WO2019214690A1 - 集中供热系统 - Google Patents
集中供热系统 Download PDFInfo
- Publication number
- WO2019214690A1 WO2019214690A1 PCT/CN2019/086260 CN2019086260W WO2019214690A1 WO 2019214690 A1 WO2019214690 A1 WO 2019214690A1 CN 2019086260 W CN2019086260 W CN 2019086260W WO 2019214690 A1 WO2019214690 A1 WO 2019214690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- steam
- heat pump
- low temperature
- line
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D12/00—Other central heating systems
- F24D12/02—Other central heating systems having more than one heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/32—Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the present application relates to the field of central heating technology, and in particular to a centralized heating system.
- the purpose of the application is to provide a central heating system, at least part of the water heater in the area is converted into a steam boiler by "consolidating", integrating the low-temperature heating load in the area to establish a low-temperature heating area, etc., so that the steam boiler
- the generated high-pressure steam is first extracted by a steam compression heat pump device, and the compressed steam provides a driving source for the absorption heat pump device, which extracts more heat and is more efficient.
- the application provides a centralized heating system, comprising: a steam boiler room, a steam compression heat pump device and an absorption heat pump device;
- a steam output line and a compressed return steam line are disposed between the steam boiler house and the vapor compression heat pump device; wherein: the steam output line is configured to deliver steam in the steam boiler room to the steam compression a heat pump device; the compressed return steam line configured to deliver steam compressed by the steam compression heat pump device to the steam boiler house;
- a compressed steam drive source line and a heat pump post low temperature heat source line are disposed; wherein: the compressed steam drive source line is configured to compress the vapor compression heat pump device The steam is sent to the absorption heat pump device; the low temperature heat source line is configured to deliver the low temperature heat source after the heat pump of the absorption heat pump device to the vapor compression heat pump device;
- An absorption heat pump heating hot water line and an absorption heat pump heating return water line are disposed between the absorption heat pump device and the steam boiler room; wherein: the absorption heat pump heating hot water line is configured to be the absorption heat pump device The generated hot water is delivered to the steam boiler house; the absorption heat pump heating water return line is configured to deliver water in the steam boiler room to the absorption heat pump device.
- the vapor compression heat pump device includes a compressor that is driven by steam;
- the steam output line is disposed between the steam boiler house and the compressor, and the compression return steam line is disposed between the steam boiler house and the compressor.
- the absorption heat pump device includes a generator, and the compressed steam drive source line is disposed between the generator and the compressor.
- the vapor compression heat pump device includes a first evaporator
- the absorption heat pump device includes a second evaporator
- the absorption heat pump rear low temperature heat source line is disposed at the first evaporator and the second evaporator between.
- the absorption heat pump device includes a first condenser, and the absorption heat pump hot water supply line and the absorption heat pump heating and return water line are respectively disposed in the first condenser and the steam boiler room. between.
- the central heating system further includes a heat exchange area for the high temperature of the heat network, and the first stage network between the heat exchange area for the high temperature of the heat network and the steam boiler room is provided with a hot water supply line and a primary network. Heating return water pipeline; where:
- the primary network heating hot water pipeline is configured to transport hot water in the steam boiler room to a heat exchange zone for the high temperature of the heat network;
- the primary network heating and returning water pipeline is configured to transport the cooled water after heat exchange in the heat exchange zone of the heat network to the steam boiler house.
- the central heating system further includes a hot zone for the low temperature of the heat network, and the secondary hot water supply line and the secondary net are provided between the hot zone of the low temperature hot zone and the steam boiler house.
- Hot return line where:
- the secondary network heating hot water pipeline is configured to transport hot water in the steam boiler room to the hot zone of the heat network low temperature
- the secondary network heating and returning water pipeline is configured to transport the cooling water after the heat exchange of the heat network in the hot zone to the steam boiler house.
- a steam compression heat pump heating hot water pipeline and a steam compression heat pump heating and returning water pipeline are disposed between the hot zone low temperature hot zone and the vapor compression heat pump device;
- the steam compression heat pump hot water supply line is configured to deliver hot water generated by the steam compression heat pump device to the hot zone for the low temperature of the heat network;
- the vapor compression heat pump is provided in a heating and returning water pipeline, and is configured to deliver the cooling water after the heat exchange of the heat network in the hot zone to the steam compression heat pump device.
- the vapor compression heat pump device includes a second condenser, and the steam compression heat pump hot water supply line and the vapor compression heat pump heating and return water line are respectively disposed in the hot network low temperature hot zone and the Between the second condenser.
- a heat pump low temperature heat source pipeline is disposed between the hot zone low temperature hot zone and the absorption heat pump device after heating and cooling;
- the heat pump low-temperature heat source pipeline is configured to transport the heat-lowering heat source of the heat-network low-temperature heat exchange to the absorption heat pump device.
- the absorption heat pump device comprises a second evaporator, and the heat pump low temperature heat source line is disposed between the hot zone low temperature hot zone and the second evaporator.
- the central heating system further includes other hot network low temperature heat devices in the area, and the other heat network low temperature heat device in the area and the heat network low temperature hot zone are provided with a heat network low temperature.
- the heat supply line of the heat device and the hot water return line of the heat network for low temperature are provided with a heat network low temperature.
- the heat network low-temperature heat device heating line is configured to transport hot water in the hot water low-temperature hot zone to other heat-network low-temperature heat devices in the area;
- the hot water low temperature hot water return line is configured to transport the cooled water after heat exchange of other heat nets in the area to the hot network low temperature hot zone.
- the central heating system further includes a low temperature waste heat energy collecting device, and a low temperature heat source return water line is disposed between the low temperature residual heat energy collecting device and the steam compression heat pump device;
- the low temperature heat source return line is configured to deliver a cooled heat source in the vapor compression heat pump device to the low temperature waste heat energy collection device.
- the vapor compression heat pump device includes a first evaporator, and the low temperature waste heat energy collection device is connected to the first evaporator through the low temperature heat source return water line.
- a low temperature heat source water supply pipeline is disposed between the low temperature waste heat energy collection device and the heat network low temperature heat zone;
- the low temperature heat source water supply line is configured to transport the cooled heat source collected by the low temperature waste heat collection device to the hot zone for the low temperature of the heat network.
- the low temperature waste heat energy collection device is configured to heat the cooling heat source in the vapor compression heat pump device with waste heat.
- the central heating system further includes an external heat system, and the external heat system and the steam boiler room are provided with an external steam or hot water pipeline and an external steam condensate or return water pipeline. ;among them:
- the external steam or hot water line is configured to deliver steam or hot water in the steam boiler room to the external heat system;
- the external steam condensate or return water line is configured to deliver steam condensed or cooled water after heat exchange of the external heat system to the steam boiler room.
- a high temperature and high pressure steam line and a high temperature and high pressure steam condensate line are further disposed between the external heat system and the steam boiler room; wherein:
- the high temperature and high pressure steam line is configured to deliver steam in the steam boiler room to the external heat system
- the high temperature and high pressure steam condensate line is configured to deliver condensate in the external heat system to the steam boiler room.
- the application provides a centralized heating system, comprising: a steam boiler room, a steam compression heat pump device and an absorption heat pump device; a steam output line and a compression return steam line are provided between the steam boiler room and the steam compression heat pump device; wherein: steam The output line is configured to deliver steam in the steam boiler room to the steam compression heat pump device; the compression return steam line is configured to deliver the steam compressed by the steam compression heat pump device to the steam boiler house; between the vapor compression heat pump device and the absorption heat pump device a compressed steam drive source line and a low temperature heat source line after absorbing the heat pump; wherein: the compressed steam drive source line is configured to deliver the compressed steam of the vapor compression heat pump device to the absorption heat pump device; and after absorbing the heat pump, the low temperature heat source line is configured to The low-temperature heat source after absorbing the heat pump heat pump is sent to the steam compression heat pump device; the absorption heat pump device and the steam boiler room are provided with an absorption heat pump heating hot water line and an absorption heat pump heating return water
- the centralized heating system provided by the present application, at least part of the water heater in the area can be converted into a steam boiler through "consolidation", and the low-temperature heating load in the integrated area is established to establish a low-temperature heating area, so that the steam boiler generates
- the high-pressure steam first extracts steam through a steam compression heat pump device, and the compressed steam provides a driving source for the absorption heat pump device, which extracts more heat and is more efficient.
