WO2019218125A1 - 一种天线结构和终端设备 - Google Patents

一种天线结构和终端设备 Download PDF

Info

Publication number
WO2019218125A1
WO2019218125A1 PCT/CN2018/086765 CN2018086765W WO2019218125A1 WO 2019218125 A1 WO2019218125 A1 WO 2019218125A1 CN 2018086765 W CN2018086765 W CN 2018086765W WO 2019218125 A1 WO2019218125 A1 WO 2019218125A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency band
frame
capacitor
band
Prior art date
Application number
PCT/CN2018/086765
Other languages
English (en)
French (fr)
Inventor
王吉康
尤佳庆
杨小丽
侯猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880044659.3A priority Critical patent/CN110832703B/zh
Priority to PCT/CN2018/086765 priority patent/WO2019218125A1/zh
Publication of WO2019218125A1 publication Critical patent/WO2019218125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present application relates to the field of terminal equipment technologies, and in particular, to an antenna structure and a terminal device.
  • the design of the mobile phone is more and more metal materials, but the metal casing may shield the antenna signal of the mobile phone, so the use of metal materials will seriously affect The antenna performance of the phone.
  • Wireless communication is an essential function of mobile phones. Antennas are an essential component of wireless communication. The level of antenna performance is also related to the quality of mobile phone calls.
  • MIMO multiple-input multiple-output
  • the present application provides an antenna structure and a terminal device for solving the problem of isolation between multiple antennas, thereby improving the performance of the antenna.
  • the present application provides an antenna structure, which is applied to a terminal device, where the terminal device includes a metal frame disposed on a top of the terminal device, the metal frame includes a first frame and a second frame, and the first frame and the second frame Having a first gap therebetween, the antenna structure includes: a first antenna and a second antenna located in the metal frame, the first antenna and the second antenna are separated by a first gap, and the second antenna is used to cover the first frequency band, The frequency band covered by one antenna is the same as the first frequency band, wherein the first antenna includes a first component, the frequency band covered by the first component is the same as the first frequency band, and at least 50% of the first component is disposed at The second antenna is disposed on the first frame on the printed circuit board (PCB) in the metal frame.
  • PCB printed circuit board
  • the present application provides an antenna structure.
  • the first antenna is externally connected to the PCB by using a second frame, and the first antenna is radiated by using the second frame, and the first antenna is located on the printed circuit board, and the second antenna is disposed on the printed circuit board.
  • the first antenna and the second antenna having the same frequency band are spatially staggered such that the radiation regions of the same frequency band are spatially shifted to achieve an increase in isolation between the antennas having the same frequency band.
  • the metal frame further includes a third frame, the second frame is located between the first frame and the third frame, and the third frame and the second frame are The second antenna is further configured to cover the second frequency band, wherein the second frequency band is lower than the first frequency band, and the antenna structure further includes: a third antenna, the third antenna and the second antenna pass the second gap Separated, the component in the second antenna for covering the second frequency band is close to the third antenna, and the frequency band covered by the third antenna is different from the second frequency band.
  • the second antenna is further configured to cover the third frequency band, where the third frequency band is higher than the first In the second frequency band, the first antenna includes a first circuit, and the first circuit is configured to isolate the fourth frequency band covered by the first antenna from the third frequency band, and the fourth frequency band is the same as the third frequency band. This isolates the same frequency band covered by the first antenna and the second antenna to improve the isolation between the first antenna and the second antenna.
  • the first circuit includes: a first capacitor, the first capacitor is grounded, Alternatively, the first circuit is an LC resonant circuit or the first circuit is a lumped device filter. This makes the structure of the first circuit simple.
  • a fourth possible implementation manner of the first aspect the components in the antenna that cover the first frequency band are located on different sides of the first frame. By arranging components covering the different frequency bands in the same antenna on different sides of the first frame, interference between components covering different frequency bands in the same antenna can be avoided. Thereby increasing the isolation between components covering different frequency bands in the same antenna.
  • the component for covering the second frequency band in the second antenna includes: An inductor, a second inductor, and a first capacitor, wherein the first end of the first inductor and the first end of the second inductor are connected to the first end of the first frame, and the second end of the first inductor is connected to the first ground The second end of the second inductor is connected to the first ground through the first capacitor;
  • the component in the second antenna for covering the first frequency band includes: a second capacitor, a third capacitor, a third inductor, and a feed power source, wherein The first end of the second capacitor is connected to the second end of the first frame, the second end of the second capacitor is connected to the power supply, the first end of the third capacitor, and the first end of the third inductor, the third inductor The second end and the second end of the third capacitor are connected to the second ground.
  • the third antenna uses the second antenna to cover the first frequency band
  • the components cover the GPS band of the Global Positioning System, the WIFI band, the corresponding B1 band or the B3 band or the B7 band or the B42 band in the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the first antenna, the second antenna, and the third antenna are used to cover The corresponding B1 band or B3 band or B7 band in the long term evolution (LTE) system. This can make the top of the terminal device cover the B1 band or the B3 band or the B7 band, thereby improving the degree of freedom of the antenna design of the terminal device.
  • LTE long term evolution
  • the application provides a terminal device, where the terminal device includes a metal frame disposed on a top of the terminal device, the metal frame includes a first frame and a second frame, and the first frame and the second frame have a first gap therebetween. And an antenna structure as described in any one of the first aspect to the first aspect.
  • the metal frame further includes a third frame, the second frame is located between the first frame and the third frame, There is a second gap between the three frames and the second frame.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of standing wave analysis of a first antenna provided by the present application.
  • FIG. 8 is a schematic diagram showing the relationship between efficiency and frequency of a first antenna provided by the present application.
  • FIG. 9 is a schematic diagram of standing wave analysis of a second antenna provided by the present application.
  • FIG. 10 is a schematic diagram of efficiency and frequency comparison of a second antenna provided by the present application.
  • FIG. 11 is a schematic diagram of standing wave analysis of a third antenna provided by the present application.
  • FIG. 12 is a schematic diagram of efficiency and frequency of a third antenna provided by the present application.
  • FIG. 13 is a standing wave analysis diagram of a fourth antenna provided by the present application.
  • FIG. 14 is a schematic diagram of efficiency and frequency of a third antenna provided by the present application.
  • 15 is a schematic diagram of analysis of isolation between a first antenna and a second antenna provided by the present application.
  • 16 is a schematic diagram of analysis of isolation between a first antenna and a third antenna provided by the present application.
  • 17 is a schematic diagram of analysis of isolation between a first antenna and a fourth antenna provided by the present application.
  • FIG. 18 is a schematic diagram of analysis of isolation between a second antenna and a third antenna provided by the present application.
  • FIG. 19 is a schematic diagram of analysis of isolation between a second antenna and a fourth antenna provided by the present application.
  • FIG. 20 is a schematic diagram of analysis of isolation between a third antenna and a fourth antenna provided by the present application.
  • first, second, and the like in this application are only used to distinguish different objects, and the order is not limited.
  • first antenna and the second antenna are only for distinguishing different antennas, and their order is not limited.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • At least one means one or more, and "a plurality” means two or more.
  • “/” means or means, for example, A/B may mean A or B unless otherwise stated.
  • “At least one of the following” or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • FIG. 1 shows an antenna structure provided by an embodiment of the present application.
  • the antenna structure is applied to a terminal device, and the terminal device includes: a metal frame 10 disposed on a top of the terminal device, and the metal frame 10 includes a first frame 101 and a second frame 102, wherein the first frame 101 and the second frame 102 have a first gap A, and the antenna structure comprises: a first antenna 20 and a second antenna 30 located in the metal frame 101, The first antenna 20 and the second antenna 30 are separated by a first gap A, and the second antenna 30 is used to cover the first frequency band.
  • the frequency band covered by the first antenna 20 is the same as the first frequency band, wherein the first antenna 20 includes the first frequency band.
  • a component, the frequency band covered by the first component is the same as the first frequency band, a majority of the first component is disposed on a printed circuit board (PCB) in the metal frame, and the second antenna 30 is disposed on the first Two borders 102.
  • PCB printed circuit board
  • Most of the first component is located on a printed circuit board (PCB) disposed within the metal frame.
  • PCB printed circuit board
  • a portion greater than or equal to 50% of the first component is located on the PCB disposed within the metal frame.
  • the present application provides an antenna structure.
