WO2019216148A1 - External pressure-type hollow-fiber membrane module - Google Patents

External pressure-type hollow-fiber membrane module Download PDF

Info

Publication number
WO2019216148A1
WO2019216148A1 PCT/JP2019/016558 JP2019016558W WO2019216148A1 WO 2019216148 A1 WO2019216148 A1 WO 2019216148A1 JP 2019016558 W JP2019016558 W JP 2019016558W WO 2019216148 A1 WO2019216148 A1 WO 2019216148A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber membrane
hollow fiber
membrane bundle
cylindrical housing
membrane module
Prior art date
Application number
PCT/JP2019/016558
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 古屋
熊見 和久
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018169875A external-priority patent/JP2019195800A/en
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2019216148A1 publication Critical patent/WO2019216148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof

Definitions

  • the present invention relates to an external pressure type hollow fiber membrane module that can be used for water treatment in various fields.
  • Hollow fiber membrane modules are widely used in various water treatment fields. Generally, a casing having a fluid inlet / outlet, a cap, a hollow fiber membrane bundle, and a resin-sealed resin-fixed end portion of the hollow fiber membrane bundle. Many of them are composed of parts (FIG. 1 of US Patent Publication No. 2003/0150807).
  • the filtration performance deteriorates due to clogging of the membrane or the formation of an adhesion layer on the membrane surface. Fouling may occur. When such fouling occurs, the filtration performance is recovered by washing the membrane by air scrubbing washing or back pressure washing.
  • Japanese Patent No. 6264508 discloses a cylindrical case having a first end and a second end in the height direction, a plurality of hollow fiber membranes accommodated in the cylindrical case, and the first of the cylindrical case.
  • a first potting part that is bonded in a state where the ends of a plurality of hollow fiber membranes located on one end side are opened, and the hollow fiber membrane has a breaking strength of 23 MPa or more, and the filling rate of the hollow fiber membranes Discloses a hollow fiber membrane module having a ratio of 40% to 80%.
  • FIG. 1 of Japanese Patent No. 4882173 a hollow fiber membrane bundle 3 is accommodated in a case 1, and one end A of the hollow fiber membrane bundle 3 is resin so that the end of the hollow fiber membrane 2 is open.
  • the hollow fiber membrane module 50 is bonded and fixed at 20 and bonded to the inner wall of the case, and the other end B is bonded and fixed with a resin 20 so that the end of the hollow fiber membrane 2 is sealed and bonded to the inner wall of the case.
  • the raw water supply port 5 corresponding to the end B and the air discharge port 6 corresponding to the end A are formed on the side surface of the filtration zone 4 sandwiched between the ends A and B.
  • a hollow fiber membrane module in which an air dispersion hole / drainage hole 11 penetrating the end B is provided in the end B.
  • FIG. 6 of Japanese Patent No. 4498373 shows a rack type filtration device module.
  • One end of the multiple hollow fiber membranes 3a is integrated with an adhesive fixing layer 14 having a through hole 14a.
  • raw water is supplied to the supply water inlet 2c, enters the lower ring 13, and then is guided to the outer peripheral surface of the hollow fiber membrane 3a through the through hole 14a (paragraph number 0046).
  • gas bubbling the hollow fiber membrane 3a gas is supplied from the gas supply port to the lower ring 13, and the hollow fiber membrane 3a is vibrated through the through hole 14a of the adhesive fixing portion 14 (paragraph number 0047).
  • 7 and 8 show the positional relationship between the hollow fiber membrane 3a and the through hole 14a.
  • FIG. 1 of Japanese Patent No. 3686225 shows a hollow fiber membrane module in which a rectifying tube 6 is disposed near the center of the hollow fiber membrane bundle 1.
  • the liquid to be treated enters from the raw water inlet 7, is filtered by the hollow fiber membrane 1 through the outer periphery of the hollow fiber membrane bundle and the rectifying pipe 6, and goes out of the hollow fiber membrane module through the filtered water outlet 8.
  • the air supplied from the air inlet 10 which also serves as a drain outlet is distributed by the air nozzle 5 and released to the hollow fiber membrane 1 (paragraph 0011).
  • the present invention is a cylindrical housing having a liquid inlet / outlet including at least a raw water supply port and a permeate outlet, and a hollow fiber membrane module in which a hollow fiber membrane bundle is accommodated in the cylindrical housing,
  • the hollow fiber membrane bundle is fixed with an adhesive together with the inner wall surface of the cylindrical housing in a state where the first end surface side which is the raw water supply port side of the hollow fiber membrane bundle is closed.
  • the filling rate of the hollow fiber membrane bundle is 40% to 70%,
  • An external pressure type hollow fiber membrane module is provided in which the length of the hollow fiber membrane bundle from the first end surface side to the second end surface side is 2 m or less.
  • the present invention provides a cylindrical housing in which a cap having a liquid inlet / outlet including a raw water supply port and a permeate outlet is fixed to each of both end openings, and a hollow fiber in which a hollow fiber membrane bundle is accommodated in the cylindrical housing A membrane module,
  • the hollow fiber membrane bundle is The first end side of the raw water supply port side is fixed by an adhesive together with the inner wall surface of the cylindrical housing or the inner wall surface of the cap in a state where the first end surface side of the hollow fiber membrane bundle is closed.
  • the filling rate of the hollow fiber membrane bundle is 40% to 70%,
  • An external pressure type hollow fiber membrane module is provided in which the length of the hollow fiber membrane bundle from the first end surface side to the second end surface side is 2 m or less.
  • the present invention is a filtration operation method using the external pressure hollow fiber membrane module,
  • the filtration operation method has a filtration step and a washing step;
  • a filtration operation method in which the cleaning step performs back pressure cleaning and does not perform air scrubbing cleaning.
  • the external pressure type hollow fiber membrane module of the present invention makes it difficult for a sediment layer derived from suspended solids to be formed on the hollow fiber membrane surface, and clogging is less likely to occur. You can drive.
  • FIG. 1 is a cross-sectional view in the major axis direction of an external pressure type hollow fiber membrane module of the present invention.
  • (A) is the elements on larger scale of the 1st edge part side of FIG. 1
  • (b) is the elements on larger scale of the 2nd edge part side of FIG.
  • fixed part by the adhesive agent in the 1st end part side of the hollow fiber membrane module shown in FIG. The graph which shows transition of the filtration inlet pressure of Example 2.
  • FIG. The graph which shows transition of the filtration inlet pressure of the comparative example 1.
  • a hollow fiber membrane bundle 60 is accommodated in a cylindrical housing 10.
  • the cross-sectional shape of the cylindrical housing 10 in the width direction can be a circle, a polygon (preferably a polygon close to a circle), or the like.
  • the material of the cylindrical housing 10 can be metal, synthetic resin, or the like.
  • the size of the cylindrical housing 10 (the size of the inner volume) can be determined according to the total number of hollow fiber membrane bundles used corresponding to the filtration performance.
  • a first end side cap 20 is attached to the first end 10a side of the cylindrical housing 10 from the outside.
  • the first end side cap 20 is preferably made of the same material as the cylindrical housing 10.
  • the first end portion side cap 20 is composed of a combination of a first a cap portion 21 and a second a cap portion 30 having a raw water supply port (also serving as a counter pressure washing water outlet) 22.
  • the first a cap portion 21 and the second a cap portion 30 may be a single unit in which they are integrated.
  • the 1a cap portion 21 includes a raw water supply port (1a small diameter portion) 22 and a 1a annular large diameter portion 23 having a larger outer diameter than the raw water supply port 22 on the opposite side of the raw water supply port 22 in the axial X direction. Furthermore, between the raw
  • the size of the first a-annular large-diameter portion 23 is approximately the same as the outer diameter of the second-a cap portion 30 (second-a thin portion 33).
  • the inner surface of the 1a annular large diameter part 23 has an inner thread part.
  • An annular groove is formed in the annular end surface inside the 1a annular flat surface portion 25, and an O-ring 26 is fitted therein.
  • the second a cap portion 30 has such a size that the second end portion 30b side can be fitted into the first end portion 10a side of the cylindrical housing 10 from the outside, and the opposite first end portion 30a side is a hollow fiber membrane bundle. It is a cylindrical thing of the magnitude
  • the second a cap portion 30 has a second a annular step surface 31 on the inner surface side, a second a thick portion 32 having a small inner diameter on the second end portion 30b side from the second a annular step surface 31, and a second a. It has the 2a thin part 33 with a large internal diameter by the side of the 1st end part 30a from the cyclic
  • the outer surface of the 2a thick portion 32 is an inclined surface, but it may be a flat surface.
  • the outer surface of the second-a thin portion 33 has an outer screw portion that can be screwed together with the inner screw portion of the first-a annular large-diameter portion 23.
  • the second a cap portion 30 may be integrally formed with the first end portion 10a side of the cylindrical housing 10.
  • the 1a cap part 21 is a separate member.
  • the second a cap portion 30 is fitted from the outside to the first end portion 10a side of the cylindrical housing 10 on the first end portion 30b side, and the second end portion 30a side is fitted to the first end face 60a (first fixed surface) of the hollow fiber membrane bundle 60.
  • Layer 61) is connected in a state fitted from the outside.
  • the connection between the first end portion 10a of the cylindrical housing 10 and the cylindrical second a cap portion 30 can be applied by a method such as screwing, bonding with an adhesive, welding, or the like according to the respective materials.
  • the first a cap portion 21 and the second a cap portion 30 are connected by screwing together the inner screw portion of the annular large diameter portion 23 of the first a cap portion 21 and the outer screw portion of the second a thin portion 33 of the second a cap portion 30. It is fixed.
  • a second end side cap 40 is attached to the second end 10b side of the cylindrical housing 10 from the outside.
  • the second end side cap 40 is preferably made of the same material as the cylindrical housing 10.
  • the second end side cap 40 is composed of a combination of a 1b cap part 41 having a permeate outlet 42 and a second b cap part 50 having a concentrated water outlet 55.
  • the first b cap portion 41 and the second b cap portion 50 may be a single unit in which they are integrated.
  • the first b cap portion 41 includes a permeate outlet (first b small diameter portion) 42 and a first b annular large diameter portion 43 having a larger outer diameter than the permeate outlet 42 on the opposite side of the permeate outlet 42 in the axis X direction.
  • the permeate outlet (first b small diameter part) 42 and the second b annular large diameter part 43 the 1b annular inclined surface part in order from the permeate outlet 42 side to the 1b annular large diameter part 43 side. 44 and a 1b annular flat surface portion 45.
  • the size of the 1b annular large-diameter portion 43 is approximately the same as the outer diameter of the second b cap portion 50 (second b thin portion 53).
  • the inner surface of the 1b annular large-diameter portion 43 has an inner screw portion.
  • An annular groove is formed in the annular end surface inside the 1b annular flat surface portion 45, and an O-ring 46 is fitted therein.
  • the second end 50b has a size such that the first end 50b side can be fitted into the first end 10b side of the cylindrical housing 10 from the outside, and the opposite second end 50a side is a hollow fiber membrane bundle. It is a cylindrical thing of the magnitude
  • the second b cap portion 50 has a second b annular step surface 51 on the inner surface side, a second b thick portion 52 having a small inner diameter on the first end portion 50b side from the second b annular step surface 51, and a second b.
  • the 2b thin part 53 has a big internal diameter by the side of the 1b cap part 41 from the cyclic
  • the outer surface of the second b thick portion 52 is an inclined surface, but it may be a flat surface.
  • the outer surface of the second b thin portion 53 has an outer screw portion that can be screwed together with the inner screw portion of the first b annular large diameter portion 43.
  • the second b cap portion 50 of the second end side cap 40 may be integrally formed with the first end portion 10 b side of the cylindrical housing 10.
  • the first b cap portion 41 is a separate member.
  • the second end portion 50b of the second end portion 50b is fitted from the outside to the first end portion 10b side of the cylindrical housing 10, and the second end portion 50a side is fitted to the second end face 60b of the hollow fiber membrane bundle 60 (second fixing).
  • Layer 62) is connected in a state of being fitted from the outside.
  • the connection between the first end portion 10b of the cylindrical housing 10 and the cylindrical second b cap portion 50 can be applied by a method such as screwing, bonding with an adhesive, or welding according to the respective materials.
  • the first b cap portion 41 and the second b cap portion 50 are formed by screwing together the inner screw portion of the first b annular large-diameter portion 43 of the first b cap portion 41 and the outer screw portion of the second b thin portion 53 of the second b cap portion 50.
  • the connection at is fixed.
  • the hollow fiber membrane bundle 60 is a bundle of several hundred to several thousand known hollow fiber membranes.
  • Hollow fiber membranes are known and have a hydrophilic membrane (cellulose membrane such as cellulose acetate) or hydrophobic membrane (polyvinylidene fluoride) having an outer diameter of preferably 1 to 3 mm, more preferably 1.3 to 1.6 mm. , Polysulfone, polyethersulfone, etc.) can be used.
  • the hollow fiber membrane of the present invention is preferably a hydrophilic membrane that is less prone to fouling, and is preferably a cellulose ester membrane.
  • hydrophilic membranes such as cellulose ester membranes are suitable because sludge hardly adheres to the surface of the hollow fiber membrane, and stable filtration is possible only by back washing without air scrubbing. It is.
  • cellulose ester film one or more selected from cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose benzoate can be used.
  • cellulose ester film a cellulose mixed ester represented by the structural formula of the following general formula (I) can be used.
  • the acyl group is preferably selected from a benzoyl group which may have a substituent and an aromatic acyl group containing a carboxyl group or a carboxyl group salt.
  • the benzoyl group which may have a substituent is a benzoyl group or an alkyl group such as a methyl group, a trifluoromethyl group, a tert-butyl group or a phenyl group at one or more positions in the ortho position, meta position and para position.
  • a benzoyl group having one or more substituents such as an alkoxy group such as a methoxy group and a phenoxy group, a hydroxy group, an amino group, an imino group, a halogeno group, a cyano group and a nitro group.
  • benzoyl group, para-methylbenzoyl group, ortho-methylbenzoyl group, para-methoxybenzoyl group, ortho-methoxybenzoyl group, dimethylbenzoyl group are both highly resistant to chlorine and alkali and easily available. Those selected from the group are preferred.
  • aromatic acyl group containing a carboxyl group or a salt of a carboxyl group is substituted with a hydroxy group of cellulose, an optionally substituted phthalic anhydride, an optionally substituted naphthalic anhydride, or the like. What is selected from what is an aromatic acyl group produced
  • Specific examples of the aromatic dicarboxylic acid monoanhydride include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 3-nitrophthalic anhydride, 4-ethoxycarbonyl-3,5-dimethylphthalate.
  • Acid anhydride 1,2-naphthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalenedicarboxylic anhydride, 4-bromo-1,8-naphthalic anhydride, 2,3-anthracene
  • dicarboxylic acid anhydrides 1,2-naphthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalenedicarboxylic anhydride, 4-bromo-1,8-naphthalic anhydride, 2,3-anthracene
  • dicarboxylic acid anhydrides 1,2-naphthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalenedicarboxylic anhydride, 4-bromo-1,8-naphthalic anhydride, 2,3-anthracene
  • dicarboxylic acid anhydrides 1,2-naphthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalenedicarboxylic an
  • X is an acyl group and is not selected from a benzoyl group which may have a substituent and an aromatic acyl group including a carboxyl group or a salt of a carboxyl group, an aliphatic acyl group having 2 or more carbon atoms and It can be selected from aromatic acyl groups having 5 or more carbon atoms.
  • the aliphatic acyl group having 2 or more carbon atoms is preferably one selected from an acetyl group, a propanoyl group, a butanoyl group, a pivaloyl group, a pentanoyl group, a hexanoyl group, a decanoyl group, and an octadecanoyl group.
  • the aromatic acyl group having 5 or more carbon atoms is preferably selected from an acyl group having a pyrrole ring, an acyl group having a pyridine ring, (picolinyl group, nicotinyl group) and an acyl group having a naphthalene ring.
  • the substitution degree of X with an acyl group is preferably 1.5 to 3.0, more preferably 2.0 to 3.0, and still more preferably 2.3 to 3.0.
  • the degree of substitution corresponding to a hydroxy group when X is a hydrogen atom is preferably 0 to 1.5, more preferably 0 to 1.0, and still more preferably 0 to 0.7.
  • n is preferably an integer of 20 to 20,000, more preferably 40 to 10,000, and still more preferably 60 to 8,000.
  • the hollow fiber membrane bundle 60 has a first end side cap 20 (second a cap portion 30) on the first end surface 60a side on the first end portion 10a side (first end side cap 20 side) of the cylindrical housing 10. Are fixed together with a known adhesive (potting agent) together with the inner wall surface (first fixing layer 61).
  • the hollow fiber membrane bundle 60 has a second end side cap 40 (second b cap portion 50) on the second end surface 60b side on the second end portion 10b side (second end side cap 40 side) of the cylindrical housing 10.
  • second end side cap 40 second b cap portion 50
  • potting agent second fixing layer 62
  • the first end surface 60a side of the hollow fiber membrane bundle 60 is closed with an adhesive and is not opened.
  • the length of the first fixed layer 61 in the major axis X direction is approximately the same as the length of the second fixed layer 62 in the major axis X direction.
  • the second end face 60b side of the hollow fiber membrane bundle 60 is not closed with an adhesive but is opened.
  • the length of the second fixed layer 62 in the major axis X direction is a range from the second end surface 60 b of the hollow fiber membrane bundle 60 to a position not in contact with the concentrated water outlet 55.
