WO2019218100A1 - 电子雷管连接件及基于其的电子雷管设置方法 - Google Patents

电子雷管连接件及基于其的电子雷管设置方法 Download PDF

Info

Publication number
WO2019218100A1
WO2019218100A1 PCT/CN2018/000184 CN2018000184W WO2019218100A1 WO 2019218100 A1 WO2019218100 A1 WO 2019218100A1 CN 2018000184 W CN2018000184 W CN 2018000184W WO 2019218100 A1 WO2019218100 A1 WO 2019218100A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic detonator
electronic
detonator
connector
network device
Prior art date
Application number
PCT/CN2018/000184
Other languages
English (en)
French (fr)
Inventor
陈默
Original Assignee
Chen Mo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Mo filed Critical Chen Mo
Priority to CN201880003691.7A priority Critical patent/CN110869694B/zh
Priority to PCT/CN2018/000184 priority patent/WO2019218100A1/zh
Publication of WO2019218100A1 publication Critical patent/WO2019218100A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting

Definitions

  • the invention belongs to the technical field of civil blasting equipment design, and in particular relates to an electronic detonator connecting piece and an electronic detonator setting method based on the electronic detonator connecting piece.
  • the existing electronic detonator is arranged by first determining the extension of the blasthole at the construction site, then placing the electronic detonators one by one into the blasthole, and then connecting the electronic detonator to the detonating branch, and determining the electronic detonator identity information and blasting. Hole information is entered into the initiator. The detonator corresponds to the identity information of the electronic detonator and the blasthole. The detonation of the electronic detonator is determined according to the pre-designed blasthole and the deferred comparison table, and then the deferred is sent to each electronic detonator.
  • Patent WO2017031606 discloses a simple, efficient and safe arrangement method for realizing electronic detonator on blasting construction site and an electronic detonator connector.
  • the method also has certain disadvantages.
  • the network device must be turned on first.
  • Electronic detonators and their connectors need to be connected to the network one by one.
  • the quick registration problem is solved, there is a certain risk when the electronic detonator must be energized during the connection.
  • the object of the present invention is to provide an electronic detonator connector and an electronic detonator setting method based on the electronic detonator connector, which is used for realizing the simple, efficient and safe layout of the electronic detonator on the blasting construction site.
  • the technical proposal provided by the present invention is an electronic detonator connector for connecting an electronic detonator to a detonation link for realizing automatic registration and rapid fault location of an electronic detonator, and the electronic detonator connector includes control Module, electronic detonator port, upstream port and downstream port;
  • the control module is respectively connected to the electronic detonator port, the upstream port and the downstream port;
  • the upstream port is connected to the downstream port through the surface conductor
  • the foot line of the electronic detonator is connected to the electronic detonator port
  • the upstream port is used to access the upstream device.
  • the downstream port is used to access the downstream device or be blanked
  • the upstream device is another electronic detonator connector in the control module/network device or in the link close to the control panel module/network device;
  • the downstream device is another electronic detonator connector in the link that is remote from the control bank module/network.
  • the electronic detonator connector is used for controlling communication information transmission between the network device/control row module and the electronic detonator; the communication information includes an identification instruction sent by the network device/control row module, setting instructions, inspection instructions, authorization instructions, detonation And at least one of the command and the response signal sent by the electronic detonator; when the electronic detonator sends the response signal, the electronic detonator connector cuts off the power path of the downstream port of the electronic detonator connector.
  • the control module of the electronic detonator connector includes a bus control circuit, and the bus control circuit is used to:
  • the electronic detonator connector When the electronic detonator connector receives the upstream signal, the electronic detonator and all downstream devices connected to the electronic detonator connector can receive the same signal;
  • the power path of the downstream port is cut off.
  • the bus control circuit includes: sampling resistor, unidirectional charging diode, current limiting resistor, discharging resistor, blocking capacitor, bridge capacitor, pull-down resistor, NMOS transistor, PMOS transistor; one end of the sampling resistor connected to the end of the electronic detonator port, and also connected to the one-way The anode of the charging diode; the anode of the unidirectional charging diode is connected to one end of the current limiting resistor; the other end of the current limiting resistor is connected to the discharge resistor, the end of the capacitor, the bridge capacitor, and the gate of the PMOS tube; the other end of the bridge capacitor Connected to the gate of the NMOS transistor and one end of the pull-down resistor; the other end of the pull-down resistor is connected to the source of the NMOS transistor and the drain of the PMOS transistor, and is also connected to the anode of the downstream port; the anode of the upstream port is connected to the drain of the NMOS transistor The source of the pole and PM
  • the control module of the electronic detonator connector includes a fault rapid positioning circuit for cutting off the power path of the downstream port of the electronic detonator connector when the electronic detonator connected to the electronic detonator connector and its leg line are short-circuited/leakage.
  • the fault fast positioning circuit includes a sampling resistor, a discharge resistor, a cut-off capacitor, a PMOS tube, a sampling resistor connected to the electronic detonator port, a discharge resistor and one end of the capacitor, and is also connected to the gate of the PMOS; the drain of the PMOS transistor is connected to the downstream port.
  • the anode of the upstream port is connected to the source of the PMOS transistor and is also connected to the other end of the electronic detonator port; the sampling resistor, the discharge resistor, the other end of the capacitor, and the negative pole of the upstream port are connected to the cathode of the downstream port.
  • An electronic detonator setting method based on an electronic detonator connector comprising:
  • the electronic detonator is sequentially connected through the electronic detonator connector and the surface conductor, and then connected to the network/control row module;
  • the network device sends a global initialization instruction for clearing all electronic detonator identification states
  • the network device periodically sends an identification instruction
  • An unregistered electronic detonator sends a response signal
  • the electronic detonator is registered to the network device
  • the process of registering the electronic detonator to the network device further includes:
  • All electronic detonators receive the identification command, the electronic detonator judges its registration status, the unregistered electronic detonator sends a response signal, the response signal includes the electronic detonator preset ID; the electronic detonator marked with the registered status does not respond;
  • the electronic detonator connector connected to the unregistered electronic detonator cuts off the power path of the downstream port of the electronic detonator connector;
  • the unregistered electronic detonator detects the voltage difference between the foot lines. If the voltage difference between the foot lines is less than the preset value, the process of transmitting the response signal is no longer continued; otherwise, the response signal is continuously sent;
  • the network device can receive at least one complete response signal of the electronic detonator within the preset time, and the network device extracts the electronic detonator ID in the response signal;
  • the network device counts the number of registered electronic detonators DN, and the DN is added as the electronic detonator sequence number of the current electronic detonator on the link;
  • the network device sends a setting instruction, and the setting instruction includes an electronic detonator ID;
  • the electronic detonator When receiving the setting instruction, the electronic detonator extracts whether the electronic detonator ID in the setting instruction is consistent with the electronic detonator preset ID stored by itself, and if they are consistent, the registered state is marked;
  • the setting instruction further includes network device attribute information and electronic detonator sequence number information, which is used to identify the electronic detonator home network device number and the sequence number of the link where the electronic detonator is located, and constitute an electronic detonator network address.
  • the registration process also includes:
  • the network device determines the electronic detonator setting parameters of the electronic detonator according to the electronic detonator sequence number, and stores the electronic detonator preset ID and the sequence number/electronic detonator network address to the electronic detonator preset ID and the electronic detonator sequence number/electronic detonator network address. In the table.
  • Determining whether the electronic detonator is registered to the network device includes:
  • Step A1 the electronic detonator connector forwards the identification command to the electronic detonator connected to the electronic detonator connector;
  • Step A2 If the electronic detonator stores the registered status identifier, the system does not answer, and the determination process is completed; if the electronic detonator does not store the registered status identifier, the electronic detonator is not registered to the network device, and the electronic detonator sends a response signal to the network device. ;
  • Step A3 After receiving the response signal, the network device extracts the electronic detonator ID in the response signal, and compares with the electronic detonator ID in the electronic detonator list. If the electronic detonator ID already exists in the list, it is considered that the last registration process is not completed. The setup command is sent again to the electronic detonator; if there is no electronic detonator ID in the list, it is considered that a new electronic detonator is found and the entire registration process is performed.
  • Registering the electronic detonator to the network is to store the electronic detonator setup parameters to the electronic detonator and to store the electronic detonator ID and setup parameters in the network.
  • the electronic detonator setting parameters include network attribute information, electronic detonator sequence number/electronic detonator network address, and/or electronic detonator delay.
  • the method disclosed by the present invention further includes:
  • Step B1 The network device forms an electronic detonator sequence number/electronic detonator network address and an electronic detonator sequence number/electronic detonator network according to the stored electronic detonator sequence number/electronic detonator network address and the electronic detonator delay relationship.
  • Step B2 After receiving the electronic detonator extension instruction through the electronic detonator connector, the electronic detonator extracts the electronic detonator sequence number/electronic detonator network address in the deferral setting command and the electronic detonator extension corresponding to the electronic detonator sequence number/electronic detonator network address ;
  • Step B3 The electronic detonator judges whether the extracted electronic detonator sequence number/electronic detonator network address is consistent with the electronic detonator sequence number/electronic detonator network address stored by itself, and if consistent, the storage and electronic detonator sequence number/electronic detonator network The electronic detonator corresponding to the address is postponed.
  • the method disclosed by the invention further includes:
  • Step C1 The network device sends a patrol instruction including an electronic detonator ID according to the electronic detonator ID in the stored correspondence table;
  • Step C2 the electronic detonator receives the inspection instruction, and extracts the electronic detonator ID in the inspection instruction;
  • Step C3 The electronic detonator compares the electronic detonator preset ID stored by the electronic detonator with the extracted electronic detonator ID, and if the two are consistent, the patrol feedback signal is returned;
  • Step C4 The network device collects the patrol feedback signal. If all the feedback signals of the electronic detonator are received, the electronic detonator in the link is an available electronic detonator; otherwise, the electronic detonator preset ID that does not receive the feedback signal is determined.
  • the problematic electronic detonator is determined by the electronic detonator preset ID and the electronic detonator sequence number/electronic detonator network address correspondence table.
  • the method disclosed by the present invention further includes:
  • Step D1 The network device applies the electronic detonator password/work code to the electronic detonator management center according to the stored electronic detonator ID in the corresponding table, or calculates the electronic detonator laser code according to the electronic detonator ID, and applies the electronic detonator to the electronic detonator management center according to the laser coding.
  • Password/work code
  • Step D2 The network device sends an authorization instruction to the electronic detonator according to the electronic detonator password/work code, and the authorization instruction includes an electronic detonator password/work code;
  • Step D3 The electronic detonator receives the authorization instruction, and extracts whether the electronic detonator password/work code in the authorization instruction is consistent with the electronic detonator password/work code stored by itself, and if consistent, the storage authorization command corresponds to the electronic detonator password/work code.
