WO2019216120A1 - Polarization plate and display device using polarization plate - Google Patents

Polarization plate and display device using polarization plate Download PDF

Info

Publication number
WO2019216120A1
WO2019216120A1 PCT/JP2019/016003 JP2019016003W WO2019216120A1 WO 2019216120 A1 WO2019216120 A1 WO 2019216120A1 JP 2019016003 W JP2019016003 W JP 2019016003W WO 2019216120 A1 WO2019216120 A1 WO 2019216120A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
polarizing
group
film
liquid crystal
Prior art date
Application number
PCT/JP2019/016003
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 亮
大輔 谷岡
Original Assignee
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ポラテクノ filed Critical 株式会社ポラテクノ
Priority to KR1020207035314A priority Critical patent/KR20210006970A/en
Priority to JP2020518213A priority patent/JPWO2019216120A1/en
Priority to CN201980030625.3A priority patent/CN112534315B/en
Publication of WO2019216120A1 publication Critical patent/WO2019216120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/06Disazo dyes from a coupling component "C" containing a directive hydroxyl group
    • C09B31/068Naphthols
    • C09B31/072Naphthols containing acid groups, e.g. —CO2H, —SO3H, —PO3H2, —OSO3H, —OPO2H2; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present disclosure relates to a polarizing plate and a display device using the polarizing plate.
  • a mirror display in which a mirror (mirror) and a display (image display device) are combined and integrated has been widely used.
  • the rear-view mirror of an automobile is used as a mirror display, the rear view can be projected with a camera provided outside the rear of the automobile to compensate for the blind spot obstructed by the rear seat or the pillar of the vehicle. , Safer driving becomes possible.
  • the mirror display is typically known as the half mirror system, and has a display device under the half mirror to display images so as to emerge from the mirror, or to switch between the mirror state and the image display state. It is a display device that can.
  • a mirror display having a shutter mechanism for switching between a display mode and a mirror mode on the front surface of the display device has been proposed (hereinafter referred to as a liquid crystal shutter method).
  • a liquid crystal cell including an absorption-type polarizing plate and a reflective-type polarizing plate is provided on the front surface of the display device unit, and an image display mode and a mirror mode can be switched by driving the liquid crystal cell.
  • the liquid crystal shutter method is particularly preferable as a rear mirror for automobiles because double reflection (a phenomenon in which an image display image and a reflected image can be seen simultaneously), which has been a problem in the half mirror method, is reduced.
  • a polarizing plate As the absorptive polarizing plate used on the viewing side of such a mirror display, a polarizing plate provided with a polarizer formed by dyeing and stretching a dichroic dye such as iodine or a dye on polyvinyl alcohol is used. At this time, it is good also as a polarizing plate which has high transmittance
  • the iodine polarizing plate having a high degree of polarization generally has a low transmittance characteristic on the short wavelength side (near 420 nm). Therefore, when the polarizing plate is used as a polarizing member for a shutter of the mirror display, a display mode or a mirror mode is used. There is a problem that the display image is yellowish in color, and the appearance is worse than a conventional mirror made of a glass plate and metallic luster.
  • the waveform balance and hue of the polarizing plate are generally adjusted by adjusting the blending conditions of the dichroic dye, the dyeing conditions of the polarizing film, etc. However, in the polarizing plate using only the iodine-based dye, the polarizing plate has a neutral hue. It is not easy to adjust to.
  • the reflectance in the mirror mode can be improved by increasing the transmittance of the polarizing plate.
  • the transmittance can be increased by reducing the dyeing amount of iodine in the polarizing film.
  • a polarizing plate including a polarizing film having a high transmittance by reducing the amount of iodine significantly reduces optical durability against high temperatures and high temperatures and high humidity. Therefore, it is not suitable as a member requiring high durability such as an automobile.
  • the use of an iodine-based polarizing plate as the absorption-type polarizing plate in the liquid crystal shutter portion cannot satisfy the above requirements, and therefore a polarizing plate having characteristics suitable for the method is required.
  • the mirror member is configured by laminating films such as polarizing plates, the display image fluctuates if the film has poor smoothness or has distortion (swells). Therefore, in the mirror display of the said system, it is necessary to maintain the display quality comparable with the mirror using the conventional smooth glass surface.
  • An object of the present disclosure is to provide a polarizing member that is an absorptive polarizing plate of the shutter portion in a liquid crystal shutter-type mirror display and has excellent optical characteristics, durability, and display quality. That is, one aspect of the present disclosure includes a polarizing plate having a hard coat layer on one surface and an adhesive layer on the other surface, and the polarizer of the polarizing plate contains at least one dichroic dye, The plate has a single transmittance Ys corrected in terms of visibility measured for light in a wavelength region of 380 nm or more and 780 nm or less, 45% or more and 60% or less, and the degree of polarization Py is 50% or more and 95% or less.
  • a * s is ⁇ 3 to +3 and b * s is ⁇ 3 to +3, and the polarizing axis is composed of two polarizing plates.
  • the polarizing member is characterized in that a * p is ⁇ 3 to +3 and b * p is ⁇ 3 to +3 in terms of hue when in parallel.
  • the pressure-sensitive adhesive layer may have a swell degree of 7 or less, and the polarizing member may have a swell degree of 15 or less.
  • the dichroic dye may include a water-soluble disazo compound represented by the chemical formula (1) or a copper complex salt compound thereof.
  • X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group
  • Y represents a methoxy group or an ethoxy group
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, a methyl group,- C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, and a phenyl group substituted with a sulfone group.
  • the polarizing member may be used for a liquid crystal shutter type mirror display.
  • Another aspect of the present disclosure is a liquid crystal shutter type mirror display in which the polarizing member, a shutter liquid crystal cell, a reflective polarizing plate, and an image display device are arranged in this order from the viewing side. It is.
  • a polarizing member that suppresses coloring of a display image and a reflected image and is highly durable and maintains display stability while maintaining an emission luminance equivalent to that of an iodine polarizing plate having a high degree of polarization. Can do. As a result, a liquid crystal shutter-type mirror display that displays high-quality images and reflected images can be realized.
  • the polarizing member 100 in the embodiment of the present disclosure includes an adhesive layer 10, a first support film 12 a, a polarizing film 14, a second support film 12 b, and a hard coat layer 16 as shown in the schematic cross-sectional view of FIG. 1. Composed.
  • FIG. 1 is a schematic diagram to the last, and the actual film thickness and the like of each layer are not as illustrated.
  • the polarizing member 100 can be a member of a liquid crystal shutter type mirror display, and is provided, for example, on the viewing side of a mirror display mounted on an automobile rearview mirror or the like.
  • the mirror display may include a display device on the entire surface, and the mirror and the display image may be switched on the entire surface or a part thereof, or may include at least one display device on a part of the entire surface, and the part may be a mirror partly.
  • the display image may be switched.
  • the display image is information displayed on the display unit, and indicates color display such as an image or a moving image or simple display using dots or segments such as alphanumeric characters.
  • a liquid crystal shutter type mirror display is provided with an absorption type polarizing plate, a liquid crystal cell, and a reflection type polarizing plate in this order from the viewing side as a shutter member on the front surface of a liquid crystal display device or the like, and can switch between a mirror state and an image display state. It is a display device that can.
  • the light emitted from the display device is linearly polarized light.
  • the transmission axes of the polarizing plate, the reflective polarizing plate, and the absorbing polarizing plate on the front surface of the display device are in a parallel relationship. That is, this method can suppress a decrease in the amount of light from the display device as compared to the half mirror method.
  • the absorption axis of the absorptive polarizing plate is orthogonal to the transmission axis of the reflective polarizing plate, the reflected light (reflected polarized light) of the reflective polarizing plate is absorbed by the absorptive polarizing plate. Thereby, double reflection in the display mode is reduced.
  • the transmission axes of the reflective polarizing plate and the absorbing polarizing plate are orthogonal to each other.
  • external light (natural light) reflection is transmitted from the absorptive polarizing plate (becomes linearly polarized light), then reflected by the reflective polarizing plate, and again transmitted through the absorptive polarizing plate. Therefore, in order to obtain a higher reflectance, it is preferable that the absorption-type polarizing plate has a higher transmittance, and thus a highly visible mirror is obtained.
  • the liquid crystal layer is sandwiched between transparent electrodes. Specifically, when the incident linearly polarized light is transmitted, the polarization axis is changed and the polarization axis is not changed.
  • This element has a structure that can be selected by electrical switching. Thereby, the relationship of the polarization axis of an absorption type polarizing plate and a reflection type polarizing plate switches, and the state of a mirror and the state of an image display can be switched.
  • TN (twisted nematic) type liquid crystal is typically used as the liquid crystal cell.
  • the reflective polarizing plate includes a polarizer having a function of transmitting polarized light parallel to the transmission axis and reflecting polarized light orthogonal to the transmission axis, and serves as a mirror in the mirror display according to the present embodiment.
  • a polarizer having a function of transmitting polarized light parallel to the transmission axis and reflecting polarized light orthogonal to the transmission axis, and serves as a mirror in the mirror display according to the present embodiment.
  • a polarizing plate for example, a birefringent reflective polarizing film in which a plurality of different birefringent polymer films are alternately laminated can be used. Examples of commercially available reflective polarizing films include DBEF series manufactured by 3M. It is done. Examples of other reflective polarizing films include films having a structure in which quarter-wave retardation layers are disposed on the front and back of a cholesteric liquid crystal layer.
  • a wire grit type inorganic polarizing plate can be used as a reflective polarizing plate. These films are used by being bonded to a liquid crystal cell via an adhesive layer or an adhesive layer.
  • an optical adhesive layer may be provided and laminated, or antireflection on both surfaces. A layer may be provided.
  • the polarizing plate (absorption type polarizing plate) according to the present disclosure will be described below.
  • the polarizing plate has a configuration in which a supporting film 12 (in FIG. 1, a first supporting film 12a and a second supporting film 12b are bonded to both sides) on one side or both sides of a polarizing film 14 having a polarizer.
  • a supporting film 12 in FIG. 1, a first supporting film 12a and a second supporting film 12b are bonded to both sides
  • a polarizing film 14 having a polarizer it is preferable to use it as a polarizing plate in which both surfaces of the polarizing film 14 are sandwiched between the first support film 12a and the second support film 12b.
  • the polarizing film 14 is generally a uniaxially stretched polyvinyl alcohol resin (PVA) film dyed with a dichroic dye, and is a thin film, so that the first support film 12a and the first film This is because, in a state where the film is not sandwiched between the two support films 12b, the film is easily deformed by heat or moisture, and the polarization characteristics may be impaired.
  • PVA polyvinyl alcohol resin
  • the polarizing film 14 is a film having a function of converting natural light into linearly polarized light, and may be obtained by adsorbing and orienting a dichroic dye on a PVA film.
  • dichroic dyes include azo compounds, anthraquinone compounds, and tetrazines. Especially when dichroic dyes of azo compounds are used, optical properties under high temperature conditions and high temperature and high humidity conditions are used. Excellent durability of properties and easy hue adjustment. Therefore, when the dichroic dye is used, even if the polarizing film 14 is arranged on the display device, the influence of yellowish coloring can be suppressed as compared with the iodine polarizing film.
  • the dichroic dye used for the polarizing film 14 is preferably an azo compound dye from the viewpoint of optical properties and durability.
  • I. Direct Yellow 12 C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. Examples include Direct Red 79, dyes described in JP-A No. 2003-215338, and dyes described in WO 2007/138980.
  • Examples of commercially available dyes include Kayafect Violet P Liquid (manufactured by Nippon Kayaku Co., Ltd.), Kayafect Yellow Y, Kayafect Orange G, Kayafect Blue KW, and Kayafect Blue Liquid 400.
  • a dichroic dye optimized for obtaining the hue of the achromatic polarizing plate described in WO2015 / 186661, WO2014 / 162634 may be used.
  • a hue of neutral gray is obtained by blending two or more of these dyes so as to supplement the polarization characteristics at each wavelength in the visible range and dyeing them on PVA.
  • the polarizing film 14 is arranged on the display device by adjusting the blending amount of the blue dichroic dye. It is possible to optimize the degree of coloring of the yellowish color at the time or to match the coloring of blue.
  • the neutral gray color can be adjusted more easily by using a dichroic dye optimized to obtain an achromatic hue. Examples of the commercially available dye-based polarizing plate include “achromatic” series manufactured by Polatechno Co., Ltd.
  • the azo compound contains a water-soluble disazo compound represented by the chemical formula (2) or the copper complex salt compound.
  • X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group
  • Y represents a methoxy group or an ethoxy group.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 is substituted with a hydrogen atom, a methyl group, a —C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, or a sulfone group. Represents a phenyl group.
  • the compound a commercially available compound may be used, and it can be produced by a known production method, for example, a production method described in JP-A-59-145255.
  • the water-soluble compound represented by the chemical formula (3) or a copper complex compound thereof is included as the azo compound.
  • A represents a phenyl group or naphthyl group substituted with a methyl group
  • R represents an amino group, a methylamino group, an ethylamino group, or a phenylamino group.
  • the compound a commercially available compound may be used, and it can be produced by a known production method, for example, a production method described in JP-A-3-12606.
  • a dichroic dye When a dichroic dye is used as a dichroic dye, durability of optical properties under high temperature conditions and high temperature and high humidity conditions is superior to iodine, and color change during molding is less than that of iodine. Therefore, the hue of the polarizing film 14 can be easily adjusted, and the yellowness can be lowered as compared with the case where iodine is used as the dichroic dye.
  • the polarizing film 14 or the polarizing plate suitable for the polarizing member 100 has a single transmittance Ys corrected in terms of visibility measured with respect to light in a wavelength region of 380 nm to 780 nm and a polarization degree Py of 50% to 60%. % Or more and 95% or less is preferable.
  • the relationship between the single transmittance Ys and the optical property of the degree of polarization Py is the case of a polarizing film using a general dichroic dye.
  • optical properties may be improved by improving the performance and orientation of individual dichroic dyes. In that case, Py may exceed the range above the range of Ys.
  • the single transmittance Ys is less than 45%, the polarization degree Py exceeds 95%.
  • the transmittance of linearly polarized light is about 85% or less. Therefore, it is not possible to obtain a display luminance equivalent to that of an iodine-based polarizing plate (single transmittance Ys: 43%, linearly polarized light transmittance: about 86%), and coloration of the display image cannot be improved. .
  • the degree of polarization Py is less than 50%, and sufficient polarization characteristics cannot be obtained, so that the shutter function of the mirror display may not sufficiently function.
  • the preferable optical characteristic of the polarizing film 14 is that the single transmittance Ys is 45% or more and 60% or less, particularly 50% or more and 55% or less.
  • the linearly polarized light transmittance is 87% or higher, and a display luminance equivalent to or higher than that of the iodine-based polarizing plate can be obtained.
  • coloring of the display image can be suppressed as compared with the iodine polarizing plate.
  • the polarizing plate has a higher transmittance, the reflectance of natural light is improved and the visibility of the mirror mode is improved.
  • the polarizing plate In order to prevent the image display image and the reflection image from being colored yellowish or the like by arranging the polarizing plate in front of the display device, the polarizing plate has a neutral hue with no color. It is preferable. Specifically, in the hue of the L * a * b * color system, the values of a * and b * of the polarizing plate are both 0 or close to 0. From the viewpoint of the characteristics of various dyes, it is not easy to produce a polarizing plate having such a hue value. Therefore, when applied to a mirror display, it is preferable to set a hue value that makes it difficult to visually recognize coloring.
  • the hue values are preferably such that a * s is ⁇ 3 to +3 and b * s is ⁇ 3 to +3. Thereby, coloring can be suppressed in the image display image from the information device. Further, in the case of hue values when two polarizing plates are used and the polarization axis is parallel (p), it is preferable that a * p is ⁇ 3 to +3 and b * p is ⁇ 3 to +3. Thereby, coloring in the reflected image of a mirror can be suppressed.
  • the transmittance (unit:%) and the degree of polarization (unit:%) in the present embodiment are values measured by JASCO Corporation V-7100 or Hitachi, Ltd. U-4100. Specifically, a polarizing plate is produced, and the transmittance when one polarizing plate is used is the transmittance when the single polarizing plate Ys and the two polarizing plates are stacked so that the absorption axis directions are the same. Let the transmittance be the parallel transmittance Yp, and let the transmittance when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other be the orthogonal transmittance Yc.
  • the respective transmittances are calculated from the formula (1) by obtaining the spectral transmittance ⁇ at predetermined wavelength intervals d ⁇ (here, 5 nm) in the wavelength region of 380 to 780 nm.
  • d ⁇ the spectral transmittance
  • P ⁇ represents the spectral distribution of the standard light (C light source)
  • y ⁇ represents the color matching function of the double field of view
  • represents the spectral transmittance.
  • the degree of polarization Py is obtained from the parallel transmission Yp and the orthogonal transmission Yc according to Equation (2).
