WO2019215854A1 - Cam data generation device - Google Patents

Cam data generation device Download PDF

Info

Publication number
WO2019215854A1
WO2019215854A1 PCT/JP2018/018000 JP2018018000W WO2019215854A1 WO 2019215854 A1 WO2019215854 A1 WO 2019215854A1 JP 2018018000 W JP2018018000 W JP 2018018000W WO 2019215854 A1 WO2019215854 A1 WO 2019215854A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
cam
input
module
cam data
Prior art date
Application number
PCT/JP2018/018000
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 林
万平 鍛治
裕介 牛尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/018000 priority Critical patent/WO2019215854A1/en
Priority to JP2018563181A priority patent/JP6501994B1/en
Publication of WO2019215854A1 publication Critical patent/WO2019215854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters

Definitions

  • the present invention relates to a cam data generating device that generates cam data used in electronic cam control.
  • a mechanical cam mechanism is not implemented, and cam operation is performed by synchronously operating multiple motors using cam data indicating the relationship between input data such as the spindle position and output data indicating the position of the slave shaft.
  • cam data indicating the relationship between input data such as the spindle position and output data indicating the position of the slave shaft.
  • a technique called electronic cam control to be performed is known. In electronic cam control, in order to generate one output data, a plurality of processing processes may be performed on the input data.
  • Patent Document 1 in the electronic cam control, the first input data is converted using the first cam data, the second input data is converted using the second cam data, and the first after the conversion is converted. And the second input data after conversion are added to generate output data.
  • a conversion process for converting the first input data in order to generate one output data, a conversion process for converting the first input data, a conversion process for converting the second input data, an addition process of the first input data and the second input data, etc. A plurality of processing processes are performed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a cam data generation device capable of intuitively grasping the relationship between output data and input data.
  • a cam data generation device includes an input module to which input data is input, a plurality of processing modules for processing the input data, and a process for processing the input data. Based on a combination of a plurality of specified modules, a module specifying unit that specifies a plurality of modules including an output module that outputs data that is generated and output data indicating the position of an output axis that is a control target, A cam data generation unit that generates first cam data that is cam data indicating the relationship between input data and output data, and a cam data display unit that displays the first cam data are provided.
  • the cam data generation device intuitively grasps the relationship of output data to input data even when a plurality of processing processes are performed on the input data to generate one output data. There is an effect that it is possible.
  • the figure which shows the function structure of the cam data generation apparatus concerning Embodiment 1 of this invention The figure which shows an example of the module designation
  • the figure which shows the 2nd cam data which matches the value of the data before and behind the process which the 1st process module shown in FIG. 2 performs.
  • cam data generation device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
  • FIG. 1 is a diagram illustrating a functional configuration of a cam data generation device 10 according to the first embodiment of the present invention.
  • the cam data generation device 10 includes a cam data storage unit 11, a module storage unit 12, a module designation unit 13, a cam data generation unit 14, and a cam data display unit 15.
  • the cam data generation device 10 is an information processing device such as a PC (Personal Computer) and has a function of a maintenance tool called an engineering tool.
  • the cam data generation device 10 generates cam data used by a synchronous control system that performs electronic cam control by synchronously controlling a plurality of motors.
  • the cam data generated by the cam data generation device 10 indicates the relationship between the value of input data to the synchronous control system and the value of output data indicating the position of the output shaft of the synchronous control system.
  • input data when simply referred to as input data, it refers to data input to the synchronous control system such as sensor detection values, and when referred to as output data, it is data output from the synchronous control system, and output. Data indicating the position of the axis shall be indicated.
  • the cam data generation device 10 associates input data values with output data values based on cam data that associates data values before and after each of a plurality of machining processes executed by the synchronous control system. Generate cam data.
  • first cam data the cam data in which the value of the input data is associated with the value of the output data
  • second cam data the cam data in which the data values before and after the individual processing are associated
  • the cam data storage unit 11 is data that can be used as second cam data, and stores previously generated cam data.
  • the cam data stored in the cam data storage unit 11 may be data acquired from the outside of the cam data generation device 10 or may be first cam data generated by the cam data generation device 10 in the past. .
  • the module storage unit 12 stores a model of a module such as a machining module, an input module to which input data is input, and an output module that outputs output data.
  • the module designating unit 13 includes a plurality of modules including an input module to which input data is input based on a user's input operation, a processing module for processing the input data, and an output module for outputting the output data. Is specified by selecting from the model of the module stored in the module storage unit 12. At this time, the user can assign data such as an input shaft and cam data to the selected machining module. Cam data to be assigned to the selected processing module can be selected from the cam data stored in the cam data storage unit 11. A plurality of processing modules are connected between the input module and the output module.
  • the module designating unit 13 represents the configuration of the synchronization control system by combining a plurality of modules and designating the type of module and the connection relationship between the plurality of modules based on a user input operation. In addition, when the module designation
  • FIG. 2 is a diagram showing an example of a module designation screen displayed by the module designation unit 13 shown in FIG.
  • the user can designate a combination of modules by selecting a part such as an image showing each module using the module designation screen.
  • the module designating unit 13 can display parts such as images indicating the modules stored in the module storage unit 12 on the module designating screen as candidate modules to be used.
  • a user can specify a module by performing a drag-and-drop operation on the displayed part, and a connection relationship between a plurality of modules can be established by connecting a plurality of selected parts. Can be specified.
  • data such as an input axis and cam data can be assigned to the selected machining module.
  • a third processing module 331 that adds the outputs of the processing modules 322 and an output module 301 that outputs the output of the third processing module 331 as output data are designated.
  • the output module 301 outputs output data indicating the position of the press shaft.
  • the first processing module 321 processes the first input data
  • the second processing module 322 processes the second input data
  • the third processing module 331 includes the first and second processing data.
  • the second input data is processed.
  • the present embodiment is not limited to such an example.
  • FIG. 3 is a diagram showing another example of the module designation screen displayed by the module designation unit 13 shown in FIG.
  • a third input module 313 for inputting the position of the transport axis a fourth processing module 323 for converting input data input from the third input module 313, and a fourth A fifth processing module 324 for converting data output by the processing module 323 and an output module 302 for outputting the output of the fifth processing module 324 as output data are designated.
  • the fourth processing module 323 includes cam data # indicating the relationship between the position of the nozzle and the position of the conveyance axis. 3, the input data is converted, and the fifth processing module 324 converts the input data according to the cam data # 4 indicating the relationship between the position of the piston and the position of the nozzle.
  • the cam data generation unit 14 generates first cam data indicating the relationship between input data and output data based on a combination of a plurality of modules specified by the module specification unit 13.
  • the cam data generation unit 14 includes first input data that is input to the first input module 311, second input data that is input to the second input module 312, and an output module.
  • First cam data indicating the relationship with the output data output from 301 is generated.
  • the cam data generation unit 14 can generate the first cam data using the second cam data of the machining modules included in the plurality of modules specified by the module specifying unit 13.
  • the cam data generation unit 14 can input the generated first cam data to the cam data display unit 15 and the cam data storage unit 11.
  • FIG. 4 is a diagram showing an example of the first cam data generated by the cam data generation device 10 shown in FIG.
  • the first cam data shown in FIG. 4 is generated when a plurality of modules shown in FIG. 2 are designated.
  • “Input # 1” illustrated in FIG. 4 indicates a value of input data input to the first input module 311.
  • Input # 2 indicates a value of input data input to the second input module 312.
  • “Output” indicates the value of the output data output from the output module 301.
  • FIG. 5 is a diagram illustrating second cam data that associates data values before and after the processing performed by the first processing module 321 illustrated in FIG. 2.
  • FIG. 6 is a diagram illustrating second cam data that associates data values before and after the processing performed by the second processing module 322 illustrated in FIG. 2.
  • the second cam data shown in FIG. 5 associates the value before the processing of the processing performed by the first processing module 321 with the value after the processing.
  • the value before processing is X0
  • the value after processing is A0
  • the value before processing is X1
  • the value after processing is A1
  • the value before processing is Xn
  • the value after processing is An.
  • the second cam data shown in FIG. 6 associates the value before the processing of the processing performed by the second processing module 322 with the value after the processing.
  • the value before processing is T0
  • the value after processing is B0.
