WO2019215416A1 - Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite - Google Patents

Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite Download PDF

Info

Publication number
WO2019215416A1
WO2019215416A1 PCT/FR2019/051053 FR2019051053W WO2019215416A1 WO 2019215416 A1 WO2019215416 A1 WO 2019215416A1 FR 2019051053 W FR2019051053 W FR 2019051053W WO 2019215416 A1 WO2019215416 A1 WO 2019215416A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
longitudinal
plates
exchange bundle
holding device
Prior art date
Application number
PCT/FR2019/051053
Other languages
English (en)
Inventor
Frédéric WASCAT
Yoann Naudin
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP19732405.6A priority Critical patent/EP3769026B1/fr
Publication of WO2019215416A1 publication Critical patent/WO2019215416A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers

Definitions

  • the field of the present invention is that of heat exchangers for a heat engine vehicle, and more particularly that of brazed plate cooling devices used to thermally treat an intake air of an internal combustion engine.
  • the automotive industry uses heat exchangers to provide internal combustion engines with optimal temperature conditions. More particularly, in the case of thermal engines and to increase the performance of the latter by optimizing an air / fuel density within the combustion chambers, a heat exchanger is used. This heat exchanger is placed downstream of a turbocharger and upstream of the combustion chambers to cool an intake air for supplying the engine. The intake air, after passing through the turbocharger, is thus cooled by the heat exchanger: it occupies a smaller volume, and can be injected in larger quantities into the combustion chamber, which increases the performance of the internal combustion engine.
  • Plates and heat dissipation devices form a heat exchange bundle for a heat exchange between the intake air and another heat transfer fluid, in particular a liquid such as brine, this exchange bundle being housed in a housing.
  • the exchange beam and the housing are made of a heat conductive metal material.
  • a heat exchanger is typically assembled by melting a layer intended to effect a joining of the metal parts to be assembled.
  • Heat exchangers are subject to strong and diverse service requirements. In particular, we observe the existence of thermal shocks which are caused by a sudden and significant change in temperature and which lead to thermal expansion / contraction cycles. In order to allow the thermal cycles of the plates of the heat exchanger, a space between the exchange beam and the housing is allowed due to the presence of fusible parts. These fusible parts are carried by the plates and allow the assembly to power up the plates. Once the brazing operation is performed, the constituent elements of the heat exchanger are integral with each other and can no longer move relative to each other. After a few thermal cycles, the fuse piece, which has a weakening zone intended to rupture as a result of the expansion / contraction stresses, disconnects from the plate. The plate is then free to expand and contract, losing its link with the case.
  • the present invention therefore aims to overcome the drawbacks of the prior art and to meet the above constraints by proposing for a heat exchanger, a simple solution in its design and in its operating mode, reliable and economical, which allows to avoid the bad positioning of the dissipation devices with respect to the pair of plates, and this from the pre-assembly of the heat exchange bundle before the soldering operation.
  • a heat exchanger must be adapted to the high thermal stresses experienced during implementation, the proposed solution also improves the heat exchange in the heat exchanger.
  • the subject of the invention is therefore a device for cooling an intake air of an internal combustion engine of a vehicle, comprising a heat exchange bundle between a heat transfer fluid and the intake air, the heat exchange bundle comprising at least one pair of plates and at least one longitudinal extension heat dissipation device, a housing which surrounds the heat exchange bundle, at least one of the plates of the heat exchange bundle comprises a piece a fuse configured to press the plate of the heat exchange bundle against the housing during assembly of the cooling device and to allow separation of the heat exchange bundle plate and the housing when using the cooling device, characterized in that at least one of the plates of the heat exchange bundle comprises a longitudinal holding device of the dissipation device. thermal energy.
  • the heat exchange bundle just like the plates and heat dissipation devices that compose it, extends in a longitudinal extension axis.
  • the longitudinal extension of the dissipation device corresponds to the largest dimension of this dissipation device, measured along a direction perpendicular to one of its sides.
  • the heat exchange bundle is intended to be traversed by the intake air so that the air intake takes a direction perpendicular to this axis of longitudinal extension of the heat exchange bundle.
  • assembly of the cooling device, the assembly of the assembly steps of the constituent elements of said cooling device according to the invention. This assembly takes place prior to the brazing operation, intended to join together the constituent elements of the cooling device. The assembly of the cooling device is prior to its use.
  • the term "use" of the cooling device the operational operation of the cooling device according to the invention once brazed.
  • the cooling device is then installed in the vehicle, crossed on the one hand by the heat transfer fluid circulating within the plates and on the other by the intake air licking the surface of the couples of plates and heat dissipating devices heat exchange bundle. During its use there are heat exchanges between the intake air and the heat transfer fluid.
  • the fuse piece which has a weakening zone, is intended to break due to the expansion / contraction stresses of the plate relative to the housing.
  • the fuse piece is thus configured to make a break that releases the plate mechanical stresses generated by the housing.
  • the plate is then free to expand and contract, separated from its link with the housing.
  • the casing surrounding the heat exchange bundle is configured to channel the intake air.
  • This case has four faces. Two longitudinal faces, parallel to each other, extend along the axis of longitudinal extension of the heat exchange bundle. The two longitudinal faces are each associated with two lateral faces parallel to each other and perpendicular to the axis of longitudinal extension of the heat exchange bundle.
  • a side flank, corresponding to a collector plate, defines two collector chambers. Another lateral flank is opposite to the collector plate. This side flank is the one on which bears the fuse piece of the plate pair of the heat exchange bundle.
  • Each plate of the heat exchange bundle thus comprises a first longitudinal end oriented towards the collecting chambers, and a second longitudinal end carrying the fuse piece and the longitudinal holding device.
  • the fuse piece has a weakening zone which allows it to dissociate itself from the plate of the heat exchange bundle which carries it.
  • the fuse piece makes it possible to correctly position the plate of the heat exchange bundle during assembly of said bundle heat exchange in the housing through a force generated by the support of the plate of the heat exchange bundle on one side on the fuse and the other on the header plate, which tends to support the plate of the heat exchange bundle against the header plate.
  • the fixed character of the plate of the heat exchange bundle with respect to the two lateral sides of the housing is of interest only during assembly: once the brazing is done, the weakening zone of the fuse piece allows the plate the heat exchange beam to dissociate from the housing following a few thermal cycles. The movements of expansion / retraction of the plate of the heat exchange bundle during thermal cycling are thus allowed, which avoids any deterioration of this plate.
  • the heat dissipation device is intended to increase the heat exchange surface of the heat exchange bundle. To do this, it takes a shape increasing the heat exchange surface with the intake air. This shape, generally corresponding to a shaped sheet to have many folds, makes it structurally flexible before soldering.
  • the heat dissipation device despite its flexibility, is contained at least longitudinally by the longitudinal holding device. Before soldering, the heat dissipation device thus contained can not move beyond the first longitudinal end and the second longitudinal end of the plate of the heat exchange bundle.
  • the heat dissipating device remains positioned between the collector plate and the longitudinal holding device, thus preventing it from being interposed between one of the plates of the heat exchange bundle and the lateral side of the housing.
  • the heat dissipating device thus remains at a distance from the lateral side of the casing, until brazing which then ensures its fixation.
  • the fuse piece extends in one plane and the longitudinal holding device extends in another plane distinct from the plane of the fuse piece.
  • the fuse piece bears against the lateral flank of the housing so as to extend in a plane parallel to a plane of the lateral flank.
  • the longitudinal holding device is not intended to be in abutment against the lateral flank, can be placed in a different plane. The distance that exists between the plane of the fuse piece and the plane of the longitudinal holding device is therefore non-zero.
  • the plane of the fuse piece and the plane of the longitudinal holding device are parallel.
  • the plane of the fuse piece and the plane of the longitudinal holding device are also parallel to the plane of the lateral side of the housing.
  • the longitudinal holding device is neither inclined towards the lateral side of the housing, nor toward the heat dissipating device.
  • This configuration has the advantage of allowing the heat dissipating device to be in optimal position: maintained for remote mounting of the sidewall of the housing, it also occupies the space of the heat exchange beam dedicated to the circulation of the intake air to the heat dissipating device, thereby maximizing heat exchange.
  • the plane of the fuse piece is interposed between the plane of the longitudinal holding device and a lateral side of the housing.
  • the plane of the longitudinal holding device is set back from the lateral side of the housing relative to the plane of the fuse piece.
  • the fuse piece and the longitudinal holding device correspond to a folded edge at the second longitudinal end of the plate of the heat exchange bundle comprising them.
  • the folded edge may have separate fold lines for the fuse piece and the longitudinal holder.
  • a non-zero distance is present between the longitudinal holding device and the lateral side of the housing. This distance is measured between the longitudinal holding device considered and the lateral side of the housing. Only the fuse piece is in contact with the lateral side of the housing. Thus, the second longitudinal end of the plate of the heat exchange bundle is pressed against the manifold plate of the housing by the fuse piece, thus maintaining it positioned before brazing.
  • the heat dissipating device abuts against the longitudinal holding device. Considering that the longitudinal holding device and the fuse piece have the same thickness, the heat dissipating device is not in contact with the fuse piece. This has the advantage, during brazing, to prevent the heat dissipating device is fixed by soldering to the lateral side of the housing or the fuse. This remote arrangement of the lateral flank of the housing and the fuse piece is retained after brazing. It therefore also allows the expansion / retraction of the plate of the heat exchange bundle when it is dissociated from the lateral side of the housing by breaking the weakening zone of the fuse piece.
  • the longitudinal holding device has an L-shaped profile.
  • the fuse piece also has an L-shaped profile.
  • These L-shaped profiles are similarly oriented for the longitudinal holding device and the workpiece. fuse.
  • the second longitudinal end of the plate of the heat exchange bundle is folded to form the L of the fuse piece and the L of the longitudinal holding device.
  • each L includes a minority portion and a majority portion, the minority portion and the majority portion being in different planes and joining at a fold line.
  • the L of the fuse piece and the L of the longitudinal holding device have their minority portion included in the same plane, corresponding to a plane of the second longitudinal end of the plate of the heat exchange bundle comprising them.
  • the L of the fuse piece and the L of the longitudinal holding device have their own fold line, which may or may not be in the same plane as previously described.
  • the L of the fuse piece has its majority portion included in the plane of the fuse piece.
  • the L of the longitudinal holding device has its majority portion included in the plane of the longitudinal holding device.
  • similarly oriented is meant that the second end of the plate of the heat exchange bundle is folded in the same direction to generate the fuse piece and the longitudinal holding device.
  • a median longitudinal plane is considered to be a heat dissipation device.
  • This median longitudinal plane is parallel to the planes of the second end of the two plates of the heat exchange bundle in contact with the heat dissipating device.
  • This median longitudinal plane is equidistant with one and the other of said planes of the second ends of these plates, and extends longitudinally in the heat dissipation device considered. Then, according to an exemplary embodiment, the second end of each of the plates of the heat exchange bundle in contact with the heat dissipating device is folded in a direction going towards the median longitudinal plane to the heat dissipating device.
  • each of the plates of the heat exchange bundle comprises its own longitudinal holding device of the heat dissipating device.
  • the device for longitudinally holding a plate of the first pair of plates and the longitudinal holding device of a plate of the second pair of plates are arranged vis-a-vis, each participating in the longitudinal maintenance of the heat dissipating device.
  • said longitudinal holding devices are arranged symmetrically with respect to the median longitudinal plane of the heat dissipating device. Therefore, in the heat exchange bundle, the longitudinal holding device of a plate of the first pair of plates and the longitudinal holding device of the other plate of the first pair of plates are arranged back to back, in s' extending according to senses opposed.
  • the plates of a pair of plates of the heat exchange bundle are folded identically.
  • the plates of the heat exchange bundle are interchangeable anywhere in the bundle.
  • advantages of this embodiment include time saving, reduced tooling to obtain the plates of the heat exchange bundle, and ease of design.
  • one of the plates of the pair of plates comprises the longitudinal holding device while the other plate of the couple is devoid of it.
  • Two plates of the heat exchange bundle of the same pair of plates are considered here.
  • the longitudinal holding device may extend towards the median longitudinal plane of the heat dissipating device in contact with the considered pair of plates.