  • the length (L) from the first end surface 60a side to the second end surface 60b side of the hollow fiber membrane bundle 60 is 2 m or less, preferably 1.8 m or less, More preferably, it is 1.6 m or less, and preferably 0.8 m or more, more preferably 1.0 m or more.
  • the minimum diameter (D) in the inner peripheral part of the cylindrical housing 10 in which the hollow fiber membrane bundle 60 is accommodated, the 2a cap part 30, and the 2b cap part 50 is the filtration performance of the hollow fiber membrane module and the hollow fiber membrane. From the viewpoint of the balance with the module installation floor area, it is preferably 14 cm or more, more preferably 18 cm or more, further preferably 20 cm or more, and preferably 40 cm or less, more preferably 35 cm or less, still more preferably 30 cm or less, and even more preferably. Is 25 cm or less.
  • the minimum diameter (D) is the diameter of the portion where the diameter in the direction perpendicular to the X-axis in the inner peripheral portion of the cylindrical housing 10, the second a cap portion 30, and the second b cap portion 50 is the smallest, and The diameter obtained from the cross section of the space in which the hollow fiber membrane excluding members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used.
  • the ratio (L / D) to (D) is preferably 4 to 13, more preferably 4.5, from the viewpoint of the balance between the filtration performance of the hollow fiber membrane module and the floor area of the hollow fiber membrane module. To 11, more preferably 7 to 10.
  • the differential pressure between the hollow fiber membranes is large, so that even a highly water-permeable hollow fiber membrane may reduce the substantial amount of filtered water.
  • the ratio (L / D) is within the above range (that is, when the hollow fiber membrane module is thick and short)
  • the permeated water after filtration permeates through the hollow fiber membrane. Since there is little pressure loss when flowing to the water outlet side and the differential pressure between the hollow fiber membranes is small, a higher water transmission rate can be obtained.
  • the filling rate of the hollow fiber membrane bundle 60 is 40% to 70%, preferably 42% to 65%, more preferably 45% to 60% from the viewpoint of preventing fouling of the hollow fiber membrane. .
  • the filling rate of the hollow fiber membrane bundle 60 is calculated from the product of the average cross-sectional area in the width direction per hollow fiber membrane and the number of hollow fiber membranes accommodated in the cylindrical housing 10.
  • the cross-sectional area of the thread membrane bundle is S2
  • the minimum cross-sectional area in the width direction at the inner peripheral portions of the cylindrical housing 10 the second a cap portion 30, and the second b cap portion 50 is S1
  • the following calculation is performed. .
  • Filling rate [%] S2 / S1 ⁇ 100
  • the minimum cross-sectional area S1 is the cross-sectional area of the smallest portion in the cross-sectional area in the direction perpendicular to the X axis in the inner peripheral part of the cylindrical housing 10, the second a cap part 30, and the second b cap part 50, And it shall mean the cross-sectional area of the space where the hollow fiber membrane except the members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used.
  • the average cross-sectional area in the width direction per hollow fiber membrane is obtained by arbitrarily collecting a total of 100 hollow fiber membranes from the hollow fiber membrane bundle accommodated in the cylindrical housing 10, and measuring each hollow fiber membrane. The cross-sectional area is calculated by measuring the outer diameter of the thread membrane, and the average of those values is used.
  • the second b cap portion 50 of the second end side cap 40 includes a second b thick portion 52, a second b annular step surface 51, and a second b thin portion 53, and the second b annular step surface 51 and second b thin wall portion.
  • a concentrated water outlet 55 is formed between the portions 53. For this reason, between the concentrated water outlet 55 and the hollow fiber membrane bundle 60 facing the concentrated water outlet 55, the difference in thickness between the 2b thick portion (small inner diameter) 52 and the second b thin portion (large inner diameter) 53.
  • An annular space 56 having an interval corresponding to (difference in inner diameter) is formed. Since the concentrated water outlet 55 faces the annular space 56, the concentrated water is discharged smoothly.
  • the first fixed layer 61 has a plurality of raw water introduction holes 65 formed penetrating in the thickness direction.
  • the plurality of raw water introduction holes 65 are formed so as to penetrate the first fixing layer 61, and reach the inside of the hollow fiber membrane bundle 60 in which the leading ends of the raw water introduction holes are not fixed with an adhesive. It may be.
  • the ratio (A2 / A1 ⁇ 100) of the total opening area (A2) of the plurality of raw water introduction holes 65 in the radial cross-sectional area (A1) of the first fixed layer 61 on the first end face 60a side is the hollow fiber membrane From the viewpoint of preventing fouling, 5 to 20% is preferable, and 10 to 15% is more preferable.
  • the hollow fiber membrane module 1 of the present invention includes a porous tube or a net-like pipe for introducing raw water, a partition plate for internal arrangement, a reinforcing rod-like body (preferably made of synthetic resin), etc., as necessary. Can be used.
  • the hollow fiber membrane module 1 having the first fixed layer 61 having a plurality of raw water introduction holes 65 and the second fixed layer 62 not having the plurality of raw water introduction holes 65 is manufactured by the following method. be able to. First, as a potting container, a first container having a bottom surface and a peripheral wall portion, and a plurality of rod-shaped molded bodies are suspended from the bottom surface at intervals, and a second container that is the same except that the rod-shaped molded body is not provided. prepare. The number, the forming position, the outer diameter, and the length of the rod-shaped molded body coincide with the number, the forming position, the inner diameter, and the depth of the plurality of raw water introduction holes 65. The length of the rod-shaped molded body is equal to or longer than the length of the raw water introduction hole 65.
  • the second a cap 30 of the first end cap 20 and the second b cap 50 of the second end cap 40 is disposed inside the connected ones.
  • the length of the hollow membrane bundle 60 is adjusted in consideration of the subsequent cutting step.
  • the first container is attached to the second a cap portion 30 side of the first end side cap 20, and the second container is attached to the second b cap portion 50 side of the second end side cap 40.
  • an adhesive (potting agent) is poured into the first container and the second container by an adhesion method including a known centrifugal adhesion method, and then solidified.
  • an adhesion method including a known centrifugal adhesion method
  • the centrifugal bonding method or the stationary bonding method described in paragraph No. 21 of Japanese Patent No. 4498373 and paragraph No. 11 of Japanese Patent No. 3686225 can be applied.
  • the second a cap part 30 side of the first end part side cap 20 is in the state shown in FIG. 3, and the first end face 60a of the hollow fiber membrane bundle 60 is Blocked with adhesive.
  • the required length is cut and opened. In this way, the first fixed layer 61 and the second fixed layer 62 are formed.
  • the hollow fiber membrane module 1 of the present invention preferably has a membrane area (effective membrane area) of 10 m 2 or more, more preferably a membrane area (effective membrane area) of 30 to 45 m 2 .
  • the hollow fiber membrane module 1 will be described in the case where the first end 10a side of the cylindrical housing 10 is in the state shown in FIG.
  • the hollow fiber membrane module 1 can be used either vertically or horizontally. However, even when the hollow fiber membrane module 1 is used vertically, the hollow fiber membrane bundle 60 separated from the first fixed layer 61 and the second fixed layer 62 is used. It is conceivable that the central part is bent. Even in such a case, since the plurality of raw water introduction holes 65 are formed in the first fixed layer 61, the raw water easily flows in the extending direction of the long axis X direction of the plurality of raw water introduction holes 65.
  • raw water When raw water is supplied from the raw water supply port 22 of the hollow fiber membrane module 1, it enters a space between the first a cap portion 21 of the first end side cap 20 and the first fixed layer 61. Thereafter, the water is supplied to the central portion or the periphery of the hollow fiber membrane bundle 60 through the plurality of raw water introduction holes 65 shown in FIG. Then, after external pressure filtration from the outside to the inside of the hollow fiber membrane, the hollow fiber membrane is discharged from the permeate outlet 42 through the inside of the hollow fiber membrane. The concentrated water is discharged from the concentrated water outlet 55 through the annular space 56.
  • Example 1 of the invention of Japanese Patent No. 4498373 backwashing and gas bubbling are performed every 28.5 minutes of filtration operation (paragraph number 0056), and the embodiment of the invention of Japanese Patent No. 3686225 (paragraph number) [0019]
  • air scrubbing cleaning is carried out once every 30 minutes in the filtration operation, air scrubbing can be made unnecessary in the present invention, and the number of times can be reduced when it is carried out.
  • the filtration operation method of the present invention includes a filtration step and a washing step, and the washing step can be a filtration operation method in which back-pressure washing is performed and air scrubbing washing is not performed. If the number of times of air scrubbing is increased, there is a risk of oscillating hollow fiber membrane bundles being repeatedly contacted with each other, but the present invention can reduce the number of times even when performing air scrubbing, As mentioned above, the film is hardly damaged.
  • back pressure washing is performed.
  • Back pressure washing is performed by pressing back pressure washing water added with chemicals as needed from the concentrated water outlet 55 side.
  • the reverse pressure washing wastewater passes between the hollow fiber membrane bundles 60 and is discharged from the raw water supply port 22 that also serves as the reverse pressure washing water outlet.
  • the raw water introduction hole 65 is formed in the first fixed layer 61, the raw water easily flows in the extending direction of the long axis X direction of the raw water introduction hole 65. It is easy to be discharged.
  • Example Example 1 Filtration operation for 100 days was carried out using the hollow fiber membrane module 1 shown in FIGS.
  • the hollow fiber membrane module of Example 1 is referred to as a hollow fiber membrane module 1A.
  • the detailed conditions of the hollow fiber membrane module 1A and the filtration operation are as follows.
  • Hollow fiber membrane module 1A (Hollow fiber membrane module 1A) Hollow fiber membrane module 1A: total length 1,600mm, outer diameter 284mm Tubular housing 10: made of ABS resin (material), outer diameter 284mm, inner diameter (minimum diameter (D)) 265mm, length in X-axis direction 1,400mm Hollow fiber membrane bundle 60: made of cellulose benzoate having a degree of substitution of 2.4, filling rate 60% (filling rate is measured by the method described below), hollow fiber outer diameter 1.4 mm, hollow fiber inner diameter 0.8 mm, Length from the first end face 60a side to the second end face 60b side (L) 1,245 mm, ratio (L / D) 4.7
  • Raw water introduction hole 65 19 raw water introduction holes 65 having an opening area of 2.2 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
  • the filling rate of the hollow fiber membrane bundle 60 is calculated based on the product of the average cross-sectional area in the width direction per hollow fiber membrane and the number of hollow fiber membranes accommodated in the cylindrical housing 10.
  • the cross-sectional area was calculated by the following formula, with S2 being the minimum cross-sectional area in the width direction at the inner peripheral portions of the cylindrical housing 10, the second a cap portion 30, and the second b cap portion 50.
  • Filling rate [%] S2 / S1 ⁇ 100
  • the minimum cross-sectional area S1 is the cross-sectional area of the smallest portion in the cross-sectional area in the direction perpendicular to the X axis in the inner peripheral part of the cylindrical housing 10, the second a cap part 30, and the second b cap part 50, And it is the cross-sectional area of the space where the hollow fiber membrane except the members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used.
  • the average cross-sectional area in the width direction per hollow fiber membrane is obtained by arbitrarily collecting a total of 100 hollow fiber membranes from the hollow fiber membrane bundle accommodated in the cylindrical housing 10, and measuring each hollow fiber membrane. The cross-sectional area was calculated by measuring the outer diameter of the thread membrane, and the average of those values was used.
  • the hollow fiber membrane module was disassembled and the state of the hollow fiber membrane bundle was confirmed. As a result, the amount of sludge adhered to the hollow fiber membrane was relatively small, and no sludge sticking was observed.
  • Example 2 Filtration operation was performed using the hollow fiber membrane module 1 shown in FIGS. 1, 2, and 3 while changing the standard membrane filtration flux.
  • the hollow fiber membrane module of Example 2 is referred to as a hollow fiber membrane module 1B.
  • the detailed conditions of the hollow fiber membrane module 1B and the filtration operation are as follows.
  • Hollow fiber membrane module 1B Hollow fiber membrane module 1B: total length 1,600mm, outer diameter 160mm Tubular housing 10: made of ABS resin (material), outer diameter 160mm, inner diameter (minimum diameter (D)) 147mm, length in the X-axis direction 1,400mm
  • Hollow fiber membrane bundle 60 Made of cellulose acetate with a substitution degree of 2.87, filling rate 42% (filling rate is measured by the method described above), hollow fiber outer diameter 1.3 mm, hollow fiber inner diameter 0.8 mm, hollow fiber membrane Effective filtration membrane area 27.1 m 2 on the outer surface, length (L) 1245 mm from the first end face 60 a side to the second end face 60 b side, ratio (L / D) 8.5
  • Raw water introduction hole 65 19 raw water introduction holes 65 having an opening area of 1.15 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
  • the drive pump is driven to feed the river water in the raw water tank (Kayabo River), supply from the raw water supply port 22 of the hollow fiber membrane module 1B and start filtration, and near the raw water supply port 22, the water temperature and the filtration inlet pressure was observed, and the filtration inlet pressure converted at a water temperature of 20 ° C. was determined.
  • the results are shown in FIG.
  • the conditions for the filtration operation were as follows. Filtration operation period: 50 days (continuous operation possible) Standard membrane filtration flux: As shown in FIG. 4, the filtration flux was increased while observing the increasing tendency of the filtration inlet pressure.
  • the membrane filtration flux was adjusted to 3 m 3 / m 2 / day when the operating days were 47 days, and the water temperature up to 50 days was 20 ° C.
  • the filtration inlet pressure converted in terms of was stable at about 80 kPa. Therefore, the membrane filtration flux could be continuously operated at 3 m 3 / m 2 / day after 50 days.
  • Comparative Example 1 Filtration operation was carried out using the hollow fiber membrane module 1 shown in FIGS. 1, 2, and 3 while changing the standard membrane filtration flow rate.
  • the hollow fiber membrane module of Comparative Example 1 is referred to as a hollow fiber membrane module 1C.
  • the detailed conditions of the hollow fiber membrane module 1C and the filtration operation are as follows.
  • Hollow fiber membrane module 1C (Hollow fiber membrane module 1C) Hollow fiber membrane module 1C: total length 2,400mm, outer diameter 160mm Cylindrical housing 10: made of ABS resin (material), outer diameter 160mm, inner diameter (minimum diameter (D)) 147mm, X-axis length 2,200mm Hollow fiber membrane bundle 60: made of cellulose acetate having a substitution degree of 3, filling rate 35% (filling rate is measured by the method described above), hollow fiber outer diameter 1.3 mm, hollow fiber inner diameter 0.8 mm, hollow fiber membrane Filtration effective membrane area 35.7 m 2 on the outer surface, length (L) 2,055 mm, ratio (L / D) 14 from the first end face 60 a side to the second end face 60 b side
  • Raw water introduction hole 65 19 raw water introduction holes 65 having an opening area of 1.15 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
  • the drive pump is driven to feed the river water in the raw water tank (Kayabo River), supply from the raw water supply port 22 of the hollow fiber membrane module 1C to start filtration, and near the raw water supply port 22, the water temperature and the filtration inlet pressure was observed, and the filtration inlet pressure converted at a water temperature of 20 ° C. was determined.
  • the results are shown in FIG.
  • the conditions for the filtration operation were as follows. Filtration operation period: 46 days Standard membrane filtration flux: As shown in FIG. 5, the filtration flux was increased while observing the increasing tendency of the filtration inlet pressure.
  • the hollow fiber membrane module 1B of Example 2 has a higher hollow fiber membrane filling rate than the hollow fiber membrane module 1C of Comparative Example 1, and thus the shear force due to the flow of water to be treated is stronger. This is considered to be because the sludge adhering to the outer surface of the hollow fiber membrane is peeled off and the amount of sludge adhering to the hollow fiber membrane generated by the filtration operation is small.
  • the hollow fiber membrane module 1C of Comparative Example 1 has a length (L) from the first end surface side to the second end surface side of the hollow fiber membrane bundle of more than 2 m, which is more than the hollow fiber membrane module 1B of Example 2. Therefore, as the filtration inlet pressure increases, the water permeation rate (membrane filtration flux) per unit membrane area decreases significantly when compared with the hollow fiber membrane module 1B of Example 2. This means that due to the large length (L), the filtration inlet pressure has to be increased in order to obtain the same membrane filtration flux, resulting in poor energy efficiency.
  • the hollow fiber membrane module of the present invention can be used in water purification plant facilities, sewage treatment facilities, seawater desalination facilities, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a hollow-fiber membrane module that, during filtration operations, is less likely to cause fouling of a hollow-fiber membrane, enables stable filtration, and has excellent washability of the hollow-fiber membrane. In this external pressure-type hollow-fiber membrane module, a first-end side and a second-end side of a hollow-fiber membrane bundle 60 are fixed, by means of an adhesive, together with an inner wall surface of a cylindrical housing 10 or an inner wall surface of a cap. The part on the first-end side fixed by the adhesive has a plurality of raw water introduction holes 65 that are formed so as to penetrate said part in the thickness direction. The filling rate of the hollow-fiber membrane bundle 60 is 40-70%. The length (L) from the first-end surface side to the second-end surface side of the hollow-fiber membrane bundle 60 is not more than 2 m.

