WO2019214471A1 - 一种内置电极式电容层析成像传感器 - Google Patents

一种内置电极式电容层析成像传感器 Download PDF

Info

Publication number
WO2019214471A1
WO2019214471A1 PCT/CN2019/084748 CN2019084748W WO2019214471A1 WO 2019214471 A1 WO2019214471 A1 WO 2019214471A1 CN 2019084748 W CN2019084748 W CN 2019084748W WO 2019214471 A1 WO2019214471 A1 WO 2019214471A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitance tomography
transmission line
signal transmission
sensor according
Prior art date
Application number
PCT/CN2019/084748
Other languages
English (en)
French (fr)
Inventor
孟霜鹤
叶茂
黄凯
郭强
申敬敬
张涛
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US17/052,910 priority Critical patent/US11162915B2/en
Priority to EP19799673.9A priority patent/EP3816618B1/en
Publication of WO2019214471A1 publication Critical patent/WO2019214471A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor

Definitions

  • the present application relates to a built-in electrode type capacitance tomography sensor, which belongs to the field of sensor design.
  • ECT Electrical Capacitance Tomography
  • the basic principle is that multiphase media have different dielectric constants, and multi-electrode array capacitors are arranged outside the object to be tested.
  • the sensor when the state of the cross-section medium of the measuring electrode changes, causes a change in the equivalent dielectric constant, thereby causing a change in the capacitance value between the electrode pairs measured by the sensor, and using the corresponding image reconstruction algorithm. Obtain the distribution of the medium at the measured section.
  • the first is the material problem.
  • the selected electrode material must have good high temperature resistance and electrical conductivity, and meet the requirements of easier processing and relatively low price;
  • the supporting outer tube to which the fixed sensor is attached must be a high temperature resistant insulator;
  • the high temperature resistant and insulating material not only satisfies the isolation and support between the sensor electrodes in the high temperature environment, but also satisfies the requirements for the insulation and fixing of the metal outer tube which acts as a sensor skeleton and shielding.
  • High-temperature signal transmission cables are not available in ready-made products. They must be made of wire cores, high-temperature insulated pipes, and shielding mesh materials of suitable materials. All materials are selected to ensure good performance and long working life of the entire sensor in high temperature environments.
  • the second is the process problem.
  • the ECT sensor electrode piece needs to be closely attached to the inner wall of the tested container by corresponding means.
  • the technical means must also have good electrical properties at high temperature; since the ECT is extremely small by measurement
  • the capacitance value is imaged, so the size and arrangement of the electrode sheets must be strict and precise, and the electrode material is selected and the electrode is ensured to ensure that the electrode sheets are uniformly and firmly fixed on the inner wall of the container and the electrode sheets are in a good position during the fixing and later work.
  • the method of making the film and the choice of the fixed process are very important.
  • the third is the interference-free means of the signal.
  • the weak electrical signal collected needs to avoid interference transmission to the receiving device. It is necessary to adopt effective shielding technology. It is necessary to select the appropriate material to make the high-temperature double-shielded signal transmission line and use it reasonably.
  • the technology connects it to the signal transmission line of the normal temperature section connected to the ECT signal acquisition system; at the same time, the connection between the electrode piece and the signal transmission cable requires a special connection mode, the connection between the high temperature transmission cable and the normal temperature transmission cable, and the shielding of the ground cable shielding mesh.
  • the connection between the tubes also requires the selection of a suitable method.
  • a built-in electrode type capacitance tomography sensor is provided, wherein the capacitance tomography sensor is a barrel sensor, and includes an array distribution electrode and an electrode insulation sleeve from the inside to the outside. , flanged outer tube, insulated tube and signal transmission line;
  • the array distribution electrode is N electrode sheets of the same size and composed of a measuring end and a fixed end, wherein N is an integer of 8-16.
  • the electrode is connected to the capacitance tomography signal acquisition system through a transmission line, and the collected capacitance data is sent to the capacitance tomography signal acquisition system via the signal transmission line, and then transmitted by the capacitance tomography signal acquisition system to the imaging computer to complete image reconstruction.
  • the array distribution electrode is formed by a tile-shaped electrode having a curved section formed by a turning process and a wire cutting process using a high temperature resistant metal conductor.
  • the outer arc surface of the tile electrode is provided with a metal screw for fixing the electrode.
  • the tile electrode is uniformly fixed on the inner wall of the insulating sleeve by the metal screw, the electrode screw penetrates the electrode insulating sleeve and the flange outer tube, and the outer end is sleeved with an insulating tube, and the insulation The tube insulates the electrode screw from the outer flange of the flange.
  • the insulated tube comprises two segments of uniform thickness and different outer diameters.
  • the inner diameter of the electrode insulating sleeve is the same as the diameter of the concentric circle of the outer arc surface of the array distribution electrode, and the outer diameter is consistent with the inner diameter of the outer tube of the flange, and the length is greater than or equal to the length of the distributed electrode of the array.
  • the outer sleeve of the electrode insulating sleeve is flanged, and the outer tube of the flange is longer than the electrode insulating sleeve.
  • the electrode insulating sleeve and the side surface of the flange outer tube are each provided with a small hole and the hole position is consistent with the position of the electrode screw.
  • the diameter of the hole matches the diameter of the segment of the insulated tube.
  • both ends of the array distribution electrode and the electrode insulating sleeve are provided with an inner insulating ring and an outer insulating ring.
  • the inner and outer diameters of the inner insulating ring are respectively the same as the diameter of the concentric circle in which the inner and outer arcs of the arc-shaped electrode are located, and the inner and outer diameters of the outer insulating ring are the same as the inner and outer diameters of the electrode insulating sleeve.
  • the total length of the electrode and the two inner insulating rings and the total length of the electrode insulating sleeve and the two outer insulating rings are as long as the outer metal flange.
  • the two flanged tubes having the same inner diameter and the same diameter as the inner arc of the electrode are butted against the outer ends of the metal flange outer tube, and the inner and outer insulating rings are sealed to form a connecting pipe having a uniform inner diameter.
