WO2019216663A1 - 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치 - Google Patents

차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치 Download PDF

Info

Publication number
WO2019216663A1
WO2019216663A1 PCT/KR2019/005557 KR2019005557W WO2019216663A1 WO 2019216663 A1 WO2019216663 A1 WO 2019216663A1 KR 2019005557 W KR2019005557 W KR 2019005557W WO 2019216663 A1 WO2019216663 A1 WO 2019216663A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
base station
sib
access
Prior art date
Application number
PCT/KR2019/005557
Other languages
English (en)
French (fr)
Inventor
김상범
사엔코알렉산더
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP19799795.0A priority Critical patent/EP3780889A4/en
Priority to US17/053,322 priority patent/US11457400B2/en
Publication of WO2019216663A1 publication Critical patent/WO2019216663A1/ko
Priority to US17/935,529 priority patent/US11877229B2/en
Priority to US18/412,253 priority patent/US20240155468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/02Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration by periodical registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for controlling a Radio Resource Control (RRC) state mismatch (or mismatch) problem that may occur in a next generation communication system.
  • RRC Radio Resource Control
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM and QAM Modulation
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA NOMA
  • non orthogonal multiple access non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • An object of the present disclosure is to improve a communication environment between a terminal and a base station by solving a problem of inconsistency in wireless access states that may occur between the terminal and the base station.
  • Another object of the present disclosure is to provide a smooth communication environment between the base station and the terminal by controlling the connection (or access) of the terminal.
  • a method of a terminal includes: identifying a network to be accessed through a base station; and if the network is a first network, including a first information for access control from the base station. 1 receiving a system information block (SIB), if the network is a second network, receiving a second SIB including second information for access control from a base station; and if the network is a first network, included in the first SIB. Performing access control based on the first information, and performing access control based on the second information included in the second SIB if the network is the second network.
  • SIB system information block
  • a method of a base station includes transmitting a first system information block (SIB) including first information for access control to a terminal, and controlling access to a terminal. And transmitting a second SIB including the second information. If the network to which the terminal is to be connected is a first network, access control is performed by using the first information included in the first SIB, and the network to which the terminal is to be connected is made. If the network is 2, access control is performed by using the second information included in the second SIB.
  • SIB system information block
  • a terminal identifies a transceiver configured to transmit and receive a signal, a network to be connected through a base station, and if the network is a first network, access control from the base station.
  • Receiving a first system information block (SIB) including first information for receiving and receiving a second SIB including second information for access control from a base station if the network is a second network, and if the network is the first network.
  • SIB system information block
  • a control unit configured to perform access control based on the first information included in the first SIB, and perform access control based on the second information included in the second SIB if the network is the second network.
  • a base station transmits a first system information block (SIB) including a transceiver configured to transmit and receive a signal, and first information for access control to a terminal. And a control unit configured to transmit a second SIB including second information for access control to the terminal. If the network to which the terminal is to be connected is a first network, the first information included in the first SIB is used to access control. If the network to which the terminal is to be connected is the second network, access control is performed by using the second information included in the second SIB.
  • SIB system information block
  • the RRC state mismatch (mismatch) problem between the terminal and the base station is solved, thereby enabling efficient communication.
  • a smooth communication environment between the terminal and the network may be provided by improving the network access process of the terminal.
  • 1A is a diagram illustrating the structure of a next generation mobile communication system.
  • FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
  • 1C is a diagram for describing a phenomenon in which a wireless connection state is inconsistent in a next generation mobile communication system.
  • 1D is a flowchart of a process of resolving a mismatch problem of a wireless access state associated with an embodiment of the present disclosure.
  • 1E is a flowchart of a terminal operation related to an embodiment of the present disclosure.
  • 1F is a flowchart of base station operation in accordance with an embodiment of the present disclosure.
  • 1G is a flowchart of a process of transmitting an ACK signal by a terminal when the terminal receives a connection release message according to an embodiment of the present disclosure.
  • 1H is a block diagram illustrating an internal structure of a terminal to which an embodiment of the present disclosure is applied.
  • 1I is a block diagram illustrating a configuration of a base station according to an embodiment of the present disclosure.
  • 2A is a diagram illustrating an LTE base station connected to a next generation mobile communication network.
  • 2B is a view for explaining a process of performing UE access control in an LTE system.
  • 2C is a diagram for describing a process of performing terminal access control in a next generation mobile communication system.
  • 2D is a flowchart illustrating operations of a base station providing access configuration information related to an embodiment of the present disclosure.
  • 2E is a flowchart illustrating an operation of a terminal receiving and applying access setting information related to an embodiment of the present disclosure.
  • 2F is a block diagram illustrating an internal structure of a terminal to which an embodiment of the present disclosure is applied.
  • 2G is a block diagram illustrating a configuration of a base station according to an embodiment of the present disclosure.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • 1A is a diagram illustrating the structure of a next generation mobile communication system.
  • a radio access network of a next generation mobile communication system (NR) as shown in FIG. 1A includes a next generation base station (New Radio Node B, hereinafter referred to as gNB) 1a-10 and an access management function 1 AM-. 05, that is, New Radio Core Network).
  • the user terminal (New Radio User Equipment, NR UE or terminal) 1a-15 connects to the external network via gNB 1a-10 and AMF 1a-05.
  • a gNB corresponds to an eNB (Evolved Node B) of an existing LTE system.
  • the gNB is connected to the NR UE through a radio channel and can provide superior service than the existing Node B (1a-20).
  • an apparatus for scheduling by collecting state information such as buffer states, available transmit power states, and channel states of UEs is required. 1a-10).
  • One gNB typically controls multiple cells.
  • the NR system may have more than the existing maximum bandwidth in order to implement ultra-fast data transmission compared to the existing LTE system, and additionally beamforming technology is used by using an orthogonal frequency division multiplexing (OFDM) as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • the NR system applies an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the UE.
  • the AMF 1a-05 performs functions such as mobility support, bearer setup, and QoS setup.
  • the AMF is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • the next-generation mobile communication system can be linked to the existing LTE system, the AMF is connected to the MME (1a-25) through a network interface.
  • the MME is connected to the eNB 1a-30 which is an existing base station.
  • the terminal supporting the LTE-NR Dual Connectivity may transmit and receive data while maintaining the connection to the eNB as well as the gNB (1a-35).
  • FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
  • a UE In an existing LTE system, a UE has two wireless access states of a connected mode (1b-35) and a standby mode (1b-45). The two modes are transitioned through the establishment procedure and the release procedure (1b-40).
  • the UE In the next generation mobile communication system, the UE has three radio access states (RRC state).
  • the connected mode (RRC_CONNECTED, 1b-05) is a wireless access state in which a terminal can transmit and receive data with a base station.
  • the standby mode RRC_IDLE, 1b-30) is a wireless access state in which the terminal monitors whether paging is transmitted to itself.
  • the two modes are in a wireless access state applied to the existing LTE system, and the detailed technology is the same as that of the existing LTE system.
  • an inactive mode (RRC_INACTIVE) radio access state (1b-15) is newly defined.
  • the radio access state the UE context is maintained in the base station and the terminal, RAN-based paging is supported.
  • the characteristics of the new wireless connection state are listed as follows.
  • CN-NR RAN connection (both C / U-planes) has been established for UE;
  • the UE AS context is stored in at least one gNB and the UE;
  • Paging is initiated by NR RAN;
  • RAN-based notification area is managed by NR RAN;
  • NR RAN knows the RAN-based notification area which the UE belongs to
  • the RAN-based notification area is an area composed of one or more cells, and is an area for transmitting RAN paging for a specific terminal. Therefore, if the RAN area is changed while the terminal moves, it should be reported to the base station.
  • the reporting operation is called a RAN Notification Area (RNA) update.
  • the operation is performed when the terminal moves to a cell belonging to another RAN area or periodically. When performed periodically, it is called periodic RNA update. Since the terminal may move, the cell triggering the periodic RNA update and the cell receiving it may be different. Therefore, the cell receiving the report forwards the periodic RNA update to the triggered cell.
  • the triggered cell has a UE context of the terminal, and transmits the UE context to the cell that has forwarded the UE context.
  • the new INACTIVE wireless connection state may transition to connected mode or standby mode using a specific procedure.
  • the terminal is switched from the INACTIVE mode to the connected mode according to the connection activation, and is switched from the connected mode to the INACTIVE mode using the connection inactivation procedure (1b-10).
  • the connection activation / inactivation procedure may include one or more steps of transmitting and receiving one or more RRC messages between the terminal and the base station.
  • the terminal may switch from the INACTIVE mode to the standby mode according to a specific procedure (1b-20).
  • a specific procedure various methods such as specific message exchange, timer-based, or event-based may be considered.
  • the transition between connected and standby mode follows existing LTE technology. That is, switching between the modes is performed through a connection establishment or release procedure (1b-25).
  • 1C is a diagram for describing a phenomenon in which a wireless connection state is inconsistent in a next generation mobile communication system.
  • the terminal 1c-05 is in connection with the base station 1c-10 (1c-15).
  • the base station transmits an RRC release message to the terminal to switch the terminal to standby mode (RRC_Idle) or inactive mode (RRC_Inactive).
  • the message instructs the terminal to switch to the standby mode or the inactive mode, and includes configuration information related thereto.
  • the configuration information may be cell reselection priority information in the standby mode or the inactive mode, and a periodic RNA update timer value applied in the inactive mode.
  • the terminal may not receive the message (1c-20).
  • the base station immediately considers that the terminal is switched to the standby mode or the inactive mode, regardless of whether or not to receive HARQ feedback for the message from the terminal (1c-30). On the other hand, since the terminal has not received the release message from the base station, it is still in the connected mode (1c-25). This phenomenon is referred to as inconsistent wireless connection.
  • 1D is a flowchart of a process of resolving a mismatch problem of a wireless access state associated with an embodiment of the present disclosure.
  • the terminal 1d-05 transmits the value of the first timer (eg, the length of the first timer) and the value of the second timer (eg, the second timer) through a predetermined RRC message from the base station 1d-10.
  • the terminal drives the first timer from the time point at which the timer value is received or from the time point at which the timer value is received and transmits or receives the first data (1d-20), and whenever the data is transmitted or received (1d-30).
  • the terminal restarts the timer (1d-25).
  • the terminal switches from the connected mode to the standby mode (1d-45, 1d-50).
  • the terminal and the base station drive the second timer when the terminal receives the timer value or when the terminal switches from the connected mode to the inactive mode (1d-40).
  • the base station transmits one RRC connection release message requesting the RRC connection release to the UE (1d-35). The message indicates switching to standby mode or inactive mode.
  • the base station drives the second timer while transmitting the message (1d-40).
  • the message requesting RRC connection release may be used to provide a value of a second timer.
  • the terminal receiving the connection release message also drives the second timer. However, if the terminal does not receive the message, the terminal will expire (1d-45), the first timer expires (1d-50).
  • the second timer expires (1d-55)
  • the base station expects to receive a periodic RNA update of the terminal from the terminal or from an adjacent base station. The base station waits for the periodic RNA update report for a predetermined time after the second timer expires.
  • the base station If the base station does not receive the periodic RNA update from the terminal, it is determined that the terminal did not receive the connection release message, it is considered that the terminal is switched to the standby mode (1d-60). If the first timer is still running, the base station considers the terminal to be in connected mode until the timer expires. Therefore, in the present disclosure, the periodic RNA update reported to the base station is used as feedback information for determining whether the terminal has successfully received a connection release message indicating the inactive mode. If the periodic RNA update is not reported from the terminal, the base station considers the terminal to be in standby mode. If the terminal does not transmit or receive data until the specific timer expires, the terminal automatically switches to standby mode.
  • the base station If the connection release message indicates a standby mode, the base station considers that the terminal has switched to the standby mode after a predetermined time. At this time, the base station does not care whether the second timer is driven. Therefore, in the present disclosure, the base station considers that the terminal has switched to the standby mode regardless of whether the terminal has successfully received the connection release message indicating the inactive mode, and the terminal also transmits and receives data until the specific timer expires. If not, switch to standby mode automatically.
  • the first timer is called a data inactivity timer and the second timer is called a periodic RNA update timer.
  • 1E is a flowchart of a terminal operation related to an embodiment of the present disclosure.
  • step 1e-05 the terminal is provided with configuration information on the first timer and the second timer from the base station.
  • the setting information is a time value of the timer.
  • step 1e-10 the terminal drives the first timer from a time point at which the first timer value is provided or a time point at which the first data value is received or transmitted or received.
  • the terminal drives the second timer when the terminal receives the second timer value or when the terminal switches from the connected mode to the inactive mode after receiving the timer.
  • step 1e-15 the terminal restarts the first timer whenever the terminal transmits or receives data.
  • step 1e-20 when the first timer expires, the terminal switches from the connected mode to the standby mode.
  • the terminal reports a periodic RNA update to a base station currently camping on.
  • 1F is a flowchart of base station operation in accordance with an embodiment of the present disclosure.
  • step 1f-05 the base station sets a first timer to a specific terminal by using a predetermined RRC message.
  • step 1f-10 the base station sets a second timer to the terminal using a predetermined RRC message.
  • the base station instructs the terminal to switch to standby mode or inactive mode using an RRC connection release message.
  • the base station may include configuration information for the second timer in the connection release message.
