WO2019213961A1 - Methods, devices and computer readable medium for determining measurement gaps - Google Patents

Methods, devices and computer readable medium for determining measurement gaps Download PDF

Info

Publication number
WO2019213961A1
WO2019213961A1 PCT/CN2018/086591 CN2018086591W WO2019213961A1 WO 2019213961 A1 WO2019213961 A1 WO 2019213961A1 CN 2018086591 W CN2018086591 W CN 2018086591W WO 2019213961 A1 WO2019213961 A1 WO 2019213961A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
measurement
measurement gap
signal quality
priority
Prior art date
Application number
PCT/CN2018/086591
Other languages
French (fr)
Inventor
Jing He
Li Zhang
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880093333.XA priority Critical patent/CN112106399B/en
Priority to PCT/CN2018/086591 priority patent/WO2019213961A1/en
Publication of WO2019213961A1 publication Critical patent/WO2019213961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for determining measurement gaps.
  • LTE Long Term Evolved
  • 5G 5 th generation wireless systems
  • embodiments of the present disclosure relate to a method for a determining measurement gaps and the corresponding communication devices.
  • embodiments of the present disclosure provide a communication method.
  • the method comprises: receiving information indicating a first type of measurement gap for measurement of signal quality.
  • the method also comprises in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type.
  • the method further comprises performing the measurement of signal quality at least in part based on the comparison.
  • inventions of the disclosure provide a communication device.
  • the communication device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to perform acts including: receiving information indicating a first type of measurement gap for measurement of signal quality.
  • the acts also comprise in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type.
  • the acts further comprise performing the measurement of signal quality at least in part based on the comparison.
  • inventions of the disclosure provide an apparatus for communication.
  • the apparatus comprises means for receiving information indicating a first type of measurement gap for measurement of signal quality.
  • the apparatus also comprises means for in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type.
  • the apparatus further comprises means for performing the measurement of signal quality at least in part based on the comparison.
  • embodiments of the disclosure provide a computer readable medium.
  • the computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement: receiving information indicating a first type of measurement gap for measurement of signal quality.
  • the machine is also caused to implement in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type.
  • the machine is further caused to implement performing the measurement of signal quality at least in part based on the comparison.
  • Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure
  • Fig. 2 illustrates an interaction operation among a terminal device and two network devices according to embodiments of the present disclosure
  • Fig. 3 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure
  • Fig. 4 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to EN-DC network in 5G communication system.
  • the term “communication device” may refer to a network device and/or a terminal device.
  • the term “network device” includes, but not limited to, a base station (BS) , a gateway, a management entity, and other suitable device in a communication system.
  • base station or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • terminal device includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device.
  • the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • MT Mobile Terminal
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • measurement gap refers to a gap during which no transmission and reception happens. Since there is no signal transmission and reception during the gap, the terminal device can switch to the target cell and perform the signal quality measurement and come back to the current cell.
  • circuitry used herein may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the LTE eNB is referred to as the MNB to indicate that it is the ‘Master’ base station (i.e., Master Node, MN) controlling the ‘Secondary’ 5G NR base station (i.e., Secondary Node, SN) .
  • MN Master Node
  • Secondary 5G NR base station
  • the MN decides the type of measurement, the MN informs the SN and the terminal device. However, if the SN is the first node that tends to configure the type of measurement and the SN does not receive any information regarding the measurement, the behaviors of the SN have not decided yet. There are two options regarding the behaviors of the SN.
  • Option 1 If the SN first configures the measurement, the SN transmits all measured frequencies to the MN via CG-Config signaling. After the MN decides the type of measurement, the MN informs the SN the decided type via CG-ConfigInfo signaling. Option 2. If the SN first configures the measurement, the SN decides the type of measurement and informs the decided type to the MN via CG-Config signaling.
  • Option 2 can reduce the network implementation.
  • the SN needs an extra explicit indication in CG-Config to inform the MN the decided type.
  • the signaling procedure between the MN and the SN will become much more complex.
  • the MN and the SN decide different types of measurement, the behaviors of the SN and the terminal device are not discussed yet.
  • embodiments of the present disclosure provide solutions for signal quality measurements between cells.
  • the priorities of types of measurement gap are defined and the terminal device and/or the network device are able to determine the type of measurement gap based on the defined priorities.
  • embodiments of the present disclosure can achieve the determination of measurement gap without introducing other signaling.
  • Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, includes network devices 120 and 130, and terminal devices 110-1, 110-2, ..., 110-2, where N is an integer number. It is to be understood that the communication system 100 may include any suitable number of terminal devices. It should be noted that the communication system 100 may also include other elements which are omitted for the purpose of clarity.
  • the network devices 120 and 130 may communicate with the terminal devices 110.
  • the network device 120 and the network device 130 may communicate with each other. It is to be understood that the number of network devices and terminal devices shown in Fig. 1 is given for the purpose of illustration without suggesting any limitations.
  • the communication system 100 may include any suitable number of network devices and terminal devices. Only for the purpose of illustrations, the network device 120 is referred to as an MN hereinafter and the network device 130 is referred to as an SN hereinafter.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • Fig. 2 illustrates an interaction operation 200 among the terminal device 110, the network device 120 and the network device 130. Only for the purpose of illustrations, Fig. 2 is described with reference to the scenario of EN-DC network. It should be noted that the interaction operation may be implemented in any suitable communication network.
  • the network device 130 configures 2010 a type of measurement gap to the terminal device 110.
  • the network device 130 is an SN which needs an FR2 gap pattern for measurement, it configures the FR2 measurement gap to the terminal device 110 directly without informing the network device 120 (i.e., the MN) .
  • the FR2 gap measurement gap is only an example of a per frequency range (FR) measurement gap.
  • the per frequency range measurement gap may also include an FR1 gap pattern.
  • FR1 used herein refers to the frequency range which is below 6GHz and FR2 used herein refers to the frequency range which is above 24GHz.
  • the network device 130 may configure any suitable types of measurement gap.
  • the per UE measurement gap, the per frequency range measurement gap and the per CC measurement gap are only examples and embodiments of the present disclosure are not limited in this aspect.
  • the network device 120 may transmit 2020 a request to the network device 130.
  • the terminal device 110 may perform 2030 the measurement using the FR gap pattern.
  • the network device 120 transmits 2040 information indicating a further type of measurement gap to the network device 120 and also transmits 2050 the information to the terminal device 110. It should be noted that the network device 120 may transmit the information to the network device 130 and the terminal device 120 simultaneously or in any suitable order.
  • the further type of measurement gap may be a per user equipment (UE) measurement gap.
  • the further type of measurement gap may also be a per component carrier (CC) measurement gap.
  • the further type of measurement gap may be a FR2 measurement gap.
  • the terminal device 110 compares 2070 the priorities of the type of measurement gap and the further type of measurement gap.
  • the network device 130 compares 2060 the priorities of the type of measurement gap and the further type of measurement gap. It should be noted that the comparisons 2060 and 2070 may be performed in any suitable manner.
  • the terminal device 110 and the network device 130 may perform the comparisons based on predetermined priorities.
  • the predetermined priorities may be preconfigured to the terminal device 110 and the network device 130.
  • the priorities may be defined by the operator of the communication system 100. For example, in some embodiments, the per UE measurement gap may have a greater priority than the per FR measurement gap and the per FR measurement gap may have a greater priority than per CC measurement gap. In this way, the terminal device 120 may achieve the determination of measurement gap without introducing other signaling.
  • the predetermined priorities may be stored locally in the terminal device 110 and/or the network devices 120 and 130. In other embodiments, the predetermined priorities may be stored in remote storage which can be accessed by the terminal device 110 and/or the network devices 120 and 130.
  • the terminal device 110 performs 2090 the measurement based on the comparison. For example, the terminal device 110 may perform the measurement using the type of measurement gap with a greater priority. By way of example, if the further type is the per UE measurement gap which has a greater priority than the FR1 type, the terminal device 110 may perform the measurement using the per UE measurement gap. If the further type is the per CC measurement gap which has a lower priority than the FR1 type, the terminal device 110 may perform the measurement using the FR1 type.
  • the terminal device 110 may perform the measurement using FR1 for FR1 measured objects and perform the measurement using FR2 for FR2 measured objects.
  • the network device 130 override 2080 the type of measurement based on the comparison. For example, the network device 130 may override the type of measurement with a greater priority. By way of example, if the further type is the per UE measurement gap which has a greater priority than the FR1 type, the network device 130 may override the FR1 type with the per UE measurement gap.
  • the network device 120 may also transmit information indicating that the further type of measurement gap is to be used. For example, if the network device 120 may transmit the information that the FR1 type is to be used and the terminal device 130 perform the measurement using the per UE measurement gap, the terminal device 130 may remove the per UE measurement gap firstly and then perform the measurement using the FR1 type.
  • the network device 120 may transmit 2110, to the network device 130, further information for de-configuring the further type and may also transmit 2120 the further information to the terminal device 110.
  • the network device 130 may resume 2130 the type of measurement gap and the terminal device 2140 may also resume 2140 the type of measurement gap.