Description

外圧式中空糸膜モジュールExternal pressure type hollow fiber membrane module
 本発明は、各種分野における水処理用途に使用できる外圧式中空糸膜モジュールに関する。 The present invention relates to an external pressure type hollow fiber membrane module that can be used for water treatment in various fields.
背景技術
 中空糸膜モジュールは、各種水処理分野において汎用されており、一般に流体の出入口を有したケーシング、キャップ、中空糸膜束及び中空糸膜束の端部を樹脂封止固定した樹脂封止部分から構成されているものが多い(米国特許出願公開第2003/0150807号明細書の図1)。
BACKGROUND ART Hollow fiber membrane modules are widely used in various water treatment fields. Generally, a casing having a fluid inlet / outlet, a cap, a hollow fiber membrane bundle, and a resin-sealed resin-fixed end portion of the hollow fiber membrane bundle. Many of them are composed of parts (FIG. 1 of US Patent Publication No. 2003/0150807).
 多数本の中空糸膜が収容されている中空糸膜モジュールを使用して濾過運転を継続したとき、膜が目詰まりしたり、膜面に付着層が形成されたりすることで、濾過性能が低下するファウリングが生じることがある。このようなファウリングが生じた場合には、エアースクラビング洗浄をしたり、逆圧洗浄をしたりして膜を洗浄することで濾過性能を回復させている。 When the filtration operation is continued using a hollow fiber membrane module containing a large number of hollow fiber membranes, the filtration performance deteriorates due to clogging of the membrane or the formation of an adhesion layer on the membrane surface. Fouling may occur. When such fouling occurs, the filtration performance is recovered by washing the membrane by air scrubbing washing or back pressure washing.
 特許第6264508号公報には、高さ方向における第1端と第2端とを有する筒状ケースと、前記筒状ケース内に収容される複数の中空糸膜と、前記筒状ケースの前記第1端側に位置する複数の中空糸膜の端部を開口した状態で接着する第1ポッティング部とを備え、前記中空糸膜は、破断強度が23MPa以上であり、前記中空糸膜の充填率が40%以上80%以下である中空糸膜モジュールが開示されている。 Japanese Patent No. 6264508 discloses a cylindrical case having a first end and a second end in the height direction, a plurality of hollow fiber membranes accommodated in the cylindrical case, and the first of the cylindrical case. A first potting part that is bonded in a state where the ends of a plurality of hollow fiber membranes located on one end side are opened, and the hollow fiber membrane has a breaking strength of 23 MPa or more, and the filling rate of the hollow fiber membranes Discloses a hollow fiber membrane module having a ratio of 40% to 80%.
 特許第4882173号公報の図1には、ケース1内に中空糸膜束3を収納し、該中空糸膜束3の一方の端部Aを中空糸膜2の端部が開口するように樹脂20で接着固定すると共に前記ケース内壁に接着し、他方の端部Bを中空糸膜2の端部が封止するように樹脂20で接着固定すると共に前記ケース内壁に接着した中空糸膜モジュール50であって、前記端部A,Bの間に挟まれた濾過域4のケース側面に、前記端部Bに対応して原水供給口5を、前記端部Aに対応してエア排出口6をそれぞれ設け、かつ前記端部Bに該端部Bを貫通するエア分散孔兼排水孔11を設けた中空糸膜モジュールが開示されている。 In FIG. 1 of Japanese Patent No. 4882173, a hollow fiber membrane bundle 3 is accommodated in a case 1, and one end A of the hollow fiber membrane bundle 3 is resin so that the end of the hollow fiber membrane 2 is open. The hollow fiber membrane module 50 is bonded and fixed at 20 and bonded to the inner wall of the case, and the other end B is bonded and fixed with a resin 20 so that the end of the hollow fiber membrane 2 is sealed and bonded to the inner wall of the case. The raw water supply port 5 corresponding to the end B and the air discharge port 6 corresponding to the end A are formed on the side surface of the filtration zone 4 sandwiched between the ends A and B. And a hollow fiber membrane module in which an air dispersion hole / drainage hole 11 penetrating the end B is provided in the end B.
 特許第4498373号公報の図6には、ラック型濾過装置用モジュールが示されている。多数本の中空糸膜3aの一方の端部は、貫通穴14aを有する接着固定層14で一体化されている。濾過運転時には、原水は供給水入口2cに供給され、下部リング13内に入ったあと、貫通穴14aを通って中空糸膜3aの外周面に導かれる(段落番号0046)。中空糸膜3aをガスバブリングするときは、ガス供給口から下部リング13にガスを供給して、接着固定部14の貫通穴14aを通過させて中空糸膜3aを振動させる(段落番号0047)。図7、図8には、中空糸膜3aと貫通穴14aの位置関係が示されている。 FIG. 6 of Japanese Patent No. 4498373 shows a rack type filtration device module. One end of the multiple hollow fiber membranes 3a is integrated with an adhesive fixing layer 14 having a through hole 14a. During the filtration operation, raw water is supplied to the supply water inlet 2c, enters the lower ring 13, and then is guided to the outer peripheral surface of the hollow fiber membrane 3a through the through hole 14a (paragraph number 0046). When gas bubbling the hollow fiber membrane 3a, gas is supplied from the gas supply port to the lower ring 13, and the hollow fiber membrane 3a is vibrated through the through hole 14a of the adhesive fixing portion 14 (paragraph number 0047). 7 and 8 show the positional relationship between the hollow fiber membrane 3a and the through hole 14a.
 特許第3686225号公報の図1には、中空糸膜束1の中心近傍に整流管6が配置された中空糸膜モジュールが示されている。濾過運転時には、被処理液が原水入口7から入り、中空糸膜束外周および整流管6を通って中空糸膜1により濾過され、濾過水出口8を通って中空糸膜モジュールの外に出る。エアースクラビング時には、ドレン抜き口を兼ねるエアー導入口10から供給されたエアーがエアーノズル5で分配され、中空糸膜1に対して放出される(段落番号0011)。 FIG. 1 of Japanese Patent No. 3686225 shows a hollow fiber membrane module in which a rectifying tube 6 is disposed near the center of the hollow fiber membrane bundle 1. During the filtration operation, the liquid to be treated enters from the raw water inlet 7, is filtered by the hollow fiber membrane 1 through the outer periphery of the hollow fiber membrane bundle and the rectifying pipe 6, and goes out of the hollow fiber membrane module through the filtered water outlet 8. At the time of air scrubbing, the air supplied from the air inlet 10 which also serves as a drain outlet is distributed by the air nozzle 5 and released to the hollow fiber membrane 1 (paragraph 0011).
発明の概要
 本発明は、濾過運転時において中空糸膜にファウリングが起こりにくく安定した濾過運転を行うことができ、中空糸膜の洗浄性も良い外圧式中空糸膜モジュールを提供することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an external pressure type hollow fiber membrane module that can perform stable filtration operation that is less likely to cause fouling in the hollow fiber membrane during filtration operation, and has good cleanability of the hollow fiber membrane. And
 本発明は、少なくとも原水供給口と透過水出口を含む液出入り口を有する筒状ハウジングと、前記筒状ハウジング内に中空糸膜束が収容された中空糸膜モジュールであって、
 前記中空糸膜束が、前記中空糸膜束の原水供給口側である第1端面側が閉塞された状態にて、前記筒状ハウジングの内壁面と共に接着剤により固定されており、
 前記第1端面側とは軸方向反対側である透過水出口側の第2端面側が開口された状態にて、前記筒状ハウジングの内壁面と共に接着剤により固定されており、
 前記中空糸膜束の充填率が40%~70%であり、
 前記中空糸膜束の前記第1端面側から前記第2端面側までの長さが2m以下である、外圧式中空糸膜モジュールを提供する。
The present invention is a cylindrical housing having a liquid inlet / outlet including at least a raw water supply port and a permeate outlet, and a hollow fiber membrane module in which a hollow fiber membrane bundle is accommodated in the cylindrical housing,
The hollow fiber membrane bundle is fixed with an adhesive together with the inner wall surface of the cylindrical housing in a state where the first end surface side which is the raw water supply port side of the hollow fiber membrane bundle is closed.
In the state where the second end surface side of the permeate outlet side, which is the opposite side to the first end surface side in the axial direction, is opened, it is fixed together with the inner wall surface of the cylindrical housing by an adhesive,
The filling rate of the hollow fiber membrane bundle is 40% to 70%,
An external pressure type hollow fiber membrane module is provided in which the length of the hollow fiber membrane bundle from the first end surface side to the second end surface side is 2 m or less.
 また本発明は、両端開口部のそれぞれに原水供給口と透過水出口を含む液出入り口を有するキャップが固定された筒状ハウジングと、前記筒状ハウジング内に中空糸膜束が収容された中空糸膜モジュールであって、
 前記中空糸膜束が、
 原水供給口側の第1端部側が、前記中空糸膜束の第1端面側が閉塞された状態にて、前記筒状ハウジングの内壁面または前記キャップの内壁面と共に接着剤により固定されており、
 前記第1端面側とは軸方向に反対側である透過水出口側の第2端面側が、前記中空糸膜束の第2端面側が開口された状態にて、前記筒状ハウジングの内壁面または前記キャップの内壁面と共に接着剤により固定されており、
 前記中空糸膜束の充填率が40%~70%であり、
 前記中空糸膜束の前記第1端面側から前記第2端面側までの長さが2m以下である、外圧式中空糸膜モジュールを提供する。
Further, the present invention provides a cylindrical housing in which a cap having a liquid inlet / outlet including a raw water supply port and a permeate outlet is fixed to each of both end openings, and a hollow fiber in which a hollow fiber membrane bundle is accommodated in the cylindrical housing A membrane module,
The hollow fiber membrane bundle is
The first end side of the raw water supply port side is fixed by an adhesive together with the inner wall surface of the cylindrical housing or the inner wall surface of the cap in a state where the first end surface side of the hollow fiber membrane bundle is closed.
In the state where the second end surface side of the permeate outlet side, which is opposite to the first end surface side in the axial direction, is opened on the second end surface side of the hollow fiber membrane bundle, It is fixed with an adhesive together with the inner wall surface of the cap,
The filling rate of the hollow fiber membrane bundle is 40% to 70%,
An external pressure type hollow fiber membrane module is provided in which the length of the hollow fiber membrane bundle from the first end surface side to the second end surface side is 2 m or less.
 また本発明は、前記外圧式中空糸膜モジュールを用いた濾過運転方法であって、
 前記濾過運転方法が濾過工程と洗浄工程を有しており、
 前記洗浄工程が、逆圧洗浄を実施して、エアースクラビング洗浄を実施しない、濾過運転方法を提供する。
Further, the present invention is a filtration operation method using the external pressure hollow fiber membrane module,
The filtration operation method has a filtration step and a washing step;
Provided is a filtration operation method in which the cleaning step performs back pressure cleaning and does not perform air scrubbing cleaning.
 本発明の外圧式中空糸膜モジュールは、中空糸膜面に懸濁質に由来する堆積物層が形成され難くなり、目詰まりも生じ難くなることから、ファウリングも生じ難くなり、安定した濾過運転を行うことができる。 The external pressure type hollow fiber membrane module of the present invention makes it difficult for a sediment layer derived from suspended solids to be formed on the hollow fiber membrane surface, and clogging is less likely to occur. You can drive.
本発明の外圧式中空糸膜モジュールの長軸方向断面図。1 is a cross-sectional view in the major axis direction of an external pressure type hollow fiber membrane module of the present invention. (a)は図1の第1端部側の部分拡大図、(b)は図1の第2端部側の部分拡大図。(A) is the elements on larger scale of the 1st edge part side of FIG. 1, (b) is the elements on larger scale of the 2nd edge part side of FIG. 図1に示す中空糸膜モジュールの第1端部側における接着剤による固定部の幅方向断面図。The width direction sectional drawing of the fixing | fixed part by the adhesive agent in the 1st end part side of the hollow fiber membrane module shown in FIG. 実施例2の濾過入口圧の推移を示すグラフ。The graph which shows transition of the filtration inlet pressure of Example 2. FIG. 比較例1の濾過入口圧の推移を示すグラフ。The graph which shows transition of the filtration inlet pressure of the comparative example 1. FIG.
発明を実施するための形態
 図1に示す外圧式中空糸膜モジュール1は、筒状ハウジング10内に中空糸膜束60が収容されている。筒状ハウジング10の幅方向の断面形状は、円形、多角形(好ましくは円形に近い多角形)などにすることができる。筒状ハウジング10の材質は、金属、合成樹脂などにすることができる。筒状ハウジングの10の大きさ(内容量の大きさ)は、濾過性能に対応して使用する中空糸膜束の合計本数などに応じて決めることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the external pressure hollow fiber membrane module 1 shown in FIG. 1, a hollow fiber membrane bundle 60 is accommodated in a cylindrical housing 10. The cross-sectional shape of the cylindrical housing 10 in the width direction can be a circle, a polygon (preferably a polygon close to a circle), or the like. The material of the cylindrical housing 10 can be metal, synthetic resin, or the like. The size of the cylindrical housing 10 (the size of the inner volume) can be determined according to the total number of hollow fiber membrane bundles used corresponding to the filtration performance.
 筒状ハウジング10の第1端部10a側には、第1端部側キャップ20が外側から取り付けられている。第1端部側キャップ20は、筒状ハウジング10と同じ材質からなるものが好ましい。 A first end side cap 20 is attached to the first end 10a side of the cylindrical housing 10 from the outside. The first end side cap 20 is preferably made of the same material as the cylindrical housing 10.
 第1端部側キャップ20は、原水供給口(逆圧洗浄水出口を兼ねる)22を有している第1aキャップ部21と第2aキャップ部30の組み合わせからなるものである。第1aキャップ部21と第2aキャップ部30は、それらが一体になった一つのものでもよい。 The first end portion side cap 20 is composed of a combination of a first a cap portion 21 and a second a cap portion 30 having a raw water supply port (also serving as a counter pressure washing water outlet) 22. The first a cap portion 21 and the second a cap portion 30 may be a single unit in which they are integrated.
 第1aキャップ部21は、原水供給口(第1a小径部)22と、原水供給口22の軸X方向反対側にある原水供給口22よりも大きな外径を有する第1a環状大径部23を有しており、さらに原水供給口22と第1a環状大径部23の間には、原水供給口22側から第1a環状大径部23側に順に第1a環状傾斜面部24と第1a環状平面部25を有しているものである。第1a環状大径部23の大きさは、第2aキャップ部30(第2a薄肉部33)の外径と同程度の大きさになっている。第1a環状大径部23の内表面は内側ねじ部を有している。第1a環状平面部25の内側の環状端面には環状溝が形成され、Oリング26が嵌め込まれている。 The 1a cap portion 21 includes a raw water supply port (1a small diameter portion) 22 and a 1a annular large diameter portion 23 having a larger outer diameter than the raw water supply port 22 on the opposite side of the raw water supply port 22 in the axial X direction. Furthermore, between the raw | natural water supply port 22 and the 1a annular large diameter part 23, it is the 1a annular inclined surface part 24 and the 1a annular plane in order from the raw | natural water supply port 22 side to the 1a annular large diameter part 23 side. A portion 25 is provided. The size of the first a-annular large-diameter portion 23 is approximately the same as the outer diameter of the second-a cap portion 30 (second-a thin portion 33). The inner surface of the 1a annular large diameter part 23 has an inner thread part. An annular groove is formed in the annular end surface inside the 1a annular flat surface portion 25, and an O-ring 26 is fitted therein.
 第2aキャップ部30は、第2端部30b側が筒状ハウジング10の第1端部10a側に外側から嵌め込むことができる大きさであり、反対側の第1端部30a側が中空糸膜束60の第1端面60a(第1固定層61)に外側から嵌め込むことができる大きさの筒状のものである。 The second a cap portion 30 has such a size that the second end portion 30b side can be fitted into the first end portion 10a side of the cylindrical housing 10 from the outside, and the opposite first end portion 30a side is a hollow fiber membrane bundle. It is a cylindrical thing of the magnitude | size which can be fitted in the 1st end surface 60a (1st fixing layer 61) of 60 from the outer side.
 第2aキャップ部30は、内表面側に第2a環状段差面31を有しており、第2a環状段差面31から第2端部30b側の内径の小さい第2a厚肉部32と、第2a環状段差面31から第1端部30a側の内径の大きな第2a薄肉部33を有している(第2a厚肉部32の厚み>第2a薄肉部33の厚み)。
 図1、図2では、第2a厚肉部32の外表面が傾斜面になっているが、平坦面であってもよい。第2a薄肉部33の外表面は、第1a環状大径部23の内側ねじ部とねじ合わせることができる外側ねじ部を有している。
The second a cap portion 30 has a second a annular step surface 31 on the inner surface side, a second a thick portion 32 having a small inner diameter on the second end portion 30b side from the second a annular step surface 31, and a second a. It has the 2a thin part 33 with a large internal diameter by the side of the 1st end part 30a from the cyclic | annular level | step difference surface 31 (thickness of the 2a thick part 32> thickness of the 2a thin part 33).
In FIG. 1 and FIG. 2, the outer surface of the 2a thick portion 32 is an inclined surface, but it may be a flat surface. The outer surface of the second-a thin portion 33 has an outer screw portion that can be screwed together with the inner screw portion of the first-a annular large-diameter portion 23.
 第2aキャップ部30は、筒状ハウジング10の第1端部10a側と一体成形されていてもよい。第2aキャップ部30と筒状ハウジング10が一体成形されているときは、第1aキャップ部21は別部材である。 The second a cap portion 30 may be integrally formed with the first end portion 10a side of the cylindrical housing 10. When the 2a cap part 30 and the cylindrical housing 10 are integrally molded, the 1a cap part 21 is a separate member.