- FIG. 1 is a schematic diagram of a centralized heating system according to an embodiment of the present application.
- Icon 100-steam boiler room; 200-steam compression heat pump unit; 300-absorption heat pump unit; 400-heat grid heat exchange area; 500-heat grid low temperature hot zone; 600-zone other heat network low temperature heat Device; 700-low temperature waste heat collection device; 800-external heating system; 110-steam output line; 120-absorption heat pump heating return line; 130-first stage heating hot water line; 140-second net Heating hot water line; 150-external steam or hot water line; 160-high temperature and high pressure steam line; 210-compressed return steam line; 220-compressed steam drive source line; 230-steam compression heat pump hot water line 240-low temperature heat source return line; 310- low temperature heat source line after absorption heat pump; 320-absorption heat pump hot water line; 410-first stage net heat return line; 510-second stage net heat return line; 520-steam compression heat pump heating return water pipeline; 530-heating low temperature heat source pipeline after heating and cooling; 540-heat grid low temperature heat supply pipeline
- connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
- FIG. 1 a centralized heating system provided by an embodiment of the present application will be described in detail below with reference to the accompanying drawings.
- An embodiment of the present application provides a centralized heating system, including: a steam boiler house 100, a vapor compression heat pump device 200, and an absorption heat pump device 300;
- a steam output line 110 is configured to transport steam in the steam boiler room 100 to the steam compression heat pump device 200;
- the compressed return steam line 210 is configured to deliver the steam compressed by the steam compression heat pump device 200 to the steam boiler house 100;
- a compressed steam drive source line 220 and a absorbing heat pump low temperature heat source line 310 are provided; wherein: the compressed steam drive source line 220 is configured to compress the vapor compression heat pump device 200.
- the steam is sent to the absorption heat pump device 300; after the absorption heat pump, the low temperature heat source line 310 is configured to transport the low temperature heat source after the heat pump assembly heat pump 300 to the vapor compression heat pump device 200;
- An absorption heat pump heating hot water line 320 and an absorption heat pump heating and returning water line 120 are disposed between the absorption heat pump device 300 and the steam boiler room 100; wherein: the absorption heat pump heating hot water line 320 is configured to generate the absorption heat pump device 300 The hot water is delivered to the steam boiler house 100; the absorption heat pump heating return water line 120 is configured to deliver water from the steam boiler house 100 to the absorption heat pump device 300.
- the centralized heating system provided by the present application, at least part of the water heater in the area can be converted into a steam boiler through "consolidation", and the low-temperature heating load in the integrated area is established to establish a low-temperature heating area, so that the steam boiler generates
- the high-pressure steam first drives the compressor to be depressurized by the steam compression heat pump device 200.
- the compressed low-pressure steam provides a driving source for the absorption heat pump device 300, which extracts more heat and is more efficient.
- the vapor compression heat pump device 200 includes a compressor, a second condenser, a throttling device, and a first evaporator, which are sequentially connected and formed into a circuit, and a circuit composed of a compressor, a second condenser, a throttling device, and a first evaporator The working medium is charged to enable the steam compression heat pump device 200 to operate.
- the compressor is operated by steam
- the steam output line 110 is disposed between the steam boiler house 100 and the compressor
- the compressed return steam line 210 is disposed between the steam boiler house 100 and the compressor.
- the steam output line 110 is configured to deliver steam in the steam boiler house 100 to the compressor to drive the compressor to operate, thereby driving the steam compression heat pump device 200 to operate.
- the second condenser can generate hot water.
- the steam in the steam boiler house 100 thus utilized drives the steam compression heat pump device 200 to generate hot water, so that the waste heat of the steam boiler house 100 is fully utilized, thereby achieving an energy saving effect.
- the absorption heat pump device 300 may be a lithium bromide absorption heat pump or a suitable form such as an ammonia water absorption heat pump.
- the absorption heat pump device 300 is composed of a main component such as a generator, a first condenser, a second evaporator, an absorber, and a heat exchanger, and an auxiliary device such as a suction device, a shielding pump (solution pump and a refrigerant pump), and the like. .
- the compressed steam drive source line 220 is disposed between the generator and the compressor.
- the compressed steam drive source line 220 is configured to deliver the compressor compressed steam to the generator to drive the absorption heat pump device 300 to operate, the first condenser being capable of producing hot water after the absorption heat pump device 300 is in operation.
- the steam in the steam boiler house 100 thus utilized drives the heat pump device 300 to generate hot water, so that the waste heat of the steam boiler house 100 is fully utilized, thereby achieving an energy saving effect.
- the vapor compression heat pump device 200 includes a first evaporator
- the absorption heat pump device 300 includes a second evaporator
- the low temperature heat source line 310 is disposed between the first evaporator and the second evaporator after absorbing the heat pump.
- the low temperature heat source line 310 is configured to deliver the low temperature heat source after the second evaporator to the first evaporator, the first evaporator and the second evaporator being capable of absorbing heat in the low temperature heat source, respectively.
- the absorption heat pump device 300 includes a first condenser, and the absorption heat pump heating hot water line 320 and the absorption heat pump heating and return water line 120 are respectively disposed between the first condenser and the steam boiler room 100.
- the first condenser can generate hot water
- the absorption heat pump heating hot water line 320 is configured to transport the hot water generated by the first condenser to the steam boiler room 100, and absorb the heat pump to supply heat back.
- the water line 120 is configured to deliver water within the steam boiler house 100 to the first condenser to circulate water between the first condenser and the steam boiler house 100.
- the output load of the steam boiler house 100 is shared by the steam boiler and the hot water boiler room of the network or a part of the reserved hot water boiler.
- the vapor compression heat pump device 200 includes a main unit and ancillary equipment.
- the absorption heat pump device 300 includes a main unit and an accessory device.
- the central heating system further includes a heat exchange zone 400 for the high temperature of the heat network, and a first-stage network heating hot water pipeline 130 and a first-stage network heating between the heat exchanger high temperature heat exchanger zone 400 and the steam boiler room 100.
- the return water line 410 wherein: the first stage hot water supply line 130 is configured to transport the hot water in the steam boiler room 100 to the heat exchanger high temperature heat exchange zone 400; the first stage net heat return water line 410 is configured to The hot grid high temperature is sent to the steam boiler room 100 by the heat-reducing water after heat exchange in the heat exchange zone 400.
- the heat exchange zone 400 for the high temperature of the heat network is heated, and the cooling water after the heat supply passes through the primary network heat supply return pipe 410. It is sent back to the steam boiler house 100 to circulate hot water between the steam boiler house 100 and the heat exchanger high temperature heat exchange zone 400.
- the central heating system further comprises a heating network low temperature hot zone 500, and a heating network hot zone 500 and a steam boiler room 100 are provided with a secondary network heating hot water pipeline 140 and a secondary network for heating back.
- Water line 510 ; wherein: the secondary network heating hot water line 140 is configured to transport the hot water in the steam boiler room 100 to the hot network low temperature hot zone 500; the secondary net heating return water line 510 is configured to heat the network The cooling water after the heat exchange of the low temperature hot zone 500 is sent to the steam boiler house 100.
- the steam boiler house 100 is configured to circulate hot water between the steam boiler house 100 and the hot zone low temperature hot zone 500.
