐射发光组件均设置有输出导线和与输出导线相连的输出端子,以便有效的输出电能,即同位素电池进一步包括多根输出导线,多根输出导线包括:第一热电转换组件输出导线,所述第一热电转换组件输出导线与所述第一热电转换组件电连接;第二热电转换组件输出导线,所述第二热电转换组件输出导线与所述第二热电转换组件电连接;第三热电转换组件输出导线,所述第三热电转换组件输出导线与所述第三热电转换组件电连接;第一光电转换组件输出导线,所述第一光电转换组件输出导线与所述第一光电转换组件电连接;第一辐射伏特组件输出导线,所述第一辐射伏特组件输出导线与所述第一辐射伏特组件电连接;第二辐射伏特组件输出导线,所述第二辐射伏特组件输出导线与所述第二辐射伏特组件电连接;第一辐射发光组件输出导线,第一辐射发光组件输出导线与所述第一辐射发光组件电连接;第二辐射发光组件输出导线,第二辐射发光组件输出导线与所述第二辐射发光组件电连接,其中,多根输出导线可以为镀镍铜芯高耐火绝缘导线,输出端子可以为卡接端子,输出端子材质可以为Al或Cu。
下面参照附图,详细描述本申请的同位素电池。
在本申请的一个实施例中,如图1-图5所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。第二电荷收集板23设置在所述壳体15上,并与所述第一电荷收集板25相对设置,且所述第二电荷收集板23上富集的电荷与所述第一电荷收集板25上富集的电荷极性 相反(比如,第二电荷收集板23上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出。所述第二电荷收集板23上表面沉积有放射性同位素薄膜21(放射源)。所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,支撑垫14设置于壳体15内表面,具体的可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间,所述第二橡胶垫圈17上装配有与密封空间相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈中央位置),用于使壳体15内部形成真空腔体16。
结合图2,本申请的同位素电池实现电学输出的过程可以描述为:采用悬臂梁11自由端下表面第一电荷收集板25对放射源21衰变时释放出的粒子进行收集,第一电荷收集板25与第二电荷收集板23富集的电荷电学极性相反,在库伦引力作用下悬臂梁11自由端下表面第一电荷收集板25拖动悬臂梁11弯曲使摩擦发光组件31产生机械形变发射特定光谱并通过第一光电转换组件32实现光电转换,当悬臂梁自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出;同时采用第一热电转换组件42将悬臂梁11与散热片41所处外部环境之间的温差转换成电能,实现电学输出。
图3和图4是图1中同位素电池结构的左视图,第一橡胶垫圈12所在端面镶嵌于壳体15,摩擦发光组件31和第一光电转换组件32固定于悬臂梁11上表面并被第一橡胶垫圈12所夹持,其中,图3是单悬臂梁同位素电池的左视图,图4是双悬臂梁同位素电池的左视图。
图5是图1中同位素电池结构的右视图,同位素电池的气嘴18通过第二橡胶垫圈17夹持固定。
在本申请的另一个实施例中,如图6所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。第二电荷收集板23设置在所述壳体15上,并与所述第一电荷收集板25相对设置,且所述第二电荷收集板23上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,第二电荷收集板23上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂 梁自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出。所述第二电荷收集板23上表面设置有作为第一能量转换组件的第二热电转换组件42a,在第二热电转换组件42a上表面沉积有放射性同位素薄膜21(放射源),也就是说,第二热电转换组件42a设置在放射源21远离第一电荷收集板25的一侧,并通过第二热电转换组件输出导线43a与第二热电转换组件输出端子44a电连接,如此,第二热电转换组件42a可以吸收放射源21靠近壳体15的一侧辐射的热量,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,支撑垫14设置于壳体15内表面,具体的,可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间,所述第二橡胶垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈17中央位置),用于使壳体15内部形成真空腔体16。
在本申请的又一个实施例中,如图7所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。此时,放射源21还同时作为第二电荷收集板,设置在作为第一能量转换组件的第一辐射伏特组件42b上(即第一能量转换组件设置在放射源远离所述第一电荷收集板的一侧),并与所述第一电荷收集板25相对设置,且所述放射源21上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,放射源21上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁自由端下表面第一电荷收集板25同放射源21接触时释放库仑引力,以此往复循环实现电学输出。其中,第一辐射伏特组件42b通过第一辐射伏特组件输出导线43b与第一辐射伏特组件输出端子44b电连接,如此,第一辐射伏特组件42b可以吸收放射源21靠近壳体15的一侧辐射的粒子,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,支撑垫14设置于壳体15内表面,具体的,可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间,所述第二橡胶垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫 圈17中央位置),用于使壳体15内部形成真空腔体16。