 第2aキャップ部30は、第1端部30b側が筒状ハウジング10の第1端部10a側に外側から嵌め込まれ、第2端部30a側が中空糸膜束60の第1端面60a(第1固定層61)に外側から嵌め込まれた状態で接続されている。筒状ハウジング10の第1端部10aと筒状の第2aキャップ部30の接続は、それぞれの材質に応じて、ねじ合わせ、接着剤による接着、溶接などの方法を適用することができる。第1aキャップ部21と第2aキャップ部30は、第1aキャップ部21の環状大径部23の内側ねじ部と第2aキャップ部30の第2a薄肉部33の外側ねじ部をねじ合わせることで接続固定されている。 The second a cap portion 30 is fitted from the outside to the first end portion 10a side of the cylindrical housing 10 on the first end portion 30b side, and the second end portion 30a side is fitted to the first end face 60a (first fixed surface) of the hollow fiber membrane bundle 60. Layer 61) is connected in a state fitted from the outside. The connection between the first end portion 10a of the cylindrical housing 10 and the cylindrical second a cap portion 30 can be applied by a method such as screwing, bonding with an adhesive, welding, or the like according to the respective materials. The first a cap portion 21 and the second a cap portion 30 are connected by screwing together the inner screw portion of the annular large diameter portion 23 of the first a cap portion 21 and the outer screw portion of the second a thin portion 33 of the second a cap portion 30. It is fixed.
 筒状ハウジング10の第2端部10b側は、第2端部側キャップ40が外側から取り付けられている。第2端部側キャップ40は、筒状ハウジング10と同じ材質からなるものが好ましい。 A second end side cap 40 is attached to the second end 10b side of the cylindrical housing 10 from the outside. The second end side cap 40 is preferably made of the same material as the cylindrical housing 10.
 第2端部側キャップ40は、透過水出口42を有している第1bキャップ部41と、濃縮水出口55を有している第2bキャップ部50の組み合わせからなるものである。第1bキャップ部41と第2bキャップ部50は、それらが一体になった一つのものでもよい。 The second end side cap 40 is composed of a combination of a 1b cap part 41 having a permeate outlet 42 and a second b cap part 50 having a concentrated water outlet 55. The first b cap portion 41 and the second b cap portion 50 may be a single unit in which they are integrated.
 第1bキャップ部41は、透過水出口(第1b小径部)42と、透過水出口42の軸X方向反対側にある透過水出口42よりも大きな外径を有する第1b環状大径部43を有しており、さらに透過水出口(第1b小径部)42と第2b環状大径部43の間には、透過水出口42側から第1b環状大径部43側に順に第1b環状傾斜面部44と第1b環状平面部45を有しているものである。第1b環状大径部43の大きさは、第2bキャップ部50(第2b薄肉部53)の外径と同程度の大きになっている。第1b環状大径部43の内表面は内側ねじ部を有している。第1b環状平面部45の内側の環状端面には環状溝が形成され、Oリング46が嵌め込まれている。 The first b cap portion 41 includes a permeate outlet (first b small diameter portion) 42 and a first b annular large diameter portion 43 having a larger outer diameter than the permeate outlet 42 on the opposite side of the permeate outlet 42 in the axis X direction. In addition, between the permeate outlet (first b small diameter part) 42 and the second b annular large diameter part 43, the 1b annular inclined surface part in order from the permeate outlet 42 side to the 1b annular large diameter part 43 side. 44 and a 1b annular flat surface portion 45. The size of the 1b annular large-diameter portion 43 is approximately the same as the outer diameter of the second b cap portion 50 (second b thin portion 53). The inner surface of the 1b annular large-diameter portion 43 has an inner screw portion. An annular groove is formed in the annular end surface inside the 1b annular flat surface portion 45, and an O-ring 46 is fitted therein.
 第2bキャップ部50は、第1端部50b側が筒状ハウジング10の第1端部10b側に外側から嵌め込むことができる大きさであり、反対側の第2端部50a側が中空糸膜束60の第2端面60b(第2固定層62)に外側から嵌め込むことができる大きさの筒状のものである。第2bキャップ部50は、内表面側に第2b環状段差面51を有しており、第2b環状段差面51から第1端部50b側の内径の小さい第2b厚肉部52と、第2b環状段差面51から第1bキャップ部41側の内径の大きな第2b薄肉部53を有している(第2b厚肉部52の厚み>第2b薄肉部53の厚み)。図1、図2では、第2b厚肉部52の外表面が傾斜面になっているが、平坦面であってもよい。第2b薄肉部53の外表面は、第1b環状大径部43の内側ねじ部とねじ合わせることができる外側ねじ部を有している。 The second end 50b has a size such that the first end 50b side can be fitted into the first end 10b side of the cylindrical housing 10 from the outside, and the opposite second end 50a side is a hollow fiber membrane bundle. It is a cylindrical thing of the magnitude | size which can be fitted in the 2nd end surface 60b (2nd fixed layer 62) of 60 from the outer side. The second b cap portion 50 has a second b annular step surface 51 on the inner surface side, a second b thick portion 52 having a small inner diameter on the first end portion 50b side from the second b annular step surface 51, and a second b. It has the 2b thin part 53 with a big internal diameter by the side of the 1b cap part 41 from the cyclic | annular level | step difference surface 51 (the thickness of the 2b thick part 52> the thickness of the 2b thin part 53). 1 and 2, the outer surface of the second b thick portion 52 is an inclined surface, but it may be a flat surface. The outer surface of the second b thin portion 53 has an outer screw portion that can be screwed together with the inner screw portion of the first b annular large diameter portion 43.
 第2端側キャップ40の第2bキャップ部50は、筒状ハウジング10の第1端部10b側と一体成形されていてもよい。第2bキャップ部50と筒状ハウジング10が一体成形されているときは、第1bキャップ部41は別部材である。 The second b cap portion 50 of the second end side cap 40 may be integrally formed with the first end portion 10 b side of the cylindrical housing 10. When the second b cap portion 50 and the cylindrical housing 10 are integrally formed, the first b cap portion 41 is a separate member.
 第2bキャップ部50は、第1端部50b側が筒状ハウジング10の第1端部10b側に外側から嵌め込まれ、第2端部50a側が中空糸膜束60の第2端面60b(第2固定層62)に外側から嵌め込まれた状態で接続されている。筒状ハウジング10の第1端部10bと筒状の第2bキャップ部50の接続は、それぞれの材質に応じて、ねじ合わせ、接着剤による接着、溶接などの方法を適用することができる。第1bキャップ部41と第2bキャップ部50は、第1bキャップ部41の第1b環状大径部43の内側ねじ部と第2bキャップ部50の第2b薄肉部53の外側ねじ部をねじ合わせることで接続固定されている。 The second end portion 50b of the second end portion 50b is fitted from the outside to the first end portion 10b side of the cylindrical housing 10, and the second end portion 50a side is fitted to the second end face 60b of the hollow fiber membrane bundle 60 (second fixing). Layer 62) is connected in a state of being fitted from the outside. The connection between the first end portion 10b of the cylindrical housing 10 and the cylindrical second b cap portion 50 can be applied by a method such as screwing, bonding with an adhesive, or welding according to the respective materials. The first b cap portion 41 and the second b cap portion 50 are formed by screwing together the inner screw portion of the first b annular large-diameter portion 43 of the first b cap portion 41 and the outer screw portion of the second b thin portion 53 of the second b cap portion 50. The connection at is fixed.
 中空糸膜束60は、それぞれが数百~数千本の公知の中空糸膜が束ねられたものである。中空糸膜は公知のものであり、外径が好ましくは1~3mm、より好ましくは1.3~1.6mmの親水性膜(酢酸セルロースなどのセルロース系膜)または疎水性膜(ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホンなど)を使用することができる。本発明の中空糸膜は、ファウリングが生じにくい親水性膜が好ましくセルロースエステル系膜の使用が好ましい。外圧式中空糸膜モジュールにおいて、セルロースエステル系膜などの親水性膜は、汚泥が中空糸膜表面に付着しにくく、エアースクラビングが無くても、逆洗浄のみで安定した濾過が可能であるため好適である。セルロースエステル系膜としては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、及びセルロースベンゾエートから選ばれる1種以上を用いることができる。 The hollow fiber membrane bundle 60 is a bundle of several hundred to several thousand known hollow fiber membranes. Hollow fiber membranes are known and have a hydrophilic membrane (cellulose membrane such as cellulose acetate) or hydrophobic membrane (polyvinylidene fluoride) having an outer diameter of preferably 1 to 3 mm, more preferably 1.3 to 1.6 mm. , Polysulfone, polyethersulfone, etc.) can be used. The hollow fiber membrane of the present invention is preferably a hydrophilic membrane that is less prone to fouling, and is preferably a cellulose ester membrane. In external pressure type hollow fiber membrane modules, hydrophilic membranes such as cellulose ester membranes are suitable because sludge hardly adheres to the surface of the hollow fiber membrane, and stable filtration is possible only by back washing without air scrubbing. It is. As the cellulose ester film, one or more selected from cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose benzoate can be used.
 またセルロースエステル系膜は、下記一般式(I)の構造式で示されるセルロース混合エステルを用いることができる。 Further, as the cellulose ester film, a cellulose mixed ester represented by the structural formula of the following general formula (I) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (一般式(I)中、Xの全部又は一部がアシル基であり、Xの一部がアシル基であるとき、残部が水素原子、及び炭素数1~8のアルキル基から選ばれる基を示し、nは20~20,000の整数を示す。) (In the general formula (I), when all or part of X is an acyl group and part of X is an acyl group, the balance is a group selected from a hydrogen atom and an alkyl group having 1 to 8 carbon atoms. N represents an integer of 20 to 20,000.)
 アシル基は、置換基を有してもよいベンゾイル基、及びカルボキシル基またはカルボキシル基の塩を含む芳香族アシル基から選ばれるものが好ましい。 The acyl group is preferably selected from a benzoyl group which may have a substituent and an aromatic acyl group containing a carboxyl group or a carboxyl group salt.
 置換基を有していてもよいベンゾイル基は、ベンゾイル基、またはオルソ位、メタ位、パラ位の1箇所以上に、メチル基、トリフルオロメチル基、tert-ブチル基、フェニル基などのアルキル基、メトキシ基、フェノキシ基などのアルコキシ基、ヒドロキシ基、アミノ基、イミノ基、ハロゲノ基、シアノ基、ニトロ基などの1種以上の置換基を有しているベンゾイル基である。これらの中で、耐塩素性と耐アルカリ性が共に高く、且つ入手し易いことからベンゾイル基、パラ-メチルベンゾイル基、オルソ-メチルベンゾイル基、パラ-メトキシベンゾイル基、オルソ-メトキシベンゾイル基、ジメチルベンゾイル基から選ばれるものが好ましい。 The benzoyl group which may have a substituent is a benzoyl group or an alkyl group such as a methyl group, a trifluoromethyl group, a tert-butyl group or a phenyl group at one or more positions in the ortho position, meta position and para position. A benzoyl group having one or more substituents such as an alkoxy group such as a methoxy group and a phenoxy group, a hydroxy group, an amino group, an imino group, a halogeno group, a cyano group and a nitro group. Among these, benzoyl group, para-methylbenzoyl group, ortho-methylbenzoyl group, para-methoxybenzoyl group, ortho-methoxybenzoyl group, dimethylbenzoyl group are both highly resistant to chlorine and alkali and easily available. Those selected from the group are preferred.
 カルボキシル基またはカルボキシル基の塩を含む芳香族アシル基は、セルロースのヒドロキシ基と、置換基を有していてもよい無水フタル酸、置換基を有していてもよいナフタル酸無水物等の置換基を有していてもよい芳香族ジカルボン酸一無水物との反応により生成する芳香族アシル基であるものから選ばれるものが好ましい。前記芳香族ジカルボン酸一無水物の具体例としては、無水フタル酸、3-メチルフタル酸無水物、4-メチルフタル酸無水物、3-ニトロフタル酸無水物、4-エトキシカルボニル-3,5-ジメチルフタル酸無水物、1,2-ナフタル酸無水物、1,8-ナフタル酸無水物、2,3-ナフタレンジカルボン酸無水物、4-ブロモ-1,8-ナフタル酸無水物、2,3-アントラセンジカルボン酸無水物、2,3-ピリジンジカルボン酸無水物等が挙げられ、これらは1種又は2種以上を用いることができる。 An aromatic acyl group containing a carboxyl group or a salt of a carboxyl group is substituted with a hydroxy group of cellulose, an optionally substituted phthalic anhydride, an optionally substituted naphthalic anhydride, or the like. What is selected from what is an aromatic acyl group produced | generated by reaction with the aromatic dicarboxylic acid monoanhydride which may have a group is preferable. Specific examples of the aromatic dicarboxylic acid monoanhydride include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 3-nitrophthalic anhydride, 4-ethoxycarbonyl-3,5-dimethylphthalate. Acid anhydride, 1,2-naphthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalenedicarboxylic anhydride, 4-bromo-1,8-naphthalic anhydride, 2,3-anthracene Examples thereof include dicarboxylic acid anhydrides and 2,3-pyridinedicarboxylic acid anhydrides, and one or more of these can be used.
 Xがアシル基であり、置換基を有してもよいベンゾイル基、及びカルボキシル基またはカルボキシル基の塩を含む芳香族アシル基から選ばれるものでないときは、炭素数2以上の脂肪族アシル基および炭素数5以上の芳香族アシル基から選ばれるものにすることができる。前記炭素数2以上の脂肪族アシル基は、アセチル基、プロパノイル基、ブタノイル基、ピバロイル基、ペンタノイル基、ヘキサノイル基、デカノイル基およびオクタデカノイル基から選ばれるものが好ましい。前記炭素数5以上の芳香族アシル基は、ピロール環を有するアシル基、ピリジン環を有するアシル基、(ピコリニル基、ニコチニル基)およびナフタリン環を有するアシル基から選ばれるものが好ましい。 When X is an acyl group and is not selected from a benzoyl group which may have a substituent and an aromatic acyl group including a carboxyl group or a salt of a carboxyl group, an aliphatic acyl group having 2 or more carbon atoms and It can be selected from aromatic acyl groups having 5 or more carbon atoms. The aliphatic acyl group having 2 or more carbon atoms is preferably one selected from an acetyl group, a propanoyl group, a butanoyl group, a pivaloyl group, a pentanoyl group, a hexanoyl group, a decanoyl group, and an octadecanoyl group. The aromatic acyl group having 5 or more carbon atoms is preferably selected from an acyl group having a pyrrole ring, an acyl group having a pyridine ring, (picolinyl group, nicotinyl group) and an acyl group having a naphthalene ring.
 Xがアシル基の置換度は、好ましくは1.5~3.0、より好ましくは2.0~3.0、更に好ましくは2.3~3.0である。Xが水素原子であるときのヒドロキシ基に相当する置換度は、好ましくは0~1.5、より好ましくは0~1.0、更に好ましくは0~0.7である。nは、好ましくは20~20,000、より好ましくは40~10,000、更に好ましくは60~8,000の整数を示す。 The substitution degree of X with an acyl group is preferably 1.5 to 3.0, more preferably 2.0 to 3.0, and still more preferably 2.3 to 3.0. The degree of substitution corresponding to a hydroxy group when X is a hydrogen atom is preferably 0 to 1.5, more preferably 0 to 1.0, and still more preferably 0 to 0.7. n is preferably an integer of 20 to 20,000, more preferably 40 to 10,000, and still more preferably 60 to 8,000.
 中空糸膜束60は、筒状ハウジング10の第1端部10a側(第1端部側キャップ20側)の第1端面60a側は、第1端部側キャップ20(第2aキャップ部30)の内壁面と共に公知の接着剤(ポッティング剤)により一体化された状態で固定されている(第1固定層61)。 The hollow fiber membrane bundle 60 has a first end side cap 20 (second a cap portion 30) on the first end surface 60a side on the first end portion 10a side (first end side cap 20 side) of the cylindrical housing 10. Are fixed together with a known adhesive (potting agent) together with the inner wall surface (first fixing layer 61).
 中空糸膜束60は、筒状ハウジング10の第2端部10b側(第2端部側キャップ40側)の第2端面60b側は、第2端部側キャップ40(第2bキャップ部50)の内壁面と共に公知の接着剤(ポッティング剤)により一体化された状態で固定されている(第2固定層62)。 The hollow fiber membrane bundle 60 has a second end side cap 40 (second b cap portion 50) on the second end surface 60b side on the second end portion 10b side (second end side cap 40 side) of the cylindrical housing 10. Are fixed together with the inner wall surface by a known adhesive (potting agent) (second fixing layer 62).
 公知の接着剤(ポッティング剤)としては、特許文献1の段落番号0027に記載されているウレタン樹脂、エポキシ樹脂などからなるものを使用することができる。 As the known adhesive (potting agent), those made of urethane resin, epoxy resin or the like described in paragraph No. 0027 of Patent Document 1 can be used.
 中空糸膜束60の第1端面60a側は、接着剤で閉塞され開口されていない。第1固定層61の長軸X方向の長さは第2固定層62の長軸X方向の長さと同程度である。中空糸膜束60の第2端面60b側は、接着剤で閉塞されておらず開口されている。第2固定層62の長軸X方向の長さは、中空糸膜束60の第2端面60bから、濃縮水出口55に接しない位置までの範囲である。 The first end surface 60a side of the hollow fiber membrane bundle 60 is closed with an adhesive and is not opened. The length of the first fixed layer 61 in the major axis X direction is approximately the same as the length of the second fixed layer 62 in the major axis X direction. The second end face 60b side of the hollow fiber membrane bundle 60 is not closed with an adhesive but is opened. The length of the second fixed layer 62 in the major axis X direction is a range from the second end surface 60 b of the hollow fiber membrane bundle 60 to a position not in contact with the concentrated water outlet 55.
 中空糸膜束60の第1端面60a側から第2端面60b側までの長さ(L)が、中空糸膜のファウリングを防止する観点から、2m以下であり、好ましくは1.8m以下、より好ましくは1.6m以下、そして、好ましくは0.8m以上、より好ましくは1.0m以上である。 From the viewpoint of preventing fouling of the hollow fiber membrane, the length (L) from the first end surface 60a side to the second end surface 60b side of the hollow fiber membrane bundle 60 is 2 m or less, preferably 1.8 m or less, More preferably, it is 1.6 m or less, and preferably 0.8 m or more, more preferably 1.0 m or more.
 中空糸膜束60が収容される筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部における最小直径(D)は、中空糸膜モジュールの濾過処理性能と中空糸膜モジュール設置床面積とのバランスの観点から、好ましくは14cm以上、より好ましくは18cm以上、更に好ましくは20cm以上、そして、好ましくは40cm以下、より好ましくは35cm以下、更に好ましくは30cm以下、より更に好ましくは25cm以下である。ここで最小直径(D)は、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部におけるX軸と垂直方向の直径が、最も小さくなる部分の直径であり、かつ原水を導入するための多孔管などの中空糸膜束以外の部材を除いた中空糸膜が使用されている空間の断面から求められる直径をいうものとする。 The minimum diameter (D) in the inner peripheral part of the cylindrical housing 10 in which the hollow fiber membrane bundle 60 is accommodated, the 2a cap part 30, and the 2b cap part 50 is the filtration performance of the hollow fiber membrane module and the hollow fiber membrane. From the viewpoint of the balance with the module installation floor area, it is preferably 14 cm or more, more preferably 18 cm or more, further preferably 20 cm or more, and preferably 40 cm or less, more preferably 35 cm or less, still more preferably 30 cm or less, and even more preferably. Is 25 cm or less. Here, the minimum diameter (D) is the diameter of the portion where the diameter in the direction perpendicular to the X-axis in the inner peripheral portion of the cylindrical housing 10, the second a cap portion 30, and the second b cap portion 50 is the smallest, and The diameter obtained from the cross section of the space in which the hollow fiber membrane excluding members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used.