  • the longitudinal holding device may be secant in the median longitudinal plane of the considered heat dissipating device.
  • the longitudinal holding device is not secant in the median longitudinal plane of one or the other of the heat dissipating devices.
  • a non-zero distance separates a first longitudinal holding device from a second longitudinal holding device, the first longitudinal holding device being part of a plate of a first pair of plates and the second device longitudinal holding member being part of a plate of a second pair of plates, the first pair of plates being immediately adjacent to the second pair of plates.
  • This distance is measured in the plane of the two devices and corresponds to the shortest distance between the two longitudinal holding devices in this plane.
  • the two longitudinal holding devices considered belong to plates of two distinct pairs of plates of the heat exchange bundle.
  • immediateately adjacent it is meant that the first pair of plates and the second pair of plates are directly consecutive, separated from each other by a heat dissipating device with which they are both in contact.
  • This non-zero distance avoids mechanical interference between the plates of the heat exchange bundle during assembly. Thus, the distance must be sufficient for the two longitudinal retention devices considered do not support one on the other.
  • the distance is non-zero and less than a height of the heat dissipating device.
  • the longitudinal holding device considered contains the heat dissipating device so that it is set back from the collector plate, with which it does not come into contact with it.
  • the fuse piece comprises a first weakening zone while the longitudinal holding device comprises a second weakening zone.
  • the term "weakening zone” means an area of lesser mechanical resistance, such as that which connects the fuse piece to the plate of the heat exchange bundle.
  • This weakening zone is a zone configured to be of a relatively fragile nature with respect to the remainder of the plate of the heat exchange bundle. It is intended to break after soldering, and more particularly during the implementation of the cooling device, because of the stresses suffered by the latter during the first thermal cycles.
  • the first weakening zone is separated by a distance from the plane of the fuse piece, this distance separating the first weakening zone from the plane of the fuse piece being less than a distance separating the heat dissipating device from the same plane of the fuse piece. fuse piece.
  • the distance separating the heat dissipation device from the plane of the fuse piece and the distance separating the first weakening zone from the plane of the fuse piece are measured in the same plane perpendicular to the plane of the fuse piece.
  • the heat dissipating device is at a distance from the first weakening zone, so they are not joined together to one another during the soldering operation.
  • the second weakening zone is intended to cause separation, preferably by a sharp break, of the fuse piece and the longitudinal holding device.
  • a first zone of similar weakening is present between the fuse piece and the second longitudinal end of the plate of the heat exchange bundle, said plate is dissociated from fuse piece during the breaking of these two weakening zones.
  • the first weakening zone and the second weakening zone can take different forms.
  • the first weakening zone and / or the second weakening zone may correspond to a metallic connection traversed by orifices arranged linearly or rectilinearly.
  • the first weakening zone and / or the second weakening zone may comprise at least one notch.
  • the first weakening zone and / or the second zone weakening can comprise a first line of least resistance, two notches being located on either side of this line of least resistance. Still alternatively, this line of least resistance is obtained by local thinning.
  • the second weakening zone connecting the fuse piece to the longitudinal holding device results from a cutting of the plate of the heat exchange bundle then folded, and is thus included in the material of this plate.
  • the second weakening zone is also contained between the plane of the longitudinal holding device and the plane of the fuse piece, or in one or other of these planes, while being intermediate to the longitudinal holding device and to the the fuse piece.
  • the fuse piece and the longitudinal holding device are separated by a longitudinal gap.
  • the longitudinal holding device is connected to the fuse piece via the second end end of the plate of the heat exchange bundle.
  • the longitudinal gap is measured between the longitudinal holding device and the fuse piece at a lateral edge of the second end of the plate of the heat exchange bundle carrying them.
  • the longitudinal holding device and the fuse piece are continuous from a first longitudinal edge to a second longitudinal edge of the plate of the heat exchange bundle carrying the longitudinal holding device and the fuse piece.
  • the longitudinal holding device and the fuse piece occupy the entire width of the plate of the heat exchange bundle, the width being measured transversely in a plane perpendicular to a longitudinal extension plane of the bundle. heat exchange.
  • the longitudinal holding device is divided into at least a first segment and a second segment separated by an inter-segment gap.
  • This inter-segment gap is measured in the plane of the longitudinal holding device in a direction parallel to the plane of the second longitudinal end of the plate of the heat exchange bundle and between the first segment and the second segment at the lateral edge of the the second end of the plate of the heat exchange bundle.
  • the first segment and the second segment of the same longitudinal holding device are connected to the same second end of the plate of the heat exchange bundle considered.
  • the first segment and the second segment of the same longitudinal holding device are folded in the same direction.
  • the inter-segment gap present between the first segment and the second segment makes it possible to reduce the quantity of material used to manufacture the plate of the heat exchange bundle, while fulfilling the function of the invention.
  • the inter-segment differences of the cumulative longitudinal retention dissipation device represent less than 50% of a total length of the longitudinal retention device.
  • the total length of the holding device is measured between the first longitudinal edge and the second longitudinal edge of the plate of the carrying heat exchange bundle of the longitudinal holding device, perpendicular to the longitudinal extension axis of the heat exchange bundle. .
  • this inter-segment gap the maintenance of the heat dissipation device is ensured.
  • FIG. 1 is a general perspective view of a cooling device according to the invention in a first embodiment
  • FIGS. 2 to 3 are schematic views of a heat exchange bundle, which is part of the cooling device according to the invention, in a second embodiment and a third embodiment,
  • FIGS. 4 to 6 are perspective views of a plate of the heat exchange bundle, part of the cooling device according to the invention, in different embodiments.
  • the longitudinal or lateral designations refer to the orientation of the cooling device according to the invention.
  • the longitudinal direction corresponds to a longitudinal extension axis of a heat exchange bundle of the cooling device in which the cooling device and the heat exchange bundle extend in their largest dimension
  • the lateral orientations correspond to to intersecting straight lines, that is to say which cross the longitudinal direction, in particular perpendicular to the longitudinal axis of the cooling device.
  • the fluids are represented by arrows, solid when the fluid is out of the cooling device and dashed when the fluid is inside the cooling device.
  • FIG. 1 there is shown a cooling device 1 of an intake air FA of an internal combustion engine of a vehicle.
  • This cooling device 1 is shown as a whole, combining a heat exchange bundle 2 and a housing 3.
  • the heat exchange bundle 2 is partially represented.
  • the heat exchange bundle 2 extends along a longitudinal extension axis X. It comprises at least a pair 4 of plates 5 and at least one heat dissipation device 6 of longitudinal extension. A successive stack of pairs 4 of plates 5 and of heat dissipation devices 6 form the heat exchange bundle 2.
  • a single heat dissipation device 6 is shown in Figure 1. It corresponds to a shaped sheet to have many folds.
  • the heat dissipation device 6 is folded accordion, having a longitudinal section of sinusoidal shape.
  • This sinusoidal shape is regular and has a constant amplitude which corresponds to a height H of the heat dissipation device 6, this height H being measured between a plane 61 and a plane 62 defining on either side the sinusoidal shape of the dissipation device thermal 6, these planes thus passing through peaks of the heat dissipation device 6.
  • the heat dissipating device 6 is intended to be traversed by the intake air FA.
  • the intake air FA moves perpendicularly to the longitudinal extension axis X and to the sinusoidal section of the heat sink device 6.
  • the intake air FA passes right through the heat dissipating device 6 and licks the walls of this heat dissipating device 6.
  • the pair of plates 5 is formed of two plates 5 of the heat exchange bundle 2 which comprise a first longitudinal end 7 and a second longitudinal end 8.
  • the second longitudinal end 8 is opposite the first longitudinal end 7.
  • the two plates 5 of the heat exchange bundle 2 are juxtaposed so that they delimit together an internal heat transfer fluid circulation space FC to the pair of plates 5.
  • the space of circulation 9 of FC heat transfer fluid internal to the pair of plates 5 takes the form of a U, delimited by contact zones 11 of the plates 5 of the pair of plates 4 5.
  • the pair 4 of plates 5 is pressed on the housing 3 by fusible parts 12 formed on the side of the second longitudinal end 8.
  • the fusible parts 12, for example two in number, are located at each end of a border lateral 13 of the second longitudinal end 8 of each plate 5 of the heat exchange bundle 2. They take the form of an L-shaped tongue.
  • the plate 5 of the pair of plates 4 comprises at least one longitudinal holding device 14 of the heat dissipating device 6.
  • This longitudinal holding device 14 makes it possible to contain the heat dissipating device 6 so as to limit its extension to a dimension which does not protrude from the plate, from the side of the fusible part or parts 12.
  • the longitudinal holding device 14 visible in FIG. 1 is shown without the heat dissipating device 6 which it must maintain, in order to to be able to observe it.
  • the longitudinal holding device 14 on which rests the heat dissipating device 6 shown in Figure 1 is not visible because of the angle of view.
  • the longitudinal holding device 14 takes, in the first embodiment illustrated in FIG. 1, the shape of an uninterrupted strip with an L-shaped profile centered on the second longitudinal end 8 of each plate 5 of the heat exchange bundle 2.
  • the profile in L of the longitudinal holding device 14 and that of the two fusible parts 12 surrounding it are oriented in a similar manner, that is to say away from the pair of plates 5. It results from folding substantially at right angles of the plate 5 of the heat exchange bundle 2 at the second longitudinal end 8.
  • the longitudinal holding device 14 and the fusible parts 12 are separated from each other by a longitudinal gap 15.
  • the longitudinal holding device 14 and the fusible parts 12 occupy a majority of a width 16 of the plate 5 of the heat exchange bundle 2 at its second longitudinal end 8.
  • longitudinal retention 14 and the fusible parts 12 result also from the folding of this second longitudinal end 8.
  • the heat dissipating device 6 is affixed against one of the plates of the pair 4 of plates 5, so that they are superimposed on each other. They are in physical contact favoring the heat transfer between these two components.
  • the heat exchange bundle 2 is traversed by the intake air FA.
  • the heat exchange fluid FC of the heat exchange bundle 2 captures calories from the intake air FA. This heat exchange is enabled by the heat dissipating device 6 and the pairs of plates 5 placed on the rectilinear flow of the intake air FA.
  • the heat dissipating device 6 and the pairs 4 of plates 5 are made of a thermally conductive metal, preferably aluminum or aluminum alloy, which promotes the transfer of calories. These calories are then transferred to the heat transfer fluid FC flowing through the pairs 4 of plates 5.
  • the heat exchange bundle 2 is surrounded by a housing 3 which has four sidewalls referenced 17, 18, 19 and 20.
  • the housing 3 takesn with respect to the longitudinal axis of extension X, the housing 3 has two lateral flanks 17, 18 , opposed to each other and two longitudinal flanks 19, 20 connecting the side flanks 17, 18.
  • the longitudinal flanks 19, 20 are arranged in planes parallel to the flow of the intake air FA.
  • the housing 3 has two openings 21, 22 to allow the flow of the intake air FA to pass through from one side.
  • Two collecting chambers 23, 24 of the heat transfer fluid FC are part of a lateral flank corresponding to a collecting plate 17 of the housing 3.
  • a lateral flank 18 is opposite to the plate 17.
  • the side flank 18 is the one against which the fusible parts 12 bear.
  • Each collecting chamber 23, 24 is connected to a circulation circuit of the heat transfer fluid FC which comprises the cooling device 1 according to the invention.
  • the first collecting chamber 23 and the second collecting chamber 24 are in communication with one another via the circulation spaces at each pair of plates 4.
  • the heat transfer fluid FC entering via the first collecting chamber 23 is distributed in the different pairs 4 of plates 5 of the heat exchange bundle 2 where the heat exchange between heat transfer fluid FC and the intake air FA takes place, then collected by the second collecting chamber 24 before being transmitted to the rest of the circulation circuit of the coolant FC, external to the cooling device 1.
  • the housing 3 has its four flanks 17, 18, 19, 20 clamped around the openings 21, 22 of the housing 3 by an assembly flange 25 and a docking flange 26, fixed to the housing 3.
  • the docking flange 26 extends to the surroundings of the housing 3 so as to allow the attachment of the cooling device 1 to the vehicle engine.
  • the docking flange 26 has orifices 28, intended for this fixation.
  • the orifices 28 can thus accommodate fixing means such as screws or nuts.
  • the cooling device 1 shown in FIG. 1 is assembled for example as follows.
  • a step of assembling the heat exchange bundle 2 makes it possible to obtain an alternation of heat dissipation devices 6 and pairs 4 of plates 5.
  • the case 3 is mounted at the periphery of the bundle of heat exchange 2 so that the fusible parts 12 bear on the lateral flank 18 of the housing 3 corresponding to the lateral flank devoid of the collecting chambers 23, 24.
  • the heat dissipation devices 6 are contained between the manifold plate 17 of the housing 3, and the longitudinal holding devices 14.
  • the longitudinal holding device 14 allows the heat dissipating device 6 not to be interposed between the plates 5 of the beam
  • the heat dissipating devices 6 are thus kept at a distance from the casing 3, in particular at a distance from the lateral flank 18 opposite the collecting plate 17.
  • the heat dissipating devices 6 are kept at a distance from the casing 3. avoids the appearance of a plate offset within a pair of plates 5.
