WO2019216591A1 - Preparation method for super absorbent polymer sheet - Google Patents

Preparation method for super absorbent polymer sheet Download PDF

Info

Publication number
WO2019216591A1
WO2019216591A1 PCT/KR2019/005222 KR2019005222W WO2019216591A1 WO 2019216591 A1 WO2019216591 A1 WO 2019216591A1 KR 2019005222 W KR2019005222 W KR 2019005222W WO 2019216591 A1 WO2019216591 A1 WO 2019216591A1
Authority
WO
WIPO (PCT)
Prior art keywords
blowing agent
polymer sheet
super absorbent
weight
encapsulated
Prior art date
Application number
PCT/KR2019/005222
Other languages
French (fr)
Korean (ko)
Inventor
윤기열
김기철
최현
강성균
김주은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190049877A external-priority patent/KR102276342B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020518770A priority Critical patent/JP6970287B2/en
Priority to CN201980004796.9A priority patent/CN111164136B/en
Priority to US16/756,360 priority patent/US11186668B2/en
Priority to EP19800809.6A priority patent/EP3677621B1/en
Publication of WO2019216591A1 publication Critical patent/WO2019216591A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond

Definitions

  • the present invention relates to a method for producing a superabsorbent polymer sheet.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. Each developer has a super absorbent material (AMG) and an absorbent gel (AGM). They are named differently. Such superabsorbent resins have been put into practical use as sanitary instruments, and are currently maintained in the fields of gardening soil repair agents, civil engineering, building index materials, seedling sheets, food distribution, as well as sanitary products such as paper diapers and sanitary napkins for children. It is widely used as a material for agent, and poultice.
  • various sanitary articles such as diapers, sanitary napkins, or incontinence pads include absorbents including superabsorbent polymer particles.
  • the absorbents mainly contain the superabsorbent resin particles and the superabsorbent resin particles, while appropriately fixing the absorbent body and hygiene. It was common to use fluff pulp to maintain the shape of the article.
  • the current super absorbent polymers are mostly manufactured in powder form and used.
  • Such superabsorbent polymers in powder form may be scattered or leaked during the manufacture of hygiene materials or in actual use, and are limited in the range of use because they must be used together with a specific type of substrate.
  • the present invention provides a method for producing a superabsorbent polymer sheet excellent in high flexibility and absorption performance.
  • Comonomers having an acidic group, at least a portion of which is neutralized, an acrylic acid monomer, a copolymer containing polyethylene glycol (methyl ether) (meth) acrylate, an internal crosslinker, encapsulated Preparing a monomer composition by mixing a blowing agent, an inorganic blowing agent having an average particle diameter of 1 to 100, and a polymerization initiator;
  • Drying the hydrogel polymer to form a superabsorbent polymer sheet As a method of manufacturing a super absorbent polymer sheet comprising a, The encapsulated blowing agent and the inorganic blowing agent are included in a weight ratio of 3: 1 to 1: 1, to provide a method for producing a super absorbent polymer sheet.
  • the polyethylene glycol (methyl ether) (meth) acrylate may be included in an amount of 5 to 40 parts by weight based on 100 parts by weight of the acrylic acid monomer.
  • the encapsulated blowing agent may have an average particle diameter of 2 to 50 and an expansion ratio in air of 3 to 15 times.
  • the encapsulated blowing agent may have a structure including a core including a hydrocarbon and a shell surrounding the core and formed of a thermoplastic resin.
  • the hydrocarbon is n-propane, n-butane, iso-butane, cyclobutane, n -pentane, iso-pentane, cyclopentane, n-nucleic acid, iso-nucleic acid, cyclonucleic acid, n-heptane, iso-heptane, At least one selected from the group consisting of cycloheptane, n-octane, iso-octane and cyclooctane, wherein the thermoplastic resin is (meth) acrylate, (meth) acrylonitrile, aromatic vinyl, vinyl acetate, vinyl halide and It may be a polymer formed from one or more monomers selected from the group consisting of vinylidene halides.
  • the inorganic blowing agent is calcium carbonate (CaC0 3 ), sodium bicarbonate (NaHC0 3 ), ammonium bicarbonate (NH 4 HC0 3 ), ammonium carbonate ((NH 4 ) 2 C0 3 ), ammonium nitrite (NH 4 NO 2 ), hydrogen boride It may be at least one selected from sodium (NaBH 4 ) and sodium carbonate (Na 2 CO 3 ).
  • the average particle diameter of the inorganic blowing agent may be 5 to 20 / pa.
  • the encapsulated blowing agent and the inorganic blowing agent may be included in a weight ratio of 2: 1 to 1: 1.
  • the encapsulated blowing agent is based on 100 parts by weight of the acrylic acid monomer.
  • the inorganic blowing agent may be included in an amount of 0.1 parts by weight or more based on 100 parts by weight of the acrylic acid monomer.
  • the encapsulated blowing agent and the inorganic blowing agent may be included in an amount of 0.4 to 20 parts by weight based on 100 parts by weight of the acrylic acid monomer.
  • the superabsorbent polymer sheet obtained by the manufacturing method of the present invention is obtained in the form of a sheet or a film, unlike a general superabsorbent polymer in a powder state, and can be directly applied as a product, there is no fear of scattering or leaking, and exhibits flexibility. Can be.
  • the superabsorbent polymer sheet obtained by the method for producing a superabsorbent polymer sheet of the present invention has an open pore channel structure in which pores are connected to each other, whereby water of capillary pressure Since absorption is possible, absorption rate and permeability can be improved.
  • the superabsorbent polymer sheet can be used as a pulse fleece absorber.
  • SEM scanning electron microscope
  • the particle diameter refers to the particle diameter at the n-vol% point of the cumulative particle number distribution according to the particle size. That is, D50 is the particle size at 50% of the particle number cumulative distribution when the particle diameters of particles are accumulated in ascending order, D90 is the particle size at the 90% point of the cumulative particle number distribution according to the particle size, and D10 is Particle size at 10% of particle number cumulative distribution.
  • the average particle diameter refers to the D50 particle size.
  • the Dn is a laser diffraction method (Laser Diffraction method), can be used immediately.
  • the particle diameter Dn is immediately dispersed in a dispersion medium in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, the Mastersizer 3000) to determine the difference in diffraction pattern according to the particle size as the particles pass through the laser beam. Can be measured by calculating the particle size distribution.
  • a commercially available laser diffraction particle size measuring apparatus for example, the Mastersizer 3000
  • an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, polyethylene glycol (methyl ether)
  • Monomer by mixing a comonomer containing (meth) acrylate (polyethylene glycol (methyl ether) (meth) acrylate), an internal crosslinking agent, an encapsulated blowing agent, an inorganic blowing agent having an average particle diameter (D50) of 1 to 100 ⁇ m, and a polymerization initiator Preparing a composition; thermally polymerizing or photopolymerizing the monomer composition to form a hydrogel polymer; And drying the hydrogel polymer to form a superabsorbent polymer sheet, wherein the encapsulated and inorganic foam agents are included in a weight ratio of 3: 1 to 1: 1, and a method of preparing a superabsorbent polymer sheet is provided. .
  • a comonomer containing (meth) acrylate (polyethylene glycol (methyl ether) (meth) acrylate), an internal crosslinking agent, an encapsulated blowing agent, an inorganic blowing agent having an average particle diameter (
  • the monomer composition which is a raw material of the super absorbent polymer has an acidic group, an acrylic acid monomer having at least a portion of the acidic group neutralized, polyethylene glycol (methyl ether) (meth) acrylate (polyethylene glycol).
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group of 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer is composed of acrylic acid, methacrylic acid and monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts. It includes one or more selected from the group.
  • the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized.
  • those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like may be used.
  • the degree of neutralization of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may be difficult to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may be greatly degraded, and properties such as elastic rubber, which are difficult to handle, may be exhibited. have.
  • the acrylic acid monomer concentration may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight, based on the monomer composition including the raw material and the solvent of the superabsorbent polymer.
  • the concentration may be appropriate considering the reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the monomer composition of this invention contains polyethylene glycol (methyl ether) (meth) acrylate as a comonomer.
  • the polyethylene glycol (methyl ether) (meth) acrylate is copolymerized with the acrylic acid monomer in the polymerization process to enable polymerization of a super absorbent polymer having a flexible polymer structure.
  • the number of ethylene glycol repeating units in the polyethylene glycol (methyl ether) (meth) acrylate may be 3 to 100, or 3 to 80, or 3 to 50.
  • the content of the polyethylene glycol (methyl ether) (meth) acrylate may be 5 to 40 parts by weight, preferably 5 to 30 parts by weight, more preferably 10 to 30 parts by weight based on 100 parts by weight of the acrylic acid monomer. . If the content of the comonomer is too small, there may be no effect of improving the flexibility, too In the case where it is included in a large amount, there may be a decrease in the absorption rate and the absorption capacity, so the content range may be preferable in this respect.
  • a poly (meth) acrylate-based compound of polyol for example, a poly (meth) acrylate-based compound of polyol having 2 to 10 carbon atoms can be used.
  • More specific examples include trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acryl Butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, triethylene glycol di (meth) acrylate, tri Propylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate or pentaerythol tetraacrylate can be used, and preferably, polyethylene Glycol diacrylate can be used.
  • the internal crosslinking agent may be included in a concentration of about
  • the monomer composition of the present invention comprises a blowing agent, wherein the encapsulating blowing agent and an inorganic blowing agent having an average particle diameter (D50) of 1 to 100 u m are simultaneously included.
  • D50 average particle diameter
  • the main pores of the large size suitable for securing a high porosity inside the superabsorbent polymer sheet is formed by the encapsulated foaming agent, such main pores
  • the fine pore channel is formed between the inorganic blowing agents, it is possible to secure an open pore channel structure in which the main pores are connected to each other. Therefore, due to the microporous channel structure, it is possible to quickly drop water by capillary pressure, and the centrifugal water-retaining ability and the pressure-absorbing ability of the superabsorbent polymer produced are superior to that of each foaming agent alone.
  • the encapsulated blowing agent is in an encapsulated state upon polymerization of the monomer composition. 2019/216591 1 »(: 1 ⁇ 1 ⁇ 2019/005222
  • Pore channel opening of the superabsorbent resin sheet is formed by forming a pore of appropriate size between the polymer structure of the superabsorbent polymer, and then expands by heat, and is foamed by high temperature heat applied during the drying process described later.
  • ⁇ 30 Refers to the structure of mountain 1111 ⁇ 21).
  • the encapsulated blowing agent may have a structure including a core comprising a hydrocarbon and a shell surrounding the core and formed of a thermoplastic resin.
  • the encapsulated blowing agent varies in expansion characteristics depending on the components constituting the core and the shell, the weight of each component, and the average particle diameter, and the foaming agent can expand to a desired size and control the porosity of the superabsorbent polymer sheet.
  • the encapsulated blowing agent has an average particle diameter, that is, a D50 particle diameter of 5 to 50 m, or 5 to 30 Or 5-20 / pe, or 7-17 _. It can be judged that the encapsulated blowing agent is suitable to achieve an appropriate porosity when exhibiting such an average particle diameter.
  • the encapsulated blowing agent is 20 to 190 in air.
  • the shape of the pores formed in the superabsorbent polymer sheet may be measured by a method of analyzing with a scanning electron microscope (SEM).
  • the hydrocarbons constituting the core of the encapsulated blowing agent are 11-propane, 11-butane,
  • 0-pentane, cyclopentane, 11-nucleic acid, 0-nucleic acid, Cycloheptane, 11-octane, And cyclooctane may be one or more selected from the group consisting of.
  • hydrocarbons having 3 to 5 carbon atoms propane, 11-butane, 0-butane, cyclobutane, 11-pentane, 0-pentane, cyclopentane
  • Butane may be most suitable.
  • thermoplastic resin constituting the shell of the encapsulated blowing agent is
  • It may be a polymer formed from at least one monomer selected from the group consisting of (meth) acrylate, (meth) acrylonitrile, aromatic vinyl, vinyl acetate, vinyl halide and vinylidene halide.
  • copolymers of (meth) acrylate and (meth) acrylonitrile may be most suitable for forming pores of the above-described sizes.
  • the encapsulated blowing agent may comprise from 10 to 30% by weight hydrocarbon based on the total weight of the encapsulating blowing agent. It may be most suitable for forming an open pore structure within this range.
  • the encapsulated blowing agent may be prepared and used, or a blowing agent commercialized by satisfying the above conditions may be used.
  • the content of the encapsulated blowing agent may be used in an amount of 0.3 to 20 parts by weight, preferably 0.5 to 10 parts by weight, and more preferably 1 to 10 parts by weight, based on 100 parts by weight of the acrylic acid monomer.