  • the signal transmission line includes a high temperature segment signal transmission line and a normal temperature segment signal transmission line
  • the high temperature segment signal transmission line and the normal temperature segment signal transmission line are double shielded wires composed of a cable core, an insulating layer and a shielding wire mesh.
  • the electrode is connected to the cable core of the high-temperature segment signal transmission line, and is connected to the capacitance tomography signal acquisition system via the cable core of the normal temperature segment signal transmission line, and the collected capacitance data is transmitted through the two-stage signal transmission line. It is sent to the capacitance tomography signal acquisition system, and then transmitted to the imaging computer by the electrical capacitance tomography signal acquisition system to complete the image reconstruction.
  • one end of the signal transmission core of the high temperature section is provided with a metal disc, the metal disc mother is fixed on the electrode screw, and the other end core is connected with the signal transmission line core of the normal temperature section; the shielding screen of the two sections of the signal transmission line Connect separately.
  • the shielding screen of the high temperature section signal transmission line is connected to the metal flange outer tube to complete signal shielding.
  • the electrical capacitance tomography sensor is applied to a high temperature environment from room temperature to 1000 ° C;
  • each component of the electrical capacitance tomography sensor is resistant to high temperatures of 1000 °C.
  • the signal transmission line used by the conventional cold ECT is not resistant to high temperature
  • the signal transmission line is divided into a high temperature section and a normal temperature section, and can withstand a high temperature of 1000 °C.
  • the electrode and the high temperature section signal transmission cable core wiring disc are screwed by the screw and the electrode screw, thereby ensuring that the connection between the signal transmission cable and the measuring electrode is kept unobstructed in a high temperature environment.
  • Both the electrode and the electrode of the insulating sleeve are placed with an inner insulating ring and an outer insulating ring at both ends to ensure good insulation between the electrode and the outside.
  • the built-in electrode ECT sensor can be applied to the two-dimensional distribution imaging of the medium in the temperature range from normal temperature to 1000 °C, and the wall surface influence is true to reflect the state of the medium in the tube, effectively broadening the ECT technology in the high temperature and hot state. Application range.
  • FIG. 1 is a schematic view showing the structure of a high temperature resistant sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a single electrode of an array type distributed electrode fabricated by a turning process and a wire cutting process using a high temperature resistant metal conductor according to an embodiment of the present invention.
  • Fig. 3 is a longitudinal sectional view (A-A' direction view) of the high temperature resistant sensor shown in Fig. 1.
  • Fig. 4 is a schematic cross-sectional view (B-B' direction view) of the high temperature resistant sensor shown in Fig. 1.
  • Figure 5 is a schematic illustration of a system including a sensor of the present invention.
  • Figure 6 is a schematic view showing the structure of an insulated tube.
  • 1-array distributed electrode 2-electrode insulated sleeve; 3-metal flanged outer tube; 4-insulated tube; 5-inner insulating ring; 6-outer insulating ring; 7-flange tube; - electrode fixing nut; 9-signal wire fixing nut; 10--flange fastening screw; 11-high temperature section signal transmission line; 12-normal temperature section signal transmission line; 13-signal acquisition system; 14-computer imaging display system.
  • a built-in electrode type capacitance tomography sensor is provided, wherein the capacitance tomography sensor is a barrel sensor, and includes an array distribution electrode and an electrode insulation sleeve from the inside to the outside. , flanged outer tube, insulated tube and signal transmission line;
  • the array distribution electrode is N electrode sheets of the same size and composed of a measuring end and a fixed end, wherein N is an integer of 8-16.
  • the electrode is connected to the capacitance tomography signal acquisition system through a transmission line, and the collected capacitance data is sent to the capacitance tomography signal acquisition system via the signal transmission line, and then transmitted by the capacitance tomography signal acquisition system to the imaging computer to complete image reconstruction.
  • the array distribution electrode is formed by using a high temperature resistant metal conductor through a turning process and a wire cutting process to form a tile-shaped electrode having a curved cross section;
  • the outer curved surface of the tile electrode is provided with a metal screw for fixing the electrode.
  • the tile electrode is uniformly fixed on the inner wall of the insulating sleeve by the metal screw, and the electrode screw penetrates the electrode insulating sleeve and the flange outer tube, and the outer end is sleeved
  • An insulated tube that insulates the electrode screw from the outer flange of the flange.
  • the insulated tube includes two segments of uniform thickness and different outer diameters.
  • the inner diameter of the electrode insulating sleeve is the same as the diameter of the concentric circle of the outer arc surface of the array distribution electrode, and the outer diameter is consistent with the inner diameter of the outer tube of the flange, and the length is greater than or equal to The length of the array distribution electrode, the electrode insulation sleeve outer flange outer tube, the outer flange tube is longer than the electrode insulation sleeve;
  • the electrode insulating sleeve and the outer surface of the flange outer tube are provided with small holes and the hole positions are consistent with the position of the electrode screw;
  • the diameter of the aperture matches the diameter of the segment of the insulated tube.
  • both ends of the array distribution electrode and the electrode insulating sleeve are provided with an inner insulating ring and an outer insulating ring;
  • the inner and outer diameters of the inner insulating ring are respectively the same as the diameter of the concentric circle in which the inner and outer arcs of the arc-shaped electrode are located, and the inner and outer diameters of the outer insulating ring and the electrode insulating sleeve are Same inner and outer diameters;
  • the total length of the electrode and the two inner insulating rings and the total length of the electrode insulating sleeve and the two outer insulating rings are as long as the outer metal flange.
  • two flanged tubes having the same inner diameter and the same diameter as the inner arc of the electrode are butted against the outer ends of the outer flange of the metal flange to seal the inner and outer insulating rings and form a uniform inner diameter.
