WO2019214342A1 - 一种微纳米气泡结构 - Google Patents

一种微纳米气泡结构 Download PDF

Info

Publication number
WO2019214342A1
WO2019214342A1 PCT/CN2019/078202 CN2019078202W WO2019214342A1 WO 2019214342 A1 WO2019214342 A1 WO 2019214342A1 CN 2019078202 W CN2019078202 W CN 2019078202W WO 2019214342 A1 WO2019214342 A1 WO 2019214342A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
nano bubble
bubble structure
generator body
core sleeve
Prior art date
Application number
PCT/CN2019/078202
Other languages
English (en)
French (fr)
Inventor
许铮峯
Original Assignee
乔登卫浴(江门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乔登卫浴(江门)有限公司 filed Critical 乔登卫浴(江门)有限公司
Publication of WO2019214342A1 publication Critical patent/WO2019214342A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4523Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/48Mixing water in water-taps with other ingredients, e.g. air, detergents or disinfectants

Definitions

  • the present invention relates to the field of micro-nano bubbles, and in particular to a micro-nano bubble structure.
  • micro-nano bubbles have the characteristics of small bubble size, large specific surface area, high adsorption efficiency, slow rising speed and strong oxidizing property. Micro-nano bubbles are introduced into the water, which have the advantages of effectively separating solid impurities in water, rapidly increasing the oxygen concentration of water, and killing harmful bacteria in water. Compared with other water treatment methods, micro-nano bubbles have the characteristics of simple operation, low power consumption and no secondary pollution.
  • the faucets currently used on the market use only a negative pressure in the water outlet of the product to mix the air into the water body to form a bubble water with a slightly higher gas content.
  • the mixing of the gas and the water body is not sufficient enough to produce Micro-nano bubbles, and the resulting bubbles have no germicidal effect.
  • the prior art faucet has the following problems: 1. Generally, the micro-nano bubble device is externally attached to the outer end of the faucet outlet, and the overall appearance is not good, and the external elongation also affects the use height of the faucet outlet height, etc., resulting in Some inconveniences in use; 2, because the external connection method is not combined with the original design of the faucet, it may cause some connection specifications to be inconvenient to install or cannot be installed effectively; 3.
  • the micro-nano bubble generator is only after being sprayed. The shear is sheared in a static flow guiding turbine and screen combination to produce micro-nano bubbles. Moreover, the effect of generating the micro-nano bubbles is susceptible to water pressure, and the size of the bubbles is difficult to control. As a result, the decontamination ability fluctuates greatly and cannot be widely promoted and used.
  • the present invention provides a micro-nano bubble structure which can sufficiently mix water and gas and has the advantage of a bactericidal effect.
  • a micro-nano bubble structure comprising: a generator body, a micro-nano bubble generating device, a capping group and a faucet outlet, wherein the micro-nano bubble generating device is disposed inside the generator body, and the micro-nano bubble generating device One end is connected to the main body of the generator, and the other end is connected with the capping group.
  • the capping group in-linely seals the micro-nano bubble generating device inside the main body of the generator, and the outlet of the faucet is set as a part of the main body of the generator, and micro-nano bubbles occur.
  • the device includes a sealing ring, an inner core sleeve, a middle core sleeve, a mesh sleeve and a fixing ring from the inside to the outside.
  • the impact zone is provided as an annular gap.
  • the material of the net sleeve is a porous mesh material, and the micropores of the mesh sleeve are more than 500 mesh.
  • the inner core sleeve is provided with a plurality of holes.
  • a plurality of flow guiding grooves are arranged on the wall of the core sleeve.
  • a plurality of flow guiding grooves are provided to be arranged along the circumference.
  • the radial width of the annular gap is set to be smaller than the diameter of the hole.
  • the cover set includes a seal ring and a cover.
  • the generator body further includes a liquid processing portion including a contraction section, a mixing section, an expansion section, an air suction hole, a first groove, an annular groove, and a second groove a groove and a third groove.
  • the invention provides a micro-nano bubble structure, which can fully mix water and gas and has the advantages of sterilization effect.
  • FIG. 1 is a structural view of a micro-nano bubble structure in accordance with an embodiment of the present invention
  • FIG. 2 is a structural view of a micro-nano bubble structure in accordance with an embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of the micro-nano bubble generating device of FIG. 1 in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic view of a micro-nano bubble structure in which a micro-nano bubble structure is installed at an end of a faucet according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a showerhead mounted with a micro-nano bubble structure, wherein a micro-nano bubble structure is installed at an end of the showerhead, in accordance with an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a shower provided with a micro-nano bubble structure according to another embodiment of the present invention.