  • the first antenna is externally connected to the PCB by using a second frame, and the first antenna is radiated by using the second frame, and the first antenna is located on the printed circuit board, and the second antenna is disposed on the printed circuit board.
  • the first antenna and the second antenna having the same frequency band are spatially staggered such that the radiation regions of the same frequency band are spatially shifted to achieve an increase in isolation between the antennas having the same frequency band.
  • the first frequency band in the embodiment of the present application is an intermediate frequency band, and the frequency range of the first frequency band is: 1710 MHz to 2170 MHz.
  • the frequency band covered by the first component in the embodiment of the present application may be the same as the first frequency band.
  • the range of the frequency band covered by the first component in the first antenna is the same as the frequency band of the first frequency band (for example, the frequency band covered by the first antenna is For the first frequency band).
  • the first frequency band is 1710 MHz to 2170 MHz
  • the frequency range covered by the first antenna is also 1710 MHz to 2170 MHz.
  • the frequency band covered by the first component in the embodiment of the present application may be the same as the first frequency band, and the difference between the frequency band range covered by the first component in the first antenna and the frequency band range of the first frequency band is less than a preset threshold. This is not limited. In the following embodiments, where the two or more frequency bands are the same, reference may be made to the description herein.
  • the first component involved in the embodiment of the present application can also be understood as a component in the first antenna for covering the first frequency band.
  • the second frame 102 in the present application is perpendicular to the first frame 101 .
  • a portion of the first frame 101 adjacent to the second frame 102 is curved.
  • the structure of the second frame 102 and the first frame 101 refer to the structure of the metal frame of the terminal device in the prior art, which is not described herein again.
  • the width of the first gap A in the present application is 1.2 mm to 2.0 mm.
  • the width of the first gap A in the embodiment of the present application is 1.5 mm.
  • the PCB board in the present application may be a flexible printed circuit board (FPC).
  • FPC flexible printed circuit board
  • the flexible circuit board can also be simply referred to as: soft board.
  • the metal frame 10 further includes a third frame 103.
  • the second frame 102 is located between the first frame 101 and the third frame 103, and has a second gap B between the third frame 103 and the second frame 102.
  • the second antenna 30 is further configured to cover the second frequency band.
  • the second frequency band is lower than the first frequency band, and the antenna structure further includes:
  • the third antenna 40 is separated from the second antenna 30 by a second gap B.
  • the component of the second antenna 30 for covering the second frequency band is close to the third antenna 40, and the frequency band covered by the third antenna 40 is The second frequency band is different.
  • the width of the second gap B in the present application is 1.2 mm to 2.0 mm.
  • the width of the first gap B in the embodiment of the present application is 1.5 mm.
  • the second frequency band in this application may be a low frequency band.
  • the frequency range of the second frequency band is: 700 MHz to 960 MHz.
  • the frequency band covered by the third antenna 40 in the embodiment of the present application may be different from the second frequency band.
  • the range of the frequency band covered by the third antenna 40 is different from the frequency band range of the second frequency band. Or it can be understood that there is no intersection between the range of the frequency band covered by the third antenna 40 and the frequency band range of the second frequency band.
  • the second frequency band is a low frequency band
  • the frequency band covered by the third antenna 40 is an intermediate frequency band or a high frequency band.
  • the range of the intermediate frequency band may be 1710 to 2170 MHz.
  • the coverage of the high frequency band can be: 2300MHz to 2700MHz.
  • the component in the second antenna 30 for covering the second frequency band may be an IFA antenna.
  • the IFA antenna in the embodiment of the present application is also referred to as an inverted F antenna, and the shape of the antenna is an inverted "F".
  • the IFA antenna includes a grounding point and a feeding point.
  • the IFA antenna radiating portion is flat or linear, and the IFA antenna further includes a grounding leg connected between the grounding point and the radiating portion and a feeding portion connected between the feeding point and the radiating portion.
  • the feed point and the grounding foot can be parallel to each other, and both can be perpendicular to the radiating portion.
  • the component in the second antenna 30 for covering the second frequency band is located on the first frame 101 and adjacent to one end of the third antenna 40.
  • FIG. 3 shows a specific structure of a component for covering a second frequency band in the second antenna 30 provided by the embodiment of the present application, where the second antenna 30 is used to cover the second frequency band.
  • the components include: a first inductor L1, a second inductor L2, and a first capacitor C1.
  • the first end of the first inductor L1 and the first end of the second inductor L2 are connected to the first end of the second frame 102.
  • the second end of the first inductor L1 is connected to the first ground end G1, and the second end of the second inductor L2 is connected to the first ground end G1 through the first capacitor C1.
  • the first end of the second frame 102 can be understood as being on the second frame 102 and adjacent to one end of the third antenna 40.
  • the components of the second antenna 30 for covering the first frequency band include: a second capacitor C2, a third capacitor C3, a third inductor L3, and a feed power source F1.
  • the first end of the second capacitor C2 is connected to the second end of the second frame 102, and the second end of the second capacitor C2 is connected to the power supply, the first end of the third capacitor C3, and the first end of the third inductor L3.
  • the second end of the third inductor L3 and the second end of the third capacitor C3 are connected to the second ground terminal G2.
  • the size of the first capacitor C1, the size of the first inductor L1, and the size of the second inductor L2 are not limited, and the size of the first capacitor C1, the size of the first inductor L1, and the magnitude of the second inductor L2 may be The first frequency band used for coverage in the second antenna is selected.
  • the size of the first capacitor C1 in the present application is 1 pF
  • the size of the first inductor L1 is 68 nH
  • the size of the second inductor L2 is 5 nH.
  • the size of the second capacitor C2 is 4 pF
  • the size of the third capacitor C3 is 1.4 pF
  • the size of the third inductor L3 is 3 nH.
  • the second frame 102 is also connected to the third ground terminal G3 in the present application.
  • the component for covering the second frequency band and the component for covering the first frequency band in the second antenna 30 are coupled with the second frame 102 such that the frequency range of the second antenna 30 is It is one or more of the following frequency bands: B28 band, B5 band, B8 band, B3 band, B1 band, B40 band and B7 band corresponding to the LTE system.
  • the specific range of the BX frequency band in the embodiment of the present application may be determined by the frequency band coverage in the LTE system.
  • the specific frequency range corresponding to the above BX frequency band in the LTE system is also applicable to the frequency band covering the same frequency range in the future mobile communication system. That is, if the coverage of a certain frequency band is equal to the BX frequency band in the future communication system, the above BX frequency band may also be a certain frequency band in the future communication system.
  • the component for covering the second frequency band in the second antenna 30 is radiated by using the entire second frame, which is advantageous for increasing the antenna aperture.
  • both ends of the second antenna 30 are open in the embodiment of the present application, which is beneficial to low frequency band radiation.
  • the second antenna 30 is further configured to cover a third frequency band, where the third frequency band is higher than the second frequency band, and the first antenna 20 includes a first circuit, the first The circuit is configured to isolate the fourth frequency band covered by the first antenna from the third frequency band, and the fourth frequency band is the same as the third frequency band.
  • the fourth frequency band is a high frequency band.
  • the first antenna of the embodiment of the present application can be used not only to cover the intermediate frequency band but also to cover the high frequency band.
  • the first component is also used to cover the high frequency band, wherein the first component may adopt a ring-shaped (LOOP) antenna scheme, and the first component is adjacent to the second antenna.
  • the returning foot of the LOOP antenna on the first frame is connected to the ground by a small capacitor in series.
  • the fourth capacitor C4 is connected to a side of the first frame adjacent to the first interval A, and the fourth capacitor is grounded through G4.
  • the first antenna in the embodiment of the present application is an antenna formed by coupling the FPC and the bezel 101.
  • the FPC portion accounts for more than 50%.
  • the portion of the first component for covering the intermediate frequency is formed by coupling the FPC with the lower half of the bezel 101 (for example, the bezel between P and Q in FIG. 4).
  • the portion of the first component used to cover the high frequency is formed by coupling the FPC to the entire bezel.
  • the third frequency band may be a high frequency band, and the frequency band of the third frequency band is: 2300 MHz to 2700 MHz.
  • the first circuit includes: a fifth capacitor, the fifth capacitor being grounded.
  • the first circuit is an LC resonant circuit including a capacitor C5 and an inductor L4.
  • the first circuit is a lumped device filter.
  • the active filter is not limited in this embodiment of the present application.
  • capacitor C5 and inductor L4 are located on the FPC.