  • Authorization identification information
  • the authorization identification information also includes an electronic detonator extension.
  • the method disclosed by the invention further includes: the detonator sends a detonation command to the network device, and the network device forwards the detonation instruction to the electronic detonator, and the electronic detonator determines whether the authorization identification information is stored when the detonation signal is received, if the authorization is stored
  • the identification information can be started until the timing reaches the preset extension.
  • the constructor only needs to connect the electronic detonators one by one with the connecting piece and the surface wire without connecting the network device. There is no need to know the identity information of the electronic detonator, and it is not necessary to send the identity information of the electronic detonator to the initiator.
  • the link is connected to the network device in the security area, and the electronic detonators on the entire link are searched one by one through the automatic registration function of the network device, and the search order is the order of the electronic detonators.
  • FIG. 1 is a schematic view showing the connection of an electronic detonator connector provided by the present invention.
  • FIG. 2 is a circuit diagram showing the structure of an electronic detonator connector including a preferred circuit structure of a bus control circuit of the present invention.
  • 3 is a timing chart of an electronic detonator response signal during automatic registration of the present invention.
  • Figure 4 is a circuit diagram of an electronic detonator connector of the preferred circuit configuration of the present invention including a faulty fast positioning circuit.
  • Figure 5 is a flow chart showing the general steps of an electronic detonator setting method based on an electronic detonator connector.
  • FIG. 6 is a flow chart of one embodiment of an electronic detonator setting method based on an electronic detonator connector.
  • FIG. 7 is a flow chart of another embodiment of an electronic detonator setting method based on an electronic detonator connector.
  • the electronic detonator connector includes a control module, an electronic detonator port, an upstream port, and a downstream port.
  • the control modules are respectively connected to the electronic detonator port, the upstream port, and the downstream port.
  • a network device is used to form an electronic detonator branch (referred to as a "link" in the present invention).
  • Several electronic detonators are connected to each link.
  • the upstream port of the electronic detonator connector is used to access the upstream device. If the electronic detonator connector is the first connector in the link, the upstream port of the first electronic detonator connector is used to access the network device, that is, the upstream device at this time is a network device. If the electronic detonator connector is not the first connector in the link, the upstream port of the electronic detonator connector is used to access the previous electronic detonator connector in the link, at which point the upstream device is the previous one in the link. Electronic detonator connection.
  • the upstream device is the electronic detonator connector on the left side, so when the rightmost electronic detonator connector is connected to the link, its upstream port is connected to Electronic detonator connection on the left side.
  • the downstream port of the electronic detonator connector is used to access the downstream device.
  • the downstream device is the electronic detonator connector on the right side thereof, so the downstream port of the left electronic detonator connector is connected to the electronic detonator connector on the right side thereof.
  • the downstream port is connected to a waterproof plug or blanked, that is, no device can be connected.
  • the above-mentioned electronic detonator connector is used to implement an electronic detonator quick access link.
  • the electronic detonator connector also enables the transmission of communication information between the network device and the electronic detonator. That is, the electronic detonator connector can forward the identification command, the registration command, the inspection command, the authorization command, the detonation command sent by the network device to the electronic detonator, and can control the response signal sent by the forwarding electronic detonator to the network device. This will be explained in detail in the description of the method embodiment that follows.
  • Fig. 1 only shows a case where one network device is connected to two electronic detonator connectors, and it should be clear that Fig. 1 is merely an example for explaining the present embodiment.
  • the network can connect more than two electronic detonator connections.
  • the bus control circuit provided by the present invention is used to solve the above problems.
  • the response signal is used to automatically control the communication information transmission of the response signal, which can well solve the traditional electronic detonator parallel bus network.
  • the 2 is a circuit diagram of an electronic detonator connector including a preferred circuit structure of a bus control circuit. All electronic detonators are connected to the network in a safe area by connecting the electronic detonator connection to the surface conductor without power.
  • the network device sends an initialization command to initialize all electronic detonators and clear the registration status of the electronic detonators.
  • the initialization command is a global multicast command, and all electronic detonators of the global broadcast command can receive and parse.
  • the network device periodically sends an identification instruction, which is also a global communication instruction, and all electronic detonators can receive and parse the instruction.
  • the electronic detonator After receiving the identification command, the electronic detonator determines whether it has stored the registered status, and sends a response signal if there is no registered status.
  • the electronic detonator connector connected to the unregistered electronic detonator disconnects the electrical connection from the downstream port of the electronic detonator connector.
  • the electronic detonator detects whether the voltage difference of the foot line drops to a preset value, and stops the transmission of the response signal if the voltage difference of the foot line drops to a preset value.
  • the E2 detects that the pin line voltage difference is less than 0.5V, and the E2 will stop transmitting the response signal; and the E1 is directly connected. It is the network device, the bus voltage remains unchanged, E1 detects that the voltage difference is greater than 0.5V, and continues to send the response signal, which contains the E1 electronic detonator ID. In this way, the network device can only receive the complete response signal of an electronic detonator, that is, the response signal of E1.
  • E1 completes the registration process to the network device, E1 stores the registered status.
  • E1 will not send the response signal. Since E1 does not send a response signal, the bus control circuit connected to E1 does not operate, and the downstream port of E1 is not cut.
  • E2 Since E2 is not registered, E2 sends an acknowledgement signal, and the power supply circuit of E2 is not cut off. E2 detects that the voltage difference is greater than 0.5V and can continue to transmit the complete response signal. According to the above principle, when the E2 sends the response signal, the electronic detonator connector connected to the E2 cuts off the power path of the downstream port of the electronic detonator connector, and the subsequent electronic detonator cannot continue to transmit the response signal. In this way, the network device can only receive the complete response signal of E2, register E2 to the network device, and repeat the above process, so that all the electronic detonators on the link can be sequentially registered to the network device.
  • the electronic detonator to which the electronic detonator connector directly connected to the network device is connected is always registered first, and then the electronic detonator that is not registered closest to the network device is registered in turn.
  • the direction of deferred increment and the position of the network device need to be flexibly regulated on site.
  • the operation of the bus control circuit will be specifically described below.
  • the bus control circuit disclosed by the invention comprises: a sampling resistor R1, a unidirectional charging diode D1, a current limiting resistor R2, a discharging resistor R3, a blocking capacitor C1, a bridge capacitor C2, a pull-down resistor R4, an NMOS transistor Q2, a PMOS transistor Q1, and a sampling resistor.
  • One end of the R1 is connected to one end of the electronic detonator port, and is also connected to the positive pole of the unidirectional charging diode D1; the negative end of the unidirectional charging diode is connected to one end of the current limiting resistor R2; the other end of the current limiting resistor R2 is connected to the discharging resistor R3, the blocking capacitor C1, one end of the bridge capacitor C2 is also connected to the gate of the PMOS transistor Q1; the other end of the bridge capacitor C2 is connected to the gate of the NMOS transistor Q2 and one end of the pull-down resistor R4; the other end of the pull-down resistor R4 is connected to the NMOS transistor Q2
  • the source and the drain of the PMOS transistor Q1 are also connected to the anode of the downstream port; the anode of the upstream port is connected to the drain of the NMOS transistor Q2 and the source of the PMOS transistor Q1, and is also connected to the other end of the electronic detonator port; sampling The resistor
  • the transmission process of the response signal is exited.
  • E1 can continue to send the response signal, and E2 stops transmitting the response signal.
  • the current response signal extracted by the network device is only the complete response signal of E1, thereby implementing the first detonator bidirectional communication.
  • the network device After the E1 is recognized by the network device, the network device sends a setting instruction to all the electronic detonators through the identified electronic detonator ID, and the setting instruction includes the electronic detonator ID of the E1, and the electronic detonator extracts the setting instruction after receiving the setting instruction.
  • the electronic detonator ID is compared with its own electronic detonator preset ID. Only the E1 comparison result is consistent, the E1 storage identifier is registered, and the electronic detonator connected to the E2 and the downstream port of the electronic detonator connector connected to the E2 remains unregistered. status.
  • E1 does not send a response signal
  • the electronic detonator connected to the downstream port of E2 refers to the above principle, it cannot send a complete response signal, so there is only a complete response signal of E2 on the bus. Thereby, the sequential response of the electronic detonator is realized.
  • the setting command sent by the network device is a differential signal
  • Q1 is equivalent to a forward conducting diode
  • the diode has a conduction voltage drop.
  • the voltage difference of the foot line of the electronic detonator becomes smaller as it moves away from the network device, and eventually the electronic detonator that is far away cannot receive the normal differential signal sent by the network device.
  • a current bypass circuit composed of Q2, C2, R4, and R3 is added to the circuit.
  • the electronic detonator connector provided by the invention further comprises a fault fast positioning circuit, and the faulty electronic detonator position in the link can be quickly determined by the fault fast positioning circuit.
  • the fault fast positioning circuit includes a sampling resistor R1, a discharge resistor R2, a capacitor C1, a PMOS transistor Q1, and a sampling resistor R1 connected to the electronic detonator port, the discharge resistor R2, and one end of the capacitor C1, and also connected to the gate of Q1; Q1
  • the drain is connected to the anode of the downstream port; the anode of the upstream port is connected to the source of Q1, and is also connected to the other end of the electronic detonator port; the sampling resistor R1, the discharge resistor R2, the other end of the capacitor C1, and the cathode of the upstream port Connected to the negative terminal of the downstream port.
  • the network maintains DX+>DX- when it is not communicating. If an electronic detonator is short-circuited, the R1 of the dedicated connector connected to the electronic detonator flows through the current of the mA stage, and R1 is several thousand ohms, then the voltage at point A in FIG. 4 rises, and the current limiting resistor R2 is passed. Charging C1, after point B in Figure 4 becomes high close to DX+ potential, Q1 ends, the power path of the downstream device is cut off, and the recognition command cannot be acknowledged.
  • the electronic detonator Since the electronic detonator is connected to the detonating link bus through the sampling resistor R1, under the current limiting action of R1, even if the leakage of the faulty electronic detonator or the foot line is short-circuited, the current on the bus only increases by a few milliamps, thereby ensuring the link.
  • the loop current on the upper limit is in the receivable range.
  • the equipment connected to the upstream port of the electronic detonator connection connected to the faulty electronic detonator is working normally and can be identified. The leakage of the faulty electronic detonator or the short circuit of the foot line does not affect the connection of the upstream port. Automatic registration of all electronic detonators.
  • the network device When the network device implements automatic registration, it can identify all the electronic detonators upstream of the faulty electronic detonator, and cannot identify all the electronic detonators downstream of the faulty electronic detonator. Therefore, the position of the fault detonator can be quickly determined. With the dedicated connector disclosed by the present invention, the troubleshooting time will be greatly shortened. In the traditional electronic detonator detonation system, if there is a short circuit and leakage of the foot line, there is often an uncertain electronic detonator inspection state, and it is necessary to check the fault by the dichotomy method, and the inspection time often takes 1 to 2 hours. Indeed affected industrial production.