 中空糸膜束60の第1端面60a側から第2端面60b側までの長さ(L)と、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部における最小直径(D)との比率(L/D)は、中空糸膜モジュールの濾過処理性能と中空糸膜モジュール設置床面積とのバランスの観点から、好ましくは4~13であり、より好ましくは4.5~11であり、更に好ましくは7~10である。前記比率(L/D)が大きい場合(すなわち、細長い中空糸膜モジュールである場合)、濾過後の透過水が中空糸膜内を、透過水出口側へ流れる時に、圧力損失が発生する。これが大きくなると、中空糸膜間の差圧が大きいため、高透水な中空糸膜であっても、実質的な濾過水量が少なくなる場合がある。本発明の外圧式中空糸膜モジュールにおいて、比率(L/D)が前記の範囲である場合(すなわち、太く短い中空糸膜モジュールである場合)、濾過後の透過水が中空糸膜内を透過水出口側へ流れる時に圧力損失が少なく、中空糸膜間の差圧が小さくなるため、より高い透水速度が得ることができる。 The length (L) from the first end face 60a side to the second end face 60b side of the hollow fiber membrane bundle 60 and the minimum diameter in the inner peripheral part of the cylindrical housing 10, the second a cap part 30, and the second b cap part 50 The ratio (L / D) to (D) is preferably 4 to 13, more preferably 4.5, from the viewpoint of the balance between the filtration performance of the hollow fiber membrane module and the floor area of the hollow fiber membrane module. To 11, more preferably 7 to 10. When the ratio (L / D) is large (that is, in the case of an elongated hollow fiber membrane module), pressure loss occurs when the permeated water after filtration flows through the hollow fiber membrane to the permeate outlet side. When this is increased, the differential pressure between the hollow fiber membranes is large, so that even a highly water-permeable hollow fiber membrane may reduce the substantial amount of filtered water. In the external pressure hollow fiber membrane module of the present invention, when the ratio (L / D) is within the above range (that is, when the hollow fiber membrane module is thick and short), the permeated water after filtration permeates through the hollow fiber membrane. Since there is little pressure loss when flowing to the water outlet side and the differential pressure between the hollow fiber membranes is small, a higher water transmission rate can be obtained.
 中空糸膜束60の充填率は、中空糸膜のファウリングを防止する観点から、40%~70%であり、好ましくは42%~65%であり、より好ましくは45%~60%である。本発明において、中空糸膜束60の充填率は、中空糸膜1本あたりの幅方向の平均断面積と筒状ハウジング10内に収容される中空糸膜の本数との積から算出される中空糸膜束の断面積をS2、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部における幅方向の最小断面積をS1とした場合、以下の式により算出される。
 充填率[%]=S2/S1×100
The filling rate of the hollow fiber membrane bundle 60 is 40% to 70%, preferably 42% to 65%, more preferably 45% to 60% from the viewpoint of preventing fouling of the hollow fiber membrane. . In the present invention, the filling rate of the hollow fiber membrane bundle 60 is calculated from the product of the average cross-sectional area in the width direction per hollow fiber membrane and the number of hollow fiber membranes accommodated in the cylindrical housing 10. When the cross-sectional area of the thread membrane bundle is S2, and the minimum cross-sectional area in the width direction at the inner peripheral portions of the cylindrical housing 10, the second a cap portion 30, and the second b cap portion 50 is S1, the following calculation is performed. .
Filling rate [%] = S2 / S1 × 100
 ここで最小断面積S1は、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部におけるX軸と垂直方向の断面積において、最も小さくなる部分の断面積であり、かつ原水を導入するための多孔管などの中空糸膜束以外の部材を除いた中空糸膜が使用されている空間の断面積をいうものとする。また断面積S2において、中空糸膜1本あたりの幅方向の平均断面積は、筒状ハウジング10内に収容される中空糸膜束から任意に合計100本の中空糸膜を採取し、各中空糸膜の外径を測定して断面積を算出し、それらの値を平均したものを用いるものとする。 Here, the minimum cross-sectional area S1 is the cross-sectional area of the smallest portion in the cross-sectional area in the direction perpendicular to the X axis in the inner peripheral part of the cylindrical housing 10, the second a cap part 30, and the second b cap part 50, And it shall mean the cross-sectional area of the space where the hollow fiber membrane except the members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used. Further, in the cross-sectional area S2, the average cross-sectional area in the width direction per hollow fiber membrane is obtained by arbitrarily collecting a total of 100 hollow fiber membranes from the hollow fiber membrane bundle accommodated in the cylindrical housing 10, and measuring each hollow fiber membrane. The cross-sectional area is calculated by measuring the outer diameter of the thread membrane, and the average of those values is used.
 第2端部側キャップ40の第2bキャップ部50は、第2b厚肉部52、第2b環状段差面51、第2b薄肉部53を有しており、第2b環状段差面51、第2b薄肉部53の間に濃縮水出口55が形成されている。このため、濃縮水出口55と、濃縮水出口55に対向する中空糸膜束60の間には、第2b厚肉部(内径小)52と第2b薄肉部(内径大)53の厚みの差(内径の差)に相当する間隔の環状空間56が形成されている。濃縮水出口55は、環状空間56に対向しているため、濃縮水の排出が円滑に実施される。 The second b cap portion 50 of the second end side cap 40 includes a second b thick portion 52, a second b annular step surface 51, and a second b thin portion 53, and the second b annular step surface 51 and second b thin wall portion. A concentrated water outlet 55 is formed between the portions 53. For this reason, between the concentrated water outlet 55 and the hollow fiber membrane bundle 60 facing the concentrated water outlet 55, the difference in thickness between the 2b thick portion (small inner diameter) 52 and the second b thin portion (large inner diameter) 53. An annular space 56 having an interval corresponding to (difference in inner diameter) is formed. Since the concentrated water outlet 55 faces the annular space 56, the concentrated water is discharged smoothly.
 図1~3に示すように、第1固定層61は、厚さ方向に貫通して形成された複数の原水導入孔65を有している。複数の原水導入孔65は、第1固定層61を貫通して形成されているものであり、原水導入孔の先端部が接着剤で固定されていない中空糸膜束60の内部にまで到達されていてもよい。 As shown in FIGS. 1 to 3, the first fixed layer 61 has a plurality of raw water introduction holes 65 formed penetrating in the thickness direction. The plurality of raw water introduction holes 65 are formed so as to penetrate the first fixing layer 61, and reach the inside of the hollow fiber membrane bundle 60 in which the leading ends of the raw water introduction holes are not fixed with an adhesive. It may be.
 第1端面60a側の第1固定層61の半径方向の断面積(A1)中、複数の原水導入孔65の合計開口面積(A2)の割合(A2/A1×100)は、中空糸膜のファウリングを防止する観点から、5~20%が好ましく、10~15%がより好ましい。 The ratio (A2 / A1 × 100) of the total opening area (A2) of the plurality of raw water introduction holes 65 in the radial cross-sectional area (A1) of the first fixed layer 61 on the first end face 60a side is the hollow fiber membrane From the viewpoint of preventing fouling, 5 to 20% is preferable, and 10 to 15% is more preferable.
 本発明の中空糸膜モジュール1は、必要に応じて、原水を導入するための多孔管やネット状のパイプ、内部配置するための仕切り板、補強用の棒状体(好ましくは合成樹脂製)などを使用することができる。 The hollow fiber membrane module 1 of the present invention includes a porous tube or a net-like pipe for introducing raw water, a partition plate for internal arrangement, a reinforcing rod-like body (preferably made of synthetic resin), etc., as necessary. Can be used.
 複数の原水導入孔65を有している第1固定層61と、前記複数の原水導入孔65を有していない第2固定層62を有する中空糸膜モジュール1は、次の方法で製造することができる。まず、ポッティング容器として、底面と周壁部からなり、前記底面から複数本の棒状成形体が間隔をおいて垂設されている第1容器と、前記棒状成形体がないほかは同じ第2容器を用意する。前記棒状成形体の数、形成位置、外径および長さは、複数の原水導入孔65の数、形成位置、内径および深さと一致している。前記棒状成形体の長さは、原水導入孔65の長さと同等程度の長さか、それ以上の長さである。 The hollow fiber membrane module 1 having the first fixed layer 61 having a plurality of raw water introduction holes 65 and the second fixed layer 62 not having the plurality of raw water introduction holes 65 is manufactured by the following method. be able to. First, as a potting container, a first container having a bottom surface and a peripheral wall portion, and a plurality of rod-shaped molded bodies are suspended from the bottom surface at intervals, and a second container that is the same except that the rod-shaped molded body is not provided. prepare. The number, the forming position, the outer diameter, and the length of the rod-shaped molded body coincide with the number, the forming position, the inner diameter, and the depth of the plurality of raw water introduction holes 65. The length of the rod-shaped molded body is equal to or longer than the length of the raw water introduction hole 65.
 次に、筒状ハウジング10の第1端部10aと第2端部10bに対して、第1端部側キャップ20の第2aキャップ部30と第2端部側キャップ40の第2bキャップ部50を接続したものの内部に中空糸膜束60を配置する。中空膜束60の長さは、後工程である切断工程を考慮して調整する。 Next, with respect to the first end 10 a and the second end 10 b of the cylindrical housing 10, the second a cap 30 of the first end cap 20 and the second b cap 50 of the second end cap 40. The hollow fiber membrane bundle 60 is disposed inside the connected ones. The length of the hollow membrane bundle 60 is adjusted in consideration of the subsequent cutting step.
 次に、第1端部側キャップ20の第2aキャップ部30側に第1容器を取り付け、第2端部側キャップ40の第2bキャップ部50側に第2容器を取り付ける。 Next, the first container is attached to the second a cap portion 30 side of the first end side cap 20, and the second container is attached to the second b cap portion 50 side of the second end side cap 40.
 次に、公知の遠心接着法を含む接着法により第1容器内および第2容器内に接着剤(ポッティング剤)を流し込んだ後、固化させる。上記の公知の接着法は、特許第4498373号公報の段落番号21、特許第3686225号公報の段落番号11に記載の遠心接着法、静置接着法などを適用することができる。次に、第1容器と第2容器を取り外すと、第1端部側キャップ20の第2aキャップ部30側は図3に示す状態になっており、中空糸膜束60の第1端面60aは接着剤で閉塞されている。第2端部側キャップ40の第2bキャップ部50側の中空糸膜束60の第2端面60bは接着剤で閉塞されているため、所要長さを切断して開口させる。このようにして、第1固定層61及び第2固定層62が形成される。 Next, an adhesive (potting agent) is poured into the first container and the second container by an adhesion method including a known centrifugal adhesion method, and then solidified. As the above known bonding method, the centrifugal bonding method or the stationary bonding method described in paragraph No. 21 of Japanese Patent No. 4498373 and paragraph No. 11 of Japanese Patent No. 3686225 can be applied. Next, when the first container and the second container are removed, the second a cap part 30 side of the first end part side cap 20 is in the state shown in FIG. 3, and the first end face 60a of the hollow fiber membrane bundle 60 is Blocked with adhesive. Since the second end surface 60b of the hollow fiber membrane bundle 60 on the second b cap portion 50 side of the second end portion side cap 40 is closed with an adhesive, the required length is cut and opened. In this way, the first fixed layer 61 and the second fixed layer 62 are formed.
 次に、第1端部側キャップ20の第2aキャップ部30に第1aキャップ部21を接続し、第2端部側キャップ40の第2bキャップ部50に第1bキャップ部41を接続して、中空糸膜モジュール1を得ることができる。本発明の中空糸膜モジュール1は、膜面積(有効膜面積)が10m2以上であるものが好ましく、膜面積(有効膜面積)が30~45m2であるものがより好ましい。 Next, the first a cap portion 21 is connected to the second a cap portion 30 of the first end side cap 20, the first b cap portion 41 is connected to the second b cap portion 50 of the second end side cap 40, and The hollow fiber membrane module 1 can be obtained. The hollow fiber membrane module 1 of the present invention preferably has a membrane area (effective membrane area) of 10 m 2 or more, more preferably a membrane area (effective membrane area) of 30 to 45 m 2 .
 次に、本発明の中空糸膜モジュール1の濾過運転方法を説明する。なお中空糸膜モジュール1は、筒状ハウジング10の第1端部10a側が図3に示す状態になっている場合のもので説明する。中空糸膜モジュール1は、縦置き型でも横置き型でも使用することができるが、縦置き型で使用した場合でも、第1固定層61と第2固定層62から離れた中空糸膜束60の中央部は撓んでしまっていることが考えられる。そのような場合でも、第1固定層61に複数の原水導入孔65が形成されているため、複数の原水導入孔65の長軸X方向の延長方向へは原水が流れやすくなっている。 Next, the filtration operation method of the hollow fiber membrane module 1 of the present invention will be described. The hollow fiber membrane module 1 will be described in the case where the first end 10a side of the cylindrical housing 10 is in the state shown in FIG. The hollow fiber membrane module 1 can be used either vertically or horizontally. However, even when the hollow fiber membrane module 1 is used vertically, the hollow fiber membrane bundle 60 separated from the first fixed layer 61 and the second fixed layer 62 is used. It is conceivable that the central part is bent. Even in such a case, since the plurality of raw water introduction holes 65 are formed in the first fixed layer 61, the raw water easily flows in the extending direction of the long axis X direction of the plurality of raw water introduction holes 65.
 中空糸膜モジュール1の原水供給口22から原水が供給されると、第1端部側キャップ20の第1aキャップ部21と第1固定層61の間の空間に入る。その後、図3に示す複数の原水導入孔65を通って中空糸膜束60の中心部分又は周囲に供給される。その後、中空糸膜の外側から内側に外圧濾過された後、中空糸膜内部を通って透過水出口42から排出される。濃縮水は、環状空間56を通って濃縮水出口55から排出される。 When raw water is supplied from the raw water supply port 22 of the hollow fiber membrane module 1, it enters a space between the first a cap portion 21 of the first end side cap 20 and the first fixed layer 61. Thereafter, the water is supplied to the central portion or the periphery of the hollow fiber membrane bundle 60 through the plurality of raw water introduction holes 65 shown in FIG. Then, after external pressure filtration from the outside to the inside of the hollow fiber membrane, the hollow fiber membrane is discharged from the permeate outlet 42 through the inside of the hollow fiber membrane. The concentrated water is discharged from the concentrated water outlet 55 through the annular space 56.
 本発明の外圧式中空糸膜モジュール1は、中空糸膜の表面には懸濁質に由来する堆積物層も形成され難くなり、目詰まりも生じ難くなり、ファウリングも生じ難くなる。特許第4498373号公報の発明の実施例1では、濾過運転28.5分ごとに逆洗とガスバブリングを実施しており(段落番号0056)、特許第3686225号公報の発明の実施例(段落番号0019)では濾過運転30分に1回エアースクラビング洗浄を実施しているが、本発明ではエアースクラビングを不要にできたり、実施する場合も回数を減少させることができたりする。すなわち、本発明の濾過運転方法は、濾過工程と洗浄工程を有しており、前記洗浄工程が、逆圧洗浄を実施して、エアースクラビング洗浄を実施しない、濾過運転方法とすることができる。エアースクラビングの回数が多くなる場合には、揺動する中空糸膜束同士が接触を繰り返すことで損傷するおそれがあるが、本発明ではエアースクラビングを実施する場合でも回数を減らすことができるため、前記したような膜の損傷が生じ難くなる。 In the external pressure hollow fiber membrane module 1 of the present invention, a deposit layer derived from suspended solids is hardly formed on the surface of the hollow fiber membrane, clogging is less likely to occur, and fouling is less likely to occur. In Example 1 of the invention of Japanese Patent No. 4498373, backwashing and gas bubbling are performed every 28.5 minutes of filtration operation (paragraph number 0056), and the embodiment of the invention of Japanese Patent No. 3686225 (paragraph number) [0019] Although air scrubbing cleaning is carried out once every 30 minutes in the filtration operation, air scrubbing can be made unnecessary in the present invention, and the number of times can be reduced when it is carried out. That is, the filtration operation method of the present invention includes a filtration step and a washing step, and the washing step can be a filtration operation method in which back-pressure washing is performed and air scrubbing washing is not performed. If the number of times of air scrubbing is increased, there is a risk of oscillating hollow fiber membrane bundles being repeatedly contacted with each other, but the present invention can reduce the number of times even when performing air scrubbing, As mentioned above, the film is hardly damaged.