  • the transmittance of linearly polarized light is the transmittance obtained by making absolute polarized light incident on the polarizing plate and measuring it so that the vibration direction of the absolute polarized light is perpendicular to the absorption axis direction of the polarizing plate.
  • This is expressed as parallel transmittance Ky.
  • the absolute parallel transmittance Ky can be obtained by substituting the single-unit transmittance Ys and the orthogonal transmittance Yc obtained above into Equation (3).
  • the absolute parallel transmittance Ky may be obtained only for a predetermined wavelength of each wavelength from 380 nm to 780 nm, for example, depending on the design of the display device and the waveform characteristics of the polarizing plate. You may represent with the average value of a range.
  • the support film 12 When using the support film 12 as a polarizing plate, the support film 12 is bonded to one side or both sides of the polarizing film 14 through an adhesive layer.
  • support films 12 first support film 12a, second support film 12b
  • cycloolefin resin film polyester resin film, acrylic resin film, polycarbonate resin film, polysulfone resin film, alicyclic polyimide film
  • a resin film, an acetylcellulose-based resin film, or the like can be applied.
  • an acetyl cellulose resin more preferably triacetyl cellulose (TAC).
  • the transmittance on the short wavelength side decreases depending on the type of UV absorber or the like added to the support film, and as a result, b * s as a polarizing plate affects the increase.
  • the degree of this increase is proportional to the thickness of the support film. Therefore, the thickness of the support film is preferably 100 ⁇ m or less, more preferably 40 to 80 ⁇ m, and it is preferable to have a polarizing plate configuration in which the influence of coloring is suppressed.
  • the polarization axes of the polarizing film 18 of the polarizing member 100 and the polarized sunglasses coincide with each other, and the display image may not be visible or may not be used as a mirror. Therefore, the visibility problem can be solved by providing a retardation film on the viewing side of the polarizing member 100, that is, the viewing side of the polarizing plate.
  • a retardation film is a film-like optical member made of a birefringent material.
  • the thickness of the retardation film may be 5 ⁇ m or more and 200 ⁇ m or less, and may be 10 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the retardation film is less than 5 ⁇ m, the handleability as an industrial material is lowered.
  • the film thickness exceeds 200 ⁇ m, distortion and waviness associated with film formation tend to appear, and the quality of the display image of the mirror display may be impaired.
  • the material of the retardation film is, for example, a film obtained by stretching a film mainly composed of a polycarbonate resin, a polyester resin, a cycloolefin resin, or a transparent film coated with an ultraviolet curable polymer liquid product. And oriented ones can be selected.
  • the retardation of the retardation film may be in the range of 100 nm to 30000 nm.
  • Examples of the retardation film include a ⁇ / 4 retardation film, a ⁇ / 2 retardation film, and a high retardation film having super birefringence.
  • the relationship between the angle formed by the slow axis and the absorption axis of the polarizing plate 100 is in an angle range of greater than 0 ° and less than 90 °. That is, it is preferable to exclude the case where the slow axis of the retardation film coincides with the absorption axis of the polarizing plate 100 (relation angle is 0 °) and the case where they are orthogonal (relation angle is 90 °).
  • the retardation film and the polarizing plate 100 are preferably laminated so as to be 40 to 50 degrees, more preferably 45 degrees. In such a relationship, since the polarized light emitted or reflected from the mirror display is not completely absorbed by the absorption axis of the polarized sunglasses, the display information of the device can be visually recognized even when the polarized sunglasses are worn.
  • the polarizing member 100 including the retardation film it is preferable to select a material and a manufacturing method in the above-described retardation film, adhesive or adhesive layer, hard coat layer, and the like so that the degree of undulation defined below is 15 or less.
  • an adhesive layer is used in the lamination of the polarizing plate and the retardation film, it is preferable to use an adhesive layer that suppresses the occurrence of “swell” described later.
  • the adhesive layer 10 is provided as a layer used when the polarizing member 100 is bonded to another member.
  • the adhesive layer 10 is provided on the surface of the first support film 12a opposite to the polarizing film 14.
  • the pressure-sensitive adhesive layer 10 is formed, for example, by applying a pressure-sensitive adhesive obtained by diluting a solid component of an acrylic or polyester pressure-sensitive adhesive with a solvent such as toluene or methyl ethyl ketone (MEK) to a release film and drying it.
  • MEK methyl ethyl ketone
  • the pressure-sensitive adhesive is not particularly limited as long as it is acrylic or polyester-based, and other pressure-sensitive adhesives may be used.
  • the dilution rate of the solid component with the solvent may be 5 times or less. Thereby, it can be set as the adhesion layer which suppressed generation
  • the blended adhesive is applied to a release film, and the solvent is volatilized in the drying step.
  • the solvent may be volatilized from the release film coated with the pressure-sensitive adhesive using a plurality of drying furnaces each set to a temperature range of 40 ° C to 100 ° C.
  • the coating amount is adjusted so that the thickness of the pressure-sensitive adhesive after drying is 1 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 25 ⁇ m or less. Thereafter, the adhesive side is bonded to the first support film 12a.
  • the hard coat layer 16 is a layer for protecting the surface of the polarizing member 100.
  • the hard coat layer 16 is provided on the surface on the opposite side of the polarizing film 14 of the second support film 12b.
  • the hard coat layer 16 can be obtained, for example, by applying an ultraviolet curable resin to the surface of the second support film 12b and curing it by irradiating with ultraviolet rays.
  • a solvent is prepared by mixing one or more polyfunctional (meth) acrylates, a polymerization initiator, and a surface conditioner with methyl ethyl ketone, which is a solvent, to prepare a paint, and apply it to one side of a TAC film.
  • the hard coat layer 16 can be formed by drying the solvent at 40 to 80 ° C. and curing it by irradiating with ultraviolet rays using a high pressure mercury lamp.
  • the film thickness of the hard coat layer 16 may be not less than 1 ⁇ m and not more than 20 ⁇ m from the viewpoints of the hardness and warpage (curl) after curing.
  • the film thickness is 20 ⁇ m or more, high hardness can be obtained, but the film is warped violently, which makes it difficult to bond to the polarizing film, and cracks occur in the hard coat layer due to bending during processing. There is a fear, and it may cause peeling of the durability test.
  • the film thickness may be 2 ⁇ m or more and 10 ⁇ m or less, and a hard coat layer having both hardness and workability can be obtained.
  • a solvent in which nano-level colloidal silica is dispersed for example, organosilica sol manufactured by Nissan Chemical Industries, Ltd.
  • organosilica sol manufactured by Nissan Chemical Industries, Ltd. may be blended.
  • the interface between the formed hard coat layer and the support film is mixed, and reflected light generated between the hard coat layer and the support film. It is possible to suppress thin film interference (interference fringes).
  • scratch resistance can be enhanced by performing ultraviolet irradiation in a nitrogen atmosphere.
  • the scratch resistance is evaluated, for example, by a scratch test using steel wool (# 0000, 250 g load, 10 to 100 reciprocations), and it is preferable that the hard coat surface is not scratched by the test.
  • the hardness of the hard coat layer is evaluated by a pencil hardness test (scratch hardness (pencil method)) based on JIS 5600-5-4.
  • the hardness generally preferably has a 750 g load of 2H or more, more preferably 750 g load, in the evaluation method. By having 4H or more, it is determined that the hard coat layer has a high hardness.
  • the hardness according to the evaluation method depends not only on the film thickness of the hard coat layer but also on the physical properties such as the thickness of the supporting film as a base and the pressing hardness (easiness to be crushed), and therefore is limited to the above index. is not.
  • the hard coat layer 16 may contain a surface conditioner. Thereby, leveling of the applied coating liquid is promoted to form a smooth surface, and a surface with excellent surface feel can be formed as a member for a mirror display. In addition, by using a silicon-based or fluorine-based surface conditioner, antifouling and fingerprint resistance functions can be imparted to the hard coat layer 16.
  • the liquid crystal display to which the polarizing member 100 is applied causes distortion of a display image. Therefore, it is preferable that the member used for the polarizing member 100 has a swell degree as low as possible.
  • the swell degree is an evaluation value for numerically evaluating the quality of the display image on the mirror display.
  • the degree of waviness of the support film 12, the polarizing plate, the pressure-sensitive adhesive layer 10 and the like can be measured using a polarizing plate waviness inspection apparatus manufactured by Fusion Co., Ltd.
  • a dot pattern of equal intervals is displayed on a 4K resolution monitor display, and a monitor image of the dot pattern reflected on the mirror portion is taken by a camera through a smooth mirror set at an angle of 45 degrees. This is a blank measurement.
  • an object to be measured such as a support film 12, a polarizing plate, and an adhesive layer 10 is placed between the mirror and the camera, and an image of a dot pattern when the object to be measured is transmitted is measured with the camera.
  • the object to be measured is a flat glass plate bonded with an adhesive.
  • the swell degree is about 5 when blank. That is, as the degree of undulation is closer to 5, there is almost no undulation, and as the degree of undulation exceeds 5, the measured object has an optical distortion.
  • the swell degree of a general polarizing member (including a polarizing plate and an adhesive layer) applied to a liquid crystal display is 20 or more and 23 or less.
  • a polarizing member including a polarizing plate and an adhesive layer
  • the swell is more easily recognized than when the liquid crystal display is directly viewed. This is because a mirror display is often used in a mirror state with no image display, and a reflected image is observed, so that the surface shape becomes important. Therefore, if there is a wave of the polarizing member 100 serving as a mirror surface, a landscape image reflected as a reflected image looks distorted and cannot function sufficiently as a mirror display.
  • the degree of undulation of the polarizing member 100 suitable for a mirror display is preferably 15 or less, and more preferably 8 or less. By setting it as such a wave
  • the support film 12 having a small degree of undulation may be used.
  • the support film 12 may have a swell degree of 12 or less, more preferably 7 or less.
  • the swell degree in this case is a value when measured using an adhesive layer having a swell degree of 6 or less (the adhesive layer hardly contributes). Since the degree of undulation of the support film 12 depends on its thickness, the thickness of the support film 12 may be 200 ⁇ m or less, more preferably 80 ⁇ m or less, and more preferably 40 to 60 ⁇ m.
  • the pressure-sensitive adhesive layer 10 may have a swell degree of 7 or less.
  • a display device such as a liquid crystal display is required to satisfy the reliability of 1000 hours or more at a dry heat test of 95 ° C. and 1000 hours or more at a wet heat test of 65 ° C. and 93%. This is based on the durability of a member such as a TFT liquid crystal display device used in the display device section. It is preferable that the polarizing member used in the display device has the same or equivalent reliability.
  • the durability in that case is, for example, 1000 hours or more at 105 ° C. for the dry heat test and 240 hours or more at 85 ° C. and 85% for the wet heat test.
  • a dye-based polarizing film containing a dichroic dye as the polarizing member.
  • a dye-based polarizing film containing a dichroic dye as the polarizing member.
  • the film was stretched 5.5 times in a weight% boric acid aqueous solution to obtain a stretched film, and after the stretching treatment, the stretched film was immersed in a 5 weight% boric acid aqueous solution at 50 ° C. for 2 minutes, washed with water, and air at 30 to 80 ° C. In dried to obtain a polarizing film 14 of the present disclosure.
  • the resulting thickness of the polarizing film 14 was 30 [mu] m.
  • [Preparation of hard coat layer] 40 parts by weight of pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD PET-30) as a polyfunctional (meth) acrylate, 60 parts by weight of methyl ethyl ketone as a solvent, and 0.2 parts by weight of an acrylic polymer leveling agent And 2 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a polymerization initiator were mixed to prepare a paint, which was applied to one side of a TAC film having a thickness of 60 ⁇ m by a microgravure coater. Thereafter, the solvent was removed by drying at 40 to 80 ° C.
  • the film thickness of the obtained hard coat layer was about 5 ⁇ m.
  • the pencil hardness of this hard coat layer was 2H at a load of 750 g.
  • the single transmittance Ys of the polarizing plate was 50.1%, and the polarization degree Py was 73.7%. Further, the linearly polarized light transmittance was measured using JASCO V-7100, and the transmittance waveform of the polarizing plate in the visible light region is shown in FIG.
  • the film thickness of the obtained adhesive layer 10 was 20 ⁇ m. Only this adhesive layer 10 was bonded on a glass plate, and the degree of undulation was 6.6 as measured by a polarizing plate undulation inspection device manufactured by Fusion Co., Ltd. In addition, the 60 ⁇ m-thick TAC film measured in the same manner was 6.5, and the undulation degree of the polarizing member 100 was 7.4.
  • a polyvinyl alcohol resin film (manufactured by Kuraray Co., Ltd., VF-PS (75 ⁇ m)) was swollen in water at 30 ° C. for 5 minutes, and then dyed at 30 ° C. (1000 parts by weight of water and 0.3 parts by weight of sodium tripolyphosphate).
  • 0.0.10 parts by weight of C.I.Direct Orange 39, 0.10 parts by weight of C.I.Red Red 81, and blue obtained by the method described in JP-A-3-12606 0.13 parts by weight of a dye and a green dye obtained by the method described in JP-A-59-145255 are immersed in 0.10 parts by weight for 5 minutes, followed by dyeing with the dye, followed by 50 ° C.
  • the film was stretched 5.5 times in a 3% by weight boric acid aqueous solution to obtain a stretched film, and after the stretching treatment, the stretched film was immersed in a 5% by weight boric acid aqueous solution at 50 ° C. for 2 minutes, washed with water, and then 30-80
  • the film was dried in the air to obtain the polarizing film 14 of the present disclosure, and the thickness of the polarizing film 14 obtained was 30 ⁇ m, and the polarizing film obtained using a spectrophotometer U-4100 manufactured by Hitachi, Ltd.
  • the single transmittance Ys was 50.1% and the polarization degree Py was 73.8%
  • the hue of Example 1 was It was possible to shift more blue.
  • the production of the polarizing plate and the production of the polarizing member are the same as those described in Example 1.
  • a commercially available polarizing member a hard-coated iodine polarizing plate SKN-18243T-HC (manufactured by Polatechno) was used.
  • the thickness of the product is 220 ⁇ m.
  • the hard coat layer has a thickness of 5 ⁇ m
  • the support film has a thickness of 80 ⁇ m
  • the adhesive layer has a thickness of 25 ⁇ m.
  • the polarizing member was bonded onto a glass plate and the swell degree was measured.
  • the swell degree was 22.2.
  • Example 1 and Comparative Example 1 are bonded to one side of a white plate glass having a thickness of 1.1 mm, and DBEF manufactured by the reflective polarizing plate 3M is used on the opposite side of the glass plate using the above-mentioned adhesive layer.
  • An evaluation sample was prepared by pasting and making it look like a liquid crystal shutter part. At this time, samples were produced in which the relationship between the polarization axis of the polarizing member and the transmission axis of the reflective polarizing plate was orthogonal and parallel.
  • the case of the orthogonal relationship corresponds to the mode of the mirror mode in the mirror display, and the total light reflectance of the polarizing plate member surface of the sample at this time was measured to calculate the reflection hue (a * r, b * r).
  • the total light reflectivity Yr (unit:%) is measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the polarizing member surface of the evaluation sample is installed on the white plate side of the integrating sphere with the integrating sphere side facing. It was measured.
  • the total light reflectance Yr was obtained in the same manner as the calculation method of the formula (1).
  • the polarizing member obtained as described above was cut into a size of 45 ⁇ 40 mm (absorption axis parallel to the long side), and bonded to white plate glass (thickness: 1.1 mm) as a sample for durability test. Thereafter, the sample was put into an autoclave and subjected to a pressure treatment for 15 minutes under an atmospheric pressure of 0.5 MPa and a temperature of 60 ° C., thereby sufficiently adhering the adhesive layer of the polarizing member and the glass.
  • the conditions of the durability test were 105 ° C. as a dry heat test and 85 ° C. and 85% as a wet heat test, and samples were put into the respective conditions.
  • the durability performance was evaluated by measuring the optical characteristics of the sample before and after the introduction of the durability tester using a spectrophotometer U-4100, and measuring the transmittance (Ys) and the hue (a * s, b * s) before and after the introduction. This was done by determining the amount of change (after charging-before charging).
  • Tables 1 to 4 and FIG. 2 show the measurement results for each Example and Comparative Example 1.
  • the hue values of the polarizing plates obtained from Examples 1 and 2 were smaller than those of Comparative Example 1 using an iodine polarizing plate as shown in Table 1.
  • the transmittance on the short wavelength side is improved as compared with Comparative Example 1, the waveform is flat in the entire visible light region, and a neutral hue than Comparative Example 1 can be achieved. did it.
  • the single transmittance Ys to 50.1%, the linearly polarized light transmittance equivalent to that of the comparative example 1 can be obtained. Therefore, the amount of light from the display unit is not inferior to that obtained when an iodine-based polarizing plate having a high degree of polarization is used, so that the same display luminance can be obtained.
  • Table 2 shows the evaluation results of the optical characteristics of the evaluation sample as if it were a liquid crystal shutter.
  • the reflectance of the mirror mode was higher than that of the polarizing member in Comparative Example 1 using an iodine-based polarizing plate. That is, in the polarizing member 100 in Example 1, the visibility in the mirror state can be improved. Further, the b * r value of the polarizing member 100 in Example 1 was lower than that in Comparative Example 1. That is, the use of the polarizing member 100 in Example 1 can suppress the coloring of the mirror.
  • the polarizing member 100 in Example 1 had a small hue value in Comparative Example 1. Therefore, a small colored display image can be provided as in the mirror mode.
  • Examples 1 and 2 which are dye-based polarizing plates have excellent optical durability under both high temperature and high humidity conditions.
  • the polarizing member 100 in the present embodiment since the polarizing member has a low degree of undulation, it is possible to suppress fluctuations in the display image and the reflected image. Further, by using the polarizing member 100, a liquid crystal shutter type mirror display used as a rearview mirror for automobiles or the like gives a high reflectance in the mirror mode, and also reduces the influence of coloring by the polarizing plate in the display mode. be able to. Furthermore, it is possible to provide a dye-based polarizing plate for a mirror display having excellent durability in long-term use and a mirror display using the same.