  • the invention also provides an electronic detonator setting method based on an electronic detonator connector, by which the parameter setting of the electronic detonator can be quickly set.
  • Parameters include electronic detonator sequence number / electronic detonator network address, electronic detonator delay (absolute extension or relative delay).
  • Figure 5 is an electronic detonator setting method based on an electronic detonator connector, the method comprising:
  • Step 11 sequentially connect the electronic detonator through the electronic detonator connector and the surface conductor, and then connect to the network device/control row module;
  • Step 12 The network device sends a global initialization command, which is used to clear all electronic detonator identification states;
  • Step 13 The network device periodically sends an identification instruction.
  • Step 14 The unregistered electronic detonator sends a response signal
  • Step 15 When the response signal cannot be obtained within the preset time, the automatic registration process ends;
  • Step 16 registering an electronic detonator to the network device
  • Step 17 Repeat the above steps until all electronic detonators are registered.
  • the electronic detonator connector controls the communication information transmission as an example to illustrate the specific implementation process of the method provided by the present invention.
  • Figure 5 is an embodiment of an electronic detonator identification method based on an electronic detonator connector. As shown in FIG. 6, the method includes:
  • Step 101 - Step 103 The same as Step 11 - Step 13 of Embodiment 3, respectively.
  • Step 104 After the electronic detonator receives the identification command, if the registration status of the electronic detonator is unregistered, the electronic detonator starts to send the response signal.
  • Step 105 After receiving the response signal, the electronic detonator connector cuts off the power path of the downstream port of the electronic detonator connector;
  • Step 106 The electronic detonator determines the voltage difference of the foot line. If the voltage difference is less than the preset value, the response signal is terminated; otherwise, the process of transmitting the response signal continues, and the response signal includes the electronic detonator preset ID.
  • Step 107 If the network device does not receive the response signal within the preset time, the automatic registration process ends; otherwise, after receiving the response signal, the electronic detonator ID is extracted;
  • Step 108 The network device counts the number of registered electronic detonators DN, and the DN is added as the sequence number of the current electronic detonator on the link.
  • Step 109 The network device sends a setting instruction including an electronic detonator setting parameter to the electronic detonator via the electronic detonator connection, and the setting instruction includes an electronic detonator ID.
  • Step 110 After receiving the setting instruction, the electronic detonator extracts the electronic detonator ID in the setting instruction, and compares whether it is consistent with its own electronic detonator preset ID. If it is consistent, the electronic detonator registration status is identified.
  • Step 111 Return to step 103 and repeat the above steps.
  • the automatic identification of the electronic detonator is realized by the control function of the communication information transmission of the bus control circuit, not only the IDs of all the electronic detonators are obtained, but also the connection sequence number corresponding to the electronic detonator ID.
  • a counter can be set in the network device, and the initial value of the counter is set to 0, whenever the network device receives a response signal (representative An access electronic detonator needs to be registered), the counter is incremented by 1, and the counter value is used as the sequence number.
  • the counter is 1, and the sequence number of the first electronic detonator is 1.
  • the counter is incremented by 1
  • the sequence number of the second electronic detonator is 2; and so on.
  • the advantage is that the traditional electronic detonator detonation system cannot recognize the electronic detonator ID and the electronic detonator connection sequence number when the electronic detonator is directly connected in parallel to the bus.
  • the electronic detonator in the on-site construction, does not need to be registered, and does not need to be charged, but directly connects the electronic detonator and the connecting piece with the surface conductor. Connect to the network in the secure area to perform the automatic registration process.
  • the electronic detonator setting process of step 110 actually writes the parameters related to the electronic detonator operation (electronic detonator setting parameters) into the electronic detonator.
  • the electronic detonator setting parameters mainly include the electronic detonator sequence number / electronic detonator network address, electronic detonator extension (including absolute delay or relative delay).
  • the network device After connecting all the electronic detonators, connect the network device in the security zone, and the network device implements the automatic registration function, which can automatically collect the electronic detonator ID and the electronic detonator connection sequence number.
  • the collected electronic detonator ID and the electronic detonator connection sequence number the corresponding relationship between the electronic detonator ID and the electronic detonator sequence number and the extension can be established by the deferred setting method disclosed in the PCT patent application (International Publication No. WO2015109417), and
  • the electronic detonator ID or the electronic detonator connection sequence number is a network address transmission setting command, a patrol command, an authorization command, and the like.
  • the method includes:
  • Step 201 - Step 208 The same as Step 101 - Step 108 of Embodiment 4, respectively.
  • Step 209 The network device records a correspondence between the electronic detonator ID and the electronic detonator sequence number.
  • Step 210 The network device determines an electronic detonator setting parameter of the electronic detonator according to the correspondence relationship.
  • Step 211 The network device sends a setting instruction including an electronic detonator setting parameter to the electronic detonator via the electronic detonator connection, and the setting instruction includes an electronic detonator ID and an electronic detonator extension or an electronic detonator network address/electronic detonator sequence number;
  • Step 212 After receiving the setting instruction, the electronic detonator extracts the electronic detonator ID in the setting instruction, and compares with the electronic detonator preset ID of the self-detonator. If they are consistent, the electronic detonator registration status is identified, the setting parameters are stored, and the registration process is completed. .
  • Step 213 Return to step 203 and repeat the above steps.
  • the above electronic detonator setting parameters may further include an electronic detonator delay. Since the deployment of the electronic detonator is pre-designed, each electronic detonator in each link should be pre-designed for which blasthole at the blasting site, and the blasthole delay is predicted, so the link can be The sequence number corresponds to the delay of the blasthole and can be stored in the network device in advance. In this way, after the electronic detonator is successfully registered and the sequence number is stored, the electronic detonator can be deferred for the electronic detonator according to the sequence number of the electronic detonator.
  • the extension of the electronic detonator can be stored while the electronic detonator is identified and registered. In fact, it is also possible to set an extension for each electronic detonator by issuing an extension setting command after all the electronic detonators have been identified and formed into a correspondence table.
  • the present invention may further include an electronic detonator inspection step.
  • an electronic detonator inspection step During the process of registering and registering each electronic detonator, the detection process of the electronic detonator has actually been completed. This is because if the electronic detonator cannot communicate, the electronic detonator cannot send an acknowledgement signal to the control bank module.
  • the explosion command will not be initiated immediately. During this time, electronic detonators will be affected by a variety of human or environmental factors.
  • the impact of the impact includes that during the construction process, the electronic detonator of the access link may be unintentionally pulled by the construction personnel or the connecting line may be unintentionally pulled; environmental factors include the flooding of the electronic detonator caused by rain. Therefore, the most prudent method is to issue a patrol instruction to the electronic detonator before initiating an explosion command under the electronic detonator.
  • the process is as in Example 6 below.
  • the network device further sends a patrol command to the electronic detonator in the link. If the network device stores the electronic detonator preset ID, the electronic detonator preset ID is included in the inspection command.
  • the electronic detonator receives the inspection instruction and extracts the electronic detonator preset ID therein. Then, the electronic detonator compares the electronic detonator preset ID stored by the electronic detonator with the extracted electronic detonator preset ID, and if the two are consistent, returns a patrol feedback signal including the electronic detonator preset ID.
  • the network device collects the patrol feedback signal. If the feedback signal of all the electronic detonators is received, the electronic detonator in the link is no problem, and the subsequent detonation command sending process can be continued. If the feedback signal of all electronic detonators is not received, the electronic detonator preset ID of the feedback signal is determined, and the electronic detonator of the problem is determined by the electronic detonator preset ID and the electronic detonator sequence number/electronic detonator network address correspondence table. And replace it.
  • the electronic detonator extension or the electronic detonator network address can be stored while the electronic detonator is identified and registered.
  • the electronic detonator network is inspected only in the on-site safety area to ensure that the electronic detonators are online.
  • the electronic detonator password/work code is applied according to the stored electronic detonator ID and the electronic detonator sequence number/electronic detonator network address correspondence table, and the electronic detonator is delayed by the electronic detonator password/work code.
  • the process is as in Example 7 below.
  • the network device obtains the electronic detonator list
  • the specific process of the method provided by the present invention is illustrated by taking an electronic detonator password application from the electronic detonator management center as an example.
  • the network device applies the electronic detonator password/work code to the electronic detonator management center according to the electronic detonator ID in the corresponding table, or deducts the electronic detonator laser code according to the electronic detonator ID, and applies for the electronic detonator password/work code according to the laser coding to the electronic detonator management center;
  • the network device sends an authorization instruction to the electronic detonator according to the applied electronic detonator password/work code, and the authorization instruction includes an electronic detonator password/work code;
  • the electronic detonator receives the authorization instruction, and extracts whether the electronic detonator password/work code in the authorization instruction is consistent with the electronic detonator password/work code stored by itself, and if consistent, the authorization identification information corresponding to the electronic detonator password/work code in the storage authorization instruction is stored. ;
  • the extension of the electronic detonator is pre-designed, or is a spreadsheet, or a characteristic parameter, the electronic detonator ID and the delay one-to-one correspondence, the electronic detonator password/working code and the electronic detonator ID are in one-to-one correspondence.
  • the electronic detonator ID/electronic detonator network address can be used for postponement setting, or the electronic detonator password/work code can be used to set the extension, and the extension can be set at the same time of authorization to have better flexibility and construction efficiency. Since the detonation is performed in a very short time after the authorization, the authenticity of the online authorization detonation state of the electronic detonator is further ensured.
  • the invention also includes a detonation command transmission process. After all electronic detonators are connected to the link and set an extension, or after the inspection, or after authorization, the initiator sends a detonation command to the network device, and the network device forwards the detonation command to the electronic detonator, and the electronic detonator arrives. Set the detonation after deferred.
  • the electronic detonator connecting piece has the characteristics of controlling bus communication information transmission and rapid fault location, combined with the electronic detonator automatic registration and identification method, the functions of rapid detonator identification registration, authorized detonation and fault location are realized, which greatly reduces the function.
  • the labor intensity and technical complexity make the electronic detonator have the connection speed of the non-electric detonator, and at the same time have the high precision and high reliability of the electronic detonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种电子雷管连接件及基于这种电子雷管连接件的电子雷管设置方法,属于民用爆破设备设计与控制技术领域。该电子雷管连接件,包括控制模块(2)、电子雷管端口、上游端口和下游端口;控制模块(2)分别与电子雷管端口、上游端口和下游端口连接;上游端口通过地表导线与所述下游端口连接;电子雷管(1)的脚线与电子雷管端口连接;上游端口用于接入到上游设备;下游端口用于接入到下游设备或置空。可以实现电子雷管的自动按序注册和故障快速定位,解决了现有电子雷管注册复杂,返场故障排查时间长,施工效率低,影响工业生产的问题,从而提高了电子雷管施工效率。