 濾過運転を長期間継続して行くことで濾過性能が低下してきたときには、逆圧洗浄を実施する。逆圧洗浄は、必要に応じて薬剤を添加した逆圧洗浄水を濃縮水出口55側から圧入して実施する。逆圧洗浄排水は、中空糸膜束60の間を通り、逆圧洗浄水出口を兼ねる原水供給口22から排出される。上記したとおり、第1固定層61に原水導入孔65が形成されているため、原水導入孔65の長軸X方向の延長方向へは原水が流れやすくなっていることから、逆圧洗浄排水も排出されやすくなっている。 When the filtration performance has deteriorated by continuing the filtration operation for a long time, back pressure washing is performed. Back pressure washing is performed by pressing back pressure washing water added with chemicals as needed from the concentrated water outlet 55 side. The reverse pressure washing wastewater passes between the hollow fiber membrane bundles 60 and is discharged from the raw water supply port 22 that also serves as the reverse pressure washing water outlet. As described above, since the raw water introduction hole 65 is formed in the first fixed layer 61, the raw water easily flows in the extending direction of the long axis X direction of the raw water introduction hole 65. It is easy to be discharged.
実施例
 実施例1
 図1、2、3に示す中空糸膜モジュール1を用いて、100日間の濾過運転を実施した。以下、実施例1の中空糸膜モジュールを中空糸膜モジュール1Aとする。中空糸膜モジュール1A及び濾過運転の詳細な条件は下記の通りである。
Example Example 1
Filtration operation for 100 days was carried out using the hollow fiber membrane module 1 shown in FIGS. Hereinafter, the hollow fiber membrane module of Example 1 is referred to as a hollow fiber membrane module 1A. The detailed conditions of the hollow fiber membrane module 1A and the filtration operation are as follows.
(中空糸膜モジュール1A)
中空糸膜モジュール1A:全長1,600mm、外径284mm
筒状ハウジング10:ABS樹脂(材料)製、外径284mm、内径(最小直径(D))265mm、X軸方向長さ1,400mm
中空糸膜束60:置換度2.4のセルロースベンゾエート製、充填率60%(充填率は、下記に記載の方法で測定)、中空糸外径1.4mm、中空糸内径0.8mm、第1端面60a側から第2端面60b側までの長さ(L)1,245mm、比率(L/D)4.7
原水導入孔65:第1固定層61の中空糸膜束に、開口面積が2.2cmの原水導入孔65を、図3に示すように19個形成
(Hollow fiber membrane module 1A)
Hollow fiber membrane module 1A: total length 1,600mm, outer diameter 284mm
Tubular housing 10: made of ABS resin (material), outer diameter 284mm, inner diameter (minimum diameter (D)) 265mm, length in X-axis direction 1,400mm
Hollow fiber membrane bundle 60: made of cellulose benzoate having a degree of substitution of 2.4, filling rate 60% (filling rate is measured by the method described below), hollow fiber outer diameter 1.4 mm, hollow fiber inner diameter 0.8 mm, Length from the first end face 60a side to the second end face 60b side (L) 1,245 mm, ratio (L / D) 4.7
Raw water introduction hole 65: 19 raw water introduction holes 65 having an opening area of 2.2 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
 中空糸膜束60の充填率は、中空糸膜1本あたりの幅方向の平均断面積と筒状ハウジング10内に収容される中空糸膜の本数との積から算出される中空糸膜束の断面積をS2、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部における幅方向の最小断面積をS1として、以下の式により算出した。
 充填率[%]=S2/S1×100
The filling rate of the hollow fiber membrane bundle 60 is calculated based on the product of the average cross-sectional area in the width direction per hollow fiber membrane and the number of hollow fiber membranes accommodated in the cylindrical housing 10. The cross-sectional area was calculated by the following formula, with S2 being the minimum cross-sectional area in the width direction at the inner peripheral portions of the cylindrical housing 10, the second a cap portion 30, and the second b cap portion 50.
Filling rate [%] = S2 / S1 × 100
 ここで最小断面積S1は、筒状ハウジング10、第2aキャップ部30、及び第2bキャップ部50の内周部におけるX軸と垂直方向の断面積において、最も小さくなる部分の断面積であり、かつ原水を導入するための多孔管などの中空糸膜束以外の部材を除いた中空糸膜が使用されている空間の断面積である。また断面積S2において、中空糸膜1本あたりの幅方向の平均断面積は、筒状ハウジング10内に収容される中空糸膜束から任意に合計100本の中空糸膜を採取し、各中空糸膜の外径を測定して断面積を算出し、それらの値を平均したものを用いた。 Here, the minimum cross-sectional area S1 is the cross-sectional area of the smallest portion in the cross-sectional area in the direction perpendicular to the X axis in the inner peripheral part of the cylindrical housing 10, the second a cap part 30, and the second b cap part 50, And it is the cross-sectional area of the space where the hollow fiber membrane except the members other than the hollow fiber membrane bundle such as a porous tube for introducing raw water is used. Further, in the cross-sectional area S2, the average cross-sectional area in the width direction per hollow fiber membrane is obtained by arbitrarily collecting a total of 100 hollow fiber membranes from the hollow fiber membrane bundle accommodated in the cylindrical housing 10, and measuring each hollow fiber membrane. The cross-sectional area was calculated by measuring the outer diameter of the thread membrane, and the average of those values was used.
(濾過運転条件)
 駆動ポンプを駆動させて、原水タンク内の河川水(表流水)を送り、中空糸膜モジュール1の原水供給口22から供給して濾過を開始した。濾過運転の条件は下記の通りであった。
濾過運転期間:100日間
標準膜濾過流束:3.0m/m/日
濾過運転時間(逆洗浄間隔):60分
逆洗浄時間:60秒/回
回収率(下記式より算出):95%
 回収率(%)=[(造水量-逆洗浄時使用水量)/造水量]×100
(Filtration operation conditions)
The drive pump was driven to send the river water (surface water) in the raw water tank and supplied from the raw water supply port 22 of the hollow fiber membrane module 1 to start filtration. The conditions for the filtration operation were as follows.
Filtration operation period: 100 days Standard membrane filtration flux: 3.0 m 3 / m 2 / day Filtration operation time (back washing interval): 60 minutes Back washing time: 60 seconds / recovery rate (calculated from the following formula): 95 %
Recovery rate (%) = [(amount of fresh water−amount of water used during back washing) / amount of fresh water] × 100
 濾過運転終了後、中空糸膜モジュールを解体し、中空糸膜束の状況を確認したところ、中空糸膜の汚泥の付着量は比較的少なく、汚泥の塊の固着等も認められなかった。 After completion of the filtration operation, the hollow fiber membrane module was disassembled and the state of the hollow fiber membrane bundle was confirmed. As a result, the amount of sludge adhered to the hollow fiber membrane was relatively small, and no sludge sticking was observed.
 実施例2
 図1、2、3に示す中空糸膜モジュール1を用いて、標準膜濾過流束を変えながら濾過運転を実施した。以下、実施例2の中空糸膜モジュールを中空糸膜モジュール1Bとする。中空糸膜モジュール1B及び濾過運転の詳細な条件は下記の通りである。
Example 2
Filtration operation was performed using the hollow fiber membrane module 1 shown in FIGS. 1, 2, and 3 while changing the standard membrane filtration flux. Hereinafter, the hollow fiber membrane module of Example 2 is referred to as a hollow fiber membrane module 1B. The detailed conditions of the hollow fiber membrane module 1B and the filtration operation are as follows.
(中空糸膜モジュール1B)
中空糸膜モジュール1B:全長1,600mm、外径160mm
筒状ハウジング10:ABS樹脂(材料)製、外径160mm、内径(最小直径(D))147mm、X軸方向長さ1,400mm
中空糸膜束60:置換度2.87のセルロースアセテート製、充填率42%(充填率は、上記に記載の方法で測定)、中空糸外径1.3mm、中空糸内径0.8mm、中空糸膜外表面での濾過実効膜面積27.1m、第1端面60a側から第2端面60b側までの長さ(L)1245mm、比率(L/D)8.5
原水導入孔65:第1固定層61の中空糸膜束に、開口面積が1.15cmの原水導入孔65を、図3に示すように19個形成
(Hollow fiber membrane module 1B)
Hollow fiber membrane module 1B: total length 1,600mm, outer diameter 160mm
Tubular housing 10: made of ABS resin (material), outer diameter 160mm, inner diameter (minimum diameter (D)) 147mm, length in the X-axis direction 1,400mm
Hollow fiber membrane bundle 60: Made of cellulose acetate with a substitution degree of 2.87, filling rate 42% (filling rate is measured by the method described above), hollow fiber outer diameter 1.3 mm, hollow fiber inner diameter 0.8 mm, hollow fiber membrane Effective filtration membrane area 27.1 m 2 on the outer surface, length (L) 1245 mm from the first end face 60 a side to the second end face 60 b side, ratio (L / D) 8.5
Raw water introduction hole 65: 19 raw water introduction holes 65 having an opening area of 1.15 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
(濾過運転条件)
 駆動ポンプを駆動させて、原水タンク内の河川水(揖保川)を送り、中空糸膜モジュール1Bの原水供給口22から供給して濾過を開始し、原水供給口22付近で、水温と濾過入口圧の経時変化を観察し、水温20℃で換算した濾過入口圧を求めた。結果を図4に示す。濾過運転の条件は下記の通りであった。
濾過運転期間:50日間(継続運転可能)
標準膜濾過流束:図4の通り、濾過入口圧の上昇傾向を見ながら、濾過流束を上昇させた。
濾過運転時間(逆洗浄間隔):60分
逆洗浄時間:60秒/回
回収率(下記式より算出):95%
 回収率(%)=[(造水量-逆洗浄時使用水量)/造水量]×100
(Filtration operation conditions)
The drive pump is driven to feed the river water in the raw water tank (Kayabo River), supply from the raw water supply port 22 of the hollow fiber membrane module 1B and start filtration, and near the raw water supply port 22, the water temperature and the filtration inlet pressure Was observed, and the filtration inlet pressure converted at a water temperature of 20 ° C. was determined. The results are shown in FIG. The conditions for the filtration operation were as follows.
Filtration operation period: 50 days (continuous operation possible)
Standard membrane filtration flux: As shown in FIG. 4, the filtration flux was increased while observing the increasing tendency of the filtration inlet pressure.
Filtration operation time (back washing interval): 60 minutes Back washing time: 60 seconds / recovery rate (calculated from the following formula): 95%
Recovery rate (%) = [(amount of fresh water−amount of water used during back washing) / amount of fresh water] × 100
 実施例2の中空糸膜モジュール1Bは、図4に示す通り、運転日数47日の時点で膜濾過流束を3m/m/日へ調整し、50日までの時点での水温20℃で換算した濾過入口圧は約80kPaで安定した運転ができていた。このため50日以降も膜濾過流束を3m/m/日で継続運転可能であった。 In the hollow fiber membrane module 1B of Example 2, as shown in FIG. 4, the membrane filtration flux was adjusted to 3 m 3 / m 2 / day when the operating days were 47 days, and the water temperature up to 50 days was 20 ° C. The filtration inlet pressure converted in terms of was stable at about 80 kPa. Therefore, the membrane filtration flux could be continuously operated at 3 m 3 / m 2 / day after 50 days.
 比較例1
 図1、2、3に示す中空糸膜モジュール1を用いて、標準膜濾過流速を変えながら濾過運転を実施した。以下、比較例1の中空糸膜モジュールを中空糸膜モジュール1Cとする。中空糸膜モジュール1C及び濾過運転の詳細な条件は下記の通りである。
Comparative Example 1
Filtration operation was carried out using the hollow fiber membrane module 1 shown in FIGS. 1, 2, and 3 while changing the standard membrane filtration flow rate. Hereinafter, the hollow fiber membrane module of Comparative Example 1 is referred to as a hollow fiber membrane module 1C. The detailed conditions of the hollow fiber membrane module 1C and the filtration operation are as follows.
(中空糸膜モジュール1C)
中空糸膜モジュール1C:全長2,400mm、外径160mm
筒状ハウジング10:ABS樹脂(材料)製、外径160mm、内径(最小直径(D))147mm、X軸方向長さ2,200mm
中空糸膜束60:置換度3のセルロースアセテート製、充填率35%(充填率は、上記に記載の方法で測定)、中空糸外径1.3mm、中空糸内径0.8mm、中空糸膜外表面での濾過実効膜面積35.7m、第1端面60a側から第2端面60b側までの長さ(L)2,055mm、比率(L/D)14
原水導入孔65:第1固定層61の中空糸膜束に、開口面積が1.15cmの原水導入孔65を、図3に示すように19個形成
(Hollow fiber membrane module 1C)
Hollow fiber membrane module 1C: total length 2,400mm, outer diameter 160mm
Cylindrical housing 10: made of ABS resin (material), outer diameter 160mm, inner diameter (minimum diameter (D)) 147mm, X-axis length 2,200mm
Hollow fiber membrane bundle 60: made of cellulose acetate having a substitution degree of 3, filling rate 35% (filling rate is measured by the method described above), hollow fiber outer diameter 1.3 mm, hollow fiber inner diameter 0.8 mm, hollow fiber membrane Filtration effective membrane area 35.7 m 2 on the outer surface, length (L) 2,055 mm, ratio (L / D) 14 from the first end face 60 a side to the second end face 60 b side
Raw water introduction hole 65: 19 raw water introduction holes 65 having an opening area of 1.15 cm 2 are formed in the hollow fiber membrane bundle of the first fixed layer 61 as shown in FIG.
(濾過運転条件)
 駆動ポンプを駆動させて、原水タンク内の河川水(揖保川)を送り、中空糸膜モジュール1Cの原水供給口22から供給して濾過を開始し、原水供給口22付近で、水温と濾過入口圧の経時変化を観察し、水温20℃で換算した濾過入口圧を求めた。結果を図5に示す。濾過運転の条件は下記の通りであった。
濾過運転期間:46日間
標準膜濾過流束:図5の通り、濾過入口圧の上昇傾向を見ながら、濾過流束を上昇させた。
濾過運転時間(逆洗浄間隔):60分
逆洗浄時間:60秒/回
回収率(下記式より算出):95%
 回収率(%)=[(造水量-逆洗浄時使用水量)/造水量]×100
(Filtration operation conditions)
The drive pump is driven to feed the river water in the raw water tank (Kayabo River), supply from the raw water supply port 22 of the hollow fiber membrane module 1C to start filtration, and near the raw water supply port 22, the water temperature and the filtration inlet pressure Was observed, and the filtration inlet pressure converted at a water temperature of 20 ° C. was determined. The results are shown in FIG. The conditions for the filtration operation were as follows.
Filtration operation period: 46 days Standard membrane filtration flux: As shown in FIG. 5, the filtration flux was increased while observing the increasing tendency of the filtration inlet pressure.
Filtration operation time (back washing interval): 60 minutes Back washing time: 60 seconds / recovery rate (calculated from the following formula): 95%
Recovery rate (%) = [(amount of fresh water−amount of water used during back washing) / amount of fresh water] × 100
 実施例2の中空糸膜モジュール1Bは、運転日数ごとに膜濾過流束を変更しても、比較例1の中空糸膜モジュール1Cと比較して、濾過入口圧が上昇せず、膜濾過流束が3.0m/m/日であっても、安定した濾過運転を行うことができた。一方、比較例1の中空糸膜モジュール1Cは、運転日数ごとに濾過流束を上げていくと、中空糸膜に汚泥等が付着し、濾過入口圧が急激に上昇する傾向があった。そのため、膜濾過流束が2.0m/m/日までしか、安定した濾過運転を行うことができなかった。運転日数40日の時点で膜濾過流束を2.5m/m/日へ調整したところ、汚泥等の付着が著しく増え、直ぐに膜濾過流束が低下するため46日目には運転停止した。この結果は、実施例2の中空糸膜モジュール1Bの方が、比較例1の中空糸膜モジュール1Cよりも、中空糸膜充填率が高いことで、被処理水の流れによる剪断力がより強く働き、中空糸膜外表面に付着した汚泥が剥がれ落ちるために、濾過運転により生じた中空糸膜の汚泥の付着量が少ないためであると考えられる。また比較例1の中空糸膜モジュール1Cは、中空糸膜束の前記第1端面側から前記第2端面側までの長さ(L)が2mを上回り、実施例2の中空糸膜モジュール1Bよりも長いため、濾過入口圧が高くなるにつれ、実施例2の中空糸膜モジュール1Bと比べた際に、単位膜面積当たりの透水速度(膜濾過流束)の低下が顕著になる。これは、長さ(L)が大きいことにより、同じ膜濾過流束を得るために濾過入口圧が高くせざるを得なく、エネルギー効率が悪くなることを意味する。 Even if the hollow fiber membrane module 1B of Example 2 changes the membrane filtration flux every operation days, the filtration inlet pressure does not increase as compared with the hollow fiber membrane module 1C of Comparative Example 1, and the membrane filtration flow Even if the bundle was 3.0 m 3 / m 2 / day, stable filtration operation could be performed. On the other hand, in the hollow fiber membrane module 1C of Comparative Example 1, when the filtration flux was increased every operation day, sludge or the like adhered to the hollow fiber membrane, and the filtration inlet pressure tended to increase rapidly. Therefore, stable filtration operation could be performed only when the membrane filtration flux was 2.0 m 3 / m 2 / day. When the membrane filtration flux was adjusted to 2.5 m 3 / m 2 / day when the operation days were 40 days, the adhesion of sludge increased significantly, and the membrane filtration flux immediately decreased, so the operation was stopped on the 46th day. did. As a result, the hollow fiber membrane module 1B of Example 2 has a higher hollow fiber membrane filling rate than the hollow fiber membrane module 1C of Comparative Example 1, and thus the shear force due to the flow of water to be treated is stronger. This is considered to be because the sludge adhering to the outer surface of the hollow fiber membrane is peeled off and the amount of sludge adhering to the hollow fiber membrane generated by the filtration operation is small. Further, the hollow fiber membrane module 1C of Comparative Example 1 has a length (L) from the first end surface side to the second end surface side of the hollow fiber membrane bundle of more than 2 m, which is more than the hollow fiber membrane module 1B of Example 2. Therefore, as the filtration inlet pressure increases, the water permeation rate (membrane filtration flux) per unit membrane area decreases significantly when compared with the hollow fiber membrane module 1B of Example 2. This means that due to the large length (L), the filtration inlet pressure has to be increased in order to obtain the same membrane filtration flux, resulting in poor energy efficiency.
産業上の利用可能性
 本発明の中空糸膜モジュールは、浄水場設備、汚水処理設備、海水淡水化処理設備などで使用することができる。
Industrial Applicability The hollow fiber membrane module of the present invention can be used in water purification plant facilities, sewage treatment facilities, seawater desalination facilities, and the like.
符号の説明
 1 中空糸膜モジュール
 10 筒状ハウジング
 20 第1端部側キャップ
 21 第1キャップ部
 22 原水供給口(小径部)
 23 大径部
 30 第2キャップ部
 40 第2端部側キャップ
 41 第1キャップ部
 50 第2キャップ部
 56 環状空間
 60 中空糸膜束
 65 原水導入孔
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane module 10 Tubular housing 20 First end side cap 21 First cap portion 22 Raw water supply port (small diameter portion)
23 Large diameter portion 30 Second cap portion 40 Second end side cap 41 First cap portion 50 Second cap portion 56 Annular space 60 Hollow fiber membrane bundle 65 Raw water introduction hole