  • the content of the encapsulated foaming agent is too small, the open pore structure may not be properly formed, and adequate porosity may not be secured, and when it is included too much, the porosity may be too high to weaken the strength of the super absorbent polymer.
  • the above content range may be preferable.
  • the inorganic blowing agent preferably has an average particle diameter, that is, a 050 particle diameter of 1 to 100 or 111, and more preferably 3 to 50!, or 5 to 20 / L.
  • This micro-sized inorganic blowing agent acts as a blowing agent and is applied to the superabsorbent polymer sheet. 2019/216591 1 »(: 1 ⁇ 1 ⁇ 2019/005222
  • the inorganic foaming agent can serve simultaneously as an inorganic support imparting mechanical strength. If the average particle diameter of the inorganic foaming agent is less than 1 m, it is possible to form open pores due to the formation of high porosity due to many nucleus points, but it is difficult to secure the strength of the superabsorbent polymer sheet due to its weak role as an inorganic support. Too large in excess of _ may not function properly as a blowing agent for forming micropores, but may function only as an inorganic support. Therefore, in order to produce a superabsorbent sheet having open pores and having an appropriate strength, it is preferable to use particles within the above range.
  • the inorganic blowing agent can be used without limitation, a substance commonly known as a blowing agent, specifically, calcium carbonate (0 trillion (: 0 3 ), sodium bicarbonate 0 »03 ⁇ 4), ammonium bicarbonate 3 ⁇ 411 (: 0 3 ), ammonium carbonate At least one selected from the group consisting of (fish 3 ⁇ 4) 2 (: 0 3 ), ammonium nitrite fish 3 ⁇ 4 0 2 ), sodium hydrogen borohydride fish and seedlings 3 ⁇ 4 and sodium carbonate 3 ⁇ 4 (: 0 3 ) can be used.
  • calcium carbonate and / or sodium carbonate may be preferably used in consideration of stability characteristics in the neutralized liquid.
  • the content of the inorganic blowing agent is based on 100 parts by weight of the acrylic acid monomer.
  • 0.1 parts by weight or more may be used, preferably 0.2 to 10 parts by weight, more preferably 0.3 to 5 parts by weight. If the content of the inorganic blowing agent is too small, there may be a problem that the closed pores are formed, if too much is included, due to the high porosity, there may be a problem that the mechanical strength is lowered.
  • the mixing ratio of the encapsulated blowing agent and the inorganic blowing agent is preferably 3: 1 to 1: 1 weight ratio, and more preferably in the range of 2: 1 to 1: 1. Within this range, high porosity and mechanical strength improving effect can be obtained, and thus the centrifugal water-retaining capacity and the pressure-absorbing capacity of the superabsorbent polymer sheet can be improved.
  • the encapsulated blowing agent and the inorganic blowing agent are included in an amount of 20 parts by weight or less based on 100 parts by weight of the acrylic acid monomer, and more preferably in the range of 0.4 to 20 parts by weight, 0.7 to 10 parts by weight, or 1 to 5 parts by weight. .
  • the polymerization initiator used in the polymerization in the method for producing a super absorbent polymer sheet of the present invention is not particularly limited as long as it is generally used for producing a super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator may be used without limitation in the composition as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal.
  • acylphosphine a commercially available lucirin TPO, that is, 2, 4, 6-trimethyl-benzoyl-trimethyl phosphine oxide (2, 4, 6-trimethyl -benzoyl-trimethyl phosphine oxide) can be used.
  • 2, 4, 6-trimethyl-benzoyl-trimethyl phosphine oxide 2, 4, 6-trimethyl -benzoyl-trimethyl phosphine oxide
  • a wider variety of photoinitiators are well described in Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" pi 15, but are not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 wt% based on the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 0 g), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (NH 4 ) 2 SiOg), etc.
  • azo (azo) based initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2- amidinopropane) dihydrochloride), 2,2-azobis- (N, N-dimethylene) isobutyramimidine dihydrochloride (2,2-azobis- (N, dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl) azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- ( 2 -imidazolin_ 2 - yl) propane] dihydrochloride), 4,4 - include cyano ballet rigs acid) (4,4-azobis- (4- cyanovaleric acid)) - azobis- (4. More various thermal polymerization initiators are well specified in Odian
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition. If the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of adding the thermal polymerization initiator may be insignificant. If the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven. have.
  • the monomer composition may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
  • Raw materials such as the above-described acrylic acid unsaturated monomers, comonomers, internal crosslinking agents, polymerization initiators, and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the solvent that can be used may be used without limitation as long as it can dissolve the above-described components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol , Ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether It may be used in combination of one or more selected from toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, N-dimethylacetamide.
  • the monomer composition is thermally polymerized or photopolymerized to form a hydrogel polymer. 2019/216591 1 »(: 1 ⁇ 1 ⁇ 2019/005222
  • the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a polymerization method commonly used in the art of manufacturing superabsorbent polymers.
  • the polymerization method can be largely divided into thermal polymerization and photopolymerization according to the polymerization energy source.
  • thermal polymerization usually thermal polymerization
  • Thermal polymerization or photopolymerization reaction temperature of the monomer composition is not particularly limited, for example, 80 to 120 Preferably from 90 to 110 I: It can be.
  • the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight.
  • water content throughout the present specification refers to the amount of water to the total weight of the hydrogel gel polymer minus the weight of the polymer in the dry state, specifically, the polymer by infrared heating
  • the weight loss according to the water evaporation in the polymer is defined as a value calculated immediately, wherein the drying conditions are increased by increasing the temperature from room temperature to about 1801: and then maintained at 1801:
  • the drying time is set to 20 minutes including the temperature rise step 5 minutes, and the moisture content is measured.
  • the hydrogel polymer is molded into a sheet and dried to form a superabsorbent polymer sheet.
  • the drying temperature of the drying step may be about 120 to about 2501 :. If the drying temperature is less than about 120 ° 0, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature is higher than about 250 ° :, only the polymer surface may be excessively dried. There is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Thus preferably the drying may proceed at a temperature of about 120 to about 250, more preferably at a temperature of about 140 to about 2001 :. In this drying step, the main pores by the foaming of the blowing agent A fine pore channel is formed in between, so that an open pore channel structure can be obtained. On the other hand, in the case of drying time, in consideration of process efficiency and the like, from about 20 to about
  • the drying method of the drying step is also commonly used as a drying process of the hydrogel polymer, it can be selected and used without limitation of its configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the moisture content of the superabsorbent polymer sheet after the drying step may be about 10 wt% or more, for example, about 10 wt% to about 40 wt%, or about 15 wt% to about 30 wt%. When it is in the above-mentioned range, the flexibility of the sheet can be ensured.
  • the thickness of the superabsorbent polymer sheet obtained by the above process is about 100_ or more, or 1,000 / year, or 5,000 / zm and about 10 cm or less, or about 5 cm or less, or about lcm or less. Can be. If the thickness of the superabsorbent polymer sheet is too thin, the sheet may be torn due to its low strength, and if it is too thick, drying and processing may be difficult. It may be desirable to have the above-described thickness range in this respect.
  • the superabsorbent polymer sheet of the present invention in the superabsorbent polymer sheet, at least a part of the pores is in a sheet state of an open pore channel structure in which the pores are connected to each other. Since the absorption of water by capillary pressure is possible, the absorption rate and permeability can be improved and can be provided as it is as a pulseless absorber.
  • the superabsorbent polymer sheet produced according to the present invention has an open pore channel structure in which at least a portion of the pores are connected to each other, whereby water can be knotted by capillary pressure. Accordingly, the absorption rate and permeability may be improved than the conventional superabsorbent polymer in powder form.
  • the superabsorbent polymer sheet has a centrifugal water retention (CRC) of about 10 to about 40 g / g, preferably about 15 to about 40 g / g, more preferably measured according to the method of EDANA WSP 241.2. May range from about 25 to about 40 g / g.
  • the superabsorbent polymer sheet was measured according to the method of 242.2 by EDANA method ⁇ 8. About 5 to about 20 dung, preferably about 7 to about 15 ⁇ /, more preferably about 10 to about It can have a range.
  • the superabsorbent polymer sheet of the present invention has excellent absorption characteristics and permeability, and can be used as a pul free absorber.
  • the particle diameters of the encapsulated blowing agent and the inorganic blowing agent were immediately determined by using a laser diffraction method. Specifically, after immediately dispersing lmg of the target powder in 30g of distilled water, it was introduced into the laser diffraction particle size measuring apparatus (Mastersizer 3000) to measure the particle size distribution by measuring the diffraction pattern difference according to the particle size as the particles pass through the laser beam. . The particle diameter at the point which becomes 50% of the cumulative particle number distribution according to the particle diameter in a measuring apparatus was calculated, and D50 was calculated
  • the monomer composition was high shear mixed for about 10 minutes at a speed of 500 rpm using a mechanical mixer.
  • the mixture was introduced through a feeder of the polymerization reactor to perform polymerization to form a hydrogel polymer.
  • the temperature of the polymerization reactor was maintained at 100 ° C, the maximum temperature of the polymerization was 110 ° C, polymerization time was 10 minutes.
  • the hydrogel polymer was dried at a temperature of 180 c for 5 minutes, and was cut into sheet form (thickness: around 2_) using a cutting machine.
  • Example 2
  • Example 1 a superabsorbent polymer sheet was manufactured in the same manner as in Example 1, except that 0.75 wt% of the encapsulating foaming agent and the calcium carbonate foaming agent were used, respectively, relative to 100 wt% of acrylic acid.
  • Example 3
  • Example 1 a superabsorbent polymer sheet was prepared in the same manner as in Example 1, except that 1.5 wt% and 0.75 wt% of the encapsulating and calcium carbonate blowing agents were used, respectively, relative to 100 wt% of acrylic acid.
  • Example 4
  • acrylic acid 100 The foaming agent, and sodium carbonate word 3 ⁇ 4 encapsulated percent by weight (0 3) a blowing agent (average particle diameter: 50) 12, the same procedure as in Example 1 except for using 0.75 wt.%), Respectively A superabsorbent polymer sheet was prepared. Comparative Example 1
  • Example 1 a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that no calcium carbonate blowing agent was used. Comparative Example 2 2019/216591 1 »(: 1 ⁇ 1 ⁇ 2019/005222
  • Example 1 a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that the encapsulated blowing agent was not used. Comparative Example 3
  • Example 1 a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that the encapsulated blowing agent and the calcium carbonate blowing agent were not used. Comparative Example 4
  • Example 1 a superabsorbent polymer sheet was manufactured in the same manner as in Example 1, except that 4.5 wt% of encapsulated blowing agent and 1.5 wt% of calcium carbonate blowing agent were used relative to 100 wt% of acrylic acid. Comparative Example 5
  • Example 1 a superabsorbent polymer sheet was prepared in the same manner as in Example 1, except that 1.5 wt% of encapsulated blowing agent and 3.0 wt% of calcium carbonate blowing agent were used relative to 100 wt% of acrylic acid.
  • FIG. 1 A scanning electron microscope (SEM) photograph of the cross section of the superabsorbent polymer sheet according to Example 1 of the present invention is shown in FIG. 1. Referring to FIG. 1, it can be seen that an open pore channel structure is formed on the surface of the superabsorbent polymer sheet according to Example 1 of the present invention.
  • centrifugal water holding capacity ( ⁇ 1 (:)) was measured, and the EDANA method ⁇ ⁇ ? 2019/216591 1 »(: 1 ⁇ 1 ⁇ 2019/005222
  • the absorbency under pressure (show 111 > ) under 0.7 was measured according to the method of 242.2, and the results are shown in Table 1 below.
  • each blowing agent was It can be seen that it exhibits excellent centrifugal water-retaining capacity and pressure-absorbing capacity as compared with the superabsorbent polymer sheet which is used alone or without a blowing agent.
  • the weight ratio of the encapsulated blowing agent and the inorganic blowing agent is 3: 1 and Comparative Example 5 in which the weight ratio of less than 1: 1, both the centrifugal water retention capacity and the pressure absorption capacity was significantly lower than the Example. From this, it can be seen that in order to obtain excellent physical properties due to the open pore structure of the superabsorbent polymer sheet, the weight ratio of the encapsulated blowing agent and the inorganic blowing agent of the present invention must be satisfied.

Abstract

The present invention relates to a preparation method for a super absorbent polymer sheet. According to the preparation method for a super absorbent polymer sheet of the present invention, a porous flexible super absorbent polymer sheet can be produced.