Description

电子雷管连接件及基于其的电子雷管设置方法 技术领域
本发明属于民用爆破器材设计技术领域,尤其涉及一种电子雷管连接件及基于这种电子雷管连接件的电子雷管设置方法。
背景技术
现有的电子雷管的布设方式是,先确定施工现场爆破孔的延期,再将电子雷管一个一个地放入爆破孔,再将电子雷管接入起爆支路,同时将确定电子雷管身份信息和爆破孔信息输入起爆器。起爆器将电子雷管的身份信息和爆破孔对应,在根据事先设计好的爆破孔和延期对照表,确定电子雷管的延期,然后将延期下发至每个电子雷管。
上述施工过程过于繁琐,并且在电子雷管数量较大时,容易出现错误。并且施工过程中存在安全隐患,因此有必要设计一种简单、高效和安全的电子雷管设置方法,已解决现有电子雷管布设过程中存在的不足。
专利WO2017031606中揭示了一种实现爆破施工现场电子雷管的简便、高效和安全布设的设置方法和一种电子雷管连接件,该方法还存在一定缺点,施工时,必须先要网路器处于开机状态,电子雷管及其连接件需要逐个联入网络。虽然解决了快速注册问题,但是在连接时,由于这种方式电子雷管必须带电操作,存在一定的风险。
发明内容
本发明的目的在于,提供一种电子雷管连接件及基于这种电子雷管连接件的电子雷管的设置方法,用于实现爆破施工现场电子雷管的简便、高效和安全的布设。
为了实现上述目的,本发明提出的技术方案是,一种电子雷管连接件,用于将电子雷管接入起爆链路,用于实现电子雷管的自动注册和故障快速定位,电子雷管连接件包括控制模块、电子雷管端口、上游端口和下游端口;
控制模块分别与电子雷管端口、上游端口和下游端口连接;
上游端口通过地表导线与下游端口连接;
电子雷管的脚线与电子雷管端口连接;
上游端口用于接入到上游设备;
下游端口用于接入到下游设备或置空;
上游设备为控制排模块/网路器或链路中靠近控制排模块/网路器的另一电子雷管连接件;
下游设备为链路中远离控制排模块/网路器的另一电子雷管连接件。
电子雷管连接件用于控制网路器/控制排模块和电子雷管之间的通信信息传递;通信信息包括网路器/控制排模块发送的识别指令、设置指令、巡检指令、授权指令、起爆指令以及电子雷管发送的应答信号中的至少一种;电子雷管在发出应答信号时,电子雷管连接件切断电子雷管连接件的下游端口的电源通路。
电子雷管连接件的控制模块包括总线控制电路,总线控制电路用于:
在电子雷管连接件收到上游信号时,电子雷管连接件所连接的电子雷管和所有下游设备均能收到相同的信号;
在电子雷管连接件收到电子雷管连接件所连接的电子雷管的应答信号时,切断下游端口的电源通路。
总线控制电路包括:取样电阻,单向充电二极管,限流电阻,放电电阻,截至电容,桥接电容,下拉电阻,NMOS管,PMOS管;取样电阻一端连接电子雷管端口的一端,还连接到单向充电二极管的正极;单向充电二极管的负极连接限流电阻的一端;限流电阻的另一端连接放电电阻、截至电容、桥接电容的一端,还连接到PMOS管的栅极;桥接电容的另一端连接到NMOS管的栅极和下拉 电阻的一端;下拉电阻的另一端连接到NMOS管的源极和PMOS管的漏极,还连接到下游端口的正极;上游端口的正极连接到NMOS管的漏极和PMOS管的源极,还连接到电子雷管端口的另一端;取样电阻、放电电阻、截至电容的另一端,以及上游端口的负极和下游端口的负极相连。
电子雷管连接件的控制模块包括故障快速定位电路,用于在电子雷管连接件连接的电子雷管及其脚线短路/漏电时,切断电子雷管连接件的下游端口的电源通路。
故障快速定位电路包括取样电阻,放电电阻,截至电容,PMOS管;取样电阻一端连接电子雷管端口、放电电阻和截至电容的一端,还连接到PMOS的栅极;PMOS管的漏极连接到下游端口的正极;上游端口的正极连接到PMOS管的源极,还连接到电子雷管端口的另一端;取样电阻、放电电阻、截至电容的另一端,以及上游端口的负极和下游端口的负极相连。
一种基于电子雷管连接件的电子雷管设置方法,该方法包括:
通过电子雷管连接件和地表导线顺序连接电子雷管,然后再连接到网路器/控制排模块;
网络器发送全局初始化指令,用于清除所有电子雷管标识状态;
网路器周期性地发送识别指令;
未注册的电子雷管发送应答信号;
在预置时间内不能获得应答信号时,自动注册过程结束;
电子雷管注册到网路器;
重复上述步骤直至所有电子雷管被注册。
电子雷管注册到网路器的过程进一步包括:
所有电子雷管均收到识别指令,电子雷管判断自身的注册状态,未注册的电子雷管发送应答信号,应答信号包括电子雷管预置ID;已标记注册状态的电子雷管不应答;
未注册的电子雷管发送应答信号时,与未注册的电子雷管连接的电子雷管连接件切断电子雷管连接件下游端口的电源通路;
未注册的电子雷管检测其脚线间电压差,如果脚线间电压差小于预设值时,不再继续发送应答信号过程;否则,继续发送应答信号;
网路器在发送识别指令后,在预置时间内,至多能收到一个电子雷管的完整应答信号,网路器提取应答信号中的电子雷管ID;
网路器统计已经注册的电子雷管个数DN,DN加一后作为当前电子雷管在链路上的电子雷管顺序号;
网路器发送设置指令,设置指令包括电子雷管ID;
电子雷管在收到设置指令时,提取设置指令中电子雷管ID与自身存储的电子雷管预置ID是否一致,如果一致,标识已注册状态;
设置指令还包括网路器属性信息和电子雷管顺序号信息,用于标识电子雷管归属网路器编号和电子雷管所在链路的顺序号,构成电子雷管网络地址。
注册过程还包括:
网路器根据电子雷管顺序号来确定电子雷管的电子雷管设置参数,将电子雷管预置ID与顺序号/电子雷管网络地址存储到电子雷管预置ID与电子雷管顺序号/电子雷管网络地址对应表中。
判断电子雷管是否注册到网路器包括:
步骤A1:电子雷管连接件将识别指令转发至电子雷管连接件上连接的电子雷管;
步骤A2:如果电子雷管存储了已注册状态标识,则不应答,完成判断过程;如果电子雷管未存储已注册状态标识,则电子雷管未注册到网路器,电子雷管向网路器发送应答信号;
步骤A3:网路器在收到应答信号后,提取应答信号中电子雷管ID,与电子雷管列表中的电子雷管ID对比,如果列表中已存在电子雷管ID,则认为上次注 册过程没有完成,向电子雷管再次发送设置指令;如果列表中没有电子雷管ID,则认为是发现新的电子雷管,执行整个注册过程。
将电子雷管注册到网路器是将电子雷管设置参数存储到电子雷管和在网路器中存储电子雷管ID和设置参数。
电子雷管设置参数包括网路器属性信息、电子雷管顺序号/电子雷管网路地址和/或电子雷管延期。
本发明揭示的方法进一步包括:
步骤B1:网路器根据存储的电子雷管顺序号/电子雷管网路地址与电子雷管延期的对应关系,形成包括电子雷管顺序号/电子雷管网路地址和与电子雷管顺序号/电子雷管网路地址对应的电子雷管延期的延期设置指令;
步骤B2:电子雷管通过电子雷管连接件接收电子雷管延期指令后,提取延期设置指令中的电子雷管顺序号/电子雷管网路地址和与电子雷管顺序号/电子雷管网路地址对应的电子雷管延期;
步骤B3:电子雷管判断提取的电子雷管顺序号/电子雷管网路地址与自身存储的电子雷管顺序号/电子雷管网路地址是否一致,如果一致,则存储与电子雷管顺序号/电子雷管网路地址对应的电子雷管延期。
本发明揭示的方法还包括:
步骤C1:网路器根据存储的对应表中电子雷管ID,发送包括电子雷管ID的巡检指令;
步骤C2:电子雷管接收巡检指令,并提取巡检指令中的电子雷管ID;
步骤C3:电子雷管比较自身存储的电子雷管预置ID和提取的电子雷管ID,若二者一致,则返回巡检反馈信号;
步骤C4:网路器收集巡检反馈信号,如果收到所有电子雷管的反馈信号,则链路中的电子雷管都是可用电子雷管;否则,确定未收到反馈信号的电子雷管预置ID,并通过电子雷管预置ID与电子雷管顺序号/电子雷管网络地址对应 表确定有问题的电子雷管。
本发明揭示的方法进一步包括:
步骤D1:网路器根据存储的对应表中电子雷管ID向电子雷管管理中心申请电子雷管密码/工作码,或根据电子雷管ID计算电子雷管激光编码,根据激光编码向电子雷管管理中心申请电子雷管密码/工作码;
步骤D2:网路器根据电子雷管密码/工作码向电子雷管发送授权指令,授权指令包括电子雷管密码/工作码;
步骤D3:电子雷管收到授权指令,提取授权指令中电子雷管密码/工作码与自身存储的电子雷管密码/工作码是否一致,如果一致,存储授权指令中的与电子雷管密码/工作码对应的授权标识信息。
授权标识信息还包括电子雷管延期。
本发明揭示的方法还包括:起爆器向网路器发送起爆指令,网路器将起爆指令转发至电子雷管,电子雷管在收到起爆信号时,判断是否存储了授权标识信息,如果存储了授权标识信息才能开始计时,直至计时达到预设的延期时引爆。
在电子雷管的布设施工中,在不连接网路器的情况下,施工人员只需将电子雷管一个一个地按序用连接件和地表导线连接起来。无需知道电子雷管的身份信息,更无需将电子雷管的身份信息发送至起爆器。在连接完所有电子雷管时,在安全区域将链路接入网路器,通过网路器的自动注册功能逐个搜索整条链路上的电子雷管,搜索到的顺序为电子雷管连接的顺序。
附图说明
图1是本发明提供的电子雷管连接件的连接示意图。
图2是本发明的包括总线控制电路优选电路结构的电子雷管连接件电路结构图。
图3是本发明的自动注册时电子雷管应答信号时序图。
图4是本发明的包括故障快速定位电路优选电路结构的电子雷管连接件电 路结构图。
图5是基于电子雷管连接件的电子雷管设置方法的通用步骤流程图。
图6是基于电子雷管连接件的电子雷管设置方法的一个实施例的流程图。
图7是基于电子雷管连接件的电子雷管设置方法的另一个实施例的流程图。
具体实施方式
下面结合附图,对优选实施例作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
实施例1