  • Pipeline In a preferred embodiment of the present invention, two flanged tubes having the same inner diameter and the same diameter as the inner arc of the electrode are butted against the outer ends of the outer flange of the metal flange to seal the inner and outer insulating rings and form a uniform inner diameter.
  • the signal transmission line includes a high temperature section signal transmission line and a normal temperature section signal transmission line, and the high temperature section signal transmission line and the normal temperature section signal transmission line are both a cable core, an insulating layer, and a shielding screen. a double shielded wire
  • the electrode is connected to the core of the high temperature section signal transmission line, and is connected to the capacitance tomography signal acquisition system via the core of the normal temperature section signal transmission line, and the collected
  • the capacitance data is sent to the capacitance tomography signal acquisition system via the two-stage signal transmission line, and then transmitted to the imaging computer by the capacitance tomography signal acquisition system to complete image reconstruction;
  • one end of the high-temperature section signal transmission core is provided with a metal disc, the metal disc nut is fixed on the electrode screw, and the other end core is connected with the signal transmission line core of the normal temperature section;
  • the screen wires of the segment signal transmission lines are connected separately.
  • the shielding screen of the high temperature section signal transmission line is connected to the metal flange outer tube to complete the signal shielding.
  • the electrical capacitance tomography sensor is applied to a high temperature environment of room temperature to 1000 ° C;
  • each component of the electrical capacitance tomography sensor is resistant to high temperatures of 1000 °C.
  • the array type distributed electrode is eight electrode sheets of the same size, and the eight electrode sheets of the array distribution electrode are made of a stainless steel bar by a turning process and a wire cutting process to form a tile-shaped cross section.
  • the outer diameter of the electrode cut into a curved tile is equal to the inner diameter of the quartz tube of the electrode insulating sleeve (46 mm), the length of the electrode is 50 mm, the thickness of the electrode is 2 mm; the outer arc surface of the electrode is welded by a argon arc welding process Two M2.5 stainless steel screws with a length of about 10 mm are used as fixed electrodes and as a signal transmission end connection cable for measuring capacitance (screw pitch 25 mm).
  • FIG. 1 is a schematic structural view of a sensor (hereinafter referred to as an ECT sensor) according to an embodiment of the present invention
  • FIGS. 3 and 4 are respectively a schematic view and a cross section of a longitudinal section (A-A') of the sensor shown in FIG. B') Schematic.
  • the ECT sensor comprises an array type distributed electrode 1; an electrode insulating sleeve 2; a metal flange outer tube 3; an insulating tube 4; an inner insulating ring 5; an outer insulating ring 6; 7; electrode fixing nut 8; signal wire fixing nut 9; flange fastening screw 10; high temperature section signal transmission line 11; normal temperature section signal transmission line 12.
  • the ECT sensor array electrode 1 of the present invention is uniformly fixed to the inner wall of the pre-perforated insulating sleeve 2 by a screw welded to the back surface, and the insulating sleeve 2 is a side-punched quartz glass cylindrical tube having a length of 50 mm and an outer diameter of 50mm, inner diameter 46mm.
  • the metal flange outer tube 3 is made of stainless steel and is turned into a circular tube with welded holes on both sides of the flange. The length is 80 mm, the inner diameter is 50 mm, and the outer diameter is 55 mm.
  • the electrode insulating sleeve 2 is covered with a metal flange outer tube 3, both sides of which are pre-punched and the position of the hole is strictly consistent with the position of the screw on the electrode 1, the diameter of the hole is 6 mm; the electrode screw penetrates the electrode insulating sleeve through the previously punched hole
  • the tube 2 and the metal flange outer tube 3, the electrode screw sleeve insulating tube 4 ensure that it is insulated from the metal flange outer tube, and then the electrode fixing nut 8 is fixed at the thick end of the insulating tube.
  • the inner insulating ring 5 of the ECT sensor is an outer diameter 46 mm wall thickness 2 mm long 15 mm quartz tube, the outer insulating ring 6 is 15 mm long and the electrode insulating sleeve is of the same type quartz tube, and the electrode and the electrode insulating sleeve shaft are respectively respectively Insert the inner insulation ring and the outer insulation ring.
  • the flange lead pipe 7 of the ECT sensor is made of stainless steel by turning into a welded flange at one end of the round pipe, and has an inner diameter of 42 mm and an outer diameter of 47 mm. The flange guide pipe and the metal flange outer pipe are butted through the flange, and the flange is closed.
  • the ECT sensor signal transmission line comprises a high temperature section and a normal temperature section, and the high temperature section signal transmission line 11 is welded at one end to a 1 mm diameter stainless steel wire with a diameter of 3 mm hole stainless steel disc as a core, and the insulating layer is composed of a corrugated tube jacket stainless steel mesh having an inner diameter of 1.5 mm.
  • Double shielded wire; the normal temperature section signal transmission line 12 is a common double shielded wire composed of a cable core, an insulating layer and a shielded wire mesh.
  • the ECT sensor fixes the wafer welded at one end of the core of the high-temperature section signal transmission line 11 with a transmission line fixing nut 9 (M2.5 stainless steel nut) on the electrode screw, and the other end of the core is connected with the signal line of the normal temperature section signal transmission line 12;
  • the segment signal cable is shielded from the screen; the ECT sensor connects the shield screen of the high temperature section signal transmission line 11 with the metal flange outer tube 3 and the flange guide tube 7 to complete the signal shielding.
  • FIG. 5 is a schematic diagram of an ECT system including an ECT sensor of the present invention, the array distributed electrode passing through the core of the high temperature section signal transmission line 11 and passing through the core of the ambient temperature section signal transmission line 12 connected thereto and the ECT signal acquisition system 13 is connected, and the measured capacitance data is transmitted to the ECT computer imaging display system 14 through the data acquisition card to complete image reconstruction by a corresponding algorithm.
  • One end of the shielding screen of the high-temperature section signal transmission line 11 is in contact with the outer tube 3 of the ECT sensor metal flange, and the other end is connected to the ECT signal acquisition system 13 via the shielding screen of the signal transmission line 12 of the normal temperature section connected thereto. Ground wire is grounded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种内置电极式电容层析成像传感器,其特征在于,所述电容层析成像传感器为桶状传感器,由内至外依次包括阵列分布电极(1)、电极绝缘套管(2)、法兰外管(3)、绝缘型管(4)和信号传输线;所述阵列分布电极(1)为N个大小相同并且由测量端和固定端组成的电极片,其中N的取值为8~16的整数。所述电极通过传输线与电容层析成像信号采集系统(13)连接,所采集的电容数据经信号传输线送至电容层析成像信号采集系统(13),再由电容层析成像信号采集系统(13)传送到成像计算机完成图像重建。