Claims (7)

  1.  少なくとも原水供給口と透過水出口を含む液出入り口を有する筒状ハウジングと、前記筒状ハウジング内に中空糸膜束が収容された中空糸膜モジュールであって、
     前記中空糸膜束が、前記中空糸膜束の原水供給口側である第1端面側が閉塞された状態にて、前記筒状ハウジングの内壁面と共に接着剤により固定されており、
     前記第1端面側とは軸方向反対側である透過水出口側の第2端面側が開口された状態にて、前記筒状ハウジングの内壁面と共に接着剤により固定されており、
     前記中空糸膜束の充填率が40%~70%であり、
     前記中空糸膜束の前記第1端面側から前記第2端面側までの長さ(L)が2m以下である、外圧式中空糸膜モジュール。
    A cylindrical housing having a liquid inlet / outlet including at least a raw water supply port and a permeate outlet, and a hollow fiber membrane module in which a hollow fiber membrane bundle is accommodated in the cylindrical housing,
    The hollow fiber membrane bundle is fixed with an adhesive together with the inner wall surface of the cylindrical housing in a state where the first end surface side which is the raw water supply port side of the hollow fiber membrane bundle is closed.
    In the state where the second end surface side of the permeate outlet side, which is the opposite side to the first end surface side in the axial direction, is opened, it is fixed together with the inner wall surface of the cylindrical housing by an adhesive,
    The filling rate of the hollow fiber membrane bundle is 40% to 70%,
    An external pressure type hollow fiber membrane module in which a length (L) from the first end surface side to the second end surface side of the hollow fiber membrane bundle is 2 m or less.
  2.  両端開口部のそれぞれに原水供給口と透過水出口を含む液出入り口を有するキャップが固定された筒状ハウジングと、前記筒状ハウジング内に中空糸膜束が収容された中空糸膜モジュールであって、
     前記中空糸膜束が、
     原水供給口側の第1端部側が、前記中空糸膜束の第1端面側が閉塞された状態にて、前記筒状ハウジングの内壁面または前記キャップの内壁面と共に接着剤により固定されており、
     前記第1端面側とは軸方向に反対側である透過水出口側の第2端面側が、前記中空糸膜束の第2端面側が開口された状態にて、前記筒状ハウジングの内壁面または前記キャップの内壁面と共に接着剤により固定されており、
     前記中空糸膜束の充填率が40%~70%であり、
     前記中空糸膜束の前記第1端面側から前記第2端面側までの長さ(L)が2m以下である、外圧式中空糸膜モジュール。
    A cylindrical housing in which a cap having a liquid inlet / outlet including a raw water supply port and a permeated water outlet is fixed to each of the opening portions at both ends, and a hollow fiber membrane module in which a hollow fiber membrane bundle is accommodated in the cylindrical housing, ,
    The hollow fiber membrane bundle is
    The first end side of the raw water supply port side is fixed by an adhesive together with the inner wall surface of the cylindrical housing or the inner wall surface of the cap in a state where the first end surface side of the hollow fiber membrane bundle is closed.
    In the state where the second end surface side of the permeate outlet side, which is opposite to the first end surface side in the axial direction, is opened on the second end surface side of the hollow fiber membrane bundle, It is fixed with an adhesive together with the inner wall surface of the cap,
    The filling rate of the hollow fiber membrane bundle is 40% to 70%,
    An external pressure type hollow fiber membrane module in which a length (L) from the first end surface side to the second end surface side of the hollow fiber membrane bundle is 2 m or less.
  3.  前記第1端面側の接着剤による固定部が、厚さ方向に貫通して形成された複数の原水導入孔を有しているものである、請求項1又は2に記載の外圧式中空糸膜モジュール。 The external pressure type hollow fiber membrane according to claim 1 or 2, wherein the fixing portion by the adhesive on the first end face side has a plurality of raw water introduction holes formed penetrating in the thickness direction. module.
  4.  前記中空糸膜束がセルロース系膜である、請求項1~3の何れか1項に記載の外圧式中空糸膜モジュール。 The external pressure hollow fiber membrane module according to any one of claims 1 to 3, wherein the hollow fiber membrane bundle is a cellulosic membrane.
  5.  前記中空糸膜束の前記第1端面側から前記第2端面側までの長さ(L)が1m以上2m以下であり、前記筒状ハウジングの内周部の最小直径(D)が14cm以上である、請求項1~4の何れか1項に記載の外圧式中空糸膜モジュール。 The length (L) from the first end face side to the second end face side of the hollow fiber membrane bundle is 1 m or more and 2 m or less, and the minimum diameter (D) of the inner peripheral portion of the cylindrical housing is 14 cm or more. The external pressure type hollow fiber membrane module according to any one of claims 1 to 4.
  6.  前記中空糸膜束の前記第1端面側から前記第2端面側までの長さ(L)と、前記筒状ハウジングの内周部の最小直径(D)との比率(L/D)が、4~13である、請求項1~5の何れか1項に記載の外圧式中空糸膜モジュール。 The ratio (L / D) of the length (L) from the first end face side to the second end face side of the hollow fiber membrane bundle and the minimum diameter (D) of the inner peripheral portion of the cylindrical housing is: The external pressure type hollow fiber membrane module according to any one of claims 1 to 5, which is 4 to 13.
  7.  請求項1~6の何れか1項に記載の外圧式中空糸膜モジュールを用いた濾過運転方法であって、
     前記濾過運転方法が濾過工程と洗浄工程を有しており、
     前記洗浄工程が、逆圧洗浄を実施して、エアースクラビング洗浄を実施しない、濾過運転方法。
    A filtration operation method using the external pressure hollow fiber membrane module according to any one of claims 1 to 6,
    The filtration operation method has a filtration step and a washing step;
    The filtration operation method, wherein the cleaning step performs back pressure cleaning and does not perform air scrubbing cleaning.
PCT/JP2019/016558 2018-05-07 2019-04-18 External pressure-type hollow-fiber membrane module WO2019216148A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-089313 2018-05-07
JP2018089313 2018-05-07
JP2018169875A JP2019195800A (en) 2018-05-07 2018-09-11 External pressure type hollow fiber membrane module
JP2018-169875 2018-09-11