  • FIG. 7 is a schematic exploded view of a faucet mounted with a micro-nano bubble structure in accordance with an embodiment of the present invention.
  • first, second, third, etc. may be used to describe various elements in the present disclosure, these elements should not be limited to these terms. These terms are only used to distinguish elements of the same type from one another. For example, a first element could also be termed a second element without departing from the scope of the disclosure. Similarly, a second element could also be termed a first element. Depending on the context, the word “if” as used herein may be interpreted as "when” or "when”.
  • a micro-nano bubble structure 1 includes a generator body 12, a micro-nano bubble generating device 13, a cap group 14 and a faucet outlet 15, wherein micro-nano bubbles occur
  • the device 13 is disposed inside the generator body 12, one end of the micro-nano bubble generating device 13 is connected to the generator body 12, and the other end is connected to the cap group 14, and the cap group 14 is embedded with the micro-nano bubble generating device 13 Sealed inside the generator body 12, the faucet outlet 15 is provided as part of the generator body 12, and the micro-nano bubble generating device 13 includes a sealing ring 131, an inner core sleeve 132, a core sleeve 133, a mesh sleeve 134 and a fixing from the inside to the outside. Ring 135.
  • the micro-nano bubble structure 1 of the present application further includes a water inlet 11.
  • the generator body 12 also includes a liquid processing portion.
  • the liquid processing portion includes a constricted section 121, a mixing section 122, an expanded section 123, an intake hole 124, a first groove 125, an annular groove 126, a second groove 127, and a third groove 128.
  • the closure set 14 includes a sealing ring 141 and a closure 142.
  • FIG. 3 is a partial cross-sectional view of the micro-nano bubble generating device 13 of FIGS. 1-2, in accordance with an embodiment of the present invention.
  • FIG. 3 there is an impact zone 138 between the inner core sleeve 132 and the inner core sleeve 133.
  • the interior of the inner core sleeve 132 is provided with a cavity 136.
  • the impact zone 138 is provided as an annular gap.
  • the material of the net sleeve 134 is a porous mesh material, and the micropores of the net cover 134 are 500 mesh or more.
  • the inner core sleeve 132 is provided with a plurality of holes 137.
  • a plurality of holes 137 are provided around the cavity 136.
  • a plurality of flow guiding grooves 139 are disposed on the wall of the core sleeve 133.
  • the radial width of the annular gap is set to be smaller than the diameter of the hole 137.
  • FIG. 4 is a schematic illustration of a micro-nano bubble structure in which a micro-nano bubble structure is mounted at the end of a faucet, in accordance with an embodiment of the present invention.
  • the micro-nano bubble structure of the present application is mounted in combination with a faucet assembly at the end of the faucet. In this way, the generation of micro-nano bubbles can be easily and conveniently realized on the basis of the existing faucet.
  • the faucet includes a faucet body 25 and a micro-nano bubble structure 1.
  • FIG. 5 is a schematic structural view of a showerhead mounted with a micro-nano bubble structure in which a micro-nano bubble structure is mounted at the end of the showerhead, in accordance with an embodiment of the present invention.
  • the showerhead includes a shower body 26 and a micro-nano bubble structure 1.
  • the micro-nano bubble structure 1 is directly installed at the end of the shower head, and a check valve 27 is provided at the water inlet, so that the ordinary shower head has the function of generating micro-nano bubbles. To further disinfection.
  • FIG. 6 is a schematic view showing the structure of a shower provided with a micro-nano bubble structure according to another embodiment of the present invention.
  • the micro-nano bubble structure 1 is integrated on the shower, that is, the micro-nano bubble structure 1 of the present application is integrally formed with the shower, in which the venting holes 129 are provided. Further, a check valve 27 is provided at the water inlet of the shower.
  • FIG. 7 is a schematic exploded view of a faucet mounted with a micro-nano bubble structure in accordance with an embodiment of the present invention.
  • a venturi tube especially relates to the application on a micro-nano bubble generator (utility model 201721229265.4, invention 201710863134.X)" and "a micro-nano Bubble faucet (utility model 201721383027.9)".
  • the invention provides a micro-nano bubble structure, which can fully mix water and gas and has the advantages of sterilization effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Domestic Plumbing Installations (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)