  • the plates 5 of the heat exchange bundle 2 thus remain properly adjusted for the circulation of heat transfer fluid FC.
  • a brazing operation is performed on the cooling device 1. This step makes it possible to simultaneously secure all the metal parts of the cooling device 1. It is thus important that all the components of the cooling device 1 are correctly placed on the to each other prior to this brazing operation.
  • Figure 2 shows the cooling device 1 according to a second embodiment.
  • the latter is devoid of its housing 3 to illustrate the heat exchange bundle 2 and shows in perspective an enlargement of ends 8 of plates 5 of the heat exchange bundle 2.
  • the heat exchange bundle 2 illustrated here comprises four plates 5, two of which form a pair 4 of plates 5. On either side of the pair of plates 5 is disposed a heat dissipating device 6 of longitudinal section of sinusoidal shape as previously described.
  • the heat dissipation device 6 is part of a median longitudinal plane 29.
  • the median longitudinal plane 29 is disposed at half the height H of the heat dissipating device 6.
  • the median longitudinal plane 29 is also parallel to a plane of plate 30 of one or other of the plates 5 of the heat exchange bundle 2, the plates 5 of the heat exchange bundle 2 being disposed in plate planes 30 parallel to each other.
  • all the plates 5 of the heat exchange bundle 2 have the same shape at their second longitudinal end 8. On the other hand, they are oriented in two different directions 31, 32 with respect to the longitudinal plane. median 29, as will be explained below.
  • Each plate 5 of the heat exchange bundle 2 has at its second longitudinal end 8, and more precisely at the side edge 13 of the second longitudinal end 8, a fuse piece 12 and a longitudinal holding device 14. of the same thickness E.
  • the fuse piece 12 and the longitudinal holding device 14 have an L-shaped profile.
  • the L-shaped profile of the fuse piece 12 can be decomposed into a minority portion 33 and a majority portion 34.
  • the L-shaped profile of the longitudinal holding device 14 may be decomposed into a minority portion 35 and a majority portion 36.
  • the fuse piece 12 and the longitudinal holding device 14 have their minority portion
  • the fuse piece 12 and the longitudinal holding device 14 have their majority portion
  • the fuse piece 12 is included in a plane 37 of the fuse piece 12.
  • the longitudinal holding device 14 is included in a plane 38 of the longitudinal holding device 14.
  • the plane 38 of the longitudinal holding device 14 is interposed between the plane 37 of the fuse piece 12 and the heat dissipating device 6. Therefore, and considering that the fuse piece 12 and the longitudinal holding device 14 share the same thickness E, the heat dissipating device 6 is spaced from the fuse piece 12 they do not come in contact with each other, so that a distance C remains between them. On the other hand, the heat dissipating device 6 comes into contact with the longitudinal holding device 14, with which it is in abutment in order to extend to its contact over most of the width of the plate 5 of the exchange beam 2.
  • this configuration ensures that only the fuse piece 12 comes into contact with the casing 3, the heat dissipating device 6 being sufficiently far away from the fuse piece 12, by means of the longitudinal holding device 14, to guarantee that it does not interpose between the fuse piece 12 and the side flank 18 against which this fuse piece 12 bears.
  • a distance B separates the plane 37 of the fuse piece 12 and the plane of the longitudinal holding device 14 of the same plate 5 of the heat exchange bundle 2.
  • this distance B also corresponds to the distance between the longitudinal holding device 14 and the lateral flank of the housing 3.
  • the fuse piece 12 and the longitudinal holding device 14 are separated by a longitudinal gap 15.
  • This longitudinal gap 15 is non-zero and forms a notch formed between the fuse piece 12 and the longitudinal holding device 14.
  • each longitudinal holding device 14 located on the plates 5 of the heat exchange bundle 2 disposed immediately on either side of the same heat dissipating device 6.
  • the two longitudinal holding devices 14 are separated of a non-zero distance A and less than the height H.
  • These two longitudinal holding devices 14 are oriented in opposite directions 31, 32 so that their L-shaped profile is directed from the plate 5 of the exchange beam 2 carrying them towards the median longitudinal plane 29 of the heat dissipation device 6 considered. Therefore, a free edge 39 of each longitudinal holding device 14 faces the other.
  • each plate 5 of the heat exchange bundle 2 carries a longitudinal holding device 14.
  • two longitudinal holding devices 14 of two plates 5 of the heat exchange bundle 2 of the same pair 4 of plates 5 also adopt an orientation in the opposite direction, moving away from the contact zone 11 specific to the pair of plates 5 considered, delimiting the circulation space 9 of the heat transfer fluid LC internal torque 4 5.
  • plates 5 of the heat exchange bundle 2 taken successively one after the other have longitudinal holding devices 14 oriented alternately in a first direction 31 and then in a second direction 32 opposed to the first direction 31.
  • the fusible parts 12 adopt the same configuration as that described above for the longitudinal holding devices 14.
  • the fuse piece 12 has a first weakening zone 40 that is specific to it.
  • This first weakening zone 40 is located between the fuse piece 12 and the second longitudinal end 8 of the plate 5 of the heat exchange bundle 2. It here takes the form of a line of weakness.
  • the first weakening zone 40 of the fuse piece 12 is located in the minority portion of the fuse piece 12.
  • it is located at a distance F from the fuse piece 12 smaller than the distance C corresponding to the distance between the heat dissipating device 6 and the fuse piece 12.
  • the heat dissipating device 6 does not overhang this first weakening zone 40.
  • the brazing operation thus secures the fuse piece 12 only with the housing.
  • FIG. 3 there is shown the cooling device 1 according to a third embodiment.
  • the longitudinal holding devices 14 differ and will be described below. With the exception of these differences, the description above applies mutatis mutandis and reference may be made to implement the invention.
  • the longitudinal holding device 14 extends from so as to be at least secant to the median longitudinal plane 29 of the heat dissipating device 6 in contact with the plate 5 of the heat exchange bundle 2 which carries said longitudinal holding device 14.
  • the longitudinal holding devices 14 are oriented in the same second direction 32. They are separated from each other by the distance A. This distance A is non-zero between a free edge 59 of the longitudinal holding device 14 of a plate 5 and a slice free 60 of the other plate 5 which extends between two fusible parts 12.
  • Each longitudinal holding device 14 is dedicated to a heat dissipating device 6, which is in contact with it.
  • the thickness E of the longitudinal holding device 14 is configured to maintain the heat dissipating device 6 longitudinally.
  • FIG. 4 shows a plate 5 of the heat exchange bundle 2 part of the cooling device 1 according to the invention, in the embodiment of FIG. 2.
  • the plate 5 of the heat exchange bundle 2 is shown associated with the case 3, in particular associated with the header plate 17.
  • the other components are omitted to facilitate the reading of this FIG. 4.
  • the plate 5 of the heat exchange bundle 2 is observed on the side of its circulation space 9 of fluid internal heat transfer fluid. More particularly, FIG. 4 illustrates the arrangement of the first longitudinal end 7 of the plate 5 of the heat exchange bundle 2 with respect to a collecting plate 17 that is part of the case 3.
  • the plate 5 of the heat exchange bundle 2 comprises, on the side of its second longitudinal end 8, and between a first longitudinal edge 57 and a second longitudinal edge 57 of this plate 5, two fuse parts 12 and the longitudinal holding device 14.
  • the longitudinal holding device 14 is between the two fuse parts 12.
  • the two fuse parts 12 are located at each end of the side edge 13 of the second longitudinal end 8 of the plate 5 of the heat exchange bundle 2.
  • Each fuse piece 12 is disposed at a distance from the longitudinal holding device 14, so as to generate the longitudinal gap 15.
  • the longitudinal holding device 14 and the fuse parts 12 occupy the width 16 of the plate 5 of the heat exchange bundle 2 measured at the level of the second longitudinal end 8.
  • the longitudinal holding device 14 takes the form of a band divided into a first segment 42, a second segment 43 and a third segment 44, separated by an inter-segment gap 55. These segments are folded in the same first direction 31 as fusible parts 12.
  • the first segment 42 and the third segment 44 are of the same length.
  • the second segment 43, located between the first segment 42 and the third segment 44, is of greater length than the first segment 42 and the third segment 44.
  • the circulation space 9 of the heat transfer fluid FC internal to the pair of plates 5 of the plate 5 of the heat exchange bundle 2 shown in FIG. 4 extends between the first longitudinal end 7 and the second longitudinal end 8 of the plate. 5 of the heat exchange bundle 2.
  • This circulation space 9 of the internal heat transfer fluid FC is U-shaped, delimited by the contact zones 11 of the plate 5 of the heat exchange bundle 2, intended to be superimposed on the a plate 5 of the heat exchange bundle 2 which is identical but oriented in the opposite direction so as to form the pair 4 of plates 5. More particularly, the circulation space 9 of the internal heat transfer fluid FC opens at the level of vertices of the U 46.
  • the mouths 46 are in communication with the first collecting chamber 23 and with the second collecting chamber 24 of the housing 3.
  • Each collecting chamber 23, 24 comprises a single space intended to be e in communication with the circulation spaces 9 of the heat transfer fluid FC internal to each pair 4 of plates 5 of the same heat exchange bundle 2.
  • the first longitudinal end 7 of the plate 5 of the bundle heat exchange 2 is pressed against the header plate 17, the latter being provided with oblong openings 48.
  • Each opening 48 is disposed facing a mouth 46.
  • the sealing of an opening 48 and the associated mouth 46 is provided all around the opening 48 by a folded edge 47 of the first longitudinal end 7 of the plate concerned. This folded edge 47 bears against the collecting plate 17.
  • the pairs 4 of plates 5 of the heat exchange bundle 2 bear against the header plate 17 and, via the fuse parts 12, against the lateral flank 18 of the housing 3 opposite the header plate 17. Plated , the elements of the cooling device 1 are positioned relative to each other and are held together before being secured by the brazing operation.
  • FIG. 5 particularly illustrates a second longitudinal end 8 of plate 5 of the heat exchange bundle 2 according to a fifth embodiment.
  • the longitudinal holding device 14 takes the form of a continuous strip which extends over the width 16 of the plate 5 of the heat exchange bundle 2 measured at the level of the second longitudinal end 8.
  • the longitudinal holding device 14 is surrounded by two fusible parts 12.
  • the two fuse parts 12 are located at each of the two ends of the lateral edge 13 of the second longitudinal end 8 of the plate 5 of the heat exchange bundle 2.
  • the longitudinal holding device 14 and the fuse parts 12 have an L-shaped profile as previously described in FIG. 4.
  • the plate 5 of the heat exchange bundle 2, described in FIG. 5, has distinct weakening zones 40, 50.
  • the first weakening zone 40 of the fuse parts 12, which takes the form of two notches 45, is situated in the minority portion of the L-shaped profile of the fuse parts 12. This first weakening zone 40 is allowed to break at the of these two notches 45 under the effect of repeated thermal cycles for example, thus dissociating the fuse piece 12 considered from the rest of the plate 5 of the heat exchange bundle 2.
  • the plate 5 of the heat exchange bundle 2 comprises another type of weakening zone: a second weakening zone 50 linking each fuse piece 12 to the longitudinal holding device 14.
  • the longitudinal holding device 14 has a first portion 51 located in the plane 38 of the longitudinal holding device 14, and a second portion 52 disposed in the plane 37 of the fuse piece 12 that it connects.
  • a third S-shaped portion 53 joins the first portion 51 and the second portion 52.
  • the first part 51, the second part 52, the third part 53 are differentiated, within the longitudinal holding device 14, in that they are separated from the plate 5 of the heat exchange bundle 2 by a slot 27.
  • slot 27 extends along the second zone 50 and on one end of the longitudinal holding device 14.
  • the second part 52 includes the second weakening zone 50 which has two notches 54. This second weakening zone 50 is allowed to break between these two notches 54, under the effect of repeated thermal cycles, for example, thus dissociating the fuse piece 12 considered the longitudinal holding device 14. When the two weakening zones 40, 50 surrounding the same fuse piece 12 break, successively or simultaneously, the fuse piece 12 is dissociated from the plate 5 of the exchange beam thermal 2.
  • FIG. 6 finally has a second longitudinal end 8 of plate 5 of the heat exchange bundle 2 according to a sixth embodiment.
  • This embodiment is as described in FIG. 5, unlike the longitudinal holding device 14 which is composed of the first segment 42, the second segment 43 and the third segment 44 separated from one another by the inter-segment gap. 55 as shown in FIG. 4.
  • the fuse parts 12 are connected to the longitudinal holding device 14 via its first segment 42 and its second segment 43.
  • This second weakening zone 50 linking the longitudinal holding device 14 and the fuse piece 12 is identical to that described with reference to FIG. 5 and reference will be made to the description of this figure for implementing this second weakening zone 50 in the context of FIG. 6.
  • the present invention provides a cooling device of an intake air of an internal combustion engine configured to make its sealing more reliable.
  • This cooling device intended to be integrated in an intake air circuit and a heat transfer fluid circuit of a thermal vehicle, offers an easy solution to implement and at a lower cost to avoid any interposition of the dissipation device. between a plate of the exchange beam.
  • the invention is also designed to withstand the high thermal stresses experienced by such devices, also allowing a certain freedom of movement and making it possible to perpetuate the use of the cooling device.
  • the efficiency of the heat exchange between the intake air and the heat transfer fluids is increased during the implementation of the invention. and this in the various embodiments of the invention.
  • the invention can not be limited to the means and configurations described and illustrated here, and it also extends to any equivalent means or configuration and any technical combination operating such means.
  • the shape of the longitudinal holding device can be modified without harming the invention, insofar as the cooling device, in fine, fulfills the same functionalities as those described in this document.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