  • step 1f-20 if the RRC connection release message indicates a standby mode switch, the base station transmits the message to the terminal and after a predetermined time of 0 ms or more, regardless of whether the second timer is driven, It is assumed that the terminal has switched to the standby mode.
  • step 1f-25 if the RRC connection release message indicates inactive mode switching, the base station transmits the message to the terminal and starts a second timer.
  • the base station may be running the second timer before receiving the RRC connection release message.
  • the base station monitors whether the periodic RNA update is transmitted from the terminal at the first periodic RNA update timing (or when the second timer expires for the first time) after transmitting the RRC connection release message. .
  • the base station monitors the periodic RNA update for a predetermined time after the second timer expires.
  • the base station may be provided with periodic RNA updates from other base stations.
  • step 1f-35 the base station determines whether the periodic RNA update has been successfully received.
  • step 1f-40 if the periodic RNA update is successfully received, the base station successfully receives the connection release message, and considers that it is already in an inactive mode.
  • step 1f-45 if the periodic RNA update is not successfully received even after the predetermined time, the base station considers that the terminal has not successfully received the connection release message, and determines whether the first timer expires. It is still considered to be in connected or standby mode. If the first timer value has not yet elapsed since the last successful data transmission and reception with the terminal, the base station considers the terminal to be in a connected mode. Since the terminal is still in the connected mode, the base station may retransmit the connection release message to the terminal. If retransmission is triggered, the base station that the terminal is currently camping on will send a disconnection message to the terminal.
  • the base station If the base station does not perform the operation of transmitting the connection release message, the base station automatically assumes that the terminal is in the standby mode because the first timer will expire. Otherwise, if the first timer value has yet elapsed since the last successful data transmission and reception with the terminal, the base station considers the terminal to be in the standby mode.
  • 1G is a flowchart of a process of transmitting an ACK signal when a terminal receives a connection release message in an embodiment of the present disclosure.
  • the terminal 1g-05 receives the values of the first timer and the second timer through a predetermined RRC message from the base station 1g-10 (1g-15).
  • the terminal drives the first timer from the time when the timer value is received or from the time when the timer value is received or the first data is transmitted or received (1g-20), and whenever the data is transmitted or received (1g-25). Restart the first timer (1g-30).
  • the terminal stops the first timer and drives the third timer (1g-40).
  • the value of the third timer may be determined according to a predetermined rule or set through a predetermined RRC message from the base station to the terminal.
  • the value of the first timer may be derived as HARQ_RTT x NUMBER_OF_HARQ_RETX or may be a predefined fixed value.
  • HARQ_RTT is a round trip time in HARQ
  • NUMBER_OF_HARQ_RETX is the maximum number of retransmissions in HARQ.
  • the base station When the third timer expires (1g-65), the UE stops transmitting the ACK and switches to the standby mode or the inactive mode indicated by the connection release message (1g-68). After transmitting the first RRC connection release message, the base station drives the third timer (1g-45). The base station may retransmit the connection release message until the third timer expires (1g-55). When the third timer expires (1g-70), the base station considers that the terminal has switched to the standby mode or inactive mode indicated by the RRC connection release message (1g-75). If the RRC connection release message indicates an inactive mode, the base station starts the second timer when the RRC connection release message is first transmitted (1g-85). If the second timer expires (1g-90) and no periodic RNA update of the terminal is received from the terminal or from another base station, the base station considers the terminal to switch from inactive mode to standby mode (1g-80).
  • 1H illustrates a structure of a terminal associated with an embodiment of the present disclosure.
  • the terminal includes a radio frequency (RF) processor 1h-10, a baseband processor 1h-20, a storage unit 1h-30, and a controller 1h-40. .
  • RF radio frequency
  • the RF processor 1h-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1h-10 up-converts the baseband signal provided from the baseband processor 1h-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 1h-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. Can be. In the figure, only one antenna is shown, but the terminal may include a plurality of antennas.
  • the RF processor 1h-10 may include a plurality of RF chains.
  • the RF processor 1h-10 may perform beamforming. For the beamforming, the RF processor 1h-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
  • the baseband processor 1h-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1h-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1h-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1h-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1h-20 generates complex symbols by encoding and modulating a transmission bit stream, and generates the complex symbols by subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processor 1h-20 divides the baseband signal provided from the RF processor 1h-10 into OFDM symbol units and subcarriers through a fast Fourier transform (FFT) operation. After recovering the mapped signals, the received bit stream is recovered through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processor 1h-20 and the RF processor 1h-10 transmit and receive signals as described above. Accordingly, the baseband processor 1h-20 and the RF processor 1h-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include a plurality of communication modules to support different radio access technologies. In addition, at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands may include a super high frequency (SHF) (eg 2.NRHz, NRhz) band and a millimeter wave (eg 60 GHz) band.
  • SHF super high frequency
  • the storage unit 1h-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
  • the storage unit 1h-30 may store information related to a second access node that performs wireless communication using a second wireless access technology.
  • the storage unit 1h-30 provides stored data at the request of the control unit 1h-40.
  • the controller 1h-40 controls overall operations of the terminal. For example, the controller 1h-40 transmits and receives a signal through the baseband processor 1h-20 and the RF processor 1h-10. Also, the controller 1h-40 records and reads data in the storage unit 1h-40. To this end, the controller 1h-40 may include at least one processor. For example, the controller 1h-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program. The controller 1h-40 may further include a multiple connectivity processor 1h-42 for supporting multiple connectivity.
  • CP communication processor
  • AP application processor
  • the controller 1h-40 may further include a multiple connectivity processor 1h-42 for supporting multiple connectivity.
  • 1I is a block diagram of a base station in a wireless communication system according to an embodiment of the present disclosure.
  • the base station includes an RF processor 1i-10, a baseband processor 1i-20, a backhaul communication unit 1i-30, a storage unit 1i-40, and a controller 1i-50. It is configured to include.
  • the RF processor 1i-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1i-10 up-converts the baseband signal provided from the baseband processor 1i-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 1i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the base station may have a plurality of antennas.
  • the RF processor 1i-10 may include a plurality of RF chains.
  • the RF processor 1i-10 may perform beamforming. For the beamforming, the RF processor 1i-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 1i-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1i-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1i-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1i-10. For example, according to the OFDM scheme, during data transmission, the baseband processor 1i-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the complex symbols to subcarriers, and then IFFT. OFDM symbols are constructed by operation and CP insertion.
  • the baseband processor 1i-20 divides the baseband signal provided from the RF processor 1i-10 in OFDM symbol units and restores signals mapped to subcarriers through an FFT operation. After that, the received bit stream is recovered by demodulation and decoding.
  • the baseband processor 1i-20 and the RF processor 1i-10 transmit and receive signals as described above. Accordingly, the baseband processor 1i-20 and the RF processor 1i-10 may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 1i-30 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1i-30 converts a bit string transmitted from the base station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts a physical signal received from the other node into a bit string. Convert to
  • the storage unit 1i-40 stores data such as a basic program, an application program, and setting information for the operation of the main station.
  • the storage unit 1i-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
  • the storage unit 1i-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
  • the storage unit 1i-40 provides stored data at the request of the control unit 1i-50.
  • the controller 1i-50 controls the overall operations of the base station. For example, the controller 1i-50 transmits and receives a signal through the baseband processor 1i-20 and the RF processor 1i-10 or through the backhaul communication unit 1i-30. In addition, the controller 1i-50 records and reads data in the storage unit 1i-40. To this end, the controller 1i-50 may include at least one processor. The controller may further include a multiple connectivity processor 1i-52 for supporting multiple connectivity.
  • 2A is a diagram illustrating an LTE base station connected to a next generation mobile communication network.
  • the legacy LTE base station 2a-15 is connected to one network entity MME 2a-05.
  • the next-generation mobile communication network (2a-10, NG core) may be connected to the next-generation mobile communication base station, but may be connected to the next-generation mobile communication network by upgrading the existing LTE base station.
  • This base station is referred to as an evolved / enhanced LTE (eLTE) base station 2a-20.
  • the eLTE base station may be connected to an existing MME, next generation mobile communication network (NG core), or both. If the eLTE base station is connected only to the NG core, only the terminal (2a-30) supporting the eLTE is connected to the eLTE base station, it is possible to communicate with the next-generation mobile communication network.
  • the existing terminal 2a-25
  • the existing terminal should be prevented from camping on the eLTE base station connected only to the NG core.
  • the base station may support both the terminal supporting the eLTE and the existing terminal.
  • Each terminal is configured to establish a connection to the network it can support.
  • 2B is a view for explaining a method of determining whether to approve access in an existing LTE system.
  • the inside of the LTE terminal is divided into AS (Access Stratum, 2b-15) and NAS (Non Access Stratum, 2b-05).
  • the AS performs all functions related to access, and the NAS performs access-related functions such as selecting a Public Land Mobile Network (PLMN) and requesting a service. Accessibility is mainly performed in the terminal AS.
  • the network may limit the new access when the network is congested. To this end, the network broadcasts relevant configuration information so that each terminal can determine whether it is accessible (2b-35).
  • the terminal AS performs a plurality of access barring checks.
  • the terminal NAS transmits a service request (2b-10) to the terminal AS
  • the terminal AS checks whether or not the terminal can actually access the network in response to the request. If the establishment cause value of the service request is delay tolerant access, the terminal AS first performs EAB (Extended Access Barring) 2b-20.
  • EAB barring mechanism is an access check process that applies only to Machine Type Communication (MTC).
  • MTC Machine Type Communication
  • the terminal AS Upon passing through the EAB, the terminal AS performs an ACDC (Application specific Congestion control for Data Communication, 2b-20) or an ACB (Access Class Barring, 2b-30).
  • the application requesting the service receives one ACDC category information, and the ACDC category value may be included in the service request and provided to the terminal AS.
  • the network can provide barring configuration information for each ACDC category. That is, the terminal AS may perform an access check process for each application group classified in the ACDC category. If the barring configuration information for the ACDC category is not provided from the network, the terminal AS skips the ACDC access check process.
  • the terminal AS performs an access class barring (2b-30).
  • ACB is an access check process performed using barring configuration information provided separately according to MO (Mobile Originating) data or MO signaling. Multimedia Telephony (MMTEL) voice / video / SMS (short message service) may omit the ACB process using the ACB skip indicator (2b-25).
  • MMTEL Multimedia Telephony
  • the terminal AS may attempt to access the network. That is, the terminal AS performs random access and transmits an RRC connection request message 2b-40 to the base station. There is also an access check process that is not performed in the terminal AS.
  • the terminal AS receives the barring configuration information (2b-45, SSAC) for MMTEL voice / video from the network, the terminal AS transmits it to an IMS (IP multimedia subsystem) layer (2b-50) in the terminal managing the service.
  • the IMS layer receiving the barring configuration information performs an access check process when the service is triggered.
  • the terminal AS was designed to perform a function regardless of the application or service type. Therefore, in order to control access approval for only a specific service such as MMTEL voice / video, barring configuration information is directly transmitted to a layer managing the service, and an access check process is performed at that layer.
  • ACDC has been proposed for the purpose of determining whether access is possible by application (service).
  • Each application is assigned at least one ACDC category value.
  • ACDC category is a value between 1 and 16.
  • the network provides ACDC category information corresponding to each application to the terminal NAS using a NAS message.
  • the network provides barring configuration information applied to each ACDC category by using a system information block type 2 (SIB2).
  • SIB2 system information block type 2
  • the barring configuration information includes an ac-BarringFactor IE and an ac-Barringtime IE.
  • the ac-BarringFactor ⁇ has a range of 0 ⁇ ⁇ ⁇ 1.
  • the terminal AS derives one random value rand with 0 ⁇ rand ⁇ 1, and if the random value is smaller than the ac-BarringFactor, access is not prohibited. Otherwise, access is considered to be prohibited. If it is determined that access is prohibited, the terminal AS delays the access attempt for a predetermined time derived using Equation 1 below.
  • the terminal AS When a service request is triggered in the terminal NAS, the terminal AS derives an ACDC category value corresponding to the application requiring the service. In addition, when the terminal NAS transmits the service request to the terminal AS, the derived ACDC category value may be included and transmitted to the terminal AS.
  • the terminal AS receiving the service request determines whether to grant an access using the ACDC barring configuration information included in SIB2 according to the ACDC category value. If the barring configuration information corresponding to the ACDC category does not exist in SIB2, the terminal AS considers that an application for the ACDC category is granted access in the ACDC process. If the access is approved through the access approval check process, the terminal AS transmits an RRC Connection Request message while performing random access to the network (2b-40).
  • the 2C is a view for explaining a process of performing a terminal access control in the present disclosure.
  • the access identity is the indication information defined within 3GPP, ie specified in the standard document.
  • the access identity is used to indicate a specific access as shown in Table 1 below.
  • Access identity refers to accesses classified mainly from Access Class 11 to 15, Multimedia Priority Service (MPS), and Mission Critical Service (MCS) with priority.
  • Access Class 11 to 15 refer to access for the exclusive use of the operator or public purpose.
  • Access Identity number UE configuration 0 UE is not configured with any parameters from this table 1 (NOTE 1) UE is configured for Multimedia Priority Service (MPS). 2 (NOTE 2) UE is configured for Mission Critical Service (MCS). 3-10 Reserved for future use 11 (NOTE 3) Access Class 11 is configured in the UE. 12 (NOTE 3) Access Class 12 is configured in the UE. 13 (NOTE 3) Access Class 13 is configured in the UE. 14 (NOTE 3) Access Class 14 is configured in the UE. 15 (NOTE 3) Access Class 15 is configured in the UE. NOTE 1: Access Identity 1 is used to provide overrides according to the subscription information in UEs configured for MPS.
  • MCS Mission Critical Service