Abstract

一种微纳米气泡结构(1),其包括发生器主体(12)、微纳米气泡发生装置(13)、封盖组(14)和水龙头出口(15),其中,微纳米气泡发生装置(13)设置在发生器主体(12)的内部,微纳米气泡发生装置(13)的一端与发生器主体(12)相连,另一端与封盖组(14)相连接,封盖组(14)内嵌地将微纳米气泡发生装置(13)密封在发生器主体(12)的内部,水龙头出口(15)设置为发生器主体(12)的一部分,微纳米气泡发生装置(13)由内向外包括密封圈(131)、内芯套(132)、中芯套(133)、网套(134)和固定环(135)。

Description

一种微纳米气泡结构
技术领域
本发明涉及微纳米气泡领域,具体而言涉及一种微纳米气泡结构。
背景技术
微纳米气泡具有气泡尺寸小、比表面积大、吸附效率高、上升速度慢及较强的氧化性等特点。在水中通入微纳米气泡,其具有可有效地分离水中固体杂质、快速提高水体氧浓度、杀灭水中有害细菌等优点。与其他水处理方法相比,微纳米气泡还具有操作简便、功耗小、无二次污染等特点。
但是,目前市面上所使用的水龙头,仅在产品的出水端利用水流产生负压将空气混合至水体中而形成含气量稍高的气泡水,其气体与水体的混合并不足够充分,无法产生微纳米气泡,并且产生的气泡也无杀菌效果。
因此,现有技术的水龙头存在以下几个问题:1、通常是将微纳米气泡器外挂在水龙头出水口外端整体上美观度不佳,且外伸长度也影响水龙头出口高度等使用参数、造成一些使用上的不便;2、由于外挂方式没有与水龙头原设计进行有机结合,也会导致一些连接规格差异产生安装不便、或无法有效安装;3、微纳米气泡发生器是仅仅透过溶射后,在静态导流涡轮和滤网组合机构中回旋剪切、产生微纳米气泡。并且所述产生微纳米气泡生成效果易受水压的影响,而且气泡的大小较难掌控。从而导致脱污能力波动较大,无法大范围进行推广和使用。
发明内容
为了解决上述技术问题,本发明提供一种微纳米气泡结构,可以使水气充分混合,并具有杀菌效果的优点。
为了实现上述优点,本发明采用如下技术方案:
一种微纳米气泡结构,其特征在于,包括发生器主体、微纳米气泡发生装置、封盖组和水龙头出口,其中,微纳米气泡发生装置设置在发生器主体的内部,微纳米气泡发生装置的一端与发生器主体相连,另一端与封盖组相连接,封盖组内嵌地将微纳米气泡发生装置密封在发生器主体的内部,水龙头出口设置为发生器主体的一部分,微纳米气泡发生装置由内向外包括密封圈、内芯套、中芯套、网套和固定环。
作为上述方案的一种改进,其中,内芯套与中芯套之间有冲击区。
作为上述方案的一种改进,其中,冲击区设置为环形间隙。
作为上述方案的一种改进,其中,网套的材料采用多孔网材,网套的微孔为500目以上。
作为上述方案的一种改进,其中,内芯套设置有多个孔。
作为上述方案的一种改进,其中,中芯套壁上设置有多条导流槽。
作为上述方案的一种改进,其中,多条导流槽设置为沿圆周布置。
作为上述方案的一种改进,其中,环形间隙的径向宽度设置为小于孔的直径。
作为上述方案的一种改进,其中,封盖组包括密封圈和封盖。
作为上述方案的一种改进,其中,发生器主体还包括液体处理部,液体处理部包括收缩段、混合段、扩张段、吸气孔、第一沟槽、环状的凹槽、第二沟槽和第三沟槽。
本发明提供一种微纳米气泡结构,可以使水气充分混合,并具有杀菌效果的优点。
附图说明
以下和其他优点和特征将从以下参考附图的实施例的详细描述中得到更充分的理解,附图必须以说明性和非限制性的方式来考虑,其中:
图1为根据本发明的实施例的微纳米气泡结构的结构图;
图2为根据本发明的实施例的微纳米气泡结构的结构图;
图3为根据本发明的实施例的图1的微纳米气泡发生装置的局部横剖图;
图4为根据本发明的实施例的微纳米气泡结构的示意图,其中微纳米气泡结构安装在水龙头的末端;
图5为根据本发明的实施例的安装有微纳米气泡结构的花洒的结构示意图,其中微纳米气泡结构安装在花洒的末端;
图6为根据本发明的另一实施例的设置有微纳米气泡结构的花洒的结构示意图;
图7为根据本发明的一实施例的安装有微纳米气泡结构的水龙头的爆炸示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本发明中所使用的上、下、左、右等描述仅仅是相对于附图中本发明各组成部分的相互位置关系来说的。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”。
如图1-7,本发明提供的一种微纳米气泡结构1,其特征在于,包括发生器主体12、微纳米气泡发生装置13、封盖组14和水龙头出口15,其中,微纳米气泡发生装置13设置在发生器主体12的内部,微纳米气泡发生装置13的一端与发生器主体12相连,另一端与封盖组14相连接,封盖组14内嵌地将微纳米气泡发生装置13密封在发生器主体12的内部,水龙头出口15设置为发生器主体12的一部分,微纳米气泡发生装置13由内向外包括密封圈131、内芯套132、中芯套133、网套134和固定环135。
在图1-2中,本申请的微纳米气泡结构1还包括进水口11。发生器主体12还包括液体处理部。液体处理部包括收缩段121、混合段122、扩张段123、吸气孔124、第一沟槽125、环状的凹槽126、第二沟槽127和第三沟槽128。
如图所示,箭头500为水流方向。封盖组14包括密封圈141和封盖142。
如图3所示,图3为根据本发明的实施例的图1-2的微纳米气泡发生装置13的局部横剖图。从图1-2中可以看出,内芯套132与中芯套133之间有冲击区138。内芯套132的内部设置有空腔136。
在本发明的一个实施例中,优选地,其中,冲击区138设置为环形间隙。
在本发明的一个实施例中,优选地,其中,网套134的材料采用多孔网材,网套134的微孔为500目以上。
在本发明的一个实施例中,优选地,其中,内芯套132设置有多个孔137。多个孔137设置在空腔136的周围。
在本发明的一个实施例中,优选地,其中,中芯套133壁上设置有多条导流槽139。
在本发明的一个实施例中,优选地,其中,多条导流槽139设置为沿圆周布置。
在本发明的一个实施例中,优选地,其中,环形间隙的径向宽度设置为小于孔137的直径。
图4为根据本发明的实施例的微纳米气泡结构的示意图,其中微纳米气泡结构安装在水龙头的末端。从图4可以看出,本申请的微纳米气泡结构与水龙头组件组合安装在水龙头的末端。通过这种方式,在现有的水龙头的基础上,可以轻松方便地实现生成微纳米气泡。
如图4所示,水龙头包括水龙头主体25和微纳米气泡结构1。
图5为根据本发明的实施例的安装有微纳米气泡结构的花洒的结构示意图,其中微纳米气泡结构安装在花洒的末端。在图5中,花洒包括花洒主体26和微纳米气泡结构1。如图所示,可以很容易地看出,微纳米气泡结构1直接安装在花洒的末端,同时在进水口处设置有止回阀27,这样使得普通的花洒具备生成微纳米气泡的功能,以进一步地杀菌消毒。