- a steam compression heat pump heating hot water line 230 and a steam compression heat pump heating and returning water line 520 are disposed between the hot network low temperature hot zone 500 and the vapor compression heat pump device 200; wherein: the steam compression heat pump supplies hot water
- the pipeline 230 is configured to transport the hot water generated by the steam compression heat pump device 200 to the hot zone low temperature hot zone 500; the steam compression heat pump heat supply return water line 520 is configured to cool the hot mesh low temperature hot zone 500 after heat exchange. It is delivered to the vapor compression heat pump device 200.
- the hot water generated by the steam compression heat pump device 200 is sent to the hot water low temperature hot zone 500, and the hot water low temperature hot zone 500 is heated, and the heated cooling water is sent back through the steam compression heat pump heating and returning water line 520.
- the heat is compressed by the heat pump device 200 to circulate hot water between the steam compression heat pump device 200 and the hot zone low temperature hot zone 500.
- the vapor compression heat pump device 200 includes a second condenser, and the vapor compression heat pump heating hot water line and the vapor compression heat pump heating and return water line are respectively disposed between the hot network low temperature hot zone and the second condenser.
- the hot water generated by the second condenser is sent to the hot zone 50 for the low temperature of the heat network, and the hot zone 500 for the low temperature of the heat network is heated, and the cooled water after the heat is sent back to the hot water return pipe 520 by the steam compression heat pump.
- the second condenser is such that hot water circulates between the second condenser and the hot zone low temperature hot zone 500.
- a heat pump low temperature heat source line 530 is disposed between the hot network low temperature hot zone 500 and the absorption heat pump device 300; after the heating and cooling, the heat pump low temperature heat source line 530 is configured to heat the heat network low temperature heat zone 500 The cooling heat source is delivered to the absorption heat pump device 300.
- the absorption heat pump device 300 includes a second evaporator.
- the low-temperature heat source pipeline of the heat pump is disposed between the hot zone of the low temperature of the heat network and the second evaporator, and the heat source of the heat source is cooled by the heat exchanger 500.
- the second evaporator absorbs the heat of the cooling heat source to further cool the cooling heat source.
- the central heating system further includes other heat-network low-temperature heat devices 600 in the area, and the other heat-network low-temperature heat devices 600 in the area and the heat-network low-temperature heat-area 500 are provided with a heat-network low-temperature heat device.
- the heat device 600; the heat network low temperature heat device return water line 610 is configured to transport the temperature-reducing water after heat exchange of the other heat-network low-temperature heat device 600 in the region to the heat-network low-temperature heat region 500.
- the low temperature hot zone 500 is used to circulate hot water between the other heat network low temperature heat exchangers 600 and the heat network low temperature hot zone 500.
- the central heating system further includes a low temperature waste heat energy collection device 700, and a low temperature heat source return water line 240 is disposed between the low temperature waste heat energy collection device 700 and the vapor compression heat pump device 200; the low temperature heat source return water line 240 is configured to The cooling heat source in the vapor compression heat pump device 200 is sent to the low temperature waste heat energy collection device 700.
- the cooling heat source in the vapor compression heat pump device 200 is sent to the low-temperature waste heat energy collection device 700, and then heated and heated by the low-temperature waste heat energy collection device 700, and then the cooling heat source is utilized.
- the vapor compression heat pump apparatus 200 includes a first evaporator, and the low temperature waste heat collection apparatus 700 is connected to the first evaporator through a low temperature heat source return line.
- the cooling heat source cooled by the first evaporator is sent to the low temperature waste heat collecting device 700, and the low temperature residual waste heat collecting device 700 heats and cools the cooling heat source, and then uses the cooling heat source.
- a low temperature heat source water supply line 710 is disposed between the low temperature waste heat collection device 700 and the heat network low temperature heat zone 500; and the low temperature heat source water supply line 710 is configured to transport the cooled heat source collected by the low temperature waste heat collection device 700 to The hot network uses a hot zone 500 for low temperature.
- the low-temperature residual waste heat collecting device 700 heats the cooling heat source to a suitable temperature, and then transports it to the hot-column low-temperature hot zone 500 to supply heat to the hot-cold hot-zone 500.
- the low-temperature waste heat energy collecting device uses the waste heat to heat the cooling heat source in the first evaporator, and can effectively utilize the low-temperature residual waste heat to improve the energy saving effect.
- the water supply of the low temperature waste heat collecting device 700 enters the hot network low temperature hot zone 500 as a direct heating heat source through the low temperature heat source water supply line 710, and the heat pump low temperature heat source line 530 provides a low temperature heat source for the absorption heat pump device 300 after the temperature is lowered by heating, and then After the heat pump is absorbed, the low temperature heat source line 310 provides a low temperature heat source for the vapor compression heat pump device 200, and then enters the low temperature heat source return water line 240 through the low temperature heat source return water line 240 to be heated to the water supply temperature.
- the central heating system further includes an external heat system 800, and an external steam or hot water line 150 and an external steam condensing or returning water line 810 are disposed between the external heat system 800 and the steam boiler room 100;
- the external steam or hot water line 150 is configured to transport steam or hot water in the steam boiler room 100 to the external heat system 800;
- the external steam condensate or return water line 810 is configured to exchange the external heat system 800
- the hot steam condensate or the cooled water is sent to the steam boiler house 100.
- the hot water or steam generated by the steam boiler house 100 is sent to the external heat system 800 for heating the external heat system 800, and the steam condensed or cooled water after the heat is sent back to the steam boiler room 100 to make the hot water Or steam is circulated between the steam boiler house 100 and the external heat system 800.
- a high temperature and high pressure steam line 160 and a high temperature and high pressure steam condensing line 820 are further disposed between the external heat system 800 and the steam boiler room 100.
- the high temperature and high pressure steam line 160 is configured to steam the steam boiler room 100.
- the high temperature and high pressure steam condensate line 820 is configured to transport the condensate in the external heat system 800 to the steam boiler room 100.
- the heat exchanger high temperature heat exchange zone 400 is a high temperature heat dissipation secondary network connected by a primary network, such as a radiator heat user.
- the steam generated by the steam boiler house 100 is extracted by the steam compression heat pump device 200 through the steam output line 110, and is divided into two paths: one way is compressed and returned to the steam line 210 to the steam boiler room 100 as a heating primary network for heating back to the outside and to the outside.
- the heat source of the external thermal system 800; the compressed steam drive source line 220 provides a drive source for the absorption heat pump device 300.
- the return water of the primary network heating and returning water line 410 is first heated by the heat pumping unit 300 through the heat energy provided by the absorption heat pump hot water supply line 320, and then heated by the steam in the steam boiler house 100 or the retained hot water boiler to the water supply. temperature.
- the return water of the hot zone low temperature hot zone 500 is supplied by the water supply and steam compression heat pump device 200 in the low temperature heat source water supply line 710 of the low temperature waste heat collecting device 700 via the steam compression heat pump to supply the hot water in the hot water line 230, the second stage.
- the hot water in the hot water supply line 140 is heated step by step.
- the heat in the secondary network heating hot water line 140 is used as an adjustment peaking heat source and finally enters the hot network low temperature hot zone 500.
- the steam boiler room 100 provides heat source, condensed water or heat back water through the external steam or hot water line 150 through the external steam condensate or return water line 810 to steam.
- Boiler room 100 When the external heat system 800 has high temperature and high pressure steam demand, the steam boiler room 100 supplies the steam extracted by the steam compression heat pump device 200 through the high temperature and high pressure steam line 160 to the external heat system 800, and the condensed water is from the high temperature and high pressure steam condensate line. 820 returns to the steam boiler room 100.
- the purpose of establishing other heat-network low-temperature heat devices 600 in the area is at least for the direct use of low-temperature residual heat and waste heat energy, the second is to provide space for heat pump heat supply in the heat network, and the third is to increase the heat grid heat balance adjustment space.
- the heat pump has difficulty in running the hot water for a long time and the water supply is low.
- the centralized heating system provided by the present application can solve the above problems in the prior art, and can During the heating period, the waste low-temperature waste heat is efficiently utilized to improve the energy-saving effect, and the low-temperature waste heat of the exhaust gas replaces the fossil fuel to generate heat.