  • subscription information defines whether an overide applies to UEs within one of the following categories: a) UEs that are configured for MPS; b) UEs that are configured for MPS and are in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list or in their HPLMN or in a PLMN that is equivalent to their HPLMN; c) UEs that are configured for MPS and are in their HPLMN or in a PLMN that is equivalent to it.
  • NOTE 2 Access Identity 2 is used to provide overrides according to the subscription information in UEs configured for MCS.
  • the subscription information defines whether an overide applies to UEs within one of the following categories: a) UEs that are configured for MCS; b) UEs that are configured for MCS and are in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list or in their HPLMN or in a PLMN that is equivalent to their HPLMN; c) UEs that are configured for MCS and are in their HPLMN or in a PLMN that is equivalent to it.
  • NOTE 3 Access Identities 11 and 15 are valid in Home PLMN only if the EHPLMN list is not present or in any EHPLMN. Access Identities 12, 13 and 14 are valid in Home PLMN and visited PLMNs of home country only. For this purpose the home country is defined as the country of the MCC part of the IMSI.
  • Access categories fall into two categories.
  • One kind is the standardized access category.
  • the standardized access category is a category defined at the RAN level, ie specified in the standard document. Therefore, different operators apply the same standardized access category.
  • a category corresponding to Emergency belongs to the standardized access category. All accesses correspond to at least one of the standardized access categories.
  • Another kind is operator-specific (ie non-standardized) access categories.
  • the operator-specific category is defined outside 3GPP and is not specified in the standard documentation. Thus, one operator-specific access category is different for each operator. This is the same as the category in the existing ACDC. Any access triggered on the terminal NAS may not be mapped to an operator-specific access category.
  • the main difference from the existing ACDC is that the category does not correspond only to an application, but also to other elements besides an application, that is, a service type, a call type, a terminal type, a user group, a signaling type, a slice type, or a combination of the elements. Is that there is. That is, according to the access category, the terminal AS may control whether to grant access even to accesses belonging to elements other than the application.
  • the access category is used to indicate a specific access as shown in Table 2 below. Access categories 0 through 7 are used to indicate standardized access categories, and access categories 32 through 63 are used to indicate operator-specific access categories.
  • Access Category number Conditions related to UE Type of access attempt 0 All MO signaling resulting from paging 1 (NOTE 1) UE is configured for delay tolerant service and subject to access control for Access Category 1, which is judged based on relation of UE's HPLMN and the selected PLMN. All except for Emergency 2 All Emergency 3 All except for the conditions in Access Category 1. MO signaling resulting from other than paging 4 All except for the conditions in Access Category 1. MMTEL voice 5 All except for the conditions in Access Category 1. MMTEL video 6 All except for the conditions in Access Category 1. SMS 7 All except for the conditions in Access Category 1.
  • Access Category 1 is accompanied with information that define whether Access Category applies to UEs within one of the following categories: a) UEs that are configured for delay tolerant service; b) UEs that are configured for delay tolerant service and are neither in their HPLMN nor in a PLMN that is equivalent to it; c) UEs that are configured for delay tolerant service and are neither in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list on the SIM / USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN.
  • NOTE 2 When there are an Access Category based on operator classification and a standardized Access Category to both of which an access attempt can be categorized, and the standardized Access Category is neither 0 nor 2, the UE applies the Access Category based on operator classification.
  • the operator server 2c-25 provides information on the operator-specific access category information (MO: Management Object) to the terminal NAS through NAS signaling or application level data transmission.
  • the above information indicates which element corresponds to each operator-specific category.
  • the access category 32 may specify in the information that the access category corresponds to an access corresponding to a Facebook application.
  • the base station 2c-20 uses the system information to provide the terminal with a category list for providing barring configuration information and barring configuration information corresponding to each category.
  • the terminal 2c-05 includes logical blocks of the NAS 2c-10 and the AS 2c-15.
  • the terminal NAS maps the triggered access to the one or more access identities and one of the access categories according to a predetermined rule.
  • one access may be mapped to one standardized access category and may additionally be mapped to one operator-specific access category.
  • the terminal NAS delivers the mapped access identity and access category to the terminal AS together with a service request.
  • the terminal AS uses the barring configuration information to determine whether access triggered by the terminal NAS is allowed (ie, barring check).
  • the eLTE base station may support both the legacy legacy terminal and the eLTE terminal.
  • the legacy terminal determines whether access is allowed using the LTE access control mechanism described above.
  • barring configuration information is provided to terminals through SIB2. In the present disclosure, this is called LTE barring configuration information.
  • the eLTE terminal determines whether access is allowed by using the next-generation mobile communication NR access control mechanism described above.
  • the barring configuration information applied in NR access control is different from the barring configuration information applied in LTE. In the present disclosure, this is referred to as NR barring configuration information.
  • the eLTE base station should provide two types of barring configuration information to the two types of terminals using system information.
  • the eLTE base station depending on whether the eLTE base station can support only the eLTE terminal or both the legacy legacy terminal and the eLTE terminal, including the two types of barring configuration information in the SIBx that only the SIB2 or the eLTE terminal can understand and provide to the terminals. Suggest a method.
  • the eLTE base station supports only the eLTE terminal, if the NR barring configuration information is included in the SIBx or SIB2, and if the eLTE base station can support both the legacy legacy terminal and the eLTE terminal, LTE barring configuration information NR barring to the SIB2
  • the configuration information may be included in the SIBx.
  • SIB2 is a system information that can be understood by both the legacy legacy terminal and the eLTE terminal.
  • SIB2 if both LTE barring configuration information and NR barring configuration information are included in SIB2, the size of SIB2 is increased. The amount of information that can be stored for each SIB is limited. Therefore, depending on the size of barring configuration information to be provided, it may not be possible to store all of the barring configuration information in SIB2.
  • the legacy legacy terminal may not understand the NR barring configuration information.
  • the eLTE base station can support both the legacy legacy terminal and the eLTE terminal, the LTE barring configuration information is included in SIB2, and the NR barring configuration information is included in the SIBx.
  • the SIBx may be understood by the eLTE terminal, but may not be understood by the legacy legacy terminal and does not need to be received.
  • SIB1 includes scheduling information for SIBx, and the legacy legacy terminal does not understand the scheduling information for SIBx in SIB1.
  • the eLTE terminal may determine the location of the radio resource to which the SIBx is transmitted in consideration of both the scheduling information for the existing SIBs and the scheduling information for the SIBx included in the SIB1.
  • the eLTE base station when the eLTE base station supports only the eLTE terminal, LTE barring configuration information does not need to be provided. Therefore, even if SIB2 accommodates NR barring setting information, there is no big burden.
  • the eLTE base station may include NR barring configuration information in SIB2.
  • the eLTE base station may always include the NR barring configuration information in the SIBx regardless of whether the eLTE base station supports the legacy legacy terminal. In this case, however, the scheduling information for SIBx must be included in SIB1.
  • 2D is a flowchart illustrating an operation of a base station providing access configuration information according to an embodiment of the present disclosure.
  • the eLTE base station determines whether it is connected to both the EPC and 5GC, and supports both the legacy legacy terminal and the eLTE terminal.
  • the eLTE base station stores the LTE barring configuration information in SIB2.
  • the eLTE base station stores scheduling information for SIBx in addition to SIB1.
  • SIB1 since SIB2 belongs to an essential SIB in LTE, SIB1 always includes scheduling information about SIB2.
  • the eLTE base station stores the NR barring configuration information in the SIBx.
  • the eLTE base station broadcasts the configured SIBs.
  • step 2d-15 if the eLTE base station is connected to 5GC only and supports only an eLTE terminal, the eLTE base station stores LTE barring configuration information in SIB2.
  • SIB1 stores scheduling information about SIBx
  • SIBx stores NR barring configuration information.
  • the eLTE base station broadcasts the configured SIBs.
  • 2E is a flowchart illustrating an operation of an eLTE terminal that receives and applies access configuration information according to an embodiment of the present disclosure.
  • the eLTE terminal may also communicate with the eLTE connected to 5GC.
  • the terminal determines whether the LTE base station currently camping on is connected only to the EPC.
  • the UE can know whether the LTE base station is connected to the EPC or 5GC or both by the PLMN information provided through the system information.
  • Each PLMN corresponds to either EPC or 5GC. Since the LTE base station connected only to the EPC can support only the legacy terminal, the eLTE terminal may camp-on the LTE base station as a legacy terminal. If the eLTE terminal does not include the legacy terminal function, the eLTE terminal cannot communicate with the LTE base station connected only to the EPC, and must find another base station that can camp-on.
  • the terminal receives and stores the LTE barring configuration information and NR barring configuration information from the SIB2, SIBx broadcast from the base station.
  • step 2e-10 the UE determines to perform access through either 5GC or EPC. If the base station is connected only 5GC, the terminal may select only 5GC.
  • the terminal applies the LTE barring configuration information.
  • step 2e-20 when the access is triggered, the terminal performs a barring check using the LTE barring configuration information.
  • step 2e-25 if the access is allowed through the barring check, the terminal performs a connection establishment process to the base station.
  • the terminal applies NR barring configuration information.
  • step 2e-35 when the access is triggered, the terminal performs a barring check using the NR barring configuration information.
  • step 2e-40 if the access is allowed through the barring check, the terminal performs a connection establishment process to the base station.
  • step 2e-45 the terminal receives and stores the LTE barring configuration information from the SIB2 broadcast from the base station.
  • the terminal applies the LTE barring configuration information.
  • step 2e-55 when the access is triggered, the terminal performs a barring check using the LTE barring configuration information.
  • step 2e-60 if the access is allowed through the barring check, the terminal performs a connection setup process to the base station.
  • 2F illustrates a structure of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a radio frequency (RF) processor 2f-10, a baseband processor 2f-20, a storage unit 2f-30, and a controller 2f-40. .
  • RF radio frequency
  • the RF processor 2f-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 2f-10 up-converts the baseband signal provided from the baseband processor 2f-20 to an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 2f-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. Can be. In the figure, only one antenna is shown, but the terminal may include a plurality of antennas.
  • the RF processor 2f-10 may include a plurality of RF chains.
  • the RF processor 2f-10 may perform beamforming. For the beamforming, the RF processor 2f-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
  • the baseband processor 2f-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 2f-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 2f-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 2f-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 2f-20 generates complex symbols by encoding and modulating a transmission bit string, and generates the complex symbols by subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processor 2f-20 divides the baseband signal provided from the RF processor 2f-10 in OFDM symbol units and subcarriers through fast Fourier transform (FFT) operations. After recovering the mapped signals, the received bit stream is recovered through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processor 2f-20 and the RF processor 2f-10 transmit and receive signals as described above. Accordingly, the baseband processor 2f-20 and the RF processor 2f-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 2f-20 and the RF processor 2f-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 2f-20 and the RF processor 2f-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands may include a super high frequency (SHF) (eg 2.NRHz, NRhz) band and a millimeter wave (eg 60 GHz) band.
  • SHF super high frequency
  • the storage unit 2f-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
  • the storage unit 2f-30 may store information related to a second access node that performs wireless communication using a second wireless access technology.
  • the storage unit 2f-30 provides stored data at the request of the control unit 2f-40.
  • the controller 2f-40 controls the overall operations of the terminal.
  • the controller 2f-40 transmits and receives signals through the baseband processor 2f-20 and the RF processor 2f-10.
  • the control unit 2f-40 records and reads data in the storage unit 2f-40.
  • the control unit 2f-40 may include at least one processor.
  • the controller 2f-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
  • the controller 2f-40 may further include a multiple connectivity processor 2f-42 for supporting multiple connectivity.
  • 2G is a block diagram of a base station in a wireless communication system according to an embodiment of the present disclosure.
  • the base station is an RF processor (2g-10), baseband processor (2g-20), backhaul communication unit (2g-30), storage unit (2g-40), control unit (2g-50) It is configured to include.
  • the RF processor 2g-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 2g-10 up-converts the baseband signal provided from the baseband processor 2g-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 2g-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas.
  • the RF processor 2g-10 may include a plurality of RF chains.
  • the RF processor 2g-10 may perform beamforming. For the beamforming, the RF processor 2g-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 2g-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 2g-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 2g-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 2g-10. For example, according to the OFDM scheme, during data transmission, the baseband processor 2g-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the complex symbols to subcarriers, and then IFFT. OFDM symbols are constructed by operation and CP insertion.
  • the baseband processor 2g-20 divides the baseband signal provided from the RF processor 2g-10 in OFDM symbol units and restores signals mapped to subcarriers through an FFT operation. After that, the received bit stream is recovered by demodulation and decoding.
  • the baseband processor 2g-20 and the RF processor 2g-10 transmit and receive signals as described above. Accordingly, the baseband processor 2g-20 and the RF processor 2g-10 may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 2g-30 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 2g-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node Convert to heat
  • the storage unit 2g-40 stores data such as a basic program, an application program, and setting information for the operation of the main station.
  • the storage unit 2g-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
  • the storage unit 2g-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
  • the storage unit 2g-40 provides stored data at the request of the control unit 2g-50.
  • the controller 2g-50 controls the overall operations of the main station. For example, the controller 2g-50 transmits and receives a signal through the baseband processor 2g-20 and the RF processor 2g-10 or through the backhaul communication unit 2g-30. In addition, the control unit 2g-50 records and reads data in the storage unit 2g-40. To this end, the control unit 2g-50 may include at least one processor. The controller 2g-50 may further include a multiple connectivity processor 2g-52 for supporting multiple connectivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 단말의 RRC 상태 미일치 문제를 제어하기 위한 방법과 장치를 개시하며, 단말의 엑세스 제어 설정 정보를 제공하는 방법과 장치 또한 개시한다.