Description

【발명의 명칭】  [Name of invention]
고흡수성 수지 시트의 제조 방법 【기술분야】  Manufacturing Method of Super Absorbent Polymer Sheet [Technical Field]
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2018년 5월 11일자 한국 특허 출원 제 10-2018-0054364호 및 2019년 4월 29일자 한국 특허 출원 제 10-2019-0049877호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0054364 dated May 11, 2018 and Korean Patent Application No. 10-2019-0049877 dated April 29, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은고흡수성 수지 시트의 제조 방법에 관한 것이다.  The present invention relates to a method for producing a superabsorbent polymer sheet.
【배경기술】 Background Art
고듭수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM( Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀나 생리대 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 선선도유지제, 및 찜질용등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. Each developer has a super absorbent material (AMG) and an absorbent gel (AGM). They are named differently. Such superabsorbent resins have been put into practical use as sanitary instruments, and are currently maintained in the fields of gardening soil repair agents, civil engineering, building index materials, seedling sheets, food distribution, as well as sanitary products such as paper diapers and sanitary napkins for children. It is widely used as a material for agent, and poultice.
일반적으로 각종 기저귀, 생리대 또는 실금용 패드 등의 위생용품에는 고흡수성 수지 입자를 포함한 흡수체가 포함되는데, 이러한 흡수체는 주로 상기 고흡수성 수지 입자와, 이러한 고흡수성 수지 입자를 적절히 고정하면서도 상기 흡수체 및 위생용품의 형태를 유지시키기 위해 플러프 펄프 (fluff pulp)를사용하는 것이 일반적이었다.  In general, various sanitary articles such as diapers, sanitary napkins, or incontinence pads include absorbents including superabsorbent polymer particles. The absorbents mainly contain the superabsorbent resin particles and the superabsorbent resin particles, while appropriately fixing the absorbent body and hygiene. It was common to use fluff pulp to maintain the shape of the article.
그러나, 이러한 플러프 펄프의 존재로 인해, 흡수체 및 위생용품의 슬림화 및 박형화가 어려웠고, 사용자의 피부와 위생용품의 사이에 땀이 차는 등 착용감이 떨어지는 문제점이 있었다. 더구나, 주로 목재를 원료로 얻어지는 상기 플러프 펄프의 다량 사용 필요성으로 인해, 최근의 환경보호 시류에 역행하는 점이 있었고, 상기 흡수층 및 위생용품의 제조 단가를 높이는 주원인 중에 하나가되었다. 이 때문에,상기 흡수층 및 위생용품에 있어서, 플러프 펄프의 사용량을 줄이거나, 플러프 펄프를 사용하지 않은 소위 펄프리스 (pulpless) 기저귀 등의 위생용품을 제공하기 위해 많은시도가 이루어지고 있다. However, due to the presence of the fluff pulp, it was difficult to slim and thin the absorbent body and the hygiene article, and there was a problem in that the user's skin and the hygiene article had sweating between the user's skin and the sanitary article. Moreover, due to the necessity of using a large amount of the fluff pulp mainly obtained from wood, there has been a contradiction to recent environmental protection currents, and has become one of the main reasons for increasing the manufacturing cost of the absorbent layer and sanitary ware. For this reason, many attempts have been made in the absorbent layer and the sanitary article to reduce the amount of fluff pulp used or to provide sanitary articles such as so-called pulpless diapers which do not use fluff pulp.
한편 현재의 고흡수성 수지는 대부분 분말 (powder) 형태로 제조되어 사용되고 있다. 이러한 분말 형태의 고흡수성 수지는 위생재를 제조할 때나 실제 사용 시 비산되거나 누출될 수 있는 부분이 있고, 특정 형태의 기질 (substrate)과 함께 사용되어야 하기 때문에 사용 범위의 제한이 있는 실정이다.  Meanwhile, the current super absorbent polymers are mostly manufactured in powder form and used. Such superabsorbent polymers in powder form may be scattered or leaked during the manufacture of hygiene materials or in actual use, and are limited in the range of use because they must be used together with a specific type of substrate.
이에 최근에는 고흡수성 수지를 섬유 (fiber) 또는 부직포 형태로 제조하는 방법이 제안되고 있다. 그러나 흡수 성능의 저하가 없고 펄프리스 흡수체로 사용할 수 있으며, 충분한 유연성을 나타내는 고흡수성 수지를 확보하기 위한 방안이 미흡하여 이의 제조 방법에 대한 연구가 여전히 요구된다. 【발명의 상세한설명】  Recently, a method of manufacturing a super absorbent polymer in the form of fibers or fibers is proposed. However, there is no deterioration in absorption performance and can be used as a pulpless absorber, and a method for securing a superabsorbent polymer exhibiting sufficient flexibility is still insufficient. Detailed Description of the Invention
【기술적 과제】  [Technical problem]
상기와 같은 과제를 해결하기 위한 것으로, 본 발명은 높은 가요성 및 흡수성능이 우수한고흡수성 수지 시트의 제조 방법을 제공한다. 【기술적 해결방법】  In order to solve the above problems, the present invention provides a method for producing a superabsorbent polymer sheet excellent in high flexibility and absorption performance. Technical Solution
상기와같은과제를 해결하기 위하여 본 발명의 일 측면은,  One aspect of the present invention to solve the above problems,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 폴리에틸렌글리콜 (메틸에테르) (메트)아크릴레이트 (Polyethylene glycol (methyl ether) (meth)acrylate)를포함하는공단량체, 내부 가교제, 캡슐화된 발포제, 평균 입경 1 내지 100 나마의 무기 발포제, 및 중합 개시제를 혼합하여 모노머 조성물을 제조하는단계;  Comonomers having an acidic group, at least a portion of which is neutralized, an acrylic acid monomer, a copolymer containing polyethylene glycol (methyl ether) (meth) acrylate, an internal crosslinker, encapsulated Preparing a monomer composition by mixing a blowing agent, an inorganic blowing agent having an average particle diameter of 1 to 100, and a polymerization initiator;
상기 모노머 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는단계; 및  Thermally polymerizing or photopolymerizing the monomer composition to form a hydrogel polymer; And
상기 함수겔 중합체를 건조하여 고흡수성 수지 시트를 형성하는 단계; 를포함하는고흡수성 수지 시트의 제조방법으로서, 상기 캡슐화된 발포제와 무기 발포제는 3:1 내지 1:1의 중량비로 포함되는,고흡수성 수지 시트의 제조방법을 제공한다. Drying the hydrogel polymer to form a superabsorbent polymer sheet; As a method of manufacturing a super absorbent polymer sheet comprising a, The encapsulated blowing agent and the inorganic blowing agent are included in a weight ratio of 3: 1 to 1: 1, to provide a method for producing a super absorbent polymer sheet.
상기 폴리에틸렌글리콜 (메틸에테르) (메트)아크릴레이트 (Polyethylene glycol (methyl ether) (meth)acrylate)는 상기 아크릴산계 단량체 100 중량부에 대하여 5 내지 40중량부로포함될 수 있다.  The polyethylene glycol (methyl ether) (meth) acrylate may be included in an amount of 5 to 40 parts by weight based on 100 parts by weight of the acrylic acid monomer.
상기 캡슐화된 발포제는 평균 입경이 2 내지 50 일 수 있고, 공기 중 팽창 비율이 3 내지 15 배일 수 있다.  The encapsulated blowing agent may have an average particle diameter of 2 to 50 and an expansion ratio in air of 3 to 15 times.
또한,상기 캡슐화된 발포제는 탄화수소를포함하는코어와상기 코어를 둘러싸며 열가소성 수지로 형성되는 쉘을 포함하는 구조를 가지는 것일 수 있다.  In addition, the encapsulated blowing agent may have a structure including a core including a hydrocarbon and a shell surrounding the core and formed of a thermoplastic resin.
이때, 상기 탄화수소는 n-프로판, n-부탄, iso-부탄, 사이클로부탄, n-펜탄, iso-펜탄, 사이클로펜탄, n-핵산, iso-핵산, 사이클로핵산, n-헵탄, iso-헵탄, 사이클로헵탄, n-옥탄, iso-옥탄및 사이클로옥탄으로구성된 군에서 선택된 1 종 이상일 수 있고, 상기 열가소성 수지는 (메트)아크릴레이트, (메트)아크릴로니트릴, 방향족 비닐, 초산 비닐, 할로겐화 비닐 및 할로겐화 비닐리덴으로 구성된 군에서 선택된 1 종 이상의 모노머로부터 형성되는 폴리머일 수 있다. In this case, the hydrocarbon is n-propane, n-butane, iso-butane, cyclobutane, n -pentane, iso-pentane, cyclopentane, n-nucleic acid, iso-nucleic acid, cyclonucleic acid, n-heptane, iso-heptane, At least one selected from the group consisting of cycloheptane, n-octane, iso-octane and cyclooctane, wherein the thermoplastic resin is (meth) acrylate, (meth) acrylonitrile, aromatic vinyl, vinyl acetate, vinyl halide and It may be a polymer formed from one or more monomers selected from the group consisting of vinylidene halides.
상기 무기 발포제는 탄산칼슘 (CaC03), 중탄산나트륨 (NaHC03), 중탄산암모늄 (NH4HC03), 탄산암모늄 ((NH4)2C03), 아질산암모늄 (NH4NO2), 붕소화수소나트륨 (NaBH4) 및 탄산나트륨 (Na2C03) 중 선택되는 1종 이상일 수 있다. The inorganic blowing agent is calcium carbonate (CaC0 3 ), sodium bicarbonate (NaHC0 3 ), ammonium bicarbonate (NH 4 HC0 3 ), ammonium carbonate ((NH 4 ) 2 C0 3 ), ammonium nitrite (NH 4 NO 2 ), hydrogen boride It may be at least one selected from sodium (NaBH 4 ) and sodium carbonate (Na 2 CO 3 ).
바람직하기로,상기 무기 발포제의 평균 입경은 5 내지 20 /페일 수 있다. 또한 바람직하기로, 상기 캡슐화된 발포제와 무기 발포제는 2:1 내지 1:1의 중량비로포함될 수 있다.  Preferably, the average particle diameter of the inorganic blowing agent may be 5 to 20 / pa. Also preferably, the encapsulated blowing agent and the inorganic blowing agent may be included in a weight ratio of 2: 1 to 1: 1.
한편, 상기 캡슐화된 발포제는 아크릴산계 단량체 100 중량부에 대하여 Meanwhile, the encapsulated blowing agent is based on 100 parts by weight of the acrylic acid monomer.
0.3 내지 20 중량부로 포함될 수 있으며, 상기 무기 발포제는 아크릴산계 단량체 100중량부에 대하여 0.1 중량부 이상포함될 수 있다. 0.3 to 20 parts by weight may be included, and the inorganic blowing agent may be included in an amount of 0.1 parts by weight or more based on 100 parts by weight of the acrylic acid monomer.
또한, 상기 캡슐화된 발포제 및 무기 발포제는, 상기 아크릴산계 단량체 100중량부에 대하여 0.4내지 20중량부로포함될 수 있다. 【발명의 효과】 In addition, the encapsulated blowing agent and the inorganic blowing agent may be included in an amount of 0.4 to 20 parts by weight based on 100 parts by weight of the acrylic acid monomer. 【Effects of the Invention】
본 발명의 제조방법에 의해 수득되는 고흡수성 수지 시트는 분말 상태의 통상의 고흡수성 수지와는 달리 시트 또는 필름 형태로 얻어지며, 제품으로 바로 적용이 가능하며 비산되거나 누출될 우려가 없고 유연성을 나타낼 수 있다.  The superabsorbent polymer sheet obtained by the manufacturing method of the present invention is obtained in the form of a sheet or a film, unlike a general superabsorbent polymer in a powder state, and can be directly applied as a product, there is no fear of scattering or leaking, and exhibits flexibility. Can be.
또한, 본 발명의 고흡수성 수지 시트의 제조방법에 의해 수득되는 고흡수성 수지 시트는 공극이 서로 연결되어 있는 열린 기공 채널 (open pore channel) 구조를 가지며, 이에 의해 모세관 압력 (capillary pressure)에 의한 물의 흡수가가능하므로,흡수 속도 및 투과성이 향상될 수 있다.  In addition, the superabsorbent polymer sheet obtained by the method for producing a superabsorbent polymer sheet of the present invention has an open pore channel structure in which pores are connected to each other, whereby water of capillary pressure Since absorption is possible, absorption rate and permeability can be improved.
이처럼, 유연성과 가요성을 가지면서 고흡수성 수지 본연의 물성으로 빠른 흡수 속도를 나타내어, 가요성 및 높은 흡수성을 필요로 하는 다양한 제품에 적용 가능하다.  As such, it exhibits a fast absorption rate due to the inherent physical properties of the superabsorbent polymer while having flexibility and flexibility, and is applicable to various products requiring flexibility and high absorbency.
또한,상기 고흡수성 수지 시트는펄프리스흡수체로 이용할수 있다. 【도면의 간단한설명】  In addition, the superabsorbent polymer sheet can be used as a pulse fleece absorber. 【Brief Description of Drawings】
도 1은 본 발명의 일 실시예에 따라 제조된 고흡수성 수지 시트의 단면을 촬영한주사전자현미경 (SEM)사진이다.  1 is a scanning electron microscope (SEM) photograph of the cross section of the superabsorbent polymer sheet prepared according to an embodiment of the present invention.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