  • Fig. 3 illustrates a flow chart of method 300 in accordance with embodiments of the present disclosure.
  • the method 300 may be implemented at the terminal device 110.
  • the method 300 may also be implemented at the network device 130.
  • the method 300 is described with the reference to the terminal device 110.
  • the terminal device 110 receives information indicating a type (referred to as the first type) of measurement gap for measurement of signal quality.
  • the first type may be a per UE measurement gap.
  • the first type may also be a per CC measurement gap.
  • the first type may be a per FR measurement gap.
  • the first type of measurement gap is received from the network device 120.
  • the first type of measurement gap is received from the network device 130.
  • Another type (referred to as the second type) of measurement gap for measurement of signal quality may be configured previously.
  • the network device 130 may previously configure the second type of measurement gap to the terminal device 110.
  • the network device 120 may previously configure the second type of measurement gap to the terminal device 110.
  • the first type of measurement gap and the second type of measurement gap may be configured by the same network device.
  • the first type of measurement gap and the second type of measurement gap may be configured by different network devices.
  • the terminal device 110 determines that the second type of measurement gap has been configured.
  • the terminal device 110 may compare the priority (referred to as the first priority) of the first type and the priority (referred to as the second priority) of the second type.
  • the terminal device 120 may compare the first and second priorities based on predefined priorities. In some embodiments, the priorities may be defined by the operator.
  • the terminal device 110 performs the measurement of signal quality based on the comparing results. For example, if the first type has a greater priority than the second type, the terminal device 110 may perform the measurement using the first type. If the second type has a greater priority than the first type, the terminal device 110 may perform the measurement using the second type. In some embodiments, the terminal device 110 may ignore the first type of measurement and transmit indication for invalidity of configuring the first type of measurement gap to the network device 120. For example, the indication may indicate a failure of configuring the first type of measurement gap and/or a rejection to configuring the first type of measurement gap.
  • the terminal device 110 may receive information indicating that the first type is to be used. In this embodiment, if the second type has a greater priority than the first type, the terminal device 110 may remove the second type and perform the measurement using the first type. In some embodiments, the terminal device 110 may transmit indication for removing the second type of measurement gap to the network device which configures the second type of measurement gap.
  • the first type of measurement gap and the second type of measurement gap may be used for different sets of frequencies.
  • the first type of measurement gap and the second type of measurement gap may be kept and the terminal device 110 may use the proper type of measurement gap the based on the frequencies or the serving cells. That is to say, the terminal device 110 may use different types of measurement gaps to measure signal quality with data connection on different sets of frequencies and the different types of measurement gaps may coexist at the terminal device 110 regardless of their priorities.
  • an apparatus for performing the method 300 may comprise respective means for performing the corresponding steps in the method 300.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises: means for receiving information indicating a first type of measurement gap for measurement of signal quality means for in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and means for performing the measurement of signal quality at least in part based on the comparison.
  • the means for performing the measurement of signal quality comprises: means for in response to the first priority being greater than the second priority, overriding the second type of measurement gap; means for performing the measurement of signal quality using the first type of measurement gap; and means for in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
  • the means for performing the measurement of signal quality comprises: means for in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and means for performing the measurement of signal quality using the first type.
  • the first type of measurement gap may comprise at least one of the followings: a per user equipment measurement gap, a per frequency range measurement gap, and a per component carrier measurement gap.
  • Fig. 4 is a simplified block diagram of a device 400 that is suitable for implementing embodiments of the present disclosure.
  • the device 400 may be implemented at the network device 130.
  • the device 400 may also be implemented at the terminal device 110.
  • the device 400 includes one or more processors 410, one or more memories 420 coupled to the processor (s) 410, one or more transmitters and/or receivers (TX/RX) 440 coupled to the processor 410.
  • the processor 410 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 400 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 420 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
  • the memory 420 stores at least a part of a program 430.
  • the TX/RX 440 is for bidirectional communications.
  • the TX/RX 440 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the program 430 is assumed to include program instructions that, when executed by the associated processor 410, enable the device 400 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2 and 3. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 410 of the device 400, or by hardware, or by a combination of software and hardware.