在本申请的又一个实施例中,如图8所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。此时,放射源21还同时作为第二电荷收集板,设置在作为第一能量转换组件的第一辐射发光组件42c上(即第一能量转换组件设置在放射源远离所述第一电荷收集板的一侧),并与所述第一电荷收集板25相对设置,且所述放射源21上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,放射源21上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁自由端下表面第一电荷收集板25同放射源21接触时释放库仑引力,以此往复循环实现电学输出。其中,第一辐射发光组件42c通过第一辐射发光组件输出导线43c与第一辐射发光组件输出端子44c电连接,如此,第一辐射发光组件42c可以吸收放射源21靠近壳体15的一侧辐射的粒子,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间;支撑垫14设置于壳体15内表面,具体的,可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间;所述第二橡胶垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈17中央位置),用于使壳体15内部形成真空腔体16。
在本申请的又一个实施例中,如图9所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输 出。此时,所述放射源21设置在所述悬臂梁11固定端的下方,且所述放射源21的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接,其中,第二能量转换组件和第三能量转换组件均为第三热电转换组件42d,第三热电转换组件42d通过第三热电转换组件输出导线43d与第三热电转换组件输出端子44d电连接,如此,第三热电转换组件42d可以吸收放射源衰变时释放的热量,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。所述第二电荷收集板23设置在所述壳体15上,并与所述第一电荷收集板25相对设置,且所述第二电荷富集23上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,第二电荷富集23上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁11自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,且位于放射源21和第三热电转换组件42d的两侧;支撑垫14设置于壳体15内表面,具体的,支撑垫14可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间;所述第二橡胶垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈17中央位置),用于使壳体15内部形成真空腔体16。
在本申请的又一个实施例中,如图10所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。此时,所述放射源21设置在所述悬臂梁11固定端的下方,且所述放射源21的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接,其中,第二能量转换组件和第三能量转换组件均为第二辐射伏特组件42e,第二辐射伏特组件42e通过第二辐射伏特组件输出导线43e与第二辐射伏特组件输出端子44e电连接,如此,第二辐射伏特组件42e可以吸收放射源衰变时释放的粒子,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。所述第二电荷收集 板23设置在所述壳体15上,并与所述第一电荷收集板25相对设置,且所述第二电荷富集23上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,第二电荷富集23上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁11自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,且位于放射源21和第二辐射伏特组件42e的两侧;支撑垫14设置于壳体15内表面,具体的,支撑垫14可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间;所述第二橡胶垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈17中央位置),用于使壳体15内部形成真空腔体16。