  • the components for covering the second frequency band in the second antenna 30 and the components for covering the first frequency band in the second antenna 30 are located on different sides of the second frame 102. It can also be understood that the component for covering the second frequency band in the second antenna 30 is located on the second frame 102 and is close to one end of the first gap A. The component for covering the second frequency band in the second antenna 30 is located on the second bezel 102 and near one end of the second gap B.
  • the third antenna 40 covers one or more of the following frequency bands by using a component in the second antenna 30 for covering the first frequency band: a global positioning system GPS frequency band, a WIFI frequency band, and a corresponding B1 in the long term evolution LTE system.
  • the frequency range of the GPS band is: 1575MHz.
  • the WIFI band may include at least one of a WIFI 2.4 band range or a WIFI 5 band range.
  • the frequency range of the WIFI 2.4 is: 2400 ⁇ 2500MHz.
  • the frequency range of WIFI5 is: 5100 ⁇ 5800MHz.
  • the frequency range covered by the first antenna in the embodiment of the present application is: a corresponding B1 frequency band/B3 frequency band/B7 frequency band/B42 frequency band in a long term evolution LTE system.
  • the first antenna 20, the second antenna 30, and the third antenna 40 are used to cover a frequency range of one or more of the following frequency bands: the corresponding B28 frequency band in the Long Term Evolution (LTE) system. , B3 band, B7 band.
  • LTE Long Term Evolution
  • the third antenna 40 in the embodiment of the present application includes a sixth capacitor C6 and a feed power source F3, wherein the first end of the sixth capacitor C6 is connected to the third frame 103, and the second end of the sixth capacitor C6.
  • the power supply F3 is connected, and the third frame 103 is connected to the fifth ground terminal G5.
  • At least three antennas for covering the B1 frequency band, the B3 frequency band, and the B7 frequency band may be disposed on the top metal edge of the terminal device (for example, 1.5 mm). Under the headroom, this minimizes the use of the antenna layout and reserves space for the antennas placed in subsequent terminal equipment.
  • the first antenna, the second antenna, and the third antenna in the embodiment of the present application are all MIMO antennas.
  • a camera may be disposed between the component for covering the first frequency band and the component for covering the second frequency band in the second antenna. Due to the loading of the camera, the higher-order mode of the long-branch section of the second antenna can be coupled at the third antenna end, and the filter is grounded to the out-of-band by the near field communication (NFC) to solve the isolation problem.
  • NFC near field communication
  • the terminal device further includes a middle frame 50 , and the middle frame 50 and the metal frame 10 have a third gap C therebetween.
  • the third gap C is located on the same side as the third frame 103.
  • the antenna structure further includes a fourth antenna 60.
  • the fourth antenna 60 is located in the middle frame 50 and is separated from the third antenna 40 by a third gap C.
  • the fourth antenna 60 is configured to cover one or more of the WIFI band and the B42 band.
  • the fourth antenna 60 includes a feed source and a capacitor C3, wherein the feed source and the capacitor C3 are connected to the middle frame 50 by a metal piece.
  • the middle frame 50 is grounded.
  • the third antenna and the fourth antenna are located on the same side of the terminal device, and the isolation and ECC requirements are achieved by the core 1 antenna solution.
  • the frequency bands covered by an antenna involved in the embodiments of the present application are: WIFI frequency band, B1 frequency band, B3 frequency band, B7 frequency band, and B42 frequency band.
  • WIFI frequency band For a specific frequency range corresponding to a certain frequency band, reference may be made to the related description in the LTE system or the next generation communication system in the prior art, and details are not described herein again.
  • the first antenna is externally connected to the FPC such that the first antenna covers the B1, B3, or B7 frequency bands.
  • the antenna of the external portion of the first antenna is not limited to the FPC, and may be an embedded steel sheet or a laser-direct-structuring (LDS) antenna.
  • the components of the first antenna using the FPC to implement the B1, B3, and B7 bands may be in the form of antennas such as IFA and left hand.
  • FIG. 7 shows a schematic diagram of standing wave analysis of the first antenna provided by the present application.
  • the horizontal axis represents frequency and the vertical axis represents return loss.
  • the coordinates of point D are (1.277 GHz, -24.578 dBo)
  • the coordinates of point A are (2.0931 GHz, -1.9676 dBa)
  • the coordinates of point B are (2.743 GHz, -1.5282 dBa)
  • the coordinates of point C (3.4721GHz, -14.873dBa).
  • the current (the line labeled 1 in FIG. 5) mainly passes from the first bezel 101 through the low-pass high-impedance filter to the reverse "left-hand" structure of the feed.
  • the LOOP antenna current (the line labeled 2 in Figure 5) is at the opposite side of the FPC, and the current at the top of the middle frame is small.
  • the LOOP antenna current (the line labeled 3 in Figure 5) is reversed at the lower side of the FPC, and the current at the top of the middle frame is enhanced at A.
  • the first antenna at C has two reversal points.
  • FIG. 8 shows a schematic diagram of the relationship between the efficiency and the frequency of the first antenna.
  • FIG. 9 shows a schematic diagram of standing wave analysis of the second antenna.
  • the coordinates at point E in FIG. 9 are (0.80615 GHz, -2.9799 dBa), and the coordinates of point F are (0.94397 GHz, -10.274).
  • the coordinates of point G are (1.7679 GHz, -3.1094dBa)
  • the coordinates of point H are (2.6422 GHz, -4.4599dBa).
  • FIG. 10 is a schematic diagram showing the efficiency and frequency comparison of the second antenna of the present application.
  • the coordinates of the identifier A1 are (.78279 GHz, -8.6026 dBp), and the coordinates of A2 are (0.95467 GHz, - 8.2456dBp), the coordinates of A3 are (2.15GHz, -7.5008dBp), and the coordinates of A4 are (2.75GHz, -4.5922dBp).
  • FIG. 11 is a schematic diagram of standing wave analysis of the third antenna of the present application.
  • the coordinates at B1 in FIG. 11 are (1.5604 GHz, -3.8411 dBa), and the coordinates at B2 are (2.4926 GHz, - 5.0708dBa), the coordinates at B3 are (3.5417GHz, -11.306dBa), the coordinates at B4 are (5.2785GHz, -14.809dBa), and the coordinates at B5 are (5.7913GHz, -3.7988dBa).
  • FIG. 12 is a diagram showing the efficiency and frequency of the third antenna of the present application.
  • the line labeled 5 in FIG. 12 indicates the radiation efficiency of the GPS antenna
  • the line labeled 6 indicates the system efficiency of the GPS antenna.
  • the coordinates at C1 are (1.58GHz, -2.9127dBp)
  • the coordinates at C2 are (1.7524GHz, -5.6569dBp)
  • the coordinates at C3 are (2.0574GHz, -6.0186dBp)
  • the coordinates at C4 are ( 2.48 GHz, -2.520 dBp)
  • the coordinates at C5 are (2.6881 GHz, -6.446 dBp)
  • the coordinates at C6 are (3.54 GHz, -0.95939 dBp)
  • the coordinates at C7 are (5.1148 GHz, -4.5484 dBp).
  • FIG. 13 shows a standing wave analysis diagram of the fourth antenna.
  • the coordinates at D1 are (2.3859 GHz, -7.1073dBa)
  • the coordinates at D2 are (3.4736 GHz, -13.557dBa)
  • the coordinates at D3 are (5.6994 GHz, -16.568dBa).
  • FIG. 14 is a schematic diagram showing the efficiency and frequency of the third antenna of the present application.
  • the coordinates at E1 in FIG. 14 are (2.3912 GHz, -4.6502 dBp), and the coordinates at E2 are (3.46 GHz, - 1.4009dBp), the coordinates at E3 are (5.7GHz, -0.91828dBp).
  • E1 represents the efficiency and frequency diagram of the radiation field of WIFI 2.4 being parasitic to pull-down mode
  • E2 represents the efficiency and frequency diagram of the B42 frequency band radiated by the fourth antenna
  • E3 represents the efficiency and frequency diagram of WiFi 5.
  • FIG. 15 shows an analysis of the isolation between the first antenna and the second antenna in the embodiment of the present application
  • the line labeled 7 in FIG. 15 indicates the isolation of the first antenna
  • the identifier is 8
  • the line indicates the isolation of the second antenna
  • the line labeled 9 indicates the isolation of the first antenna and the isolation of the second antenna.
  • FIG. 16 shows an analysis of the isolation between the first antenna and the third antenna in the embodiment of the present application
  • the line labeled 7 in FIG. 16 indicates the isolation of the first antenna
  • the identifier is 10
  • the line indicates the isolation of the third antenna
  • the line labeled 11 indicates the isolation of the first antenna and the isolation of the third antenna.
  • FIG. 17 shows an analysis of the isolation between the first antenna and the fourth antenna in the embodiment of the present application.
  • the line labeled 7 in FIG. 17 indicates the isolation of the first antenna, and the identifier is 12
  • the line indicates the isolation of the fourth antenna
  • the line labeled 13 indicates the isolation of the first antenna and the isolation of the fourth antenna.
  • FIG. 18 shows an analysis of the isolation between the second antenna and the third antenna in the embodiment of the present application.
  • the line labeled 8 in FIG. 18 indicates the isolation of the second antenna, and the identifier is 10
  • the line indicates the isolation of the third antenna
  • the line labeled 14 indicates the isolation of the second antenna and the isolation of the third antenna.
  • FIG. 19 shows an analysis of the isolation between the second antenna and the fourth antenna in the embodiment of the present application.
  • the line labeled 8 in FIG. 19 indicates the isolation of the second antenna, and the identifier is 12
  • the line indicates the isolation of the fourth antenna
  • the line labeled 15 indicates the isolation of the second antenna and the isolation of the fourth antenna.
  • FIG. 20 shows an analysis of the isolation between the third antenna and the fourth antenna in the embodiment of the present application.
  • the line labeled 10 in FIG. 20 indicates the isolation of the third antenna, and the identifier is 12
  • the line indicates the isolation of the fourth antenna
  • the line labeled 16 indicates the isolation of the third antenna and the isolation of the fourth antenna.
  • the application provides a terminal device, where the terminal device includes a metal frame disposed on a top of the terminal device, the metal frame includes a first frame and a second frame, and the first frame and the second frame There is a first gap between the frames and an antenna structure as shown in any of FIGS.
  • the optional metal frame further includes a third frame, the second frame is located between the first frame and the third frame, and a second gap is disposed between the third frame and the second frame.