图1是本发明提供的电子雷管连接件的连接示意图。如图1所示,电子雷管连接件包括控制模块、电子雷管端口、上游端口和下游端口。控制模块分别与电子雷管端口、上游端口和下游端口相连。一般来说,一个网路器用于组建一条电子雷管支路(在本发明中称为“链路”)。在每条链路上会接入若干电子雷管。
在图1中,电子雷管连接件的上游端口用于接入到上游设备。如果电子雷管连接件是链路中的第一个连接件,则该第一个电子雷管连接件的上游端口用于接入到网路器,即此时的上游设备为网路器。如果电子雷管连接件不是链路中的第一个连接件,则电子雷管连接件的上游端口用于接入到链路中上一个电子雷管连接件,此时的上游设备为链路中上一个电子雷管连接件。比如图1中,对于最右侧的电子雷管连接件,其上游设备是其左侧的电子雷管连接件,因此当最右侧的电子雷管连接件接入链路时,其上游端口接入到其左侧的电子雷管连接件。
在图1中,电子雷管连接件的下游端口用于接入到下游设备。比如图1中,对于左侧的电子雷管连接件,其下游设备是其右侧的电子雷管连接件,因此左侧的电子雷管连接件的下游端口接入到其右侧的电子雷管连接件。需要说明的是,如果电子雷管连接件是链路中的最后一个电子雷管连接件,则其下游 端口连接一个防水堵头或置空,即可以不接任何设备。
由图1可知,上述电子雷管连接件用于实现电子雷管快速接入链路。除此之外,电子雷管连接件还实现网路器和电子雷管间通信信息的传递。即,电子雷管连接件可以转发网路器向电子雷管发送的识别指令、注册指令、巡检指令、授权指令、起爆指令,以及可以控制转发电子雷管向网路器发送的应答信号。这将在后面的方法实施例的说明中详细阐述。
上述图1仅示出一个网路器连接两个电子雷管连接件的情况,应当清楚的是,图1仅仅是用于说明本实施例的示例。网路器可以连接两个以上的两个电子雷管连接件。
在传统的技术条件下,一旦所有电子雷管都并联在链路中,所有电子雷管都是处于相同的状态,发送任何指令时,所有电子雷管都会做出同样的处理。由于起爆设备在没有导入电子雷管ID时,不能与单个电子雷管进行点对点通信。而如果发送可应答的通播指令时,所有的电子雷管都会应答。在所有电子雷管应答时,起爆设备不能从总线中提取这种无规则叠加的电流信号,即无法获得可用的信号。传统的方式是通过逐个扫描条码或者逐个带电注册时才能获得电子雷管ID及电子雷管连接顺序。逐个注册或者扫描条码时,需要输入孔号,施工效率低下,容易出现人为错误。
因此,本发明提供的总线控制电路用于解决上述问题。在施工过程中,采用安装上述图2的结构连接的电子雷管连接件接入链路后,利用应答信号来自动控制应答信号的通信信息传递,可以很好地解决传统电子雷管并联总线式网络的电子雷管顺序注册的问题。
图2是包括总线控制电路优选电路结构的电子雷管连接件电路结构图。所有电子雷管在没有供电的情况下,用电子雷管连接件和地表导线连接起来,在安全区域连接到网路器。首先,网路器发送一个初始化指令,初始化所有电子雷管,清除电子雷管的注册状态。初始化指令是一个全局通播指令,全局通播 指令所有的电子雷管都能接收和解析。然后,网路器周期性发送识别指令,识别指令也是一个全局通播指令,所有电子雷管都能接收和解析该指令。电子雷管收到识别指令后,判断自身是否存储了已注册状态,如果没有已注册状态的才发送应答信号。距离网路器近端的未注册的电子雷管发送应答信号时,与未注册的电子雷管连接的电子雷管连接件切断电子雷管连接件下游端口的电气连接。电子雷管检测其脚线电压差是否下降到预设值,如果脚线电压差下降到预设值时,将停止发送应答信号。
具体地说明一下,图2中有两个电子雷管连接件及连接的电子雷管E1和E2,E1靠近网路器,E2紧邻E1。网路器发送初始化指令后,E1和E2都清除了注册状态,即E1和E2都是未注册状态。当网路器发送识别指令后,E1和E2都收到识别指令,E1和E2都将发出应答信号,如图3所示。由于电子雷管连接器具有总线控制电路,使得E2的电源通路在E1发送应答信号时被切断,此时E2检测到脚线电压差小于0.5V,E2将停止继续发送应答信号;而E1直接连接的是网路器,总线电压保持不变,E1检测到电压差大于0.5V,继续发送应答信号,应答信号中包含了E1的电子雷管ID。这样,网路器就只能收到了一个电子雷管的完整的应答信号,即E1的应答信号。当E1完成注册到网路器过程后,E1存储了已注册状态,在收到下次识别指令时,E1将不再发送应答信号。由于E1没有发送应答信号,和E1连接的总线控制电路不动作,E1的下游端口没有被切断。由于E2没有被注册,E2发送应答信号,且E2的供电电路没有被切断,E2检测到电压差大于0.5V,能继续发送完整的应答信号。依据上面的原理,E2发送应答信号时,与E2连接的电子雷管连接件切断了电子雷管连接件的下游端口的电源通路,后续的电子雷管都不能继续发送应答信号。这样,网路器只能收到E2的完整的应答信号,将E2注册到网路器,重复上述过程,即可将链路上的所有电子雷管都按照顺序依次注册到网路器。网路器直接连接的电子雷管连接件所连接的电子雷管总是第一个被注册, 然后是最靠近网路器的没有被注册的电子雷管被依次注册。在实际施工时,延期递增的方向、网路器的位置等需现场灵活规定。下面将具体地说明总线控制电路的工作原理。
本发明揭示的总线控制电路包括:取样电阻R1,单向充电二极管D1,限流电阻R2,放电电阻R3,截至电容C1,桥接电容C2,下拉电阻R4,NMOS管Q2,PMOS管Q1;取样电阻R1一端连接所述电子雷管端口的一端,还连接到单向充电二极管D1的正极;单向充电二极管的负极连接限流电阻R2的一端;限流电阻R2的另一端连接放电电阻R3、截至电容C1、桥接电容C2的一端,还连接到PMOS管Q1的栅极;桥接电容C2的另一端连接到NMOS管Q2的栅极和下拉电阻R4的一端;下拉电阻R4的另一端连接到NMOS管Q2的源极和PMOS管Q1的漏极,还连接到下游端口的正极;上游端口的正极连接到NMOS管Q2的漏极和PMOS管Q1的源极,还连接到电子雷管端口的另一端;取样电阻R1、放电电阻R2、截至电容C1的另一端,以及上游端口的负极和下游端口的负极相连。如图2所示。
当网路器发送识别指令完成后,保持DX+>DX-,等待应答信号。若电子雷管E1和E2都应答时,R1流过mA级的电流,R1为几千欧,则图2中A点电压升高,通过限流电阻R2给C1充电,图2中B点变为高接近DX+电位后,Q1截至,切断下游端口的电源通路。当E1、E2开始发送应答信号的同时,E1、E2检测脚线电压差,如果有足够的电压差时,则可以继续发送,如果电压差小于预设值时,则退出应答信号的发送过程。这里E1可以继续发送应答信号,而E2则停止发送应答信号,网路器提取的电流应答信号仅是E1的完整的应答信号,从而实现了首个雷管双向通信。
当E1被网路器识别后,网路器通过识别到的电子雷管ID,向所有电子雷管发送设置指令,设置指令包括E1的电子雷管ID,电子雷管在接收到设置指令后,提取设置指令中的电子雷管ID,并与自身的电子雷管预置ID比较,仅E1比较结果一致,E1存储标识已注册状态,而E2及与E2连接的电子雷管连接件的下 游端口连接的电子雷管保持未注册状态。
若E1已经存储了已注册状态时,在网路器再次发送识别指令时,E1将不再应答时,E1的R1仅流过微安级的电流,A点保持为DX-接近的电位,无法给C1充电,B点经放电电阻R3保持与DX-等电位,Q1导通,后续设备保持通电状态。此时,E2发送应答信号时,检测脚线间电压差远大于电压差预设值,E2可以继续发送应答信号。由于E1不发送应答信号,而E2下游端口连接的电子雷管参照上述原理,也不能发送完整的应答信号,所以总线上仅有E2的完整的应答信号。从而实现了电子雷管的依次应答。
由于网路器发送的设置指令为差分信号,当上述的电路在DX->DX+时,Q1等效为一个正向导通二极管,二极管存在导通压降,在这种情况下,链路上的电子雷管的脚线电压差,随着远离网路器而逐渐变小,最终会导致距离远的电子雷管不能收到网路器发送的正常的差分信号。为了解决上述问题,在电路中增加了Q2、C2、R4、R3构成的电流旁路电路。当DX+>DX-时,由于Q2的漏极电压高于源极电压,栅极电压不会高于源极电压,因此Q2一直处于截至状态,并不参与到总线控制,Q1处于可控制状态,R1仅有微安级电流通过时,Q1处于完全导通状态;在DX->DX+(网路器发送指令的低电平状态)时,通过R3向C2充电,Q2栅极电压迅速接近DX-的电位,且C2饱和后没有额外电流,Q2导通,构成了一个电流旁路,抵消了Q1产生的二极管压降,使得每个雷管收到的电压波形一样。R4下拉电阻用于确保Q2栅极处于确定状态。
关于识别指令和设置指令实现自动注册的过程,结合下面方法的描述还会进一步说明。
本发明提供的电子雷管连接件还包括故障快速定位电路,通过故障快速定位电路可以将链路中的发生故障的电子雷管位置快速确定。
实施例2
故障快速定位电路包括取样电阻R1,放电电阻R2,截至电容C1,PMOS 管Q1;取样电阻R1一端连接电子雷管端口、放电电阻R2和截至电容C1的一端,还连接到Q1的栅极;Q1的漏极连接到下游端口的正极;上游端口的正极连接到Q1的源极,还连接到电子雷管端口的另一端;取样电阻R1、放电电阻R2、截至电容C1的另一端,以及上游端口的负极和下游端口的负极相连。
网路器在不通信时,保持DX+>DX-。若某个电子雷管脚线短路时,与该电子雷管相连的专用连接器的R1流过mA级的电流,R1为几千欧,则图4中A点电压升高,通过限流电阻R2给C1充电,图4中B点变为高接近DX+电位后,Q1截至,下游设备的电源通路被切断,不能对识别指令应答。由于电子雷管通过采样电阻R1接入起爆链路总线,在R1的限流作用下,即使故障电子雷管的漏电或脚线短路时,总线上的电流仅增加了几个毫安,从而保证链路上的回路电流在可接收范围,与故障电子雷管连接的电子雷管连接件的上游端口连接的设备均正常工作且可被识别,故障电子雷管的漏电或脚线短路并不会影响上游端口连接的所有电子雷管的自动注册。当网路器实施自动注册时,能够识别到故障电子雷管上游的所有电子雷管,而不能识别到故障电子雷管下游的所有电子雷管。因此,能够快速确定故障雷管的位置。采用本发明揭示的专用连接件,将极大地缩短了故障排查时间。而在传统的电子雷管起爆系统中,如果出现了脚线短路和漏电时,往往出现不确定的电子雷管巡检状态,需要通过二分法排查故障,排查时间经常要耗时1~2小时,这严重影响了工业生产。