  • the value before processing is T1
  • the value after processing is B1
  • the value before processing is Bn
  • the value after processing is Bn.
  • the cam data generation unit 14 obtains a value after processing for each of the combination of the value before processing shown in FIG. 5 and the value before processing shown in FIG. 6, and adds the value after processing.
  • First cam data can be generated. Specifically, when the value of “input # 1” illustrated in FIG. 4 is X0 and the value of “input # 2” is T0, the cam data generation unit 14 generates the second cam data illustrated in FIG. Is used to obtain the processed value “A0” corresponding to X0, and the second cam data shown in FIG. 6 is used to obtain the processed value “B0” corresponding to T0. The cam data generation unit 14 adds the acquired values to generate output data. Therefore, the value of the output data “Y00” shown in FIG. 4 is a value obtained by adding B0 to A0.
  • FIG. 7 is a diagram showing another example of the first cam data generated by the cam data generation device 10 shown in FIG.
  • the first cam data shown in FIG. 7 is generated when a plurality of modules shown in FIG. 3 are designated.
  • “Input” shown in FIG. 7 indicates the value of input data input to the third input module 313, and “Output” indicates the value of output data output from the output module 302.
  • the first cam data generated by the cam data generation device 10 includes the value of the input data when a plurality of processing processes are performed before the output data is generated from the input data.
  • the input data of this value is directly associated with the value of the output data output when it is input to the synchronous control system.
  • the first cam data generated by the cam data generation device 10 since a plurality of types of input data are input to the synchronous control system, the first cam data generated by the cam data generation device 10 includes a combination of values of a plurality of input data and a plurality of combinations of the combinations. Output data values that are output when the input data are input to the synchronous control system.
  • the cam data display unit 15 displays the first cam data generated by the cam data generation unit 14.
  • the cam data display unit 15 can display the generated first cam data in the form of a data table as shown in FIGS. 4 and 7.
  • the cam data display unit 15 can display a cam curve obtained by graphing the first cam data.
  • the cam data display unit 15 can make a graph by interpolating between the values of the generated first cam data.
  • FIG. 8 is a diagram showing a cam curve obtained by graphing the first cam data shown in FIG.
  • the cam data display unit 15 can display a three-dimensional cam curve indicating the relationship between two input data and one output data.
  • the X axis in FIG. 8 can be the transport axis position
  • the Z axis can be the temperature
  • the Y axis can be the press axis position.
  • FIG. 9 is a diagram illustrating a hardware configuration example of the cam data generation device 10 illustrated in FIG.
  • the functions of the cam data storage unit 11, the module storage unit 12, the module designation unit 13, the cam data generation unit 14, and the cam data display unit 15 of the cam data generation device 10 include a processor 31, a memory 32, and an input device 33. It can be realized using the display device 34.
  • the processor 31 is a CPU (Central Processing Unit) and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 32 is, for example, a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), etc.
  • the input device 33 is a pointing device such as a mouse or a touch sensor, a keyboard, or the like.
  • the input device 33 receives an input operation from the user.
  • the display device 34 is a liquid crystal display, an organic EL (Electro Luminescence) display, or the like.
  • the display device 34 outputs a display screen.
  • the processor 31 reads out and executes the computer program stored in the memory 32, so that the functions of the cam data storage unit 11, the module storage unit 12, the module designation unit 13, the cam data generation unit 14, and the cam data display unit 15 are performed. Can be realized.
  • the memory 32 is also used as a temporary memory in each process executed by the processor 31.
  • FIG. 10 is a diagram illustrating a configuration example of the synchronous control system 40 that uses the first cam data generated by the cam data generation device 10 illustrated in FIG.
  • the synchronization control system 40 includes a conveyance shaft 41 that is a main shaft driven by a motor, a press shaft 42 that is driven by a motor different from the motor that drives the conveyance shaft 41, a temperature sensor 43 that measures temperature, and cam data. And a control device 44 that controls a motor that drives each of the conveyance shaft 41 and the press shaft 42.
  • the press shaft 42 is a slave shaft whose position is determined based on the position of the transport shaft 41 that is the main shaft. The position of the press shaft 42 is corrected based on the temperature value detected by the temperature sensor 43.
  • the user When generating the first cam data used by the synchronization control system 40, the user designates a plurality of modules as shown in FIG.
  • the first input module 311 shown in FIG. 2 corresponds to the transport shaft 41
  • the second input module 312 corresponds to the temperature sensor 43
  • the output module 301 corresponds to the press shaft 42.
  • FIG. 11 is a diagram for explaining the operation of the synchronization control system 40 shown in FIG.
  • the upper diagram of FIG. 11 shows a cam curve Y ′ showing the relationship of the position of the press shaft 42 with respect to the position of the transport shaft 41.
  • the lower diagram of FIG. 11 shows a cam curve P showing the relationship between the temperature detected by the temperature sensor 43 and the correction amount applied to the position of the press shaft 42.
  • the cam data generation device 10 when input data for applying correction is used, a plurality of processing processes are performed on the input data in order to generate one output data.
  • the cam data generation device 10 generates cam data obtained by combining the cam data indicated by the cam curve Y ′ and the cam data indicated by the cam curve P
  • the control device 44 generates the cam data generated by the combination.
  • the motor for driving the transport shaft 41 and the motor for driving the press shaft 42 are controlled.
  • FIG. 12 is a diagram showing a functional configuration of the control device 44 shown in FIG.
  • the control device 44 includes an input unit 441, a calculation unit 442, and an output unit 443.
  • the input unit 441 receives a value of input data input from the input device.
  • the input unit 441 inputs the received value to the calculation unit 442.
  • the input data input to the input unit 441 is, for example, sensor detection values such as speed, acceleration, and temperature, the position of the input shaft, etc.
  • sensor detection values such as speed, acceleration, and temperature, the position of the input shaft, etc.
  • the calculation unit 442 calculates the position, speed, control amount to the output device, and the like. Various calculations are performed to generate output data.
  • the calculation unit 442 inputs the generated output data to the output unit 443.
  • the output unit 443 is connected to the driving device and outputs output data input from the calculation unit 442 to the driving device.
  • the control device 44 executes motion control and correction control within the same calculation cycle by the same calculation unit 442.
  • the control device 44 can generate output data from the input data using the first cam data generated by the cam data generation device 10. At this time, since the control device 44 does not perform the calculation for generating the first cam data, the calculation load is suppressed even when a plurality of processing processes are performed on the input data, such as when there are a plurality of inputs. Is possible.
  • FIG. 13 is an explanatory diagram of processing performed by the calculation unit 442 shown in FIG.
  • FIG. 13 shows processing performed by the calculation unit 442 in the configuration of the synchronous control system 40 shown in FIG.
  • Input data such as the input shaft position 1-1 and the temperature sensor value 1-2 is input to the calculation unit 442.
  • the calculation unit 442 uses the cam table 2 to convert input data into output shaft position 3 that is output data.
  • the output shaft position 3 is the position of the output shaft that is the axis to be controlled.
  • the calculation unit 442 matches the input shaft position 1-1 and the data of “input # 1” in the data included in the cam table 2 and the temperature.
  • the “output” value corresponding to the data in which the sensor value 1-2 and the data of “input # 2” match is set as the output shaft position 3.
  • FIG. 14 is an explanatory diagram of processing performed by the calculation unit 442 shown in FIG.
  • FIG. 14 shows processing performed by the calculation unit 442 when the control device 44 controls the system having the configuration shown in FIG.
  • the calculation unit 442 receives the input shaft position 1-1 as input data.
  • the calculation unit 442 uses the cam table 2 to convert input data into output shaft position 3 that is output data.
  • the calculation unit 442 acquires the “output” value associated with the “input” data that matches the input shaft position 1-1 among the data included in the cam table 2-1. .
  • the calculation unit 442 selects the “output” corresponding to the “input” data that matches the “output” value acquired from the cam table 2-1 among the data included in the cam table 2-2.
  • the value is output shaft position 3.
  • the control device 44 does not need to calculate input / output to each of the plurality of machining processes indicated by the plurality of machining modules, and directly performs a plurality of machining from the input data. It becomes possible to specify the output data after the processing. Therefore, the processing load on the control device 44 can be reduced.
  • a cam curve obtained by graphing the first cam data indicating the relationship of output data to input data is displayed.
  • the relationship between output data for two input data is represented by a three-dimensional graph. Therefore, it is possible to visually check the generated cam curve before operating the control device, and it becomes easy to grasp the operation of the output shaft.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • the technique of the present embodiment can also be applied to a system that uses three or more pieces of input data.
  • the combination of a plurality of modules specified in the present embodiment is an example, and the technology of the present embodiment can be applied to systems having different module combinations.
  • the input data used in the present embodiment is an example, and the input data is not limited to the position and temperature of the conveyance axis, and may be other detection values such as pressure data.
  • the present invention is a cam data generation method executed by the cam data generation device 10 and a computer program for causing a computer to execute each step of the cam data generation method. This technology can also be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Programmable Controllers (AREA)