본 발명은 다양한 변경을 가할수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 명세서에서 입자의 입경 은, 입경에 따른 입자 개수 누적 분포의 n부피% 지점에서의 입경을 의미한다. 즉, D50은 입자의 입경을 오름차순으로 누적시켰을 때, 입자 개수 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경이고, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 본 발명에서 평균 입경이라 함은 상기 D50 입경을 의미한다. 상기 Dn은 레이저 회절법 (Laser Diffraction method), 이용하여 즉정할수 있다. 구체적으로,상기 입경 Dn은즉정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Mastersizer 3000)에 도입하여 입자들이 레이저 빔을 통과할 때 입자크기에 따른 회절패턴 차이를측정하여 입도 분포를산출함으로써 측정될 수 있다. In the present specification, the particle diameter refers to the particle diameter at the n-vol% point of the cumulative particle number distribution according to the particle size. That is, D50 is the particle size at 50% of the particle number cumulative distribution when the particle diameters of particles are accumulated in ascending order, D90 is the particle size at the 90% point of the cumulative particle number distribution according to the particle size, and D10 is Particle size at 10% of particle number cumulative distribution. In the present invention, the average particle diameter refers to the D50 particle size. The Dn is a laser diffraction method (Laser Diffraction method), can be used immediately. Specifically, the particle diameter Dn is immediately dispersed in a dispersion medium in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, the Mastersizer 3000) to determine the difference in diffraction pattern according to the particle size as the particles pass through the laser beam. Can be measured by calculating the particle size distribution.
이하, 본 발명의 일 구현예에 따른 고흡수성 수지 시트의 제조방법을 설명한다. 본 발명의 일 구현예에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 폴리에틸렌글리콜(메틸에테르) Hereinafter, a method of manufacturing a super absorbent polymer sheet according to one embodiment of the present invention will be described. According to an embodiment of the present invention, an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, polyethylene glycol (methyl ether)
(메트)아크릴레이트(Polyethylene glycol (methyl ether) (meth)acrylate)를 포함하는 공단량체, 내부 가교제, 캡슐화된 발포제, 평균 입경(D50) 1 내지 100 u m의 무기 발포제, 및 중합 개시제를혼합하여 모노머 조성물을 제조하는 단계;상기 모노머 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합체를 건조하여 고흡수성 수지 시트를 형성하는 단계를 포함하고, 상기 캡슐화된 발포제와 무기 발포제는 3:1 내지 1:1 중량비로 포함되는, 고흡수성 수지 시트의 제조방법이 제공된다. Monomer by mixing a comonomer containing (meth) acrylate (polyethylene glycol (methyl ether) (meth) acrylate), an internal crosslinking agent, an encapsulated blowing agent, an inorganic blowing agent having an average particle diameter (D50) of 1 to 100 μm, and a polymerization initiator Preparing a composition; thermally polymerizing or photopolymerizing the monomer composition to form a hydrogel polymer; And drying the hydrogel polymer to form a superabsorbent polymer sheet, wherein the encapsulated and inorganic foam agents are included in a weight ratio of 3: 1 to 1: 1, and a method of preparing a superabsorbent polymer sheet is provided. .
본 발명의 제조방법에 있어, 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트(Polyethylene glycol In the production method of the present invention, the monomer composition which is a raw material of the super absorbent polymer has an acidic group, an acrylic acid monomer having at least a portion of the acidic group neutralized, polyethylene glycol (methyl ether) (meth) acrylate (polyethylene glycol).
(methyl ether)(meth)acrylate)를포함하는공단량체,내부 가교제,캡슐화된 발포제, 평균 입경(D50)l 내지 100
Figure imgf000007_0001
무기 발포제, 및 중합개시제를 포함한다. 먼저,상기 아크릴산계 단량체는하기 화학식 1로표시되는 화합물이다:
Comonomer containing (methyl ether) (meth) acrylate), internal crosslinking agent, encapsulated blowing agent, average particle diameter (D50) l to 100
Figure imgf000007_0001
Inorganic blowing agents, and polymerization initiators. First, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1] [Formula 1]
R^COOM1 R ^ COOM 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은불포화 결합을포함하는 탄소수 2내지 5의 알킬 그룹이고, R 1 is an alkyl group of 2 to 5 carbon atoms containing an unsaturated bond,
M1은수소원자 , 1가또는 2가금속, 암모늄기 또는유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을포함한다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer is composed of acrylic acid, methacrylic acid and monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts. It includes one or more selected from the group.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라취급하기 곤란한탄성 고무와 같은성질을나타낼 수 있다.  Here, the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. Preferably, those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like may be used. In this case, the degree of neutralization of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may be difficult to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may be greatly degraded, and properties such as elastic rubber, which are difficult to handle, may be exhibited. have.
상기 아크릴산계 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를포함하는모노머 조성물에 대해 약 20내지 약 60중량%, 바람직하게는 약 40내지 약 50중량%로 될 수 있으며, 중합시간 및 반응조건 등을고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.  The acrylic acid monomer concentration may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight, based on the monomer composition including the raw material and the solvent of the superabsorbent polymer. The concentration may be appropriate considering the reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
본 발명의 모노머 조성물은 공단량체로 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트(Polyethylene glycol(methyl ether)(metii)acrylate)을포함한다. 상기 폴리에틸렌글리콜(메틸에테르)(메트)아크릴레이트는중합과정에서 아크릴산계 단량체와 함께 공중합되어 유연성 있는 고분자 구조의 고흡수성 수지의 중합을 가능케 한다.  The monomer composition of this invention contains polyethylene glycol (methyl ether) (meth) acrylate as a comonomer. The polyethylene glycol (methyl ether) (meth) acrylate is copolymerized with the acrylic acid monomer in the polymerization process to enable polymerization of a super absorbent polymer having a flexible polymer structure.
최적화된 고분자 구조를 형성하기 위하여 상기 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트에 있어 에틸렌글리콜 반복 단위수는 3 내지 100,또는 3 내지 80,또는 3 내지 50 인 것을사용할수 있다. 상기 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트의 함량은 아크릴산계 단량체 100 중량부에 대하여 5 내지 40 중량부, 바람직하게는 5 내지 30중량부, 더욱 바람직하게는 10내지 30중량부를사용할수 있다. 상기 공단량체의 함량이 지나치게 적으면, 유연성 개선의 효과가 없을수 있고, 너무 많이 포함되는 경우, 흡수 속도, 및 흡수능의 저하가 있을 수 있으므로 이러한 관점에서 상기 함량 범위가바람직할수 있다. In order to form an optimized polymer structure, the number of ethylene glycol repeating units in the polyethylene glycol (methyl ether) (meth) acrylate may be 3 to 100, or 3 to 80, or 3 to 50. The content of the polyethylene glycol (methyl ether) (meth) acrylate may be 5 to 40 parts by weight, preferably 5 to 30 parts by weight, more preferably 10 to 30 parts by weight based on 100 parts by weight of the acrylic acid monomer. . If the content of the comonomer is too small, there may be no effect of improving the flexibility, too In the case where it is included in a large amount, there may be a decrease in the absorption rate and the absorption capacity, so the content range may be preferable in this respect.
본 발명에서, 내부 가교제로는 예를 들어 폴리올의 폴리(메트)아크릴레이트계 화합물, 예를 들어, 탄소수 2 내지 10의 폴리올의 폴리(메트)아크릴레이트계 화합물을 사용할 수 있다. 보다 구체적인 예로는, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 디(메트)아크릴레이트, 폴리에틸렌글리콜 디(메트)아크릴레이트, 프로필렌글리콜 디(메트)아크릴레이트, 폴리프로필렌글리콜 디(메트)아크릴레이트, 부탄디올디(메트)아크릴레이트, 부틸렌글리콜디(메트)아크릴레이트, 디에틸렌글리콜 디(메트)아크릴레이트, 핵산디올디(메트)아크릴레이트, 트리에틸렌글리콜 디(메트)아크릴레이트, 트리프로필렌글리콜 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트, 디펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트 또는 펜타에리스톨 테트라아크릴레이트를 사용할 수 있으며, 바람직하게는,폴리에틸렌글리콜 디아크릴레이트를사용할수 있다. 상기 내부 가교제는 모노머 조성물에 대하여 약 0.01 내지 약 2 중량%, 또는 0.1 내지 0.5 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다.  In the present invention, as the internal crosslinking agent, for example, a poly (meth) acrylate-based compound of polyol, for example, a poly (meth) acrylate-based compound of polyol having 2 to 10 carbon atoms can be used. More specific examples include trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acryl Butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, triethylene glycol di (meth) acrylate, tri Propylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate or pentaerythol tetraacrylate can be used, and preferably, polyethylene Glycol diacrylate can be used. The internal crosslinking agent may be included in a concentration of about 0.01 wt% to about 2 wt%, or 0.1 wt% to 0.5 wt% based on the monomer composition to crosslink the polymerized polymer.
본 발명의 모노머 조성물은 발포제를 포함하며, 이때 캡슐화된 발포제 및 평균 입경(D50) 1 내지 100 u m의 무기 발포제를 동시에 포함한다. 이와 같이 두 종류의 발포제를 혼합 사용하는 경우 고흡수성 수지 시트의 높은 기공도 및 열린 기공을 얻을 수 있는 효과가 있다. 즉, 본 발명과 같이 캡슐화된 발포제 및 무기 발포제를 동시에 사용하는 경우, 캡슐화된 발포제에 의하여 고흡수성 수지 시트의 내부에 높은 기공도를 확보하기에 적절한크가의 주 기공이 형성되며, 이러한 주 기공 사이에 무기 발포제에 의한 미세 기공 채널이 형성되면서 주 기공이 서로 연결되어 있는 열린 기공 채널(open pore channel) 구조를 확보할 수 있게 된다. 따라서, 미세 기공 채널 구조로 인해 모세관 압력(capillary pressure)에 의한 물의 신속한 롭수가 가능하며, 각 발포제를 단독 사용하는 경우에 비하여 제조되는 고흡수성 수지의 원심분리 보수능 및 가압흡수능이 우수하게 나타난다.  The monomer composition of the present invention comprises a blowing agent, wherein the encapsulating blowing agent and an inorganic blowing agent having an average particle diameter (D50) of 1 to 100 u m are simultaneously included. As such, when the two types of blowing agents are mixed, there is an effect of obtaining high porosity and open pores of the superabsorbent polymer sheet. That is, when simultaneously using the encapsulated foaming agent and the inorganic foaming agent as in the present invention, the main pores of the large size suitable for securing a high porosity inside the superabsorbent polymer sheet is formed by the encapsulated foaming agent, such main pores As the fine pore channel is formed between the inorganic blowing agents, it is possible to secure an open pore channel structure in which the main pores are connected to each other. Therefore, due to the microporous channel structure, it is possible to quickly drop water by capillary pressure, and the centrifugal water-retaining ability and the pressure-absorbing ability of the superabsorbent polymer produced are superior to that of each foaming agent alone.
상기 캡슐화된 발포제는 모노머 조성물의 중합 시에는 캡슐화된 상태로 2019/216591 1»(:1^1{2019/005222 The encapsulated blowing agent is in an encapsulated state upon polymerization of the monomer composition. 2019/216591 1 »(: 1 ^ 1 {2019/005222
존재하며 열에 의하여 팽창하다가, 후술하는 건조 공정 시 가해지는 고온의 열에 의해 발포하게 되며, 이에 따라 고흡수성 수지의 고분자구조사이사이에 적절한 크기의 기공을 형성하여 고흡수성 수지 시트가 열린 기공 채널(애¥ }30 산 111½1)의 구조를 나타낼 수 있도록 한다. Pore channel (opening of the superabsorbent resin sheet is formed by forming a pore of appropriate size between the polymer structure of the superabsorbent polymer, and then expands by heat, and is foamed by high temperature heat applied during the drying process described later. ¥} 30 Refers to the structure of mountain 111½1).