Landscapes

  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种天线结构和终端设备,涉及终端设备技术领域,用以解决多个天线之间的隔离度问题,从而提高天线的性能,该方案应用于终端设备中,终端设备包括设置于终端设备顶部的金属边框,该金属边框包括第一边框和第二边框,第一边框和第二边框之间具有第一间隙,该天线结构包括:位于金属边框内的第一天线和第二天线,第一天线和第二天线通过第一间隙隔开,第二天线用于覆盖第一频段,第一天线覆盖的频段与第一频段相同,其中,第一天线中用于覆盖与第一频段相同频段的部件位于布置在金属边框内的印制电路板(PCB)上,第二天线设置于第一边框上。

Description

一种天线结构和终端设备 技术领域
本申请涉及终端设备技术领域,尤其涉及一种天线结构和终端设备。
背景技术
为了增强终端设备(下述以手机为例)的品质感,手机的外观设计越来越多的使用金属材质,但是金属材质的外壳可能会屏蔽手机的天线信号,因此使用金属材质会严重的影响手机的天线性能。而无线通讯作为手机的必备功能,天线是无线通讯必备的组件,天线性能的水平也会关系到手机通话质量的好坏等多方面问题。目前为了提高手机的网络运营速度,手机对多输入多输出(multiple-input multiple-output,MIMO)的需求越来越多。所以基于金属材质设计出高性能的天线成为业内的一大难题。
发明内容
本申请提供一种天线结构和终端设备,用以解决多个天线之间的隔离度问题,从而提高天线的性能。
第一方面,本申请提供一种天线结构,应用于终端设备中,该终端设备包括设置于终端设备顶部的金属边框,该金属边框包括第一边框和第二边框,第一边框和第二边框之间具有第一间隙,该天线结构包括:位于金属边框内的第一天线和第二天线,第一天线和第二天线通过第一间隙隔开,第二天线用于覆盖第一频段,第一天线覆盖的频段与第一频段相同,其中,第一天线包括第一部件,所述第一部件覆盖的频段与所述第一频段相同,所述第一部件中至少50%的部分布置在所述金属边框内的印制电路(printed circuit board,PCB)上,该第二天线设置于第一边框上。
本申请提供一种天线结构,通过将金属边框内的第一天线使用第二边框与PCB外接,第一天线使用第二边框辐射,且第一天线位于印制电路板上,第二天线设置于第一边框上,这样可以使得具有相同频段的第一天线和第二天线在空间上错开,以使得相同频段的辐射区域通过空间上错开,来实现具有相同频段的天线之间隔离度的提升。
结合第一方面,在第一方面的第一种可能的实现方式中,金属边框还包括第三边框,该第二边框位于第一边框和第三边框之间,第三边框和第二边框之间具有第二间隙,第二天线还用于覆盖第二频段,其中,该第二频段低于第一频段,天线结构还包括:第三天线,该第三天线与第二天线通过第二间隙隔开,第二天线中用于覆盖第二频段的部件靠近第三天线,第三天线覆盖的频段与第二频段不同。通过设置第二天线和第三天线具有不同的频段,可以使得辐射相靠近的区域频段错开,以实现具有不同频段的天线之间隔离度的提升。
结合第一方面或第一方面的第一种可能的实现方式中,在第一方面的第二种可能的实现方式中,第二天线还用于覆盖第三频段,该第三频段高于第二频段,第一天线包括第一电路,第一电路用于将第一天线覆盖的第四频段与第三频段隔离,第四频段与第三频段相同。这样可以将第一天线和第二天线覆盖的相同频段进行隔离,以提升 第一天线和第二天线之间的隔离度。
结合第一方面至第一方面的第二种可能的实现方式中任一项,在第一方面的第三种可能的实现方式中,第一电路包括:第一电容,该第一电容接地,或者,第一电路为LC谐振电路,或者第一电路为集总器件滤波器。这样可以使得第一电路的结构简单。
结合第一方面至第一方面的第三种可能的实现方式中任一项,在第一方面的第四种可能的实现方式中,第二天线中用于覆盖第二频段的部件与第二天线中用于覆盖第一频段的部件位于第一边框的不同侧。通过将同一个天线中覆盖不同频段的部件布局在第一边框的不同侧,这样可以避免同一个天线中覆盖不同频段的部件之间的干扰。从而提升同一个天线中覆盖不同频段的部件之间的隔离度。
结合第一方面至第一方面的第四种可能的实现方式中任一项,在第一方面的第五种可能的实现方式中,第二天线中用于覆盖第二频段的部件包括:第一电感、第二电感以及第一电容,其中,第一电感的第一端和第二电感的第一端与第一边框的第一端连接,第一电感的第二端接第一接地端,第二电感的第二端通过所述第一电容接第一接地端;第二天线中用于覆盖第一频段的部件包括:第二电容、第三电容、第三电感以及馈电源,其中,第二电容的第一端与第一边框的第二端连接,第二电容的第二端接馈电源、第三电容的第一端、以及第三电感的第一端,第三电感的第二端以及第三电容的第二端接第二接地端。
结合第一方面至第一方面的第五种可能的实现方式中任一项,在第一方面的第六种可能的实现方式中,第三天线利用第二天线中用于覆盖第一频段的部件覆盖全球定位系统GPS频段、WIFI频段、长期演进LTE系统中对应的B1频段或B3频段或B7频段或B42频段。
结合第一方面至第一方面的第六种可能的实现方式中任一项,在第一方面的第七种可能的实现方式中,第一天线、第二天线以及第三天线均用于覆盖长期演进(long term evolution,LTE)系统中对应的B1频段或B3频段或B7频段。这样可以使得终端设备顶部覆盖B1频段或B3频段或B7频段,从而提高了终端设备底部天线设计的自由度。
第二方面,本申请提供一种终端设备,该终端设备包括设置于终端设备顶部的金属边框,该金属边框包括第一边框和第二边框,第一边框和第二边框之间具有第一间隙以及如第一方面至第一方面的任一种可能的实现方式所描述的天线结构。
结合第二方面,在第二方面的第一种可能的实现方式中,金属边框还包括第三边框,所述第二边框位于所述第一边框和所述第三边框之间,所述第三边框和所述第二边框之间具有第二间隙。
附图说明
图1-图6为本申请实施例提供的一种天线结构示意图;
图7为本申请提供的第一天线的驻波分析示意图;
图8为本申请提供的第一天线的效率和频率之间的关系示意图;
图9为本申请提供的第二天线的驻波分析示意图;
图10为本申请提供的第二天线的效率和频率对比示意图;
图11为本申请提供的第三天线的驻波分析示意图;
图12为本申请提供的第三天线的效率和频率示意图;
图13为本申请提供的第四天线的驻波分析图;
图14为本申请提供的第三天线的效率和频率示意图;
图15为本申请提供的第一天线和第二天线之间隔离度的分析示意图;
图16为本申请提供的第一天线和第三天线之间隔离度的分析示意图;
图17为本申请提供的第一天线和第四天线之间隔离度的分析示意图;
图18为本申请提供的第二天线和第三天线之间隔离度的分析示意图;
图19为本申请提供的第二天线和第四天线之间隔离度的分析示意图;
图20为本申请提供的第三天线和第四天线之间隔离度的分析示意图。
具体实施方式
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一天线和第二天线仅仅是为了区分不同的天线,并不对其先后顺序进行限定。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中,A,B可以是单数或者复数。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