Abstract

A method, device and computer readable medium for determining measurement gaps are provided. The priorities of types of measurement gap are defined and the terminal device and/or the network device are able to determine the type of measurement gap based on the defined priorities. Thus, it can achieve the determination of measurement gap without introducing other signaling.

Description

METHODS, DEVICES AND COMPUTER READABLE MEDIUM FOR DETERMINING MEASUREMENT GAPS FIELD
Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for determining measurement gaps.
BACKGROUND
In communication systems, such as Long Term Evolved (LTE) communication systems or the 5 th generation wireless systems (5G) , if a terminal device is to handover from a current serving cell to a target cell, the terminal device may measure a channel quality of the target cell. However, in some situations, such as the scenario of E-UTRAN New Radio-Dual Connectivity, deciding the measurement gap still needs to be discussed.
SUMMARY
Generally, embodiments of the present disclosure relate to a method for a determining measurement gaps and the corresponding communication devices.
In a first aspect, embodiments of the present disclosure provide a communication method. The method comprises: receiving information indicating a first type of measurement gap for measurement of signal quality. The method also comprises in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type. The method further comprises performing the measurement of signal quality at least in part based on the comparison.
In a second aspect, embodiments of the disclosure provide a communication device. The communication device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to perform acts including: receiving information indicating a first type of measurement gap  for measurement of signal quality. The acts also comprise in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type. The acts further comprise performing the measurement of signal quality at least in part based on the comparison.
In the third aspect, embodiments of the disclosure provide an apparatus for communication. The apparatus comprises means for receiving information indicating a first type of measurement gap for measurement of signal quality. The apparatus also comprises means for in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type. The apparatus further comprises means for performing the measurement of signal quality at least in part based on the comparison.
In a fourth aspect, embodiments of the disclosure provide a computer readable medium. The computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement: receiving information indicating a first type of measurement gap for measurement of signal quality. The machine is also caused to implement in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type. The machine is further caused to implement performing the measurement of signal quality at least in part based on the comparison.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure;
Fig. 2 illustrates an interaction operation among a terminal device and two network devices according to embodiments of the present disclosure;
Fig. 3 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure; and
Fig. 4 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. It should be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “includes” and/or “including, ” when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two functions or acts shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts  involved.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to EN-DC network in 5G communication system.
The term “communication device” may refer to a network device and/or a terminal device. The term “network device” includes, but not limited to, a base station (BS) , a gateway, a management entity, and other suitable device in a communication system. The term “base station” or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
The term “terminal device” includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device. By way of example, the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
The term “measurement gap” used herein refers to a gap during which no  transmission and reception happens. Since there is no signal transmission and reception during the gap, the terminal device can switch to the target cell and perform the signal quality measurement and come back to the current cell.
The term “circuitry” used herein may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with
software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. ”
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As described above, embodiments of the present disclosure is described with reference to the EN-DC network in 5G communication system. Due to the higher frequencies bands used and other reasons, it is deemed better to enable terminal devices to connect to LTE and 5G New Radio (NR) simultaneously. This is referred to as Dual Connectivity EN-DC. In some embodiments, the LTE eNB is referred to as the MNB to indicate that it is the ‘Master’ base station (i.e., Master Node, MN) controlling the  ‘Secondary’ 5G NR base station (i.e., Secondary Node, SN) . In the scenario of EN-DC, if the terminal device needs to measure the signal quality of the target cell, which node to decide the type of measurement still needs to be discussed.
If the MN decides the type of measurement, the MN informs the SN and the terminal device. However, if the SN is the first node that tends to configure the type of measurement and the SN does not receive any information regarding the measurement, the behaviors of the SN have not decided yet. There are two options regarding the behaviors of the SN.
Option 1. If the SN first configures the measurement, the SN transmits all measured frequencies to the MN via CG-Config signaling. After the MN decides the type of measurement, the MN informs the SN the decided type via CG-ConfigInfo signaling. Option 2. If the SN first configures the measurement, the SN decides the type of measurement and informs the decided type to the MN via CG-Config signaling.
Compared with Option 1, Option 2 can reduce the network implementation. However, for Option 2, the SN needs an extra explicit indication in CG-Config to inform the MN the decided type. In particular, if the SN can change the type dynamically, the signaling procedure between the MN and the SN will become much more complex. Further, if the MN and the SN decide different types of measurement, the behaviors of the SN and the terminal device are not discussed yet.
In order to at least in part solve above and other potential problems, embodiments of the present disclosure provide solutions for signal quality measurements between cells. According to embodiments of the present disclosure, the priorities of types of measurement gap are defined and the terminal device and/or the network device are able to determine the type of measurement gap based on the defined priorities. Thus, embodiments of the present disclosure can achieve the determination of measurement gap without introducing other signaling.