상기 캡슐화된 발포제는 탄화수소를 포함하는 코어와 상기 코어를 둘러싸며 열가소성 수지로 형성되는 쉘을 포함하는 구조를 가질 수 있다. 이러한 캡슐화된 발포제는 상기 코어와 쉘을 이루는 성분과 각 성분의 중량, 평균 입경에 따라 팽창 특성이 달라지며 이를 조절함으로써 원하는 크기로 팽창이 가능하며 상기 고흡수성 수지 시트의 다공성을조절할수 있다.  The encapsulated blowing agent may have a structure including a core comprising a hydrocarbon and a shell surrounding the core and formed of a thermoplastic resin. The encapsulated blowing agent varies in expansion characteristics depending on the components constituting the core and the shell, the weight of each component, and the average particle diameter, and the foaming agent can expand to a desired size and control the porosity of the superabsorbent polymer sheet.
한편 원하는 크기의 기공이 형성되는지 여부를 파악하기 위해 먼저 캡슐화된 발포제의 팽창 특성을 파악할 필요가 있다. 그러나, 고흡수성 수지 내에서 캡슐화된 발포제가 발포된 형태는 고흡수성 수지의 제조 조건에 따라 달라질 수 있으므로 하나의 형태로 정의하기가 어렵다. 따라서, 먼저 캡슐화된 발포제를 공기 중에서 발포시켜 팽창 비율 및 크기를 확인함으로써, 원하는 기공을 형성하기에 적합한지 확인할수 있다.  Meanwhile, in order to determine whether pores of a desired size are formed, it is necessary to first understand the expansion characteristics of the encapsulated blowing agent. However, since the foamed encapsulating agent in the superabsorbent resin is foamed may vary depending on the manufacturing conditions of the superabsorbent resin, it is difficult to define it as one form. Thus, by first encapsulating the encapsulated blowing agent in the air to check the expansion ratio and size, it can be confirmed that it is suitable for forming the desired pores.
구체적으로, 유리 페트리 접시 위에 캡슐화된 발포제를 도포한 뒤 공기 중에서 180
Figure imgf000010_0001
의 열을 5 분 동안 가하여 캡슐화된 발포제를 팽창시킨다. 이때, 캡슐화된 발포제가 3 내지 15 배, 5 내지 15 배 혹은 8.5 내지 10 배의 공기 중에서의 최대 팽창 비율을 나타낼 때, 본 발명 고흡수성 수지 시트의 제조방법에 있어 적절한 열린 기공 구조를 형성하기에 적합한 것으로 판단할 수 있다.
Specifically, after applying the encapsulant blowing agent on a glass Petri dish, 180
Figure imgf000010_0001
Heat is applied for 5 minutes to expand the encapsulated blowing agent. At this time, when the encapsulated blowing agent exhibits a maximum expansion ratio in air of 3 to 15 times, 5 to 15 times, or 8.5 to 10 times, it is necessary to form an open pore structure suitable for the method of manufacturing the superabsorbent polymer sheet of the present invention. It may be judged as suitable.
상기 캡슐화된 발포제는 평균 입경, 즉, D50 입경이 5 내지 50 m, 또는 5 내지 30
Figure imgf000010_0002
또는 5 내지 20 /페, 또는 7 내지 17 _일 수 있다. 상기 캡슐화된 발포제가 상기와 같은 평균 입경을 나타낼 때 적절한 공극률을 달성하기에 적합한 것으로판단할수 있다.
The encapsulated blowing agent has an average particle diameter, that is, a D50 particle diameter of 5 to 50 m, or 5 to 30
Figure imgf000010_0002
Or 5-20 / pe, or 7-17 _. It can be judged that the encapsulated blowing agent is suitable to achieve an appropriate porosity when exhibiting such an average particle diameter.
또한, 상기 캡슐화된 발포제가 공기 중에서의 20 내지 190
Figure imgf000010_0003
In addition, the encapsulated blowing agent is 20 to 190 in air.
Figure imgf000010_0003
내지 190 / , 또는 70 내지 190
Figure imgf000010_0004
190 쎈 1의 최대 팽창 직경을 나타낼 때 본 발명 고흡수성 수지 시트의 제조방법에 있어 적절한 열린 기공 구조를 형성하기에 적합한 것으로 판단할수 있다.
To 190 /, or 70 to 190
Figure imgf000010_0004
When exhibiting a maximum expansion diameter of 190 쎈 1, it can be judged to be suitable for forming a suitable open pore structure in the method for producing the superabsorbent polymer sheet of the present invention.
또, 캡슐화된 발포제의 최대 팽창 비율 및 최대 팽창 직경은, 제조된 2019/216591 1»(:1^1{2019/005222 In addition, the maximum expansion ratio and the maximum expansion diameter of the encapsulated blowing agent, 2019/216591 1 »(: 1 ^ 1 {2019/005222
고흡수성 수지 시트에 형성된 기공의 형상을 주사전자현미경(SEM)으로 분석하는 방법에 의하여 측정될 수도 있다. The shape of the pores formed in the superabsorbent polymer sheet may be measured by a method of analyzing with a scanning electron microscope (SEM).
상기 캡슐화된 발포제의 코어를 구성하는 탄화수소는 11-프로판, 11-부탄, The hydrocarbons constituting the core of the encapsulated blowing agent are 11-propane, 11-butane,
0 -펜탄, 사이클로펜탄, 11-핵산, 0 -핵산,
Figure imgf000011_0001
사이클로헵탄, 11-옥탄,
Figure imgf000011_0002
및 사이클로옥탄으로 구성된 군에서 선택된 1 종 이상일 수 있다. 이 중에서도 탄소수 3 내지 5의 탄화수소( 프로판, 11-부탄, 0 -부탄, 사이클로부탄, 11-펜탄, 0- 펜탄, 사이클로펜탄)가 상술한 크기의 기공을 형성하기에 적합하고,
Figure imgf000011_0003
-부탄이 가장 적합할 수 있다.
0-pentane, cyclopentane, 11-nucleic acid, 0-nucleic acid,
Figure imgf000011_0001
Cycloheptane, 11-octane,
Figure imgf000011_0002
And cyclooctane may be one or more selected from the group consisting of. Among these, hydrocarbons having 3 to 5 carbon atoms (propane, 11-butane, 0-butane, cyclobutane, 11-pentane, 0-pentane, cyclopentane) are suitable for forming pores of the above-mentioned sizes,
Figure imgf000011_0003
Butane may be most suitable.
그리고, 상기 캡슐화된 발포제의 쉘을 구성하는 열가소성 수지는 And, the thermoplastic resin constituting the shell of the encapsulated blowing agent is
(메트)아크릴레이트, (메트)아크릴로니트릴, 방향족 비닐, 초산 비닐, 할로겐화 비닐 및 할로겐화 비닐리덴으로 구성된 군에서 선택된 1 종 이상의 모노머로부터 형성되는 폴리머일 수 있다. 이 중에서도 (메트)아크릴레이트 및 (메트)아크릴로니트릴의 공중합체가 상술한 크기의 기공을 형성하기에 가장 적합할 수 있다. It may be a polymer formed from at least one monomer selected from the group consisting of (meth) acrylate, (meth) acrylonitrile, aromatic vinyl, vinyl acetate, vinyl halide and vinylidene halide. Among these, copolymers of (meth) acrylate and (meth) acrylonitrile may be most suitable for forming pores of the above-described sizes.
상기 캡슐화된 발포제는 전체 캡슐화된 발포제 중량에 대하여 탄화수소를 10 내지 30 중량%로 포함할 수 있다. 이러한 범위 내에서 열린 기공 구조를 형성하는데 가장 적합할 수 있다.  The encapsulated blowing agent may comprise from 10 to 30% by weight hydrocarbon based on the total weight of the encapsulating blowing agent. It may be most suitable for forming an open pore structure within this range.
상기 캡슐화된 발포제는 제조하여 사용하거나, 또는 상술한 조건을 만족하는 것으로 상용화된 발포제를 사용할 수 있다.  The encapsulated blowing agent may be prepared and used, or a blowing agent commercialized by satisfying the above conditions may be used.
또한 상기 캡슐화된 발포제의 함량은 아크릴산계 단량체의 100 중량부에 대하여 0.3 내지 20 중량부, 바람직하게는 0.5 내지 10 중량부, 더욱 바람직하게는 1 내지 10 중량부를 사용할 수 있다. 상기 캡슐화된 발포제의 함량이 지나치게 적으면 열린 기공 구조가 제대로 형성되지 않을 수 있고, 적절한 기공도를 확보할 수 없으며, 너무 많이 포함되는 경우, 다공성이 너무 높아 고흡수성 수지의 강도가 약해질 수 있으므로 이러한 관점에서 상기 함량 범위가 바람직할 수 있다.  In addition, the content of the encapsulated blowing agent may be used in an amount of 0.3 to 20 parts by weight, preferably 0.5 to 10 parts by weight, and more preferably 1 to 10 parts by weight, based on 100 parts by weight of the acrylic acid monomer. When the content of the encapsulated foaming agent is too small, the open pore structure may not be properly formed, and adequate porosity may not be secured, and when it is included too much, the porosity may be too high to weaken the strength of the super absorbent polymer. In this regard, the above content range may be preferable.
상기 무기 발포제는 평균 입경, 즉, 050 입경이 1 내지 100 나 111인 것이 바람직하며, 3 내지 50 !, 또는 5 내지 20 /패가 보다 바람직할 수 있다. 이와 같은 마이크로 크기의 무기 발포제는 발포제의 역할과, 고흡수성 수지 시트에 2019/216591 1»(:1^1{2019/005222 The inorganic blowing agent preferably has an average particle diameter, that is, a 050 particle diameter of 1 to 100 or 111, and more preferably 3 to 50!, or 5 to 20 / L. This micro-sized inorganic blowing agent acts as a blowing agent and is applied to the superabsorbent polymer sheet. 2019/216591 1 »(: 1 ^ 1 {2019/005222
기계적 강도를 부여하는 무기 지지체로서의 역할을 동시에 할 수 있다. 만일 무기 발포제의 평균 입경이 1 m 미만이면 많은 핵점에 의한 높은 기공도의 형성으로 열린 기공을 형성할 수는 있으나, 무기 지지체로서의 역할이 미약하여 고흡수성 수지 시트의 강도가 확보되기 어려우며, 반대로 100 _를 초과하여 너무 크면 미세 기공을 형성하기 위한 발포제로서의 역할을 제대로 하지 못하고무기 지지체로서만 작용할수 있다. 따라서, 열린 기공을가지면서 적절한 강도를 갖는 고흡수성 시트를 제조하기 위해서는 상기 범위 내의 입자를사용하는 것이 바람직하다. It can serve simultaneously as an inorganic support imparting mechanical strength. If the average particle diameter of the inorganic foaming agent is less than 1 m, it is possible to form open pores due to the formation of high porosity due to many nucleus points, but it is difficult to secure the strength of the superabsorbent polymer sheet due to its weak role as an inorganic support. Too large in excess of _ may not function properly as a blowing agent for forming micropores, but may function only as an inorganic support. Therefore, in order to produce a superabsorbent sheet having open pores and having an appropriate strength, it is preferable to use particles within the above range.
상기 무기 발포제는 통상 발포제로 알려진 물질이 제한 없이 사용 가능하며, 구체적으로는 탄산칼슘(0조(:03), 중탄산나트륨어0»0¾), 중탄산암모늄어¾11(:03), 탄산암모늄(어¾)2(:03), 아질산암모늄어¾ 02), 붕소화수소나트륨 어&묘¾) 및 탄산나트륨어¾(:03) 중 선택되는 1종 이상이 사용 가능하다. 이 중, 중화액 내에서의 안정성 특성을 고려할 때, 탄산칼슘 및/또는 탄산나트륨이 바람직하게 사용될 수 있다. The inorganic blowing agent can be used without limitation, a substance commonly known as a blowing agent, specifically, calcium carbonate (0 trillion (: 0 3 ), sodium bicarbonate 0 »0¾), ammonium bicarbonate ¾11 (: 0 3 ), ammonium carbonate At least one selected from the group consisting of (fish ¾) 2 (: 0 3 ), ammonium nitrite fish ¾ 0 2 ), sodium hydrogen borohydride fish and seedlings ¾ and sodium carbonate ¾ (: 0 3 ) can be used. Of these, calcium carbonate and / or sodium carbonate may be preferably used in consideration of stability characteristics in the neutralized liquid.
상기 무기 발포제의 함량은 아크릴산계 단량체의 100 중량부에 대하여 The content of the inorganic blowing agent is based on 100 parts by weight of the acrylic acid monomer.
0.1 중량부 이상 사용될 수 있으며, 바람직하게는 0.2 내지 10 중량부, 더욱 바람직하게는 0.3 내지 5 중량부를사용할수 있다. 상기 무기 발포제의 함량이 지나치게 적으면 닫힌 기공이 형성되는 문제가 있을 수 있고, 너무 많이 포함되는 경우 높은 기공도에 의해서, 기계적 강도가 낮아지는 문제가 있을 수 있다. 0.1 parts by weight or more may be used, preferably 0.2 to 10 parts by weight, more preferably 0.3 to 5 parts by weight. If the content of the inorganic blowing agent is too small, there may be a problem that the closed pores are formed, if too much is included, due to the high porosity, there may be a problem that the mechanical strength is lowered.
상기 캡슐화된 발포제 및 무기 발포제의 혼합사용 비율은 3:1 내지 1 :1 중량비가 바람직하고, 2:1 내지 1:1 범위가 더욱 바람직하다. 상기 범위 내에서 높은 기공도 및 기계적 강도 향상 효과를 얻을 수 있고, 이에 따라 제조되는 고흡수성 수지 시트의 원심분리 보수능 및 가압흡수능이 향상될 수 있다. 또한, 상기 캡슐화된 발포제 및 무기 발포제는 아크릴산 단량체 100 중량부에 대하여 20 중량부 이하로 포함되며, 0.4 내지 20 중량부, 0.7 내지 10 중량부 또는 1 내지 5 중량부 범위로 포함되는 것이 보다 바람직하다. 발포제의 총 함량이 지나치게 많을 경우 발포도가 너무 높아 고흡수성 수지의 강도가 저하될 수 있으며, 너무 적게 포함될 경우 열린 기공 구조가 형성되기 어려우므로상기 범위를 만족함이 바람직하다. 본 발명의 고흡수성 수지 시트의 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. The mixing ratio of the encapsulated blowing agent and the inorganic blowing agent is preferably 3: 1 to 1: 1 weight ratio, and more preferably in the range of 2: 1 to 1: 1. Within this range, high porosity and mechanical strength improving effect can be obtained, and thus the centrifugal water-retaining capacity and the pressure-absorbing capacity of the superabsorbent polymer sheet can be improved. In addition, the encapsulated blowing agent and the inorganic blowing agent are included in an amount of 20 parts by weight or less based on 100 parts by weight of the acrylic acid monomer, and more preferably in the range of 0.4 to 20 parts by weight, 0.7 to 10 parts by weight, or 1 to 5 parts by weight. . When the total content of the blowing agent is too large, the degree of foaming is too high, the strength of the superabsorbent polymer may be lowered, and if too small, the open pore structure is less likely to be formed, thus satisfying the above range. The polymerization initiator used in the polymerization in the method for producing a super absorbent polymer sheet of the present invention is not particularly limited as long as it is generally used for producing a super absorbent polymer.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도,자외선 조사등의 조사에 의해 일정량의 열이 발생하고,또한발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를포함할수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation of ultraviolet rays or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator may be additionally included.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는화합물이면 그구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without limitation in the composition as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal.
Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (a- aminoketone)으로 이루어진 군에서 선택되는 하나 이상을사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2, 4, 6 -트리메틸-벤조일- 트리메틸 포스핀 옥사이드 (2, 4, 6-trimethyl -benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" pi 15에 잘명시되어 있으며,상술한 예에 한정되지 않는다. One or more selected from the group consisting of dimethyl ketal, acyl phosphine and alpha-aminoketone can be used. Meanwhile, as an example of acylphosphine, a commercially available lucirin TPO, that is, 2, 4, 6-trimethyl-benzoyl-trimethyl phosphine oxide (2, 4, 6-trimethyl -benzoyl-trimethyl phosphine oxide) can be used. . A wider variety of photoinitiators are well described in Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" pi 15, but are not limited to the examples described above.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고물성이 불균일해질 수 있다.  The photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 wt% based on the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S20g),과황산칼륨 (Potassium persulfate; K2S2O8), 과황산암모늄 (Ammonium persulfate; (NH4)2 SiOg) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2 -아조비스- (2 -아미디노프로판) 이염산염 (2,2-azobis(2- amidinopropane) dihydrochloride), 2, 2 -아조비스- (N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2 -아조비스 [2- (2 -이미다졸린-2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin_2- yl)propane] dihydrochloride), 4,4 -아조비스- (4 -시아노발레릭 산) (4,4-azobis-(4- cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 0 g), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (NH 4 ) 2 SiOg), etc. An example of this, and azo (azo) based initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2- amidinopropane) dihydrochloride), 2,2-azobis- (N, N-dimethylene) isobutyramimidine dihydrochloride (2,2-azobis- (N, dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl) azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- ( 2 -imidazolin_ 2 - yl) propane] dihydrochloride), 4,4 - include cyano ballet rigs acid) (4,4-azobis- (4- cyanovaleric acid)) - azobis- (4. More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p203, and are not limited to the examples described above.
상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 0.001 내지 약 0.5 중량%의 농도로 포함될 수 있다. 이러한 열중합 개시제의 농도가지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition. If the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of adding the thermal polymerization initiator may be insignificant. If the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven. have.
본 발명의 제조방법에서, 상기 모노머 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In the production method of the present invention, the monomer composition may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
상술한 아크릴산계 불포화 단량체, 공단량체, 내부 가교제, 중합 개시제, 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다. 상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  Raw materials such as the above-described acrylic acid unsaturated monomers, comonomers, internal crosslinking agents, polymerization initiators, and additives may be prepared in the form of a monomer composition solution dissolved in a solvent. The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4 -부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할수 있다.  The solvent that can be used may be used without limitation as long as it can dissolve the above-described components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol , Ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether It may be used in combination of one or more selected from toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, N-dimethylacetamide.
다음에,상기 모노머 조성물을 열중합또는 광중합하여 함수겔 중합체를 2019/216591 1»(:1^1{2019/005222 Next, the monomer composition is thermally polymerized or photopolymerized to form a hydrogel polymer. 2019/216591 1 »(: 1 ^ 1 {2019/005222
형성한다. Form.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는 방법은 고흡수성 수지 제조 기술분야에서 통상 사용되는 중합방법이면,특별히 구성의 한정이 없다.  On the other hand, the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a polymerization method commonly used in the art of manufacturing superabsorbent polymers.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉠 수 있다. 통상 열중합을 진행하는 경우,
Figure imgf000015_0001
Specifically, the polymerization method can be largely divided into thermal polymerization and photopolymerization according to the polymerization energy source. In the case of usually thermal polymerization,
Figure imgf000015_0001
교반축을 가진 반응기에서 진행될 수 있다. 반면, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합방법은 일 예이며,본발명은상술한중합방법에 한정되지는 않는다. 상기 모노머 조성물의 열중합 또는 광중합 반응 온도는 특별히 제한되지 않으나, 일례로 80 내지 120
Figure imgf000015_0002
바람직하기로 90 내지 110 I:일 수 있다.
It can proceed in a reactor with a stirring shaft. On the other hand, in the case of the photopolymerization, it can be carried out in a reactor having a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method. Thermal polymerization or photopolymerization reaction temperature of the monomer composition is not particularly limited, for example, 80 to 120
Figure imgf000015_0002
Preferably from 90 to 110 I: It can be.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율”은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 즉정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 1801:까지 온도를 상승시킨 뒤 1801:에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을측정한다.  In this case, the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight. On the other hand, the term "water content" throughout the present specification refers to the amount of water to the total weight of the hydrogel gel polymer minus the weight of the polymer in the dry state, specifically, the polymer by infrared heating In the process of drying by increasing the temperature, the weight loss according to the water evaporation in the polymer is defined as a value calculated immediately, wherein the drying conditions are increased by increasing the temperature from room temperature to about 1801: and then maintained at 1801: The drying time is set to 20 minutes including the temperature rise step 5 minutes, and the moisture content is measured.
다음에 상기 함수겔 중합체를 시트상으로 성형하고 건조하여 고흡수성 수지 시트를 형성한다.  Next, the hydrogel polymer is molded into a sheet and dried to form a superabsorbent polymer sheet.
이때 상기 건조 단계의 건조 온도는 약 120 내지 약 2501:일 수 있다. 건조 온도가 약 120°0 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 약 250°(:를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 120 내지 약 250 의 온도에서, 더욱 바람직하게는 약 140내지 약 2001:의 온도에서 진행될 수 있다. 이러한 건조 단계에서 발포제의 발포로 주 기공 사이에 미세 기공 채널이 형성되어, 열린 기공 채널 구조가 얻어질 수 있다. 한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약At this time, the drying temperature of the drying step may be about 120 to about 2501 :. If the drying temperature is less than about 120 ° 0, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature is higher than about 250 ° :, only the polymer surface may be excessively dried. There is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Thus preferably the drying may proceed at a temperature of about 120 to about 250, more preferably at a temperature of about 140 to about 2001 :. In this drying step, the main pores by the foaming of the blowing agent A fine pore channel is formed in between, so that an open pore channel structure can be obtained. On the other hand, in the case of drying time, in consideration of process efficiency and the like, from about 20 to about
90분동안진행될 수 있으나, 이에 한정되지는 않는다. It may proceed for 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할수 있다.  If the drying method of the drying step is also commonly used as a drying process of the hydrogel polymer, it can be selected and used without limitation of its configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
이와 같은 건조 단계 진행 후의 고흡수성 수지 시트의 함수율은 약 10 중량% 이상으로, 예를 들어 약 10 내지 약 40 중량%, 또는 약 15 내지 약 30 중량%일 수 있다.상기 고흡수성 수지 시트의 함수율이 상술한 범위에 있을 때 시트의 유연성을 확보할수 있다.  The moisture content of the superabsorbent polymer sheet after the drying step may be about 10 wt% or more, for example, about 10 wt% to about 40 wt%, or about 15 wt% to about 30 wt%. When it is in the above-mentioned range, the flexibility of the sheet can be ensured.
본 발명의 일 실시예에 따르면, 상기와 같은 공정으로 수득된 고흡수성 수지 시트의 두께는 약 100_ 이상, 또는 1,000/해, 또는 5,000/zm이면서 약 10cm 이하, 또는 약 5cm 이하, 또는 약 lcm 이하일 수 있다. 상기 고흡수성 수지 시트의 두께가 너무 얇으면 강도가 낮아 시트가 찢어질 수 있으며, 너무 두꺼울 경우 건조 및 가공이 어려울 수 있다. 이러한 관점에서 상술한 두께 범위를 갖는 것이 바람직할수 있다.  According to one embodiment of the present invention, the thickness of the superabsorbent polymer sheet obtained by the above process is about 100_ or more, or 1,000 / year, or 5,000 / zm and about 10 cm or less, or about 5 cm or less, or about lcm or less. Can be. If the thickness of the superabsorbent polymer sheet is too thin, the sheet may be torn due to its low strength, and if it is too thick, drying and processing may be difficult. It may be desirable to have the above-described thickness range in this respect.
상기와 같은 본 발명의 고흡수성 수지 시트의 제조방법에 따르면, 상기 고흡수성 수지 시트에 있어, 공극의 적어도 일부분이 서로 연결되어 있는 열린 기공 채널 (open pore channel)구조의 시트상태이기 때문에 모세관 압력 (capillary pressure)에 의한 물의 흡수가 가능하므로, 흡수 속도 및 투과성이 향상될 수 있으며, 펄프리스흡수체로 그대로 제공할수 있다.  According to the manufacturing method of the superabsorbent polymer sheet of the present invention as described above, in the superabsorbent polymer sheet, at least a part of the pores is in a sheet state of an open pore channel structure in which the pores are connected to each other. Since the absorption of water by capillary pressure is possible, the absorption rate and permeability can be improved and can be provided as it is as a pulseless absorber.