- the steam-driven compressor operation in the steam boiler room is used to drive the steam compression heat pump device to operate for heating, does not increase regional fossil fuel consumption, improves economic performance, and has high operability.
- the centralized heating system provided by the present application extracts more heat, has higher efficiency, lower temperature and waste heat utilization rate, and increases the adjustment space of the heat balance of the heat network.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
一种集中供热系统,包括:蒸汽锅炉房(100)、蒸汽压缩热泵装置(200)、吸收热泵装置(300)、热网高温用换热区(400)、热网低温用热区(500)、其它热网低温用热装置(600)及低温余废热能汇集装置(700);蒸汽锅炉房(100)与蒸汽压缩热泵装置(200)之间设有蒸汽输出管线(110)和压缩回用蒸汽管线(210);蒸汽压缩热泵装置(200)与吸收热泵装置(300)之间设有压缩后蒸汽驱动源管线(220)和吸收热泵后低温热源管线(310);吸收热泵装置(300)与蒸汽锅炉房(100)之间设有吸收热泵供热热水管线(320)和吸收热泵供热回水管线(120);该集中供热系统整合区域内低温供热负荷建立低温供热区,提取热量多、效率更高。
Description
相关申请的交叉引用
本申请要求于2018年05月11日提交中国专利局的申请号为2018104545528、名称为“集中供热系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及集中供热技术领域,尤其是涉及一种集中供热系统。
目前,在同一区域内存在多个化石燃料热水锅炉各自独立运行,而区域内大量低温余、废热未被利用的情况。热水锅炉加热过程损失了化石燃料具有的做功及高温加热效能,而低温余、废热能由于没有合适驱动源及出水温度偏低等因素的影响未被利用,同样不符合“品质对应,梯次利用,温度对口”的用能原则。
公开于该背景技术部分的信息仅仅旨在加深对本申请的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
申请内容
本申请的目的在于提供一种集中供热系统,至少将区域内的部分热水炉通过“并扩”改建为蒸汽锅炉,整合区域内低温供热负荷建立低温供热区等工作,使蒸汽锅炉产生的高压蒸汽首先通过蒸汽压缩热泵装置提取蒸汽,压缩后的蒸汽为吸收热泵装置提供驱动源,提取热量多、效率更高。
为至少实现上述目的,本申请提供以下技术方案:
本申请提供一种集中供热系统,包括:蒸汽锅炉房、蒸汽压缩热泵装置和吸收热泵装置;
所述蒸汽锅炉房与所述蒸汽压缩热泵装置之间设有蒸汽输出管线和压缩回用蒸汽管线;其中:所述蒸汽输出管线配置成将所述蒸汽锅炉房内的蒸汽输送至所述蒸汽压缩热泵装置;所述压缩回用蒸汽管线配置成将所述蒸汽压缩热泵装置压缩后的蒸汽输送至所述蒸汽锅炉房;
所述蒸汽压缩热泵装置与所述吸收热泵装置之间设有压缩后蒸汽驱动源管线和吸收热泵后低温热源管线;其中:所述压缩后蒸汽驱动源管线配置成将所述蒸汽压缩热泵装置压缩后的蒸汽输送至所述吸收热泵装置;所述吸收热泵后低温热源管线配置成将所述吸收热泵装置热泵后的低温热源输送至所述蒸汽压缩热泵装置;
所述吸收热泵装置与所述蒸汽锅炉房之间设有吸收热泵供热热水管线和吸收热泵供热回水管线;其中:所述吸收热泵供热热水管线配置成将所述吸收热泵装置产生的热水输送至所述蒸汽锅炉房;所述吸收热泵供热回水管线配置成将所述蒸汽锅炉房内的水输送至所述吸收热泵装置。
可选地,所述蒸汽压缩热泵装置包括压缩机,所述压缩机由蒸汽驱动运行;
所述蒸汽输出管线设置在所述蒸汽锅炉房与所述压缩机之间,所述压缩回用蒸汽管线设置在所述蒸汽锅炉房与所述压缩机之间。
可选地,所述吸收热泵装置包括发生器,所述压缩后蒸汽驱动源管线设置在所述发生器与所述压缩机之间。
可选地,所述蒸汽压缩热泵装置包括第一蒸发器,所述吸收热泵装置包括第二蒸发器,所述吸收热泵后低温热源管线设置在所述第一蒸发器与所述第二蒸发器之间。
可选地,所述吸收热泵装置包括第一冷凝器,所述吸收热泵供热热水管线和所述吸收热泵供热回水管线分别设置在所述第一冷凝器与所述蒸汽锅炉房之间。
可选地,所述集中供热系统还包括热网高温用换热区,所述热网高温用换热区与所述蒸汽锅炉房之间设有一级网供热热水管线和一级网供热回水管线;其中:
所述一级网供热热水管线配置成将所述蒸汽锅炉房内的热水输送至所述热网高温用换热区;
所述一级网供热回水管线配置成将所述热网高温用换热区换热后的降温水输送至所述蒸汽锅炉房。
可选地,所述集中供热系统还包括热网低温用热区,所述热网低温用热区与所述蒸汽锅炉房之间设有二级网供热热水管线和二级网供热回水管线;其中:
所述二级网供热热水管线配置成将所述蒸汽锅炉房内的热水输送至所述热网低温用热区;
所述二级网供热回水管线配置成将所述热网低温用热区换热后的降温水输送至所述蒸汽锅炉房。
可选地,所述热网低温用热区与所述蒸汽压缩热泵装置之间设有蒸汽压缩热泵供热热水管线和蒸汽压缩热泵供热回水管线;其中:
所述蒸汽压缩热泵供热热水管线配置成将所述蒸汽压缩热泵装置产生的热水输送至所述热网低温用热区;
所述蒸汽压缩热泵供热回水管线,配置成将所述热网低温用热区换热后的降温水输送至所述蒸汽压缩热泵装置。
可选地,所述蒸汽压缩热泵装置包括第二冷凝器,所述蒸汽压缩热泵供热热水管线和所述蒸汽压缩热泵供热回水管线分别设置在所述热网低温用热区与所述第二冷凝器之间。
可选地,所述热网低温用热区与所述吸收热泵装置之间设有加热降温后热泵低温热源管线;
所述加热降温后热泵低温热源管线配置成将所述热网低温用热区换热后的降温热源输送至所述吸收热泵装置。
可选地,所述吸收热泵装置包括第二蒸发器,所述加热降温后热泵低温热源管线设置在所述热 网低温用热区与所述第二蒸发器之间。
可选地,所述集中供热系统还包括区域内其它热网低温用热装置,所述区域内其它热网低温用热装置与所述热网低温用热区之间设有热网低温用热装置供热管线和热网低温用热装置回水管线;其中:
所述热网低温用热装置供热管线配置成将所述热网低温用热区内的热水输送至所述区域内其它热网低温用热装置;
所述热网低温用热装置回水管线配置成将所述区域内其它热网低温用热装置换热后的降温水输送至所述热网低温用热区。
可选地,所述集中供热系统还包括低温余废热能汇集装置,所述低温余废热能汇集装置与所述蒸汽压缩热泵装置之间设有低温热源回水管线;
所述低温热源回水管线配置成将所述蒸汽压缩热泵装置中的降温热源输送至所述低温余废热能汇集装置。
可选地,所述蒸汽压缩热泵装置包括第一蒸发器,所述低温余废热能汇集装置通过所述低温热源回水管线与所述第一蒸发器连接。
可选地,所述低温余废热能汇集装置与所述热网低温用热区之间设有低温热源供水管线;
所述低温热源供水管线配置成将所述低温余废热能汇集装置汇集的降温热源输送至所述热网低温用热区。
可选地,所述低温余废热能汇集装置配置成采用余废热加热所述蒸汽压缩热泵装置中的降温热源。
可选地,所述集中供热系统还包括网外用热系统,所述网外用热系统与所述蒸汽锅炉房之间设有外输蒸汽或热水管线和外输蒸汽凝水或回水管线;其中:
所述外输蒸汽或热水管线配置成将所述蒸汽锅炉房内的蒸汽或热水输送至所述网外用热系统;
所述外输蒸汽凝水或回水管线配置成将所述网外用热系统换热后的蒸汽凝水或降温水输送至所述蒸汽锅炉房。
可选地,所述网外用热系统与所述蒸汽锅炉房之间还设有高温高压蒸汽管线和高温高压蒸汽凝水管线;其中:
所述高温高压蒸汽管线配置成将所述蒸汽锅炉房内的蒸汽输送至所述网外用热系统;
所述高温高压蒸汽凝水管线配置成将所述网外用热系统中的凝水输送至所述蒸汽锅炉房。
本申请提供的集中供热系统具有以下有益效果:
本申请提供一种集中供热系统,包括:蒸汽锅炉房、蒸汽压缩热泵装置和吸收热泵装置;蒸汽锅炉房与蒸汽压缩热泵装置之间设有蒸汽输出管线和压缩回用蒸汽管线;其中:蒸汽输出管线配置 成将蒸汽锅炉房内的蒸汽输送至蒸汽压缩热泵装置;压缩回用蒸汽管线配置成将蒸汽压缩热泵装置压缩后的蒸汽输送至蒸汽锅炉房;蒸汽压缩热泵装置与吸收热泵装置之间设有压缩后蒸汽驱动源管线和吸收热泵后低温热源管线;其中:压缩后蒸汽驱动源管线配置成将蒸汽压缩热泵装置压缩后的蒸汽输送至吸收热泵装置;吸收热泵后低温热源管线配置成将吸收热泵装置热泵后的低温热源输送至蒸汽压缩热泵装置;吸收热泵装置与蒸汽锅炉房之间设有吸收热泵供热热水管线和吸收热泵供热回水管线;其中:吸收热泵供热热水管线配置成将吸收热泵装置产生的热水输送至蒸汽锅炉房;吸收热泵供热回水管线配置成将蒸汽锅炉房内的水输送至吸收热泵装置。
采用本申请提供的集中供热系统,至少能够将区域内的部分热水炉通过“并扩”改建为蒸汽锅炉,整合区域内低温供热负荷建立低温供热区等工作,使蒸汽锅炉产生的高压蒸汽首先通过蒸汽压缩热泵装置提取蒸汽,压缩后的蒸汽为吸收热泵装置提供驱动源,提取热量多、效率更高。
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的集中供热系统的原理图。
图标:100-蒸汽锅炉房;200-蒸汽压缩热泵装置;300-吸收热泵装置;400-热网高温用换热区;500-热网低温用热区;600-区域内其它热网低温用热装置;700-低温余废热能汇集装置;800-网外用热系统;110-蒸汽输出管线;120-吸收热泵供热回水管线;130-一级网供热热水管线;140-二级网供热热水管线;150-外输蒸汽或热水管线;160-高温高压蒸汽管线;210-压缩回用蒸汽管线;220-压缩后蒸汽驱动源管线;230-蒸汽压缩热泵供热热水管线;240-低温热源回水管线;310-吸收热泵后低温热源管线;320-吸收热泵供热热水管线;410-一级网供热回水管线;510-二级网供热回水管线;520-蒸汽压缩热泵供热回水管线;530-加热降温后热泵低温热源管线;540-热网低温用热装置供热管线;610-热网低温用热装置回水管线;710-低温热源供水管线;810-外输蒸汽凝水或回水管线;820-高温高压蒸汽凝水管线。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖 直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅配置成描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅配置成说明和解释本申请,并不配置成限制本申请。
请参照图1,下面将结合附图对本申请实施例提供的集中供热系统作详细说明。
本申请的实施例提供了一种集中供热系统,包括:蒸汽锅炉房100、蒸汽压缩热泵装置200和吸收热泵装置300;
蒸汽锅炉房100与蒸汽压缩热泵装置200之间设有蒸汽输出管线110和压缩回用蒸汽管线210;其中:蒸汽输出管线110配置成将蒸汽锅炉房100内的蒸汽输送至蒸汽压缩热泵装置200;压缩回用蒸汽管线210配置成将蒸汽压缩热泵装置200压缩后的蒸汽输送至蒸汽锅炉房100;
蒸汽压缩热泵装置200与吸收热泵装置300之间设有压缩后蒸汽驱动源管线220和吸收热泵后低温热源管线310;其中:压缩后蒸汽驱动源管线220配置成将蒸汽压缩热泵装置200压缩后的蒸汽输送至吸收热泵装置300;吸收热泵后低温热源管线310配置成将吸收热泵装置300热泵后的低温热源输送至蒸汽压缩热泵装置200;
吸收热泵装置300与蒸汽锅炉房100之间设有吸收热泵供热热水管线320和吸收热泵供热回水管线120;其中:吸收热泵供热热水管线320配置成将吸收热泵装置300产生的热水输送至蒸汽锅炉房100;吸收热泵供热回水管线120配置成将蒸汽锅炉房100内的水输送至吸收热泵装置300。
采用本申请提供的集中供热系统,至少能够将区域内的部分热水炉通过“并扩”改建为蒸汽锅炉,整合区域内低温供热负荷建立低温供热区等工作,使蒸汽锅炉产生的高压蒸汽首先通过蒸汽压缩热泵装置200驱动压缩机降压,压缩后的低压蒸汽为吸收热泵装置300提供驱动源,提取热量多、效率更高。
其中,蒸汽压缩热泵装置200包括依次连接并形成回路的压缩机、第二冷凝器、节流装置和第一蒸发器,压缩机、第二冷凝器、节流装置和第一蒸发器组成的回路中充入工质,以使蒸汽压缩热泵装置200能够运行。
其中压缩机由蒸汽驱动运行,蒸汽输出管线110设置在蒸汽锅炉房100与压缩机之间,压缩回 用蒸汽管线210设置在蒸汽锅炉房100与压缩机之间。
蒸汽输出管线110配置成将蒸汽锅炉房100内的蒸汽输送至压缩机中,以带动压缩机运行,从而驱动蒸汽压缩热泵装置200运行,蒸汽压缩热泵装置200运行后第二冷凝器能够产生热水。从而利用的蒸汽锅炉房100内的蒸汽带动蒸汽压缩热泵装置200产生热水,使蒸汽锅炉房100的余废热充分利用,起到节能的效果。
蒸汽锅炉房100内的蒸汽带动压缩机进行工作后,蒸汽的压力下降,压力下降的蒸汽分为两路,其中一路通过压缩回用蒸汽管线210将压缩机压缩后的蒸汽输送回蒸汽锅炉房100,使蒸汽锅炉房100内输出的大部分蒸汽再回到蒸汽锅炉房100内。
吸收热泵装置300可以为溴化锂吸收式热泵,也可以为氨水吸收式热泵等任意适合的形式。
可选地,吸收热泵装置300由发生器、第一冷凝器、第二蒸发器、吸收器和热交换器等主要部件及抽气装置,屏蔽泵(溶液泵和冷剂泵)等辅助部分组成。
可选地,压缩后蒸汽驱动源管线220设置在发生器与压缩机之间。压缩后蒸汽驱动源管线220配置成将压缩机压缩后的蒸汽输送至发生器中,以驱动吸收热泵装置300运行,吸收热泵装置300运行后第一冷凝器能够产生热水。从而利用的蒸汽锅炉房100内的蒸汽带动吸收热泵装置300产生热水,使蒸汽锅炉房100的余废热充分利用,起到节能的效果。
可选地,所述蒸汽压缩热泵装置200包括第一蒸发器,吸收热泵装置300包括第二蒸发器,吸收热泵后低温热源管线310设置在第一蒸发器与第二蒸发器之间。
吸收热泵后低温热源管线310配置成将第二蒸发器后的低温热源输送至第一蒸发器,第一蒸发器和第二蒸发器分别能够吸收低温热源中的热量。
可选地,吸收热泵装置300包括第一冷凝器,吸收热泵供热热水管线320和吸收热泵供热回水管线120分别设置在第一冷凝器与蒸汽锅炉房100之间。
其中,吸收热泵装置300运行后,第一冷凝器能够产生热水,吸收热泵供热热水管线320配置成将第一冷凝器产生的热水输送至蒸汽锅炉房100中,吸收热泵供热回水管线120配置成将蒸汽锅炉房100内的水输送至第一冷凝器中,以使第一冷凝器与蒸汽锅炉房100之间的水进行循环。
可选地,蒸汽锅炉房100的输出负荷由蒸汽锅炉及本网热水锅炉房或保留的部分热水锅炉共同承担。蒸汽压缩热泵装置200包括主机及附属设备。吸收热泵装置300包括主机及附属设备。
可选地,集中供热系统还包括热网高温用换热区400,热网高温用换热区400与蒸汽锅炉房100之间设有一级网供热热水管线130和一级网供热回水管线410;其中:一级网供热热水管线130配置成将蒸汽锅炉房100内的热水输送至热网高温用换热区400;一级网供热回水管线410配置成将热网高温用换热区400换热后的降温水输送至蒸汽锅炉房100。