Publications (1)

Publication Number Publication Date
WO2019216148A1 true WO2019216148A1 (en) 2019-11-14

Family

ID=68468030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016558 WO2019216148A1 (en) 2018-05-07 2019-04-18 External pressure-type hollow-fiber membrane module

Country Status (1)

Country Link
WO (1) WO2019216148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425240A (en) * 2020-10-29 2022-05-03 旭化成株式会社 External pressure type hollow fiber membrane module and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202112A (en) * 2008-02-28 2009-09-10 Mitsubishi Rayon Eng Co Ltd Hollow fiber membrane module
WO2014007138A1 (en) * 2012-07-05 2014-01-09 東レ株式会社 Hollow fiber membrane module
JP2017164658A (en) * 2016-03-14 2017-09-21 株式会社ダイセル External pressure type hollow fiber membrane module
WO2017209150A1 (en) * 2016-05-31 2017-12-07 東レ株式会社 Hollow fiber membrane module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202112A (en) * 2008-02-28 2009-09-10 Mitsubishi Rayon Eng Co Ltd Hollow fiber membrane module
WO2014007138A1 (en) * 2012-07-05 2014-01-09 東レ株式会社 Hollow fiber membrane module
JP2017164658A (en) * 2016-03-14 2017-09-21 株式会社ダイセル External pressure type hollow fiber membrane module
WO2017209150A1 (en) * 2016-05-31 2017-12-07 東レ株式会社 Hollow fiber membrane module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425240A (en) * 2020-10-29 2022-05-03 旭化成株式会社 External pressure type hollow fiber membrane module and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6120688A (en) Portable reverse osmosis unit for producing drinking water
JP4932492B2 (en) Hollow fiber membrane cartridge
WO2002004101A1 (en) Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
US8753509B2 (en) Advanced filtration device for water and wastewater treatment
US20070151916A1 (en) Network for supporting spiral wound membrane cartridges for submerged operation
JP2001269546A (en) Rack-type filter
CN100500270C (en) Hollow fiber membrane submodule and module including the same
WO2019216148A1 (en) External pressure-type hollow-fiber membrane module
JP2019195800A (en) External pressure type hollow fiber membrane module
JPWO2004112944A1 (en) Membrane cartridge, membrane separation apparatus, and membrane separation method
JPH09248429A (en) Separation method and apparatus therefor
JP2013237040A (en) Filtration device and filtration method
WO2017159516A1 (en) External-pressure-type hollow fiber membrane module
JP2013212497A (en) Water treating method
JP2014128784A (en) Membrane separation activated sludge treatment apparatus
JP3615820B2 (en) Membrane module
JPH11342321A (en) Hollow fiber membrane treating device
JP2002346344A (en) Immersed filtration apparatus
CN103172193A (en) Organic wastewater reusing method and system thereof
JP2013128892A (en) Hollow fiber membrane module and washing method of the same
JP5076569B2 (en) Liquid separation membrane module
JP2013212496A (en) Hollow fiber membrane module
JP2620254B2 (en) Hollow fiber membrane filtration module
JP2008221108A (en) Liquid separation membrane module
JP2023075948A (en) Filtration unit and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800479

Country of ref document: EP

Kind code of ref document: A1