Abstract

This polarization plate has: a hard coat layer on one surface; and an adhesive layer on the other surface. A polarizer of the polarization plate includes at least one dichroic dye. The polarization plate has a single-film transmittance Ys of 45-60% and a polarization degree Py of 50-95%, which are obtained through measurement of light in a wavelength range of 380-780 nm and then visibility correction thereof. The polarization plate has a*s of not less than -3 but not more than +3 and b*s of not less than -3 but not more than +3 in the hue of an L*a*b* color system, and has a*p of not less than -3 but not more than +3 and b*p of not less than -3 but not more than +3 in the hue when two polarizing films are used so that the polarization axes thereof are positioned in parallel.

Description

偏光板及びそれを用いた表示装置Polarizing plate and display device using the same
 本開示は、偏光板及びそれを用いた表示装置に関する。 The present disclosure relates to a polarizing plate and a display device using the polarizing plate.
 近年、鏡(ミラー)とディスプレイ(画像表示装置)とを組み合わせて一体化したミラーディスプレイが広く用いられるようになっている。特に、自動車のバックミラー(後写鏡)をミラーディスプレイとする場合、自動車の後方外部に備えたカメラで当該後方視界を映し出して、後部座席や車両のピラーによって遮られる死角を補うことができるため、より安全な運転が可能となる。 In recent years, a mirror display in which a mirror (mirror) and a display (image display device) are combined and integrated has been widely used. In particular, when the rear-view mirror of an automobile is used as a mirror display, the rear view can be projected with a camera provided outside the rear of the automobile to compensate for the blind spot obstructed by the rear seat or the pillar of the vehicle. , Safer driving becomes possible.
 ミラーディスプレイは、代表的にはハーフミラー方式が知られており、ハーフミラー下部に表示装置を備え、鏡の中から浮かび上がるように映像を表示、又は鏡の状態と画像表示の状態を切り替えることができる表示装置である。 The mirror display is typically known as the half mirror system, and has a display device under the half mirror to display images so as to emerge from the mirror, or to switch between the mirror state and the image display state. It is a display device that can.
 一方、表示装置の前面に表示モードとミラーモードを切り替えるためのシャッター機構を備えたミラーディスプレイが提案されている(以下、液晶シャッター方式という)。当該方式は吸収型偏光板と反射型偏光板とを備えた液晶セルを表示装置部の前面に備え、液晶セルを駆動させることによって画像表示モードとミラーモードを切り替えることができる。これにより、液晶シャッター方式では、ハーフミラー方式で課題であった二重映り(画像表示像と反射像が同時に見える現象)が軽減されるため、特に、自動車用バックミラーとして好ましい。 On the other hand, a mirror display having a shutter mechanism for switching between a display mode and a mirror mode on the front surface of the display device has been proposed (hereinafter referred to as a liquid crystal shutter method). In this method, a liquid crystal cell including an absorption-type polarizing plate and a reflective-type polarizing plate is provided on the front surface of the display device unit, and an image display mode and a mirror mode can be switched by driving the liquid crystal cell. Thus, the liquid crystal shutter method is particularly preferable as a rear mirror for automobiles because double reflection (a phenomenon in which an image display image and a reflected image can be seen simultaneously), which has been a problem in the half mirror method, is reduced.
 このようなミラーディスプレイの視認側に用いられる吸収型偏光板としては、ヨウ素又は染料等の二色性色素をポリビニルアルコールに染着し延伸してなる偏光子を備えた偏光板が用いられる。このとき、ミラーディスプレイの画像表示性やミラー表示時の反射特性から高透過率でも高偏光度を有する偏光板としてもよい。したがって、染料系偏光板よりも光学特性が優位であるヨウ素系偏光板が用いられ、偏光特性と表示コントラストを兼ね備えるときの偏光板の単体透過率は42~45%及び偏光度96.6~99.5%であるとされている。これにより、画像表示部からの直線偏光光を高透過に出射することができる。 As the absorptive polarizing plate used on the viewing side of such a mirror display, a polarizing plate provided with a polarizer formed by dyeing and stretching a dichroic dye such as iodine or a dye on polyvinyl alcohol is used. At this time, it is good also as a polarizing plate which has high transmittance | permeability and high polarization degree from the image display property of a mirror display, and the reflective characteristic at the time of mirror display. Therefore, an iodine polarizing plate having optical properties superior to that of a dye polarizing plate is used, and the single transmittance of the polarizing plate when the polarizing property and the display contrast are combined is 42 to 45% and the degree of polarization is 96.6 to 99. .5%. Thereby, the linearly polarized light from the image display unit can be emitted with high transmission.
解決しようとする課題Challenges to be solved
 前記高偏光度のヨウ素系偏光板は、一般に、短波長側(420nm付近)の透過率特性が低いため、当該ミラーディスプレイのシャッター用の偏光部材に前記偏光板を用いると、表示モードやミラーモードにおいて表示像が黄味色を帯びてしまう問題があり、従来からあるガラス板と金属光沢からなる鏡よりも見栄えが悪くなってしまう。偏光板の波形バランスや色相は、一般には、二色性色素の配合条件や偏光フィルムの染色条件等を調整することにより行われるが、ヨウ素系色素のみによる偏光板では、偏光板をニュートラルな色相に調整することは容易ではない。 The iodine polarizing plate having a high degree of polarization generally has a low transmittance characteristic on the short wavelength side (near 420 nm). Therefore, when the polarizing plate is used as a polarizing member for a shutter of the mirror display, a display mode or a mirror mode is used. There is a problem that the display image is yellowish in color, and the appearance is worse than a conventional mirror made of a glass plate and metallic luster. The waveform balance and hue of the polarizing plate are generally adjusted by adjusting the blending conditions of the dichroic dye, the dyeing conditions of the polarizing film, etc. However, in the polarizing plate using only the iodine-based dye, the polarizing plate has a neutral hue. It is not easy to adjust to.
 また、鏡としての機能を向上させるため、偏光板の透過率を上げることでミラーモードにおける反射率を向上させることができる。この場合、ヨウ素系偏光板では偏光フィルム中のヨウ素の染着量を減らすことによって高透過率化することができる。しかしながら、ヨウ素量を減らして高透過化された偏光フィルムを含む偏光板は、高温や高温高湿に対する光学耐久性が著しく低下してしまう。したがって、自動車等の高耐久性が要求される部材として相応しくない。 Also, in order to improve the function as a mirror, the reflectance in the mirror mode can be improved by increasing the transmittance of the polarizing plate. In this case, in the iodine-type polarizing plate, the transmittance can be increased by reducing the dyeing amount of iodine in the polarizing film. However, a polarizing plate including a polarizing film having a high transmittance by reducing the amount of iodine significantly reduces optical durability against high temperatures and high temperatures and high humidity. Therefore, it is not suitable as a member requiring high durability such as an automobile.
 以上のことから、液晶シャッター部の吸収型偏光板にヨウ素系偏光板を用いることは、上記の要件を満たすことはできないため、当該方式に相応しい特性を有する偏光板が求められている。また、鏡部材は偏光板等のフィルムを積層して構成されるため、フィルムの平滑性が悪かったり、歪み(うねり)を有していたりすると表示像に揺らぎが生じてしまう。そのため、当該方式のミラーディスプレイでは、従来の平滑なガラス面を用いた鏡と遜色のない表示品位を保つことが必要である。 From the above, the use of an iodine-based polarizing plate as the absorption-type polarizing plate in the liquid crystal shutter portion cannot satisfy the above requirements, and therefore a polarizing plate having characteristics suitable for the method is required. Further, since the mirror member is configured by laminating films such as polarizing plates, the display image fluctuates if the film has poor smoothness or has distortion (swells). Therefore, in the mirror display of the said system, it is necessary to maintain the display quality comparable with the mirror using the conventional smooth glass surface.
 本開示の目的は、液晶シャッター方式ミラーディスプレイにおける当該シャッター部の吸収型偏光板であって、光学特性、耐久性及び表示品位に優れた偏光部材を提供することである。すなわち、本開示の1つの態様は、一面にハードコート層と他面に粘着層とを有する偏光板を備え、前記偏光板の偏光子は、少なくとも一つの二色性染料を含有し、前記偏光板は、380nm以上780nm以下の波長領域の光に対して測定した視感度補正された単体透過率Ysが45%以上60%以下及び偏光度Pyが50%以上95%以下であり、前記偏光板は、単体のL*a*b*表色系の色相においてa*sが-3以上+3以下及びb*sが-3以上+3以下であり、且つ、前記偏光板を二枚で偏光軸を平行位にしたときの色相においてa*pが-3以上+3以下及びb*pが-3以上+3以下であることを特徴とする偏光部材である。 An object of the present disclosure is to provide a polarizing member that is an absorptive polarizing plate of the shutter portion in a liquid crystal shutter-type mirror display and has excellent optical characteristics, durability, and display quality. That is, one aspect of the present disclosure includes a polarizing plate having a hard coat layer on one surface and an adhesive layer on the other surface, and the polarizer of the polarizing plate contains at least one dichroic dye, The plate has a single transmittance Ys corrected in terms of visibility measured for light in a wavelength region of 380 nm or more and 780 nm or less, 45% or more and 60% or less, and the degree of polarization Py is 50% or more and 95% or less. Is a hue of a single L * a * b * color system, a * s is −3 to +3 and b * s is −3 to +3, and the polarizing axis is composed of two polarizing plates. The polarizing member is characterized in that a * p is −3 to +3 and b * p is −3 to +3 in terms of hue when in parallel.
 ここで、前記粘着層は、うねり度が7以下であり、前記偏光部材は、うねり度が15以下であってもよい。 Here, the pressure-sensitive adhesive layer may have a swell degree of 7 or less, and the polarizing member may have a swell degree of 15 or less.
 また、前記二色性染料は、化学式(1)で表される水溶性ジスアゾ化合物又はその銅錯塩化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000003
 
(ただし、Xは水素原子、メチル基、メトキシ基又はエトキシ基を表し、Yはメトキシ基又はエトキシ基を表す。Rは水素原子又はメチル基を表し、Rは水素原子、メチル基、-COH基、置換又は無置換のフェニル基、カルボキシ基で置換されたフェニル基、スルホン基で置換されたフェニル基を表す。)
Further, the dichroic dye may include a water-soluble disazo compound represented by the chemical formula (1) or a copper complex salt compound thereof.
Figure JPOXMLDOC01-appb-C000003