Abstract

A cam data generation device (10) is characterized by being provided with: a module designation unit (13) that designates a plurality of modules including an input module for inputting input data, a plurality of processing modules for processing the input data, and an output module for outputting output data which is generated by processing the input data and which indicates the position of an output shaft to be controlled; a cam data generation unit (14) that generates first cam data indicating the relationship between the input data and the output data on the basis of a combination of the designated modules; and a cam data display unit (15) that displays the first cam data.

Description

カムデータ生成装置Cam data generator
 本発明は、電子カム制御で用いられるカムデータを生成するカムデータ生成装置に関する。 The present invention relates to a cam data generating device that generates cam data used in electronic cam control.
 機械的なカム機構を実装しておらず、主軸の位置などの入力データと従軸の位置を示す出力データとの関係を示すカムデータを用いて、複数のモータを同期運転してカム動作を行わせる電子カム制御と呼ばれる技術が知られている。電子カム制御では、1つの出力データを生成するために、入力データに対する複数の加工処理が行われる場合がある。 A mechanical cam mechanism is not implemented, and cam operation is performed by synchronously operating multiple motors using cam data indicating the relationship between input data such as the spindle position and output data indicating the position of the slave shaft. A technique called electronic cam control to be performed is known. In electronic cam control, in order to generate one output data, a plurality of processing processes may be performed on the input data.
 特許文献1には、電子カム制御において、第1のカムデータを用いて第1の入力データを変換し、第2のカムデータを用いて第2の入力データを変換し、変換後の第1の入力データおよび変換後の第2の入力データを加算して出力データを生成することが記載されている。この場合、1つの出力データを生成するために、第1の入力データを変換する変換処理、第2の入力データを変換する変換処理、第1の入力データおよび第2の入力データの加算処理といった複数の加工処理が行われる。 In Patent Document 1, in the electronic cam control, the first input data is converted using the first cam data, the second input data is converted using the second cam data, and the first after the conversion is converted. And the second input data after conversion are added to generate output data. In this case, in order to generate one output data, a conversion process for converting the first input data, a conversion process for converting the second input data, an addition process of the first input data and the second input data, etc. A plurality of processing processes are performed.
特開2006-289583号公報JP 2006-289583 A
 しかしながら、上記特許文献1に開示された技術では、入力データに対する出力データの関係を直接設定するのではなく、個別の加工処理の前後のデータの関係を設定するため、入力データに対する出力データの関係性が分かり難いという問題があった。 However, in the technique disclosed in Patent Document 1, the relationship between the output data and the input data is not set directly, but the relationship between the data before and after the individual processing is set. There was a problem that sex was difficult to understand.
 本発明は、上記に鑑みてなされたものであって、入力データに対する出力データの関係性を直感的に把握することが可能なカムデータ生成装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a cam data generation device capable of intuitively grasping the relationship between output data and input data.
 上述した課題を解決し、目的を達成するために、本発明にかかるカムデータ生成装置は、入力データが入力される入力モジュールと、入力データを加工する複数の加工モジュールと、入力データを加工して生成されるデータであり制御対象である出力軸の位置を示す出力データを出力する出力モジュールとを含む複数のモジュールを指定するモジュール指定部と、指定された複数のモジュールの組み合わせに基づいて、入力データと出力データとの関係を示すカムデータである第1カムデータを生成するカムデータ生成部と、第1カムデータを表示するカムデータ表示部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a cam data generation device according to the present invention includes an input module to which input data is input, a plurality of processing modules for processing the input data, and a process for processing the input data. Based on a combination of a plurality of specified modules, a module specifying unit that specifies a plurality of modules including an output module that outputs data that is generated and output data indicating the position of an output axis that is a control target, A cam data generation unit that generates first cam data that is cam data indicating the relationship between input data and output data, and a cam data display unit that displays the first cam data are provided.
 本発明にかかるカムデータ生成装置は、1つの出力データを生成するために、入力データに対する複数の加工処理が行われる場合であっても、入力データに対する出力データの関係性を直感的に把握することが可能であるという効果を奏する。 The cam data generation device according to the present invention intuitively grasps the relationship of output data to input data even when a plurality of processing processes are performed on the input data to generate one output data. There is an effect that it is possible.
本発明の実施の形態1にかかるカムデータ生成装置の機能構成を示す図The figure which shows the function structure of the cam data generation apparatus concerning Embodiment 1 of this invention. 図1に示すモジュール指定部が表示するモジュール指定画面の一例を示す図The figure which shows an example of the module designation | designated screen which the module designation | designated part shown in FIG. 1 displays 図1に示すモジュール指定部が表示するモジュール指定画面の他の一例を示す図The figure which shows another example of the module designation | designated screen which the module designation | designated part shown in FIG. 1 displays 図1に示すカムデータ生成装置が生成する第1カムデータの一例を示す図The figure which shows an example of the 1st cam data which the cam data generation apparatus shown in FIG. 1 produces | generates. 図2に示す第1の加工モジュールが行う加工処理の前後のデータの値を対応づける第2カムデータを示す図The figure which shows the 2nd cam data which matches the value of the data before and behind the process which the 1st process module shown in FIG. 2 performs. 図2に示す第2の加工モジュールが行う加工処理の前後のデータの値を対応づける第2カムデータを示す図The figure which shows the 2nd cam data which matches the value of the data before and behind the process which the 2nd process module shown in FIG. 2 performs. 図1に示すカムデータ生成装置が生成する第1カムデータの他の一例を示す図The figure which shows another example of the 1st cam data which the cam data generation apparatus shown in FIG. 1 produces | generates. 図4に示す第1カムデータをグラフ化したカム曲線を示す図The figure which shows the cam curve which graphed the 1st cam data shown in FIG. 図1に示すカムデータ生成装置のハードウェア構成例を示す図The figure which shows the hardware structural example of the cam data production | generation apparatus shown in FIG. 図1に示すカムデータ生成装置が生成する第1カムデータを使用する同期制御システムの構成例を示す図The figure which shows the structural example of the synchronous control system which uses the 1st cam data which the cam data generation apparatus shown in FIG. 1 produces | generates 図10に示す同期制御システムの動作を説明するための図The figure for demonstrating operation | movement of the synchronous control system shown in FIG. 図10に示す制御装置の機能構成を示す図The figure which shows the function structure of the control apparatus shown in FIG. 図12に示す演算部が行う処理の説明図Explanatory drawing of the process which the calculating part shown in FIG. 12 performs 図12に示す演算部が行う処理の説明図Explanatory drawing of the process which the calculating part shown in FIG. 12 performs
 以下に、本発明の実施の形態にかかるカムデータ生成装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a cam data generation device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるカムデータ生成装置10の機能構成を示す図である。カムデータ生成装置10は、カムデータ記憶部11と、モジュール記憶部12と、モジュール指定部13と、カムデータ生成部14と、カムデータ表示部15とを有する。カムデータ生成装置10は、PC(Personal Computer)などの情報処理装置であり、エンジニアリングツールと呼ばれる保守ツールの機能を搭載する。カムデータ生成装置10は、複数のモータを同期制御して電子カム制御を行う同期制御システムが使用するカムデータを生成する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a functional configuration of a cam data generation device 10 according to the first embodiment of the present invention. The cam data generation device 10 includes a cam data storage unit 11, a module storage unit 12, a module designation unit 13, a cam data generation unit 14, and a cam data display unit 15. The cam data generation device 10 is an information processing device such as a PC (Personal Computer) and has a function of a maintenance tool called an engineering tool. The cam data generation device 10 generates cam data used by a synchronous control system that performs electronic cam control by synchronously controlling a plurality of motors.
 カムデータ生成装置10が生成するカムデータは、同期制御システムへの入力データの値と同期制御システムの出力軸の位置を示す出力データの値との関係を示す。以下、本明細書中では、単に入力データと称する場合、センサの検出値などの同期制御システムへ入力されるデータを指し、出力データと称する場合、同期制御システムから出力されるデータであり、出力軸の位置を示すデータを指すこととする。カムデータ生成装置10は、同期制御システムが実行する複数の加工処理のそれぞれの加工前後のデータの値を対応づけたカムデータに基づいて、入力データの値と出力データの値とを対応づけたカムデータを生成する。以下、入力データの値と出力データの値とを対応づけたカムデータを第1カムデータと称し、個別の加工処理の加工前後のデータの値を対応づけたカムデータを第2カムデータと称する。 The cam data generated by the cam data generation device 10 indicates the relationship between the value of input data to the synchronous control system and the value of output data indicating the position of the output shaft of the synchronous control system. Hereinafter, in the present specification, when simply referred to as input data, it refers to data input to the synchronous control system such as sensor detection values, and when referred to as output data, it is data output from the synchronous control system, and output. Data indicating the position of the axis shall be indicated. The cam data generation device 10 associates input data values with output data values based on cam data that associates data values before and after each of a plurality of machining processes executed by the synchronous control system. Generate cam data. Hereinafter, the cam data in which the value of the input data is associated with the value of the output data is referred to as first cam data, and the cam data in which the data values before and after the individual processing are associated is referred to as second cam data. .
 カムデータ記憶部11は、第2カムデータとして使用可能なデータであって、予め生成されたカムデータを記憶する。カムデータ記憶部11に記憶されるカムデータは、カムデータ生成装置10の外部から取得したデータであってもよいし、過去にカムデータ生成装置10が生成した第1カムデータであってもよい。 The cam data storage unit 11 is data that can be used as second cam data, and stores previously generated cam data. The cam data stored in the cam data storage unit 11 may be data acquired from the outside of the cam data generation device 10 or may be first cam data generated by the cam data generation device 10 in the past. .