Description

一种内置电极式电容层析成像传感器 技术领域
本申请涉及一种内置电极式电容层析成像传感器,属于传感器设计领域。
背景技术
电容层析成像(Electrical Capacitance Tomography,简称ECT)是过程层析成像技术中的一种,其基本原理是多相介质具有不同的介电常数,通过在被测对象外部排布多电极阵列式电容传感器,当测量电极所在截面介质状态发生变化时,会引起等效介电常数的变化,从而导致传感器测得的各电极对之间的电容值发生变化,利用相应的图像重构算法,即可获得所测截面处的介质分布情况。
ECT应用到高温体系,关键难点是高温ECT传感器的制作方面,这是实现高温ECT应用的最为关键的一步。高温内置电极ECT传感器的研制尤为重要,但制作更尤为复杂。
设计高温内置电极ECT传感器,有几个关键问题需要解决:
第一是材料问题,所选择的电极材料须具有良好的耐高温特性和导电性,并满足较易于加工且价格相对低廉的要求;固定传感器所依附的支撑外管必须是耐高温的绝缘体;选用的耐高温且绝缘的材料不仅要满足高温环境整个传感器电极间隔离与支撑作用,更要满足对起传感器骨架与屏蔽作用的金属外管的绝缘与固定的要求。高温信号传输线缆无现成商品可提供,必须选择合适材料的线芯、高温绝缘管材、屏蔽网材料来专门自己制作。所有材料的选择都要保证整个传感器在高温环境下有良好的性能和较长的工作寿命。
第二是工艺问题,为了达到测量的目的,ECT传感器电极片需要通过相应的手段紧贴在所测容器内壁,该技术手段必须在高温下也具有良好的电性能;由于ECT通过测量极其微小的电容值进行成像,因此电极片的大小尺寸和排列必须严格精准,而且为保证电极片均匀且牢固地固定在容器内壁且电极片在固定以及以后的工作过程中不错位,电极材料的选择、电极片的制作方法与固定工艺的选 择都非常重要。
第三是信号的免干扰手段,采集到的微弱电信号需要避免干扰传输到接受设备,需要采用有效的屏蔽技术手段,必须选择合适的材料来专门自己制作耐高温双屏蔽信号传输线,并采用合理的技术将其与连接ECT信号采集系统的常温段信号传输线相连;同时,电极片与信号传输电缆的连接需要特殊连接方式,高温传输电缆与常温传输电缆之间的连接,接地电缆屏蔽网外屏蔽管之间的连接还需要选择合适的方法。
由于高温ECT传感器制作面临诸多挑战,目前,国内外关于ECT传感器的研究大多在室温环境。
发明内容
根据本申请的一个方面,提供了一种内置电极式电容层析成像传感器,其特征在于,所述电容层析成像传感器为桶状传感器,由内至外依次包括阵列分布电极、电极绝缘套管、法兰外管、绝缘型管和信号传输线;
所述阵列分布电极为N个大小相同并且由测量端和固定端组成的电极片,其中N的取值为8~16的整数。
所述电极通过传输线与电容层析成像信号采集系统连接,所采集的电容数据经信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建。
优选地,所述阵列分布电极由采用耐高温金属导体通过车削工艺、丝切割工艺制成断面为弧形的瓦状电极形成。
优选地,所述瓦状电极的外弧面设有金属螺杆,所述金属螺杆用以固定电极。
优选地,所述瓦状电极通过所述金属螺杆定位均匀固定在所述绝缘套管的内壁,电极螺杆贯穿电极绝缘套管与法兰外管,其外端套有绝缘型管,所述绝缘型管使所述电极螺杆与法兰外管绝缘。
优选地,所述绝缘型管包括内径一致、外径不同的粗细两段。
优选地,所述电极绝缘套管的内径与所述阵列分布电极外侧弧 面所在的同心圆的直径一致,外径与法兰外管内径一致,长度大于等于所述阵列分布电极的长,所述电极绝缘套管外套法兰外管,法兰外管长于电极绝缘套管。
优选地,所述电极绝缘套管和所述法兰外管的侧面均设有小孔且孔位置与电极螺杆位置一致。
更优选地,孔的直径与绝缘型管的细段直径匹配。
优选地,所述阵列分布电极与电极绝缘套管的两端设有内层绝缘环、外层绝缘环。
优选地,所述内层绝缘环的内外径分别与弧形的瓦状电极内外弧度所在的同心圆的直径相同,外层绝缘环的内外径与电极绝缘套管的内外径相同。
优选地,电极与两个内层绝缘环的总长度以及电极绝缘套管与两个外层绝缘环的总长度与金属法兰外管等长。
优选地,将两个内径与电极内弧直径相同的法兰引管与金属法兰外管两端对接,封住内、外层绝缘环并形成一段内径一致的连通管路。
优选地,所述信号传输线包括高温段信号传输线和常温段信号传输线,所述高温段信号传输线和所述常温段信号传输线均为由缆芯、绝缘层和屏蔽丝网组成的双屏蔽线。
优选地,所述电极通过与所述高温段信号传输线的缆芯连接,并经由所述常温段信号传输线的缆芯与电容层析成像信号采集系统连接,所采集的电容数据经两段信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建。