(Wherein X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group, Y represents a methoxy group or an ethoxy group, R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, a methyl group,- C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, and a phenyl group substituted with a sulfone group.)
 また、上記偏光部材であって、液晶シャッター方式のミラーディスプレイに用いられてもよい。 The polarizing member may be used for a liquid crystal shutter type mirror display.
 本開示の別の態様は、上記偏光部材と、シャッター用液晶セルと、反射型偏光板と、画像表示装置と、が視認側からこの順に配置されていることを特徴とする液晶シャッター方式ミラーディスプレイである。 Another aspect of the present disclosure is a liquid crystal shutter type mirror display in which the polarizing member, a shutter liquid crystal cell, a reflective polarizing plate, and an image display device are arranged in this order from the viewing side. It is.
効果effect
 本開示によれば、高偏光度のヨウ素系偏光板と同等の出射輝度を維持しつつ、表示像や反射像の色付きを抑え且つ高耐久であり、表示に揺らぎのない偏光部材を提供することができる。これにより、高品位な画像や反射像を表示する液晶シャッター方式のミラーディスプレイを実現することができる。 According to the present disclosure, it is possible to provide a polarizing member that suppresses coloring of a display image and a reflected image and is highly durable and maintains display stability while maintaining an emission luminance equivalent to that of an iodine polarizing plate having a high degree of polarization. Can do. As a result, a liquid crystal shutter-type mirror display that displays high-quality images and reflected images can be realized.
本開示の実施の形態における偏光部材の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the polarizing member in embodiment of this indication. 実施例1及び比較例1における波長に対する直線偏光光透過率の測定結果を示す図である。It is a figure which shows the measurement result of the linearly polarized light transmittance with respect to the wavelength in Example 1 and Comparative Example 1.
実施するための形態Form to carry out
 本開示の実施の形態における偏光部材100は、図1の断面模式図に示すように、粘着層10、第1支持フィルム12a、偏光フィルム14、第2支持フィルム12b及びハードコート層16を含んで構成される。図1はあくまで模式図であり、実際の各層の膜厚等については図示のとおりではない。 The polarizing member 100 in the embodiment of the present disclosure includes an adhesive layer 10, a first support film 12 a, a polarizing film 14, a second support film 12 b, and a hard coat layer 16 as shown in the schematic cross-sectional view of FIG. 1. Composed. FIG. 1 is a schematic diagram to the last, and the actual film thickness and the like of each layer are not as illustrated.
 偏光部材100は、液晶シャッター方式のミラーディスプレイの部材とすることができ、例えば、自動車のバックミラー等に搭載されるミラーディスプレイの視認側に設けられる。ミラーディスプレイは、当該全面に表示装置を備え、ミラーと表示画像が全面又は部分的に切り替わるものでもよいし、当該全面の一部に少なくとも1つの表示装置を備え、当該箇所が部分的にミラーと表示画像を切り替わるものでもよい。尚、表示画像とは、表示装置部で表示される情報であり、画像や動画等のカラー表示、又は英数字などのドットやセグメントによる単純表示等を指す。 The polarizing member 100 can be a member of a liquid crystal shutter type mirror display, and is provided, for example, on the viewing side of a mirror display mounted on an automobile rearview mirror or the like. The mirror display may include a display device on the entire surface, and the mirror and the display image may be switched on the entire surface or a part thereof, or may include at least one display device on a part of the entire surface, and the part may be a mirror partly. The display image may be switched. The display image is information displayed on the display unit, and indicates color display such as an image or a moving image or simple display using dots or segments such as alphanumeric characters.
 液晶シャッター方式のミラーディスプレイは、液晶表示装置等の前面にシャッター部材として吸収型偏光板、液晶セル及び反射型偏光板を視認側からこの順に設け、鏡の状態と画像表示の状態を切り替えることができる表示装置である。 A liquid crystal shutter type mirror display is provided with an absorption type polarizing plate, a liquid crystal cell, and a reflection type polarizing plate in this order from the viewing side as a shutter member on the front surface of a liquid crystal display device or the like, and can switch between a mirror state and an image display state. It is a display device that can.
 表示装置から出射される光は、直線偏光光である。当該ディスプレイの表示モード(表示装置に画像がモニターされる)の場合は、表示装置前面の偏光板、反射型偏光板及び吸収型偏光板の透過軸が平行の関係となる。すなわち、当該方式はハーフミラー方式に比べ、表示装置からの光量低下を抑えることができる。このとき、吸収型偏光板の吸収軸は、反射型偏光板の透過軸と直交の関係となるため、反射型偏光板の反射光(反射偏光光)は、吸収型偏光板に吸収される。これにより、表示モードにおける二重映りが軽減される。 The light emitted from the display device is linearly polarized light. In the display mode of the display (the image is monitored on the display device), the transmission axes of the polarizing plate, the reflective polarizing plate, and the absorbing polarizing plate on the front surface of the display device are in a parallel relationship. That is, this method can suppress a decrease in the amount of light from the display device as compared to the half mirror method. At this time, since the absorption axis of the absorptive polarizing plate is orthogonal to the transmission axis of the reflective polarizing plate, the reflected light (reflected polarized light) of the reflective polarizing plate is absorbed by the absorptive polarizing plate. Thereby, double reflection in the display mode is reduced.
 ミラーモードの場合は反射型偏光板と吸収型偏光板の透過軸は直交の関係となる。この場合、外光(自然光)反射は、吸収型偏光板から透過し(直線偏光光となる)、その後、反射型偏光板で反射し、再度、吸収型偏光板を透過することになる。したがって、より高い反射率を得るためには、吸収型偏光板はより高透過とすることが好ましく、これにより、視認性の高いミラーとなる。 In the mirror mode, the transmission axes of the reflective polarizing plate and the absorbing polarizing plate are orthogonal to each other. In this case, external light (natural light) reflection is transmitted from the absorptive polarizing plate (becomes linearly polarized light), then reflected by the reflective polarizing plate, and again transmitted through the absorptive polarizing plate. Therefore, in order to obtain a higher reflectance, it is preferable that the absorption-type polarizing plate has a higher transmittance, and thus a highly visible mirror is obtained.
 液相セルは、液晶層を透明電極で挟持したものであって、詳細には、入射した直線偏光光が透過する際にその偏光軸を変化させる状態と、偏光軸を変化させない状態とを、電気的な切り替えにより選択できる構造を有する素子である。これにより、吸収型偏光板と反射型偏光板との偏光軸の関係が切り替わり、鏡の状態と画像表示の状態を切り替えることができる。液晶セルは、代表的には、TN(ツイストネマティック)型液晶が用いられる。 In the liquid phase cell, the liquid crystal layer is sandwiched between transparent electrodes. Specifically, when the incident linearly polarized light is transmitted, the polarization axis is changed and the polarization axis is not changed. This element has a structure that can be selected by electrical switching. Thereby, the relationship of the polarization axis of an absorption type polarizing plate and a reflection type polarizing plate switches, and the state of a mirror and the state of an image display can be switched. As the liquid crystal cell, TN (twisted nematic) type liquid crystal is typically used.
 反射型偏光板は透過軸に平行な偏光光を透過し、透過軸に直交する偏光光は反射する機能を有する偏光子を備え、本実施の形態に係るミラーディスプレイにおいて鏡の役割をする。当該偏光板としては、例えば、異なる複屈折性高分子フィルムを交互に複数層積層した複屈折反射型偏光フィルムを用いることができ、市販の反射型偏光フィルムとしては3M社製のDBEFシリーズが挙げられる。その他の反射型偏光フィルムとしては、コレステリック液晶層の表と裏に1/4波長の位相差層を配置した構成のフィルムが挙げられる。さらに、ワイヤーグリット型の無機偏光板を反射型偏光板として用いることができる。これらのフィルムは、粘着層または接着層を介して液晶セルに貼り合せて使用される。尚、表示装置部と液晶シャッター部との間、すなわち、反射型偏光板との間は、内部反射を低減するため、例えば、光学粘着層設けて積層してもよいし、両表面に反射防止層を設けてもよい。 The reflective polarizing plate includes a polarizer having a function of transmitting polarized light parallel to the transmission axis and reflecting polarized light orthogonal to the transmission axis, and serves as a mirror in the mirror display according to the present embodiment. As the polarizing plate, for example, a birefringent reflective polarizing film in which a plurality of different birefringent polymer films are alternately laminated can be used. Examples of commercially available reflective polarizing films include DBEF series manufactured by 3M. It is done. Examples of other reflective polarizing films include films having a structure in which quarter-wave retardation layers are disposed on the front and back of a cholesteric liquid crystal layer. Furthermore, a wire grit type inorganic polarizing plate can be used as a reflective polarizing plate. These films are used by being bonded to a liquid crystal cell via an adhesive layer or an adhesive layer. In addition, in order to reduce internal reflection between the display device unit and the liquid crystal shutter unit, that is, between the reflective polarizing plate, for example, an optical adhesive layer may be provided and laminated, or antireflection on both surfaces. A layer may be provided.
 本開示に係る偏光板(吸収型偏光板)について、以下に説明する。 The polarizing plate (absorption type polarizing plate) according to the present disclosure will be described below.
[偏光板]
 偏光板は、偏光子を有する偏光フィルム14の片面又は両面に支持フィルム12(図1では、両面にそれぞれ第1支持フィルム12a,第2支持フィルム12b)を貼り合せた構成を有する。偏光フィルム14のみを使用することもできるが、偏光フィルム14の両面を第1支持フィルム12a及び第2支持フィルム12bで挟持した偏光板として用いる方が好ましい。なぜなら、偏光フィルム14は、一般に、二色性色素を染着したポリビニルアルコール系樹脂(PVA)フィルムを一軸延伸されたものであり、且つ薄膜状のものであるから、第1支持フィルム12a及び第2支持フィルム12bで挟持されていない状態では、熱や水分により容易に変形し、さらには当該偏光特性を損ねてしまうおそれがあるからである。
[Polarizer]
The polarizing plate has a configuration in which a supporting film 12 (in FIG. 1, a first supporting film 12a and a second supporting film 12b are bonded to both sides) on one side or both sides of a polarizing film 14 having a polarizer. Although only the polarizing film 14 can be used, it is preferable to use it as a polarizing plate in which both surfaces of the polarizing film 14 are sandwiched between the first support film 12a and the second support film 12b. This is because the polarizing film 14 is generally a uniaxially stretched polyvinyl alcohol resin (PVA) film dyed with a dichroic dye, and is a thin film, so that the first support film 12a and the first film This is because, in a state where the film is not sandwiched between the two support films 12b, the film is easily deformed by heat or moisture, and the polarization characteristics may be impaired.
 偏光フィルム14は、自然光を直線偏光に変換する機能を有するフィルムであり、PVAフィルムに二色性染料を吸着配向させたものとしてもよい。二色性染料としては、アゾ系化合物、アントラキノン系化合物又はテトラジン系等が挙げられ、特にアゾ系化合物の二色性染料を用いた場合には、高温条件下や、高温高湿条件下における光学特性の耐久性が優れ、色相調整が容易となる。そのため、二色性染料を用いた場合、表示装置上に偏光フィルム14を重ねて配置しても、ヨウ素系偏光フィルムよりも黄色味の色付きの影響を抑制することができる。 The polarizing film 14 is a film having a function of converting natural light into linearly polarized light, and may be obtained by adsorbing and orienting a dichroic dye on a PVA film. Examples of dichroic dyes include azo compounds, anthraquinone compounds, and tetrazines. Especially when dichroic dyes of azo compounds are used, optical properties under high temperature conditions and high temperature and high humidity conditions are used. Excellent durability of properties and easy hue adjustment. Therefore, when the dichroic dye is used, even if the polarizing film 14 is arranged on the display device, the influence of yellowish coloring can be suppressed as compared with the iodine polarizing film.
 偏光フィルム14に用いる二色性染料としては、光学特性や耐久性の観点から、アゾ化合物系染料が好ましく、例えば、C.I.Direct Yellow 12、C.I.Direct Yellow 28、 C.I.Direct Yellow 44、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 31、C.I.Direct Red 79、特開2003-215338号公報に記載の染料、WO2007/138980号公報に記載の染料などが挙げられる。 The dichroic dye used for the polarizing film 14 is preferably an azo compound dye from the viewpoint of optical properties and durability. I. Direct Yellow 12, C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. Examples include Direct Red 79, dyes described in JP-A No. 2003-215338, and dyes described in WO 2007/138980.
 市販染料ではKayafect Violet P Liquid(日本化薬社製)、KayafectYellow Y及びKayafect Orange G、Kayafect Blue KW及びKayafect Blue Liquid 400等を挙げることができる。 Examples of commercially available dyes include Kayafect Violet P Liquid (manufactured by Nippon Kayaku Co., Ltd.), Kayafect Yellow Y, Kayafect Orange G, Kayafect Blue KW, and Kayafect Blue Liquid 400.
 さらに、WO2015/186681号、WO2014/162634号等に記載の無彩色な偏光板の色相を得るために最適化された二色性染料を用いてもよい。 Furthermore, a dichroic dye optimized for obtaining the hue of the achromatic polarizing plate described in WO2015 / 186661, WO2014 / 162634 may be used.
 このとき、可視域の各波長における偏光特性を補うようにこれらの染料を2種又は3種以上配合しPVAに染着することによって、ニュートラルグレーを呈する色相とすることが好ましい。例えば、ブルー系の二色性染料を含む3種以上の染料配合とする場合、特に、ブルー系の二色性染料の配合量を調節することにより、偏光フィルム14を表示装置に重ねて配置したときの黄味色の色付きの程度を最適にしたり青味よりの色付きに合わたりすることができる。また、無彩色な色相を得るために最適化された二色性染料を用いることで、ニュートラルグレー色の調整をより容易にすることができる。市販の前記染料系偏光板としては、例えば、(株)ポラテクノ社製「無彩色」シリーズが挙げられる。 At this time, it is preferable that a hue of neutral gray is obtained by blending two or more of these dyes so as to supplement the polarization characteristics at each wavelength in the visible range and dyeing them on PVA. For example, in the case of blending three or more kinds of dyes including a blue dichroic dye, the polarizing film 14 is arranged on the display device by adjusting the blending amount of the blue dichroic dye. It is possible to optimize the degree of coloring of the yellowish color at the time or to match the coloring of blue. Moreover, the neutral gray color can be adjusted more easily by using a dichroic dye optimized to obtain an achromatic hue. Examples of the commercially available dye-based polarizing plate include “achromatic” series manufactured by Polatechno Co., Ltd.
 アゾ系化合物としては、化学式(2)で表される水溶性ジスアゾ化合物又はこの銅錯塩化合物を含むことが、耐久性の観点から特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 
ここで、Xは水素原子、メチル基、メトキシ基又はエトキシ基を表し、Yはメトキシ基又はエトキシ基を表す。Rは水素原子又はメチル基を表し、Rは水素原子、メチル基、-COH基、置換又は無置換のフェニル基、カルボキシ基で置換されたフェニル基、スルホン基で置換されたフェニル基を表す。
It is particularly preferable from the viewpoint of durability that the azo compound contains a water-soluble disazo compound represented by the chemical formula (2) or the copper complex salt compound.
Figure JPOXMLDOC01-appb-C000004

Here, X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group, and Y represents a methoxy group or an ethoxy group. R 1 represents a hydrogen atom or a methyl group, and R 2 is substituted with a hydrogen atom, a methyl group, a —C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, or a sulfone group. Represents a phenyl group.
 当該化合物は、市販のものを使用してもよく、また公知の製法、例えば、特開昭59-145255号公報に記載された製法により製造することができる。 As the compound, a commercially available compound may be used, and it can be produced by a known production method, for example, a production method described in JP-A-59-145255.
 さらに、アゾ系化合物として、化学式(3)で表される水溶性化合物又はその銅錯塩化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
 
ここで、Aはメチル基で置換されたフェニル基又はナフチル基を表し、Rはアミノ基、メチルアミノ基、エチルアミノ基又はフェニルアミノ基を表す。
Furthermore, it is preferable that the water-soluble compound represented by the chemical formula (3) or a copper complex compound thereof is included as the azo compound.
Figure JPOXMLDOC01-appb-C000005