蒸汽锅炉房100内的热水输送至热网高温用换热区400后,对热网高温用换热区400进行供热, 供热后的降温水又通过一级网供热回水管线410输送回蒸汽锅炉房100,以使热水在蒸汽锅炉房100与热网高温用换热区400之间循环。
可选地,集中供热系统还包括热网低温用热区500,热网低温用热区500与蒸汽锅炉房100之间设有二级网供热热水管线140和二级网供热回水管线510;其中:二级网供热热水管线140配置成将蒸汽锅炉房100内的热水输送至热网低温用热区500;二级网供热回水管线510配置成将热网低温用热区500换热后的降温水输送至蒸汽锅炉房100。
蒸汽锅炉房100内的热水输送至热网低温用热区500后,对热网低温用热区500进行供热,供热后的降温水又通过二级网供热回水管线510输送回蒸汽锅炉房100,以使热水在蒸汽锅炉房100与热网低温用热区500之间循环。
可选地,热网低温用热区500与蒸汽压缩热泵装置200之间设有蒸汽压缩热泵供热热水管线230和蒸汽压缩热泵供热回水管线520;其中:蒸汽压缩热泵供热热水管线230配置成将蒸汽压缩热泵装置200产生的热水输送至热网低温用热区500;蒸汽压缩热泵供热回水管线520,配置成将热网低温用热区500换热后的降温水输送至蒸汽压缩热泵装置200。
蒸汽压缩热泵装置200产生的热水输送至热网低温用热区500,对热网低温用热区500进行供热,供热后的降温水又通过蒸汽压缩热泵供热回水管线520输送回蒸汽压缩热泵装置200,以使热水在蒸汽压缩热泵装置200与热网低温用热区500之间循环。
具体地,蒸汽压缩热泵装置200包括第二冷凝器,蒸汽压缩热泵供热热水管线和蒸汽压缩热泵供热回水管线分别设置在热网低温用热区与第二冷凝器之间。
第二冷凝器产生的热水输送至热网低温用热区500,对热网低温用热区500进行供热,供热后的降温水又通过蒸汽压缩热泵供热回水管线520输送回第二冷凝器,以使热水在第二冷凝器与热网低温用热区500之间循环。
可选地,热网低温用热区500与吸收热泵装置300之间设有加热降温后热泵低温热源管线530;加热降温后热泵低温热源管线530配置成将热网低温用热区500换热后的降温热源输送至吸收热泵装置300。
具体地,吸收热泵装置300包括第二蒸发器,加热降温后热泵低温热源管线设置在热网低温用热区与第二蒸发器之间,热网低温用热区500换热后的降温热源输送至第二蒸发器后,第二蒸发器吸收降温热源的热量,以使降温热源进一步降温。
可选地,集中供热系统还包括区域内其它热网低温用热装置600,区域内其它热网低温用热装置600与热网低温用热区500之间设有热网低温用热装置供热管线540和热网低温用热装置回水管线610;其中:热网低温用热装置供热管线540配置成将热网低温用热区500内的热水输送至区域内其他热网低温用热装置600;热网低温用热装置回水管线610配置成将区域内其他热网低温用热装置 600换热后的降温水输送至热网低温用热区500。
热网低温用热区500内的热水输送至区域内其他热网低温用热装置600后,对区域内其他热网低温用热装置600进行供热,供热后的降温水又输送回热网低温用热区500,以使热水在区域内其他热网低温用热装置600与热网低温用热区500之间循环。
可选地,集中供热系统还包括低温余废热能汇集装置700,低温余废热能汇集装置700与蒸汽压缩热泵装置200之间设有低温热源回水管线240;低温热源回水管线240配置成将蒸汽压缩热泵装置200中的降温热源输送至低温余废热能汇集装置700。
蒸汽压缩热泵装置200中的降温热源输送至低温余废热能汇集装置700后,被低温余废热能汇集装置700进行加热升温后,再对降温热源进行利用。
具体地,蒸汽压缩热泵装置200包括第一蒸发器,低温余废热能汇集装置700通过低温热源回水管线与第一蒸发器连接。
通过第一蒸发器进行降温的降温热源输送至低温余废热能汇集装置700中,低温余废热能汇集装置700对降温热源进行加热升温后,再对降温热源进行利用。
可选地,低温余废热能汇集装置700与热网低温用热区500之间设有低温热源供水管线710;低温热源供水管线710配置成将低温余废热能汇集装置700汇集的降温热源输送至热网低温用热区500。
低温余废热能汇集装置700将降温热源加热至适合的温度后,输送至热网低温用热区500,对输送至热网低温用热区500进行供热。
可选地,低温余废热能汇集装置采用余废热加热第一蒸发器中的降温热源,能够高效利用低温余废热,提高节能效果。
低温余废热能汇集装置700的供水经低温热源供水管线710进入热网低温用热区500作为直接加热热源,降温后经加热降温后热泵低温热源管线530为吸收热泵装置300提供低温热源,后经吸收热泵后低温热源管线310为蒸汽压缩热泵装置200提供低温热源,再经低温热源回水管线240进入低温余废热能汇集装置700加热至供水温度。
可选地,集中供热系统还包括网外用热系统800,网外用热系统800与蒸汽锅炉房100之间设有外输蒸汽或热水管线150和外输蒸汽凝水或回水管线810;其中:外输蒸汽或热水管线150配置成将蒸汽锅炉房100内的蒸汽或热水输送至网外用热系统800;外输蒸汽凝水或回水管线810配置成将网外用热系统800换热后的蒸汽凝水或降温水输送至蒸汽锅炉房100。
蒸汽锅炉房100产生的热水或蒸汽输送至网外用热系统800,对网外用热系统800进行供热,供热后的蒸汽凝水或降温水又输送回蒸汽锅炉房100,以使热水或蒸汽在蒸汽锅炉房100与网外用热系统800之间循环。
可选地,网外用热系统800与蒸汽锅炉房100之间还设有高温高压蒸汽管线160和高温高压蒸汽凝水管线820;其中:高温高压蒸汽管线160配置成将蒸汽锅炉房100内的蒸汽输送至网外用热系统800;高温高压蒸汽凝水管线820配置成将网外用热系统800中的凝水输送至蒸汽锅炉房100。
可选地,热网高温用换热区400是一级网连接的高温散热二级网,例如暖气片热用户等。蒸汽锅炉房100产生的蒸汽经蒸汽输出管线110经蒸汽压缩热泵装置200提取后分两路:一路经压缩回用蒸汽管线210至蒸汽锅炉房100作为加热一级网供热回水和外输给网外用热系统800的热源;一路经压缩后蒸汽驱动源管线220为吸收热泵装置300提供驱动源。
一级网供热回水管线410的回水首先由吸收热泵装置300经吸收热泵供热热水管线320提供的热能加热后,由蒸汽锅炉房100内的蒸汽或保留热水锅炉出水加热至供水温度。
热网低温用热区500的回水由低温余废热能汇集装置700的低温热源供水管线710中的供水、蒸汽压缩热泵装置200经蒸汽压缩热泵供热热水管线230中的热水,二级网供热热水管线140中的热水逐级共同加热。二级网供热热水管线140中的热量作为调整调峰热源最后进入热网低温用热区500。
网外用热系统800的蒸汽或替代供热价值时由蒸汽锅炉房100经外输蒸汽或热水管线150提供热源、凝水或供热回水经外输蒸汽凝水或回水管线810至蒸汽锅炉房100。网外用热系统800有高温高压蒸汽需求时,由蒸汽锅炉房100提供未经蒸汽压缩热泵装置200提取的蒸汽经高温高压蒸汽管线160至网外用热系统800,凝水由高温高压蒸汽凝水管线820回至蒸汽锅炉房100。
区域内其它热网低温用热装置600的建立目的至少是为了大量直接利用低温余、废热能,二是为热网中热泵供热提供空间,三是增大热网热平衡的调整空间。
相对于现有技术中的热泵,热泵在提供热水时存在难以长时间满负荷运行以及出水低等问题,本申请提供的集中供热系统,几乎能够解决现有技术中的上述问题,能够在供热期间高效地利用废弃的低温余废热,提高节能效果,使废气的低温余废热代替化石燃料产生供热效果。采用蒸汽锅炉房内的蒸汽驱动压缩机运行,以带动蒸汽压缩热泵装置运行从而进行供热,不增加区域化石燃料消耗,提高经济性能,并且操作性较强。