Description

차세대 이동통신 시스템에서 RRC 상태 미일치 문제를 제어하는 방법 및 장치
본 개시는 무선 통신 시스템에 대한 것으로, 구체적으로 차세대 통신 시스템에서 발생할 수 있는 RRC(Radio Resource Control) 상태 미일치(또는, 불일치) 문제를 제어하기 위한 방법과 장치에 대한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
한편, 차세대 통신 시스템에서 발생할 수 있는 다양한 상황으로 인하여, 단말의 RRC 상태가 미일치(mismatching) 또는 불일치하는 문제가 발생할 수 있다. 이에, 이러한 미일치 문제를 제어하기 위한 방안에 대한 요구가 증대되는 상황이다.
본 개시의 목적은 단말과 기지국 간에 발생할 수 있는 무선 접속 상태의 불일치 문제를 해결함으로써 단말과 기지국 간의 통신 환경을 개선하고자 하는 것이다.
또한 본 개시의 또 다른 목적은 단말의 접속(또는, 엑세스)을 제어함으로써 기지국과 단말 간의 원활한 통신 환경을 제공하는 것이다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 단말의 방법은, 기지국을 통해서 접속할 네트워크를 확인(identify)하는 단계, 네트워크가 제1 네트워크이면 기지국으로부터 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 수신하는 단계, 네트워크가 제2 네트워크이면 기지국으로부터 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 수신하는 단계, 네트워크가 제1 네트워크이면 제1 SIB에 포함된 제1 정보에 기초하여 접속 제어를 수행하는 단계, 및 네트워크가 제2 네트워크이면 제2 SIB에 포함된 제2 정보에 기초하여 접속 제어를 수행하는 단계를 포함한다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 기지국의 방법은, 단말로 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 전송하는 단계, 단말로 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 전송하는 단계를 포함하며, 단말이 접속할 네트워크가 제1 네트워크이면, 제1 SIB에 포함된 제1 정보가 이용되어 접속 제어가 수행되며, 단말이 접속할 네트워크가 제2 네트워크이면, 제2 SIB에 포함된 제2 정보가 이용되어 접속 제어가 수행된다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 단말은, 신호를 송신 및 수신하도록 설정된 송수신부, 및 기지국을 통해서 접속할 네트워크를 확인(identify)하고, 네트워크가 제1 네트워크이면 기지국으로부터 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 수신하고, 네트워크가 제2 네트워크이면 기지국으로부터 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 수신하고, 네트워크가 제1 네트워크이면 제1 SIB에 포함된 제1 정보에 기초하여 접속 제어를 수행하고, 네트워크가 제2 네트워크이면 제2 SIB에 포함된 제2 정보에 기초하여 접속 제어를 수행하도록 설정된 제어부를 포함한다.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 기지국은, 신호를 송신 및 수신하도록 설정된 송수신부, 및 단말로 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 전송하고, 단말로 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 전송하도록 설정된 제어부를 포함하고, 단말이 접속할 네트워크가 제1 네트워크이면, 제1 SIB에 포함된 제1 정보가 이용되어 접속 제어가 수행되며, 단말이 접속할 네트워크가 제2 네트워크이면, 제2 SIB에 포함된 제2 정보가 이용되어 접속 제어가 수행된다.
본 개시의 일 실시 예에 따르면, 단말과 기지국 간의 RRC 상태 미일치(불일치) 문제가 해결되어 효율적인 통신이 가능하게 된다.
본 개시의 또 다른 실시 예에 따르면, 단말의 네트워크 접속 과정이 개선됨으로써 단말과 네트워크 간의 원활한 통신 환경이 제공될 수 있다.
도 1a은 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1b는 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.
도 1c는 차세대 이동통신 시스템에서 무선 접속 상태가 불일치하는 현상을 설명하기 위한 도면이다.
도 1d는 본 개시의 실시 예와 관련된 무선 접속 상태의 불일치 문제를 해결하는 과정의 흐름도이다.
도 1e는 본 개시의 실시 예와 관련된 단말 동작의 순서도이다.
도 1f는 본 개시의 실시 예와 관련된 기지국 동작의 순서도이다.
도 1g는 본 개시의 실시 예에서 단말이 연결 해제 메시지를 수신하는 경우, 단말이 ACK 신호를 전송하는 과정의 흐름도이다.
도 1h는 본 개시의 실시 예를 적용한 단말의 내부 구조를 도시하는 블록도이다.
도 1i는 본 개시의 실시 예에 따른 기지국의 구성을 나타낸 블록도이다.
도 2a는 차세대 이동통신 네트워크에 연결된 LTE 기지국을 도시하는 도면이다.
도 2b는 LTE 시스템에서 단말 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다.
도 2c는 차세대 이동통신 시스템에서 단말 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다.
도 2d는 본 개시의 실시 예와 관련된 엑세스 설정 정보를 제공하는 기지국의 동작 순서도이다.
도 2e는 본 개시의 실시 예와 관련된 엑세스 설정 정보를 수신하고 적용하는 단말의 동작 순서도이다.
도 2f는 본 개시의 실시 예를 적용한 단말의 내부 구조를 도시하는 블록도이다.
도 2g는 본 개시의 실시 예에 따른 기지국의 구성을 나타낸 블록도이다.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 개시의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
본 명세서에서 실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
<제1실시예>
도 1a는 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1a를 참조하면, 도시한 바와 같이 차세대 이동통신 시스템 (NR: New Radio)의 무선 액세스 네트워크는 차세대 기지국 (New Radio Node B, 이하 gNB)(1a-10) 과 AMF (Access Management Function, 1a-05, 즉 New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(1a-15)은 gNB (1a-10) 및 AMF (1a-05)를 통해 외부 네트워크에 접속한다.
도 1a에서 gNB는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응된다. gNB는 NR UE와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다 (1a-20). 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 gNB (1a-10)가 담당한다. 하나의 gNB는 통상 다수의 셀들을 제어한다. NR 시스템은 기존 LTE 시스템 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 칭한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 NR 시스템은 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. AMF (1a-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. AMF는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, AMF이 MME (1a-25)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB (1a-30)과 연결된다. LTE-NR Dual Connectivity을 지원하는 단말은 gNB뿐 아니라, eNB에도 연결을 유지하면서, 데이터를 송수신할 수 있다 (1a-35).
도 1b는 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.
기존 LTE 시스템에서 단말은 연결 모드 (1b-35)와 대기 모드 (1b-45)의 2 가지 무선 접속 상태를 가진다. 상기 두 모드는 establishment 절차와 release 절차를 통해, 천이된다 (1b-40). 반면, 차세대 이동통신 시스템에서 단말은 3 가지의 무선 접속 상태 (RRC state)를 가진다. 연결 모드 (RRC_CONNECTED, 1b-05)는 단말이 기지국과 데이터를 송수신할 수 있는 무선 접속 상태이다. 대기 모드 (RRC_IDLE, 1b-30)는 단말이 자신에게 페이징이 전송되는지를 모니터링하는 무선 접속 상태이다. 상기 두 모드는 기존 LTE 시스템에도 적용되는 무선 접속 상태로, 상세 기술은 기존 LTE 시스템의 것과 동일하다. 차세대 이동통신 시스템에서는 비활성 모드 (RRC_INACTIVE) 무선 접속 상태 (1b-15)가 신규로 정의되었다. 상기 무선 접속 상태에서는 UE context가 기지국과 단말에 유지되며, RAN 기반 페이징이 지원된다. 상기 신규 무선 접속 상태의 특징을 나열하면 하기와 같다.
- Cell re-selection mobility;
- CN - NR RAN connection (both C/U-planes) has been established for UE;
- The UE AS context is stored in at least one gNB and the UE;
- Paging is initiated by NR RAN;
- RAN-based notification area is managed by NR RAN;
- NR RAN knows the RAN-based notification area which the UE belongs to;
상기 특징 중, RAN-based notification area는 하나 이상의 셀들로 구성된 영역으로, 특정 단말에 대한 RAN 페이징을 전송하는 영역이다. 따라서, 단말이 이동하면서 상기 RAN area가 변경되면 이를 기지국에 보고해야 한다. 상기 보고하는 동작을 RNA (RAN Notification Area) update라고 칭한다. 상기 동작은 단말이 다른 RAN area에 속한 셀로 이동할 때, 혹은 주기적으로 수행된다. 주기적으로 수행되는 경우, periodic RNA update라고 칭한다. 단말은 이동할 수 있기 때문에, 상기 periodic RNA update을 트리거하는 셀과 이를 보고받는 셀은 다를 수 있다. 따라서, 이를 보고받은 셀은 상기 트리거한 셀로 periodic RNA update을 포워딩한다. 통상 상기 트리거한 셀은 상기 단말의 UE context을 가지고 있으며, 상기 UE context을 상기 포워딩했던 셀로 이를 전달한다.
신규 INACTIVE 무선 접속 상태는 특정 절차를 이용하여, 연결 모드 혹은 대기 모드로 천이할 수 있다. 단말은 Connection activation에 따라 INACTIVE 모드에서 연결 모드로 전환되며, Connection inactivation 절차를 이용하여 연결 모드에서 INACTIVE 모드로 전환된다 (1b-10). 상기 Connection activation/inactivation 절차는 하나 이상의 RRC 메시지를 단말과 기지국 간 송수신하는 하나 이상의 단계로 구성되는 것을 특징으로 한다. 유사하게, 단말은 특정 절차에 따라 INACTIVE 모드에서 대기 모드로 전환 가능하다 (1b-20). 이러한 특정 절차로는 특정 메시지 교환 혹은 타이머 기반 혹은 이벤트 기반 등 다양한 방법이 고려될 수 있다. 연결 모드과 대기 모드 간 전환은 기존의 LTE 기술을 따른다. 즉, connection establishment 혹은 release 절차를 통해, 상기 모드간 전환이 이루어진다 (1b-25).
도 1c는 차세대 이동통신 시스템에서 무선 접속 상태가 불일치하는 현상을 설명하기 위한 도면이다.
단말 (1c-05)은 기지국 (1c-10)과 연결 상태에 있다 (1c-15). 본 개시에서 상기 기지국은 상기 단말을 대기 모드 (RRC_Idle) 혹은 비활성 모드 (RRC_Inactive)로 전환시키기 위해, RRC release 메시지를 상기 단말에게 전송한다. 상기 메시지는 상기 단말이 대기 모드 혹은 비활성 모드로 전환하는 것을 지시하며, 그와 관련된 설정 정보를 포함하고 있다. 상기 설정 정보란 상기 대기 모드 혹은 비활성 모드에서 셀 재선택 우선 순위 정보, 비활성 모드에서 적용하는 periodic RNA update 타이머 값 등이 될 수 있다. 그러나, 무선 채널이 양호하지 못해, 상기 단말은 상기 메시지를 수신하지 못할 수 있다 (1c-20). 기지국은 단말로부터 상기 메시지에 대한 HARQ feedback을 수신하는지 여부와 상관없이, 바로 상기 단말이 대기 모드 혹은 비활성 모드로 전환되었다고 간주한다 (1c-30). 반면, 상기 단말은 기지국으로부터 상기 release 메시지를 수신하지 못했기 때문에, 여전히 연결 모드를 유지하게 된다 (1c-25). 이러한 현상을 무선 접속 상태가 불일치 되었다고 한다.
도 1d는 본 개시의 실시 예와 관련된 무선 접속 상태의 불일치 문제를 해결하는 과정의 흐름도이다.
단말 (1d-05)은 기지국 (1d-10)으로부터 소정의 RRC 메시지를 통해 제 1 타이머의 값(예를 들어, 제1 타이머의 길이)과 제 2 타이머의 값(예를 들어, 제2 타이머의 길이)을 제공받는다 (1d-15). 단말은 상기 타이머 값을 제공받는 시점 혹은 상기 타이머 값을 제공받고 첫번째 데이터를 송신 혹은 수신하는 시점부터 제1 타이머를 구동 시키며 (1d-20), 데이터를 송신 혹은 수신할 때마다 (1d-30) 상기 단말이 상기 타이머를 재시작한다 (1d-25). 상기 제 1 타이머가 만료되면, 상기 단말은 연결 모드에서 대기 모드로 전환한다(1d-45, 1d-50). 단말과 기지국은 상기 타이머 값을 제공받는 시점 혹은 단말이 연결 모드에서 비활성 모드로 전환할 때 제2 타이머를 구동시킨다(1d-40). 특정 시점에서 기지국은 단말에게 RRC 연결 해제를 요청하는 하나의 RRC 연결 해제 메시지를 전송한다 (1d-35). 상기 메시지는 대기 모드 혹은 비활성 모드로 전환하는 것을 지시한다.
만약, 상기 연결 해제 메시지가 비활성 모드를 지시하는 것이라면, 상기 기지국은 상기 메시지를 전송하면서 상기 제 2 타이머를 구동시킨다 (1d-40). RRC 연결 해제를 요청하는 상기 메시지는 제 2 타이머의 값을 제공하는데 이용될 수도 있다. 상기 연결 해제 메시지를 수신한 상기 단말도 상기 제 2 타이머를 구동시킨다. 그러나, 만약 단말이 상기 메시지를 수신하지 못한다면, 상기 단말은 제 1 타이머가 만료되어 (1d-45), 대기 모드로 전환될 것이다 (1d-50). 상기 기지국은 상기 제 2 타이머가 만료되면 (1d-55), 상기 단말로부터 혹은 인접 기지국으로부터 상기 단말의 periodic RNA update가 수신될 것으로 기대한다. 상기 기지국은 제 2 타이머가 만료된 후, 소정의 시간 동안 상기 periodic RNA update 보고를 기다린다. 만약 상기 기지국이 단말로부터 periodic RNA update을 수신하지 못한다면, 상기 단말이 상기 연결 해제 메시지를 수신하지 못하였다고 판단하고, 상기 단말이 대기 모드로 전환되었다고 간주한다 (1d-60). 제 1 타이머가 아직 구동 중이라면, 기지국은 상기 타이머가 만료될 때까지 단말이 연결 모드 상태에 있다고 간주한다. 따라서, 본 개시에서는 기지국에 보고되는 periodic RNA update를 단말이 비활성 모드를 지시하는 연결 해제 메시지를 성공적으로 수신하였는지 여부를 판단하는 피드백 정보로 이용한다. 단말로부터 상기 periodic RNA update가 보고되지 않는다면, 기지국은 단말이 대기 모드에 있다고 간주한다. 단말도 특정 타이머가 만료될 때까지 데이터가 송수신되지 않으면, 자동적으로 대기 모드로 전환한다.
만약, 상기 연결 해제 메시지가 대기 모드를 지시하는 것이라면, 상기 기지국은 소정의 시간 이후, 상기 단말이 대기 모드로 전환되었다고 간주한다. 이 때, 기지국은 제 2 타이머가 구동되는지 여부는 상관하지 않는다. 따라서, 본 개시에서는 기지국은 단말이 비활성 모드를 지시하는 연결 해제 메시지를 성공적으로 수신하였는지 여부와 상관없이 상기 단말이 대기 모드로 전환되었다고 간주하고, 상기 단말도 특정 타이머가 만료될 때까지 데이터가 송수신되지 않으면, 자동적으로 대기 모드로 전환한다.
본 개시에서는 제 1 타이머를 data inactivity timer, 제 2 타이머를 periodic RNA update timer라 칭한다.
도 1e는 본 개시의 실시 예와 관련된 단말 동작의 순서도이다.
1e-05 단계에서 단말은 기지국으로부터 제 1 타이머와 제 2 타이머에 대한 설정 정보를 제공받는다. 상기 설정 정보는 상기 타이머의 시간 값이다.
1e-10 단계에서 상기 단말은 상기 제 1 타이머 값을 제공받는 시점 혹은 상기 타이머 값을 제공받고 첫번째 데이터를 송신 혹은 수신하는 시점부터 상기 제 1 타이머를 구동시킨다. 상기 단말은 상기 제 2 타이머 값을 제공받는 시점 혹은 상기 타이머를 제공받은 후 상기 단말이 연결 모드에서 비활성 모드로 전환할 때 제2 타이머를 구동시킨다.
1e-15 단계에서 상기 단말은 데이터를 송신 혹은 수신할 때마다 상기 단말이 상기 제 1 타이머를 재시작한다.
1e-20 단계에서 상기 단말은 상기 제 1 타이머가 만료되면, 상기 단말은 연결 모드에서 대기 모드로 전환한다. 상기 단말은 상기 제 2 타이머가 만료되면 현재 camp-on하고 있는 기지국에게 periodic RNA update을 보고한다.
도 1f는 본 개시의 실시 예와 관련된 기지국 동작의 순서도이다.
1f-05 단계에서 기지국은 소정의 RRC 메시지를 이용하여 제 1 타이머를 특정 단말에게 설정한다.
1f-10 단계에서 상기 기지국은 소정의 RRC 메시지를 이용하여 제 2 타이머를 상기 단말에게 설정한다.
1f-15 단계에서 상기 기지국은 RRC 연결 해제 메시지를 이용하여, 상기 단말은 대기 모드 혹은 비활성 모드로 전환하는 것을 지시한다. 기지국은 상기 연결 해제 메시지에 제 2 타이머에 대한 설정 정보를 포함시킬 수도 있다.
1f-20 단계에서 만약 상기 RRC 연결 해제 메시지가 대기 모드 전환을 지시한다면, 상기 기지국은 상기 단말에게 상기 메시지를 전송하고 0 ms 이상의 소정의 시간 후, 제 2 타이머의 구동여부와는 상관없이, 상기 단말이 대기 모드로 전환되었다고 간주한다.