Here, A represents a phenyl group or naphthyl group substituted with a methyl group, and R represents an amino group, a methylamino group, an ethylamino group, or a phenylamino group.
 当該化合物は、市販のものを使用してもよく、公知の製造方法、例えば、特開平3-12606号公報に記載された製法により製造することができる。 As the compound, a commercially available compound may be used, and it can be produced by a known production method, for example, a production method described in JP-A-3-12606.
 二色性色素として二色性染料を用いた場合、高温条件下や高温高湿条件下における光学特性の耐久性がヨウ素よりも優れ、また、成形時での色変化もヨウ素より少ない。したがって、偏光フィルム14における色相調整が容易と共に、二色性色素としてヨウ素を用いた場合に比べて黄色味を低くすることができる。 When a dichroic dye is used as a dichroic dye, durability of optical properties under high temperature conditions and high temperature and high humidity conditions is superior to iodine, and color change during molding is less than that of iodine. Therefore, the hue of the polarizing film 14 can be easily adjusted, and the yellowness can be lowered as compared with the case where iodine is used as the dichroic dye.
 偏光部材100に適した偏光フィルム14または偏光板は、380nm以上780nm以下の波長領域の光に対して測定した視感度補正された単体透過率Ysが45%以上60%以下及び偏光度Pyが50%以上95%以下であることが好ましい。ただし、単体透過率Ysと偏光度Pyの光学特性の関係は、一般的な二色性染料を用いた偏光フィルムの場合である。個々の二色性染料の高性能化や配向性の向上等により、光学特性が向上する可能性がある。その場合、上記Ysの範囲に対して、Pyは上記範囲を上方に超えても良い。 The polarizing film 14 or the polarizing plate suitable for the polarizing member 100 has a single transmittance Ys corrected in terms of visibility measured with respect to light in a wavelength region of 380 nm to 780 nm and a polarization degree Py of 50% to 60%. % Or more and 95% or less is preferable. However, the relationship between the single transmittance Ys and the optical property of the degree of polarization Py is the case of a polarizing film using a general dichroic dye. There is a possibility that optical properties may be improved by improving the performance and orientation of individual dichroic dyes. In that case, Py may exceed the range above the range of Ys.
 単体透過率Ysが45%未満の場合、偏光度Pyは95%を超えることとなる。この場合の直線偏光光の透過率は約85%以下である。したがって、ヨウ素系偏光板(単体透過率Ys:43%、直線偏光透過率:約86%の場合)と同等の表示輝度を得ることができず、また、表示像の色付きを改善することができない。 When the single transmittance Ys is less than 45%, the polarization degree Py exceeds 95%. In this case, the transmittance of linearly polarized light is about 85% or less. Therefore, it is not possible to obtain a display luminance equivalent to that of an iodine-based polarizing plate (single transmittance Ys: 43%, linearly polarized light transmittance: about 86%), and coloration of the display image cannot be improved. .
 単体透過率Ysが60%を超える偏光板の場合、偏光度Pyは50%未満となり、十分な偏光特性が得られないのでミラーディスプレイのシャッター機能が十分に作用しないおそれがある。 In the case of a polarizing plate having a single transmittance Ys exceeding 60%, the degree of polarization Py is less than 50%, and sufficient polarization characteristics cannot be obtained, so that the shutter function of the mirror display may not sufficiently function.
 したがって、偏光フィルム14の好ましい光学特性は単体透過率Ysが45%以上60%以下、特に50%以上55%以下である。これにより、直線偏光光透過率は87%以上となり、ヨウ素系偏光板と同等または同等以上の表示輝度を得ることができる。この場合、ヨウ素系偏光板よりも表示像の色付きを抑えることができる。さらに、より高透過率な偏光板であるから自然光の反射率が向上し、ミラーモードの視認性がより良くなる。 Therefore, the preferable optical characteristic of the polarizing film 14 is that the single transmittance Ys is 45% or more and 60% or less, particularly 50% or more and 55% or less. As a result, the linearly polarized light transmittance is 87% or higher, and a display luminance equivalent to or higher than that of the iodine-based polarizing plate can be obtained. In this case, coloring of the display image can be suppressed as compared with the iodine polarizing plate. Furthermore, since the polarizing plate has a higher transmittance, the reflectance of natural light is improved and the visibility of the mirror mode is improved.
 偏光板が表示装置の前面に配置されることによって、画像表示像や反射像が黄味等に色付かないようにするためには、偏光板は、色付きのないニュートラルな色相を有していることが好ましい。具体的には、L*a*b*表色系の色相において、偏光板のa*及びb*の値が共に0、または0に近い値を有していることであるが、偏光板加工や各種染料の特性上の観点から、このような色相値を有する偏光板を作製することは容易でない。したがって、ミラーディスプレイへ適用した場合において色付きが視認され難い色相値とすることが好ましい。当該色相値の範囲は、偏光板単体(s)の場合、a*sが-3以上+3以下及びb*sが-3以上+3以下であることが好ましい。これにより、情報装置からの画像表示像に色付きを抑えることができる。さらに、偏光板を二枚で偏光軸を平行位(p)にしたときの色相値の場合、a*pが-3以上+3以下及びb*pが-3以上+3以下であることが好ましい。これにより、ミラーの反射像に色付きを抑えることができる。 In order to prevent the image display image and the reflection image from being colored yellowish or the like by arranging the polarizing plate in front of the display device, the polarizing plate has a neutral hue with no color. It is preferable. Specifically, in the hue of the L * a * b * color system, the values of a * and b * of the polarizing plate are both 0 or close to 0. From the viewpoint of the characteristics of various dyes, it is not easy to produce a polarizing plate having such a hue value. Therefore, when applied to a mirror display, it is preferable to set a hue value that makes it difficult to visually recognize coloring. In the case of the polarizing plate alone (s), the hue values are preferably such that a * s is −3 to +3 and b * s is −3 to +3. Thereby, coloring can be suppressed in the image display image from the information device. Further, in the case of hue values when two polarizing plates are used and the polarization axis is parallel (p), it is preferable that a * p is −3 to +3 and b * p is −3 to +3. Thereby, coloring in the reflected image of a mirror can be suppressed.
 本実施の形態における透過率(単位:%)及び偏光度(単位:%)は、日本分光株式会社製V-7100または株式会社日立製作所製U-4100により測定された値である。具体的には、偏光板を作製し、該偏光板を1枚使用したときの透過率を単体透過率Ys、2枚の該偏光板を吸収軸方向が同一となるように重ねた場合の透過率を平行位透過率Yp、2枚の該偏光板を吸収軸が直交するように重ねた場合の透過率を直交位透過率Ycとする。それぞれの透過率は、380~780nmの波長領域で、所定波長間隔dλ(ここでは5nm)おきに分光透過率τλを求め、数式(1)により算出する。数式(1)において、Pλは標準光(C光源)の分光分布を表し、yλは2度視野等色関数を表し、τλは分光透過率を表す。
Figure JPOXMLDOC01-appb-M000006
 
The transmittance (unit:%) and the degree of polarization (unit:%) in the present embodiment are values measured by JASCO Corporation V-7100 or Hitachi, Ltd. U-4100. Specifically, a polarizing plate is produced, and the transmittance when one polarizing plate is used is the transmittance when the single polarizing plate Ys and the two polarizing plates are stacked so that the absorption axis directions are the same. Let the transmittance be the parallel transmittance Yp, and let the transmittance when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other be the orthogonal transmittance Yc. The respective transmittances are calculated from the formula (1) by obtaining the spectral transmittance τλ at predetermined wavelength intervals dλ (here, 5 nm) in the wavelength region of 380 to 780 nm. In Equation (1), Pλ represents the spectral distribution of the standard light (C light source), yλ represents the color matching function of the double field of view, and τλ represents the spectral transmittance.
Figure JPOXMLDOC01-appb-M000006
 また偏光度Pyを、平行位透過率Yp及び直交位透過率Ycから、数式(2)により求める。
Figure JPOXMLDOC01-appb-M000007
 
Also, the degree of polarization Py is obtained from the parallel transmission Yp and the orthogonal transmission Yc according to Equation (2).
Figure JPOXMLDOC01-appb-M000007
 直線偏光光の透過率は、偏光板に絶対偏光光を入射し、その絶対偏光光の振動方向と偏光板の吸収軸方向が直交となるようにして測定して得られる透過率であり、絶対平行透過率Kyと表す。ここで、絶対平行透過率Kyは、上記で求めた単体透過率Ys及び直交位透過率Ycを数式(3)に代入して求めることができる。尚、絶対平行透過率Kyは、当該表示装置の設計や偏光板の波形特性に応じて、例えば380nm以上780nm以下の各波長の所定の波長の透過率のみを求めてもよいし、所定の波長範囲の平均値で表してもよい。
Figure JPOXMLDOC01-appb-M000008
 