 モジュール記憶部12は、加工モジュール、入力データが入力される入力モジュール、出力データを出力する出力モジュールなどのモジュールのひな形を記憶している。 The module storage unit 12 stores a model of a module such as a machining module, an input module to which input data is input, and an output module that outputs output data.
 モジュール指定部13は、ユーザの入力操作に基づいて、入力データが入力される入力モジュールと、入力データを加工する加工処理を行う加工モジュールと、出力データを出力する出力モジュールとを含む複数のモジュールをモジュール記憶部12に記憶されたモジュールのひな形の中から選択することで指定する。このとき、ユーザは、選択した加工モジュールに入力軸、カムデータなどのデータを割り当てることができる。選択した加工モジュールに割り当てるカムデータは、カムデータ記憶部11に記憶されたカムデータの中から選択することができる。入力モジュールと出力モジュールとの間には、複数の加工モジュールが接続される。モジュール指定部13は、ユーザの入力操作に基づいて、複数のモジュールを組み合わせて、モジュールの種類と、複数のモジュールの間の接続関係とを指定することで、同期制御システムの構成を表す。なお、モジュール指定部13は、複数のモジュールの種類と、複数のモジュールの間の接続関係とを指定する場合、同種のモジュールを重複して指定することが可能である。 The module designating unit 13 includes a plurality of modules including an input module to which input data is input based on a user's input operation, a processing module for processing the input data, and an output module for outputting the output data. Is specified by selecting from the model of the module stored in the module storage unit 12. At this time, the user can assign data such as an input shaft and cam data to the selected machining module. Cam data to be assigned to the selected processing module can be selected from the cam data stored in the cam data storage unit 11. A plurality of processing modules are connected between the input module and the output module. The module designating unit 13 represents the configuration of the synchronization control system by combining a plurality of modules and designating the type of module and the connection relationship between the plurality of modules based on a user input operation. In addition, when the module designation | designated part 13 designates the kind of several modules and the connection relation between several modules, it can designate the same kind of module redundantly.
 図2は、図1に示すモジュール指定部13が表示するモジュール指定画面の一例を示す図である。ユーザは、このモジュール指定画面を用いて、それぞれのモジュールを示す画像などのパーツを選択することで、モジュールの組み合わせを指定することができる。例えば、モジュール指定部13は、モジュール記憶部12に記憶されたモジュールを示す画像などのパーツを、使用するモジュールの候補としてモジュール指定画面上に表示することができる。例えば、ユーザが、表示されたパーツに対してドラッグアンドドロップ操作を行うことで、モジュールを指定することができ、選択した複数のパーツの間を接続することで、複数のモジュール間の接続関係を指定することができる。また、このモジュール指定画面では、選択した加工モジュールに入力軸、カムデータといったデータを割り当てることができる。 FIG. 2 is a diagram showing an example of a module designation screen displayed by the module designation unit 13 shown in FIG. The user can designate a combination of modules by selecting a part such as an image showing each module using the module designation screen. For example, the module designating unit 13 can display parts such as images indicating the modules stored in the module storage unit 12 on the module designating screen as candidate modules to be used. For example, a user can specify a module by performing a drag-and-drop operation on the displayed part, and a connection relationship between a plurality of modules can be established by connecting a plurality of selected parts. Can be specified. In this module designation screen, data such as an input axis and cam data can be assigned to the selected machining module.
 図2に示すモジュール指定画面では、搬送軸の位置が入力される第1の入力モジュール311と、温度センサの検出値が入力される第2の入力モジュール312と、第1の入力モジュール311から入力される入力データを変換する第1の加工モジュール321と、第2の入力モジュール312から入力される入力データを変換する第2の加工モジュール322と、第1の加工モジュール321の出力に第2の加工モジュール322の出力を加算する第3の加工モジュール331と、第3の加工モジュール331の出力を出力データとして出力する出力モジュール301とが指定されている。出力モジュール301は、プレス軸の位置を示す出力データを出力する。なお図2に示す例では、第1の加工モジュール321は第1の入力データを加工し、第2の加工モジュール322は第2の入力データを加工し、第3の加工モジュール331は第1および第2の入力データを加工する。しかしながら、本実施の形態はかかる例に限定されない。 In the module designation screen shown in FIG. 2, the first input module 311 to which the position of the conveyance axis is input, the second input module 312 to which the detection value of the temperature sensor is input, and input from the first input module 311. The first processing module 321 for converting the input data to be input, the second processing module 322 for converting the input data input from the second input module 312, and the second output to the output of the first processing module 321 A third processing module 331 that adds the outputs of the processing modules 322 and an output module 301 that outputs the output of the third processing module 331 as output data are designated. The output module 301 outputs output data indicating the position of the press shaft. In the example shown in FIG. 2, the first processing module 321 processes the first input data, the second processing module 322 processes the second input data, and the third processing module 331 includes the first and second processing data. The second input data is processed. However, the present embodiment is not limited to such an example.
 図3は、図1に示すモジュール指定部13が表示するモジュール指定画面の他の一例を示す図である。図3に示すモジュール指定画面では、搬送軸の位置が入力される第3の入力モジュール313と、第3の入力モジュール313から入力される入力データを変換する第4の加工モジュール323と、第4の加工モジュール323が出力するデータを変換する第5の加工モジュール324と、第5の加工モジュール324の出力を出力データとして出力する出力モジュール302とが指定されている。同期制御システムが、搬送軸に同期するノズルと、ノズルに同期するピストンとを有する充填システムである場合、第4の加工モジュール323は、搬送軸の位置に対するノズルの位置の関係を示すカムデータ#3に従って、入力されるデータを変換し、第5の加工モジュール324は、ノズルの位置に対するピストンの位置の関係を示すカムデータ#4に従って、入力されるデータを変換する。 FIG. 3 is a diagram showing another example of the module designation screen displayed by the module designation unit 13 shown in FIG. In the module designation screen shown in FIG. 3, a third input module 313 for inputting the position of the transport axis, a fourth processing module 323 for converting input data input from the third input module 313, and a fourth A fifth processing module 324 for converting data output by the processing module 323 and an output module 302 for outputting the output of the fifth processing module 324 as output data are designated. When the synchronous control system is a filling system having a nozzle that is synchronized with the conveyance axis and a piston that is synchronized with the nozzle, the fourth processing module 323 includes cam data # indicating the relationship between the position of the nozzle and the position of the conveyance axis. 3, the input data is converted, and the fifth processing module 324 converts the input data according to the cam data # 4 indicating the relationship between the position of the piston and the position of the nozzle.
 図1の説明に戻る。カムデータ生成部14は、モジュール指定部13が指定した複数のモジュールの組み合わせに基づいて、入力データと出力データとの関係を示す第1カムデータを生成する。図2に示す例において、カムデータ生成部14は、第1の入力モジュール311に入力される第1の入力データ、および第2の入力モジュール312に入力される第2の入力データと、出力モジュール301から出力される出力データとの関係を示す第1カムデータを生成する。具体的には、カムデータ生成部14は、モジュール指定部13が指定した複数のモジュールに含まれる加工モジュールの第2カムデータを用いて、第1カムデータを生成することができる。カムデータ生成部14は、生成した第1カムデータをカムデータ表示部15およびカムデータ記憶部11に入力することができる。 Returning to the explanation of FIG. The cam data generation unit 14 generates first cam data indicating the relationship between input data and output data based on a combination of a plurality of modules specified by the module specification unit 13. In the example illustrated in FIG. 2, the cam data generation unit 14 includes first input data that is input to the first input module 311, second input data that is input to the second input module 312, and an output module. First cam data indicating the relationship with the output data output from 301 is generated. Specifically, the cam data generation unit 14 can generate the first cam data using the second cam data of the machining modules included in the plurality of modules specified by the module specifying unit 13. The cam data generation unit 14 can input the generated first cam data to the cam data display unit 15 and the cam data storage unit 11.
 図4は、図1に示すカムデータ生成装置10が生成する第1カムデータの一例を示す図である。図4に示す第1カムデータは、図2に示す複数のモジュールが指定された場合に生成される。図4に示す「入力#1」は、第1の入力モジュール311へ入力される入力データの値を示し、「入力#2」は、第2の入力モジュール312へ入力される入力データの値を示し、「出力」は出力モジュール301から出力される出力データの値を示している。 FIG. 4 is a diagram showing an example of the first cam data generated by the cam data generation device 10 shown in FIG. The first cam data shown in FIG. 4 is generated when a plurality of modules shown in FIG. 2 are designated. “Input # 1” illustrated in FIG. 4 indicates a value of input data input to the first input module 311. “Input # 2” indicates a value of input data input to the second input module 312. “Output” indicates the value of the output data output from the output module 301.
 ここで、カムデータ生成部14の行う具体的な処理について説明するために、第2カムデータの具体例を示す。図5は、図2に示す第1の加工モジュール321が行う加工処理の前後のデータの値を対応づける第2カムデータを示す図である。図6は、図2に示す第2の加工モジュール322が行う加工処理の前後のデータの値を対応づける第2カムデータを示す図である。 Here, a specific example of the second cam data will be shown in order to explain specific processing performed by the cam data generation unit 14. FIG. 5 is a diagram illustrating second cam data that associates data values before and after the processing performed by the first processing module 321 illustrated in FIG. 2. FIG. 6 is a diagram illustrating second cam data that associates data values before and after the processing performed by the second processing module 322 illustrated in FIG. 2.