本发明还提供了一种基于电子雷管连接件的电子雷管设置方法,通过该方法,可以实现电子雷管的参数的快速设置。参数包括电子雷管顺序号/电子雷管网络地址、电子雷管的延期(绝对延期或相对延期)等。
实施例3
图5是基于电子雷管连接件的电子雷管设置方法,该方法包括:
步骤11:通过电子雷管连接件和地表导线顺序连接电子雷管,然后再连接 到网路器/控制排模块;
步骤12:网络器发送全局初始化指令,用于清除所有电子雷管标识状态;
步骤13:网路器周期性地发送识别指令;
步骤14:未注册的电子雷管发送应答信号;
步骤15:在预置时间内不能获得应答信号时,自动注册过程结束;
步骤16:电子雷管注册到所述网路器;
步骤17:重复上述步骤直至所有电子雷管被注册。
实施例4
下面参照图6,以电子雷管连接件控制通信信息传递为例,说明本发明提供的方法的具体实现过程。
图5是基于电子雷管连接件的电子雷管识别方法的一个实施例。如图6所示,该方法包括:
步骤101-步骤103:分别与实施例3的步骤11-步骤13相同。
步骤104:电子雷管收到识别指令后,如果电子雷管的注册状态为未注册时,电子雷管开始发送应答信号。
步骤105:电子雷管连接件在收到所应答信号后,切断电子雷管连接件的下游端口的电源通路;
步骤106:电子雷管判断脚线电压差,如果电压差小于预设值,终止应答信号发送;否则,继续发送应答信号过程,应答信号包括电子雷管预置ID。
步骤107:如果网路器在预置时间内,没有收到应答信号,结束自动注册过程;否则,在收到应答信号后,提取电子雷管ID;
步骤108:网路器统计已经注册的电子雷管个数DN,DN加一后作为当前电子雷管在链路上的顺序号。
步骤109:网路器经由电子雷管连接件向电子雷管发送包括电子雷管设置参数的设置指令,设置指令包括电子雷管ID。
步骤110:电子雷管收到设置指令后,提取设置指令中电子雷管ID,并比较和自身的电子雷管预置ID是否一致,如果一致,则将标识电子雷管注册状态。
步骤111:返回步骤103并重复上述步骤。
在上述过程中,通过总线控制电路的通信信息传递的控制作用,实现电子雷管的自动识别,不仅获得所有电子雷管ID,还确定了与电子雷管ID对应的连接顺序号。
由于电子雷管是通过电子雷管连接件一个一个地被网路器识别的,因此可以在网路器中设置一个计数器,计数器的初始值设置为0,每当网路器收到一个应答信号(代表一个接入的电子雷管需要注册),就将计数器加1,而后将该计数器值作为顺序号。
例如,当网路器识别第一个电子雷管时,计数器是1,该第一个电子雷管的顺序号为1;当网路器识别第二个电子雷管时,计数器在1的基础上加1,此时计数器为2,则该第二个电子雷管的顺序号为2;以此类推。
其优点在于:传统电子雷管起爆系统在直接将电子雷管预先并联到总线时,无法识别电子雷管ID和电子雷管连接顺序号。而在本发明中,现场施工中,电子雷管在不需要注册,也不需要带电操作,而直接将电子雷管和连接件用地表导线连接起来。在安全区域连接网路器,执行自动注册过程。
上述方法中,步骤110的电子雷管设置过程实际还是将与电子雷管作业有关的参数(电子雷管设置参数)写入电子雷管的过程。电子雷管设置参数主要包括电子雷管顺序号/电子雷管网络地址、电子雷管延期(包括绝对延期或相对延期)。
在连接所有电子雷管后,在安全区连接网路器,网路器实施自动注册功能,能够自动收集电子雷管ID和电子雷管连接顺序号。根据收集到的电子雷管ID和电子雷管连接顺序号,通过在PCT专利申请(国际公布号:WO2015109417) 揭示的延期设置方法,可建立电子雷管ID和电子雷管顺序号与延期的对应关系,并以电子雷管ID或电子雷管连接顺序号为网络地址发送设置指令、巡检指令、授权指令等。
实施例5
下面参照图7,以建立电子雷管ID与电子雷管网络地址、电子雷管顺序号、电子雷管延期对应关系为例,说明本发明提供的方法的具体实现过程。
图7是基于电子雷管连接件的电子雷管注册方法的一个实施例。如图7所示,该方法包括:
步骤201-步骤208:分别与实施例4的步骤101-步骤108相同。
步骤209:网路器记录所述电子雷管ID和所述电子雷管顺序号的对应关系;
步骤210:网路器根据所述对应关系来确定电子雷管的电子雷管设置参数;
步骤211:网路器经由电子雷管连接件向电子雷管发送包括电子雷管设置参数的设置指令,设置指令包括电子雷管ID和电子雷管延期或电子雷管网络地址/电子雷管顺序号;
步骤212:电子雷管收到设置指令后,提取设置指令中电子雷管ID,并比较和自身的电子雷管预置ID是否一致,如果一致,则将标识电子雷管注册状态,存储设置参数,完成注册过程。
步骤213:返回步骤203并重复上述步骤。
上述电子雷管设置参数还可以包括电子雷管延期。由于电子雷管的部署是预先设计好的,每条链路中的各个电子雷管应当对于爆破现场的哪个爆破孔也是预先设计好的,而爆破孔的延期是预知的,因此可以将链路中的顺序号与爆破孔的延期对应起来,并可事先存储在网路器中。这样,在电子雷管注册成功并存储了顺序号后,就可以根据电子雷管的顺序号为电子雷管设定电子雷管延期了。
上述过程中,在电子雷管被识别注册的同时,即可存储电子雷管的延期。 事实上,还可以在所有电子雷管都被识别,形成对应表后,再通过下发延期设置指令为每个电子雷管设置延期。
在将所有电子雷管通过电子雷管连接件接入链路后,本发明还可以进一步包括电子雷管巡检步骤。在每个电子雷管接入链路并注册过程中,实际上已经完成了电子雷管的检测过程。这是因为,如果电子雷管无法通信,则电子雷管无法向控制排模块发送应答信号。但是,在电子雷管接入链路并注册后,甚至已经设定延期后,由于各种原因,不会立即下发起爆指令。在这期间,电子雷管会受到各种人为或环境因素的影响。比如,认为的影响包括,施工过程中,接入链路的电子雷管可能被施工人员无意踩到或连接线被无意拉扯;环境因素包括,下雨造成电子雷管浸水等。因此,最稳妥的方法是,在向电子雷管下发起爆指令前,先向电子雷管下发巡检指令。其过程如下面的实施例6。
实施例6
在步骤213后还包括,网路器向链路中的电子雷管发送巡检指令。如果网路器存储了电子雷管预置ID,则巡检指令中包括电子雷管预置ID。
电子雷管接收巡检指令,并提取其中的电子雷管预置ID。然后电子雷管比较自身存储的电子雷管预置ID和提取的电子雷管预置ID,若二者一致,则返回包括电子雷管预置ID的巡检反馈信号。
网路器收集巡检反馈信号,如果收到所有电子雷管的反馈信号,则链路中的电子雷管是没有问题的,可以继续后续起爆指令发送过程。如果未收到所有电子雷管的反馈信号,则确定未收到反馈信号的电子雷管预置ID,并通过电子雷管预置ID与电子雷管顺序号/电子雷管网络地址对应表确定有问题的电子雷管,并进行替换。
上述过程中,在电子雷管被识别和注册的同时,即可存储电子雷管的延期或电子雷管网络地址。事实上,为了提高施工效率,仅在现场安全区域对电子雷管网络进行巡检,确保电子雷管均在线。而在起爆前,根据存储的电子雷管 ID与电子雷管顺序号/电子雷管网络地址对应表来申请电子雷管密码/工作码,并通过电子雷管密码/工作码发送电子雷管延期。其过程如下面的实施例7。
实施例7
在网路器获得电子雷管列表后,以从电子雷管管理中心申请电子雷管密码为例,说明本发明提供的方法的具体过程。
网路器根据对应表中电子雷管ID向电子雷管管理中心申请电子雷管密码/工作码,或根据电子雷管ID推算电子雷管激光编码,根据激光编码向电子雷管管理中心申请电子雷管密码/工作码;
网路器根据申请到的电子雷管密码/工作码向电子雷管发送授权指令,授权指令包括电子雷管密码/工作码;
电子雷管收到授权指令,提取授权指令中电子雷管密码/工作码与自身存储的电子雷管密码/工作码是否一致,如果一致,存储授权指令中的与电子雷管密码/工作码对应的授权标识信息;
如上所述,电子雷管的延期是预先设计好的,或者是电子表格,或者是特征参数,电子雷管ID和延期一一对应,电子雷管密码/工作码和电子雷管ID一一对应。在自动注册完成后,使用电子雷管ID/电子雷管网路地址可以进行延期设置,也可以通过电子雷管密码/工作码来设置延期,在授权的同时设置延期具有更好的灵活性和施工效率,由于授权之后,在非常短的时间内执行起爆,更加确保了电子雷管的在线授权起爆状态的真实性。
实施例8
本发明还包括起爆指令发送过程。在所有电子雷管接入链路并设置了延期后,或者在巡检后,或者在授权后,起爆器向网路器发送起爆指令,网路器将起爆指令转发至电子雷管,电子雷管在到达设定延期后起爆。
在本发明中,由于电子雷管连接件具有控制总线通信信息传递和故障快速 定位的特点,结合电子雷管自动注册识别方法,实现了雷管快速识别注册、授权起爆、故障定位的功能,极大降低了劳动强度和技术复杂度,使得电子雷管具有了非电雷管的连接快捷性,同时又具有电子雷管高精度和高可靠性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种电子雷管连接件,用于将电子雷管接入起爆链路,用于电子雷管的自动注册和故障快速定位,其特征是所述电子雷管连接件包括控制模块、电子雷管端口、上游端口和下游端口;
    所述控制模块分别与电子雷管端口、上游端口和下游端口连接;
    所述上游端口通过地表导线与所述下游端口连接;
    所述电子雷管的脚线与所述电子雷管端口连接;
    所述上游端口用于接入到上游设备;
    所述下游端口用于接入到下游设备或置空;