L'invention concerne un dispositif de refroidissement (1) d'un air d'admission (FA) d'un moteur à combustion interne d'un véhicule, comprenant un faisceau d'échange thermique (2) entre un fluide caloporteur (FC) et l'air d'admission (FA), le faisceau d'échange thermique (2) comprenant au moins un couple (4) de plaques (5) et au moins un dispositif de dissipation thermique (6) d'extension longitudinale, un boîtier (3) qui entoure le faisceau d'échange thermique (2), au moins une des plaques (5) du faisceau d'échange thermique (2) comprend une pièce fusible (12) configurée pour plaquer la plaque (5) contre le boîtier (3) lors de l'assemblage du dispositif de refroidissement (1), caractérisé en ce qu'au moins une des plaques (5) comprend un dispositif de maintien longitudinal (14) du dispositif de dissipation thermique (6). Application aux véhicules automobiles.

Description

Le domaine de la présente invention est celui des échangeurs de chaleur pour véhicule à moteur thermique, et plus particulièrement celui des dispositifs de refroidissement à plaques brasées utilisés pour traiter thermiquement un air d’admission d’un moteur à combustion interne.
L’industrie automobile utilise des échangeurs de chaleur pour assurer aux moteurs à combustion interne de véhicules des conditions de fonctionnement en température optimales. Plus particulièrement, dans le cas des moteurs thermiques et afin d’augmenter les performances de ces derniers en optimisant une densité air/carburant au sein des chambres de combustion, un échangeur de chaleur est utilisé. Cet échangeur de chaleur est placé en aval d’un turbocompresseur et en amont des chambres de combustion afin de refroidir un air d’admission destiné à alimenter le moteur thermique. L’air d’admission, après son passage dans le turbocompresseur, est ainsi refroidi par l’échangeur de chaleur : il occupe un volume moindre, et pourra être injecté en plus grande quantité dans la chambre de combustion, ce qui augmente les performances du moteur à combustion interne.
Il est ainsi connu d’équiper le circuit d’admission d’un moteur thermique d’un échangeur de chaleur intégrant des couples de plaques s’alternant avec des dispositifs de dissipation thermique. Plaques et dispositifs de dissipation thermique forment un faisceau d’échange thermique pour un échange thermique entre l’air d’admission et un autre fluide caloporteur, notamment un liquide tel une eau glycolée, ce faisceau d’échange étant logé dans un boîtier. Le faisceau d’échange et le boîtier sont faits d’un matériau métallique conducteur de chaleur. Un échangeur de chaleur est typiquement assemblé par fusion d’une couche destinée à opérer une solidarisation des pièces métalliques à assembler.
Les échangeurs de chaleur sont soumis à des sollicitations en service à la fois fortes et de natures diverses. Notamment, on observe l’existence de chocs thermiques qui sont provoqués par une variation soudaine et importante de la température et qui conduisent à des cycles thermiques de dilation/contraction. Afin d’autoriser les cycles thermiques des plaques de l’échangeur thermique, un espace entre le faisceau d’échange et le boîtier est permis grâce à la présence de pièces fusibles. Ces pièces fusibles sont portées par les plaques et permettent au montage la mise sous tension des plaques. Une fois l’opération de brasage réalisée, les éléments constitutifs de l’échangeur thermique sont solidaires les uns des autres et ne peuvent plus se mouvoir les uns par rapport aux autres. Après quelques cycles thermiques, la pièce fusible, qui comporte une zone d’affaiblissement destinée à se rompre suites aux contraintes de dilation/contraction, se désolidarise de la plaque. La plaque est alors libre de se dilater et de se contracter, défaite de son lien avec le boîtier.
Le fonctionnement de ces pièces fusible impose ainsi la présence d’un espace entre les couples de plaques et le boîtier. Cet espace présente deux inconvénients majeurs : d’une part l’air d’admission qui y passe ne bénéficie pas du même échange thermique que s’il traversait le faisceau d’échange thermique au niveau des dispositifs de dissipation thermique. D’autre part, lors du montage, les dispositifs de dissipation thermique ont tendance à s’intercaler entre les couples de plaques et le flanc du boîtier opposé à la plaque collectrice, générant un mauvais appariement desdits couples de plaques le boîtier, ce qui induit à terme un défaut d’étanchéité.
La présente invention vise donc à pallier les inconvénients de l’art antérieur et à répondre aux contraintes ci-dessus énoncées en proposant pour un échangeur thermique, une solution simple dans sa conception et dans son mode opératoire, fiable et économique, laquelle permet d’éviter le mauvais positionnement des dispositifs de dissipation par rapport au couple de plaques, et ce dès le pré- assemblage du faisceau d’échange thermique avant l’opération de brasage. Un tel échangeur thermique devant être adapté aux contraintes thermiques fortes subies lors de la mise en œuvre, la solution proposée permet également d’améliorer les échanges thermiques au sein de l’échangeur thermique.
L’invention a donc pour objet un dispositif de refroidissement d’un air d’admission d’un moteur à combustion interne d’un véhicule, comprenant un faisceau d’échange thermique entre un fluide caloporteur et l’air d’admission, le faisceau d’échange thermique comprenant au moins un couple de plaques et au moins un dispositif de dissipation thermique d’extension longitudinale, un boîtier qui entoure le faisceau d’échange thermique, au moins une des plaques du faisceau d’échange thermique comprend une pièce fusible configurée pour plaquer la plaque du faisceau d’échange thermique contre le boîtier lors de l’assemblage du dispositif de refroidissement et autoriser une séparation de la plaque du faisceau d’échange thermique et du boîtier lors de l’utilisation du dispositif de refroidissement, caractérisé en ce qu’au moins une des plaques du faisceau d’échange thermique comprend un dispositif de maintien longitudinal du dispositif de dissipation thermique.
Le faisceau d’échange thermique, tout comme les plaques et les dispositifs de dissipation thermique qui le composent, s’étend dans un axe d’extension longitudinale. L’extension longitudinale du dispositif de dissipation correspond à la plus grande dimension de ce dispositif de dissipation, mesurée le long d’une direction perpendiculaire à l’un de ses côtés. Le faisceau d’échange thermique est destiné à être traversé par l’air d’admission de sorte à ce que l’air d’admission prenne une direction perpendiculaire à cet axe d’extension longitudinal du faisceau d’échange thermique.
On entend par « assemblage » du dispositif de refroidissement, l’ensemble des étapes de montage des éléments constitutifs dudit dispositif de refroidissement selon l’invention. Cet assemblage a lieu préalablement à l’opération de brasage, destinée à solidariser entre eux les éléments constitutifs du dispositif de refroidissement. L’assemblage du dispositif de refroidissement est préalable à son utilisation.
On entend par « utilisation » du dispositif de refroidissement, le fonctionnement opérationnel du dispositif de refroidissement selon l’invention une fois brasé. Le dispositif de refroidissement est alors installé dans le véhicule, traversé d’une part par le fluide caloporteur circulant au sein des plaques et d’autre part par l’air d’admission léchant la surface des couples de plaques et des dispositifs de dissipation thermique du faisceau d’échange thermique. Lors de son utilisation ont lieux les échanges thermiques entre l’air d’admission et le fluide caloporteur.
La pièce fusible, qui comporte une zone d’affaiblissement, est destinée à se rompre suites aux contraintes de dilation/contraction de la plaque par rapport au boîtier. La pièce fusible est ainsi configurée pour opérer une rupture qui libère la plaque des contraintes mécaniques générées par le boîtier. La plaque est alors libre de se dilater et de se contracter, séparée de son lien avec le boîtier.
Le boîtier qui entoure le faisceau d’échange thermique est configuré pour canaliser l’air d’admission. Ce boîtier comprend quatre faces. Deux faces longitudinales, parallèles entre elles, s’étendent selon l’axe d’extension longitudinal du faisceau d’échange thermique. Les deux faces longitudinales sont chacune associées à deux faces latérales parallèles entre elles et perpendiculaires à l’axe d’extension longitudinal du faisceau d’échange thermique. Un flanc latéral, correspondant à une plaque collectrice, délimite deux chambres collectrices. Un autre flanc latéral est opposé à la plaque collectrice. Ce flanc latéral est celui sur lequel prend appui la pièce fusible du couple de plaques du faisceau d’échange thermique.
Chaque plaque du faisceau d’échange thermique comprend ainsi une première extrémité longitudinale orientée vers les chambres collectrices, et une deuxième extrémité longitudinale portant la pièce fusible et le dispositif de maintien longitudinal.
La pièce fusible dispose d’une zone d’affaiblissement qui l’autorise à se dissocier de la plaque du faisceau d’échange thermique qui la porte. La pièce fusible permet de positionner correctement la plaque du faisceau d’échange thermique lors du montage dudit faisceau d’échange thermique dans le boîtier grâce à un effort généré par l’appui de la plaque du faisceau d’échange thermique d’un côté sur la pièce fusible et de l’autre sur la plaque collectrice, qui tend à mettre en appui la plaque du faisceau d’échange thermique contre la plaque collectrice. Le caractère fixe de la plaque du faisceau d’échange thermique par rapport aux deux flancs latéraux du boîtier n’a d’intérêt que lors du montage : une fois le brasage effectué, la zone d’affaiblissement de la pièce fusible permet à la plaque du faisceau d’échange thermique de se dissocier du boîtier suite à quelques cycles thermique. Les mouvements de dilatation/rétractation de la plaque du faisceau d’échange thermique lors des cycles thermiques sont ainsi autorisés, ce qui évite toute détérioration de cette plaque.
Le dispositif de dissipation thermique est destiné à augmenter la surface d’échange thermique du faisceau d’échange thermique. Pour ce faire, il prend une forme augmentant la surface d’échange thermique avec l’air d’admission. Cette forme, correspondant généralement à un feuillet conformé pour présenter de nombreux replis, fait qu’il est structurellement souple avant brasage.
Le dispositif de dissipation thermique, malgré sa souplesse, est contenu au moins longitudinalement par le dispositif de maintien longitudinal. Avant brasage, le dispositif de dissipation thermique ainsi contenu ne peut se déplacer au-delà de la première extrémité longitudinale et la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique. Le dispositif de dissipation thermique reste positionné entre la plaque collectrice et le dispositif de maintien longitudinal, empêchant ainsi qu’il vienne s’interposer entre une des plaques du faisceau d’échange thermique et le flanc latéral du boîtier. Le dispositif de dissipation thermique reste ainsi à distance du flanc latéral du boîtier, jusqu’au brasage qui assure ensuite sa fixation.
Selon un aspect de l’invention, la pièce fusible s’étend dans un plan et le dispositif de maintien longitudinal s’étend dans un autre plan distinct du plan de la pièce fusible. La pièce fusible prend appui contre le flanc latéral du boîtier de sorte à s’étendre dans un plan parallèle à un plan du flanc latéral. Le dispositif de maintien longitudinal n’ayant pas vocation à être en appui contre le flanc latéral, peut se placer dans un plan différent. La distance qui existe entre le plan de la pièce fusible et le plan du dispositif de maintien longitudinal est donc non-nulle.
Selon un aspect de l’invention, le plan de la pièce fusible et le plan du dispositif de maintien longitudinal sont parallèles. De ce fait, le plan de la pièce fusible et le plan du dispositif de maintien longitudinal sont également parallèles au plan du flanc latéral du boîtier. Ainsi, le dispositif de maintien longitudinal n’est ni incliné vers le flanc latéral du boîtier, ni vers le dispositif de dissipation thermique. Cette configuration a pour avantage de permettre au dispositif de dissipation thermique d’être en position optimale : maintenu pour le montage à distance du flanc du boîtier, il occupe par ailleurs l’espace du faisceau d’échange thermique dédié à la circulation de l’air d’admission jusqu’au dispositif de dissipation thermique, maximisant ainsi l’échange thermique.
Selon un aspect de l’invention, le plan de la pièce fusible est interposé entre le plan du dispositif de maintien longitudinal et un flanc latéral du boîtier. Le plan du dispositif de maintien longitudinal est disposé en retrait du flanc latéral du boîtier par rapport au plan de la pièce fusible.
La pièce fusible et le dispositif de maintien longitudinal correspondent à un bord plié au niveau de la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique les comportant. Le bord plié peut comporter des lignes de pliure distinctes pour la pièce fusible et le dispositif de maintien longitudinal.
Selon un aspect de l’invention, une distance non nulle est présente entre le dispositif de maintien longitudinal et le flanc latéral du boîtier. Cette distance est mesurée entre le dispositif de maintien longitudinal considéré et le flanc latéral du boîtier. Seule la pièce fusible se trouve en contact avec le flanc latéral du boîtier. Ainsi, la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique est plaquée contre la plaque collectrice du boîtier par la pièce fusible, la maintenant ainsi positionnée avant le brasage.
Le dispositif de dissipation thermique vient en butée contre le dispositif de maintien longitudinal. En considérant que le dispositif de maintien longitudinal et la pièce fusible ont une même épaisseur, le dispositif de dissipation thermique n’est pas au contact de la pièce fusible. Ceci a pour avantage, lors du brasage, d’éviter que le dispositif de dissipation thermique soit fixé par brasage au flanc latéral du boîtier ou à la pièce fusible. Cette disposition à distance du flanc latéral du boîtier et de la pièce fusible est conservée après brasage. Elle permet donc également la dilatation/rétractation de la plaque du faisceau d’échange thermique lorsque celle-ci est dissociée du flanc latéral du boîtier par rupture de la zone d’affaiblissement de la pièce fusible.