以上对本申请的集中供热系统进行了说明,但是,本申请不限定于上述具体的实施方式,只要不脱离权利要求的范围,可以进行各种各样的变形或变更。本申请包括在权利要求的范围内的各种变形和变更。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
本申请提供的集中供热系统,提取热量多、效率更高、低温余、废热能利用率高,增大热网热平衡的调整空间。
Claims (18)
- 一种集中供热系统,其特征在于,包括:蒸汽锅炉房、蒸汽压缩热泵装置和吸收热泵装置;所述蒸汽锅炉房与所述蒸汽压缩热泵装置之间设有蒸汽输出管线和压缩回用蒸汽管线;其中:所述蒸汽输出管线配置成将所述蒸汽锅炉房内的蒸汽输送至所述蒸汽压缩热泵装置;所述压缩回用蒸汽管线配置成将所述蒸汽压缩热泵装置压缩后的蒸汽输送至所述蒸汽锅炉房;所述蒸汽压缩热泵装置与所述吸收热泵装置之间设有压缩后蒸汽驱动源管线和吸收热泵后低温热源管线;其中:所述压缩后蒸汽驱动源管线配置成将所述蒸汽压缩热泵装置压缩后的蒸汽输送至所述吸收热泵装置;所述吸收热泵后低温热源管线配置成将所述吸收热泵装置热泵后的低温热源输送至所述蒸汽压缩热泵装置;所述吸收热泵装置与所述蒸汽锅炉房之间设有吸收热泵供热热水管线和吸收热泵供热回水管线;其中:所述吸收热泵供热热水管线配置成将所述吸收热泵装置产生的热水输送至所述蒸汽锅炉房;所述吸收热泵供热回水管线配置成将所述蒸汽锅炉房内的水输送至所述吸收热泵装置。
- 根据权利要求1所述的集中供热系统,其特征在于,所述蒸汽压缩热泵装置包括压缩机,所述压缩机由蒸汽驱动运行;所述蒸汽输出管线设置在所述蒸汽锅炉房与所述压缩机之间,所述压缩回用蒸汽管线设置在所述蒸汽锅炉房与所述压缩机之间。
- 根据权利要求2所述的集中供热系统,其特征在于,所述吸收热泵装置包括发生器,所述压缩后蒸汽驱动源管线设置在所述发生器与所述压缩机之间。
- 根据权利要求1-3中任一项所述的集中供热系统,其特征在于,所述蒸汽压缩热泵装置包括第一蒸发器,所述吸收热泵装置包括第二蒸发器,所述吸收热泵后低温热源管线设置在所述第一蒸发器与所述第二蒸发器之间。
- 根据权利要求1-4中任一项所述的集中供热系统,其特征在于,所述吸收热泵装置包括第一冷凝器,所述吸收热泵供热热水管线和所述吸收热泵供热回水管线分别设置在所述第一冷凝器与所述蒸汽锅炉房之间。
- 根据权利要求1-5中任一项所述的集中供热系统,其特征在于,所述集中供热系统还包括热网高温用换热区,所述热网高温用换热区与所述蒸汽锅炉房之间设有一级网供热热水管线和一级网供热回水管线;其中:所述一级网供热热水管线配置成将所述蒸汽锅炉房内的热水输送至所述热网高温用换热区;所述一级网供热回水管线配置成将所述热网高温用换热区换热后的降温水输送至所述蒸汽锅炉房。
- 根据权利要求1-6中任一项所述的集中供热系统,其特征在于,所述集中供热系统还包括热 网低温用热区,所述热网低温用热区与所述蒸汽锅炉房之间设有二级网供热热水管线和二级网供热回水管线;其中:所述二级网供热热水管线配置成将所述蒸汽锅炉房内的热水输送至所述热网低温用热区;所述二级网供热回水管线配置成将所述热网低温用热区换热后的降温水输送至所述蒸汽锅炉房。
- 根据权利要求7所述的集中供热系统,其特征在于,所述热网低温用热区与所述蒸汽压缩热泵装置之间设有蒸汽压缩热泵供热热水管线和蒸汽压缩热泵供热回水管线;其中:所述蒸汽压缩热泵供热热水管线配置成将所述蒸汽压缩热泵装置产生的热水输送至所述热网低温用热区;所述蒸汽压缩热泵供热回水管线,配置成将所述热网低温用热区换热后的降温水输送至所述蒸汽压缩热泵装置。
- 根据权利要求8所述的集中供热系统,其特征在于,所述蒸汽压缩热泵装置包括第二冷凝器,所述蒸汽压缩热泵供热热水管线和所述蒸汽压缩热泵供热回水管线分别设置在所述热网低温用热区与所述第二冷凝器之间。
- 根据权利要求7-9中任一项所述的集中供热系统,其特征在于,所述热网低温用热区与所述吸收热泵装置之间设有加热降温后热泵低温热源管线;所述加热降温后热泵低温热源管线配置成将所述热网低温用热区换热后的降温热源输送至所述吸收热泵装置。
- 根据权利要求10所述的集中供热系统,其特征在于,所述吸收热泵装置包括第二蒸发器,所述加热降温后热泵低温热源管线设置在所述热网低温用热区与所述第二蒸发器之间。
- 根据权利要求7-11中任一项所述的集中供热系统,其特征在于,所述集中供热系统还包括区域内其它热网低温用热装置,所述区域内其它热网低温用热装置与所述热网低温用热区之间设有热网低温用热装置供热管线和热网低温用热装置回水管线;其中:所述热网低温用热装置供热管线配置成将所述热网低温用热区内的热水输送至所述区域内其它热网低温用热装置;所述热网低温用热装置回水管线配置成将所述区域内其它热网低温用热装置换热后的降温水输送至所述热网低温用热区。
- 根据权利要求7-12中任一项所述的集中供热系统,其特征在于,所述集中供热系统还包括低温余废热能汇集装置,所述低温余废热能汇集装置与所述蒸汽压缩热泵装置之间设有低温热源回水管线;所述低温热源回水管线配置成将所述蒸汽压缩热泵装置中的降温热源输送至所述低温余废热能 汇集装置。
- 根据权利要求13所述的集中供热系统,其特征在于,所述蒸汽压缩热泵装置包括第一蒸发器,所述低温余废热能汇集装置通过所述低温热源回水管线与所述第一蒸发器连接。
- 根据权利要求13或14所述的集中供热系统,其特征在于,所述低温余废热能汇集装置与所述热网低温用热区之间设有低温热源供水管线;所述低温热源供水管线配置成将所述低温余废热能汇集装置汇集的降温热源输送至所述热网低温用热区。
- 根据权利要求13-15中任一项所述的集中供热系统,其特征在于,所述低温余废热能汇集装置配置成采用余废热加热所述蒸汽压缩热泵装置中的降温热源。
- 根据权利要求1-16中任一项所述的集中供热系统,其特征在于,所述集中供热系统还包括网外用热系统,所述网外用热系统与所述蒸汽锅炉房之间设有外输蒸汽或热水管线和外输蒸汽凝水或回水管线;其中:所述外输蒸汽或热水管线配置成将所述蒸汽锅炉房内的蒸汽或热水输送至所述网外用热系统;所述外输蒸汽凝水或回水管线配置成将所述网外用热系统换热后的蒸汽凝水或降温水输送至所述蒸汽锅炉房。
- 根据权利要求17所述的集中供热系统,其特征在于,所述网外用热系统与所述蒸汽锅炉房之间还设有高温高压蒸汽管线和高温高压蒸汽凝水管线;其中:所述高温高压蒸汽管线配置成将所述蒸汽锅炉房内的蒸汽输送至所述网外用热系统;所述高温高压蒸汽凝水管线配置成将所述网外用热系统中的凝水输送至所述蒸汽锅炉房。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810454552.8 | 2018-05-11 | ||
CN201810454552.8A CN108458392A (zh) | 2018-05-11 | 2018-05-11 | 集中供热系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214690A1 true WO2019214690A1 (zh) | 2019-11-14 |
Family
ID=63214732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/086260 WO2019214690A1 (zh) | 2018-05-11 | 2019-05-09 | 集中供热系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108458392A (zh) |
WO (1) | WO2019214690A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108458392A (zh) * | 2018-05-11 | 2018-08-28 | 于恩英 | 集中供热系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064047A (ja) * | 2005-08-30 | 2007-03-15 | Hitachi Eng Co Ltd | 蒸気タービンプラントの廃熱回収設備 |