如图1所示,图1示出了本申请实施例提供的一种天线结构,该天线结构应用于终端设备中,终端设备包括:设置于终端设备顶部的金属边框10,该金属边框10包括第一边框101和第二边框102,其中,第一边框101和第二边框102之间具有第一间隙A,该天线结构包括:位于金属边框101内的第一天线20和第二天线30,第一天线20和第二天线30通过第一间隙A隔开,第二天线30用于覆盖第一频段,第一天线20覆盖的频段与第一频段相同,其中,第一天线20包括第一部件,所述第一部件覆盖的频段与所述第一频段相同,所述第一部件中大部分布置在所述金属边框内的印制电路板(PCB)上,第二天线30设置于第二边框102上。
第一部件中大部分位于布置在所述金属边框内的印制电路板(PCB)上,可选的, 第一部件中大于或等于50%的部分位于布置在所述金属边框内的PCB上。
本申请提供一种天线结构,通过将金属边框内的第一天线使用第二边框与PCB外接,第一天线使用第二边框辐射,且第一天线位于印制电路板上,第二天线设置于第一边框上,这样可以使得具有相同频段的第一天线和第二天线在空间上错开,以使得相同频段的辐射区域通过空间上错开,来实现具有相同频段的天线之间隔离度的提升。
可选的,本申请实施例中的第一频段为中频频段,该第一频段的频段范围为:1710MHz~2170MHz。
本申请实施例中第一部件覆盖的频段与第一频段相同可以指:第一天线中的第一部件覆盖的频段的范围与第一频段的频段范围相同(例如,第一天线覆盖的频段即为第一频段)。示例性的,以第一频段为1710MHz~2170MHz为例,则第一天线覆盖的频段的范围也为1710MHz~2170MHz。
或者,本申请实施例中第一部件覆盖的频段与第一频段相同可以指:第一天线中第一部件覆盖的频段范围和第一频段的频段范围之间的差小于预设阈值,本申请对此不作限定。下述实施例中但凡涉及到两个或两个以上的频段相同,均可以参考此处的描述,本申请实施例后续不再赘述。
可以理解的是,本申请实施例中涉及到的第一部件也可以理解为第一天线中用于覆盖第一频段的部件。
可以理解的是,如图1所示,本申请中的第二边框102与第一边框101垂直。可选的,第一边框101靠近第二边框102的部分呈弧形。具体第二边框102和第一边框101的结构可以参见现有技术中终端设备的金属边框的结构,本申请在此不再赘述。
可选的,本申请中第一间隙A的宽度为:1.2mm~2.0mm。示例性的,本申请实施例中的第一间隙A的宽度为1.5mm。
示例性的,本申请中的PCB板可以为柔性电路板(flexible printed circuit board,FPC)。其中,柔性电路板也可以简称为:软板。
作为本申请的另一个实施例,如图2所示,金属边框10还包括第三边框103。该第二边框102位于第一边框101和第三边框103之间,第三边框103和第二边框102之间具有第二间隙B,第二天线30还用于覆盖第二频段,其中,第二频段低于第一频段,该天线结构还包括:
第三天线40,该第三天线40与第二天线30通过第二间隙B隔开,第二天线30中用于覆盖第二频段的部件靠近第三天线40,第三天线40覆盖的频段与所述第二频段不同。
可选的,本申请中的第二间隙B的宽度为:1.2mm~2.0mm。示例性的,本申请实施例中的第一间隙B的宽度为1.5mm。
可选的,本申请中的第二频段可以为低频频段。该第二频段的频段范围为:700MHz~960MHz。
本申请实施例中第三天线40覆盖的频段与第二频段不同可以指:第三天线40覆盖的频段的范围与第二频段的频段范围不同。或者也可以理解为:第三天线40覆盖的频段的范围与第二频段的频段范围不存在交集。示例性的,第二频段为低频频段,第三天线40覆盖的频段为中频频段或者为高频频段。具体的,中频频段的范围可以为 1710~2170MHz。高频频段的覆盖范围可以为:2300MHz~2700MHz。
示例性的,第二天线30中用于覆盖第二频段的部件可以为IFA天线。
本申请实施例中IFA天线亦称为倒F天线,该天线的形状为倒置的“F”,IFA天线包括一个接地点和一个馈电点。通常,IFA天线辐射部呈平板或直线状,IFA天线还包括连接在接地点与辐射部之间的接地脚及连接在馈电点和辐射部之间的馈电部。馈电点和接地脚可以相互平行,且二者都可以垂直于辐射部。
可选的,第二天线30中用于覆盖第二频段的部件位于第一边框101上且靠近第三天线40的一端。
示例性的,如图3所示,图3示出了本申请实施例提供的第二天线30中用于覆盖第二频段的部件的具体结构,该第二天线30中用于覆盖第二频段的部件包括:第一电感L1、第二电感L2以及第一电容C1。其中,第一电感L1的第一端和第二电感L2的第一端与第二边框102的第一端连接。第一电感L1的第二端接第一接地端G1,第二电感L2的第二端通过第一电容C1接第一接地端G1。
其中,第二边框102的第一端可以理解为第二边框102上且靠近第三天线40的一端。
第二天线30中用于覆盖第一频段的部件包括:第二电容C2、第三电容C3、第三电感L3以及馈电源F1。第二电容C2的第一端与第二边框102的第二端连接,第二电容C2的第二端接馈电源、第三电容C3的第一端、以及第三电感L3的第一端,第三电感L3的第二端以及第三电容C3的第二端接第二接地端G2。
本申请中对第一电容C1的大小、第一电感L1的大小以及第二电感L2的大小不作限定,该第一电容C1的大小、第一电感L1的大小以及第二电感L2的大小可以根据第二天线中用于覆盖的第一频段来选择。示例性的,本申请中第一电容C1的大小为1pF,第一电感L1的大小为68nH,第二电感L2的大小为5nH。
示例性的,本申请中第二电容C2的大小为4pF,第三电容C3的大小为1.4pF,第三电感L3的大小为3nH。
如图3所示,本申请中第二边框102还与第三接地端G3连接。
可以理解的是,本申请实施例中第二天线30中的用于覆盖第二频段的部件和用于覆盖第一频段的部件通过与第二边框102进行耦合,使得第二天线30的频段范围为以下频段中的一个或者多个频段:LTE系统对应的B28频段、B5频段、B8频段、B3频段、B1频段、B40频段以及B7频段。
需要说明的是,本申请实施例中的BX频段的具体范围可以以LTE系统中的频段覆盖范围确定。当然,随着通信系统的演进,上述BX频段在LTE系统中所对应的具体频段范围还同样适用于未来移动通信系统中覆盖同样频段范围的频段。也即未来通信系统中若某个频段的覆盖范围与BX频段相等,上述BX频段也可以为未来通信系统中的某个频段。
其中,第二天线30中的用于覆盖第二频段的部件利用整个第二边框辐射,这样有利于天线口径增大。
需要说明的是,本申请实施例中第二天线30的两个末端均开放,有利于低频频段辐射。
作为本申请的另一个实施例,如图4所示,第二天线30还用于覆盖第三频段,该第三频段高于第二频段,该第一天线20包括第一电路,该第一电路用于将第一天线覆盖的第四频段与第三频段隔离,第四频段与第三频段相同。
其中,第四频段为高频频段。本申请实施例第一天线不仅可以用于覆盖中频频段,也可以用于覆盖高频频段。