Selon un aspect de l’invention, le dispositif de maintien longitudinal présente un profil en L. Par ailleurs, la pièce fusible présente également un profil en L. Ces profils en L sont orientés de façon similaire pour le dispositif de maintien longitudinal et la pièce fusible. La deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique est pliée pour former le L de la pièce fusible et le L du dispositif de maintien longitudinal. Par définition, chaque L comprend une portion minoritaire et une portion majoritaire, la portion minoritaire et la portion majoritaire étant dans des plans différent et se rejoignant au niveau d’une ligne de pliure.
Le L de la pièce fusible et le L du dispositif de maintien longitudinal ont leur portion minoritaire inclues dans un même plan, correspondant à un plan de la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique les comprenant. Le L de la pièce fusible et le L du dispositif de maintien longitudinal ont leur propre ligne de pliure, pouvant ou non être dans le même plan comme précédemment décrit. Le L de la pièce fusible a sa portion majoritaire inclue dans le plan de la pièce fusible. Le L du dispositif de maintien longitudinal a sa portion majoritaire inclue dans le plan du dispositif de maintien longitudinal.
Par « orienté de façon similaire », on entend que la deuxième extrémité de la plaque du faisceau d’échange thermique est pliée dans un même sens pour générer la pièce fusible et le dispositif de maintien longitudinal.
On considère un plan longitudinal médian à un dispositif de dissipation thermique. Ce plan longitudinal médian est parallèle aux plans de la deuxième extrémité des deux plaques du faisceau d’échange thermique au contact du dispositif de dissipation thermique. Ce plan longitudinal médian est équidistant avec l’un et l’autre desdits plans des deuxièmes extrémités de ces plaques, et s’étend longitudinalement dans le dispositif de dissipation thermique considéré. Alors, selon un exemple de réalisation, la deuxième extrémité de chacune des plaques du faisceau d’échange thermique au contact du dispositif de dissipation thermique est pliée dans un sens allant vers le plan longitudinal médian au dispositif de dissipation thermique.
Selon un aspect de l’invention, chacune des plaques du faisceau d’échange thermique comporte son propre dispositif de maintien longitudinal du dispositif de dissipation thermique. Avantageusement, pour un premier couple de plaques du faisceau d’échange thermique et un deuxième couple de plaques du faisceau d’échange thermique séparés d’un dispositif de dissipation thermique, le dispositif de maintien longitudinal d’une plaque du premier couple de plaques et le dispositif de maintien longitudinal d’une plaque du deuxième couple de plaques sont disposés en vis-à-vis, chacun participant au maintien longitudinal du dispositif de dissipation thermique. Plus particulièrement, lesdits dispositifs de maintien longitudinal sont disposés de façon symétrique par rapport au plan longitudinal médian du dispositif de dissipation thermique. Dès lors, dans le faisceau d’échange thermique, le dispositif de maintien longitudinal d’une plaque du premier couple de plaques et le dispositif de maintien longitudinal de l’autre plaque du premier couple de plaques sont disposés dos à dos, en s’étendant selon des sens opposés.
Ainsi, les plaques d’un couple de plaques du faisceau d’échange thermique, avantageusement d’un même faisceau d’échange thermique, sont pliées de façon identique. De ce fait, les plaques du faisceau d’échange thermique sont interchangeables en tout endroit du faisceau. Parmi les avantages de ce mode de réalisation, on peut citer le gain de temps, un outillage réduit pour obtenir les plaques du faisceau d’échange thermique, et une facilité de conception.
Selon un aspect alternatif de l’invention, une des plaques du couple de plaques comprend le dispositif de maintien longitudinal tandis que l’autre plaque du couple en est dépourvue. On considère ici deux plaques du faisceau d’échange thermique d’un même couple de plaques. Dans cette configuration, le dispositif de maintien longitudinal peut s’étendre vers le plan longitudinal médian du dispositif de dissipation de chaleur au contact du couple de plaques considérée. Le dispositif de maintien longitudinal peut être sécant au plan longitudinal médian du dispositif de dissipation de chaleur considéré. Alternativement, le dispositif de maintien longitudinal n’est pas sécant au plan longitudinal médian de l’un ou l’autre des dispositifs de dissipation de chaleur.
Selon un aspect de l’invention, une distance non nulle sépare un premier dispositif de maintien longitudinal d’un deuxième dispositif de maintien longitudinal, le premier dispositif de maintien longitudinal étant partie à une plaque d’un premier couple de plaques et le deuxième dispositif de maintien longitudinal étant partie à une plaque d’un deuxième couple de plaques, le premier couple de plaques étant immédiatement adjacent au deuxième couple de plaques. Cette distance est mesurée dans le plan des deux dispositifs et correspond à la distance la plus courte entre les deux dispositifs de maintien longitudinal dans ce plan. Les deux dispositifs de maintien longitudinal considérés appartiennent à des plaques de deux couples distincts de plaques du faisceau d’échange thermique. Par « immédiatement adjacent » on entend que le premier couple de plaque et le deuxième couple de plaques sont directement consécutifs, séparées l’un l’autre d’un dispositif de dissipation thermique avec lequel ils sont tous deux en contact. Cette distance non nulle évite les interférences mécaniques entre les plaques du faisceau d’échange thermique lors de leur assemblage. Ainsi, la distance doit être suffisante pour que les deux dispositifs de maintien longitudinal considérés n’appuient pas l’un sur l’autre.
De façon particulière, la distance est non nulle et inférieure à une hauteur du dispositif de dissipation thermique. En étant inférieure à une hauteur du dispositif de dissipation thermique, le dispositif de maintien longitudinal considéré contient le dispositif de dissipation thermique pour qu’il soit en retrait de la plaque collectrice, avec lequel il n’entre ainsi pas en contact. Selon un aspect de l’invention, la pièce fusible comprend une première zone d’affaiblissement tandis que le dispositif de maintien longitudinal comprend une deuxième zone d’affaiblissement. On entend par « zone d’affaiblissement » une zone de moindre résistance mécanique, comme celle qui relie la pièce fusible à la plaque du faisceau d’échange thermique. Cette zone d’affaiblissement est une zone configurée pour être de nature relativement fragile par rapport au reste de la plaque du faisceau d’échange thermique. Elle a vocation à se rompre après le brasage, et plus particulièrement lors de la mise en œuvre du dispositif de refroidissement, du fait des contraintes subies par ce dernier lors des premiers cycles thermiques.
La première zone d’affaiblissement est séparée d’une distance du plan de la pièce fusible, cette distance séparant la première zone d’affaiblissement du plan de la pièce fusible étant inférieure à une distance séparant le dispositif de dissipation thermique du même plan de la pièce fusible. La distance séparant le dispositif de dissipation thermique du plan de la pièce fusible et la distance séparant la première zone d’affaiblissement du plan de la pièce fusible sont mesurées dans un même plan perpendiculaire au plan de la pièce fusible. Ainsi, le dispositif de dissipation thermique est à distance de la première zone d’affaiblissement, ils ne sont donc pas joint solidairement l’un à l’autre lors de l’opération de brasage.
Avantageusement, la deuxième zone d’affaiblissement est destinée à provoquer la séparation, de préférence par une cassure franche, de la pièce fusible et du dispositif de maintien longitudinal. Comme une première zone d’affaiblissement similaire est présente entre la pièce fusible et la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique, ladite plaque se voit dissociée de pièce fusible lors de la rupture de ces deux zones d’affaiblissement. Ainsi, une fois la pièce fusible découplée du dispositif de maintien longitudinal et du reste de la plaque du faisceau d’échange thermique, la plaque portant le dispositif de maintien longitudinal est libre de se déformer lors des cycles thermiques suivants, n’étant plus liée au flan latéral du boîtier.
Pour présenter une résistance à la rupture inférieure à celle du matériau l’entourant, la première zone d’affaiblissement et la deuxième zone d’affaiblissement peuvent prendre différentes formes.
A titre purement illustratif, la première zone d’affaiblissement et/ou la deuxième zone d’affaiblissement peuvent correspondre à une liaison métallique parcourue d’orifices disposés linéairement, ou encore de manière rectiligne. Alternativement, ou en supplément, la première zone d’affaiblissement et/ou la deuxième zone d’affaiblissement peuvent comporter au moins une encoche. A titre d’exemple, la première zone d’affaiblissement et/ou la deuxième zone d’affaiblissement peuvent comportent une première ligne de moindre résistance, deux encoches étant situées de part et d’autre de cette ligne de moindre résistance. Encore de manière alternative, cette ligne de moindre résistance est obtenue par un amincissement local.
La deuxième zone d’affaiblissement reliant la pièce fusible au dispositif de maintien longitudinal résulte d’une découpe de la plaque du faisceau d’échange thermique ensuite pliée, et est ainsi comprise dans la matière de cette plaque. La deuxième zone d’affaiblissement est par ailleurs contenue entre le plan du dispositif de maintien longitudinal et le plan de la pièce fusible, ou dans l’un ou l’autre de ces plans, tout en étant intermédiaire au dispositif de maintien longitudinal et à la pièce fusible.
Selon un aspect alternatif de l’invention, la pièce fusible et le dispositif de maintien longitudinal sont séparés d’un écart longitudinal. Ainsi, le dispositif de maintien longitudinal est lié à la pièce fusible via la deuxième extrémité terminale de la plaque du faisceau d’échange thermique. L’écart longitudinal est mesuré entre le dispositif de maintien longitudinal et la pièce fusible au niveau d’une bordure latérale de la deuxième extrémité de la plaque du faisceau d’échange thermique les portant.
Selon un aspect de l’invention, le dispositif de maintien longitudinal et la pièce fusible sont continus d’un premier bord longitudinal à un second bord longitudinal de la plaque du faisceau d’échange thermique porteuse du dispositif de maintien longitudinal et de la pièce fusible. On comprend ici que le dispositif de maintien longitudinal et la pièce fusible occupent l’intégralité d’une largeur de la plaque du faisceau d’échange thermique, la largeur étant mesuré transversalement dans un plan perpendiculaire à un plan d’extension longitudinal du faisceau d’échange thermique.
Selon un aspect de l’invention, le dispositif de maintien longitudinal se divise en au moins un premier segment et un deuxième segment séparés d’un écart inter-segment. Cet écart inter segment est mesuré dans le plan du dispositif de maintien longitudinal dans une direction parallèle au plan de la deuxième extrémité longitudinale de la plaque du faisceau d’échange thermique et entre le premier segment et le deuxième segment au niveau de la bordure latérale de la deuxième extrémité de la plaque du faisceau d’échange thermique. Le premier segment et le deuxième segment d’un même dispositif de maintien longitudinal sont reliés à la même deuxième extrémité de la plaque du faisceau d’échange thermique considérée. Avantageusement, le premier segment et le deuxième segment d’un même dispositif de maintien longitudinal sont pliés dans le même sens. L’écart inter-segment présent entre le premier segment et le deuxième segment permet de réduire la quantité de matière utilisée pour fabriquer la plaque du faisceau d’échange thermique, tout en remplissant la fonction de l’invention. Avantageusement, les écarts inter- segments du dispositif de dissipation de maintien longitudinal cumulés représentent moins de 50% d’une longueur totale du dispositif de maintien longitudinal. La longueur totale du dispositif de maintien est mesurée entre le premier bord longitudinal et le second bord longitudinal de la plaque du faisceau d’échange thermique porteuse du dispositif de maintien longitudinal, perpendiculairement à l’axe d’extension longitudinal du faisceau d’échange thermique. Malgré la présence de cet écart inter- segment, le maintien du dispositif de dissipation thermique est assuré.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
- la figure 1 est une vue générale, en perspective, d'un dispositif de refroidissement selon l’invention dans un premier mode de réalisation,
- les figures 2 à 3 sont des vues schématiques d’un faisceau d’échange thermique, parti au dispositif de refroidissement selon l’invention, dans un deuxième mode et un troisième mode de réalisation,
- les figures 4 à 6 sont des vues en perspective d’une plaque du faisceau d’échange thermique, partie au dispositif de refroidissement selon l’invention, dans différents modes de réalisation.
Il faut tout d’abord noter que les figures exposent l’invention de manière détaillée pour mettre en œuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.
Dans la suite de la description, les dénominations longitudinales ou latérales se réfèrent à l'orientation du dispositif de refroidissement selon l’invention. La direction longitudinale correspond à un axe d’extension longitudinal d’un faisceau d’échange thermique du dispositif de refroidissement dans lequel le dispositif de refroidissement et faisceau d’échange thermique s’étendent dans leur plus grande dimension, alors que les orientations latérales correspondent à des droites concourantes, c’est-à-dire qui croisent la direction longitudinale, notamment perpendiculaires à l'axe longitudinal du dispositif de refroidissement. Les fluides sont représentés par des flèches, pleines lorsque le fluide est hors du dispositif de refroidissement et en pointillés lorsque le fluide est à l’intérieur du dispositif de refroidissement.