 図5に示す第2カムデータは、第1の加工モジュール321が行う加工処理の加工前の値と加工後の値とを対応づけている。図5に示す例では、加工前の値がX0である場合、加工後の値はA0となる。同様に、加工前の値がX1である場合、加工後の値はA1となり、加工前の値がXnである場合、加工後の値はAnとなる。図6に示す第2カムデータは、第2の加工モジュール322が行う加工処理の加工前の値と加工後の値とを対応づけている。図6に示す例では、加工前の値がT0である場合、加工後の値はB0となる。同様に、加工前の値がT1である場合、加工後の値はB1となり、加工前の値がTnである場合、加工後の値はBnとなる。 The second cam data shown in FIG. 5 associates the value before the processing of the processing performed by the first processing module 321 with the value after the processing. In the example shown in FIG. 5, when the value before processing is X0, the value after processing is A0. Similarly, when the value before processing is X1, the value after processing is A1, and when the value before processing is Xn, the value after processing is An. The second cam data shown in FIG. 6 associates the value before the processing of the processing performed by the second processing module 322 with the value after the processing. In the example shown in FIG. 6, when the value before processing is T0, the value after processing is B0. Similarly, when the value before processing is T1, the value after processing is B1, and when the value before processing is Tn, the value after processing is Bn.
 この場合、カムデータ生成部14は、図5に示す加工前の値および図6に示す加工前の値の組み合わせのそれぞれについて、加工後の値を取得し、加工後の値を加算することで、第1カムデータを生成することができる。具体的には、図4に示す「入力#1」の値がX0であって、「入力#2」の値がT0である場合、カムデータ生成部14は、図5に示す第2カムデータを用いて、X0に対応する加工後の値「A0」を取得し、図6に示す第2カムデータを用いて、T0に対応する加工後の値「B0」を取得する。カムデータ生成部14は、取得した値を加算して、出力データを生成する。したがって、図4に示す出力データ「Y00」の値は、A0にB0を加算した値となる。 In this case, the cam data generation unit 14 obtains a value after processing for each of the combination of the value before processing shown in FIG. 5 and the value before processing shown in FIG. 6, and adds the value after processing. First cam data can be generated. Specifically, when the value of “input # 1” illustrated in FIG. 4 is X0 and the value of “input # 2” is T0, the cam data generation unit 14 generates the second cam data illustrated in FIG. Is used to obtain the processed value “A0” corresponding to X0, and the second cam data shown in FIG. 6 is used to obtain the processed value “B0” corresponding to T0. The cam data generation unit 14 adds the acquired values to generate output data. Therefore, the value of the output data “Y00” shown in FIG. 4 is a value obtained by adding B0 to A0.
 図7は、図1に示すカムデータ生成装置10が生成する第1カムデータの他の一例を示す図である。図7に示す第1カムデータは、図3に示す複数のモジュールが指定された場合に生成される。図7に示す「入力」は、第3の入力モジュール313へ入力される入力データの値を示し、「出力」は出力モジュール302から出力される出力データの値を示している。 FIG. 7 is a diagram showing another example of the first cam data generated by the cam data generation device 10 shown in FIG. The first cam data shown in FIG. 7 is generated when a plurality of modules shown in FIG. 3 are designated. “Input” shown in FIG. 7 indicates the value of input data input to the third input module 313, and “Output” indicates the value of output data output from the output module 302.
 図4および図7に示すように、カムデータ生成装置10が生成する第1カムデータは、入力データから出力データを生成するまでの間に複数の加工処理が行われる場合、入力データの値と、この値の入力データが同期制御システムに入力されたときに出力される出力データの値とを直接対応づけている。図4の例では、複数の種類の入力データが同期制御システムに入力されるため、カムデータ生成装置10が生成する第1カムデータは、複数の入力データの値の組み合わせと、この組み合わせの複数の入力データが同期制御システムに入力されたときに出力される出力データの値とを含んでいる。 As shown in FIG. 4 and FIG. 7, the first cam data generated by the cam data generation device 10 includes the value of the input data when a plurality of processing processes are performed before the output data is generated from the input data. The input data of this value is directly associated with the value of the output data output when it is input to the synchronous control system. In the example of FIG. 4, since a plurality of types of input data are input to the synchronous control system, the first cam data generated by the cam data generation device 10 includes a combination of values of a plurality of input data and a plurality of combinations of the combinations. Output data values that are output when the input data are input to the synchronous control system.
 図1の説明に戻る。カムデータ表示部15は、カムデータ生成部14が生成する第1カムデータを表示する。カムデータ表示部15が第1カムデータを表示する方法は、様々な方法が考えられる。例えば、カムデータ表示部15は、生成した第1カムデータを、図4および図7に示したようなデータテーブルの形式で表示することができる。或いはカムデータ表示部15は、第1カムデータをグラフ化したカム曲線を表示することができる。カムデータ表示部15は、生成した第1カムデータの値の間を補間してグラフ化することができる。 Returning to the explanation of FIG. The cam data display unit 15 displays the first cam data generated by the cam data generation unit 14. Various methods are conceivable for the cam data display unit 15 to display the first cam data. For example, the cam data display unit 15 can display the generated first cam data in the form of a data table as shown in FIGS. 4 and 7. Alternatively, the cam data display unit 15 can display a cam curve obtained by graphing the first cam data. The cam data display unit 15 can make a graph by interpolating between the values of the generated first cam data.
 図8は、図4に示す第1カムデータをグラフ化したカム曲線を示す図である。2つの入力データを用いて出力データが生成される場合、カムデータ表示部15は、2つの入力データと1つの出力データとの関係を示す三次元のカム曲線を表示することができる。例えば、図8のX軸を搬送軸の位置とし、Z軸を温度とし、Y軸をプレス軸の位置とすることができる。 FIG. 8 is a diagram showing a cam curve obtained by graphing the first cam data shown in FIG. When output data is generated using two input data, the cam data display unit 15 can display a three-dimensional cam curve indicating the relationship between two input data and one output data. For example, the X axis in FIG. 8 can be the transport axis position, the Z axis can be the temperature, and the Y axis can be the press axis position.
 図9は、図1に示すカムデータ生成装置10のハードウェア構成例を示す図である。カムデータ生成装置10のカムデータ記憶部11、モジュール記憶部12、モジュール指定部13、カムデータ生成部14、およびカムデータ表示部15の機能は、プロセッサ31と、メモリ32と、入力装置33と、表示装置34とを用いて実現することができる。 FIG. 9 is a diagram illustrating a hardware configuration example of the cam data generation device 10 illustrated in FIG. The functions of the cam data storage unit 11, the module storage unit 12, the module designation unit 13, the cam data generation unit 14, and the cam data display unit 15 of the cam data generation device 10 include a processor 31, a memory 32, and an input device 33. It can be realized using the display device 34.
 プロセッサ31は、CPU(Central Processing Unit)であり、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。メモリ32は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 The processor 31 is a CPU (Central Processing Unit) and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 32 is, for example, a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), etc.
 入力装置33は、マウス、タッチセンサなどのポインティングデバイス、キーボードなどである。入力装置33は、ユーザからの入力操作を受け付ける。表示装置34は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイなどである。表示装置34は、表示画面を出力する。 The input device 33 is a pointing device such as a mouse or a touch sensor, a keyboard, or the like. The input device 33 receives an input operation from the user. The display device 34 is a liquid crystal display, an organic EL (Electro Luminescence) display, or the like. The display device 34 outputs a display screen.
 プロセッサ31がメモリ32に記憶されたコンピュータプログラムを読み出して実行することで、カムデータ記憶部11、モジュール記憶部12、モジュール指定部13、カムデータ生成部14、およびカムデータ表示部15の機能を実現することができる。メモリ32は、プロセッサ31が実行する各処理における一時メモリとしても用いられる。 The processor 31 reads out and executes the computer program stored in the memory 32, so that the functions of the cam data storage unit 11, the module storage unit 12, the module designation unit 13, the cam data generation unit 14, and the cam data display unit 15 are performed. Can be realized. The memory 32 is also used as a temporary memory in each process executed by the processor 31.
 図10は、図1に示すカムデータ生成装置10が生成する第1カムデータを使用する同期制御システム40の構成例を示す図である。同期制御システム40は、モータによって駆動される主軸である搬送軸41と、搬送軸41を駆動するモータと異なるモータによって駆動されるプレス軸42と、温度を計測する温度センサ43と、カムデータに従って搬送軸41およびプレス軸42のそれぞれを駆動するモータを制御する制御装置44とを有する。プレス軸42は、主軸である搬送軸41の位置を基準として位置が定められる従軸である。またプレス軸42の位置は、温度センサ43が検出する温度の値に基づいて補正が加えられる。同期制御システム40が使用する第1カムデータを生成する場合、ユーザは、カムデータ生成装置10を用いて、図2に示すように複数のモジュールを指定する。図2に示す第1の入力モジュール311は、搬送軸41に対応し、第2の入力モジュール312は、温度センサ43に対応し、出力モジュール301は、プレス軸42に対応する。 FIG. 10 is a diagram illustrating a configuration example of the synchronous control system 40 that uses the first cam data generated by the cam data generation device 10 illustrated in FIG. The synchronization control system 40 includes a conveyance shaft 41 that is a main shaft driven by a motor, a press shaft 42 that is driven by a motor different from the motor that drives the conveyance shaft 41, a temperature sensor 43 that measures temperature, and cam data. And a control device 44 that controls a motor that drives each of the conveyance shaft 41 and the press shaft 42. The press shaft 42 is a slave shaft whose position is determined based on the position of the transport shaft 41 that is the main shaft. The position of the press shaft 42 is corrected based on the temperature value detected by the temperature sensor 43. When generating the first cam data used by the synchronization control system 40, the user designates a plurality of modules as shown in FIG. The first input module 311 shown in FIG. 2 corresponds to the transport shaft 41, the second input module 312 corresponds to the temperature sensor 43, and the output module 301 corresponds to the press shaft 42.
 図11は、図10に示す同期制御システム40の動作を説明するための図である。図11の上図は、搬送軸41の位置に対するプレス軸42の位置の関係を示すカム曲線Y’を示している。図11の下図は、温度センサ43の検出する温度に対するプレス軸42の位置に加える補正量の関係を示すカム曲線Pを示している。このように、補正を加えるための入力データを用いる場合、1つの出力データを生成するために、入力データに対して複数の加工処理が行われる。この場合、カムデータ生成装置10は、カム曲線Y’が示すカムデータとカム曲線Pが示すカムデータとを合成したカムデータを生成し、制御装置44は、合成して生成されるカムデータを使用して、搬送軸41を駆動するモータおよびプレス軸42を駆動するモータを制御する。 FIG. 11 is a diagram for explaining the operation of the synchronization control system 40 shown in FIG. The upper diagram of FIG. 11 shows a cam curve Y ′ showing the relationship of the position of the press shaft 42 with respect to the position of the transport shaft 41. The lower diagram of FIG. 11 shows a cam curve P showing the relationship between the temperature detected by the temperature sensor 43 and the correction amount applied to the position of the press shaft 42. As described above, when input data for applying correction is used, a plurality of processing processes are performed on the input data in order to generate one output data. In this case, the cam data generation device 10 generates cam data obtained by combining the cam data indicated by the cam curve Y ′ and the cam data indicated by the cam curve P, and the control device 44 generates the cam data generated by the combination. In use, the motor for driving the transport shaft 41 and the motor for driving the press shaft 42 are controlled.