图6为根据本发明的另一实施例的设置有微纳米气泡结构的花洒的结构示意图。从图5中可以看出,微纳米气泡结构1被集成在花洒上,也就是说,本申请的微纳米气泡结构1与花洒一体构成,其中设置有透气孔129。并且,花洒的的进水口处设置有止回阀27。
图7为根据本发明的一实施例的安装有微纳米气泡结构的水龙头的爆炸示意图。
本申请中的水龙头和花洒的相关部件也可以参考名称为“一种文丘里管尤其涉及在微纳米气泡产生器上的应用(实用新型201721229265.4,发明201710863134.X)”和“一种微纳米气泡水龙头(实用新型201721383027.9)”。
本发明提供一种微纳米气泡结构,可以使水气充分混合,并具有杀菌效果的优点。
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可 以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种微纳米气泡结构(1),其特征在于,包括发生器主体(12)、微纳米气泡发生装置(13)、封盖组(14)和水龙头出口(15),其中,微纳米气泡发生装置(13)设置在发生器主体(12)的内部,微纳米气泡发生装置(13)的一端与发生器主体(12)相连,另一端与封盖组(14)相连接,封盖组(14)内嵌地将微纳米气泡发生装置(13)密封在发生器主体(12)的内部,水龙头出口(15)设置为发生器主体(12)的一部分,微纳米气泡发生装置(13)由内向外包括密封圈(131)、内芯套(132)、中芯套(133)、网套(134)和固定环(135)。
  2. 根据权利要求1所述的微纳米气泡结构,其中,内芯套(132)与中芯套(133)之间有冲击区(138)。
  3. 根据权利要求2所述的微纳米气泡结构,其中,冲击区(138)设置为环形间隙。
  4. 根据权利要求1所述的微纳米气泡结构,其中,网套(134)的材料采用多孔网材,网套(134)的微孔为500目以上。
  5. 根据权利要求1所述的微纳米气泡结构,其中,内芯套(132)设置有多个孔(137)。
  6. 根据权利要求1所述的微纳米气泡结构,其中,中芯套(133)壁上设置有多条导流槽(139)。
  7. 根据权利要求6所述的微纳米气泡结构,其中,多条导流槽(139)设置为沿圆周布置。
  8. 根据权利要求3所述的微纳米气泡结构,其中,环形间隙的径向宽度设置为小于孔(137)的直径。
  9. 根据权利要求1所述的微纳米气泡结构,其中,封盖组(14)包括密封圈(141)和封盖(142)。
  10. 根据权利要求1所述的微纳米气泡结构,其中,发生器主体(12)还包括液体处理部,液体处理部包括收缩段(121)、混合段(122)、扩张段(123)、吸气孔(124)、第一沟槽(125)、环状的凹槽(126)、第二沟槽(127)和第三沟槽(128)。
PCT/CN2019/078202 2018-05-10 2019-03-15 一种微纳米气泡结构 WO2019214342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810440948.7 2018-05-10
CN201810440948.7A CN108380067B (zh) 2018-05-10 2018-05-10 一种微纳米气泡结构