Il est par ailleurs à noter que les modes de réalisations des différents dispositifs de refroidissement illustrés diffèrent de par la forme des plaques du faisceau d’échange thermique. Ainsi, les composants décrits dans la figure 1 et leur agencement peuvent s’appliquer aux autres modes de réalisation. Par ailleurs, la figure 1 est non limitative et à considérer à titre d’exemple.
En se référant tout d’abord à la figure 1, on voit un dispositif de refroidissement 1 d’un air d’admission FA d’un moteur à combustion interne d’un véhicule. Ce dispositif de refroidissement 1 est montré dans son ensemble, associant un faisceau d’échange thermique 2 et un boîtier 3.
Pour faciliter la lecture de la figure 1, le faisceau d’échange thermique 2 est représenté partiellement. Le faisceau d’échange thermique 2 s’étend selon un axe d’extension longitudinal X. Il comprend au moins un couple 4 de plaques 5 et au moins un dispositif de dissipation thermique 6 d’extension longitudinale. Un empilement successif de couples 4 de plaques 5 et de dispositifs de dissipation thermique 6 forme le faisceau d’échange thermique 2.
Un seul dispositif de dissipation thermique 6 est représenté sur la figure 1. Il correspond à un feuillet conformé pour présenter de nombreux replis. En l’espèce, le dispositif de dissipation thermique 6 est plié en accordéon, présentant une section longitudinale de forme sinusoïdale. Cette forme sinusoïdale est régulière et a une amplitude constante qui correspond à une hauteur H du dispositif de dissipation thermique 6, cette hauteur H étant mesurée entre un plan 61 et un plan 62 délimitant de part et d’autre la forme sinusoïdale du dispositif de dissipation thermique 6, ces plans passant ainsi par des crêtes du dispositif de dissipation thermique 6.
Le dispositif de dissipation thermique 6 est destiné à être traversé par l’air d’admission FA. Canalisé par le boîtier 3, l’air d’admission FA se déplace perpendiculairement à l’axe d’extension longitudinal X et à la section sinusoïdale du dispositif de dissipation thermique 6. Ainsi, lors du fonctionnement du dispositif de refroidissement 1, l’air d’admission FA traverse de part en part le dispositif de dissipation thermique 6 et lèche les parois de ce dispositif de dissipation thermique 6.
Le couple 4 de plaques 5 est formé de deux plaques 5 du faisceau d’échange thermique 2 qui comportent une première extrémité longitudinale 7 et une deuxième extrémité longitudinale 8. La deuxième extrémité longitudinale 8 est opposée à la première extrémité longitudinale 7. Dans un couple 4 de plaques 5, les deux plaques 5 du faisceau d’échange thermique 2 sont juxtaposées de sorte à ce qu’elles délimitent ensemble un espace de circulation de fluide caloporteur FC interne au couple 4 de plaques 5. L’espace de circulation 9 de fluide caloporteur FC interne au couple 4 de plaques 5 prend la forme d’un U, délimité par des zones de contact 11 des plaques 5 du couple 4 de plaques 5.
Le couple 4 de plaques 5 est plaqué sur le boîtier 3 par des pièces fusibles 12 ménagées du côté de la deuxième extrémité longitudinale 8. Les pièces fusibles 12, au nombre par exemple de deux, sont situées à chacun des deux bouts d’une bordure latérale 13 de la deuxième extrémité longitudinale 8 de chaque plaque 5 du faisceau d’échange thermique 2. Elles prennent la forme d’une languette au profil en L.
La plaque 5 du couple 4 de plaques 5 comprend au moins un dispositif de maintien longitudinal 14 du dispositif de dissipation thermique 6. Ce dispositif de maintien longitudinal 14 permet de contenir le dispositif de dissipation thermique 6 de manière à limiter son extension à une dimension qui ne dépasse pas de la plaque, du côté de la ou des pièces fusibles 12. En l’espèce, le dispositif de maintien longitudinal 14 visible sur la figure 1 est représenté sans le dispositif de dissipation thermique 6 qu’il doit maintenir, afin de pouvoir l’observer. A l’inverse, le dispositif de maintien longitudinal 14 sur lequel s’appuie le dispositif de dissipation thermique 6 représenté sur la figure 1, n’est pas visible du fait de l’angle de vue.
Le dispositif de maintien longitudinal 14 prend, dans le premier mode de réalisation illustré figure 1, la forme d’une bande ininterrompue au profil en L centrée sur la deuxième extrémité longitudinale 8 de chaque plaque 5 du faisceau d’échange thermique 2. Le profil en L du dispositif de maintien longitudinal 14 et celui des deux pièces fusibles 12 l’entourant sont orientés de façon similaire, c’est-à-dire en s’éloignant du couple 4 de plaques 5. Il résulte du pliage sensiblement à angle droit de la plaque 5 du faisceau d’échange thermique 2 au niveau de la deuxième extrémité longitudinale 8. Le dispositif de maintien longitudinal 14 et les pièces fusibles 12 sont séparés les uns des autres d’un écart longitudinal 15. Le dispositif de maintien longitudinal 14 et les pièces fusibles 12 occupent une majorité d’une largeur 16 de la plaque 5 du faisceau d’échange thermique 2 au niveau de sa deuxième extrémité longitudinale 8. Le dispositif de maintien longitudinal 14 et les pièces fusibles 12 résultent par ailleurs du pliage de cette deuxième extrémité longitudinale 8.
Le dispositif de dissipation thermique 6 est apposé contre une des plaques du couple 4 de plaques 5, de sorte à ce qu’ils se superposent l’un l’autre. Ils sont en contact physique favorisant le transfert thermique entre ces deux composants. Lors de la mise en œuvre du dispositif de refroidissement 1, le faisceau d’échange thermique 2 est traversé par l’air d’admission FA. Le fluide caloporteur FC du faisceau d’échange thermique 2 capte des calories de l’air d’admission FA. Cet échange thermique est permis par le dispositif de dissipation thermique 6 et les couples 4 de plaques 5 placés sur le flux rectiligne de l’air d’admission FA.
Le dispositif de dissipation thermique 6 et les couples 4 de plaques 5 sont faits d’un métal thermiquement conducteur, avantageusement en aluminium ou en alliage d’aluminium, qui favorise le transfert des calories. Ces calories sont ensuite transférées au fluide caloporteur FC circulant au travers des couples 4 de plaques 5.
Le faisceau d’échange thermique 2 est entouré d’un boîtier 3 qui comporte quatre flancs référencés 17, 18, 19 et 20. Pris par rapport à l’axe d’extension longitudinal X, le boîtier 3 a deux flancs latéraux 17, 18, opposés l’un à l’autre et deux flanc longitudinaux 19, 20 reliant les flancs latéraux 17, 18. Les flancs longitudinaux 19, 20 sont disposés dans des plans parallèles au flux de l’air d’admission FA. Ainsi, le boîtier 3 dispose de deux ouvertures 21, 22 pour permettre au flux de l’air d’admission FA de le traverser de part en part.
Deux chambres collectrices 23, 24 du fluide caloporteur FC, correspondant à une première chambre collectrice 23 et une deuxième chambre collectrice 24, sont partie à un flanc latéral correspondant à une plaque collectrice 17 du boîtier 3. Un flanc latéral 18 est opposé à la plaque collectrice 17. Le flanc latéral 18 est celui contre lequel les pièces fusibles 12 prennent appui. Chaque chambre collectrice 23, 24 est reliée à un circuit de circulation du fluide caloporteur FC qui comprend le dispositif de refroidissement 1 selon l’invention. La première chambre collectrice 23 et la deuxième chambre collectrice 24 sont en communication entre elles par l’intermédiaire des espaces de circulation à chaque couple 4 de plaques 5. Ainsi, lors du fonctionnement du dispositif de refroidissement 1, le fluide caloporteur FC entrant par la première chambre collectrice 23 est réparti dans les différents couples 4 de plaques 5 du faisceau d’échange thermique 2 où il a lieu l’échange thermique entre fluide caloporteur FC et l’air d’admission FA, puis en collecté par la deuxième chambre collectrice 24 avant d’être transmis au reste du circuit de circulation du fluide caloporteur FC, externe au dispositif de refroidissement 1.
Le boîtier 3 a ses quatre flancs 17, 18, 19, 20 enserrés en périphérie des ouvertures 21, 22 du boîtier 3 par une bride d’assemblage 25 et une bride d’accostage 26, fixées au boîtier 3. La bride d’accostage 26 s’étend aux abords du boîtier 3 de sorte à permettre la fixation du dispositif de refroidissement 1 au moteur du véhicule. La bride d’accostage 26 dispose d’orifices 28, destinés à cette fixation. Les orifices 28 peuvent ainsi accueillir des moyens de fixations tels des vis ou des écrous.
Le dispositif de refroidissement 1 présenté en figure 1 est assemblé par exemple comme suit. Dans un premier temps, une étape d’assemblage du faisceau d’échange thermique 2 permet d’obtenir une alternance de dispositifs de dissipation thermique 6 et de couples 4 de plaques 5. Puis, le boîtier 3 est monté en périphérie du faisceau d’échange thermique 2 de sorte à ce que les pièces fusibles 12 prennent appui sur le flanc latéral 18 du boîtier 3 correspondant au flanc latéral dépourvu des chambres collectrices 23, 24.
Les dispositifs de dissipation thermique 6 sont contenus entre la plaque collectrice 17 du boîtier 3, et les dispositifs de maintien longitudinal 14. Le dispositif de maintien longitudinal 14 permet au dispositif de dissipation thermique 6 de ne pas s’intercaler entre les plaques 5 du faisceau d’échange thermique 2 et le boîtier 3. Les dispositifs de dissipation thermique 6 sont donc maintenus à distance du boîtier 3, en particulier à distance du flanc latéral 18 opposé à la plaque collectrice 17. En contenant le dispositif de dissipation thermique 6, on évite l’apparition d’un décalage de plaque au sein d’un couple 4 de plaques 5. Les plaques 5 du faisceau d’échange thermique 2 restent ainsi correctement ajustées pour la circulation du fluide caloporteur FC.
Après son assemblage, une opération de brasage est réalisée sur le dispositif de refroidissement 1. Cette étape permet de solidariser simultanément toutes les pièces métalliques du dispositif de refroidissement 1. Il est ainsi important que tous les composants du dispositif de refroidissement 1 soient correctement placés les uns par rapport aux autres au préalable à cette opération de brasage.
La figure 2 montre le dispositif de refroidissement 1 selon un deuxième mode de réalisation. Ce dernier est dépourvu de son boîtier 3 afin d’illustrer le faisceau d’échange thermique 2 et montre en perspective un agrandissement d’extrémités 8 de plaques 5 du faisceau d’échange thermique 2.
Le faisceau d’échange thermique 2 illustré ici comporte quatre plaques 5, dont deux forment un couple 4 de plaques 5. De part et d’autre du couple 4 de plaques 5 est disposé un dispositif de dissipation thermique 6 de section longitudinale de forme sinusoïdale tel que précédemment décrit.
Le dispositif de dissipation thermique 6 s’inscrit dans un plan longitudinal médian 29. Le plan longitudinal médian 29 est disposé à la moitié de la hauteur H du dispositif de dissipation thermique 6. Le plan longitudinal médian 29 est par ailleurs parallèle à un plan de plaque 30 de l’une ou l’autre des plaques 5 du faisceau d’échange thermique 2, les plaques 5 du faisceau d’échange thermique 2 étant disposées dans des plans de plaque 30 parallèles les uns aux autres.
Dans l’exemple de la figure 2, toutes les plaques 5 du faisceau d’échange thermique 2 ont la même forme au niveau de leur deuxième extrémité longitudinale 8. Elles sont en revanche orientées selon deux sens 31, 32 différents par rapport au plan longitudinal médian 29, comme cela sera explicité ci-dessous.
Chaque plaque 5 du faisceau d’échange thermique 2 dispose à sa deuxième extrémité longitudinale 8, et plus précisément au niveau de la bordure latérale 13 de cette deuxième extrémité longitudinale 8, d’une pièce fusible 12 et d’un dispositif de maintien longitudinal 14 de même épaisseur E. La pièce fusible 12 et le dispositif de maintien longitudinal 14 ont un profil en L. Le profil en L de la pièce fusible 12 peut être décomposé en une portion minoritaire 33 et une portion majoritaire 34. Le profil en L du dispositif de maintien longitudinal 14 peut être décomposé en une portion minoritaire 35 et une portion majoritaire 36.
La pièce fusible 12 et le dispositif de maintien longitudinal 14 ont leur portion minoritaire
33, 35 inclues dans un même plan, correspondant au plan de plaque 30 de la plaque 5 du faisceau d’échange thermique 2 les comprenant.
La pièce fusible 12 et le dispositif de maintien longitudinal 14 ont leur portion majoritaire
34, 36 inclues dans des plans parallèles et distincts. La pièce fusible 12 est incluse dans un plan 37 de la pièce fusible 12. Le dispositif de maintien longitudinal 14 est inclus dans un plan 38 du dispositif de maintien longitudinal 14. Le plan 38 du dispositif de maintien longitudinal 14 est interposé entre le plan 37 de la pièce fusible 12 et le dispositif de dissipation thermique 6. De ce fait, et considérant que la pièce fusible 12 et le dispositif de maintien longitudinal 14 partagent la même épaisseur E, le dispositif de dissipation thermique 6 est écarté de la pièce fusible 12 : ils n’entrent pas en contact l’un et l’autre, de sorte à ce qu’une distance C subsiste entre eux. En revanche, le dispositif de dissipation thermique 6 entre en contact avec le dispositif de maintien longitudinal 14, avec lequel il est en butée afin de s’étendre à son contact sur la majeure partie de la largeur de la plaque 5 du faisceau d’échange thermique 2. Par ailleurs, cette configuration fait que seule la pièce fusible 12 entre en contact avec le boîtier 3, le dispositif de dissipation thermique 6 étant suffisamment éloigné de la pièce fusible 12, au moyen du dispositif de maintien longitudinal 14, pour garantir qu’il ne s’interpose pas entre la pièce fusible 12 et le flanc latéral 18 contre lequel cette pièce fusible 12 prend appui.
Dans l’exemple de la figure 2 où pièce fusible 12 et dispositif de maintien longitudinal 14 partagent la même épaisseur E, une distance B sépare le plan 37 de la pièce fusible 12 et le plan du dispositif de maintien longitudinal 14 d’une même plaque 5 du faisceau d’échange thermique 2. Lorsque la pièce fusible 12 est au contact du boîtier 3, cette distance B correspond aussi à la distance entre le dispositif de maintien longitudinal 14 et le flanc latéral du boîtier 3.