 図12は、図10に示す制御装置44の機能構成を示す図である。制御装置44は、入力部441と、演算部442と、出力部443とを有する。入力部441は、入力機器から入力される入力データの値を受け付ける。入力部441は、受け付けた値を演算部442に入力する。入力部441に入力される入力データは、例えば、速度、加速度、温度などセンサの検出値、入力軸の位置などであり、図10に示す同期制御システム40の例では、入力軸の位置と、温度センサ43の検出する温度である。 FIG. 12 is a diagram showing a functional configuration of the control device 44 shown in FIG. The control device 44 includes an input unit 441, a calculation unit 442, and an output unit 443. The input unit 441 receives a value of input data input from the input device. The input unit 441 inputs the received value to the calculation unit 442. The input data input to the input unit 441 is, for example, sensor detection values such as speed, acceleration, and temperature, the position of the input shaft, etc. In the example of the synchronous control system 40 shown in FIG. This is the temperature detected by the temperature sensor 43.
 演算部442は、入力部441に入力される入力データの値と、カムデータ生成装置10が生成する第1カムデータとに基づいて、サーボモータの位置、速度、出力機器への制御量などを求める各種の演算を行い、出力データを生成する。演算部442は、生成した出力データを出力部443に入力する。出力部443は、駆動機器と接続されており、演算部442から入力される出力データを駆動機器に出力する。制御装置44は、モーション制御と補正制御とを同一の演算部442にて同一の演算周期内で実行する。制御装置44は、カムデータ生成装置10が生成した第1カムデータを用いて、入力データから出力データを生成することができる。このとき制御装置44は、第1カムデータを生成する演算を行わないため、複数の入力がある場合など、入力データに対して複数の加工処理が行われる場合であっても、演算負荷を抑制することが可能である。 Based on the value of the input data input to the input unit 441 and the first cam data generated by the cam data generation device 10, the calculation unit 442 calculates the position, speed, control amount to the output device, and the like. Various calculations are performed to generate output data. The calculation unit 442 inputs the generated output data to the output unit 443. The output unit 443 is connected to the driving device and outputs output data input from the calculation unit 442 to the driving device. The control device 44 executes motion control and correction control within the same calculation cycle by the same calculation unit 442. The control device 44 can generate output data from the input data using the first cam data generated by the cam data generation device 10. At this time, since the control device 44 does not perform the calculation for generating the first cam data, the calculation load is suppressed even when a plurality of processing processes are performed on the input data, such as when there are a plurality of inputs. Is possible.
 図13は、図12に示す演算部442が行う処理の説明図である。図13は、図10に示す同期制御システム40の構成において演算部442が行う処理を示している。演算部442には、入力軸位置1-1、温度センサ値1-2といった入力データが入力される。演算部442は、カムテーブル2を用いて、入力データを出力データである出力軸位置3に変換する。出力軸位置3は、制御対象の軸である出力軸の位置である。図4に示すカムテーブル2を使用する場合、演算部442は、カムテーブル2に含まれるデータの中で、入力軸位置1-1と「入力#1」のデータとが一致し、且つ、温度センサ値1-2と「入力#2」のデータとが一致するデータに対応する「出力」の値を出力軸位置3とする。 FIG. 13 is an explanatory diagram of processing performed by the calculation unit 442 shown in FIG. FIG. 13 shows processing performed by the calculation unit 442 in the configuration of the synchronous control system 40 shown in FIG. Input data such as the input shaft position 1-1 and the temperature sensor value 1-2 is input to the calculation unit 442. The calculation unit 442 uses the cam table 2 to convert input data into output shaft position 3 that is output data. The output shaft position 3 is the position of the output shaft that is the axis to be controlled. When the cam table 2 shown in FIG. 4 is used, the calculation unit 442 matches the input shaft position 1-1 and the data of “input # 1” in the data included in the cam table 2 and the temperature. The “output” value corresponding to the data in which the sensor value 1-2 and the data of “input # 2” match is set as the output shaft position 3.
 図14は、図12に示す演算部442が行う処理の説明図である。図14は、制御装置44が図3に示す構成を有するシステムを制御する場合において、演算部442が行う処理を示している。演算部442には、入力軸位置1-1が入力データとして入力される。演算部442は、カムテーブル2を用いて、入力データを出力データである出力軸位置3に変換する。具体的には、演算部442は、カムテーブル2-1に含まれるデータの中で、入力軸位置1-1と一致する「入力」のデータに対応づけられた「出力」の値を取得する。そして、演算部442は、カムテーブル2-2に含まれるデータの中で、カムテーブル2-1から取得した「出力」の値と一致する「入力」のデータに対応づけられた「出力」の値を出力軸位置3とする。 FIG. 14 is an explanatory diagram of processing performed by the calculation unit 442 shown in FIG. FIG. 14 shows processing performed by the calculation unit 442 when the control device 44 controls the system having the configuration shown in FIG. The calculation unit 442 receives the input shaft position 1-1 as input data. The calculation unit 442 uses the cam table 2 to convert input data into output shaft position 3 that is output data. Specifically, the calculation unit 442 acquires the “output” value associated with the “input” data that matches the input shaft position 1-1 among the data included in the cam table 2-1. . Then, the calculation unit 442 selects the “output” corresponding to the “input” data that matches the “output” value acquired from the cam table 2-1 among the data included in the cam table 2-2. The value is output shaft position 3.
 以上説明したように、本発明の実施の形態1によれば、入力モジュールと、出力モジュールと、複数の加工モジュールとが指定されると、入力モジュールに入力される入力データと、出力モジュールから出力される出力データとの関係を示す第1カムデータが生成される。したがって、入力データに対する複数の加工処理が行われる場合であっても、入力データに対する出力データの関係性を直感的に把握することが可能になる。 As described above, according to the first embodiment of the present invention, when an input module, an output module, and a plurality of processing modules are specified, input data input to the input module and output from the output module are output. First cam data indicating the relationship with the output data is generated. Therefore, even when a plurality of processing processes are performed on the input data, it is possible to intuitively understand the relationship between the output data and the input data.
 また、上記の第1カムデータを使用することで、制御装置44は、複数の加工モジュールが示す複数の加工処理のそれぞれへの入出力を演算する必要がなく、入力データから直接、複数の加工処理を経た後の出力データを特定することが可能になる。したがって、制御装置44の処理負荷を低減することが可能になる。 Further, by using the first cam data, the control device 44 does not need to calculate input / output to each of the plurality of machining processes indicated by the plurality of machining modules, and directly performs a plurality of machining from the input data. It becomes possible to specify the output data after the processing. Therefore, the processing load on the control device 44 can be reduced.
 本発明の実施の形態1によれば、入力データに対する複数の加工処理が行われる場合であっても、入力データに対する出力データの関係性を示す第1カムデータをグラフ化したカム曲線が表示される。例えば2つの入力データに対する出力データの関係性は、三次元グラフで表される。したがって、制御装置を稼働させる前に、生成されるカム曲線を視覚的に確認することが可能になり、出力軸の動作を把握しやすくなる。 According to the first embodiment of the present invention, even when a plurality of processing processes are performed on input data, a cam curve obtained by graphing the first cam data indicating the relationship of output data to input data is displayed. The For example, the relationship between output data for two input data is represented by a three-dimensional graph. Therefore, it is possible to visually check the generated cam curve before operating the control device, and it becomes easy to grasp the operation of the output shaft.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 例えば、上記では2つの入力データを合成する例を示したが、3つ以上の入力データが用いられるシステムについても本実施の形態の技術を適用することができる。また本実施の形態で指定した複数のモジュールの組み合わせは一例であり、モジュールの組み合わせが異なるシステムについても本実施の形態の技術を適用することが可能である。また、本実施の形態で用いた入力データは一例であり、入力データは、搬送軸の位置、温度に限られず、他の検出値、例えば圧力データなどであってもよい。 For example, in the above description, an example in which two pieces of input data are combined has been shown, but the technique of the present embodiment can also be applied to a system that uses three or more pieces of input data. The combination of a plurality of modules specified in the present embodiment is an example, and the technology of the present embodiment can be applied to systems having different module combinations. Further, the input data used in the present embodiment is an example, and the input data is not limited to the position and temperature of the conveyance axis, and may be other detection values such as pressure data.
 また、上記ではカムデータ生成装置10の機能について説明したが、カムデータ生成装置10が実行するカムデータ生成方法、および、カムデータ生成方法の各工程をコンピュータに実行させるためのコンピュータプログラムとして本発明の技術を実現することもできる。 Although the function of the cam data generation device 10 has been described above, the present invention is a cam data generation method executed by the cam data generation device 10 and a computer program for causing a computer to execute each step of the cam data generation method. This technology can also be realized.
 1-1 入力軸位置、1-2 温度センサ値、2,2-1,2-2 カムテーブル、3 出力軸位置、10 カムデータ生成装置、11 カムデータ記憶部、12 モジュール記憶部、13 モジュール指定部、14 カムデータ生成部、15 カムデータ表示部、31 プロセッサ、32 メモリ、33 入力装置、34 表示装置、40 同期制御システム、41 搬送軸、42 プレス軸、43 温度センサ、44 制御装置、301,302 出力モジュール、311 第1の入力モジュール、312 第2の入力モジュール、313 第3の入力モジュール、321 第1の加工モジュール、322 第2の加工モジュール、323 第4の加工モジュール、324 第5の加工モジュール、331 第3の加工モジュール、441 入力部、442 演算部、443 出力部。 1-1 input shaft position, 1-2 temperature sensor value, 2, 2-1, 2-2 cam table, 3 output shaft position, 10 cam data generator, 11 cam data storage unit, 12 module storage unit, 13 module Designation unit, 14 cam data generation unit, 15 cam data display unit, 31 processor, 32 memory, 33 input device, 34 display device, 40 synchronous control system, 41 transport axis, 42 press axis, 43 temperature sensor, 44 control unit, 301, 302 output module, 311 first input module, 312 second input module, 313 third input module, 321 first processing module, 322 second processing module, 323 fourth processing module, 324 second 5 machining modules, 331 3rd machining module, 4 First input unit, 442 operation unit, 443 output unit.