在本申请的又一个实施例中,如图11所示:同位素电池整体为柱状结构,壳体15两端分别镶嵌第一橡胶垫圈12和第二橡胶垫圈17,悬臂梁11自由端伸入壳体15中悬空设置,悬臂梁11固定端通过第一橡胶垫圈12或壳体15固定,摩擦发光组件31设置在所述悬臂梁11固定端上表面,第一光电转换组件32设置在摩擦发光组件31上表面,第一光电转换组件输出端子34通过第一光电转换组件输出导线33和第一光电转换组件32电连接,进而将光转换的电能输出。所述悬臂梁11自由端上表面和下表面分别装配有第一热电转换组件42和第一电荷收集板25,所述第一热电转换组件42上表面设置有散热片41,所述第一热电转换组件电学输出端子44通过第一热电转换组件输出导线43接入第一热电转换组件42,进而实现将第一热电转换组件42与散热片41所处外部环境之间的温差热转换成的电能输出。此时,所述放射源21设置在所述悬臂梁11固定端的下方,且所述放射源21的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接,其中,第二能量转换组件和第三能量转换组件均为第二辐射发光组件42f,第二辐射发光组件42f通过第二辐射发光组件输出导线43f与第二辐射发光组件输出端子44f电连接,如此,第二辐射发光组件42f可以吸收放射源衰变时释放的粒子,并将其转换为电能输出,有效提高电池的能量转化效率,克服单一换能、能量损失较大的问题。所述第二电荷收集板23设置在所述壳体15上,并与所述第一电荷收集板25相对设置,且所述第二电荷富集23上富集的电荷与所述第一电荷收集板25上富集的电荷极性相反(比如,第二电荷富集23上富集正电荷22,第一电荷收集板25上富集负电荷24),当悬臂梁11自由端下表面第一电荷收集板25同第二电荷收集板23接触时释放库仑引力,以此往复循环实现电学输出。此外,所述支撑架13设置在所述悬臂梁11固定端的下表面和所述壳体15之间,且位于放射源21和第二辐射发光组件42f的两侧;支撑垫14设置于壳体15内表面,具体的,支撑垫14可以紧贴壳体15内壁设置在第一橡胶垫圈12和第二橡胶垫圈17之间;所述第二橡胶 垫圈17上装配有与密封空间16相连通的阀门19和气嘴18(比如可以设置在第二橡胶垫圈17中央位置),用于使壳体15内部形成真空腔体16。
根据本申请的实施例,参照图12和图13,在同一同位素电池中,换能器件10的数量为多个。其中,摩擦发光单元30包括摩擦发光组件31和第一光电转换组件32,第一热电单元40包括第一热电转换组件42和散热片41,其中的各个输出导线和输出端子等细节未画出。由此,可以满足对不同同位素电池对不同电量输出的要求。
根据本申请的实施例,参照图12和图13,集成换能器件20中的换能器件10成列分布,相邻两列换能器件构成换能器件组,即换能器件10沿放射源21长度方向呈现模块化装配并形成换能器件组,每个换能器件组中的两列换能器件的自由端靠近设置。由此,工艺流程简单,集成度高。
根据本申请的实施例,多个换能器件之间通过串联和并联中的至少一种的方式实现电源管理。由此,本领域技术人员可以根据实际需求灵活设计电池的电路,满足各种不同电池的使用需求。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意 性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种摩擦发光同位素电池,其特征在于,包括壳体和设置在所述壳体中的换能器件,所述换能器件包括:
    悬臂梁,所述悬臂梁长度方向上的一端固定在所述壳体上形成固定端,所述悬臂梁长度方向上的另一端伸向所述壳体中并悬空设置以形成自由端;
    第一电荷收集板,所述第一电荷收集板设置在所述悬臂梁自由端的下表面;
    第二电荷收集板,所述第二电荷收集板设置在所述壳体上,并与所述第一电荷收集板相对设置,且所述第二电荷收集板上富集的电荷与所述第一电荷收集板上富集的电荷极性相反;
    放射源,所述放射源设置在所述壳体中;
    摩擦发光组件,所述摩擦发光组件设置在所述悬臂梁的固定端上表面;
    第一光电转换组件,所述第一光电转换组件设置在所述摩擦发光组件上表面;
    第一热电转换组件,所述第一热电转换组件设置在所述悬臂梁自由端的上表面;
    散热片,所述散热片设置在所述第一热电转换组件的上表面。
  2. 根据权利要求1所述的摩擦发光同位素电池,其特征在于,所述放射源设置在所述第二电荷收集板远离所述壳体的表面上。
  3. 根据权利要求2所述的摩擦发光同位素电池,其特征在于,还包括第一能量转换组件,所述第一能量转换组件设置在所述放射源远离所述第一电荷收集板的一侧。
  4. 根据权利要求3所述的摩擦发光同位素电池,其特征在于,所述第一能量转换组件包括第二热电转换组件、第一辐射伏特组件、第一辐射发光组件中的任意一种。
  5. 根据权利要求3或4所述的摩擦发光同位素电池,其特征在于,所述放射源设置在所述第一能量转换组件上,与所述第一电荷收集板相对设置,且复用为所述第二电荷收集板。
  6. 根据权利要求1所述的摩擦发光同位素电池,其特征在于,所述放射源设置在所述悬臂梁固定端的下方,且所述放射源的上表面和下表面上分别设置有第二能量转换组件和第三能量转换组件,所述第二能量转换组件与所述第一电荷收集板电连接,所述第三能量转换组件与所述第二电荷收集板电连接。
  7. 根据权利要求6所述的摩擦发光同位素电池,其特征在于,所述第二能量转换组件和所述第三能量转换组件分别为第三热电转换组件、第二辐射伏特组件和第二辐射发光组件中的任意一种。
  8. 根据权利要求1-7中任一项所述的摩擦发光同位素电池,其特征在于,所述壳体包括:
    圆柱形壳体本体和设置在所述圆柱形壳体本体两端的第一橡胶密封圈和第二橡胶密封圈,以使得所述壳体内部形成密封空间,所述悬臂梁固定端嵌入所述第一橡胶密封圈中,所述第二橡胶密封圈上设置有与所述密封空间相连通的阀门和与所述阀门相连通的气嘴。