其中,第一部件还用于覆盖高频频段,其中,第一部件可以采用环形(LOOP)天线方案,该第一部件靠近第二天线。其中,LOOP天线在第一边框上的回流地脚采用串接小电容回地。如图4所示,第四电容C4与第一边框靠近第一间隔A的一侧连接,且第四电容通过G4接地。这样通过将LOOP天线采用串接小电容回地,可以解决第一天线覆盖的第四频段和第二天线覆盖的第三频段之间的隔离度问题。
可选的,本申请实施例中的第一天线为FPC与边框101耦合形成的天线。其中FPC部分占比大于50%。其中,第一部件用于覆盖中频的部分为FPC与边框101的下半部分(例如,图4中P和Q之间的边框)耦合形成。第一部件用于覆盖高频的部分为FPC与整个边框耦合形成。
可选的,该第三频段可以为高频频段,该第三频段的频段范围为:2300MHz~2700MHz。
示例性的,第一电路包括:第五电容,所述第五电容接地。或者,如图4所示,第一电路为LC谐振电路,该LC谐振电路包括电容C5以及电感L4。或者第一电路为集总器件滤波器。例如,有源滤波器,本申请实施例对此不作限定。可选的,电容C5以及电感L4位于FPC上。
示例性的,如上图3或图4所示,第二天线30中用于覆盖第二频段的部件与第二天线30中用于覆盖第一频段的部件位于第二边框102的不同侧。也可以理解为:第二天线30中用于覆盖第二频段的部件位于第二边框102上且靠近第一间隙A的一端。第二天线30中用于覆盖第二频段的部件位于第二边框102上且靠近第二间隙B的一端。
可选的,第三天线40利用第二天线30中用于覆盖第一频段的部件覆盖以下频段中的一个或者多个频段:全球定位系统GPS频段、WIFI频段、长期演进LTE系统中对应的B1频段、B3频段、B7频段以及B42频段。
其中,GPS频段的频段范围为:1575MHz。
WIFI频段可以包括WIFI2.4的频段范围或者WIFI5的频段范围中的至少一项。其中,该WIFI2.4的频段范围为:2400~2500MHz。或者WIFI5的频段范围为:5100~5800MHz。
可选的,本申请实施例中第一天线所覆盖的频段范围为:长期演进LTE系统中对应的B1频段/B3频段/B7频段/B42频段。
综上可知,本申请实施例中第一天线20、第二天线30以及第三天线40均用于覆盖的频段范围为以下频段中的一个或者多个频段:长期演进LTE系统中对应的B28频段、B3频段、B7频段。
如图5所示,本申请实施例中的第三天线40包括第六电容C6以及馈电源F3,其中,第六电容C6的第一端接第三边框103,第六电容C6的第二端接馈电源F3,第三 边框103与第五接地端G5连接。
综上所示,结合图1-图5可知,本申请实施例中可以将至少三根用于覆盖B1频段、B3频段、B7频段的天线设置于终端设备的顶部金属边上内(例如,1.5mm净空下),这样可以最小化利用天线布局,为后续终端设备内布置的天线预留了空间。
本申请实施例中的第一天线,第二天线以及第三天线均为MIMO天线。
可选的,本申请实施例中可以在第二天线中用于覆盖第一频段的部件和用于覆盖第二频段的部件之间设置相机(camera)。由于camera的加载,在第三天线端可以耦合出第二天线的长枝节的高次模,通过近场通信(near field communication,NFC)下地点的滤波地移到带外,从而解决隔离度问题。
可选的,作为本申请的另一个实施例,如图6所示,该终端设备还包括中框50,该中框50与金属边框10之间具有第三间隙C。其中,第三间隙C与第三边框103位于同一侧,该天线结构还包括第四天线60,该第四天线60位于中框50内,且与第三天线40之间通过第三间隙C隔开,该第四天线60用于覆盖WIFI频段和B42频段中的一个或者多个。
示例性的,第四天线60包括馈入源以及电容C3,其中,馈入源以及电容C3通过金属片连接至中框50上。该中框50接地。
其中,第三天线和第四天线位于终端设备的同一侧,通过core 1天线方案实现了,隔离度与ECC的需求。
需要说明的是,本申请实施例中所涉及到的某个天线覆盖的频段为:WIFI频段、B1频段、B3频段、B7频段以及B42频段。具体的,某个频段对应的具体频段范围,可以参考现有技术中的LTE系统或者下一代通信系统中相关的描述,本申请实施例在此不再赘述。
可选的,本申请实施例中第一天线外接FPC以使得第一天线覆盖B1、B3或者B7频段。但是,第一天线外接部分的天线不限于FPC,还可以是内嵌钢片,也可以是激光直接成型技术(laser-direct-structuring,LDS)天线。
第一天线使用FPC实现B1、B3、B7频段的部件可以是IFA、左手等天线形式。
如图7所示,图7示出了本申请提供的第一天线的驻波分析示意图,在图7中横轴表示频率,纵轴表示回波损耗。在图7中D点的坐标为(1.277GHz,-24.578dBa),A点的坐标为(2.0931GHz,-1.9676dBa),B点的坐标为(2.743GHz,-1.5282dBa),C点的坐标为(3.4721GHz,-14.873dBa)。
具体的,如图5所示,在D处,电流(图5中标识为1的线条)主要从第一边框101通过低通高阻滤波器到馈电的反向“左手”结构。在A处,LOOP天线电流(图5中标识为2的线条)反向点在FPC下侧,中框顶部电流较小。在B处,LOOP天线电流(图5中标识为3的线条)反向点在FPC下侧,中框顶部电流相比在A处增强。在C处第一天线具有两个反向点。
如图8所示,图8示出了第一天线的效率和频率之间的关系示意图。
如图9所示,图9示出了第二天线的驻波分析示意图,在图9中E点处的坐标为(0.80615GHz,-2.9799dBa),F点的坐标为(0.94397GHz,-10.274dBa),G点的坐标为(1.7679GHz,-3.1094dBa),H点的坐标为(2.6422GHz,-4.4599dBa)。
如图10所示,图10示出了本申请第二天线的效率和频率对比示意图,在图10中标识A1的坐标为(.78279GHz,-8.6026dBp),A2的坐标为(0.95467GHz,-8.2456dBp),A3的坐标为(2.15GHz,-7.5008dBp),A4的坐标为(2.75GHz,-4.5922dBp)。
如图11所示,图11示出了本申请第三天线的驻波分析示意图,在图11中B1处的坐标为(1.5604GHz,-3.8411dBa),B2处的坐标为(2.4926GHz,-5.0708dBa),B3处的坐标为(3.5417GHz,-11.306dBa),B4处的坐标为(5.2785GHz,-14.809dBa),B5处的坐标为(5.7913GHz,-3.7988dBa)。
如图12所示,图12示出了本申请第三天线的效率和频率示意图,在图12中标识为5的线条表示GPS天线的辐射效率,标识为6的线条表示GPS天线的系统效率。其中,C1处的坐标为(1.58GHz,-2.9127dBp),C2处的坐标为(1.7524GHz,-5.6569dBp),C3处的坐标为(2.0574GHz,-6.0186dBp),C4处的坐标为(2.48GHz,-2.502dBp),C5处的坐标为(2.6881GHz,-6.466dBp),C6处的坐标为(3.54GHz,-0.95939dBp),C7处的坐标为(5.1148GHz,-4.5484dBp)。