    所述上游设备为网路器/控制排模块或链路中靠近所述网路器/控制排模块的另一电子雷管连接件;
    所述下游设备为链路中远离所述网路器/控制排模块的另一电子雷管连接件。
  2. 根据权利要求1所述的电子雷管连接件,其特征是所述电子雷管连接件用于控制所述控制网路器/控制排模块和所述电子雷管之间的通信信息传递;所述通信信息包括所述网路器/控制排模块发送的识别指令、设置指令、巡检指令、授权指令、起爆指令以及所述电子雷管发送的应答信号中的至少一种;所述电子雷管在发出应答信号时,所述电子雷管连接件切断所述电子雷管连接件的下游端口的电源通路。
  3. 根据权利要求1或2所述的电子雷管连接件,其特征是所述电子雷管连接件的控制模块包括总线控制电路,所述总线控制电路用于:
    在所述电子雷管连接件收到上游信号时,所述电子雷管连接件所连接的电子雷管和所有下游设备均能收到相同的信号;
    在所述电子雷管连接件收到所述电子雷管连接件所连接的电子雷管的应答信号时,切断下游端口的电源通路。
  4. 根据权利要求3所述的电子雷管连接件,其特征是所述总线控制电路包括:取样电阻,单向充电二极管,限流电阻,放电电阻,截至电容,桥接电容,下拉电阻,NMOS管,PMOS管;所述取样电阻一端连接所述电子雷管端口的一端,还连接到所述单向充电二极管的正极;所述单向充电二极管的负极连接所述限流电阻的一端;所述限流电阻的另一端连接所述放电电阻、所述截至电容、所述桥接电容的一端,还连接到所述PMOS管的栅极;所述桥接电容的另一端连接到所述NMOS管的栅极和所述下拉电阻的一端;所述下拉电阻的另一端连接到所述NMOS管的源极和所述PMOS管的漏极,还连接到所述下游端口的正极;所述上游端口的正极连接到所述NMOS管的漏极和所述PMOS管的源极,还连接到所述电子雷管端口的另一端;所述取样电阻、所述放电电阻、所述截至电容的另一端,以及所述上游端口的负极和所述下游端口的负极相连。
  5. 根据权利要求1或2所述的电子雷管连接件,其特征是所述电子雷管连接件的控制模块包括故障快速定位电路,用于在所述电子雷管连接件连接的电子雷管及其脚线短路/漏电时,切断所述电子雷管连接件的下游端口的电源通路。
  6. 根据权利要求5所述的电子雷管连接件,其特征是所述故障快速定位电路包括取样电阻,放电电阻,截至电容,PMOS管;所述取样电阻一端连接所述电子雷管端口、所述放电电阻和所述截至电容的一端,还连接到所述PMOS的栅极;所述PMOS管的漏极连接到所述下游端口的正极;所述上游端口的正极连接到所述PMOS管的源极,还连接到所述电子雷管端口的另一端;所述取样电阻、所述放电电阻、所述截至电容的另一端,以及所述上游端口的负极和所述下游端口的负极相连。
  7. 一种基于电子雷管连接件的电子雷管设置方法,其特征是所述方法包括:
    通过电子雷管连接件和地表导线顺序连接电子雷管,然后再连接到网路器/ 控制排模块;
    所述网络器发送全局初始化指令,用于清除所有电子雷管标识状态;
    所述网路器周期性地发送识别指令;
    未注册的所述电子雷管发送应答信号;
    在预置时间内不能获得应答信号时,自动注册过程结束;
    所述电子雷管注册到所述网路器;
    重复上述步骤直至所有电子雷管被注册。
  8. 根据权利要求7所述的设置方法,其特征是所述电子雷管注册到所述网路器的过程进一步包括:
    所有电子雷管均收到所述识别指令,电子雷管判断自身的注册状态,未注册的电子雷管发送应答信号,所述应答信号包括电子雷管预置ID;已标记注册状态的电子雷管不应答;
    所述未注册的电子雷管发送所述应答信号时,与所述未注册的电子雷管连接的电子雷管连接件切断所述电子雷管连接件的下游端口的电源通路;
    所述未注册的电子雷管检测其脚线间电压差,如果所述脚线间电压差小于预设值时,不再继续发送应答信号过程;否则,继续发送应答信号;
    所述网路器在发送识别指令后,在预置时间内,至多能牧到一个电子雷管的完整所述应答信号,所述网路器提取所述应答信号中的电子雷管ID;
    所述网路器统计已经注册的电子雷管个数DN,DN加一后作为当前电子雷管在链路上的电子雷管顺序号;
    所述网路器发送设置指令,所述设置指令包括所述电子雷管ID;
    电子雷管在收到所述设置指令时,提取所述设置指令中所述电子雷管ID与自身存储的电子雷管预置ID是否一致,如果一致,标识已注册状态;
  9. 根据权利要求8所述的设置方法,其特征是所述设置指令还包括所述网路器属性信息和所述电子雷管顺序号信息,用于标识电子雷管归属网路器编号 和电子雷管所在链路的顺序号,构成电子雷管网络地址。
  10. 根据权利要求8所述的设置方法,其特征是所述注册过程还包括:
    所述网路器根据所述电子雷管顺序号来确定电子雷管的电子雷管设置参数,将所述电子雷管预置ID与所述顺序号/电子雷管网络地址存储到电子雷管预置ID与电子雷管顺序号/电子雷管网络地址对应表中。
  11. 根据权利要求10所述的设置方法,其特征是所述判断电子雷管是否注册到网路器包括:
    步骤A1:所述电子雷管连接件将所述识别指令转发至所述电子雷管连接件上连接的电子雷管;
    步骤A2:如果所述电子雷管存储了已注册状态标识,则不应答,完成判断过程;如果所述电子雷管未存储已注册状态标识,则所述电子雷管未注册到所述网路器,所述电子雷管向网路器发送应答信号;
    步骤A3:所述网路器在收到所述应答信号后,提取所述应答信号中电子雷管ID,与电子雷管列表中的电子雷管ID对比,如果列表中已存在电子雷管ID,则认为上次注册过程没有完成,向电子雷管再次发送所述设置指令;如果列表中没有电子雷管ID,则认为是发现新的电子雷管,执行整个注册过程。
  12. 根据权利要求7-11任一项所述的设置方法,其特征是将所述电子雷管注册到所述网路器是将电子雷管设置参数存储到所述电子雷管和在所述网路器中存储电子雷管ID和设置参数。
  13. 根据权利要求12所述的设置方法,其特征是所述电子雷管设置参数包括所述网路器属性信息、电子雷管顺序号/电子雷管网路地址和/或电子雷管延期。
  14. 根据权利要求13所述的设置方法,其特征是所述方法进一步包括:
    步骤B1:所述网路器根据存储的电子雷管顺序号/电子雷管网路地址与电子雷管延期的对应关系,形成包括电子雷管顺序号/电子雷管网路地址和与电子雷 管顺序号/电子雷管网路地址对应的电子雷管延期的延期设置指令;
    步骤B2:电子雷管通过电子雷管连接件接收电子雷管延期指令后,提取延期设置指令中的电子雷管顺序号/电子雷管网路地址和与电子雷管顺序号/电子雷管网路地址对应的电子雷管延期;
    步骤B3:电子雷管判断提取的电子雷管顺序号/电子雷管网路地址与自身存储的电子雷管顺序号/电子雷管网路地址是否一致,如果一致,则存储与电子雷管顺序号/电子雷管网路地址对应的电子雷管延期。
  15. 根据权利要求13所述的设置方法,其特征是所述方法还包括:
    步骤C1:所述网路器根据存储的所述对应表中电子雷管ID,发送包括电子雷管ID的巡检指令;
    步骤C2:所述电子雷管接收所述巡检指令,并提取所述巡检指令中的电子雷管ID;
    步骤C3:所述电子雷管比较自身存储的电子雷管预置ID和提取的电子雷管ID,若二者一致,则返回巡检反馈信号;
    步骤C4:所述网路器收集巡检反馈信号,如果收到所有电子雷管的反馈信号,则链路中的电子雷管都是可用电子雷管;否则,确定未收到反馈信号的电子雷管预置ID,并通过电子雷管预置ID与电子雷管顺序号/电子雷管网络地址对应表确定有问题的电子雷管。
  16. 根据权利要求13所述的设置方法,其特征是所述方法进一步包括:
    步骤D1:所述网路器根据存储的所述对应表中电子雷管ID向电子雷管管理中心申请电子雷管密码/工作码,或根据电子雷管ID计算电子雷管激光编码,根据激光编码向电子雷管管理中心申请电子雷管密码/工作码;
    步骤D2:所述网路器根据所述电子雷管密码/工作码向电子雷管发送授权指令,所述授权指令包括所述电子雷管密码电子雷管密码/工作码;
    步骤D3:电子雷管收到所述授权指令,提取所述授权指令中所述电子雷管 密码/工作码与自身存储的电子雷管密码/工作码是否一致,如果一致,存储授权指令中的与所述电子雷管密码/工作码对应的授权标识信息。
  17. 根据权利要求16所述的设置方法,其特征是所述授权标识信息还包括电子雷管延期。
  18. 根据权利要求14、15和17中任一项所述的设置方法,其特征是所述方法还包括:起爆器向所述网路器发送起爆指令,所述网路器将所述起爆指令转发至电子雷管,电子雷管在收到所述起爆信号时,判断是否存储了所述授权标识信息,如果存储了所述授权标识信息才能开始计时,直至计时达到预设的延期时引爆。
PCT/CN2018/000184 2018-05-18 2018-05-18 电子雷管连接件及基于其的电子雷管设置方法 WO2019218100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880003691.7A CN110869694B (zh) 2018-05-18 2018-05-18 电子雷管连接件及基于其的电子雷管设置方法
PCT/CN2018/000184 WO2019218100A1 (zh) 2018-05-18 2018-05-18 电子雷管连接件及基于其的电子雷管设置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/000184 WO2019218100A1 (zh) 2018-05-18 2018-05-18 电子雷管连接件及基于其的电子雷管设置方法