优选地,所述高温段信号传输线芯一端设有金属圆片,所述金属圆片母固定在电极螺杆上,另一端线芯与常温段信号传输线线芯连接;两段信号传输线的屏蔽丝网单独连接。
优选地,将高温段信号传输线的屏蔽丝网与金属法兰外管连接,完成信号屏蔽。
优选地,所述电容层析成像传感器应用于室温至1000℃的高温 环境下;
优选地,所述电容层析成像传感器的各部件均耐受1000℃高温。
本申请能产生的有益效果包括:
(1)根据传统冷态ECT使用的信号传输线不耐高温的缺陷,将信号传输线分为高温段和常温段,可耐1000℃高温。
(2)使用阵列分布电极测量电容,电极与高温段信号传输线缆芯接线圆片通过螺丝与电极螺杆拧紧,从而确保信号传输电缆与测量电极的连接在高温环境下保持通畅。
(3)电极与电极绝缘套管轴两端均放入内层绝缘环、外层绝缘环,以保证电极与外界绝缘效果好。
(4)所设计的内置电极ECT传感器能够正常应用于常温至1000℃高温温度范围内管内介质二维分布成像,且排除壁面影响真实反映管内介质状态,有效拓宽了ECT技术在高温热态领域的应用范围。
附图说明
图1为根据本发明一个实施方案的耐高温传感器的结构示意图。
图2为根据本发明一个实施方案采用耐高温金属导体通过车削工艺、丝切割工艺制成的阵列式分布电极的一个单电极示意图。
图3为图1所示的耐高温传感器的纵截面示意图(A-A’方向视图)。
图4为图1所示的耐高温传感器的横截面示意图(B-B’方向视图)。
图5为包括本发明的传感器的系统示意图。
图6为绝缘型管结构示意图。
部件和附图标记列表:
1-阵列式分布电极;2-电极绝缘套管;3-金属法兰外管;4-绝缘型管;5-内层绝缘环;6-外层绝缘环;7-法兰引管;8-电极固定螺母;9-信号线固定螺母;10-法兰紧固螺丝;11-高温段信号传输线;12- 常温段信号传输线;13-信号采集系统;14-计算机成像显示系统。
具体实施方式
根据本申请的一个方面,提供了一种内置电极式电容层析成像传感器,其特征在于,所述电容层析成像传感器为桶状传感器,由内至外依次包括阵列分布电极、电极绝缘套管、法兰外管、绝缘型管和信号传输线;
所述阵列分布电极为N个大小相同并且由测量端和固定端组成的电极片,其中N的取值为8~16的整数。
所述电极通过传输线与电容层析成像信号采集系统连接,所采集的电容数据经信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建。
在本发明的一个优选实施方式中,所述阵列分布电极由采用耐高温金属导体通过车削工艺、丝切割工艺制成断面为弧形的瓦状电极形成;
在本发明的一个优选实施方式中,所述瓦状电极的外弧面设有金属螺杆,所述金属螺杆用以固定电极。
在本发明的一个优选实施方式中,所述瓦状电极通过所述金属螺杆定位均匀固定在所述绝缘套管的内壁,电极螺杆贯穿电极绝缘套管与法兰外管,其外端套有绝缘型管,所述绝缘型管使所述电极螺杆与法兰外管绝缘。
在本发明的一个优选实施方式中,所述绝缘型管包括内径一致、外径不同的粗细两段。
在本发明的一个优选实施方式中,所述电极绝缘套管的内径与所述阵列分布电极外侧弧面所在的同心圆的直径一致,外径与法兰外管内径一致,长度大于等于所述阵列分布电极的长,所述电极绝缘套管外套法兰外管,法兰外管长于电极绝缘套管;
在本发明的一个优选实施方式中,所述电极绝缘套管和所述法兰外管的侧面均设有小孔且孔位置与电极螺杆位置一致;
在本发明的一个优选实施方式中,孔的直径与绝缘型管的细段 直径匹配。
在本发明的一个优选实施方式中,所述阵列分布电极与电极绝缘套管的两端设有内层绝缘环、外层绝缘环;
在本发明的一个优选实施方式中,所述内层绝缘环的内外径分别与弧形的瓦状电极内外弧度所在的同心圆的直径相同,外层绝缘环的内外径与电极绝缘套管的内外径相同;
在本发明的一个优选实施方式中,电极与两个内层绝缘环的总长度以及电极绝缘套管与两个外层绝缘环的总长度与金属法兰外管等长。
在本发明的一个优选实施方式中,将两个内径与电极内弧直径相同的法兰引管与金属法兰外管两端对接,封住内、外层绝缘环并形成一段内径一致的连通管路。
在本发明的一个优选实施方式中,所述信号传输线包括高温段信号传输线和常温段信号传输线,所述高温段信号传输线和所述常温段信号传输线均为由缆芯、绝缘层和屏蔽丝网组成的双屏蔽线;
在本发明的一个优选实施方式中,所述电极通过与所述高温段信号传输线的缆芯连接,并经由所述常温段信号传输线的缆芯与电容层析成像信号采集系统连接,所采集的电容数据经两段信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建;