Claims (6)

  1.  入力データが入力される入力モジュールと、前記入力データを加工する複数の加工モジュールと、前記入力データを加工して生成されるデータであり制御対象である出力軸の位置を示す出力データを出力する出力モジュールとを含む複数のモジュールを指定するモジュール指定部と、
     指定された複数の前記モジュールの組み合わせに基づいて、前記入力データと前記出力データとの関係を示すカムデータである第1カムデータを生成するカムデータ生成部と、
     前記第1カムデータを表示するカムデータ表示部と、
     を備えることを特徴とするカムデータ生成装置。
    An input module to which input data is input, a plurality of processing modules that process the input data, and output data that is generated by processing the input data and indicates the position of an output shaft that is a control target is output. A module designating unit for designating a plurality of modules including an output module;
    A cam data generating unit that generates first cam data, which is cam data indicating a relationship between the input data and the output data, based on a combination of a plurality of the specified modules;
    A cam data display unit for displaying the first cam data;
    A cam data generation device comprising:
  2.  前記カムデータ表示部は、前記第1カムデータを示すデータテーブルを表示することが可能であることを特徴とする請求項1に記載のカムデータ生成装置。 The cam data generation device according to claim 1, wherein the cam data display unit is capable of displaying a data table indicating the first cam data.
  3.  前記カムデータ表示部は、前記第1カムデータをグラフ化したカム曲線を表示することが可能であることを特徴とする請求項1または2に記載のカムデータ生成装置。 The cam data generation device according to claim 1 or 2, wherein the cam data display unit can display a cam curve obtained by graphing the first cam data.
  4.  前記モジュール指定部が2つの前記入力モジュールを指定する場合、前記カムデータ表示部は、2つの前記入力データと前記出力データとの関係を示す三次元のカム曲線を表示することを特徴とする請求項3に記載のカムデータ生成装置。 When the module specifying unit specifies two input modules, the cam data display unit displays a three-dimensional cam curve indicating a relationship between the two input data and the output data. Item 4. The cam data generation device according to Item 3.
  5.  前記モジュール指定部は、複数の前記モジュールの種類と、複数の前記モジュールの間の接続関係とを指定する場合、同種のモジュールを重複して指定することが可能であることを特徴とする請求項1に記載のカムデータ生成装置。 The module designating unit can designate the same type of module in duplicate when designating a plurality of types of modules and a connection relationship between the plurality of modules. The cam data generation device according to 1.
  6.  前記カムデータ生成部は、指定された複数の前記モジュールの組み合わせと、前記加工モジュールの加工前後のデータの値を対応づけるカムデータである第2カムデータとに基づいて、第1カムデータを生成することを特徴とする請求項1に記載のカムデータ生成装置。 The cam data generation unit generates first cam data based on a combination of a plurality of the specified modules and second cam data that is cam data that associates data values before and after the processing module. The cam data generating apparatus according to claim 1, wherein
PCT/JP2018/018000 2018-05-09 2018-05-09 Cam data generation device WO2019215854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/018000 WO2019215854A1 (en) 2018-05-09 2018-05-09 Cam data generation device
JP2018563181A JP6501994B1 (en) 2018-05-09 2018-05-09 Cam data generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018000 WO2019215854A1 (en) 2018-05-09 2018-05-09 Cam data generation device