Publications (1)

Publication Number Publication Date
WO2019214342A1 true WO2019214342A1 (zh) 2019-11-14

Family

ID=63070785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078202 WO2019214342A1 (zh) 2018-05-10 2019-03-15 一种微纳米气泡结构

Country Status (2)

Country Link
CN (1) CN108380067B (zh)
WO (1) WO2019214342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500391A (zh) * 2021-07-22 2021-10-15 苏州敬天爱人环境科技有限公司 一种微气泡发生器生产用组装设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380067B (zh) * 2018-05-10 2021-06-08 乔登卫浴(江门)有限公司 一种微纳米气泡结构
CN109046050A (zh) * 2018-08-17 2018-12-21 无锡伟思博润科技有限公司 一种气液混合器
CN109847607B (zh) * 2019-04-17 2023-11-07 高栋正 一种无动力气泡微细化装置
CN112899992B (zh) * 2019-12-04 2024-06-18 青岛海尔洗衣机有限公司 微气泡喷头及具有该微气泡喷头的洗涤设备
WO2021109971A1 (zh) * 2019-12-04 2021-06-10 青岛海尔滚筒洗衣机有限公司 微气泡喷头及具有该微气泡喷头的洗涤设备
CN113908710B (zh) * 2021-09-06 2022-08-02 山东大学 一种微纳米气泡发生器及方法
CN114382927A (zh) * 2022-01-24 2022-04-22 安徽信息工程学院 一种节流式出水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245406A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd 微細気泡発生装置
CN107321204A (zh) * 2017-08-21 2017-11-07 上海久田汽车零部件制造有限公司 微气泡产生器
CN107583479A (zh) * 2017-09-22 2018-01-16 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
CN108380067A (zh) * 2018-05-10 2018-08-10 乔登卫浴(江门)有限公司 一种微纳米气泡结构
CN208563472U (zh) * 2018-05-10 2019-03-01 乔登卫浴(江门)有限公司 一种微纳米气泡结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446488A (en) * 1966-08-08 1969-05-27 Combustion Eng Gas bubble generating and distributing system
CN101101087B (zh) * 2006-07-05 2011-06-15 稻田太一 水中产生超微细气泡的管路系统
WO2008038763A1 (fr) * 2006-09-28 2008-04-03 Nakata Coating Co., Ltd. Appareil de production d'un écoulement tourbillonnaire, procédé de production d'un écoulement tourbillonnaire, appareil de génération de phase vapeur, appareil de génération de microbulles, mélangeur de fluides et buse d'injection de fluides
CN201015755Y (zh) * 2007-03-12 2008-02-06 国电科技环保集团山东龙源环保有限公司 撞击内混式气泡雾化喷嘴
CN201445923U (zh) * 2009-04-02 2010-05-05 陈文萍 一种超微细气泡产生装置
CN205550628U (zh) * 2016-04-19 2016-09-07 上海奈菱机电科技有限公司 一种微纳米气泡淋浴花洒
CN205650095U (zh) * 2016-05-23 2016-10-19 上海库克莱生态科技有限公司 一种微纳米气泡发生装置
CN206793439U (zh) * 2017-03-02 2017-12-26 淮南市知产创新技术研究有限公司 一种微细气泡产生机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245406A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd 微細気泡発生装置
CN107321204A (zh) * 2017-08-21 2017-11-07 上海久田汽车零部件制造有限公司 微气泡产生器
CN107583479A (zh) * 2017-09-22 2018-01-16 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
CN108380067A (zh) * 2018-05-10 2018-08-10 乔登卫浴(江门)有限公司 一种微纳米气泡结构
CN208563472U (zh) * 2018-05-10 2019-03-01 乔登卫浴(江门)有限公司 一种微纳米气泡结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500391A (zh) * 2021-07-22 2021-10-15 苏州敬天爱人环境科技有限公司 一种微气泡发生器生产用组装设备
CN113500391B (zh) * 2021-07-22 2022-05-03 苏州敬天爱人环境科技有限公司 一种微气泡发生器生产用组装设备

Also Published As

Publication number Publication date
CN108380067A (zh) 2018-08-10
CN108380067B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2019214342A1 (zh) 一种微纳米气泡结构
WO2012083848A1 (zh) 一种节水止逆阀
CN106830382A (zh) 一种超微纳米气泡射流增氧器
CN205773550U (zh) 一种新型纳米磁化喷嘴
CN205472158U (zh) 一种电梯轿厢装置
CN206503521U (zh) 一种置换室内空气环保窗
TWM570387U (zh) Micro-nano bubble generator
CN207975267U (zh) 一种常压溢流自动启闭阀
CN208563472U (zh) 一种微纳米气泡结构
WO2019000633A1 (zh) 一种空气净化器降噪结构
CN200943965Y (zh) 太阳能热水器磁化水箱
CN209442726U (zh) 一种组合曝气帘式ehbr膜组件
CN206361215U (zh) 一种新型滤水龙头
CN212050694U (zh) 深紫外光湿式催化氧化装置
CN107265614B (zh) 一种管式曝气器用曝气管体
CN207271016U (zh) 一种管式多孔气-液膜接触器
CN201691842U (zh) 带有排风装置的坐便圈
CN206381425U (zh) 一种医用的负压瓶配件及使用该配件的负压瓶
CN216315767U (zh) 一种防疫用密闭式防护服的气体循环组件
CN220647142U (zh) 一种万向出水连接装置
CN216155555U (zh) 一种污水处理用消毒装置
CN205516068U (zh) 一种随身空气净化器
CN210012631U (zh) 一种带uv灯的过滤装置
CN211912204U (zh) 一种鼻腔冲洗器
CN215309306U (zh) 一种用于呼吸机涡轮箱与水箱的连接管道及呼吸机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799377

Country of ref document: EP

Kind code of ref document: A1