Now some example embodiments of the present disclosure are described below with reference to the figures. However, those skilled in the art would readily appreciate that the detailed description given herein with respect to these figures is for explanatory purpose as the present disclosure extends beyond theses limited embodiments.
Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented. The communication system 100, which is a part of a communication network, includes  network devices  120 and 130, and terminal devices 110-1, 110-2, ..., 110-2, where N is an integer number. It is to be understood that the communication system 100 may include any suitable number of terminal devices. It should be noted that the communication system 100 may also include other elements which are omitted for the purpose of clarity. The  network devices  120 and 130 may communicate with the terminal devices 110. The network device 120 and the network device 130 may communicate with each other. It is to be understood that the number of network devices and terminal devices shown in Fig. 1 is given for the purpose of illustration without suggesting any limitations. The communication system 100 may include any suitable number of network devices and terminal devices. Only for the purpose of illustrations, the network device 120 is referred to as an MN hereinafter and the network device 130 is referred to as an SN hereinafter.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
Fig. 2 illustrates an interaction operation 200 among the terminal device 110, the network device 120 and the network device 130. Only for the purpose of illustrations, Fig. 2 is described with reference to the scenario of EN-DC network. It should be noted that the interaction operation may be implemented in any suitable communication  network.
The network device 130 configures 2010 a type of measurement gap to the terminal device 110. For example, if the network device 130 is an SN which needs an FR2 gap pattern for measurement, it configures the FR2 measurement gap to the terminal device 110 directly without informing the network device 120 (i.e., the MN) . It should be noted that the FR2 gap measurement gap is only an example of a per frequency range (FR) measurement gap. The per frequency range measurement gap may also include an FR1 gap pattern. FR1 used herein refers to the frequency range which is below 6GHz and FR2 used herein refers to the frequency range which is above 24GHz. It should be noted that the network device 130 may configure any suitable types of measurement gap. The per UE measurement gap, the per frequency range measurement gap and the per CC measurement gap are only examples and embodiments of the present disclosure are not limited in this aspect.
In some embodiments, if the network device 120 needs the same gap pattern as the network device 130, it may transmit 2020 a request to the network device 130. The terminal device 110 may perform 2030 the measurement using the FR gap pattern.
The network device 120 transmits 2040 information indicating a further type of measurement gap to the network device 120 and also transmits 2050 the information to the terminal device 110. It should be noted that the network device 120 may transmit the information to the network device 130 and the terminal device 120 simultaneously or in any suitable order. In some embodiments, the further type of measurement gap may be a per user equipment (UE) measurement gap. The further type of measurement gap may also be a per component carrier (CC) measurement gap. Alternatively or in addition, the further type of measurement gap may be a FR2 measurement gap.
The terminal device 110 compares 2070 the priorities of the type of measurement gap and the further type of measurement gap. The network device 130 compares 2060 the priorities of the type of measurement gap and the further type of measurement gap. It should be noted that the comparisons 2060 and 2070 may be performed in any suitable manner.
The terminal device 110 and the network device 130 may perform the  comparisons based on predetermined priorities. In some embodiments, the predetermined priorities may be preconfigured to the terminal device 110 and the network device 130. In some embodiments, the priorities may be defined by the operator of the communication system 100. For example, in some embodiments, the per UE measurement gap may have a greater priority than the per FR measurement gap and the per FR measurement gap may have a greater priority than per CC measurement gap. In this way, the terminal device 120 may achieve the determination of measurement gap without introducing other signaling. The predetermined priorities may be stored locally in the terminal device 110 and/or the  network devices  120 and 130. In other embodiments, the predetermined priorities may be stored in remote storage which can be accessed by the terminal device 110 and/or the  network devices  120 and 130.
The terminal device 110 performs 2090 the measurement based on the comparison. For example, the terminal device 110 may perform the measurement using the type of measurement gap with a greater priority. By way of example, if the further type is the per UE measurement gap which has a greater priority than the FR1 type, the terminal device 110 may perform the measurement using the per UE measurement gap. If the further type is the per CC measurement gap which has a lower priority than the FR1 type, the terminal device 110 may perform the measurement using the FR1 type.
In some embodiments, if the type of measurement gap is FR1 and the further type of measurement gap is FR2, the terminal device 110 may perform the measurement using FR1 for FR1 measured objects and perform the measurement using FR2 for FR2 measured objects.
In an example embodiment, the network device 130 override 2080 the type of measurement based on the comparison. For example, the network device 130 may override the type of measurement with a greater priority. By way of example, if the further type is the per UE measurement gap which has a greater priority than the FR1 type, the network device 130 may override the FR1 type with the per UE measurement gap.
In some embodiments, the network device 120 may also transmit information  indicating that the further type of measurement gap is to be used. For example, if the network device 120 may transmit the information that the FR1 type is to be used and the terminal device 130 perform the measurement using the per UE measurement gap, the terminal device 130 may remove the per UE measurement gap firstly and then perform the measurement using the FR1 type.