如图13所示,图13示出了第四天线的驻波分析图。其中,D1处的坐标为(2.3859GHz,-7.1073dBa),D2处的坐标为(3.4736GHz,-13.557dBa),D3处的坐标为(5.6994GHz,-16.568dBa)。
如图14所示,图14示出了本申请第三天线的效率和频率示意图,在图14中E1处的坐标为(2.3912GHz,-4.6502dBp),E2处的坐标为(3.46GHz,-1.4009dBp),E3处的坐标为(5.7GHz,-0.91828dBp)。
其中,E1处表示WIFI 2.4的辐射场被寄生往下拉模式下的效率和频率示意图,E2表示第四天线辐射的B42频段的效率和频率示意图,E3表示WiFi 5的效率和频率示意图。
如图15所示,图15示出了本申请实施例中第一天线和第二天线之间隔离度的分析,在图15中标识为7的线条表示第一天线的隔离度,标识为8的线条表示第二天线的隔离度,标识为9的线条表示第一天线的隔离度和第二天线的隔离度对比示意图。
如图16所示,图16示出了本申请实施例中第一天线和第三天线之间隔离度的分析,在图16中标识为7的线条表示第一天线的隔离度,标识为10的线条表示第三天线的隔离度,标识为11的线条表示第一天线的隔离度和第三天线的隔离度对比示意图。
如图17所示,图17示出了本申请实施例中第一天线和第四天线之间隔离度的分析,在图17中标识为7的线条表示第一天线的隔离度,标识为12的线条表示第四天线的隔离度,标识为13的线条表示第一天线的隔离度和第四天线的隔离度对比示意图。
如图18所示,图18示出了本申请实施例中第二天线和第三天线之间隔离度的分析,在图18中标识为8的线条表示第二天线的隔离度,标识为10的线条表示第三天线的隔离度,标识为14的线条表示第二天线的隔离度和第三天线的隔离度对比示意图。
如图19所示,图19示出了本申请实施例中第二天线和第四天线之间隔离度的分析,在图19中标识为8的线条表示第二天线的隔离度,标识为12的线条表示第四天线的隔离度,标识为15的线条表示第二天线的隔离度和第四天线的隔离度对比示意图。
如图20所示,图20示出了本申请实施例中第三天线和第四天线之间隔离度的分析,在图20中标识为10的线条表示第三天线的隔离度,标识为12的线条表示第四天 线的隔离度,标识为16的线条表示第三天线的隔离度和第四天线的隔离度对比示意图。
另一方面,本申请提供一种终端设备,该终端设备包括设置于所述终端设备顶部的金属边框,所述金属边框包括第一边框和第二边框,所述第一边框和所述第二边框之间具有第一间隙以及如图1-图6任一个所示的天线结构。
可选的金属边框还包括第三边框,所述第二边框位于所述第一边框和所述第三边框之间,所述第三边框和所述第二边框之间具有第二间隙。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种天线结构,其特征在于,应用于终端设备中,所述终端设备包括设置于所述终端设备顶部的金属边框,所述金属边框包括第一边框和第二边框,所述第一边框和所述第二边框之间具有第一间隙,所述天线结构包括:
    位于所述金属边框内的第一天线和第二天线,所述第一天线和所述第二天线通过所述第一间隙隔开,所述第二天线用于覆盖第一频段,所述第一天线覆盖的频段与所述第一频段相同,其中,所述第一天线包括第一部件,所述第一部件覆盖的频段与所述第一频段相同,所述第一部件中至少50%的部分布置在所述金属边框内的印制电路板(PCB)上,所述第二天线设置于所述第二边框上。
  2. 根据权利要求1所述的天线结构,其特征在于,所述金属边框还包括第三边框,所述第二边框位于所述第一边框和所述第三边框之间,所述第三边框和所述第二边框之间具有第二间隙,所述第二天线还用于覆盖第二频段,其中,所述第二频段低于所述第一频段,所述天线结构还包括:
    第三天线,所述第三天线与所述第二天线通过所述第二间隙隔开,所述第二天线中用于覆盖所述第二频段的部件靠近所述第三天线,所述第三天线覆盖的频段与所述第二频段不同。
  3. 根据权利要求1或2所述的天线结构,其特征在于,所述第二天线还用于覆盖第三频段,所述第三频段高于所述第二频段,所述第一天线还包括第一电路,所述第一电路用于将所述第一天线覆盖的第四频段与所述第三频段隔离,所述第四频段与所述第三频段相同。
  4. 根据权利要求3所述的天线结构,其特征在于,所述第一电路包括:第一电容,所述第一电容接地,或者,所述第一电路为LC谐振电路,或者所述第一电路为集总器件滤波器。
  5. 根据权利要求2-4任一项所述的天线结构,其特征在于,所述第二天线中用于覆盖所述第二频段的部件与所述第二天线中用于覆盖所述第一频段的部件位于所述第一边框的不同侧。
  6. 根据权利要求5所述的天线结构,其特征在于,所述第二天线中用于覆盖所述第二频段的部件包括:第一电感、第二电感以及第一电容,其中,所述第一电感的第一端和所述第二电感的第一端与所述第二边框的第一端连接,所述第一电感的第二端接第一接地端,所述第二电感的第二端通过所述第一电容接所述第一接地端;
    所述第二天线中用于覆盖所述第一频段的部件包括:第二电容、第三电容、第三电感以及馈电源,其中,所述第二电容的第一端与所述第二边框的第二端连接,所述第二电容的第二端接所述馈电源、所述第三电容的第一端、以及所述第三电感的第一端,所述第三电感的第二端以及所述第三电容的第二端接第二接地端。
  7. 根据权利要求2-6任一项所述的天线结构,其特征在于,所述第三天线利用所述第二天线中用于覆盖所述第一频段的部分覆盖全球定位系统GPS频段、WIFI频段、长期演进LTE系统中对应的B1频段或B3频段或B7频段或B42频段。
  8. 根据权利要求1-7任一项所述的天线结构,其特征在于,所述第一天线、所述第二天线以及所述第三天线均用于覆盖长期演进LTE系统中对应的B1频段、B3频段 或B7频段。
  9. 一种终端设备,其特征在于,所述终端设备包括设置于所述终端设备顶部的金属边框,所述金属边框包括第一边框和第二边框,所述第一边框和所述第二边框之间具有第一间隙以及如权利要求1至8中任一项所述的天线结构。
  10. 根据权利要求9所述的终端设备,其特征在于,所述金属边框还包括第三边框,所述第二边框位于所述第一边框和所述第三边框之间,所述第三边框和所述第二边框之间具有第二间隙。
PCT/CN2018/086765 2018-05-14 2018-05-14 一种天线结构和终端设备 WO2019218125A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880044659.3A CN110832703B (zh) 2018-05-14 2018-05-14 一种天线结构和终端设备
PCT/CN2018/086765 WO2019218125A1 (zh) 2018-05-14 2018-05-14 一种天线结构和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086765 WO2019218125A1 (zh) 2018-05-14 2018-05-14 一种天线结构和终端设备