La pièce fusible 12 et le dispositif de maintien longitudinal 14 sont séparés d’un écart longitudinal 15. Cet écart longitudinal 15 est non nul et forme une encoche ménagée entre la pièce fusible 12 et le dispositif de maintien longitudinal 14.
En considérant à présent deux dispositifs de maintien longitudinal 14, situés sur des plaques 5 du faisceau d’échange thermique 2 disposées immédiatement de part et d’autre d’un même dispositif de dissipation thermique 6. Les deux dispositifs de maintien longitudinal 14 sont séparés d’une distance A non nulle et inférieure à la hauteur H. Ces deux dispositifs de maintien longitudinal 14 sont orientés dans des sens 31, 32 opposés de sorte à ce que leur profil en L soit dirigé de la plaque 5 du faisceau d’échange thermique 2 les portant vers le plan longitudinal médian 29 du dispositif de dissipation thermique 6 considéré. Dès lors, un bord libre 39 de chaque dispositif de maintien longitudinal 14 fait face à l’autre.
Selon l’exemple de réalisation illustré à la figure 2, chaque plaque 5 du faisceau d’échange thermique 2 porte un dispositif de maintien longitudinal 14. Dès lors, deux dispositifs de maintien longitudinal 14 de deux plaques 5 du faisceau d’échange thermique 2 d’un même couple 4 de plaques 5 adoptent également une orientation en sens opposé, s’éloignant de la zone de contact 11 propre au couple 4 de plaques 5 considérée, délimitant l’espace de circulation 9 du fluide caloporteur LC interne au couple 4 de plaques 5. Autrement dit, dans un faisceau d’échange thermique 2 tel que décrit dans la figure 2, des plaques 5 du faisceau d’échange thermique 2 prises successivement les unes à la suite des autres ont des dispositifs de maintien longitudinal 14 orientés alternativement dans un premier sens 31 puis dans un second sens 32 opposé au premier sens 31.
Les pièces fusibles 12 adoptent la même configuration que celle décrite ci-dessus pour les dispositifs de maintien longitudinal 14.
La pièce fusible 12 comporte une première zone d’affaiblissement 40 qui lui est propre. Cette première zone d’affaiblissement 40 est située entre la pièce fusible 12 et la deuxième extrémité longitudinale 8 de la plaque 5 du faisceau d’échange thermique 2. Elle prend ici la forme d’une ligne de moindre résistance. Préférentiellement, la première zone d’affaiblissement 40 de la pièce fusible 12 est située dans la portion minoritaire de la pièce fusible 12. Avantageusement, elle est située à une distance F de la pièce fusible 12 plus faible que la distance C correspondant à la distance entre le dispositif de dissipation thermique 6 et la pièce fusible 12. Ainsi, le dispositif de dissipation thermique 6 ne surplombe pas cette première zone d’affaiblissement 40. L’opération de brasage ne solidarise ainsi la pièce fusible 12 qu’avec le boîtier.
En se référant maintenant à la figure 3, on voit le dispositif de refroidissement 1 selon un troisième mode de réalisation. Par rapport à ce qui a été présenté pour la figure 2, seuls les dispositifs de maintien longitudinal 14 diffèrent et vont être décrits ci-après. A l’exception de ces différences, la description ci-dessus s’applique mutatis-mutandis et on pourra s’y reporter pour mettre en œuvre l’invention.
Dans ce mode de réalisation, seule une des plaques 5 du faisceau d’échange thermique 2 du couple 4 de plaques 5 est porteuse d’un dispositif de maintien longitudinal 14. En l’occurrence, le dispositif de maintien longitudinal 14 s’étend de sorte à être au moins sécant au plan longitudinal médian 29 du dispositif de dissipation thermique 6 au contact de la plaque 5 du faisceau d’échange thermique 2 qui porte ledit dispositif de maintien longitudinal 14.
Les dispositifs de maintien longitudinal 14 sont orientés dans le même second sens 32. Ils sont séparés entre eux de la distance A. Cette distance A est non nulle entre un bord libre 59 du dispositif de maintien longitudinal 14 d’une plaque 5 et une tranche libre 60 de l’autre plaque 5 qui s’étend entre deux pièces fusible 12.
Chaque dispositif de maintien longitudinal 14 est dédié à un dispositif de dissipation thermique 6, qui est à son contact. L’épaisseur E du dispositif de maintien longitudinal 14 est configurée pour maintenir le dispositif de dissipation thermique 6 longitudinalement.
La figure 4 montre une plaque 5 du faisceau d’échange thermique 2 partie au dispositif de refroidissement 1 selon l’invention, dans le mode de réalisation de la figure 2. La plaque 5 du faisceau d’échange thermique 2 est représentée associée au boîtier 3, en particulier associée à la plaque collectrice 17. En revanche, les autres composants sont omis pour faciliter la lecture de cette figure 4. La plaque 5 du faisceau d’échange thermique 2 est observée du côté de son espace de circulation 9 de fluide caloporteur LC interne. Plus particulièrement, la figure 4 illustre la disposition de la première extrémité longitudinale 7 de la plaque 5 du faisceau d’échange thermique 2 par rapport à une plaque collectrice 17 partie au boîtier 3.
La plaque 5 du faisceau d’échange thermique 2 comprend, du côté de sa deuxième extrémité longitudinale 8, et entre un premier bord longitudinal 57 et un second bord longitudinal 57 de cette plaque 5, deux pièces fusible 12 et le dispositif de maintien longitudinal 14. Le dispositif de maintien longitudinal 14 est entre les deux pièces fusible 12. Les deux pièces fusible 12 sont situées à chacun des deux bouts de la bordure latérale 13 de la deuxième extrémité longitudinale 8 de la plaque 5 du faisceau d’échange thermique 2. Chaque pièce fusible 12 est disposée à distance du dispositif de maintien longitudinal 14, de sorte à générer l’écart longitudinal 15. En incluant les deux écarts longitudinaux 15, le dispositif de maintien longitudinal 14 et les pièces fusible 12 occupent la largeur 16 de la plaque 5 du faisceau d’échange thermique 2 mesurée au niveau de la deuxième extrémité longitudinale 8.
Le dispositif de maintien longitudinal 14 prend la forme d’une bande divisée en un premier segment 42, un deuxième segment 43 et un troisième segment 44, séparés d’un écart inter segment 55. Ces segments sont pliés dans le même premier sens 31 que les pièces fusible 12. Le premier segment 42 et le troisième segment 44 sont de même longueur. Le deuxième segment 43, situé entre le premier segment 42 et le troisième segment 44, est de longueur supérieure au premier segment 42 et au troisième segment 44.
L’espace de circulation 9 du fluide caloporteur FC interne au couple 4 de plaques 5 de la plaque 5 du faisceau d’échange thermique 2 représentée en figure 4 s’étend entre la première extrémité longitudinale 7 et la deuxième extrémité longitudinale 8 de la plaque 5 du faisceau d’échange thermique 2. Cet espace de circulation 9 du fluide caloporteur FC interne est en forme de U, délimité par les zones de contact 11 de la plaque 5 du faisceau d’échange thermique 2, destiné à venir se superposer à une plaque 5 du faisceau d’échange thermique 2 identique mais orientée en sens opposé de sorte à former le couple 4 de plaques 5. Plus particulièrement, l’espace de circulation 9 du fluide caloporteur FC interne s’ouvre au niveau de sommets du U en des bouches 46. Fes bouches 46 sont en communication avec la première chambre collectrice 23 et avec la deuxième chambre collectrice 24 du boîtier 3. Chaque chambre collectrice 23, 24 comprend un espace unique, destiné à être en communication avec les espaces de circulation 9 du fluide caloporteur FC interne à chaque couple 4 de plaques 5 d’un même faisceau d’échange thermique 2. Pour permettre la mise en communication, la première extrémité longitudinale 7 de la plaque 5 du faisceau d’échange thermique 2 est plaquée contre la plaque collectrice 17, cette dernière étant pourvue d’ouvertures 48 oblongues. Chaque ouverture 48 est disposée face à une bouche 46. F’ étanchéité d’une ouverture 48 et de la bouche 46 associée est assurée tout autour de l’ouverture 48 par un bord plié 47 de première extrémité longitudinale 7 de la plaque concernée. Ce bord plié 47 vient en appui contre la plaque collectrice 17. Lors du montage, les couples 4 de plaques 5 du faisceau d’échange thermique 2 sont en appui contre la plaque collectrice 17, et, via les pièces fusible 12, contre le flanc latéral 18 du boîtier 3 opposé à la plaque collectrice 17. Plaqués, les éléments du dispositif de refroidissement 1 sont positionnés les uns par rapport aux autres et sont maintenus ensemble avant d’être solidarisés par l’opération de brasage.
La figure 5 illustre de façon particulière une deuxième extrémité longitudinale 8 de plaque 5 du faisceau d’échange thermique 2 selon un cinquième mode de réalisation. Le dispositif de maintien longitudinal 14 prend la forme d’une bande continue qui s’étend sur la largeur 16 de la plaque 5 du faisceau d’échange thermique 2 mesurée au niveau de la deuxième extrémité longitudinale 8. Le dispositif de maintien longitudinal 14 est entouré de deux pièces fusible 12. Les deux pièces fusible 12 sont situées à chacun des deux bouts de la bordure latérale 13 de la deuxième extrémité longitudinale 8 de la plaque 5 du faisceau d’échange thermique 2.
Le dispositif de maintien longitudinal 14 et les pièces fusible 12 ont un profil en L tel que précédemment décrit dans la figure 4.
La plaque 5 du faisceau d’échange thermique 2, décrite en figure 5, comporte des zones d’affaiblissement 40, 50 distinctes.
La première zone d’affaiblissement 40 des pièces fusible 12, qui prend la forme de deux encoches 45, est située dans la portion minoritaire du profil en L des pièces fusible 12. Cette première zone d’affaiblissement 40 est autorisée à se rompre au niveau de ces deux encoches 45 sous l’effet de cycles thermiques répétés par exemple, dissociant ainsi la pièce fusible 12 considérée du reste de la plaque 5 du faisceau d’échange thermique 2.
La plaque 5 du faisceau d’échange thermique 2 comporte un autre type de zone d’affaiblissement : une deuxième zone d’affaiblissement 50 liant chaque pièce fusible 12 au dispositif de maintien longitudinal 14.
Le dispositif de maintien longitudinal 14 comporte une première partie 51 située dans le plan 38 du dispositif de maintien longitudinal 14, et une deuxième partie 52 disposée dans le plan 37 de la pièce fusible 12 qu’elle relie. Une troisième partie 53 en forme de S joint la première partie 51 et la deuxième partie 52.
La première partie 51, la deuxième partie 52, la troisième partie 53 se différentient, a sein du dispositif de maintien longitudinal 14, en ce qu’elles sont séparées de la plaque 5 du faisceau d’échange thermique 2 par une fente 27. Cette fente 27 s’étend le long de la deuxième zone d’affaiblissement 50 et sur une extrémité du dispositif de maintien longitudinal 14. Une fois la première zone d’affaiblissement 40 et la deuxième zone d’affaiblissement 50 rompues, la plaque 5 et son dispositif de maintien longitudinal 14 sont libre par rapport au boîtier.
La deuxième partie 52 inclus la deuxième zone d’affaiblissement 50 qui comporte deux encoches 54. Cette deuxième zone d’affaiblissement 50 est autorisée à se rompre entre de ces deux encoches 54, sous l’effet de cycles thermiques répétés par exemple, dissociant ainsi la pièce fusible 12 considérée du dispositif de maintien longitudinal 14. Lorsque les deux zones d’affaiblissement 40, 50 entourant une même pièce fusible 12 se rompent, successivement ou simultanément, la pièce fusible 12 est dissociée de la plaque 5 du faisceau d’échange thermique 2.
En incluant les deux zones d’affaiblissement 50, le dispositif de maintien longitudinal 14 et les pièces fusible 12 occupent la largeur 16 de la plaque 5 du faisceau d’échange thermique 2 mesurée au niveau de la deuxième extrémité longitudinale 8.
La figure 6 présente enfin une deuxième extrémité longitudinale 8 de plaque 5 du faisceau d’échange thermique 2 selon un sixième mode de réalisation. Ce mode de réalisation est tel que décrit en figure 5, à la différence du dispositif de maintien longitudinal 14 qui est composé du premier segment 42, du deuxième segment 43 et du troisième segment 44 séparés les uns les autres par l’écart inter-segment 55 comme décrit en figure 4. Les pièces fusible 12 sont liées au dispositif de maintien longitudinal 14 via son premier segment 42 et son deuxième segment 43. Cette deuxième zone d’affaiblissement 50 liant le dispositif de maintien longitudinal 14 et la pièce fusible 12 est identique à celle décrite en rapport à la figure 5 et on se reportera à la description de cette figure pour mettre en œuvre cette deuxième zone d’affaiblissement 50 dans le cadre de la figure 6.
On comprend à la lecture de ce qui précède que la présente invention propose un dispositif de refroidissement d’un air d’admission d’un moteur à combustion interne configuré pour fiabiliser son étanchéité. Ce dispositif de refroidissement, destiné à être intégré dans un circuit d’air d’admission et un circuit de fluide caloporteur d’un véhicule thermique, offre une solution facile à mettre en œuvre et à moindre coût pour éviter toute interposition du dispositif de dissipation thermique entre une plaque du faisceau d’échange. L’invention est également conçue pour supporter les fortes contraintes thermiques subies par de tels dispositifs, autorisant également une certaine liberté de mouvement et permettant de pérenniser G utilisation du dispositif de refroidissement. De plus, l’efficacité des échanges thermiques entre l’air d’admission et les fluides caloporteurs se voit augmenter lors de la mise en œuvre de l’invention et ce dans les différents modes de réalisation de l’invention.
L’invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici, et elle s’étend également à tout moyen ou configuration équivalents et à toute combinaison technique opérant de tels moyens. En particulier, la forme du dispositif de maintien longitudinal peut être modifiée sans nuire à l’invention, dans la mesure où le dispositif de refroidissement, in fine , remplit les mêmes fonctionnalités que celles décrites dans ce document.