在本发明的一个优选实施方式中,所述高温段信号传输线芯一端设有金属圆片,所述金属圆片螺母固定在电极螺杆上,另一端线芯与常温段信号传输线线芯连接;两段信号传输线的屏蔽丝网单独连接。
在本发明的一个优选实施方式中,将高温段信号传输线的屏蔽丝网与金属法兰外管连接,完成信号屏蔽。
在本发明的一个优选实施方式中,所述电容层析成像传感器应用于室温至1000℃的高温环境下;
在本发明的一个优选实施方式中,所述电容层析成像传感器的各部件均耐受1000℃高温。
以下结合附图对本发明进行详细说明,应当理解的是,本发明的保护范围并不限于下文所述的各优选实施方式。
图2为根据本发明一个实施方案提供的阵列式分布电极的示意图。如图2所示,所述阵列式分布电极为8个大小相同的电极片,阵列分布电极的8个电极片用不锈钢棒材通过车削工艺、丝切割工艺制成断面为弧形的瓦片状的阵列式分布电极,切割成弧形瓦片状电极的外径与电极绝缘套管石英管的内径相等(46mm)电极长度为50mm电极的厚度为2mm;电极外弧面采用氩弧焊工艺焊接两个长约10mm的M2.5不锈钢螺杆做固定电极和兼做信号传输端连接电缆测量电容用(螺杆间距25mm)。
图1为根据本发明一个实施方案的传感器(后文称为ECT传感器)的结构示意图,图3和图4分别为图1所示传感器纵截面(A-A’)示意图和横截面(B-B’)示意图。如图1所示,该ECT传感器包括阵列式分布电极1;电极绝缘套管2;金属法兰外管3;绝缘型管4;内层绝缘环5;外层绝缘环6;法兰引管7;电极固定螺母8;信号线固定螺母9;法兰紧固螺丝10;高温段信号传输线11;常温段信号传输线12。本发明的ECT传感器阵列电极1通过焊接在背面的螺杆均匀固定于预先打孔的绝缘套管2的内壁,该绝缘套管2为侧面打孔石英玻璃圆柱管,其长度为50mm、外径为50mm、内径46mm。金属法兰外管3采用不锈钢材料车削加工成圆管两端焊接法兰侧面均匀打孔制成,其长80mm、内径50mm、外径55mm。电极绝缘套管2外套金属法兰外管3,二者侧面均预先打孔且孔位置与电极1上螺杆位置严格一致,孔的直径为6mm;电极螺杆通过预先打过的孔贯穿电极绝缘套管2与金属法兰外管3,电极螺杆外套绝缘型管4保证其与金属法兰外管绝缘后在绝缘型管粗端拧电极固定螺母8固定。所述ECT传感器的内层绝缘环5为外径46mm壁厚2mm长15mm石英管,外层绝缘环6用15mm长与电极绝缘套管同型号石英管,电极与电极绝缘套管轴两端分别放入内层绝缘环、外层绝缘环。所述ECT传感器的法兰引管7采用不锈钢经车削加工成圆管一端焊接 法兰制作,内径为42mm、外径为47mm,将法兰引管与金属法兰外管通过法兰对接,封住内、外层绝缘环后紧固法兰紧固螺丝10完成传感器主体制作。所述ECT传感器信号传输线包括高温段和常温段,高温段信号传输线11由一端焊接在带直径3mm孔不锈钢圆片上的直径1mm不锈钢丝为线芯、绝缘层为内径1.5mm刚玉管外套不锈钢网组成双屏蔽线;常温段信号传输线12为由缆芯、绝缘层和屏蔽丝网组成的普通双屏蔽线。所述ECT传感器将高温段信号传输线11线芯一端焊接的圆片用传输线固定螺母9(M2.5不锈钢螺母)固定在电极螺杆上,另一端线芯与常温段信号传输线12线芯连接;两段信号电缆屏蔽丝网连接;所述ECT传感器将高温段信号传输线11的屏蔽丝网与金属法兰外管3和法兰引管7连接完成信号屏蔽。
图5为包括本发明的ECT传感器的ECT系统的示意图,所述阵列分布电极通过高温段信号传输线11的缆芯再通过与之相连的所述常温段信号传输线12的缆芯与ECT信号采集系统13连接,再通过数据采集卡将测量得到的电容数据传送到ECT计算机成像显示系统14中通过相应的算法完成图像重建。所述高温段信号传输线11的屏蔽丝网的一端与处于ECT传感器金属法兰外管3接触连接,另一端经由与之相连的常温段信号传输线12的屏蔽丝网与ECT信号采集系统13的连接地线接地。
图中的耐高温ECT传感器采用8个测量电极,但根据使用的ECT信号采集系统13的需要,可以采用16个测量通道,因此本发明所述传感器的阵列分布测量电极的数量可为8~16之间的任意整数,且每一个测量电极外弧弧长(宽度)的计算方法为w=πd/N-δ,其中w为电极宽度;d为电极绝缘套管管道2的内径;N为阵列分布电极数目;δ为相邻电极之间的间距。在所示实施例中,电极间间距δ为1mm,因此电极外弧弧长17.06mm。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的 范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (18)