1f-25 단계에서 만약 상기 RRC 연결 해제 메시지가 비활성 모드 전환을 지시한다면, 상기 기지국은 상기 단말에게 상기 메시지를 전송하고 제 2 타이머를 구동시킨다. 기지국은 상기 RRC 연결 해제 메시지를 수신하기 전부터 제2 타이머를 구동하고 있을 수도 있다.
1f-30 단계에서 상기 기지국은 상기 RRC 연결 해제 메시지를 전송 후, 처음으로 도래하는 periodic RNA update 타이밍 (혹은 상기 제 2 타이머가 처음 만료되는 시점)에 단말로부터 periodic RNA update가 전송되는지 여부를 모니터링한다. 상기 기지국은 상기 제 2 타이머가 만료된 후, 소정의 시간 동안, 상기 periodic RNA update을 모니터링한다. 기지국은 periodic RNA update를 다른 기지국으로부터 제공받을 수도 있다.
1f-35 단계에서 상기 기지국은 상기 periodic RNA update가 성공적으로 수신되었는지 여부를 판단한다.
1f-40 단계에서 기지국은 만약 상기 periodic RNA update가 성공적으로 수신되었다면, 상기 단말이 상기 연결 해제 메시지를 성공적으로 수신하여, 이미 비활성 모드 상태에 있다고 간주한다.
1f-45 단계에서 기지국은 만약 상기 소정의 시간이 지나도 상기 periodic RNA update가 성공적으로 수신되지 않았다면, 상기 단말이 상기 연결 해제 메시지를 성공적으로 수신하지 못하였다고 간주하고, 제 1 타이머의 만료 여부를 판단하여, 여전히 연결 모드 혹은 대기 모드 상태에 있다고 간주한다. 상기 단말과 성공적으로 이루어진 마지막 데이터 송수신 시점으로부터 아직 제 1 타이머 값이 경과되지 않았다면, 기지국은 단말이 연결 모드에 있다고 간주한다. 아직 상기 단말이 연결 모드에 있기 때문에, 기지국은 연결 해제 메시지를 단말로 재전송할 수도 있다. 만약 재전송이 트리거된다면, 상기 단말이 현재 camp-on하고 있는 기지국이 단말로 연결 해제 메시지를 전송할 것이다. 기지국이 상기 연결 해제 메시지를 전송하는 동작을 수행하지 않는다면, 제 1 타이머가 만료될 것이기 때문에, 기지국은 단말이 자동적으로 대기 모드에 있다고 간주한다. 그렇지 않고, 상기 단말과 성공적으로 이루어진 마지막 데이터 송수신 시점으로부터 아직 제 1 타이머 값이 경과되었다면, 기지국은 단말이 대기 모드에 있다고 간주한다.
도 1g는 본 개시의 실시 예에서 단말이 연결 해제 메시지를 수신하는 경우, ACK 신호를 전송하는 과정의 흐름도이다.
단말 (1g-05)은 기지국 (1g-10)으로부터 소정의 RRC 메시지를 통해 제 1 타이머와 제 2 타이머의 값을 제공받는다 (1g-15). 단말은 상기 타이머 값을 제공받는 시점 혹은 상기 타이머 값을 제공받고 첫번째 데이터를 송신 혹은 수신하는 시점부터 제1 타이머를 구동 시키며 (1g-20), 데이터를 송신 혹은 수신할 때마다 (1g-25) 제1 타이머를 재시작한다 (1g-30). 단말이 상기 기지국으로부터 RRC 연결 해제 메시지를 성공적으로 수신하면 (1g-35), 단말은 제 1 타이머를 중지시키고, 제 3 타이머를 구동시킨다 (1g-40). 상기 제 3 타이머의 값은 소정의 규칙에 따라 결정되거나 기지국으로부터 단말로 소정의 RRC 메시지를 통해 설정될 수 있다. 일례로, 상기 제 타이머의 값은 HARQ_RTT x NUMBER_OF_HARQ_RETX로 도출되거나, 미리 정의된 고정값이 될 수 있다. 여기서, HARQ_RTT는 HARQ에서 Round Trip Time이며, NUMBER_OF_HARQ_RETX는 HARQ에서 최대 재전송 횟수를 의미한다. 단말은 RRC 연결 해제 메시지를 성공적으로 수신하였지만, 제 3 타이머가 만료되기 전까지는 연결 모드를 유지한다. 상기 제 3 타이머가 만료되기 전까지 단말은 상기 RRC 연결 해제 메시지에 대한 ACK 을 기지국에 보고한다 (1g-50). 단말은 제3 타이머가 만료되면 (1g-65), ACK 전송을 중지하고, 상기 연결 해제 메시지가 지시하는 대기 모드 혹은 비활성 모드로 전환한다 (1g-68). 기지국은 첫 RRC 연결 해제 메시지를 전송한 후, 제 3 타이머를 구동시킨다 (1g-45). 제3 타이머가 만료되기 전까지 기지국은 연결 해제 메시지를 재전송할 수 있다 (1g-55). 제 3 타이머가 만료되면 (1g-70), 기지국은 단말이 RRC 연결 해제 메시지가 지시하는 대기 모드 혹은 비활성 모드로 전환되었다고 간주한다 (1g-75). 상기 RRC 연결 해제 메시지가 비활성 모드를 지시하였다면, 기지국은 RRC 연결 해제 메시지가 처음 전송되었을 때, 제 2 타이머를 구동시킨다 (1g-85). 제 2 타이머가 만료되고 (1g-90), 단말로부터 혹은 다른 기지국으로부터 상기 단말의 periodic RNA update가 수신되지 않는다면, 기지국은 단말이 비활성 모드에서 대기 모드로 전환되었다고 간주한다 (1g-80).
도 1h에 본 개시의 실시 예와 관련된 단말의 구조를 도시하였다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency) 처리부(1h-10), 기저대역(baseband) 처리부(1h-20), 저장부(1h-30), 제어부(1h-40)를 포함한다.
상기 RF 처리부(1h-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF 처리부(1h-10)는 상기 기저대역 처리부(1h-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF 처리부(1h-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF 처리부(1h-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF 처리부(1h-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF 처리부(1h-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역 처리부(1h-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(1h-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1h-20)은 상기 RF 처리부(1h-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(1h-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역 처리부(1h-20) 및 상기 RF 처리부(1h-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(1h-20) 및 상기 RF 처리부(1h-10)는 송신부, 수신부, 송수신부(transceiver) 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역 처리부(1h-20) 및 상기 RF 처리부(1h-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역 처리부(1h-20) 및 상기 RF 처리부(1h-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(1h-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1h-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(1h-30)는 상기 제어부(1h-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1h-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1h-40)는 상기 기저대역 처리부(1h-20) 및 상기 RF 처리부(1h-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(1h-40)는 상기 저장부(1h-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1h-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(1h-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 제어부(1h-40)는 다중연결을 지원하기 위한 다중연결 처리부(1h-42)를 더 포함할 수 있다.
도 1i는 본 개시의 실시 예에 따른 무선 통신 시스템에서 기지국의 블록 구성을 도시한다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF 처리부(1i-10), 기저대역 처리부(1i-20), 백홀통신부(1i-30), 저장부(1i-40), 제어부(1i-50)를 포함하여 구성된다.
상기 RF 처리부(1i-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF 처리부(1i-10)는 상기 기저대역 처리부(1i-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF 처리부(1i-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 기지국은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF 처리부(1i-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF 처리부(1i-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF 처리부(1i-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역 처리부(1i-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1i-20)은 상기 RF 처리부(1i-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1i-20)은 상기 RF 처리부(1i-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역 처리부(1i-20) 및 상기 RF 처리부(1i-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(1i-20) 및 상기 RF처 리부(1i-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀 통신부(1i-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀 통신부(1i-30)는 상기 기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(1i-40)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1i-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(1i-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(1i-40)는 상기 제어부(1i-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1i-50)는 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1i-50)는 상기 기저대역처리부(1i-20) 및 상기 RF 처리부(1i-10)을 통해 또는 상기 백홀 통신부(1i-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(1i-50)는 상기 저장부(1i-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1i-50)는 적어도 하나의 프로세서를 포함할 수 있다. 제어부는 다중연결을 지원하기 위한 다중연결 처리부(1i-52)를 더 포함할 수 있다.
<제2실시예>
도 2a은 차세대 이동통신 네트워크에 연결된 LTE 기지국을 도시하는 도면이다.
기존(legacy) LTE 기지국 (2a-15)은 하나의 네트워크 entity인 MME (2a-05)와 연결된다. 반면, 차세대 이동통신 네트워크 (2a-10, NG core)에는 차세대 이동통신 기지국이 연결될 수도 있지만, 기존의 LTE 기지국을 업그레이드하여, 이를 차세대 이동통신 네트워크에 연결시킬 수도 있다. 이러한 기지국을 eLTE (evolved/enhanced LTE) 기지국 (2a-20)이라고 칭한다. 상기 eLTE 기지국은 기존 MME 혹은 차세대 이동통신 네트워크 (NG core) 혹은 둘 모두에 연결될 수 있다. 만약 상기 eLTE 기지국이 NG core에만 연결되어 있다면, eLTE 을 지원하는 단말 (2a-30)만 상기 eLTE 기지국에 연결되며, 차세대 이동통신 네트워크와 통신이 가능하다. 반면, 기존 단말 (2a-25)은 상기 eLTE 기지국에 연결을 시도하더라도 상기 차세대 이동통신 네트워크와 통신을 할 수 없다. 따라서, 상기 기존 단말이 NG core에만 연결된 eLTE 기지국에 camp-on하고 있는 것을 방지해야 한다. 만약 상기 eLTE 기지국이 NG core 및 EPC 모두에 연결되어 있다면, 상기 기지국은 eLTE 을 지원하는 단말과 기존 단말을 모두 지원할 수 있다. 각 단말은 자신이 지원 가능한 네트워크로 연결 설정이 이루어진다.
도 2b는 기존 LTE 시스템에서 엑세스 승인 여부를 판단하는 방법을 설명하기 위한 도면이다. LTE 단말 내부는 기능별로 AS (Access Stratum, 2b-15)과 NAS (Non Access Stratum, 2b-05)로 구분된다. AS는 엑세스와 관련된 모든 기능을 수행하며, NAS는 PLMN(Public Land Mobile Network) 선택, 서비스 요청 등 엑세스와 관련없는 기능을 수행한다. 엑세스 가능 여부는 주로 단말 AS에서 수행된다. 네트워크는 망 혼잡 시 신규 엑세스를 제한할 수 있으며, 이를 위해, 네트워크는 각 단말이 엑세스 가능 여부를 결정할 수 있도록 관련된 설정 정보를 브로드캐스팅한다 (2b-35). 기존 LTE 시스템에서는 신규 요구사항이 추가됨에 따라 신규 barring mechanism도 제안되었으며, 결과적으로 단말은 복수 개의 엑세스 체크 과정 (access barring check)을 수행하게 되었다. 단말 NAS에서 service request (2b-10)을 단말 AS에 전달하면, 상기 단말 AS는 상기 요청에 응답하여, 네트워크에 엑세스를 실제 수행할 수 있는지 엑세스 가능 여부를 체크한다. 단말 AS는 상기 service request의 establishment cause 값이 delay tolerant access 이면, EAB (Extended Access Barring, 2b-20)을 먼저 수행한다. EAB barring mechanism은 기계형 통신 기기 (MTC: Machine Type Communication)에만 적용되는 엑세스 체크 과정이다. EAB을 통과하면, 단말 AS는 ACDC (Application specific Congestion control for Data Communication, 2b-20) 혹은 ACB (Access Class Barring, 2b-30)을 수행한다. 서비스를 요청하는 어플리케이션은 하나의 ACDC category 정보를 부여 받으며, 상기 ACDC category 값은 service request에 포함되어 단말 AS에 제공될 수 있다. 네트워크는 ACDC category 별로 barring 설정 정보를 제공해 줄 있다. 즉, 단말 AS는 ACDC category로 분류되는 어플리케이션 그룹별로 엑세스 체크 과정을 수행할 수 있다. 상기 ACDC category에 대한 barring 설정 정보가 네트워크로부터 제공되지 않는다면, 단말 AS는 ACDC 엑세스 체크 과정을 생략한다. 단말 AS는 ACB (Access Class Barring, 2b-30)을 수행한다. ACB는 MO (Mobile Originating) data 혹은 MO signalling에 따라 별도의 제공된 barring 설정 정보를 이용하여 수행되는 엑세스 체크 과정이다. MMTEL(Multimedia Telephony) voice/video/SMS(short message service)는 ACB skip 지시자를 이용하여 상기 ACB 수행 과정을 생략할 수 있다 (2b-25). 상기 언급한 복수개의 엑세스 체크 과정에서 모두 엑세스 가능하다는 결정이 나면, 그 때, 단말 AS는 네트워크로 엑세스를 시도할 수 있다. 즉, 상기 단말 AS는 랜덤 엑세스를 수행하고, RRC connection request 메시지 (2b-40)를 기지국에 전송한다. 상기 단말 AS에서 수행하지 않은 엑세스 체크 과정도 있다. 상기 단말 AS는 MMTEL voice/video에 대한 barring 설정 정보 (2b-45, SSAC)를 네트워크로부터 수신하면, 이를 상기 서비스를 관리하는 단말 내의 IMS(IP multimedia subsystem) layer (2b-50)로 전달한다. 상기 barring 설정 정보를 수신한 상기 IMS layer는 상기 서비스가 트리거될 때, 엑세스 체크 과정을 수행한다. SSAC(Service Specific Access Class)가 도입될 당시, 단말 AS는 어플리케이션 혹은 서비스 종류와는 상관없이 기능을 수행하도록 설계되었다. 따라서 MMTEL voice/video 등 특정 서비스에 대해서만 엑세스 승인 여부를 제어하기 위해서는 상기 서비스를 관리하는 계층으로 barring 설정 정보를 직접 전달하여, 그 계층에서 엑세스 체크 과정을 수행하도록 하였다.
일례로, 기존 LTE 시스템에서 ACDC는 어플리케이션 (서비스) 별로 엑세스 가능 여부를 판단하게 하는 목적으로 제안되었다. 각 어플리케이션은 적어도 하나의 ACDC category 값을 부여 받는다. ACDC category는 1부터 16 사이의 값이다. 네트워크는 어플리케이션별로 대응되는 ACDC category 정보를 NAS 메시지를 이용하여 단말 NAS에 제공한다. 네트워크는 SIB2(system information block type 2)을 이용하여, 각 ACDC category에 적용되는 barring 설정 정보를 제공한다. 상기 barring 설정 정보에는 ac-BarringFactor IE와 ac-Barringtime IE을 포함한다. 상기 ac-BarringFactor α의 범위는 0 ≤ α <1 갖는다. 단말 AS는 0 ≤ rand <1인 하나의 랜덤 값 rand을 도출하며, 상기 랜덤 값이 상기 ac-BarringFactor보다 작으면 엑세스가 금지되지 않은 것으로, 그렇지 않다면 엑세스가 금지된 것으로 간주한다. 엑세스가 금지된 것으로 결정되면, 상기 단말 AS는 하기 수학식 1을 이용하여 도출된 소정의 시간 동안 엑세스 시도를 지연시킨다.
[수학식 1]
"Tbarring" = (0.7+ 0.6 * rand) * ac-BarringTime.