Claims

REVENDICATIONS
1. Dispositif de refroidissement (1) d’un air d’admission (FA) d’un moteur à combustion interne d’un véhicule, comprenant un faisceau d’échange thermique (2) entre un fluide caloporteur (FC) et l’air d’admission (FA), le faisceau d’échange thermique (2) comprenant au moins un couple (4) de plaques (5) et au moins un dispositif de dissipation thermique (6) d’extension longitudinale, un boîtier (3) qui entoure le faisceau d’échange thermique (2), au moins une des plaques (5) du faisceau d’échange thermique (2) comprend une pièce fusible (12) configurée pour plaquer la plaque (5) du faisceau d’échange thermique (2) contre le boîtier (3) lors de l’assemblage du dispositif de refroidissement (1) et autoriser une séparation de la plaque (5) du faisceau d’échange thermique (2) et du boîtier (3) lors de l’utilisation du dispositif de refroidissement (1), caractérisé en ce qu’au moins une des plaques (5) du faisceau d’échange thermique (2) comprend un dispositif de maintien longitudinal (14) du dispositif de dissipation thermique (6).
2. Dispositif de refroidissement (1) selon la revendication 1, dans lequel la pièce fusible (12) s’étend dans un plan (37) et le dispositif de maintien longitudinal (14) s’étend dans un autre plan (38) distinct du plan (37) de la pièce fusible (12).
3. Dispositif de refroidissement (1) selon la revendication précédente, dans lequel le plan (37) de la pièce fusible (12) est interposé entre le plan (38) du dispositif de maintien longitudinal (14) et un flanc latéral (18) du boîtier (3).
4. Dispositif de refroidissement (1) selon les revendications 2 et 3, dans lequel le plan (37) de la pièce fusible (12) et le plan (38) du dispositif de maintien longitudinal (14) sont parallèles.
5. Dispositif de refroidissement (1) selon la revendication 3, dans lequel une distance
(B) non nulle est présente entre le dispositif de maintien longitudinal (14) et le flanc latéral (18) du boîtier (3).
6. Dispositif de refroidissement (1) selon l’une quelconque des revendications 2 à 5, dans lequel la pièce fusible (12) comprend une première zone d’affaiblissement (40) tandis que le dispositif de maintien longitudinal (14) comprend une deuxième zone d’affaiblissement (50).
7. Dispositif de refroidissement (1) selon la revendication 6, dans lequel la première zone d’affaiblissement (40) est séparée d’une distance (F) du plan (37) de la pièce fusible (12), cette distance (F) séparant la première zone d’affaiblissement (40) du plan (37) de la pièce fusible (12) étant inférieure à une distance (C) séparant le dispositif de dissipation thermique (6) du plan (37) de la pièce fusible (12).
8. Dispositif de refroidissement (1) selon l’une quelconque des revendications précédentes, dans lequel chacune des plaques (5) du faisceau d’échange thermique (2) comporte son propre dispositif de maintien longitudinal (14) du dispositif de dissipation thermique (6).
9. Dispositif de refroidissement (1) selon les revendications 1 à 6, dans lequel une des plaques (5) du couple (4) de plaques (5) comprend le dispositif de maintien longitudinal (14) tandis que l’autre plaque (5) du couple (4) en est dépourvue.
10. Dispositif de refroidissement (1) selon les revendications 1 à 8, dans lequel la pièce fusible (12) et le dispositif de maintien longitudinal (14) sont séparés d’un écart longitudinal (15).
PCT/FR2019/051053 2018-05-09 2019-05-09 Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite WO2019215416A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19732405.6A EP3769026B1 (fr) 2018-05-09 2019-05-09 Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853945A FR3081033B1 (fr) 2018-05-09 2018-05-09 Dispositif de refroidissement d’un air d’admission d’un moteur a combustion interne
FR1853945 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019215416A1 true WO2019215416A1 (fr) 2019-11-14

Family

ID=62597782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051053 WO2019215416A1 (fr) 2018-05-09 2019-05-09 Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite

Country Status (3)

Country Link
EP (1) EP3769026B1 (fr)
FR (1) FR3081033B1 (fr)
WO (1) WO2019215416A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001017A1 (fr) * 2011-06-30 2013-01-03 Valeo Systemes Thermiques Boitier d'echangeur a plaques empilees et echangeur comprenant un tel boitier.
US20150283875A1 (en) * 2012-10-25 2015-10-08 Valeo Systemes Thermiques Heat exchanger, particularly for a motor vehicle
FR3026834A1 (fr) * 2014-10-02 2016-04-08 Valeo Systemes Thermiques Ensemble comprenant au moins une premiere et une deuxieme plaque permettant de former un faisceau d'echange d'un echangeur de chaleur et un echangeur de chaleur comprenant cet ensemble

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001017A1 (fr) * 2011-06-30 2013-01-03 Valeo Systemes Thermiques Boitier d'echangeur a plaques empilees et echangeur comprenant un tel boitier.
US20150283875A1 (en) * 2012-10-25 2015-10-08 Valeo Systemes Thermiques Heat exchanger, particularly for a motor vehicle
FR3026834A1 (fr) * 2014-10-02 2016-04-08 Valeo Systemes Thermiques Ensemble comprenant au moins une premiere et une deuxieme plaque permettant de former un faisceau d'echange d'un echangeur de chaleur et un echangeur de chaleur comprenant cet ensemble

Also Published As

Publication number Publication date
EP3769026A1 (fr) 2021-01-27
FR3081033A1 (fr) 2019-11-15
EP3769026B1 (fr) 2021-12-15
FR3081033B1 (fr) 2020-04-10

Similar Documents

Publication Publication Date Title
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP0654646A1 (fr) Echangeur de chaleur à lames, en particulier radiateur d'huile pour véhicule automobile
FR2978236A1 (fr) Echangeur thermique, tube plat et plaque correspondants
EP3769026B1 (fr) Echangeur de chaleur comprenant un joint principal d'etancheite et un joint secondaire d'etancheite
FR3066012A1 (fr) Dispositif d'echange de chaleur pour vehicule automobile
WO2014016192A1 (fr) Echangeur de chaleur pour vehicule automobile comportant une bride de fixation
WO2018115692A1 (fr) Échangeur de chaleur à plaque de renfort
EP2901097B1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, et procede d'assemblage associe
FR2915792A1 (fr) Echangeur de chaleur extrude
EP2936032A1 (fr) Élement d'echange thermique, et echangeur thermique correspondant
FR3088711A1 (fr) Echangeur de chaleur pour vehicule automobile
FR3066013A1 (fr) Tube d'echange de chaleur et echangeur de chaleur comportant au moins un tel tube
EP2912397A1 (fr) Boite collectrice pour échangeur de chaleur, notamment refroidisseur d'air de suralimentation de moteur de véhicule automobile
FR3066811A1 (fr) Ailette pour echangeur de chaleur avec bande d'attaque inclinee
WO2019180377A1 (fr) Dispositif de refroidissement d'un air d'admission de moteur a combustion interne
WO2019180378A1 (fr) Dispositif de refroidissement d'un air d'admission de moteur a combustion interne
FR3059403A1 (fr) Joue pour echangeur thermique de vehicule automobile
FR2800451A1 (fr) Echangeur de chaleur a encombrement reduit et equipement d'un vehicule automobile comportant un tel echangeur de chaleur
EP2469209B1 (fr) Boîtier d'échangeur de chaleur, échangeur de chaleur muni d'un tel boîtier et module d'admission équipé d'un tel échangeur
FR2977931A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, faisant dispositif thermo electrique
FR3056715A1 (fr) Module thermoelectrique et dispositif comprenant un tel module
FR2997486A1 (fr) Tube d'echangeur de chaleur a moyen de perturbation plat
FR2986312A1 (fr) Echangeur thermique, tube plat et plaque correspondants
WO2017158299A2 (fr) Échangeur de chaleur, en particulier pour véhicule, plus particulierement pour des véhicules automobiles
WO2014016203A1 (fr) Collecteur pour echangeur de chaleur et echangeur de chaleur comprenant un tel collecteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019732405

Country of ref document: EP

Effective date: 20201020

NENP Non-entry into the national phase

Ref country code: DE