  1. 一种内置电极式电容层析成像传感器,其特征在于,所述电容层析成像传感器为桶状传感器,由内至外依次包括阵列分布电极、电极绝缘套管、法兰外管、绝缘型管和信号传输线;
    所述阵列分布电极为N个大小相同并且由测量端和固定端组成的电极片,其中N的取值为8~16的整数;
    所述电极通过传输线与电容层析成像信号采集系统连接,所采集的电容数据经信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建。
  2. 根据权利要求1所述的电容层析成像传感器,其特征在于,所述阵列分布电极由采用耐高温金属导体通过车削工艺、丝切割工艺制成断面为弧形的瓦状电极形成。
  3. 根据权利要求2所述的电容层析成像传感器,其特征在于,所述瓦状电极的外弧面设有金属螺杆,所述金属螺杆用以固定电极。
  4. 根据权利要求2所述的电容层析成像传感器,其特征在于,所述瓦状电极通过所述金属螺杆定位均匀固定在所述绝缘套管的内壁,电极螺杆贯穿电极绝缘套管与法兰外管,其外端套有绝缘型管,所述绝缘型管使所述电极螺杆与法兰外管绝缘。
  5. 根据权利要求1所述的电容层析成像传感器,其特征在于,所述绝缘型管包括内径一致、外径不同的粗细两段。
  6. 根据权利要求5所述的电容层析成像传感器,其特征在于,所述电极绝缘套管的内径与所述阵列分布电极外侧弧面所在的同心圆的直径一致,外径与法兰外管内径一致,长度大于等于所述阵列分布电极的长,所述电极绝缘套管外套法兰外管,法兰外管长于电极绝缘套管。
  7. 根据权利要求6所述的电容层析成像传感器,其特征在于,所述电极绝缘套管和所述法兰外管的侧面均设有小孔且孔位置与电极螺杆位置一致。
  8. 根据权利要求7所述的电容层析成像传感器,其特征在于,
    孔的直径与绝缘型管的细段直径匹配。
  9. 根据权利要求2所述的电容层析成像传感器,其特征在于,所述阵列分布电极与电极绝缘套管的两端设有内层绝缘环、外层绝缘环。
  10. 根据权利要求9所述的电容层析成像传感器,其特征在于,所述内层绝缘环的内外径分别与弧形的瓦状电极内外弧度所在的同心圆的直径相同,外层绝缘环的内外径与电极绝缘套管的内外径相同。
  11. 根据权利要求10所述的电容层析成像传感器,其特征在于,电极与两个内层绝缘环的总长度以及电极绝缘套管与两个外层绝缘环的总长度与法兰外管等长。
  12. 根据权利要求1所述的电容层析成像传感器,其特征在于,将两个内径与电极内弧直径相同的法兰引管与法兰外管两端对接,封住内、外层绝缘环并形成一段内径一致的连通管路。
  13. 根据权利要求1所述的电容层析成像传感器,其特征在于,所述信号传输线包括高温段信号传输线和常温段信号传输线,所述高温段信号传输线和所述常温段信号传输线均为由缆芯、绝缘层和屏蔽丝网组成的双屏蔽线。
  14. 根据权利要求13所述的电容层析成像传感器,其特征在于,所述电极通过与所述高温段信号传输线的缆芯连接,并经由所述常温段信号传输线的缆芯与电容层析成像信号采集系统连接,所采集的电容数据经两段信号传输线送至电容层析成像信号采集系统,再由电容层析成像信号采集系统传送到成像计算机完成图像重建。
  15. 根据权利要求14所述的电容层析成像传感器,其特征在于,所述高温段信号传输线芯一端设有金属圆片,所述金属圆片母固定在电极螺杆上,另一端线芯与常温段信号传输线线芯连接;两段信号传输线的屏蔽丝网单独连接。
  16. 根据权利要求13所述的电容层析成像传感器,其特征在于,将高温段信号传输线的屏蔽丝网与法兰外管连接,完成信号屏蔽。
  17. 根据权利要求1所述的电容层析成像传感器,其特征在于, 所述电容层析成像传感器应用于室温至1000℃的高温环境下。
  18. 根据权利要求17所述的电容层析成像传感器,其特征在于,所述电容层析成像传感器的各部件均耐受1000℃高温。
PCT/CN2019/084748 2018-05-08 2019-04-28 一种内置电极式电容层析成像传感器 WO2019214471A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/052,910 US11162915B2 (en) 2018-05-08 2019-04-28 Built-in electrode electrical capacitance tomography sensor
EP19799673.9A EP3816618B1 (en) 2018-05-08 2019-04-28 Built-in electrode electrical capacitance tomography sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810432339.7 2018-05-08
CN201810432339.7A CN110455877B (zh) 2018-05-08 2018-05-08 一种内置电极式电容层析成像传感器