Publications (1)

Publication Number Publication Date
WO2019218125A1 true WO2019218125A1 (zh) 2019-11-21

Family

ID=68539233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086765 WO2019218125A1 (zh) 2018-05-14 2018-05-14 一种天线结构和终端设备

Country Status (2)

Country Link
CN (1) CN110832703B (zh)
WO (1) WO2019218125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943296A (zh) * 2019-11-29 2020-03-31 联想(北京)有限公司 一种电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067156A (zh) * 2021-02-24 2021-07-02 深圳市锐尔觅移动通信有限公司 多频段天线、多频段天线的设计方法及电子设备
CN114865290B (zh) * 2022-06-21 2024-04-12 浙江金乙昌科技股份有限公司 一种安装于金属表面的小型化5g mimo天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514624A (zh) * 2015-12-23 2016-04-20 广东欧珀移动通信有限公司 一种移动终端天线系统及移动终端
CN205944404U (zh) * 2016-07-12 2017-02-08 广东欧珀移动通信有限公司 壳体、天线装置和移动终端
CN107634305A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN107645041A (zh) * 2016-07-21 2018-01-30 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN107681251A (zh) * 2016-07-21 2018-02-09 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023183B (zh) * 2016-10-31 2022-01-04 北京小米移动软件有限公司 移动终端的天线结构及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514624A (zh) * 2015-12-23 2016-04-20 广东欧珀移动通信有限公司 一种移动终端天线系统及移动终端
CN205944404U (zh) * 2016-07-12 2017-02-08 广东欧珀移动通信有限公司 壳体、天线装置和移动终端
CN107634305A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN107645041A (zh) * 2016-07-21 2018-01-30 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN107681251A (zh) * 2016-07-21 2018-02-09 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943296A (zh) * 2019-11-29 2020-03-31 联想(北京)有限公司 一种电子设备
CN110943296B (zh) * 2019-11-29 2021-08-17 联想(北京)有限公司 一种电子设备

Also Published As

Publication number Publication date
CN110832703B (zh) 2021-06-29
CN110832703A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US11011837B2 (en) Communications terminal
CN109346833B (zh) 具有wifi mimo天线的终端设备
CN103117452B (zh) 一种新型lte终端天线
EP3001503B1 (en) Antenna and terminal
US10224605B2 (en) Antenna and mobile terminal
US9385419B2 (en) Wrist-worn communication device
JP2011109547A (ja) マルチアンテナ装置および携帯機器
TWI646731B (zh) 行動電子裝置
EP2677596B1 (en) Communication device and antenna system therein
WO2019218125A1 (zh) 一种天线结构和终端设备
CN104425880A (zh) 移动装置
WO2021203939A1 (zh) 一种电子设备
CN107919525A (zh) 天线系统
CN105322278A (zh) 具有连续金属框的天线及其电子设备
WO2019218167A1 (zh) 一种天线系统及终端设备
Wang et al. Compact MIMO antenna for 5G portable device using simple neutralization line structures
US11349194B2 (en) Mobile communication terminal and antenna apparatus thereof
US20120319906A1 (en) Antenna and portable wireless terminal
US8711050B2 (en) Multi-band dipole antenna
US20180083345A1 (en) Multi-Band Antenna and Terminal Device
US7724196B2 (en) Folded dipole multi-band antenna
CN104577313A (zh) 一种针对无净空金属后壳的新型耦合馈电天线
CN202513278U (zh) 一种终端天线
CN104638357A (zh) 一种多频宽带环形单极子平面手机天线
KR20120109012A (ko) 휴대용 단말기의 내장형 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918705

Country of ref document: EP

Kind code of ref document: A1