In a further embodiment, the network device 120 may transmit 2110, to the network device 130, further information for de-configuring the further type and may also transmit 2120 the further information to the terminal device 110. The network device 130 may resume 2130 the type of measurement gap and the terminal device 2140 may also resume 2140 the type of measurement gap.
Fig. 3 illustrates a flow chart of method 300 in accordance with embodiments of the present disclosure. The method 300 may be implemented at the terminal device 110. The method 300 may also be implemented at the network device 130. For the purpose of illustrations, the method 300 is described with the reference to the terminal device 110.
At block 310, the terminal device 110 receives information indicating a type (referred to as the first type) of measurement gap for measurement of signal quality. The first type may be a per UE measurement gap. The first type may also be a per CC measurement gap. Alternatively or in addition, the first type may be a per FR measurement gap. In some embodiments, the first type of measurement gap is received from the network device 120. In other embodiments, the first type of measurement gap is received from the network device 130.
Another type (referred to as the second type) of measurement gap for measurement of signal quality may be configured previously. For example, the network device 130 may previously configure the second type of measurement gap to the terminal device 110. In other embodiment, the network device 120 may previously configure the second type of measurement gap to the terminal device 110. The first type of measurement gap and the second type of measurement gap may be configured by the same network device. Alternatively or in addition, the first type of measurement gap and the second type of measurement gap may be configured by different network devices.
The terminal device 110 determines that the second type of measurement gap has been configured. At block 320, the terminal device 110 may compare the priority (referred to as the first priority) of the first type and the priority (referred to as the second priority) of the second type. For example, the terminal device 120 may compare the first and second priorities based on predefined priorities. In some embodiments, the priorities may be defined by the operator.
At block 330, the terminal device 110 performs the measurement of signal quality based on the comparing results. For example, if the first type has a greater priority than the second type, the terminal device 110 may perform the measurement using the first type. If the second type has a greater priority than the first type, the terminal device 110 may perform the measurement using the second type. In some embodiments, the terminal device 110 may ignore the first type of measurement and transmit indication for invalidity of configuring the first type of measurement gap to the network device 120. For example, the indication may indicate a failure of configuring the first type of measurement gap and/or a rejection to configuring the first type of measurement gap.
In an example embodiment, the terminal device 110 may receive information indicating that the first type is to be used. In this embodiment, if the second type has a greater priority than the first type, the terminal device 110 may remove the second type and perform the measurement using the first type. In some embodiments, the terminal device 110 may transmit indication for removing the second type of measurement gap to the network device which configures the second type of measurement gap.
In other embodiments, the first type of measurement gap and the second type of measurement gap may be used for different sets of frequencies. In this embodiment, the first type of measurement gap and the second type of measurement gap may be kept and the terminal device 110 may use the proper type of measurement gap the based on the frequencies or the serving cells. That is to say, the terminal device 110 may use different types of measurement gaps to measure signal quality with data connection on different sets of frequencies and the different types of measurement gaps may coexist at the terminal device 110 regardless of their priorities.
In some embodiments, an apparatus for performing the method 300 (for example,  the terminal device 110 and the network device 130) may comprise respective means for performing the corresponding steps in the method 300. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises: means for receiving information indicating a first type of measurement gap for measurement of signal quality means for in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and means for performing the measurement of signal quality at least in part based on the comparison.
In some embodiments, the means for performing the measurement of signal quality comprises: means for in response to the first priority being greater than the second priority, overriding the second type of measurement gap; means for performing the measurement of signal quality using the first type of measurement gap; and means for in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
In some embodiments, the means for performing the measurement of signal quality comprises: means for in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and means for performing the measurement of signal quality using the first type.
In some embodiments, the first type of measurement gap may comprise at least one of the followings: a per user equipment measurement gap, a per frequency range measurement gap, and a per component carrier measurement gap.
Fig. 4 is a simplified block diagram of a device 400 that is suitable for implementing embodiments of the present disclosure. The device 400 may be implemented at the network device 130. The device 400 may also be implemented at the terminal device 110. As shown, the device 400 includes one or more processors 410, one or more memories 420 coupled to the processor (s) 410, one or more transmitters and/or receivers (TX/RX) 440 coupled to the processor 410.
The processor 410 may be of any type suitable to the local technical network,  and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 400 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 420 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
The memory 420 stores at least a part of a program 430. The TX/RX 440 is for bidirectional communications. The TX/RX 440 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements.
The program 430 is assumed to include program instructions that, when executed by the associated processor 410, enable the device 400 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2 and 3. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 410 of the device 400, or by hardware, or by a combination of software and hardware.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be  excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purpose of limitation.