Publications (1)

Publication Number Publication Date
WO2019214471A1 true WO2019214471A1 (zh) 2019-11-14

Family

ID=68467718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084748 WO2019214471A1 (zh) 2018-05-08 2019-04-28 一种内置电极式电容层析成像传感器

Country Status (4)

Country Link
US (1) US11162915B2 (zh)
EP (1) EP3816618B1 (zh)
CN (1) CN110455877B (zh)
WO (1) WO2019214471A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017801A (zh) * 2020-07-31 2020-12-01 清华大学 内置电容式棒位测量传感器及控制棒水压驱动系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579604B (zh) * 2020-05-20 2023-12-05 中国民航大学 一种可旋转的平面电容层析成像传感器
CN113125524B (zh) * 2021-04-19 2023-01-20 上海交通大学 单层网式丝网传感器
CN113960124B (zh) * 2021-09-10 2022-10-28 西安交通大学 一种带有图像修正功能的便携式ect系统
CN114527231B (zh) * 2021-12-28 2023-02-07 中国矿业大学 一种基于电容层析成像的燃空区测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332170A1 (en) * 2009-06-30 2010-12-30 Gao Robert X Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography
CN103439375A (zh) * 2013-08-23 2013-12-11 华北电力大学 一种集成式电容-超声层析成像传感器
CN105353004A (zh) * 2015-11-20 2016-02-24 华北电力大学 测量环形空间的双螺旋电极电容层析成像传感器
CN106370705A (zh) * 2016-08-18 2017-02-01 中国科学院工程热物理研究所 三维电容层析成像传感器
CN106556629A (zh) * 2015-09-25 2017-04-05 中国科学院大连化学物理研究所 一种高温电容层析成像传感器及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282032A (ja) * 1997-04-02 1998-10-23 Sekiyu Kodan 混合物体積割合測定センサ
US7119553B2 (en) * 2003-06-11 2006-10-10 Konsulteurope Limited Limited Joint Stock Company Security scanners with capacitance and magnetic sensor arrays
CN1538168A (zh) * 2003-10-21 2004-10-20 浙江大学 基于电容层析成像系统的油气两相流测量方法及其装置
WO2006102388A1 (en) * 2005-03-22 2006-09-28 The Ohio State University 3d and real-time electrical capacitance volume-tomography: sensor design and image reconstruction
US8791707B2 (en) * 2010-07-19 2014-07-29 Iowa State University Research Foundation, Inc. Concentric coplanar capacitive sensor system with quantitative model
CN102156225B (zh) * 2011-03-18 2013-05-01 华北电力大学 具有粉粒体介电系数变化测量电极的电容层析成像传感器
US10132847B2 (en) * 2011-12-06 2018-11-20 Schlumberger Technology Corporation Tomography of multiphase mixtures
CN103604843B (zh) * 2013-11-27 2017-01-25 华北电力大学 一种应用于液下环境的电容层析成像传感器
US9791396B2 (en) * 2015-05-07 2017-10-17 Tech4Imaging Llc Space adaptive reconstruction technique for adaptive electrical capacitance volume tomography
CN106896143B (zh) * 2015-12-18 2019-10-08 中国科学院大连化学物理研究所 一种耐高温电容层析成像传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332170A1 (en) * 2009-06-30 2010-12-30 Gao Robert X Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography
CN103439375A (zh) * 2013-08-23 2013-12-11 华北电力大学 一种集成式电容-超声层析成像传感器
CN106556629A (zh) * 2015-09-25 2017-04-05 中国科学院大连化学物理研究所 一种高温电容层析成像传感器及其制备方法
CN105353004A (zh) * 2015-11-20 2016-02-24 华北电力大学 测量环形空间的双螺旋电极电容层析成像传感器
CN106370705A (zh) * 2016-08-18 2017-02-01 中国科学院工程热物理研究所 三维电容层析成像传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816618A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017801A (zh) * 2020-07-31 2020-12-01 清华大学 内置电容式棒位测量传感器及控制棒水压驱动系统
CN112017801B (zh) * 2020-07-31 2022-09-09 清华大学 内置电容式棒位测量传感器及控制棒水压驱动系统

Also Published As

Publication number Publication date
EP3816618A4 (en) 2021-07-07
US20210239642A1 (en) 2021-08-05
CN110455877A (zh) 2019-11-15
US11162915B2 (en) 2021-11-02
CN110455877B (zh) 2021-06-01
EP3816618A1 (en) 2021-05-05
EP3816618B1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
WO2019214471A1 (zh) 一种内置电极式电容层析成像传感器
CN106556629B (zh) 一种高温电容层析成像传感器及其制备方法
CN106896143B (zh) 一种耐高温电容层析成像传感器
CN105353004B (zh) 测量环形空间的双螺旋电极电容层析成像传感器
CN105466465B (zh) 一种螺旋结构电极的电容层析成像传感器
JP2015536447A5 (zh)
WO2023093001A1 (zh) 一种ert/ect双模态复合式三维传感器
CN108152341B (zh) 一种低温流体管内流动电容层析成像装置
CN110470704A (zh) 一种应用于低温流体两相流相分布测量的电容层析成像传感器
CN110459358B (zh) 一种耐高温信号传输线和一种耐高温电容层析成像传感器
US4288291A (en) Radiation detector for use in nuclear reactors
US3865967A (en) Fluid pressurized electrical cables having means incorporated therewith for locating leaks
CN111175355B (zh) 用于高温流化床测量的电容层析成像传感器及系统
CN210268948U (zh) 一种全温度场测量式特种非均匀电加热元件
CN110686791A (zh) 超长的耐高温高压的多点油井温度传感器及其制备方法
CN111175354B (zh) 电容层析成像传感器及系统
US11906460B2 (en) Electrical capacitance volume tomography device for cryogenic fluid flowing in Venturi tube
US4087693A (en) Sensors for use in nuclear reactor cores
CN109900752A (zh) 一种耐高温高压的电容阵列传感器
CN108896627A (zh) 一种高温下直接接触换热器管内电容层析成像传感器以及实时动态监测系统
CN220473428U (zh) 一种可拆卸式变直径电容层析成像传感器及成像系统
CN208350724U (zh) 采样管束及具有该采样管束的采样分析设备
CN214894991U (zh) 一种低温ect传感器
CN107725972B (zh) 一种真空夹层低温流体传输管道
CN214622433U (zh) 一种耐高温ect传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799673

Country of ref document: EP

Effective date: 20201208