  9. 根据权利要求8所述的摩擦发光同位素电池,其特征在于,所述壳体本体内表面设置有支撑垫。
  10. 根据权利要求8或9所述的摩擦发光同位素电池,其特征在于,所述壳体本体内表面设置有纳米铅有机玻璃复合材料涂层。
  11. 根据权利要求1-10中任一项所述的摩擦发光同位素电池,其特征在于,还包括支撑架,所述支撑架设置在所述悬臂梁固定端的下表面和所述壳体之间。
  12. 根据权利要求1-11中任一项所述的摩擦发光同位素电池,其特征在于,所述放射源包括α放射源和β放射源中的至少一种。
  13. 根据权利要求12所述的摩擦发光同位素电池,其特征在于,所述α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;所述β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 390SrNO 390SrNO 3/二环己烷并-18-冠醚-6、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm中的至少一种。
  14. 根据权利要求1-13中任一项所述的摩擦发光同位素电池,其特征在于,形成所述摩擦发光组件的材料选自蔗糖、D-葡萄糖、乳糖、麦芽糖、L-鼠李糖、酒石酸、乙酸锂、丙二酸氢钾、维生素C、山梨醇六乙酸酯、邻苯二甲酸、香豆素、蔡嵌戊烷、9-蒽甲醇基材料、聚丁二烯、环氧树脂、铕钒、铜钒、四面体锰配合物、(NH 4) 2C 2O 4、LiSO 4·H 2O、Ce(SO 4) 3·8H 2O、Zn(NO 3) 2·6H 2O、(UO 2)(NO 3) 2·6H 2O、SiC、Si、InP、GaAs、Ge、金刚石、MgO、CaO、SrO、NaF、LiF、NaCl、KCl、KI、CsI、RbI、KBr、RbBr、BaAl 2Si 2O 8基材料、Sr 3Al 2O 6基材料、SrAl 2O 4基材料、Ca 2SrMgSi 2O 7基材料、Ca 2MgSi 2O 7基材料、SrMgAl 10O 17基材料、Sr 2Mg 2(PO 4) 2基材料、BaFCl基材料、BaFBr基材料、K 2Mg 2(SO 4) 3基材料、BaSi 2O 2N 2基材料、CaO·Nb 2O 5基材料、ZnGa 2O 4基材料、MgGa 2O 4基材料、ZnAl 2O 4基材料、LiNbO 3基材料、SrAl 2O 4基材料和ZnS基材料中的至少一种。
  15. 根据权利要求1-14中任一项所述的摩擦发光同位素电池,其特征在于,形成所述 第一光电转换组件的材料选自Si、GaAs、InP、GaInP、CuInGaSe 2、CuInSe 2、CdS、CdTe、染料敏化材料、聚合物材料或量子点材料中的至少一种。
  16. 根据权利要求1-15中任一项所述的摩擦发光同位素电池,其特征在于,形成所述热电转换组件的材料选自Bi 2Te 3基材料、Sb 2Se 3基材料、Sb 2Te 3基材料、BiSb基材料、Zn 4Sb 3基材料、Mg 3Sb 2基材料和Sb 2Se 3基材料中的至少一种。
  17. 根据权利要求4-16中任一项所述的摩擦发光同位素电池,其特征在于,形成所述辐射伏特组件的材料选自Ge、Si、InP、GaAs、GaP、SiC、TiO 2纳米管阵列、ZnO、GaN、ZnS、SiCN、SiCN/Si、金刚石和AlN中的至少一种;形成所述辐射发光组件的材料选自ZnS:Cu、ZnS:Ag、SrAl 2O 4:Eu 2+、SrAl 2O 4:Dy 2+或Y 2O 2S:Eu中的至少一种。
  18. 根据权利要求4或7所述的摩擦发光同位素电池,其特征在于,进一步包括:
    多根输出导线,所述多根输出导线分别与第一热电转换组件、第二热电转换组件、第三热电转换组件、第一光电转换组件、第一辐射伏特组件、第一辐射伏特组件、第一辐射发光组件和第一辐射发光组件电连接,其中,所述多根输出导线选自镀镍铜芯高耐火绝缘导线。
  19. 根据权利要求1所述的摩擦发光同位素电池,其特征在于,所述换能器件的数量为多个。
  20. 根据权利要求19所述的摩擦发光同位素电池,其特征在于,所述换能器件成列分布,相邻两列所述换能器件构成换能器件组,每个所述换能器件组中的两列换能器件的自由端靠近设置。
  21. 根据权利要求19或20所述的摩擦发光同位素电池,其特征在于,多个所述换能器件之间通过串联和并联中的至少一种的方式实现电源管理。
PCT/CN2018/086917 2018-05-15 2018-05-15 摩擦发光同位素电池 WO2019218164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/086917 WO2019218164A1 (zh) 2018-05-15 2018-05-15 摩擦发光同位素电池
US16/656,961 US10930408B2 (en) 2018-05-15 2019-10-18 Triboluminescence isotope battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086917 WO2019218164A1 (zh) 2018-05-15 2018-05-15 摩擦发光同位素电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/656,961 Continuation US10930408B2 (en) 2018-05-15 2019-10-18 Triboluminescence isotope battery