CN202145018U (zh) * | 2011-07-13 | 2012-02-15 | 清华大学 | 一种利用热泵技术提高集中供热管网供热能力的供热系统 |
CN202221124U (zh) * | 2011-08-19 | 2012-05-16 | 清华大学 | 一种低温回水的集中供热系统 |
CN105737131A (zh) * | 2016-03-03 | 2016-07-06 | 陈克秀 | 一种多网联动的余废热能集中供热系统 |
CN105737230A (zh) * | 2016-04-21 | 2016-07-06 | 陈熙荣 | 一种双源互补多网联动大温差余废热能集中供热系统 |
CN105783076A (zh) * | 2016-05-06 | 2016-07-20 | 周悦 | 电厂双源双背压多网余废热能供热系统 |
CN205640843U (zh) * | 2016-03-03 | 2016-10-12 | 陈克秀 | 一种多网联动的余废热能集中供热系统 |
CN106610044A (zh) * | 2016-12-29 | 2017-05-03 | 大连葆光节能空调设备厂 | 一种扩大热电联产集中供热规模的系统 |
CN108458392A (zh) * | 2018-05-11 | 2018-08-28 | 于恩英 | 集中供热系统 |
CN208253698U (zh) * | 2018-05-11 | 2018-12-18 | 于恩英 | 集中供热系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204115055U (zh) * | 2014-09-23 | 2015-01-21 | 大连葆光节能空调设备厂 | 降低供热回水温度及回收热电厂余热的节能供热系统 |
-
2018
- 2018-05-11 CN CN201810454552.8A patent/CN108458392A/zh active Pending
-
2019
- 2019-05-09 WO PCT/CN2019/086260 patent/WO2019214690A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064047A (ja) * | 2005-08-30 | 2007-03-15 | Hitachi Eng Co Ltd | 蒸気タービンプラントの廃熱回収設備 |
CN202145018U (zh) * | 2011-07-13 | 2012-02-15 | 清华大学 | 一种利用热泵技术提高集中供热管网供热能力的供热系统 |
CN202221124U (zh) * | 2011-08-19 | 2012-05-16 | 清华大学 | 一种低温回水的集中供热系统 |
CN105737131A (zh) * | 2016-03-03 | 2016-07-06 | 陈克秀 | 一种多网联动的余废热能集中供热系统 |
CN205640843U (zh) * | 2016-03-03 | 2016-10-12 | 陈克秀 | 一种多网联动的余废热能集中供热系统 |
CN105737230A (zh) * | 2016-04-21 | 2016-07-06 | 陈熙荣 | 一种双源互补多网联动大温差余废热能集中供热系统 |
CN105783076A (zh) * | 2016-05-06 | 2016-07-20 | 周悦 | 电厂双源双背压多网余废热能供热系统 |
CN106610044A (zh) * | 2016-12-29 | 2017-05-03 | 大连葆光节能空调设备厂 | 一种扩大热电联产集中供热规模的系统 |
CN108458392A (zh) * | 2018-05-11 | 2018-08-28 | 于恩英 | 集中供热系统 |
CN208253698U (zh) * | 2018-05-11 | 2018-12-18 | 于恩英 | 集中供热系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108458392A (zh) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105841390B (zh) | 一种用于集中供热系统的燃气驱动空气源热泵供热机组 | |
US7178348B2 (en) | Refrigeration power plant | |
CN107062698A (zh) | 一种高效直膨式太阳能热泵与水源热泵耦合供热系统 | |
US20140026602A1 (en) | Method and Apparatus for Generating Chilled Water for Air-Conditioning | |
CN105674558A (zh) | 燃气机驱动蒸气压缩与吸收复合式热泵热水机组运行方法 | |
CN208704000U (zh) | 一种基于燃气机热泵的锅炉烟气余热回收系统 | |
CN101696642A (zh) | 以中低焓能源为热源的热电联产系统 | |
CN103233821B (zh) | 一种空气温度调节系统 | |
WO2019214690A1 (zh) | 集中供热系统 | |
CN204003103U (zh) | 一种采用天然气和太阳能联合循环的分布式供能设备 | |
KR100604308B1 (ko) | 열병합 발전 및, 냉난방 공급 시스템 | |
CN110631291A (zh) | 一种与光伏系统结合的空气源热泵系统 | |
CN103453690A (zh) | 生物质能冷热电联产节能吸收式热泵装置 | |
KR101188651B1 (ko) | 열병합 발전시스템의 다중 에너지 순환 구조 | |
CN211451451U (zh) | 一种与光伏系统结合的空气源热泵系统 | |
CN205383781U (zh) | 燃气机驱动型蒸气压缩与吸收复合式热泵热水机组 | |
CN214581537U (zh) | 一种用水作导热介质运行的空调热泵一体机控制系统 | |
CN101701534B (zh) | 利用中低焓能源的热电联产系统 | |
CN209840233U (zh) | 空冷高背压机组利用低位能供热制冷联合系统 | |
CN210123212U (zh) | 一种干燥供暖供冷复合系统 | |
CN207751198U (zh) | 一体式带热源型加热式制冷机组 | |
CN102538286A (zh) | 太阳能制冷系统及其制冷方法 | |
CN108397939A (zh) | 一种基于多能源驱动的吸收式空气源热泵装置 | |
CN110044098A (zh) | 一种风光电联合驱动的溴化锂吸收式制冷系统 | |
CN109631414A (zh) | 一种独立机械冷却的吸收/压缩混合循环系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19799586 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19799586 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19799586 Country of ref document: EP Kind code of ref document: A1 |