Claims (28)

  1. A communication method comprising:
    receiving information indicating a first type of measurement gap for measurement of signal quality;
    in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and
    performing the measurement of signal quality at least in part based on the comparison.
  2. The method of claim 1, wherein performing the measurement of signal quality comprises:
    in response to the first priority being greater than the second priority, overriding the second type of measurement gap;
    performing the measurement of signal quality using the first type of measurement gap; and
    in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
  3. The method of claim 1, wherein performing the measurement of signal quality comprises:
    in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and
    performing the measurement of signal quality using the first type.
  4. The method of claim 1, wherein performing the measurement of signal quality comprises:
    in response to the first type of measurement gap being for measuring signal quality with data connection on a first set of frequencies and the second type of  measurement gap being for measuring signal quality with data connection on a second set of frequencies, performing the measurement of signal quality with data connection on the first set of frequencies using the first type of measurement gap; and
    performing the measurement of signal quality with data connection on the second set of frequencies using the second type of measurement gap.
  5. The method of claim 2, further comprising:
    in response to the second priority being greater than the first priority, transmitting, to a communication device, indication for invalidity of configuring the first type of measurement gap, the first type of measurement gap being received from the communication.
  6. The method of claim 3, further comprising:
    transmitting, to a communication device, indication for removing the second type of measurement gap, the second type of measurement gap being received from the communication device.
  7. The method of claim 1, wherein the first type of measurement gap comprises at least one of the followings:
    a per user equipment measurement gap,
    a per frequency range measurement gap, and
    a per component carrier measurement gap.
  8. A communication device, comprising:
    at least one processor; and
    a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the communication device to perform acts comprising:
    receiving information indicating a first type of measurement gap for measurement of signal quality;
    in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and
    performing the measurement of signal quality at least in part based on the comparison.
  9. The communication device of claim 8, wherein performing the measurement of signal quality comprises:
    in response to the first priority being greater than the second priority, overriding the second type of measurement gap;
    performing the measurement of signal quality using the first type of measurement gap; and
    in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
  10. The communication device of claim 8, wherein performing the measurement of signal quality comprises:
    in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and
    performing the measurement of signal quality using the first type.
  11. The communication device of claim 8, wherein performing the measurement of signal quality comprises:
    in response to the first type of measurement gap being for measuring signal quality with data connection on a first set of frequencies and the second type of measurement gap being for measuring signal quality with data connection on a second set of frequencies, performing the measurement of signal quality with data connection on the first set of frequencies using the first type of measurement gap; and
    performing the measurement of signal quality with data connection on the second set of frequencies using the second type of measurement gap.
  12. The communication device of claim 9, wherein the acts further comprises:
    in response to the second priority being greater than the first priority, transmitting, to a further communication device, indication for invalidity of configuring the first type of measurement gap, the first type of measurement gap being received from the further communication.
  13. The communication device of claim 10, wherein the acts further comprises:
    transmitting, to a further communication device, indication for removing the second type of measurement gap, the second type of measurement gap being received from the further communication device.
  14. The communication device of claim 8, wherein the first type of measurement gap comprises at least one of the followings:
    a per user equipment measurement gap,
    a per frequency range measurement gap, and
    a per component carrier measurement gap.
  15. An apparatus for communication, comprising:
    means for receiving information indicating a first type of measurement gap for measurement of signal quality;
    means for in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and
    means for performing the measurement of signal quality at least in part based on the comparison.
  16. The apparatus of claim 15, wherein the means for performing the measurement of signal quality comprises:
    means for in response to the first priority being greater than the second priority,
    means for overriding the second type of measurement gap;
    means for performing the measurement of signal quality using the first type of measurement gap; and
    means for in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
  17. The apparatus of claim 15 wherein the means for performing the measurement of signal quality comprises:
    means for in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and
    means for performing the measurement of signal quality using the first type.
  18. The apparatus of claim 15, wherein the means for performing the measurement of signal quality comprises:
    means for in response to the first type of measurement gap being for measuring signal quality with data connection on a first set of frequencies and the second type of measurement gap being for measuring signal quality with data connection on a second set of frequencies, performing the measurement of signal quality with data connection on the first set of frequencies using the first type of measurement gap; and
    means for performing the measurement of signal quality with data connection on the second set of frequencies using the second type of measurement gap.
  19. The apparatus of claim 16, further comprising:
    means for in response to the second priority being greater than the first priority, transmitting, to a communication device, indication for invalidity of configuring the first type of measurement gap, the first type of measurement gap being received from the communication.
  20. The apparatus of claim 17, further comprising:
    means for transmitting, to a communication device, indication for removing the second type of measurement gap, the second type of measurement gap being received from the communication device.
  21. The apparatus of claim 15, wherein the first type of measurement gap comprises at least one of the followings:
    a per user equipment measurement gap,
    a per frequency range measurement gap, and
    a per component carrier measurement gap.
  22. A computer readable medium storing instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to perform:
    receiving information indicating a first type of measurement gap for measurement of signal quality;
    in response to a determination that a second type of measurement gap for the measurement of signal has been configured, comparing a first priority of the first type and a second priority of the second type; and
    performing the measurement of signal quality at least in part based on the comparison.
  23. The computer readable medium of claim 22, wherein performing the measurement of signal quality comprises:
    in response to the first priority being greater than the second priority,
    overriding the second type of measurement gap;
    performing the measurement of signal quality using the first type of measurement gap; and
    in response to the second priority being greater than the first priority, performing the measurement of signal quality using the second type of measurement gap.
  24. The computer readable medium of claim 22, wherein performing the measurement of signal quality comprises:
    in response to the information indicating that the first type of measurement gap is to be used, removing the second type of measurement gap if the second priority is greater than the first priority; and
    performing the measurement of signal quality using the first type.
  25. The computer readable medium of claim 22, wherein performing the measurement of signal quality comprises:
    in response to the first type of measurement gap being for measuring signal quality with data connection on a first set of frequencies and the second type of measurement gap being for measuring signal quality with data connection on a second set of frequencies, performing the measurement of signal quality with data connection on the first set of frequencies using the first type of measurement gap; and
    performing the measurement of signal quality with data connection on the second set of frequencies using the second type of measurement gap.
  26. The computer readable medium of claim 23, causing the machine to further perform:
    in response to the second priority being greater than the first priority, transmitting, to a communication device, indication for invalidity of configuring the first type of measurement gap, the first type of measurement gap being received from the communication.
  27. The computer readable medium of claim 24, causing the machine to further perform:
    transmitting, to a communication device, indication for removing the second type of measurement gap, the second type of measurement gap being received from the communication device.
  28. The computer readable medium of claim 22, wherein the first type of measurement gap comprises at least one of the followings:
    a per user equipment measurement gap,
    a per frequency range measurement gap, and
    a per component carrier measurement gap.
PCT/CN2018/086591 2018-05-11 2018-05-11 Methods, devices and computer readable medium for determining measurement gaps WO2019213961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093333.XA CN112106399B (en) 2018-05-11 2018-05-11 Method, apparatus and computer readable medium for determining a measurement gap
PCT/CN2018/086591 WO2019213961A1 (en) 2018-05-11 2018-05-11 Methods, devices and computer readable medium for determining measurement gaps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086591 WO2019213961A1 (en) 2018-05-11 2018-05-11 Methods, devices and computer readable medium for determining measurement gaps