단말 NAS에서 service request가 트리거되면, 단말 AS는 서비스가 요구되는 어플리케이션에 대응하는 ACDC category 값을 도출한다. 또한, 상기 단말 NAS가 상기 단말 AS에게 상기 service request을 전달할 때, 상기 도출된 ACDC category 값이 포함되어 단말 AS로 전달될 수도 있다. 상기 service request을 수신한 상기 단말 AS는 상기 ACDC category 값에 따라, SIB2에 포함된 상기 ACDC barring 설정 정보를 이용하여, 엑세스 승인 여부를 결정한다. 만약 상기 ACDC category에 대응하는 barring 설정 정보가 SIB2에 존재하지 않는다면, 단말 AS는 상기 ACDC category에 대한 어플리케이션은 ACDC 과정에서 엑세스가 승인된 것으로 간주한다. 엑세스 승인 체크 과정을 통해 엑세스가 승인되면, 상기 단말 AS는 네트워크로 랜덤 엑세스를 수행하면서 RRC Connection Request 메시지를 전송한다(2b-40).
도 2c는 본 개시에서 단말 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다. 본 개시에서는 기존 ACDC와 유사하게 엑세스 아이덴티티 (Access Identity)와 엑세스 카테고리 (Access Category)를 기반으로 하는 엑세스 제어 기법을 제안한다. 엑세스 아이덴티티는 3GPP 내에서 정의되는, 즉 표준 문서에 명시화된 지시 정보이다. 상기 엑세스 아이덴티티는 하기 표 1과 같이 특정 엑세스를 지시하는데 이용된다. 엑세스 아이덴티티는, 주로 Access Class 11부터 15로 분류되는 엑세스들과 우선 순위를 가진 멀티미디어 서비스 (MPS: Multimedia Priority Service), 그리고 특수 목적 서비스 (MCS: Mission Critical Service)을 지시한다. 상기 Access Class 11부터 15는 사업자 관계자 전용 혹은 공공 목적 용도의 엑세스를 지시한다.
Access Identity number UE configuration
0 UE is not configured with any parameters from this table
1 (NOTE 1) UE is configured for Multimedia Priority Service (MPS).
2 (NOTE 2) UE is configured for Mission Critical Service (MCS).
3-10 Reserved for future use
11 (NOTE 3) Access Class 11 is configured in the UE.
12 (NOTE 3) Access Class 12 is configured in the UE.
13 (NOTE 3) Access Class 13 is configured in the UE.
14 (NOTE 3) Access Class 14 is configured in the UE.
15 (NOTE 3) Access Class 15 is configured in the UE.
NOTE 1: Access Identity 1 is used to provide overrides according to the subscription information in UEs configured for MPS. subscription information defines whether an overide applies to UEs within one of the following categories:a) UEs that are configured for MPS;b) UEs that are configured for MPS and are in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list or in their HPLMN or in a PLMN that is equivalent to their HPLMN;c) UEs that are configured for MPS and are in their HPLMN or in a PLMN that is equivalent to it.NOTE 2: Access Identity 2 is used to provide overrides according to the subscription information in UEs configured for MCS. The subscription information defines whether an overide applies to UEs within one of the following categories:a) UEs that are configured for MCS;b) UEs that are configured for MCS and are in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list or in their HPLMN or in a PLMN that is equivalent to their HPLMN;c) UEs that are configured for MCS and are in their HPLMN or in a PLMN that is equivalent to it.NOTE 3: Access Identities 11 and 15 are valid in Home PLMN only if the EHPLMN list is not present or in any EHPLMN. Access Identities 12, 13 and 14 are valid in Home PLMN and visited PLMNs of home country only. For this purpose the home country is defined as the country of the MCC part of the IMSI.
엑세스 카테고리는 두 종류로 구분된다. 한 종류는 standardized access category이다. 상기 standardized access 카테고리는 RAN 레벨에서 정의되는, 즉 표준 문서에 명시화된 카테고리이다. 따라서 각기 다른 사업자들로 동일한 standardized access category을 적용한다. 본 개시에서는 Emergency에 대응되는 category는 상기 standardized access category에 속한다. 모든 엑세스들은 상기 standardized access category 중 적어도 하나에 대응된다. 또 다른 종류는 operator-specific (즉, non-standardized) access category이다. 상기 operator-specific 카테고리는 3GPP 외부에서 정의되며, 표준 문서에 명시화되지 않는다. 따라서, 사업자마다 하나의 operator-specific access category가 의미하는 것은 상이하다. 이는 기존의 ACDC에서의 카테고리와 그 성격이 동일하다. 단말 NAS에서 트리거된 어떤 엑세스는 operator-specific access category에 맵핑되지 않을 수도 있다. 기존 ACDC와의 큰 차이점은 상기 카테고리가 어플리케이션에만 대응되는 것이 아니라, 어플리케이션 이외에 다른 요소들, 즉 서비스 종류, 콜 종류, 단말 종류, 사용자 그룹, 시그널링 종류, 슬라이스 종류 혹은 상기 요소들의 조합과도 대응될 수 있다는 점이다. 즉, 엑세스 카테고리에 따르면, 단말 AS는 어플리케이션 이외의 다른 요소에 속한 엑세스들에 대해서도 엑세스 승인 여부를 제어할 수 있다. 상기 엑세스 카테고리는 하기 표 2와 같이 특정 엑세스를 지시하는데 이용된다. 엑세스 카테고리 0 번부터 7 번까지는 standardized access category을 지시하는데 이용되며, 엑세스 카테고리 32 번부터 63는 operator-specific access category을 지시하는데 이용된다.
Access Category number Conditions related to UE Type of access attempt
0 All MO signalling resulting from paging
1 (NOTE 1) UE is configured for delay tolerant service and subject to access control for Access Category 1, which is judged based on relation of UE's HPLMN and the selected PLMN. All except for Emergency
2 All Emergency
3 All except for the conditions in Access Category 1. MO signalling resulting from other than paging
4 All except for the conditions in Access Category 1. MMTEL voice
5 All except for the conditions in Access Category 1. MMTEL video
6 All except for the conditions in Access Category 1. SMS
7 All except for the conditions in Access Category 1. MO data that do not belong to any other Access Categories
8-31 Reserved standardized Access Categories
32-63 (NOTE 2) All Based on operator classification
NOTE 1: The barring parameter for Access Category 1 is accompanied with information that define whether Access Category applies to UEs within one of the following categories:a) UEs that are configured for delay tolerant service;b) UEs that are configured for delay tolerant service and are neither in their HPLMN nor in a PLMN that is equivalent to it;c) UEs that are configured for delay tolerant service and are neither in the PLMN listed as most preferred PLMN of the country where the UE is roaming in the operator-defined PLMN selector list on the SIM/USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN.NOTE 2: When there are an Access Category based on operator classification and a standardized Access Category to both of which an access attempt can be categorized, and the standardized Access Category is neither 0 nor 2, the UE applies the Access Category based on operator classification. When there are an Access Category based on operator classification and a standardized Access Category to both of which an access attempt can be categorized, and the standardized Access Category is 0 or 2, the UE applies the standardized Access Category.
사업자 서버 (2c-25)에서 NAS 시그널링 혹은 어플리케이션 레벨 데이터 전송을 통해, 단말 NAS에게 operator-specific access category 정보에 대한 정보 (MO: Management Object)를 제공한다. 상기 정보는 각 operator-specific category가 어플리케이션 등 어떤 요소에 대응되는지를 나타낸다. 예를 들어, 엑세스 카테고리 32 번은 페이스북 어플리케이션에 대응하는 엑세스에 대응됨을 상기 정보에 명시할 수 있다. 기지국 (2c-20)은 시스템 정보를 이용하여, barring 설정 정보를 제공하는 카테고리 리스트와 각 카테고리에 대응하는 barring 설정 정보 정보를 단말들에게 제공한다. 단말 (2c-05)은 NAS (2c-10)와 AS (2c-15)의 논리적인 블록을 포함한다. 단말 NAS는 트리거된 엑세스를 소정의 규칙에 따라, 상기 하나 이상의 엑세스 아이덴티티와 하나의 상기 엑세스 카테고리에 맵핑시킨다. 다른 옵션으로, 상기 엑세스 카테고리 맵핑에서, 하나의 엑세스는 하나의 standardized access category와 맵핑되며, 추가적으로 하나의 operator-specific access category와 맵핑될 수도 있다. 상기 단말 NAS는 Service Request와 함께 상기 맵핑한 엑세스 아이덴티티와 엑세스 카테고리를 상기 단말 AS에 전달한다. 단말 AS는 상기 barring 설정 정보 정보를 이용하여, 단말 NAS에 의해 트리거된 엑세스가 허용되는지 여부를 판단한다 (즉, barring check).
만약 eLTE 기지국에 EPC와 5GC 모두와 연결되어 있다면, 상기 eLTE 기지국은 기존 legacy 단말과 eLTE 단말 모두를 지원할 수 있다. 상기 legacy 단말은 상기 설명한 LTE access control 메카니즘을 이용하여, 엑세스가 허용되는지 여부를 판단한다. LTE 시스템에서는 barring 설정 정보는 SIB2을 통해 단말들에게 제공한다. 본 개시에서는 이를 LTE barring 설정 정보라고 칭한다. 반면, eLTE 단말은 상기 설명한 차세대 이동통신 NR access control 메커니즘을 이용하여, 엑세스가 허용되는지 여부를 판단한다. NR access control에서 적용되는 barring 설정 정보는 LTE에서 적용되는 barring 설정 정보와는 상이하다. 본 개시에서는 이를 NR barring 설정 정보라고 칭한다. 따라서, 상기 eLTE 기지국은 기존 legacy 단말과 eLTE 단말 모두를 지원할 수 있다면, 상기 eLTE 기지국은 두 종류의 barring 설정 정보를 시스템 정보를 이용하여 상기 두 종류의 단말들에게 제공해야 한다. 본 개시에서는 eLTE 기지국이 eLTE 단말만 혹은 기존 legacy 단말과 eLTE 단말 모두를 지원할 수 있는지 여부에 따라, 상기 두 종류의 barring 설정 정보를 SIB2 혹은 eLTE 단말만 이해할 수 있는 SIBx에 포함시켜 단말들에게 제공하는 방법을 제안한다. 특히, 만약 eLTE 기지국이 eLTE 단말만 지원하는 경우, 상기 SIBx 혹은 SIB2에 NR barring 설정 정보를 포함시키고, eLTE 기지국이 기존 legacy 단말과 eLTE 단말 모두를 지원할 수 있다면, LTE barring 설정 정보는 SIB2에 NR barring 설정 정보는 SIBx에 포함시키는 것을 특징으로 한다.
SIB2는 기존 legacy 단말과 eLTE 단말이 모두 이해할 수 있는 시스템 정보이다. 그러나, LTE barring 설정 정보와 NR barring 설정 정보가 모두 SIB2에 포함된다면, SIB2의 크기가 커진다. 각 SIB마다 수납할 수 있는 정보의 량은 제한적이다. 따라서, 제공하고자 하는 barring 설정 정보의 크기에 따라, SIB2에 barring 설정 정보를 모두 수납하지 못할 수도 있다. 또한, NR barring 설정 정보가 SIB2에 포함되더라도, 기존 legacy 단말에게는 불필요한 정보이며, 기존 legacy 단말은 NR barring 설정 정보를 이해할 수도 없다. 따라서, 본 개시에서는 eLTE 기지국이 기존 legacy 단말과 eLTE 단말 모두를 지원할 수 있다면, LTE barring 설정 정보는 SIB2에, 그리고 NR barring 설정 정보는 SIBx에 포함시키는 것을 특징으로 한다. 상기 SIBx는 eLTE 단말은 이해할 수 있으나, 기존 legacy 단말은 이해할 수 없으며, 수신할 필요도 없다. SIB1는 SIBx에 대한 스케줄링 정보를 포함하며, 기존 legacy 단말은 상기 SIB1에서 SIBx에 대한 스케줄링 정보를 이해하지 못한다. eLTE 단말은 SIB1에서 포함되어 있는, 기존 SIB들에 대한 스케줄링 정보와 SIBx에 대한 스케줄링 정보를 모두 고려하여, SIBx가 전송되는 무선 자원의 위치를 확인할 수 있다. 다른 한편으로, eLTE 기지국이 eLTE 단말만 지원하는 경우, LTE barring 설정 정보는 제공될 필요가 없다. 따라서, SIB2가 NR barring 설정 정보를 수납하여도 큰 무리가 없다. 이 경우에 eLTE 기지국은 NR barring 설정 정보를 SIB2에 포함시킬 수 있다. 혹은 통일성을 위해, eLTE 기지국은 NR barring 설정 정보를 eLTE 기지국이 기존 legacy 단말을 지원하는지 여부와는 상관없이 항상 SIBx에 포함시킬 수 있다. 그러나, 이 경우에는 SIB1에 SIBx에 대한 스케줄링 정보를 포함시켜야 한다.
도 2d는 본 개시의 실시 예에서 엑세스 설정 정보를 제공하는 기지국의 동작 순서도이다.
2d-05 단계에서 eLTE 기지국은 자신이 EPC와 5GC 모두와 연결되어 있고, 기존 legacy 단말과 eLTE 단말을 모두 지원하는지 여부를 판단한다.
2d-10 단계에서 만약 상기 eLTE 기지국이 EPC와 5GC 모두와 연결되어 있고, 기존 legacy 단말과 eLTE 단말을 모두 지원한다면, 상기 eLTE 기지국은 SIB2에 LTE barring 설정 정보를 수납한다. eLTE 기지국은 SIB1에 추가적으로 SIBx에 대한 스케줄링 정보를 수납한다. 참고로, LTE에서 SIB2는 essential SIB에 속하기 때문에, SIB1은 항상 SIB2에 대한 스케줄링 정보를 포함한다. eLTE 기지국은 SIBx에 NR barring 설정 정보를 수납한다. 상기 eLTE 기지국은 상기 구성된 SIB들을 브로드캐스팅한다.
2d-15 단계에서 만약 상기 eLTE 기지국이 5GC에만 연결되어 있고, eLTE 단말만 지원한다면, 상기 eLTE 기지국은 SIB2에 LTE barring 설정 정보를 수납한다. 다른 옵션으로는 SIB1에 추가적으로 SIBx에 대한 스케줄링 정보를 수납하고, SIBx에는 NR barring 설정 정보를 수납한다. 상기 eLTE 기지국은 상기 구성된 SIB들을 브로드캐스팅한다.
도 2e는 본 개시개시의 실시 예에서 엑세스 설정 정보를 수신하고 적용하는 eLTE 단말의 동작 순서도이다.
2e-01 단계에서 eLTE 단말은 5GC에 연결된 eLTE와도 통신이 가능하다. 상기 단말은 현재 camp-on하고 있는 LTE 기지국이 EPC에만 연결되어 있는지 여부를 판단한다. 단말은 상기 LTE 기지국이 EPC 혹은 5GC 혹은 둘 다 연결되어 있는지 여부를 시스템 정보를 통해 제공되는 PLMN 정보로 알 수 있다. 각 PLMN은 EPC 혹은 5GC 중 하나와 대응된다. EPC에만 연결된 LTE 기지국은 legacy 단말만 지원 가능하므로, 상기 eLTE 단말은 legacy 단말로서 상기 LTE 기지국에 camp-on 할 수 있다. 만약 eLTE 단말이 legacy 단말 기능을 포함하고 있지 않다면, eLTE 단말은 상기 EPC에만 연결된 LTE 기지국과 통신할 수 없으며, camp-on할 수 있는 다른 기지국을 찾아야 한다.