Publications (1)

Publication Number Publication Date
WO2019215854A1 true WO2019215854A1 (en) 2019-11-14

Family

ID=66166758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018000 WO2019215854A1 (en) 2018-05-09 2018-05-09 Cam data generation device

Country Status (2)

Country Link
JP (1) JP6501994B1 (en)
WO (1) WO2019215854A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4258068A1 (en) * 2020-12-03 2023-10-11 Panasonic Intellectual Property Management Co., Ltd. Cam curve generating device, cam curve generating method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219639A (en) * 1994-01-28 1995-08-18 Mitsubishi Denki Eng Kk Positioning device
WO2013111325A1 (en) * 2012-01-27 2013-08-01 三菱電機株式会社 Display method of synchronization control program which drive controls multi-axle synchronization control device
WO2016203614A1 (en) * 2015-06-18 2016-12-22 三菱電機株式会社 Control-parameter adjusting device
JP2017094457A (en) * 2015-11-25 2017-06-01 ファナック株式会社 Cam shape data preparation device and synchronous control device
JP2017102509A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Cam data display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219639A (en) * 1994-01-28 1995-08-18 Mitsubishi Denki Eng Kk Positioning device
WO2013111325A1 (en) * 2012-01-27 2013-08-01 三菱電機株式会社 Display method of synchronization control program which drive controls multi-axle synchronization control device
WO2016203614A1 (en) * 2015-06-18 2016-12-22 三菱電機株式会社 Control-parameter adjusting device
JP2017094457A (en) * 2015-11-25 2017-06-01 ファナック株式会社 Cam shape data preparation device and synchronous control device
JP2017102509A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Cam data display device

Also Published As

Publication number Publication date
JPWO2019215854A1 (en) 2020-05-28
JP6501994B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP2013191128A (en) Simulator, simulation method, and simulation program
JP2013152423A5 (en)
JP6399082B2 (en) Control system
JP2016042378A (en) Simulation device, simulation method, and simulation program
JP2018128781A (en) Coordinate information conversion device and coordinate information conversion program
JP6464204B2 (en) Offline programming apparatus and position parameter correction method
WO2019215854A1 (en) Cam data generation device
JP2016129922A (en) Display control device and method thereof, and program
JP2018008015A5 (en)
JP2006260350A (en) Motor capacity selection method
JP2009217808A5 (en)
TWI578129B (en) Method of synchronization control setting of positioning control apparatus and control setting apparatus of positioning control apparatus
JPWO2018012110A1 (en) PROCESSING APPARATUS, SYSTEM, AND CONTROL METHOD
JP2017102693A (en) Control device and control method, and computer program using control device
JP2000315106A (en) Programmable controller
TW201643399A (en) Driving machine lifetime evaluation device and method for evaluating lifetime of driving machine
JP6261763B1 (en) Test equipment
TW200921316A (en) Multi-degree-of-freedom stage control apparatus
JP2013004031A5 (en)
JP2010128908A5 (en)
JP6571377B2 (en) Expansion unit, programmable logic controller and control method thereof
JP4743700B2 (en) Control device, control method, and control program
JP2006346840A (en) Information processor
JP6093272B2 (en) Data processing apparatus and data processing method
JP2015089585A (en) Method of calculating regressor matrix and method of identifying mechanical parameter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917626

Country of ref document: EP

Kind code of ref document: A1