Publications (1)

Publication Number Publication Date
WO2019213961A1 true WO2019213961A1 (en) 2019-11-14

Family

ID=68467254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086591 WO2019213961A1 (en) 2018-05-11 2018-05-11 Methods, devices and computer readable medium for determining measurement gaps

Country Status (2)

Country Link
CN (1) CN112106399B (en)
WO (1) WO2019213961A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038098A (en) * 2021-03-04 2022-09-09 维沃移动通信有限公司 Gap processing method, device, equipment and storage medium
WO2023198040A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for measurement gap configuration with adaptive configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189970A1 (en) * 2007-01-08 2008-08-14 Interdigital Technology Corporation Measurement gap pattern scheduling to support mobility
CN101686551A (en) * 2008-09-22 2010-03-31 大唐移动通信设备有限公司 Communication control method based on priority management and device
WO2012122673A1 (en) * 2011-03-15 2012-09-20 Telefonaktiebolaget L.M. Ericsson (Publ) A method and a base station for allocation measurement gaps
CN104488330A (en) * 2012-05-22 2015-04-01 三星电子株式会社 A method and system for minimizing power consumption of user equipment during cell detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651877A (en) * 2008-08-11 2010-02-17 华为技术有限公司 Method, system and device for allocating and measuring gap
US8693316B2 (en) * 2009-02-10 2014-04-08 Qualcomm Incorporated Access point resource negotiation and allocation over a wireless interface
EP2252109A1 (en) * 2009-05-15 2010-11-17 ST-NXP Wireless France Method and apparatus for performing inter radio access technology radio measurements
US20180132124A1 (en) * 2015-05-14 2018-05-10 Intel IP Corporation Measurement gap enhancement for incmon (increased number of carriers for monitoring)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189970A1 (en) * 2007-01-08 2008-08-14 Interdigital Technology Corporation Measurement gap pattern scheduling to support mobility
CN101686551A (en) * 2008-09-22 2010-03-31 大唐移动通信设备有限公司 Communication control method based on priority management and device
WO2012122673A1 (en) * 2011-03-15 2012-09-20 Telefonaktiebolaget L.M. Ericsson (Publ) A method and a base station for allocation measurement gaps
CN104488330A (en) * 2012-05-22 2015-04-01 三星电子株式会社 A method and system for minimizing power consumption of user equipment during cell detection

Also Published As

Publication number Publication date
CN112106399A (en) 2020-12-18
CN112106399B (en) 2023-08-25

Similar Documents

Publication Publication Date Title
US11711127B2 (en) Methods, devices and computer readable medium for communication measurement
US11212152B2 (en) Handling DC subcarrier in narrow bandwidth communications
EP3100362B1 (en) Methods of handling assistance information for interference mitigation
US11737060B2 (en) Methods, devices and computer readable medium for new radio management measurement
US11265789B2 (en) Method and apparatus for managing co-existence interference
US11671992B2 (en) Transmission configuration indicator (TCI) acquisition mechanism for secondary cell activation of a frequency range 2 (FR2) unknown cell
US11678404B2 (en) User equipment overheating handling during LTE-new radio simultaneous UL transmission
EP3665946B1 (en) Wireless device and method performed by the wireless device for handling measurements on a set of cells
US20210194563A1 (en) Methods, devices and computer readable medium for allocating measurement resources
EP4055922A1 (en) User equipment positioning measurements under cell change
WO2019213961A1 (en) Methods, devices and computer readable medium for determining measurement gaps
US10993212B2 (en) Method for indicating number of transmitting ports of UE, UE and network device
US20210195575A1 (en) Radio communication apparatus, method, program, and recording medium
CN112602350B (en) Method, apparatus, and computer readable medium for detecting cells in a carrier aggregation scenario
CN112970307A (en) Method, apparatus, and computer readable medium for scheduling serving cells
WO2024026743A1 (en) Intra device interference management method and apparatus
US20240073748A1 (en) Method and apparatus for measurement configuration updates for inter-cell mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918029

Country of ref document: EP

Kind code of ref document: A1