2e-05 단계에서 만약 상기 LTE 기지국이 5GC 혹은 5GC와 EPC 모두에 연결되어 있다면, 상기 단말은 상기 기지국으로부터 브로드캐스팅되는 SIB2, SIBx로부터 LTE barring 설정 정보와 NR barring 설정 정보를 제공받아 저장한다.
2e-10 단계에서 상기 단말은 5GC 혹은 EPC 중 하나를 통해 엑세스를 수행하는 것을 판단한다. 만약 상기 기지국이 5GC만 연결되어 있다면, 상기 단말은 5GC만 선택할 수 있다.
2e-15 단계에서 만약 EPC을 선택하였다면, 상기 단말은 LTE barring 설정 정보를 적용한다.
2e-20 단계에서 상기 단말은 엑세스가 트리거되면, 상기 LTE barring 설정 정보를 이용하여, barring check을 수행한다.
2e-25 단계에서 상기 단말은 상기 barring check을 통해, 상기 엑세스가 허용되면, 상기 기지국으로 연결 설정 과정을 수행한다.
2e-30 단계에서 만약 5GC을 선택하였다면, 상기 단말은 NR barring 설정 정보를 적용한다.
2e-35 단계에서 상기 단말은 엑세스가 트리거되면, 상기 NR barring 설정 정보를 이용하여, barring check을 수행한다.
2e-40 단계에서 상기 단말은 상기 barring check을 통해, 상기 엑세스가 허용되면, 상기 기지국으로 연결 설정 과정을 수행한다.
2e-45 단계에서 상기 단말은 상기 기지국으로부터 브로드캐스팅되는 SIB2로부터 LTE barring 설정 정보를 제공받아 저장한다.
2e-50 단계에서 만약 EPC을 선택하였다면, 상기 단말은 LTE barring 설정 정보를 적용한다.
2e-55 단계에서 상기 단말은 엑세스가 트리거되면, 상기 LTE barring 설정 정보를 이용하여, barring check을 수행한다.
2e-60 단계에서 상기 단말은 상기 barring check을 통해, 상기 엑세스가 허용되면, 상기 기지국으로 연결 설정 과정을 수행한다.
도 2f는 본 개시의 실시 예에 따른 단말의 구조를 도시한다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency) 처리부(2f-10), 기저대역(baseband) 처리부(2f-20), 저장부(2f-30), 제어부(2f-40)를 포함한다.
상기 RF 처리부(2f-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF 처리부(2f-10)는 상기 기저대역 처리부(2f-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF 처리부(2f-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF 처리부(2f-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF 처리부(2f-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF 처리부(2f-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역 처리부(2f-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(2f-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(2f-20)은 상기 RF 처리부(2f-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(2f-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(2f-20)은 상기 RF처리부(2f-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역 처리부(2f-20) 및 상기 RF 처리부(2f-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(2f-20) 및 상기 RF 처리부(2f-10)는 송신부, 수신부, 송수신부(transceiver) 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역 처리부(2f-20) 및 상기 RF 처리부(2f-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역 처리부(2f-20) 및 상기 RF 처리부(2f-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(2f-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(2f-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(2f-30)는 상기 제어부(2f-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(2f-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(2f-40)는 상기 기저대역 처리부(2f-20) 및 상기 RF 처리부(2f-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(2f-40)는 상기 저장부(2f-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(2f-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(2f-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 제어부(2f-40)는 다중연결을 지원하기 위한 다중연결 처리부(2f-42)를 더 포함할 수 있다.
도 2g는 본 개시의 실시 예에 따른 무선 통신 시스템에서 기지국의 블록 구성을 도시한다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF 처리부(2g-10), 기저대역 처리부(2g-20), 백홀통신부(2g-30), 저장부(2g-40), 제어부(2g-50)를 포함하여 구성된다.
상기 RF 처리부(2g-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF 처리부(2g-10)는 상기 기저대역 처리부(2g-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF 처리부(2g-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF 처리부(2g-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF 처리부(2g-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF 처리부(2g-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역 처리부(2g-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(2g-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(2g-20)은 상기 RF 처리부(2g-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(2g-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(2g-20)은 상기 RF 처리부(2g-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역 처리부(2g-20) 및 상기 RF 처리부(2g-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(2g-20) 및 상기 RF 처리부(2g-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀 통신부(2g-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀 통신부(2g-30)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(2g-40)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(2g-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(2g-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(2g-40)는 상기 제어부(2g-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(2g-50)는 상기 주기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(2g-50)는 상기 기저대역 처리부(2g-20) 및 상기 RF 처리부(2g-10)을 통해 또는 상기 백홀 통신부(2g-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(2g-50)는 상기 저장부(2g-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(2g-50)는 적어도 하나의 프로세서를 포함할 수 있다. 제어부(2g-50)는 다중연결을 지원하기 위한 다중연결 처리부(2g-52)를 더 포함할 수 있다.
이상에서 본 명세서와 도면에 개시된 실시 예들은 본 개시의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 따라서 본 개시의 범위는 여기에 개시된 실시 예들 이외에도 본 개시의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 개시의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 접속 제어를 수행하는 방법에 있어서,
    기지국을 통해서 접속할 네트워크를 확인(identify)하는 단계;
    상기 네트워크가 제1 네트워크이면, 상기 기지국으로부터, 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 수신하는 단계;
    상기 네트워크가 제2 네트워크이면, 상기 기지국으로부터, 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 수신하는 단계;
    상기 네트워크가 제1 네트워크이면, 상기 제1 SIB에 포함된 상기 제1 정보에 기초하여 접속 제어를 수행하는 단계; 및
    상기 네트워크가 제2 네트워크이면, 상기 제2 SIB에 포함된 상기 제2 정보에 기초하여 접속 제어를 수행하는 단계를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 방법은, 상기 제1 정보에 기초한 접속 제어 또는 상기 제2 정보에 기초한 접속 제어에 따라 상기 기지국과의 연결을 수립(establish)하는 단계를 더 포함하는 것인, 방법.
  3. 제1항에 있어서,
    상기 기지국은 상기 제1 네트워크의 제1 코어망 엔티티 및 상기 제2 네트워크의 제2 코어망 엔티티에 연결되는 것인, 방법.
  4. 제3항에 있어서,
    상기 제1 네트워크는 EPC(evolved packet core)이고, 상기 제1 SIB는 SIB2이고, 상기 제1 코어망 엔티티는 MME(mobility management entity)이며,
    상기 제2 네트워크는 5GC(5G core network)이고, 상기 제2 SIB는 상기 제1 SIB와는 다른 SIBx이며, 상기 제2 코어망 엔티티는 AMF(access management function)인 것인, 방법.
  5. 무선 통신 시스템에서 기지국이 접속 제어를 수행하는 방법에 있어서,
    단말로, 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 전송하는 단계; 및
    상기 단말로, 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 전송하는 단계를 포함하며,
    상기 단말이 접속할 네트워크가 제1 네트워크이면, 상기 제1 SIB에 포함된 상기 제1 정보가 이용되어 접속 제어가 수행되며,
    상기 단말이 접속할 네트워크가 제2 네트워크이면, 상기 제2 SIB에 포함된 상기 제2 정보가 이용되어 접속 제어가 수행되는 것인, 방법.
  6. 제5항에 있어서,
    상기 방법은, 상기 제1 정보에 기초한 접속 제어 또는 상기 제2 정보에 기초한 접속 제어에 따라 상기 단말과의 연결을 수립(establish)하는 단계를 더 포함하는 것인, 방법.
  7. 제5항에 있어서,
    상기 기지국은 상기 제1 네트워크의 제1 코어망 엔티티 및 상기 제2 네트워크의 제2 코어망 엔티티에 연결되고,
    상기 제1 네트워크는 EPC(evolved packet core)이고, 상기 제1 SIB는 SIB2이고, 상기 제1 코어망 엔티티는 MME(mobility management entity)이며,
    상기 제2 네트워크는 5GC(5G core network)이고, 상기 제2 SIB는 상기 제1 SIB와는 다른 SIBx이며, 상기 제2 코어망 엔티티는 AMF(access management function)인 것인, 방법.
  8. 무선 통신 시스템에서 접속 제어를 수행하는 단말에 있어서,
    신호를 송신 및 수신하도록 설정된 송수신부; 및
    기지국을 통해서 접속할 네트워크를 확인(identify)하고, 상기 네트워크가 제1 네트워크이면 상기 기지국으로부터 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 수신하고, 상기 네트워크가 제2 네트워크이면 상기 기지국으로부터 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 수신하고, 상기 네트워크가 제1 네트워크이면 상기 제1 SIB에 포함된 상기 제1 정보에 기초하여 접속 제어를 수행하고, 상기 네트워크가 제2 네트워크이면 상기 제2 SIB에 포함된 상기 제2 정보에 기초하여 접속 제어를 수행하도록 설정된 제어부를 포함하는, 단말.
  9. 제8항에 있어서,
    상기 제어부는, 상기 제1 정보에 기초한 접속 제어 또는 상기 제2 정보에 기초한 접속 제어에 따라 상기 기지국과의 연결을 수립(establish)하도록 더 설정되는 것인, 단말.
  10. 제8항에 있어서,
    상기 기지국은 상기 제1 네트워크의 제1 코어망 엔티티 및 상기 제2 네트워크의 제2 코어망 엔티티에 연결되는 것인, 단말.
  11. 제10항에 있어서,
    상기 제1 네트워크는 EPC(evolved packet core)이고, 상기 제1 SIB는 SIB2이고, 상기 제1 코어망 엔티티는 MME(mobility management entity)이며,
    상기 제2 네트워크는 5GC(5G core network)이고, 상기 제2 SIB는 상기 제1 SIB와는 다른 SIBx이며, 상기 제2 코어망 엔티티는 AMF(access management function)인 것인, 단말.
  12. 무선 통신 시스템에서 접속 제어를 수행하는 기지국에 있어서,
    신호를 송신 및 수신하도록 설정된 송수신부; 및
    단말로 접속 제어를 위한 제1 정보를 포함하는 제1 SIB(system information block)를 전송하고, 상기 단말로 접속 제어를 위한 제2 정보를 포함하는 제2 SIB를 전송하도록 설정된 제어부를 포함하고,
    상기 단말이 접속할 네트워크가 제1 네트워크이면, 상기 제1 SIB에 포함된 상기 제1 정보가 이용되어 접속 제어가 수행되며,
    상기 단말이 접속할 네트워크가 제2 네트워크이면, 상기 제2 SIB에 포함된 상기 제2 정보가 이용되어 접속 제어가 수행되는 것인, 기지국.
  13. 제12항에 있어서,
    상기 제어부는, 상기 제1 정보에 기초한 접속 제어 또는 상기 제2 정보에 기초한 접속 제어에 따라 상기 단말과의 연결을 수립(establish)하도록 더 설정되는 것인, 기지국.
  14. 제12항에 있어서,
    상기 기지국은 상기 제1 네트워크의 제1 코어망 엔티티 및 상기 제2 네트워크의 제2 코어망 엔티티에 연결되는 것인, 기지국.
  15. 제12항에 있어서,
    상기 제1 네트워크는 EPC(evolved packet core)이고, 상기 제1 SIB는 SIB2이고, 상기 제1 코어망 엔티티는 MME(mobility management entity)이며,
    상기 제2 네트워크는 5GC(5G core network)이고, 상기 제2 SIB는 상기 제1 SIB와는 다른 SIBx이며, 상기 제2 코어망 엔티티는 AMF(access management function)인 것인, 기지국.
PCT/KR2019/005557 2018-05-09 2019-05-09 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치 WO2019216663A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19799795.0A EP3780889A4 (en) 2018-05-09 2019-05-09 METHOD AND DEVICE FOR CONTROLLING THE PROBLEM OF RRC STATE DISCREPANCE IN A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
US17/053,322 US11457400B2 (en) 2018-05-09 2019-05-09 Method and device for controlling RRC state mismatch issue in next-generation mobile communication system
US17/935,529 US11877229B2 (en) 2018-05-09 2022-09-26 Method and device for controlling RRC state mismatch issue in next-generation mobile communication system
US18/412,253 US20240155468A1 (en) 2018-05-09 2024-01-12 Method and device for controlling rrc state mismatch issue in next-generation mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0053358 2018-05-09
KR1020180053358A KR102591866B1 (ko) 2018-05-09 2018-05-09 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/053,322 A-371-Of-International US11457400B2 (en) 2018-05-09 2019-05-09 Method and device for controlling RRC state mismatch issue in next-generation mobile communication system
US17/935,529 Continuation US11877229B2 (en) 2018-05-09 2022-09-26 Method and device for controlling RRC state mismatch issue in next-generation mobile communication system