Publications (1)

Publication Number Publication Date
WO2019218100A1 true WO2019218100A1 (zh) 2019-11-21

Family

ID=68539529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000184 WO2019218100A1 (zh) 2018-05-18 2018-05-18 电子雷管连接件及基于其的电子雷管设置方法

Country Status (2)

Country Link
CN (1) CN110869694B (zh)
WO (1) WO2019218100A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966900A (zh) * 2020-01-13 2020-04-07 贵州盘江民爆有限公司 一种电子雷管引火元件焊接测试生产线
CN111076628A (zh) * 2020-01-06 2020-04-28 洛阳正硕电子科技有限公司 一种电子雷管快速计数电路
CN111189369A (zh) * 2020-01-06 2020-05-22 洛阳正硕电子科技有限公司 一种电子雷管快速计数方法
CN112348470A (zh) * 2020-11-05 2021-02-09 中国葛洲坝集团易普力股份有限公司 一种电子雷管高效注册与问题反馈系统
CN113175854A (zh) * 2021-04-12 2021-07-27 贵州全安密灵科技有限公司 一种检测电子雷管控制模块与设备通讯异常的方法及系统
CN114353607A (zh) * 2022-01-19 2022-04-15 北京伊拜科技有限责任公司 无线雷管起爆网路的检测控制方法
CN115941379A (zh) * 2022-08-26 2023-04-07 无锡赛米垦拓微电子股份有限公司 一种电子雷管及快速获取总线上所有该电子雷管id的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790648B (zh) * 2021-08-30 2023-03-24 北京桓安芯数技术有限公司 通信故障分析方法、装置、电子设备及存储介质
CN117910983B (zh) * 2024-03-19 2024-06-04 太原新欣微电科技有限公司 基于数据分析的电子雷管起爆安全实时检测评估系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464114A (zh) * 2008-12-02 2009-06-24 北京铱钵隆芯科技有限责任公司 电子雷管起爆网路的上线注册方法
CN101936688A (zh) * 2009-09-08 2011-01-05 北京维深数码科技有限公司 一种数码电子雷管网络系统及其通信方法
WO2012059877A1 (en) * 2010-11-03 2012-05-10 Omnia Group (Proprietary) Limited Connector
CN203224180U (zh) * 2013-02-08 2013-10-02 前进民爆股份有限公司 数码电子雷管大型起爆系统
CN105043178A (zh) * 2015-06-08 2015-11-11 北京丹芯灵创科技有限公司 电子雷管起爆系统的安全网路器及其使用方法
WO2017031606A1 (zh) * 2015-08-25 2017-03-02 陈默 电子雷管连接件及基于其的电子雷管设置方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2410874C (en) * 2000-06-02 2009-04-14 Smi Technology (Pty) Limited Dual redundancy system for electronic detonators
AU2002100821A4 (en) * 2002-10-23 2003-05-08 Duniam, Peter James Mr Electronic blast initiation system
DE102005052578B4 (de) * 2005-11-02 2013-07-04 Orica Explosives Technology Pty. Ltd. Verfahren zum Einstellen einer Verzögerungszeit an einem elektronischen Sprengzeitzünder
WO2015109417A1 (zh) * 2014-01-21 2015-07-30 北京丹芯灵创科技有限公司 一种电子雷管爆破管理系统及爆破施工方法
CN105423833B (zh) * 2015-11-30 2017-05-03 无锡力芯微电子股份有限公司 一种电子雷管快速施工装置及其使用方法
CN106022419B (zh) * 2016-07-22 2019-04-23 中国葛洲坝集团易普力股份有限公司 用于电子雷管的采码注册装置及注册方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464114A (zh) * 2008-12-02 2009-06-24 北京铱钵隆芯科技有限责任公司 电子雷管起爆网路的上线注册方法
CN101936688A (zh) * 2009-09-08 2011-01-05 北京维深数码科技有限公司 一种数码电子雷管网络系统及其通信方法
WO2012059877A1 (en) * 2010-11-03 2012-05-10 Omnia Group (Proprietary) Limited Connector
CN203224180U (zh) * 2013-02-08 2013-10-02 前进民爆股份有限公司 数码电子雷管大型起爆系统
CN105043178A (zh) * 2015-06-08 2015-11-11 北京丹芯灵创科技有限公司 电子雷管起爆系统的安全网路器及其使用方法
WO2017031606A1 (zh) * 2015-08-25 2017-03-02 陈默 电子雷管连接件及基于其的电子雷管设置方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076628A (zh) * 2020-01-06 2020-04-28 洛阳正硕电子科技有限公司 一种电子雷管快速计数电路
CN111189369A (zh) * 2020-01-06 2020-05-22 洛阳正硕电子科技有限公司 一种电子雷管快速计数方法
CN111189369B (zh) * 2020-01-06 2022-01-14 洛阳正硕电子科技有限公司 一种电子雷管快速计数方法
CN110966900A (zh) * 2020-01-13 2020-04-07 贵州盘江民爆有限公司 一种电子雷管引火元件焊接测试生产线
CN112348470A (zh) * 2020-11-05 2021-02-09 中国葛洲坝集团易普力股份有限公司 一种电子雷管高效注册与问题反馈系统
CN112348470B (zh) * 2020-11-05 2023-09-08 中国葛洲坝集团易普力股份有限公司 一种电子雷管高效注册与问题反馈系统
CN113175854A (zh) * 2021-04-12 2021-07-27 贵州全安密灵科技有限公司 一种检测电子雷管控制模块与设备通讯异常的方法及系统
CN114353607A (zh) * 2022-01-19 2022-04-15 北京伊拜科技有限责任公司 无线雷管起爆网路的检测控制方法
CN115941379A (zh) * 2022-08-26 2023-04-07 无锡赛米垦拓微电子股份有限公司 一种电子雷管及快速获取总线上所有该电子雷管id的方法

Also Published As

Publication number Publication date
CN110869694A (zh) 2020-03-06
CN110869694B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2019218100A1 (zh) 电子雷管连接件及基于其的电子雷管设置方法
WO2017031606A1 (zh) 电子雷管连接件及基于其的电子雷管设置方法
CN103307940B (zh) 电子雷管起爆控制网络及其起爆控制方法
US11541766B2 (en) Apparatus for sensing temperature of electric vehicle charger
CN102121809B (zh) 电子雷管起爆网络控制装置及控制流程
WO2015109417A1 (zh) 一种电子雷管爆破管理系统及爆破施工方法
CN106740200A (zh) 充电装置、继电器粘连检测方法及电动汽车的充电方法
EP2452155A1 (en) Detonator connector and detonator system
CN208269751U (zh) 一种电子延时点火电路
US10267613B2 (en) Electronic detonator leakage current restriction
CN1871786B (zh) 设备机器用通信电路
CN205034932U (zh) 电梯开关状态检测装置
CN103941135A (zh) 一种短路检测方法及装置
US6075688A (en) Motor operator with ac power circuit continuity sensor
CN104091403B (zh) 一种待投电力电缆防盗报警装置
CN112444172B (zh) 一种菊花链的电子雷管
CN106154071A (zh) 一种检测智能电能表rs485总线故障的装置及方法
CN115790303B (zh) 一种基于电子雷管的地勘系统及其工作方法
CN108317922A (zh) 基于电缆编码的分级射孔起爆器电路及控制方法
ES2911412T3 (es) Detonador electrónico inalámbrico
CN106200508B (zh) 一种连锁保护控制电路
CN103472446A (zh) 二次监视雷达测试应答机的通道智能切换控制管理方法
CN109307458A (zh) 一种电子雷管快速施工装置及其使用方法
CN105409133B (zh) 天线级联关系的识别方法、天线设备及天线控制设备
CN104618009A (zh) 一种光纤串接设备热备份保护系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919189

Country of ref document: EP

Kind code of ref document: A1