본 발명에 따라 제조된 고흡수성 수지 시트는 공극 (pore)의 적어도 일부분이 서로 연결된, 열린 기공 채널 (open pore channel) 구조를 가지며, 이에 의해 모세관 압력 (capillary pressure)에 의한 물의 듭수가 가능하다. 이에 따라 종래의 분말 형태의 고흡수성 수지보다흡수 속도 및 투과성이 향상될 수 있다. 또한, 상기 고흡수성 수지 시트는 EDANA 법 WSP 241.2의 방법에 따라 측정된 원심분리 보수능 (CRC)이 약 10 내지 약 40 g/g, 바람직하게는 약 15 내지 약 40 g/g, 보다 바람직하게는 약 25 내지 약 40 g/g의 범위를 가질 수 있다. 또한, 상기 고흡수성 수지 시트는 EDANA 법 \¥8으 242.2의 방법에 따라 측정된 0.7
Figure imgf000017_0001
약 5 내지 약 20 던名, 바람직하게는 약 7 내지 약 15 §/, 보다 바람직하게는 약 10 내지 약
Figure imgf000017_0002
범위를 가질 수 있다.
The superabsorbent polymer sheet produced according to the present invention has an open pore channel structure in which at least a portion of the pores are connected to each other, whereby water can be knotted by capillary pressure. Accordingly, the absorption rate and permeability may be improved than the conventional superabsorbent polymer in powder form. In addition, the superabsorbent polymer sheet has a centrifugal water retention (CRC) of about 10 to about 40 g / g, preferably about 15 to about 40 g / g, more preferably measured according to the method of EDANA WSP 241.2. May range from about 25 to about 40 g / g. In addition, the superabsorbent polymer sheet was measured according to the method of 242.2 by EDANA method \ 8.
Figure imgf000017_0001
About 5 to about 20 dung, preferably about 7 to about 15 § /, more preferably about 10 to about
Figure imgf000017_0002
It can have a range.
상기와 같이, 본 발명의 고흡수성 수지 시트는 우수한 흡수 특성 및 투과성을가져 펄프리스흡수체로 이용될 수 있다.  As described above, the superabsorbent polymer sheet of the present invention has excellent absorption characteristics and permeability, and can be used as a pul free absorber.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가어떠한의미로든 한정되는 것은 아니다.  Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited to any meaning.
<실시예> <Example>
이하의 실시예에서 캡슐화된 발포제 및 무기 발포제의 입경은 레이저 회절법 (laser diffraction method)을 이용하여 즉정하였다. 구체적으로, 즉정 대상 분말 lmg 을 증류수 30g 중에 분산시킨 후, 레이저 회절 입도 측정 장치 (Mastersizer 3000)에 도입하여 입자들이 레이저 빔을통과할 때 입자크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출하였다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을산출하여 D50을구하였다. 고흡수성 수지 시트의 제조  In the following examples, the particle diameters of the encapsulated blowing agent and the inorganic blowing agent were immediately determined by using a laser diffraction method. Specifically, after immediately dispersing lmg of the target powder in 30g of distilled water, it was introduced into the laser diffraction particle size measuring apparatus (Mastersizer 3000) to measure the particle size distribution by measuring the diffraction pattern difference according to the particle size as the particles pass through the laser beam. . The particle diameter at the point which becomes 50% of the cumulative particle number distribution according to the particle diameter in a measuring apparatus was calculated, and D50 was calculated | required. Preparation of Super Absorbent Resin Sheet
실시예 1  Example 1
아크릴산 27.5 g, 가성소다 (NaOH, 30 중량% 용액) 35.7g 및 물 5.7 g을 혼합하여 상기 아크릴산의 약 70 몰%가 중화된 중화액 (고형분 함량: 50 중량%)을준비하였다.  27.5 g of acrylic acid, 35.7 g of caustic soda (NaOH, 30 wt% solution) and 5.7 g of water were mixed to prepare a neutralizing solution (solid content: 50 wt%) in which about 70 mol% of the acrylic acid was neutralized.
상기 중화액에 공단량체로 폴리에틸렌글리콜 (메틸에테르) Polyethylene glycol (methyl ether) as a comonomer to the neutralizing solution
(메트)아크릴레이트 (Polye仕 lylene glycol (methyl ether) (meth)acrylate) (상품명 : FA-401, 제조사: 한농화성 ) 5.5 g, 폴리에틸렌글리콜 디아크릴레이트 (MW=330 제조사: aldrich사) 0.08 g, 과황산나트륨 (sodium persulfate) 0.06g, 캡슐화된 발포제 (Akzonobel사, Expancel 031 DU 40, 평균 입경 (D50) 16 m) 0.41 g, 무기 발포제로서 탄산칼슘 (CaC03) (평균 입경 (E>50) 12 pm) 041g을 첨가하여, 모노머 조성물을 제조하였다. (Meth) acrylate (Polye ethylene glycol (methyl ether) (meth) acrylate) (trade name: FA-401, manufacturer: Han Thickening agent) 5.5 g, polyethylene glycol diacrylate (MW = 330 manufacturer: aldrich) 0.08 g , Sodium persulfate 0.06 g, encapsulated blowing agent (Akzonobel, Expancel 031 DU 40, average particle diameter (D50) 16 m) 0.41 g, calcium carbonate (CaC0 3 ) as inorganic blowing agent (average particle size (E> 5 0 ) 12 pm) Add 041 g of monomer The composition was prepared.
상기 모노머 조성물을 메케니컬 믹서(mechanical mixer)를 이용하여 500 rpm의 속도로 약 10분간고전단혼합하였다.  The monomer composition was high shear mixed for about 10 minutes at a speed of 500 rpm using a mechanical mixer.
이후, 중합기의 공급부를 통해 투입하여 중합을 실시하여 함수겔 중합체를 형성하였다. 이때 중합기의 온도는 100°C로 유지하였으며, 중합의 최고온도는 110°C,중합시간은 10분이었다. Thereafter, the mixture was introduced through a feeder of the polymerization reactor to perform polymerization to form a hydrogel polymer. The temperature of the polymerization reactor was maintained at 100 ° C, the maximum temperature of the polymerization was 110 ° C, polymerization time was 10 minutes.
이어서, 상기 함수겔 중합체에 대하여 180 c 온도에서 5분 동안 건조하고, 이를 재단기를 이용하여 시트 형태(두께 : 2_내외)로 절단하였다. 실시예 2  Subsequently, the hydrogel polymer was dried at a temperature of 180 c for 5 minutes, and was cut into sheet form (thickness: around 2_) using a cutting machine. Example 2
상기 실시예 1에서, 아크릴산 100 중량% 대비 캡슐화된 발포제 및 탄산칼슘 발포제를 각각 0.75 중량%를 사용한 것을 제외하고는, 실시예 1과 동일한방법으로 고흡수성 수지 시트를 제조하였다. 실시예 3  In Example 1, a superabsorbent polymer sheet was manufactured in the same manner as in Example 1, except that 0.75 wt% of the encapsulating foaming agent and the calcium carbonate foaming agent were used, respectively, relative to 100 wt% of acrylic acid. Example 3
상기 실시예 1에서, 아크릴산 100 중량% 대비 캡슐화된 발포제 및 탄산칼슘 발포제를 각각 1.5 중량%, 0.75 중량%를 사용한 것을 제외하고는, 실시예 1과동일한방법으로 고흡수성 수지 시트를 제조하였다. 실시예 4  In Example 1, a superabsorbent polymer sheet was prepared in the same manner as in Example 1, except that 1.5 wt% and 0.75 wt% of the encapsulating and calcium carbonate blowing agents were used, respectively, relative to 100 wt% of acrylic acid. Example 4
상기 실시예 1에서, 아크릴산 100 중량% 대비 캡슐화된 발포제 및 탄산나트륨어¾(:03)발포제(평균 입경 50) 12 ,)를 각각 0.75 중량%를사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지 시트를 제조하였다. 비교예 1 In the first embodiment, acrylic acid 100 The foaming agent, and sodium carbonate word ¾ encapsulated percent by weight (0 3) a blowing agent (average particle diameter: 50) 12, the same procedure as in Example 1 except for using 0.75 wt.%), Respectively A superabsorbent polymer sheet was prepared. Comparative Example 1
상기 실시예 1에서, 탄산칼슘 발포제를 사용하지 않은 것을 제외하고는 실시예 1과동일한방법으로 고흡수성 수지 시트를 제조하였다. 비교예 2 2019/216591 1»(:1^1{2019/005222 In Example 1, a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that no calcium carbonate blowing agent was used. Comparative Example 2 2019/216591 1 »(: 1 ^ 1 {2019/005222
상기 실시예 1에서, 캡슐화된 발포제를 사용하지 않은 것을 제외하고는 실시예 1과동일한방법으로 고흡수성 수지 시트를 제조하였다. 비교예 3 In Example 1, a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that the encapsulated blowing agent was not used. Comparative Example 3
상기 실시예 1에서, 캡슐화된 발포제 및 탄산칼슘 발포제를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지 시트를 제조하였다. 비교예 4  In Example 1, a superabsorbent polymer sheet was prepared in the same manner as in Example 1 except that the encapsulated blowing agent and the calcium carbonate blowing agent were not used. Comparative Example 4
상기 실시예 1에서, 아크릴산 100 중량% 대비 캡슐화된 발포제 4.5 중량%% 및 탄산칼슘 발포제 1.5 중량%를사용한 것을 제외하고는 실시예 1과 동일한방법으로 고흡수성 수지 시트를 제조하였다. 비교예 5  In Example 1, a superabsorbent polymer sheet was manufactured in the same manner as in Example 1, except that 4.5 wt% of encapsulated blowing agent and 1.5 wt% of calcium carbonate blowing agent were used relative to 100 wt% of acrylic acid. Comparative Example 5
상기 실시예 1에서, 아크릴산 100 중량% 대비 캡슐화된 발포제 1.5 중량% 및 탄산칼슘 발포제 3.0 중량%를 사용한 것을 제외하고는 실시예 1과 동일한방법으로 고흡수성 수지 시트를 제조하였다.  In Example 1, a superabsorbent polymer sheet was prepared in the same manner as in Example 1, except that 1.5 wt% of encapsulated blowing agent and 3.0 wt% of calcium carbonate blowing agent were used relative to 100 wt% of acrylic acid.
<실험예> <Experimental Example>
고톱수성 수지 시트의 특성 평가  Characterization of High Top Water Resin Sheet
(1)고흡수성 수지 시트의 단면  (1) cross section of superabsorbent polymer sheet
본 발명의 실시예 1에 따른 고흡수성 수지 시트 단면의 주사전자현미경 (SEM) 사진을 도 1에 나타내었다. 도 1을 참조하면, 본 발명의 실시예 1에 따른 고흡수성 수지 시트 표면에는 열린 기공 채널 구조가 형성되어 있음을 확인할수 있다.  A scanning electron microscope (SEM) photograph of the cross section of the superabsorbent polymer sheet according to Example 1 of the present invention is shown in FIG. 1. Referring to FIG. 1, it can be seen that an open pore channel structure is formed on the surface of the superabsorbent polymer sheet according to Example 1 of the present invention.
(2)원심분리 보수능 ( 1(:) 및 가압흡수능 ^111»)측정 (2) Measurement of centrifugal water holding capacity (1 (:) and pressure absorption capacity ^ 111 » )
각 실시예 및 비교예의 고흡수성 수지 시트에 대하여,  About the superabsorbent polymer sheet of each Example and a comparative example,
241.2의 방법에 따라 원심분리 보수능 (幻1(:)을 측정하고, EDANA 법 \¥ ? 2019/216591 1»(:1^1{2019/005222 According to the method of 241.2, centrifugal water holding capacity (幻 1 (:)) was measured, and the EDANA method \ ¥? 2019/216591 1 »(: 1 ^ 1 {2019/005222
242.2의 방법에 따라 0.7 하에서의 가압 흡수능 (쇼111>)을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. The absorbency under pressure (show 111 > ) under 0.7 was measured according to the method of 242.2, and the results are shown in Table 1 below.
【표 1】 Table 1
Figure imgf000020_0001
Figure imgf000020_0001
1) 아크릴산 100 중량% 대비 발포제의 중량% 상기 표 1을 참조하면, 캡슐화된 발포제 및 무기 발포제를 3 : 1 내지 1 : 1 중량비로 동시에 사용하여 제조된 고흡수성 수지 시트의 경우, 각각의 발포제를 단독으로 사용하거나, 발포제를 사용하지 않은 고흡수성 수지 시트에 비하여 우수한 원심분리 보수능 및 가압 흡수능을 나타냄을 확인할 수 있다. 한편, 캡슐화된 발포제와 무기 발포제의 중량비가 3: 1을 초과하는 비교예 4 및 1 :1 미만인 비교예 5의 경우 원심분리 보수능 및 가압 흡수능이 모두 실시예에 비하여 현저히 낮게 나타났다. 이로부터 고흡수성 수지 시트의 열린 기공 구조에 의한 우수한 물성을 얻기 위해서는 본원발명의 캡슐화된 발포제 및 무기 발포제의 중량비를 만족하여야 함을 확인할 수 있다.  1) Weight% of blowing agent to 100% by weight of acrylic acid Referring to Table 1, in the case of a super absorbent polymer sheet manufactured by using the encapsulated blowing agent and the inorganic blowing agent in a 3: 1 to 1: 1 weight ratio, each blowing agent was It can be seen that it exhibits excellent centrifugal water-retaining capacity and pressure-absorbing capacity as compared with the superabsorbent polymer sheet which is used alone or without a blowing agent. On the other hand, the weight ratio of the encapsulated blowing agent and the inorganic blowing agent is 3: 1 and Comparative Example 5 in which the weight ratio of less than 1: 1, both the centrifugal water retention capacity and the pressure absorption capacity was significantly lower than the Example. From this, it can be seen that in order to obtain excellent physical properties due to the open pore structure of the superabsorbent polymer sheet, the weight ratio of the encapsulated blowing agent and the inorganic blowing agent of the present invention must be satisfied.