Publications (1)

Publication Number Publication Date
WO2019216663A1 true WO2019216663A1 (ko) 2019-11-14

Family

ID=68467040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005557 WO2019216663A1 (ko) 2018-05-09 2019-05-09 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치

Country Status (4)

Country Link
US (3) US11457400B2 (ko)
EP (1) EP3780889A4 (ko)
KR (1) KR102591866B1 (ko)
WO (1) WO2019216663A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022282A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Enhanced connection release techniques for wireless communications systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591866B1 (ko) * 2018-05-09 2023-10-20 삼성전자 주식회사 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치
US11838981B2 (en) 2018-09-26 2023-12-05 Qualcomm Incorporated Resource management, access control and mobility for grant-free uplink transmission
US11490447B2 (en) * 2020-04-28 2022-11-01 Apple Inc. Intelligent 5G NR RRC state transitions
EP4199591A4 (en) * 2020-09-01 2024-02-07 Lg Electronics Inc METHOD AND DEVICE FOR RESELECTING A HETERGENEOUS NETWORK FOR SIDELINK FORWARDING
KR20220143421A (ko) * 2021-04-16 2022-10-25 삼성전자주식회사 전자 장치 및 전자 장치에서 통신 네트워크와의 연결을 제어하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140128080A1 (en) * 2012-11-07 2014-05-08 Qualcomm Incorporated Method and apparatus for pre-configuring for a serving cell change to neighbor cells
KR20140144266A (ko) * 2012-04-05 2014-12-18 퀄컴 인코포레이티드 Lte 무선 액세스 네트워크 공유를 위한 방법 및 장치
KR20160103080A (ko) * 2014-02-09 2016-08-31 엘지전자 주식회사 무선 통신 시스템에서 단말의 동작 방법 및 이를 이용하는 단말
KR20160123470A (ko) * 2015-04-15 2016-10-26 한국전자통신연구원 다중 네트워크 무선 접속을 위한 통합 접속 장치 및 방법
US20180027469A1 (en) * 2013-05-10 2018-01-25 Kyocera Corporation User terminal for network selection in a communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782337B1 (ko) 2006-10-25 2007-12-06 삼성전자주식회사 이동통신 시스템에서 중단 없는 음성 서비스 제공을 위한장치 및 방법
HUE043320T2 (hu) * 2015-02-26 2019-08-28 Intel Ip Corp Rendszerek, eljárások és eszközök rádiós elérési technológia koordinációjához
US20170006604A1 (en) 2015-06-30 2017-01-05 Qualcomm Incorporated Broadcast channel reception in multi-subscription multi-standby communication devices
CN105611508B (zh) 2016-02-26 2019-08-20 北京佰才邦技术有限公司 网络模式的指示方法和装置
WO2018026188A1 (en) 2016-08-03 2018-02-08 Samsung Electronics Co., Ltd. Method for cell reselection in idle mode for next generation mobile communication systems
US10524181B2 (en) 2016-08-03 2019-12-31 Samsung Electronics Co., Ltd. Method for cell reselection in idle mode for next generation mobile communication systems
WO2018128458A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
KR102591866B1 (ko) * 2018-05-09 2023-10-20 삼성전자 주식회사 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144266A (ko) * 2012-04-05 2014-12-18 퀄컴 인코포레이티드 Lte 무선 액세스 네트워크 공유를 위한 방법 및 장치
US20140128080A1 (en) * 2012-11-07 2014-05-08 Qualcomm Incorporated Method and apparatus for pre-configuring for a serving cell change to neighbor cells
US20180027469A1 (en) * 2013-05-10 2018-01-25 Kyocera Corporation User terminal for network selection in a communication system
KR20160103080A (ko) * 2014-02-09 2016-08-31 엘지전자 주식회사 무선 통신 시스템에서 단말의 동작 방법 및 이를 이용하는 단말
KR20160123470A (ko) * 2015-04-15 2016-10-26 한국전자통신연구원 다중 네트워크 무선 접속을 위한 통합 접속 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022282A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Enhanced connection release techniques for wireless communications systems
US11622414B2 (en) * 2020-07-17 2023-04-04 Qualcomm Incorporated Enhanced connection release techniques for wireless communications systems
US11924910B2 (en) 2020-07-17 2024-03-05 Qualcomm Incorporated Enhanced connection release techniques for wireless communications systems

Also Published As

Publication number Publication date
KR20190128956A (ko) 2019-11-19
US11877229B2 (en) 2024-01-16
EP3780889A1 (en) 2021-02-17
US20210076308A1 (en) 2021-03-11
EP3780889A4 (en) 2021-06-09
US20240155468A1 (en) 2024-05-09
US20230023841A1 (en) 2023-01-26
US11457400B2 (en) 2022-09-27
KR102591866B1 (ko) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2019216663A1 (ko) 차세대 이동통신 시스템에서 rrc 상태 미일치 문제를 제어하는 방법 및 장치
US11700171B2 (en) Method and apparatus for configuring network connection in mobile communication system
US10390295B2 (en) Method and device for controlling cell connection from wireless LAN in wireless communication system and providing valid information on peripheral wireless LAN access points
CN110583044B (zh) 移动通信网络、通信装置、基础设施设备和方法
WO2017034272A1 (en) Method and apparatus for communication in wireless communication system
EP3408999A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2019245305A1 (en) Method and apparatus for controlling packet duplication by considering dual connectivity in next-generation mobile communication system
US11558811B2 (en) Method and apparatus for selecting core network suitable for service in next generation mobile communication system
WO2014084475A1 (ko) Cellular-wifi 융합시스템에서 일반장치로부터 획득한 정보를 이용하여 wifi 망을 통해 access point를 등록하는 방법 및 장치
WO2022025666A1 (ko) 네트워크 슬라이스의 동시 사용 방법 및 장치
WO2019031863A1 (en) APPARATUS AND METHOD FOR TRANSMITTING AND RECEIVING SYSTEM INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
WO2022010162A1 (ko) 차세대 이동통신 시스템에서 복수 개의 sim을 지원하는 방법 및 장치
WO2021235891A1 (en) Method and device for discovering and selecting network for provisioning ue subscriber data
WO2016064230A1 (en) Method and apparatus for interworking wireless lan according to camping cell
WO2021034175A1 (ko) 복수의 sim을 이용한 서비스 제공 방법 및 장치
WO2021235781A1 (en) Method and apparatus for discovering and selecting network providing connectivity for provisioning user subscription data
WO2022154488A1 (ko) 무선 통신 시스템에서 rrm(radio resource management) 측정 완화를 수행하는 방법 및 장치
EP3210419A1 (en) Method and apparatus for interworking wireless lan according to camping cell
WO2021091274A1 (ko) 무선 통신 시스템에서의 Paging 방법 및 장치
WO2023243944A1 (ko) 차세대 이동통신 시스템에서 재난 조건이 발생했을 때 ran sharing 에서 액세스 제어를 제공하는 방법 및 장치
WO2023132720A1 (en) Method and apparatus for rrc segmentation in wireless communication system
WO2023075418A1 (en) Method and apparatus for providing network slice in wireless communication system
WO2022211531A1 (ko) 무선 통신 시스템에서 npn(non-public network)을 지원하기 위한 신호의 송수신 방법 및 장치
WO2022146081A1 (en) Method and device for supporting interworking between systems in wireless communication system
WO2022010258A1 (ko) 차세대 이동통신 시스템에서 복수 개의 subscriber identity module (sim)에 기반하여 페이징 동작을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799795

Country of ref document: EP

Effective date: 20201106