The transmittance of linearly polarized light is the transmittance obtained by making absolute polarized light incident on the polarizing plate and measuring it so that the vibration direction of the absolute polarized light is perpendicular to the absorption axis direction of the polarizing plate. This is expressed as parallel transmittance Ky. Here, the absolute parallel transmittance Ky can be obtained by substituting the single-unit transmittance Ys and the orthogonal transmittance Yc obtained above into Equation (3). Note that the absolute parallel transmittance Ky may be obtained only for a predetermined wavelength of each wavelength from 380 nm to 780 nm, for example, depending on the design of the display device and the waveform characteristics of the polarizing plate. You may represent with the average value of a range.
Figure JPOXMLDOC01-appb-M000008
 偏光板として支持フィルム12を用いる場合、接着層を介して偏光フィルム14の片面又は両面に支持フィルム12を貼り合せる。支持フィルム12(第1支持フィルム12a,第2支持フィルム12b)としては、シクロオレフィン系樹脂フィルム、ポリエステル系樹脂フィルム、アクリル系樹脂フィルム、ポリカーボネート系樹脂フィルム、ポリサルホン系樹脂フィルム、脂環式ポリイミド系樹脂フィルム、アセチルセルロース系樹脂フィルム等を適用することができる。偏光フィルムと容易に接着し偏光板を得るという観点では、アセチルセルロース系樹脂、より好ましくはトリアセチルセルロース(TAC)を用いることが好ましい。 When using the support film 12 as a polarizing plate, the support film 12 is bonded to one side or both sides of the polarizing film 14 through an adhesive layer. As support films 12 (first support film 12a, second support film 12b), cycloolefin resin film, polyester resin film, acrylic resin film, polycarbonate resin film, polysulfone resin film, alicyclic polyimide film A resin film, an acetylcellulose-based resin film, or the like can be applied. From the viewpoint of easily adhering to a polarizing film and obtaining a polarizing plate, it is preferable to use an acetyl cellulose resin, more preferably triacetyl cellulose (TAC).
 なお、支持体フィルムに添加されているUV吸収剤等の種類によって、短波長側(420nm付近)の透過率が低下し、結果、偏光板としてのb*sが増加に影響することになる。この増加の度合いは、支持体フィルムの厚みに比例する。したがって、支持体フィルムの厚みは100μm以下が好ましく、より好ましくは40~80μmであり、色付きの影響を抑えた偏光板構成とすることが好ましい。 Note that the transmittance on the short wavelength side (near 420 nm) decreases depending on the type of UV absorber or the like added to the support film, and as a result, b * s as a polarizing plate affects the increase. The degree of this increase is proportional to the thickness of the support film. Therefore, the thickness of the support film is preferably 100 μm or less, more preferably 40 to 80 μm, and it is preferable to have a polarizing plate configuration in which the influence of coloring is suppressed.
 自動車の運転者らが偏光サングラスを装着した場合、偏光部材100の偏光フィルム18と偏光サングラスとの偏光軸が一致し、表示画像が視認できなくなったり、ミラーとして使用できなくなったりするおそれがある。そこで、偏光部材100の視認側、すなわち偏光板の視認側に位相差フィルムを設けることによって視認性の問題を解消することができる。本実施の形態では、偏光板の視認側に接着または粘着層を介して貼り合せてもよく、また、偏光板の支持フィルム12bとして用いてもよい。この場合、位相差フィルムの視認側となる面には、ハードコート層を設けることが好ましい。 When automobile drivers wear polarized sunglasses, the polarization axes of the polarizing film 18 of the polarizing member 100 and the polarized sunglasses coincide with each other, and the display image may not be visible or may not be used as a mirror. Therefore, the visibility problem can be solved by providing a retardation film on the viewing side of the polarizing member 100, that is, the viewing side of the polarizing plate. In this Embodiment, you may affix together on the visual recognition side of a polarizing plate through an adhesion | attachment or an adhesion layer, and may use it as the support film 12b of a polarizing plate. In this case, it is preferable to provide a hard coat layer on the surface on the viewing side of the retardation film.
 位相差フィルムとは、複屈折材料でできたフィルム状の光学部材である。位相差フィルムの厚さは、5μm以上200μm以下としてもよく、さらに10μm以上150μm以下としてもよい。位相差フィルムの厚さが5μm未満であると、工業材料としての取り扱い性が低下する。また、膜厚が200μmを超える場合では、フィルム製膜に伴う歪みやうねりが現れ易くなり、ミラーディスプレイの表示像の品位を損ねるおそれがある。 A retardation film is a film-like optical member made of a birefringent material. The thickness of the retardation film may be 5 μm or more and 200 μm or less, and may be 10 μm or more and 150 μm or less. When the thickness of the retardation film is less than 5 μm, the handleability as an industrial material is lowered. In addition, when the film thickness exceeds 200 μm, distortion and waviness associated with film formation tend to appear, and the quality of the display image of the mirror display may be impaired.
 位相差フィルムの材料は、例えば、ポリカーボネート系樹脂やポリエステル系樹脂、シクロオレフィン系樹脂等を主成分とするフィルムを延伸したもの、あるいは、透明なフィルム上に紫外線硬化性の高分子液品がコーティングされ配向したものを選択することができる。 The material of the retardation film is, for example, a film obtained by stretching a film mainly composed of a polycarbonate resin, a polyester resin, a cycloolefin resin, or a transparent film coated with an ultraviolet curable polymer liquid product. And oriented ones can be selected.
 位相差フィルムのレターデーションは、100nm以上30000nm以下の範囲にしてもよい。位相差フィルムとしては、例えば、λ/4位相差フィルムやλ/2位相差フィルム、その他に、超複屈折を有する高位相差フィルムが挙げられる。 The retardation of the retardation film may be in the range of 100 nm to 30000 nm. Examples of the retardation film include a λ / 4 retardation film, a λ / 2 retardation film, and a high retardation film having super birefringence.
 位相差フィルムは、遅相軸と偏光板100の吸収軸とで成す角度の関係が0°より大きく90°未満の角度範囲内とすることが好ましい。すなわち、位相差フィルムの遅相軸と偏光板100の吸収軸とが一致する場合(関係角度は0°)及び直交する場合(関係角度は90°)を除くことが好ましく、一態様においては、40~50度、より好ましくは45度となるように位相差フィルムと偏光板100を積層することが好ましい。このような関係において、ミラーディスプレイから出射又は反射する偏光光は、偏光サングラスの吸収軸ですべて吸収されないため、偏光サングラス着用時でも当該装置の表示情報を視認できるようになる。 In the retardation film, it is preferable that the relationship between the angle formed by the slow axis and the absorption axis of the polarizing plate 100 is in an angle range of greater than 0 ° and less than 90 °. That is, it is preferable to exclude the case where the slow axis of the retardation film coincides with the absorption axis of the polarizing plate 100 (relation angle is 0 °) and the case where they are orthogonal (relation angle is 90 °). The retardation film and the polarizing plate 100 are preferably laminated so as to be 40 to 50 degrees, more preferably 45 degrees. In such a relationship, since the polarized light emitted or reflected from the mirror display is not completely absorbed by the absorption axis of the polarized sunglasses, the display information of the device can be visually recognized even when the polarized sunglasses are worn.
 位相差フィルムを備える偏光部材100は、後述で定義するうねり度が15以下となるように、前述の位相差フィルム、接着または粘着層、ハードコート層等において材料や製法を選定することが好ましい。特に、偏光板と位相差フィルムとの積層において粘着層を用いる場合は、後述する「うねり」の発生を抑えた粘着層を用いることが好ましい。これにより、位相差フィルムを備える偏光部材100においても、歪みの少ない高品位な鏡面を有するミラーディスプレイを得ることができる。 For the polarizing member 100 including the retardation film, it is preferable to select a material and a manufacturing method in the above-described retardation film, adhesive or adhesive layer, hard coat layer, and the like so that the degree of undulation defined below is 15 or less. In particular, when an adhesive layer is used in the lamination of the polarizing plate and the retardation film, it is preferable to use an adhesive layer that suppresses the occurrence of “swell” described later. Thereby, also in the polarizing member 100 provided with retardation film, the mirror display which has a high-definition mirror surface with few distortions can be obtained.
[粘着層10]
 粘着層10は、偏光部材100を他の部材に貼り合わせる際に使用する層として設けられる。粘着層10は、第1支持フィルム12aにおいて偏光フィルム14と反対側の面に設けられる。粘着層10は、例えば、アクリル系又はポリエステル系の粘着剤の固形成分をトルエンやメチルエチルケトン(MEK)等の溶剤で希釈した粘着剤を離型フィルムに塗布し、乾燥させることによって形成される。粘着剤は、アクリル系、ポリエステル系であれば特に限定されるものではなく、さらにこれら以外の粘着剤を使用してもよい。また、粘着剤中には硬化剤やシランカップリング剤などの添加剤を配合し、被着体との密着性を調整したり、耐久性において剥がれや発泡の発生を抑えた特性にしたりすることができる。ここで、溶剤による固形成分の希釈率は5倍以下としてもよい。これにより、後述する「うねり」の発生を抑えた粘着層とすることができる。
[Adhesive layer 10]
The adhesive layer 10 is provided as a layer used when the polarizing member 100 is bonded to another member. The adhesive layer 10 is provided on the surface of the first support film 12a opposite to the polarizing film 14. The pressure-sensitive adhesive layer 10 is formed, for example, by applying a pressure-sensitive adhesive obtained by diluting a solid component of an acrylic or polyester pressure-sensitive adhesive with a solvent such as toluene or methyl ethyl ketone (MEK) to a release film and drying it. The pressure-sensitive adhesive is not particularly limited as long as it is acrylic or polyester-based, and other pressure-sensitive adhesives may be used. Add adhesives such as curing agents and silane coupling agents in the adhesive to adjust the adhesion to the adherend, and to prevent the occurrence of peeling and foaming in durability. Can do. Here, the dilution rate of the solid component with the solvent may be 5 times or less. Thereby, it can be set as the adhesion layer which suppressed generation | occurrence | production of the "swell" mentioned later.
 次に、当該配合された粘着剤を離型フィルムに塗布し、乾燥工程において溶剤を揮発させる。乾燥工程は、それぞれ40℃から100℃の温度範囲に設定された複数の乾燥炉を用いて、粘着剤を塗布した離型フィルムから溶剤を揮発させてもよい。 Next, the blended adhesive is applied to a release film, and the solvent is volatilized in the drying step. In the drying step, the solvent may be volatilized from the release film coated with the pressure-sensitive adhesive using a plurality of drying furnaces each set to a temperature range of 40 ° C to 100 ° C.
 このとき、乾燥後の粘着剤の厚みが1μm以上30μm以下となるよう、より好ましくは5μm以上25μm以下となるように塗布量を調整する。その後、粘着剤側を第1支持フィルム12aに向けて貼り合わせる。 At this time, the coating amount is adjusted so that the thickness of the pressure-sensitive adhesive after drying is 1 μm or more and 30 μm or less, more preferably 5 μm or more and 25 μm or less. Thereafter, the adhesive side is bonded to the first support film 12a.
[ハードコート層16]
 ハードコート層16は、偏光部材100の表面を保護するための層である。ハードコート層16は、第2支持フィルム12bの偏光フィルム14の反対側の面に設けられる。ハードコート層16は、例えば、紫外線硬化樹脂を第2支持フィルム12bの表面に塗布し、紫外線を照射することによって硬化させることで得ることができる。具体的には、例えば、溶剤であるメチルエチルケトンに1~2種以上の多官能(メタ)アクリレート、重合開始剤、及び表面調整剤と共に混合して塗料を作製してTACフィルムの片面に塗布し、40~80℃で溶媒を乾燥させたうえで高圧水銀灯を用いて紫外線照射して硬化することでハードコート層16を形成することができる。ハードコート層16の膜厚は、当該硬度、硬化後の反り(カール)の観点から1μm以上20μm以下としてもよい。膜厚が20μm以上では高硬度性が得られるが、フィルムが激しく反ってしまい、これにより容易に偏光フィルムに貼り合せることができなくなるだけでなく、加工時の曲げによってハードコート層にクラックが入るおそれがあったり、耐久性試験の剥がれの原因になったりする。したがって、膜厚は2μm以上10μm以下としてもよく、硬度と加工性を兼ね備えたハードコート層を得ることができる。なお、硬度の向上や反りの軽減には、ナノレベルのコロイダルシリカを分散させた溶剤(例えば、日産化学工業(株)製オルガノシリカゾル)を配合してもよい。
[Hard coat layer 16]
The hard coat layer 16 is a layer for protecting the surface of the polarizing member 100. The hard coat layer 16 is provided on the surface on the opposite side of the polarizing film 14 of the second support film 12b. The hard coat layer 16 can be obtained, for example, by applying an ultraviolet curable resin to the surface of the second support film 12b and curing it by irradiating with ultraviolet rays. Specifically, for example, a solvent is prepared by mixing one or more polyfunctional (meth) acrylates, a polymerization initiator, and a surface conditioner with methyl ethyl ketone, which is a solvent, to prepare a paint, and apply it to one side of a TAC film. The hard coat layer 16 can be formed by drying the solvent at 40 to 80 ° C. and curing it by irradiating with ultraviolet rays using a high pressure mercury lamp. The film thickness of the hard coat layer 16 may be not less than 1 μm and not more than 20 μm from the viewpoints of the hardness and warpage (curl) after curing. When the film thickness is 20 μm or more, high hardness can be obtained, but the film is warped violently, which makes it difficult to bond to the polarizing film, and cracks occur in the hard coat layer due to bending during processing. There is a fear, and it may cause peeling of the durability test. Therefore, the film thickness may be 2 μm or more and 10 μm or less, and a hard coat layer having both hardness and workability can be obtained. In order to improve hardness and reduce warpage, a solvent in which nano-level colloidal silica is dispersed (for example, organosilica sol manufactured by Nissan Chemical Industries, Ltd.) may be blended.
 このとき、支持フィルムに対して浸食性のある希釈溶剤を用いることによって、形成されるハードコート層と支持フィルムのとの界面が混ざり合い、ハードコート層と支持フィルムとの間で発生する反射光の薄膜干渉(干渉縞)を抑制することができる。 At this time, by using a diluting solvent that is erodible to the support film, the interface between the formed hard coat layer and the support film is mixed, and reflected light generated between the hard coat layer and the support film. It is possible to suppress thin film interference (interference fringes).
 また、紫外線照射を窒素雰囲気下で行うことによって、耐擦傷性を高めることができる。耐擦傷性は、例えば、スチールウールによる擦傷試験(#0000、250g荷重、10~100往復)により評価され、当該試験によりハードコート表面に傷が付かないことが好ましい。 Also, scratch resistance can be enhanced by performing ultraviolet irradiation in a nitrogen atmosphere. The scratch resistance is evaluated, for example, by a scratch test using steel wool (# 0000, 250 g load, 10 to 100 reciprocations), and it is preferable that the hard coat surface is not scratched by the test.
 ハードコート層の硬度は、JIS5600-5-4に基づく、鉛筆硬度試験(引っかき硬度(鉛筆法))により評価される。例えば、ハードコート層を形成した支持フィルムがTACフィルム(40~80μ)の場合では、前記硬度は当該評価法において、一般に、750g荷重2H以上を有していることが好ましく、より好ましくは750g荷重4H以上を有していることよって、高硬度のハードコート層を有すると判定される。ただし、当該評価法による硬度は、ハードコート層の膜厚だけでなく、下地となる支持フィルムの厚みや押し硬度(潰れやすさ)等の物性に依存するため、上記の指標に限定されるものではない。 The hardness of the hard coat layer is evaluated by a pencil hardness test (scratch hardness (pencil method)) based on JIS 5600-5-4. For example, when the support film on which the hard coat layer is formed is a TAC film (40 to 80 μm), the hardness generally preferably has a 750 g load of 2H or more, more preferably 750 g load, in the evaluation method. By having 4H or more, it is determined that the hard coat layer has a high hardness. However, the hardness according to the evaluation method depends not only on the film thickness of the hard coat layer but also on the physical properties such as the thickness of the supporting film as a base and the pressing hardness (easiness to be crushed), and therefore is limited to the above index. is not.
 ハードコート層16には表面調整剤を含有させてもよい。これにより、塗布された塗工液のレベリングを促して平滑な表面を形成させ、ミラーディスプレイ用の部材として面感の優れた表面を形成することができる。また、シリコン系やフッ素系の表面調整剤を用いることによって、ハードコート層16に対して防汚性や耐指紋性の機能付与することができる。 The hard coat layer 16 may contain a surface conditioner. Thereby, leveling of the applied coating liquid is promoted to form a smooth surface, and a surface with excellent surface feel can be formed as a member for a mirror display. In addition, by using a silicon-based or fluorine-based surface conditioner, antifouling and fingerprint resistance functions can be imparted to the hard coat layer 16.
[うねり度について]
 支持フィルム12や他の膜等が、特に溶剤で希釈した樹脂等がキャスト法により製膜された場合、製膜時に溶剤が除去され濃度が濃縮していく過程で樹脂と溶剤が対流し、この対流による揺らぎが製膜後も残存する場合がある。その他には、風乾時の風の影響等によって揺らぎが発生することもある。「うねり」は、このような膜厚の揺らぎの分布や位相差の不均一な分布の状態を意味する。
[About swell degree]
When the support film 12 and other membranes are formed by a casting method, particularly when a resin diluted with a solvent is formed by the casting method, the resin and the solvent are convected in the process of removing the solvent during concentration and concentrating the concentration. Fluctuation due to convection may remain after film formation. In addition, fluctuations may occur due to the influence of wind during air drying. “Waviness” means such a state of fluctuation of film thickness fluctuation or non-uniform phase difference.
 偏光部材100の支持フィルム12や粘着層10にうねりが存在する場合、偏光部材100を適用した液晶ディスプレイにおいて表示画像の歪みの原因となる。したがって、偏光部材100に用いられる部材は、うねり度が極力低いものが好ましい。 When waviness is present in the support film 12 or the adhesive layer 10 of the polarizing member 100, the liquid crystal display to which the polarizing member 100 is applied causes distortion of a display image. Therefore, it is preferable that the member used for the polarizing member 100 has a swell degree as low as possible.
 うねり度は、ミラーディスプレイの表示画像の品位を数値的に評価するための評価値である。支持フィルム12、偏光板、粘着層10等のうねり度は、株式会社フュージョン社製の偏光板うねり検査装置を用いて測定することができる。 The swell degree is an evaluation value for numerically evaluating the quality of the display image on the mirror display. The degree of waviness of the support film 12, the polarizing plate, the pressure-sensitive adhesive layer 10 and the like can be measured using a polarizing plate waviness inspection apparatus manufactured by Fusion Co., Ltd.
 うねり度の測定について説明する。4K解像度のモニターディスプレイに等間隔のドットパターンを表示させ、45度の角度設置された平滑ミラーを介してミラー部に映るドットパターンのモニター像をカメラで撮影する。これをブランク測定とする。次に、ミラーとカメラの間に支持フィルム12、偏光板、粘着層10等の被測定物を配置し、被測定物を透過させた時のドットパターンの画像をカメラで測定する。このとき、被測定物は平滑なガラス板に粘着剤を用いて貼合したものを使用する。撮影されたドットパターンを画像解析することにより、ドットパターンのずれの標準偏差(Totalσ)を求めてその値をうねり度とする。 Explain the measurement of swell. A dot pattern of equal intervals is displayed on a 4K resolution monitor display, and a monitor image of the dot pattern reflected on the mirror portion is taken by a camera through a smooth mirror set at an angle of 45 degrees. This is a blank measurement. Next, an object to be measured such as a support film 12, a polarizing plate, and an adhesive layer 10 is placed between the mirror and the camera, and an image of a dot pattern when the object to be measured is transmitted is measured with the camera. At this time, the object to be measured is a flat glass plate bonded with an adhesive. By analyzing the image of the captured dot pattern, the standard deviation (Total σ) of the deviation of the dot pattern is obtained and the value is used as the undulation degree.
 うねり度は、ブランク時において5程度となる。すなわち、うねり度が5に近いほどうねりが殆ど無く、5より大きくなるほど被測定物に光学的な歪みが内在することを示す。 The swell degree is about 5 when blank. That is, as the degree of undulation is closer to 5, there is almost no undulation, and as the degree of undulation exceeds 5, the measured object has an optical distortion.
 液晶ディスプレイに適用される一般的な偏光部材(偏光板及び粘着層を含む)のうねり度は20以上23以下である。このような偏光部材をミラーディスプレイの部材として用いた場合、液晶ディスプレイを直視する場合に比べてうねりが認識され易い。その理由は、ミラーディスプレイでは画像表示のないミラー状態で使用することが多く、反射された像を観察することになるから、表面形状が重要になるためである。したがって、鏡面となる偏光部材100のうねりがあると、反射像として映る風景像が歪んで見えてしまい、ミラーディスプレイとして十分な機能を果たすことができない。 The swell degree of a general polarizing member (including a polarizing plate and an adhesive layer) applied to a liquid crystal display is 20 or more and 23 or less. When such a polarizing member is used as a member of a mirror display, the swell is more easily recognized than when the liquid crystal display is directly viewed. This is because a mirror display is often used in a mirror state with no image display, and a reflected image is observed, so that the surface shape becomes important. Therefore, if there is a wave of the polarizing member 100 serving as a mirror surface, a landscape image reflected as a reflected image looks distorted and cannot function sufficiently as a mirror display.