Publications (1)

Publication Number Publication Date
WO2019218164A1 true WO2019218164A1 (zh) 2019-11-21

Family

ID=68539537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086917 WO2019218164A1 (zh) 2018-05-15 2018-05-15 摩擦发光同位素电池

Country Status (2)

Country Link
US (1) US10930408B2 (zh)
WO (1) WO2019218164A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479920B1 (en) * 2001-04-09 2002-11-12 Wisconsin Alumni Research Foundation Direct charge radioisotope activation and power generation
CN105427913A (zh) * 2015-12-29 2016-03-23 兰州大学 一种基于pzt下的动态型同位素电池及其制备方法
CN105741900A (zh) * 2016-03-02 2016-07-06 京东方科技集团股份有限公司 微机电系统核电池
CN106941017A (zh) * 2017-04-10 2017-07-11 兰州大学 一种热离子‑光电‑热电复合式同位素电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805372B1 (ko) * 2008-11-10 2017-12-07 코넬 유니버시티 자가-발전형 압전-표면 탄성파 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479920B1 (en) * 2001-04-09 2002-11-12 Wisconsin Alumni Research Foundation Direct charge radioisotope activation and power generation
CN105427913A (zh) * 2015-12-29 2016-03-23 兰州大学 一种基于pzt下的动态型同位素电池及其制备方法
CN105741900A (zh) * 2016-03-02 2016-07-06 京东方科技集团股份有限公司 微机电系统核电池
CN106941017A (zh) * 2017-04-10 2017-07-11 兰州大学 一种热离子‑光电‑热电复合式同位素电池及其制备方法

Also Published As

Publication number Publication date
US10930408B2 (en) 2021-02-23
US20200051707A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
CN108550412B (zh) 压电热电动态型同位素电池
CN106941017B (zh) 一种热离子-光电-热电复合式同位素电池及其制备方法
US6479919B1 (en) Beta cell device using icosahedral boride compounds
CN103996734B (zh) 一种荧光层、该荧光层的制备方法及其在核电池中的应用
US5942834A (en) Thermionic electric converters
CN107123457B (zh) 一种直接收集-光电-热电复合式同位素电池及制备方法
CN101552046B (zh) 复合型同位素电池
CN108648847B (zh) 基于液态金属的动态型同位素电池
RU90612U1 (ru) Источник электрического тока
CN108630336B (zh) 压电热电静态型同位素电池
CN101645317B (zh) 一种碳纳米管同位素电池
WO2019218164A1 (zh) 摩擦发光同位素电池
CN110491542B (zh) 摩擦发光同位素电池
CN101908387B (zh) 一种辐射源碳纳米管电池装置
WO2019218163A1 (zh) 基于液态金属的动态型同位素电池
CN108538422B (zh) 直接收集-热离子发射-热电同位素电池及其制备方法
WO2000022629A1 (en) Power cell
CN217640684U (zh) 一种热离子-温差梯级发电同位素电池
KR102145901B1 (ko) 열전 소자 모듈
CN1266508A (zh) 发电装置及使用发电装置的电子时计
CN108631649B (zh) 基于二维薄膜的碱金属热电转换器和同位素电池
CN115206580A (zh) 一种放射性同位素核电池薄膜及其制备方法
KR101282103B1 (ko) Led 조명 장치
CN116580866A (zh) 一种基于形状记忆的同位素电池及用电设备
KR20050012519A (ko) 핀 다이오드를 이용한 초소형 동위원소 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918797

Country of ref document: EP

Kind code of ref document: A1