Claims

【청구의 범위】 [Range of request]
【청구항 1]  [Claim 1]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트(Polyethylene glycol (methyl ether)(meth)acrylate)를포함하는공단량체, 내부 가교제, 캡슐화된 발포제, 평균 입경 1 내지 100 ,의 무기 발포제, 및 중합 개시제를 혼합하여 모노머 조성물을 제조하는 단계;  Comonomer containing an acidic group, at least a portion of which is neutralized, an acrylic acid monomer, a polyethylene glycol (methyl ether) (meth) acrylate (polyethylene glycol (methyl ether) (meth) acrylate), an internal crosslinking agent, encapsulated Preparing a monomer composition by mixing a blowing agent, an inorganic blowing agent having an average particle diameter of 1 to 100, and a polymerization initiator;
상기 모노머 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는 단계; 및  Thermally polymerizing or photopolymerizing the monomer composition to form a hydrogel polymer; And
상기 함수겔 중합체를 건조하여 고흡수성 수지 시트를 형성하는 단계; 를포함하는 고흡수성 수지 시트의 제조방법으로서,  Drying the hydrogel polymer to form a superabsorbent polymer sheet; As a manufacturing method of a super absorbent polymer sheet comprising:
상기 캡슐화된 발포제와 무기 발포제는 3:1 내지 1 :1의 중량비로 포함되는,고흡수성 수지 시트의 제조방법.  The encapsulated blowing agent and the inorganic blowing agent is included in a weight ratio of 3: 1 to 1: 1, the manufacturing method of the super absorbent polymer sheet.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 폴리에틸렌글리콜(메틸에테르) (메트)아크릴레이트(Polyethylene glycol (methyl ether) (meth)acrylate)는 상기 아크릴산계 단량체 100 중량부에 대하여 5 내지 40중량부로포함되는, 고흡수성 수지 시트의 제조방법.  The polyethylene glycol (methyl ether) (meth) acrylate (polyethylene glycol (methyl ether) (meth) acrylate) is a method for producing a super absorbent polymer sheet is contained in 5 to 40 parts by weight based on 100 parts by weight of the acrylic acid monomer.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제는 평균 입경이 2 내지 50 ,인, 고흡수성 수지 시트의 제조방법.  The encapsulated foaming agent has an average particle diameter of 2 to 50, method of producing a super absorbent polymer sheet.
【청구항 4] [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제는공기 중 팽창비율이 3 내지 15 배인, 고흡수성 수지 시트의 제조방법. 2019/216591 1»(:1^1{2019/005222 The encapsulated blowing agent has a expansion ratio of 3 to 15 times in air, a method for producing a super absorbent polymer sheet. 2019/216591 1 »(: 1 ^ 1 {2019/005222
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제는 탄화수소를 포함하는 코어와 상기 코어를 둘러싸며 열가소성 수지로 형성되는 쉘을 포함하는 구조를 가지는, 고를수성 수지 시트의 제조방법.  The encapsulated blowing agent has a structure comprising a core comprising a hydrocarbon and a shell surrounding the core and formed of a thermoplastic resin.
【청구항 6] [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 탄화수소는 11-프로판,
Figure imgf000022_0001
사이클로부탄, 11-펜탄, -펜탄, 사이클로펜탄, 11핵산, 0 -핵산, 사이클로핵산, 11헵탄, 0 -헵탄, 사이클로헵탄, 11 옥탄, 0 -옥탄 및 사이클로옥탄으로 구성된 군에서 선택된 1 종 이상인, 고흡수성 수지 시트의 제조방법.
The hydrocarbon is 11-propane,
Figure imgf000022_0001
At least one member selected from the group consisting of cyclobutane, 11-pentane, -pentane, cyclopentane, 11nucleic acid, 0-nucleic acid, cyclonucleic acid, 11heptane, 0-heptane, cycloheptane, 11 octane, 0-octane and cyclooctane , Method for producing superabsorbent polymer sheet.
【청구항 7】 [Claim 7]
제 5항에 있어서,  The method of claim 5,
상기 열가소성 수지는 (메트)아크릴레이트, (메트)아크릴로니트릴, 방향족 비닐, 초산 비닐, 할로겐화 비닐 및 할로겐화 비닐리덴으로 구성된 군에서 선택된 1 종 이상의 모노머로부터 형성되는 폴리머인, 고흡수성 수지 시트의 제조방법.  The thermoplastic resin is a polymer formed of at least one monomer selected from the group consisting of (meth) acrylate, (meth) acrylonitrile, aromatic vinyl, vinyl acetate, vinyl halide and vinylidene halide, to prepare a superabsorbent polymer sheet. Way.
【청구항 8 ] [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 무기 발포제는 탄산칼슘作 03), 중탄산나트륨어¾1犯03), 중탄산암모늄어¾11(:03), 탄산암모늄(어¾)2(:03), 아질산암모늄어¾ 02), 붕소화수소나트륨 어&8¾) 및 탄산나트륨어¾(:03) 중 선택되는 1종 이상인, 고흡수성 수지 시트의 제조방법. The inorganic blowing agent is calcium carbonate 0 3 ), sodium bicarbonate ¾ 1 犯 0 3 ), ammonium bicarbonate ¾11 (: 0 3 ), ammonium carbonate (a¾) 2 (: 0 3 ), ammonium nitrite ¾ 3 0 2 ), Sodium hydrogen borohydride & 8¾) and sodium carbonate fish ¾ (: 0 3 ) is a method of producing a super absorbent polymer sheet.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 무기 발포제의 평균 입경은 5 내지 20 i 인, 고흡수성 수지 시트의 2019/216591 1»(:1^1{2019/005222 The average particle diameter of the inorganic blowing agent is 5 to 20 i, of the super absorbent polymer sheet 2019/216591 1 »(: 1 ^ 1 {2019/005222
제조방법. Manufacturing method.
【청구항 10】 [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제와 무기 발포제는 2:1 내지 1 :1의 중량비로 포함되는, 고흡수성 수자 시트의 제조방법.  The encapsulated blowing agent and the inorganic blowing agent is contained in a weight ratio of 2: 1 to 1: 1, the method of producing a super absorbent water-based water sheet.
【청구항 11】 [Claim 11]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제는 아크릴산계 단량체 100 중량부에 대하여 0.3 내지 20 중량부로 포함되는, 고흡수성 수지 시트의 제조방법.  The encapsulated foaming agent is included in an amount of 0.3 to 20 parts by weight based on 100 parts by weight of the acrylic acid monomer, a method for producing a super absorbent polymer sheet.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 무기 발포제는 아크릴산계 단량체 100 중량부에 대하여 0.1 중량부 이상 포함되는, 고흡수성 수지 시트의 제조방법.  The inorganic blowing agent is contained 0.1 parts by weight or more based on 100 parts by weight of the acrylic acid monomer, a method for producing a super absorbent polymer sheet.
【청구항 13】 [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 캡슐화된 발포제 및 무기 발포제는, 상기 아크릴산계 단량체 100 중량부에 대하여 0.4 내지 20 중량부로 포함되는, 고흡수성 수지 시트의 제조방법.  The encapsulated blowing agent and the inorganic blowing agent, 0.4 to 20 parts by weight with respect to 100 parts by weight of the acrylic acid monomer, a method for producing a super absorbent polymer sheet.
PCT/KR2019/005222 2018-05-11 2019-04-30 Preparation method for super absorbent polymer sheet WO2019216591A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020518770A JP6970287B2 (en) 2018-05-11 2019-04-30 Manufacturing method of high water absorption resin sheet
CN201980004796.9A CN111164136B (en) 2018-05-11 2019-04-30 Method for preparing super absorbent polymer sheet
US16/756,360 US11186668B2 (en) 2018-05-11 2019-04-30 Preparation method for super absorbent polymer sheet
EP19800809.6A EP3677621B1 (en) 2018-05-11 2019-04-30 Preparation method for super absorbent polymer sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180054364 2018-05-11
KR10-2018-0054364 2018-05-11
KR1020190049877A KR102276342B1 (en) 2018-05-11 2019-04-29 Preparation method for super absorbent polymer sheet
KR10-2019-0049877 2019-04-29

Publications (1)

Publication Number Publication Date
WO2019216591A1 true WO2019216591A1 (en) 2019-11-14

Family

ID=68468036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005222 WO2019216591A1 (en) 2018-05-11 2019-04-30 Preparation method for super absorbent polymer sheet

Country Status (1)

Country Link
WO (1) WO2019216591A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708608A4 (en) * 2017-12-14 2020-12-23 Lg Chem, Ltd. Method for manufacturing super absorbent resin sheet and super absorbent resin sheet manufactured thereby
EP3677621A4 (en) * 2018-05-11 2020-12-30 Lg Chem, Ltd. Preparation method for super absorbent polymer sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119042A (en) * 1996-10-24 1998-05-12 Nippon Shokubai Co Ltd Manufacture of water-absorbing resin
JPH11349687A (en) * 1998-04-07 1999-12-21 Nippon Shokubai Co Ltd Particulate water-containing gel polymer and preparation of water absorption resin
KR20080091764A (en) * 2005-12-02 2008-10-14 에보닉 스톡하우젠, 인코포레이티드 Flexible superabsorbent binder polymer composition
KR20120043165A (en) * 2009-04-07 2012-05-03 에보닉 스톡하우젠 게엠베하 Use of hollow bodies for producing water-absorbent polymer structures
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119042A (en) * 1996-10-24 1998-05-12 Nippon Shokubai Co Ltd Manufacture of water-absorbing resin
JPH11349687A (en) * 1998-04-07 1999-12-21 Nippon Shokubai Co Ltd Particulate water-containing gel polymer and preparation of water absorption resin
KR20080091764A (en) * 2005-12-02 2008-10-14 에보닉 스톡하우젠, 인코포레이티드 Flexible superabsorbent binder polymer composition
KR20120043165A (en) * 2009-04-07 2012-05-03 에보닉 스톡하우젠 게엠베하 Use of hollow bodies for producing water-absorbent polymer structures
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708608A4 (en) * 2017-12-14 2020-12-23 Lg Chem, Ltd. Method for manufacturing super absorbent resin sheet and super absorbent resin sheet manufactured thereby
US11857946B2 (en) 2017-12-14 2024-01-02 Lg Chem, Ltd. Preparing method of super absorbent polymer sheet and super absorbent polymer sheet prepared therefrom
EP3677621A4 (en) * 2018-05-11 2020-12-30 Lg Chem, Ltd. Preparation method for super absorbent polymer sheet
US11186668B2 (en) 2018-05-11 2021-11-30 Lg Chem, Ltd. Preparation method for super absorbent polymer sheet

Similar Documents

Publication Publication Date Title
KR102230189B1 (en) Preparation method for super absorbent polymer sheet and super absorbent polymer sheet prepared therefrom
KR102422636B1 (en) Preparation method of super absorbent polymer
WO2018147559A1 (en) Superabsorbent resin and method for producing same
KR20210118762A (en) Preparation method for super absorbent polymer film
JP2021505704A (en) Highly absorbent resin and its manufacturing method
WO2019216591A1 (en) Preparation method for super absorbent polymer sheet
KR102276342B1 (en) Preparation method for super absorbent polymer sheet
KR102202059B1 (en) Preparation method for super absorbent polymer sheet
KR102457232B1 (en) Preparation method for super absorbent polymer sheet
WO2019216592A1 (en) Method for manufacturing superabsorbent polymer sheet
JP7034535B2 (en) Highly absorbent resin and its manufacturing method
KR20210018689A (en) Preparation method for super absorbent polymer sheet
WO2019117670A1 (en) Method for manufacturing super absorbent resin sheet and super absorbent resin sheet manufactured thereby
KR20200138531A (en) Preparation method for super absorbent polymer sheet
KR20230147430A (en) Super absorbent polymer film and preparation method thereof
CN116888197A (en) Process for the preparation of superabsorbent polymers
KR20230144357A (en) Super absorbent polymer film and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518770

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800809

Country of ref document: EP

Effective date: 20200331

NENP Non-entry into the national phase

Ref country code: DE