 そこで、ミラーディスプレイに適した偏光部材100のうねり度は、15以下であることが好ましく、8以下であることがより好ましい。このようなうねり度とすることで、偏光部材100を用いたミラーディスプレイにおいて歪みの少ない高品位な鏡面を得ることができる。 Therefore, the degree of undulation of the polarizing member 100 suitable for a mirror display is preferably 15 or less, and more preferably 8 or less. By setting it as such a wave | undulation degree, in a mirror display using the polarizing member 100, a high quality mirror surface with little distortion can be obtained.
 このような偏光部材100のうねり度を実現するためには、支持フィルム12は、うねり度が小さいものを使用してもよい。支持フィルム12は、うねり度が12以下、より好ましくは7以下としてもよい。この場合のうねり度は、うねり度が6以下の粘着剤層(粘着層の寄与が殆どない)を使用して測定した場合の値である。支持フィルム12のうねり度はその厚みに依存するので、支持フィルム12の厚みは200μm以下としてもよく、さらに80μm以下が好ましく、40~60μmがより好ましい。 In order to realize such a degree of undulation of the polarizing member 100, the support film 12 having a small degree of undulation may be used. The support film 12 may have a swell degree of 12 or less, more preferably 7 or less. The swell degree in this case is a value when measured using an adhesive layer having a swell degree of 6 or less (the adhesive layer hardly contributes). Since the degree of undulation of the support film 12 depends on its thickness, the thickness of the support film 12 may be 200 μm or less, more preferably 80 μm or less, and more preferably 40 to 60 μm.
 また、粘着層10は、粘着層のうねり度が7以下であってもよい。 Further, the pressure-sensitive adhesive layer 10 may have a swell degree of 7 or less.
[耐久性について]
 自動車の内装に用いられる部材は、高い耐久性が要求される。例えば、液晶ディスプレイなどの表示装置は、乾熱試験95℃において1000時間以上、湿熱試験65℃及び93%において1000時間以上の信頼性を満たすことが要求されている。これは、表示装置部に使用されるTFT液晶表示装置等の部材の耐久性が基準となっている。当該表示装置に用いる偏光部材においても同等または同等以上の信頼性を有することが好ましい。その場合の耐久性は、例えば、乾熱試験は105℃において1000時間以上、湿熱試験は85℃及び85%において240時間以上が挙げられる。したがって、偏光部材としては二色性染料を含む染料系偏光フィルムを用いることが好ましい。尚、偏光部材の耐久性の評価項目としては、例えば、光学特性の変化や、変色、剥がれ及び変形等の外観変化である。
[Durability]
Members used for automobile interiors are required to have high durability. For example, a display device such as a liquid crystal display is required to satisfy the reliability of 1000 hours or more at a dry heat test of 95 ° C. and 1000 hours or more at a wet heat test of 65 ° C. and 93%. This is based on the durability of a member such as a TFT liquid crystal display device used in the display device section. It is preferable that the polarizing member used in the display device has the same or equivalent reliability. The durability in that case is, for example, 1000 hours or more at 105 ° C. for the dry heat test and 240 hours or more at 85 ° C. and 85% for the wet heat test. Therefore, it is preferable to use a dye-based polarizing film containing a dichroic dye as the polarizing member. In addition, as an evaluation item of the durability of the polarizing member, there are, for example, changes in optical characteristics, and changes in appearance such as discoloration, peeling, and deformation.
[偏光フィルム14の作製]
 ポリビニルアルコール樹脂製フィルム(株式会社クラレ製VF-PS(75μm))を30℃の水中で5分間膨潤させた後、30℃の染色液(水1000重量部、トリポリリン酸ナトリウム0.3重量部に対して、シー・アイ・ダイレクト・オレンジ39を0.11重量部、シー・アイ・ダイレクト・レッド81を0.11重量部、特開平3-12606号公報に記載の方法より得たブルー系染料を0.10重量部、特開昭59-145255号公報の記載の方法より得たグリーン系染料を0.11重量部の中に5分間浸して染料による染色処理を行い、次いで50℃の3重量%硼酸水溶液中で5.5倍に延伸し延伸フィルムを得た。延伸処理の後、50℃の5重量%硼酸水溶液中に延伸フィルムを2分間浸し、水洗後、30~80℃の空気中で乾燥して本開示の偏光フィルム14を得た。得られた偏光フィルム14の厚さは30μmであった。
[Preparation of Polarizing Film 14]
A polyvinyl alcohol resin film (VF-PS (75 μm) manufactured by Kuraray Co., Ltd.) was swollen in water at 30 ° C. for 5 minutes, and then dyed at 30 ° C. (1000 parts by weight of water, 0.3 parts by weight of sodium tripolyphosphate). On the other hand, 0.11 part by weight of C.I.Direct Orange 39 and 0.11 part by weight of C.I.Direct Red 81, a blue dye obtained by the method described in JP-A-3-12606 0.10 parts by weight of green dye obtained by the method described in JP-A No. 59-145255 was immersed in 0.11 part by weight for 5 minutes, followed by dyeing with the dye. The film was stretched 5.5 times in a weight% boric acid aqueous solution to obtain a stretched film, and after the stretching treatment, the stretched film was immersed in a 5 weight% boric acid aqueous solution at 50 ° C. for 2 minutes, washed with water, and air at 30 to 80 ° C. In dried to obtain a polarizing film 14 of the present disclosure. The resulting thickness of the polarizing film 14 was 30 [mu] m.
[ハードコート層の作製]
 多官能(メタ)アクリレートとしてペンタエリスリトールトリアクリレート(日本化薬(株)製、KAYARAD PET-30)を40重量部、溶剤としてメチルエチルケトンを60重量部、アクリルポリマー系のレベリング剤を0.2重量部、及び重合開始剤としてイルガキュア184(チバ・スペシャリティ・ケミカルズ社製)を2重量部を混合して塗料を作製し、マイクログラビアコーターにて60μ厚のTACフィルムの片面に塗布した。その後、溶媒を40~80℃で2分間乾燥して除去した後、窒素雰囲気下で塗膜に高圧水銀灯により紫外線照射し、塗膜を硬化させ、TACフィルム上にハードコート層を形成した。得られたハードコート層の膜厚は約5μであった。このハードコート層の鉛筆硬度は750g荷重で2Hであった。
[Preparation of hard coat layer]
40 parts by weight of pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD PET-30) as a polyfunctional (meth) acrylate, 60 parts by weight of methyl ethyl ketone as a solvent, and 0.2 parts by weight of an acrylic polymer leveling agent And 2 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a polymerization initiator were mixed to prepare a paint, which was applied to one side of a TAC film having a thickness of 60 μm by a microgravure coater. Thereafter, the solvent was removed by drying at 40 to 80 ° C. for 2 minutes, and then the coating film was irradiated with ultraviolet rays by a high-pressure mercury lamp in a nitrogen atmosphere to cure the coating film, thereby forming a hard coat layer on the TAC film. The film thickness of the obtained hard coat layer was about 5 μm. The pencil hardness of this hard coat layer was 2H at a load of 750 g.
[偏光板の作製]
 ポリビニルアルコール(PVA)を含む水系接着剤を用いて上記方法によって得られた偏光フィルムの両面に60μm厚のTACフィルムをラミネートした。その後、70℃で5分間乾燥して偏光板を得た。このとき、ラミネートする片側には上記方法にて得られたハードコート層付のTACフィルムを第2支持フィルム12bとして使用し、ハードコート層の無いTACフィルムを第1支持フィルム12aとして偏光フィルムに接着した。得られた偏光板の光学特性を日立製作所製分光光度計U-4100を用いて測定を行った結果を表1に示す。この時、当該偏光板の単体透過率Ysは50.1%、偏光度Pyは73.7%であった。また、日本分光製V-7100を用いて直線偏光光透過率の測定し、可視光域における当該偏光板の透過率波形を図1に示す。
[Preparation of polarizing plate]
A TAC film having a thickness of 60 μm was laminated on both surfaces of the polarizing film obtained by the above method using an aqueous adhesive containing polyvinyl alcohol (PVA). Then, it dried at 70 degreeC for 5 minute (s), and the polarizing plate was obtained. At this time, the TAC film with the hard coat layer obtained by the above method is used as the second support film 12b on one side to be laminated, and the TAC film without the hard coat layer is bonded to the polarizing film as the first support film 12a. did. Table 1 shows the results obtained by measuring the optical characteristics of the obtained polarizing plate using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. At this time, the single transmittance Ys of the polarizing plate was 50.1%, and the polarization degree Py was 73.7%. Further, the linearly polarized light transmittance was measured using JASCO V-7100, and the transmittance waveform of the polarizing plate in the visible light region is shown in FIG.
[粘着層10の作製]
 公知の文献(特開2016-206468号)に従って、離型フィルム上にアクリル系粘着剤を塗布し、乾燥することで粘着層10を作製した。得られた塗布面を第1支持フィルム12aに向けて貼合することで偏光部材100に粘着層10を付与した。その後、粘着層10中の硬化剤の架橋反応を促進させるため、3日以上35℃で保持させ本実施例における偏光部材100を得た。
[Preparation of adhesive layer 10]
According to a known document (Japanese Patent Laid-Open No. 2016-206468), an acrylic pressure-sensitive adhesive was applied on a release film and dried to prepare an adhesive layer 10. The pressure-sensitive adhesive layer 10 was applied to the polarizing member 100 by pasting the obtained coated surface toward the first support film 12a. Then, in order to accelerate | stimulate the crosslinking reaction of the hardening | curing agent in the adhesion layer 10, it was hold | maintained at 35 degreeC for 3 days or more, and the polarizing member 100 in a present Example was obtained.
 得られた粘着層10の膜厚は20μmであった。この粘着層10のみをガラス板上に貼合し、株式会社フュージョン社製の偏光板うねり検査装置で測定したところうねり度は6.6であった。また、同様に測定した上記の60μm厚のTACフィルムは6.5であり及び偏光部材100のうねり度は7.4であった。 The film thickness of the obtained adhesive layer 10 was 20 μm. Only this adhesive layer 10 was bonded on a glass plate, and the degree of undulation was 6.6 as measured by a polarizing plate undulation inspection device manufactured by Fusion Co., Ltd. In addition, the 60 μm-thick TAC film measured in the same manner was 6.5, and the undulation degree of the polarizing member 100 was 7.4.
 ポリビニルアルコール樹脂製フィルム(株式会社クラレ製 VF-PS(75μm))を30℃の水中で5分間膨潤させた後、30℃の染色液(水1000重量部、トリポリリン酸ナトリウム0.3重量部に対して、シー・アイ・ダイレクト・オレンジ39を0.0.10重量部、シー・アイ・ダイレクト・レッド81を0.10重量部、特開平3-12606号公報に記載の方法より得たブルー系染料を0.13重量部、特開昭59-145255号公報に記載の方法より得たグリーン系染料を0.10重量部の中に5分間浸して染料による染色処理を行い、次いで50℃の3重量%硼酸水溶液中で5.5倍に延伸し延伸フィルムを得た。延伸処理の後、50℃の5重量%硼酸水溶液中に延伸フィルムを2分間浸し、水洗後、30~80℃の空気中で乾燥して本開示の偏光フィルム14を得た。得られた偏光フィルム14の厚さは30μmであった。日立製作所製分光光度計U-4100を用いて得られた偏光フィルムの光学特性の測定を行ったところ、単体透過率Ysは50.1%、偏光度Pyは73.8%であった。また、染料配合においてブルー系染料の割合を増やしたため、実施例1の色相よりも青味にシフトさせることができた。 A polyvinyl alcohol resin film (manufactured by Kuraray Co., Ltd., VF-PS (75 μm)) was swollen in water at 30 ° C. for 5 minutes, and then dyed at 30 ° C. (1000 parts by weight of water and 0.3 parts by weight of sodium tripolyphosphate). In contrast, 0.0.10 parts by weight of C.I.Direct Orange 39, 0.10 parts by weight of C.I.Red Red 81, and blue obtained by the method described in JP-A-3-12606 0.13 parts by weight of a dye and a green dye obtained by the method described in JP-A-59-145255 are immersed in 0.10 parts by weight for 5 minutes, followed by dyeing with the dye, followed by 50 ° C. The film was stretched 5.5 times in a 3% by weight boric acid aqueous solution to obtain a stretched film, and after the stretching treatment, the stretched film was immersed in a 5% by weight boric acid aqueous solution at 50 ° C. for 2 minutes, washed with water, and then 30-80 The film was dried in the air to obtain the polarizing film 14 of the present disclosure, and the thickness of the polarizing film 14 obtained was 30 μm, and the polarizing film obtained using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. When the optical characteristics were measured, the single transmittance Ys was 50.1% and the polarization degree Py was 73.8% In addition, since the proportion of the blue dye was increased in the dye blend, the hue of Example 1 was It was possible to shift more blue.
 偏光板の作製及び偏光部材の作製は、実施例1に記載の方法と同じである。 The production of the polarizing plate and the production of the polarizing member are the same as those described in Example 1.
比較例Comparative example
 市販の偏光部材であるハードコート付ヨウ素系偏光板SKN-18243T-HC(ポラテクノ製)を使用した。当該製品の厚み(保護フィルム、離型フィルムを含まない)は220μmであり、詳細にはハードコート層の膜厚は5μm、支持フィルムは80μm厚のTACフィルム、粘着層は25μmである。当該偏光部材の光学特性をしたところ、単体透過率Ysは42.8%、偏光度Pyは99.9%であった。また、日本分光製V-7100を用いて直線偏光光透過率の測定し、可視光域における当該偏光板の透過率波形を図1に示す。 A commercially available polarizing member, a hard-coated iodine polarizing plate SKN-18243T-HC (manufactured by Polatechno) was used. The thickness of the product (excluding protective film and release film) is 220 μm. Specifically, the hard coat layer has a thickness of 5 μm, the support film has a thickness of 80 μm, and the adhesive layer has a thickness of 25 μm. When the optical properties of the polarizing member were measured, the single transmittance Ys was 42.8%, and the polarization degree Py was 99.9%. Further, the linearly polarized light transmittance was measured using JASCO V-7100, and the transmittance waveform of the polarizing plate in the visible light region is shown in FIG.
 実施例1と同様に、当該偏光部材をガラス板上に貼合しうねり度を測定したところ、うねり度は22.2であった。 As in Example 1, the polarizing member was bonded onto a glass plate and the swell degree was measured. The swell degree was 22.2.
[光学特性の評価]
 厚さ1.1mmの白板ガラスの片面に実施例1及び比較例1の偏光部材を貼合し、ガラス板の反対の面には反射型偏光板3M社製DBEFを前述の粘着層を用いて貼合し、液晶シャッター部に見立てた評価サンプルを作製した。このとき、偏光部材の偏光軸と反射型偏光板の透過軸の関係が、直交、平行となるものをそれぞれ作製した。直交の関係の場合がミラーディスプレイにおけるミラーモードの態様に相当し、この時のサンプルの偏光板部材面の全光線反射率を測定し反射の色相(a*r、b*r)を算出した。全光線反射率Yr(単位:%)は、日立製作所製分光光度計U-4100を用いて測定し、当該積分球の白色板の箇所に評価サンプルの偏光部材面を積分球側に向け設置し測定した。式(1)の計算方法と同様に全光線反射率Yrを求めた。
[Evaluation of optical properties]
The polarizing member of Example 1 and Comparative Example 1 is bonded to one side of a white plate glass having a thickness of 1.1 mm, and DBEF manufactured by the reflective polarizing plate 3M is used on the opposite side of the glass plate using the above-mentioned adhesive layer. An evaluation sample was prepared by pasting and making it look like a liquid crystal shutter part. At this time, samples were produced in which the relationship between the polarization axis of the polarizing member and the transmission axis of the reflective polarizing plate was orthogonal and parallel. The case of the orthogonal relationship corresponds to the mode of the mirror mode in the mirror display, and the total light reflectance of the polarizing plate member surface of the sample at this time was measured to calculate the reflection hue (a * r, b * r). The total light reflectivity Yr (unit:%) is measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the polarizing member surface of the evaluation sample is installed on the white plate side of the integrating sphere with the integrating sphere side facing. It was measured. The total light reflectance Yr was obtained in the same manner as the calculation method of the formula (1).
 また、平行の関係の場合はミラーディスプレイにおける表示モードの態様に相当する。この時のサンプルの透過率を測定しその色相を算出した。その測定結果を表2に示す。 Also, in the case of a parallel relationship, it corresponds to the mode of display mode on the mirror display. The transmittance of the sample at this time was measured, and the hue was calculated. The measurement results are shown in Table 2.
[耐久性試験]
 上記より得た偏光部材を45×40mmサイズ(吸収軸は長辺に平行)にカットし、白板ガラス(厚さ1.1mm)上に貼り合せたものを耐久性試験用サンプルとした。その後、当該サンプルをオートクレーブに投入し、気圧0.5MPa、温度60℃の下で15分間の加圧処理を施し、偏光部材の粘着層とガラスを十分に密着させた。
[Durability test]
The polarizing member obtained as described above was cut into a size of 45 × 40 mm (absorption axis parallel to the long side), and bonded to white plate glass (thickness: 1.1 mm) as a sample for durability test. Thereafter, the sample was put into an autoclave and subjected to a pressure treatment for 15 minutes under an atmospheric pressure of 0.5 MPa and a temperature of 60 ° C., thereby sufficiently adhering the adhesive layer of the polarizing member and the glass.
 耐久性試験の条件は、乾熱試験として105℃、及び湿熱試験として85℃湿度85%とし、それぞれの条件にサンプルを投入した。耐久性能の評価は、耐久試験器投入の前後におけるサンプルの光学特性を分光光度計U-4100を用いて測定し、投入前後の透過率(Ys)及び色相(a*s、b*s)の変化量(投入後-投入前)を求めることにより行った。 The conditions of the durability test were 105 ° C. as a dry heat test and 85 ° C. and 85% as a wet heat test, and samples were put into the respective conditions. The durability performance was evaluated by measuring the optical characteristics of the sample before and after the introduction of the durability tester using a spectrophotometer U-4100, and measuring the transmittance (Ys) and the hue (a * s, b * s) before and after the introduction. This was done by determining the amount of change (after charging-before charging).
 表1~表4及び図2は、各実施例及び比較例1に対する測定結果を示す。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Tables 1 to 4 and FIG. 2 show the measurement results for each Example and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
 実施例1及び2より得た偏光板の色相値は、表1に示す通りヨウ素系の偏光板を用いた比較例1よりも小さかった。図2の分光波形に示す通り、短波長側の透過率が比較例1よりも向上し、可視光域全体で平坦な波形となっており、比較例1よりもニュートラルな色相が達成することができた。また、単体透過率Ysを50.1%とすることで、比較例1と同等の直線偏光光透過率を得ることができている。したがって、表示装置部からの光量は、高偏光度のヨウ素系偏光板を用いた場合と遜色はないため、同等の表示輝度を得ることができる。 The hue values of the polarizing plates obtained from Examples 1 and 2 were smaller than those of Comparative Example 1 using an iodine polarizing plate as shown in Table 1. As shown in the spectral waveform of FIG. 2, the transmittance on the short wavelength side is improved as compared with Comparative Example 1, the waveform is flat in the entire visible light region, and a neutral hue than Comparative Example 1 can be achieved. did it. Further, by setting the single transmittance Ys to 50.1%, the linearly polarized light transmittance equivalent to that of the comparative example 1 can be obtained. Therefore, the amount of light from the display unit is not inferior to that obtained when an iodine-based polarizing plate having a high degree of polarization is used, so that the same display luminance can be obtained.
 液晶シャッター部に見立てた評価サンプルの光学特性の評価結果を表2に示す。ミラーモードの反射率はヨウ素系の偏光板を用いた比較例1における偏光部材よりも高かった。すなわち、実施例1における偏光部材100ではミラー状態での視認性が向上できる。また、実施例1における偏光部材100のb*rの値は比較例1よりも低かった。すなわち、実施例1における偏光部材100を用いることによってミラーの色付きを抑制することができる。また、表示モードにおいて、実施例1における偏光部材100は比較例1の色相値は小さかった。したがって、ミラーモードと同様に色付きの小さい表示画像をもたらすことができる。 Table 2 shows the evaluation results of the optical characteristics of the evaluation sample as if it were a liquid crystal shutter. The reflectance of the mirror mode was higher than that of the polarizing member in Comparative Example 1 using an iodine-based polarizing plate. That is, in the polarizing member 100 in Example 1, the visibility in the mirror state can be improved. Further, the b * r value of the polarizing member 100 in Example 1 was lower than that in Comparative Example 1. That is, the use of the polarizing member 100 in Example 1 can suppress the coloring of the mirror. In the display mode, the polarizing member 100 in Example 1 had a small hue value in Comparative Example 1. Therefore, a small colored display image can be provided as in the mirror mode.
 耐久性試験結果を表3及び表4に示す。乾熱試験(表3に示す)においては、実施例1及び2は、比較例1よりもb*sの変化が小さい。すなわち、長期期間、高温に晒されても表示に黄味掛かる程度が少ない。また、湿熱試験(表4に示す)においては、実施例1及び2では透過率の変化量は少なく偏光性能が維持されているが、比較例1においては偏光度Pyが大きく低下しており偏光性能が消失した状態となっている。 The durability test results are shown in Tables 3 and 4. In the dry heat test (shown in Table 3), Examples 1 and 2 have a smaller change in b * s than Comparative Example 1. In other words, even when exposed to high temperatures for a long period of time, the display is less likely to be yellow. In the wet heat test (shown in Table 4), in Examples 1 and 2, the amount of change in transmittance is small and the polarization performance is maintained, but in Comparative Example 1, the degree of polarization Py is greatly reduced and the polarization is reduced. The performance is lost.
 したがって、染料系の偏光板である実施例1及び2は、高温及び高湿の両条件において優れた光学耐久性を有している。 Therefore, Examples 1 and 2 which are dye-based polarizing plates have excellent optical durability under both high temperature and high humidity conditions.
 以上のように、本実施の形態における偏光部材100によれば、うねり度の低い偏光部材であるから、表示像や反射像の揺らぎを抑えることが可能となる。また、偏光部材100を用いることによって、自動車用等のバックミラーとして用いられる液晶シャッター式ミラーディスプレイにおいて、ミラーモード時に高い反射率を与え、また、表示モードにおいても偏光板による色づきの影響が少なくすることができる。さらに、長期の使用において優れた耐久性を有するミラーディスプレイ用の染料系偏光板及びそれを用いたミラーディスプレイを提供することができる。
 
As described above, according to the polarizing member 100 in the present embodiment, since the polarizing member has a low degree of undulation, it is possible to suppress fluctuations in the display image and the reflected image. Further, by using the polarizing member 100, a liquid crystal shutter type mirror display used as a rearview mirror for automobiles or the like gives a high reflectance in the mirror mode, and also reduces the influence of coloring by the polarizing plate in the display mode. be able to. Furthermore, it is possible to provide a dye-based polarizing plate for a mirror display having excellent durability in long-term use and a mirror display using the same.

Claims (11)

  1.  偏光部材であって、
     一面にハードコート層と他面に粘着層と有する偏光板を備え、
     前記偏光板の偏光子は、少なくとも一つの二色性染料を含有し、
     前記偏光板は、380nm以上780nm以下の波長領域の光に対して測定した視感度補正された単体透過率Ysが45%以上60%以下及び偏光度Pyが50%以上95%以下であり、
     前記偏光板は、単体のL*a*b*表色系の色相においてa*sが-3以上+3以下及びb*sが-3以上+3以下であり、且つ、前記偏光板を二枚で偏光軸を平行位にしたときの色相においてa*pが-3以上+3以下及びb*pが-3以上+3以下である。
    A polarizing member,
    A polarizing plate having a hard coat layer on one side and an adhesive layer on the other side,
    The polarizer of the polarizing plate contains at least one dichroic dye,
    The polarizing plate has a single transmittance Ys whose visibility is corrected, measured for light in a wavelength region of 380 nm to 780 nm, in a range of 45% to 60% and a polarization degree Py of 50% to 95%,
    The polarizing plate has a hue of a single L * a * b * color system in which a * s is −3 to +3 and b * s is −3 to +3 and two polarizing plates are used. In the hue when the polarization axes are parallel, a * p is −3 to +3 and b * p is −3 to +3.
  2.  請求項1に記載の偏光部材であって、
     前記粘着層は、うねり度が7以下であり、
     前記偏光部材は、うねり度が15以下である。
    The polarizing member according to claim 1,
    The pressure-sensitive adhesive layer has a swell degree of 7 or less,
    The polarizing member has a swell degree of 15 or less.
  3.  請求項1に記載の偏光部材であって、
     前記二色性染料は、化学式(1)で表される水溶性ジスアゾ化合物又はその銅錯塩化合物を含む。
    Figure JPOXMLDOC01-appb-C000001
     
    (ただし、Xは水素原子、メチル企、メトキシ基又はエトキシ基を表し、Yはメトキシ基又はエトキシ基を表す。Rは水素原子又はメチル基を表し、Rは水素原子、メチル基、-COH基、置換又は無置換のフェニル基、カルボキシ基で置換されたフェニル基、スルホン基で置換されたフェニル基を表す。)
    The polarizing member according to claim 1,
    The dichroic dye includes a water-soluble disazo compound represented by the chemical formula (1) or a copper complex salt compound thereof.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group, Y represents a methoxy group or an ethoxy group, R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, a methyl group,- C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, and a phenyl group substituted with a sulfone group.)
  4.  請求項2に記載の偏光部材であって、
     前記二色性染料は、化学式(2)で表される水溶性ジスアゾ化合物又はその銅錯塩化合物を含む。
    Figure JPOXMLDOC01-appb-C000002
     
    (ただし、Xは水素原子、メチル企、メトキシ基又はエトキシ基を表し、Yはメトキシ基又はエトキシ基を表す。Rは水素原子又はメチル基を表し、Rは水素原子、メチル基、-COH基、置換又は無置換のフェニル基、カルボキシ基で置換されたフェニル基、スルホン基で置換されたフェニル基を表す。)
    The polarizing member according to claim 2,
    The dichroic dye includes a water-soluble disazo compound represented by the chemical formula (2) or a copper complex salt thereof.
    Figure JPOXMLDOC01-appb-C000002

    (Wherein X represents a hydrogen atom, a methyl group, a methoxy group or an ethoxy group, Y represents a methoxy group or an ethoxy group, R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, a methyl group,- C 2 H 4 OH group, a substituted or unsubstituted phenyl group, a phenyl group substituted with a carboxy group, and a phenyl group substituted with a sulfone group.)
  5.  請求項1に記載の偏光部材であって、
     液晶シャッター方式のミラーディスプレイに用いられる。
    The polarizing member according to claim 1,
    Used for liquid crystal shutter-type mirror displays.
  6.  請求項2に記載の偏光部材であって、
     液晶シャッター方式のミラーディスプレイに用いられる。
    The polarizing member according to claim 2,
    Used for liquid crystal shutter-type mirror displays.
  7.  請求項3に記載の偏光部材であって、
     液晶シャッター方式のミラーディスプレイに用いられる。
    The polarizing member according to claim 3,
    Used for liquid crystal shutter-type mirror displays.
  8.  請求項1に記載の偏光部材と、
     シャッター用液晶セルと反射型偏光板と画像表示装置とが視認側からこの順に配置されていることを特徴とする液晶シャッター方式ミラーディスプレイ。
    The polarizing member according to claim 1;
    A liquid crystal shutter-type mirror display comprising a shutter liquid crystal cell, a reflective polarizing plate, and an image display device arranged in this order from the viewing side.
  9.  請求項2に記載の偏光部材と、
     シャッター用液晶セルと反射型偏光板と画像表示装置とが視認側からこの順に配置されていることを特徴とする液晶シャッター方式ミラーディスプレイ。
    The polarizing member according to claim 2,
    A liquid crystal shutter-type mirror display comprising a shutter liquid crystal cell, a reflective polarizing plate, and an image display device arranged in this order from the viewing side.
  10.  請求項3に記載の偏光部材と、
     シャッター用液晶セルと反射型偏光板と画像表示装置とが視認側からこの順に配置されていることを特徴とする液晶シャッター方式ミラーディスプレイ。
    The polarizing member according to claim 3,
    A liquid crystal shutter-type mirror display comprising a shutter liquid crystal cell, a reflective polarizing plate, and an image display device arranged in this order from the viewing side.
  11.  請求項4に記載の偏光部材と、
     シャッター用液晶セルと反射型偏光板と画像表示装置とが視認側からこの順に配置されていることを特徴とする液晶シャッター方式ミラーディスプレイ。
     
    The polarizing member according to claim 4,
    A liquid crystal shutter-type mirror display comprising a shutter liquid crystal cell, a reflective polarizing plate, and an image display device arranged in this order from the viewing side.
PCT/JP2019/016003 2018-05-09 2019-04-12 Polarization plate and display device using polarization plate WO2019216120A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207035314A KR20210006970A (en) 2018-05-09 2019-04-12 Polarizing plate and display device using same
JP2020518213A JPWO2019216120A1 (en) 2018-05-09 2019-04-12 Polarizing plate and display device using it
CN201980030625.3A CN112534315B (en) 2018-05-09 2019-04-12 Polaroid and display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018090554 2018-05-09
JP2018-090554 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019216120A1 true WO2019216120A1 (en) 2019-11-14

Family

ID=68466973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016003 WO2019216120A1 (en) 2018-05-09 2019-04-12 Polarization plate and display device using polarization plate

Country Status (5)

Country Link
JP (1) JPWO2019216120A1 (en)
KR (1) KR20210006970A (en)
CN (1) CN112534315B (en)
TW (1) TWI802687B (en)
WO (1) WO2019216120A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162635A1 (en) * 2013-04-03 2014-10-09 日本化薬株式会社 Achromatic dye-based highly-transmissive polarization element, and polarization plate
WO2015141350A1 (en) * 2014-03-19 2015-09-24 シャープ株式会社 Mirror display and electronic device
WO2016035864A1 (en) * 2014-09-03 2016-03-10 日本化薬株式会社 Polarizing element, polarizing plate having said polarizing element, and liquid crystal display device having said polarizing element or said polarizing plate
WO2017146212A1 (en) * 2016-02-26 2017-08-31 日本化薬株式会社 Azo compound or salt thereof, and polarizing film containing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2294480B1 (en) * 2008-07-10 2015-05-20 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
JP2011059589A (en) * 2009-09-14 2011-03-24 Sony Ericsson Mobilecommunications Japan Inc Display device, mobile information terminal, display control method of mobile information terminal and display control program
JP6392665B2 (en) * 2012-03-19 2018-09-19 日本化薬株式会社 Dye-type polarizing element and polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162635A1 (en) * 2013-04-03 2014-10-09 日本化薬株式会社 Achromatic dye-based highly-transmissive polarization element, and polarization plate
WO2015141350A1 (en) * 2014-03-19 2015-09-24 シャープ株式会社 Mirror display and electronic device
WO2016035864A1 (en) * 2014-09-03 2016-03-10 日本化薬株式会社 Polarizing element, polarizing plate having said polarizing element, and liquid crystal display device having said polarizing element or said polarizing plate
WO2017146212A1 (en) * 2016-02-26 2017-08-31 日本化薬株式会社 Azo compound or salt thereof, and polarizing film containing same

Also Published As

Publication number Publication date
CN112534315A (en) 2021-03-19
TWI802687B (en) 2023-05-21
KR20210006970A (en) 2021-01-19
TW201946775A (en) 2019-12-16
CN112534315B (en) 2023-02-24
JPWO2019216120A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6109071B2 (en) Polarized mirror glasses lens
TWI725164B (en) Optical film for eyewear, optical laminate and eyewear using the same
JP7230079B2 (en) AZO COMPOUND OR SALT THEREOF AND POLARIZING FILM CONTAINING THE SAME
JP6889178B2 (en) Polarizing element, and polarizing plate and liquid crystal display device using this
JP6363185B2 (en) Achromatic polarizing plate with high transmission and high degree of polarization
CN106873052B (en) Polarizing element, and polarizing plate and liquid crystal display device using the same
JPWO2006054695A1 (en) Liquid crystal display
EP3971636A1 (en) Optical element or polarizing plate, and eyewear using same
JP6853010B2 (en) Achromatic polarizing element, and achromatic polarizing plate and liquid crystal display device using this
KR20190049419A (en) Optical film for improving contrast ratio, polarizing plate comprising the same and liquid crystal display apparatus comprising the same
JP7247105B2 (en) Achromatic polarizing element, and achromatic polarizing plate and display device using the same
WO2019088290A1 (en) Polarizing member and head-up display device equipped with same
JP6609260B2 (en) Polarizing element, polarizing plate having the polarizing element, and liquid crystal display device having the polarizing element or the polarizing plate
WO2019216120A1 (en) Polarization plate and display device using polarization plate
WO2022039078A1 (en) Designed film and designed molded body
WO2021193614A1 (en) Head-up display
JP7116594B2 (en) Polarizing member and head-up display device provided with the same
JP7195168B2 (en) Image display device with polarizing plate
JP2024031583A (en) Polarizing film, polarizing plate and display device using the same
TW202244247A (en) Optcal laminate and eyewear using same
TW202111087A (en) Polarizing luminescent element, polarizing luminescent plate, and display using luminescent compound or salt thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035314

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19799757

Country of ref document: EP

Kind code of ref document: A1