WO2019213889A1 - Uplink configuration change request - Google Patents

Uplink configuration change request Download PDF

Info

Publication number
WO2019213889A1
WO2019213889A1 PCT/CN2018/086290 CN2018086290W WO2019213889A1 WO 2019213889 A1 WO2019213889 A1 WO 2019213889A1 CN 2018086290 W CN2018086290 W CN 2018086290W WO 2019213889 A1 WO2019213889 A1 WO 2019213889A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
base station
request
mimo
duration
Prior art date
Application number
PCT/CN2018/086290
Other languages
French (fr)
Inventor
Jay Kumar Sundararajan
Yi Huang
Yu Zhang
Gokul SRIDHARAN
Joseph Binamira Soriaga
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2018/086290 priority Critical patent/WO2019213889A1/en
Publication of WO2019213889A1 publication Critical patent/WO2019213889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to an uplink configuration change request.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus may communicate with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection.
  • the apparatus may select a second UL configuration for communication with the base station based on one or more local conditions at the UE.
  • the apparatus may transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a DL subframe, DL channels within the DL subframe, an UL subframe, and UL channels within the UL subframe, respectively, for a 5G/NR frame structure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIGs. 4A and 4B are diagrams illustrating technique (s) that may be used by a UE to switch from a first UL configuration to a second UL configuration in accordance with certain aspects of the disclosure.
  • FIG. 5 is a flowchart of a method of wireless communication.
  • FIG. 6 is a conceptual data flow diagram illustrating the data flow between different means/components in an exemplary apparatus.
  • FIG. 7 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system also referred to as a wireless wide area network (WWAN)
  • WWAN wireless wide area network
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) .
  • UMTS Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160) with each other over backhaul links 134 (e.g., X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • UL uplink
  • DL downlink
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • MIMO multiple-input and multiple-output
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction.
  • the carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • PCell primary cell
  • SCell secondary cell
  • D2D communication link 192 may use the DL/UL WWAN spectrum.
  • the D2D communication link 192 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the gNodeB (gNB) 180 may operate in millimeter wave (mmW) frequencies and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • the gNB 180 may be referred to as an mmW base station.
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 184 with the UE 104 to compensate for the extremely high path loss and short range.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a display, or any other similar functioning device.
  • Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc.
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to transmit an uplink configuration change request to the base station 180 (as illustrated at 198) , e.g., as described below in connection with any of FIGs. 2A-7.
  • FIG. 2A is a diagram 200 illustrating an example of a DL subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of channels within a DL subframe.
  • FIG. 2C is a diagram 250 illustrating an example of an UL subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of channels within an UL subframe.
  • the 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 a DL subframe and subframe 7 an UL subframe. While subframe 4 is illustrated as providing just DL and subframe 7 is illustrated as providing just UL, any particular subframe may be split into different subsets that provide both UL and DL. Note that the description infra applies also to a 5G/NR frame structure that is FDD.
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration.
  • For slot configuration 0 each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the number of slots within a subframe is based on the slot configuration and the numerology.
  • For slot configuration 0 different numerologies 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe.
  • For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kKz, where ⁇ is the numerology 0-5.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • FIGs. 2A, 2C provide an example of slot configuration 1 with 7 symbols per slot and numerology 0 with 2 slots per subframe.
  • the subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 ⁇ s.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various channels within a DL subframe of a frame.
  • the physical control format indicator channel (PCFICH) is within symbol 0 of slot 0, and carries a control format indicator (CFI) that indicates whether the physical downlink control channel (PDCCH) occupies 1, 2, or 3 symbols (FIG. 2B illustrates a PDCCH that occupies 3 symbols) .
  • the PDCCH carries downlink control information (DCI) within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • DCI downlink control information
  • CCEs control channel elements
  • REGs RE groups
  • a UE may be configured with a UE-specific enhanced PDCCH (ePDCCH) that also carries DCI.
  • ePDCCH UE-specific enhanced PDCCH
  • the ePDCCH may have 2, 4, or 8 RB pairs (FIG. 2B shows two RB pairs, each subset including one RB pair) .
  • the physical hybrid automatic repeat request (ARQ) (HARQ) indicator channel (PHICH) is also within symbol 0 of slot 0 and carries the HARQ indicator (HI) that indicates HARQ acknowledgement (ACK) /negative ACK (NACK) feedback based on the physical uplink shared channel (PUSCH) .
  • the primary synchronization channel (PSCH) may be within symbol 6 of slot 0 within subframes 0 and 5 of a frame.
  • the PSCH carries a primary synchronization signal (PSS) that is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • PSS primary synchronization signal
  • the secondary synchronization channel may be within symbol 5 of slot 0 within subframes 0 and 5 of a frame.
  • the SSCH carries a secondary synchronization signal (SSS) that is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DL-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSCH and SSCH to form a synchronization signal (SS) /PBCH block.
  • MIB master information block
  • the MIB provides a number of RBs in the DL system bandwidth, a PHICH configuration, and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry demodulation reference signals (DM-RS) for channel estimation at the base station.
  • the UE may additionally transmit sounding reference signals (SRS) in the last symbol of a subframe.
  • SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various channels within an UL subframe of a frame.
  • a physical random access channel PRACH
  • PRACH physical random access channel
  • the PRACH may be within one or more subframes within a frame based on the PRACH configuration.
  • the PRACH may include six consecutive RB pairs within a subframe.
  • the PRACH allows the UE to perform initial system access and achieve UL synchronization.
  • a physical uplink control channel (PUCCH) may be located on edges of the UL system bandwidth.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a RRC layer
  • layer 2 includes a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • a UE may transmit one or more messages that indicate one or more capabilities to a serving base station. If the UE has more than one antenna, the message may indicate the UE’s capabilities related to UL MIMO capabilities.
  • the message may be a maxNumberMIMO-LayersCB-PUSCH codebook message that indicates the maximum number of supported MIMO layers at the UE for a PUSCH transmission with codebook precoding.
  • the UE may also indicate support of a PUSCH codebook coherency subset by transmitting a pusch-TransCoherence message.
  • the pusch-TransCoherence message may indicate support of a MIMO coherence category such as a fully coherent MIMO configuration, a partially coherent MIMO configuration, and/or a non-coherent MIMO configuration.
  • a fully coherent MIMO configuration may be indicated when the UE is able to maintain a phase difference between all of its antennas. For example, when the base station detects a phase difference in the SRS transmitted by different antennas at the UE, the phase difference may be preserved when the UE transmits an UL MIMO data transmission using all antennas.
  • the pusch-TransCoherence message indicates a fully coherent MIMO configuration
  • all of the antenna codebook entries may have a non-zero value indicating that all the antennas may be used for the UL MIMO data transmission.
  • a partially-coherent MIMO configuration may be indicated when the UE is able to maintain a phase difference between one or more pairs of antennas but not across different pairs of antennas. For example, if the UE has four antennas and is able to maintain a phase difference across a first pair of antennas and maintain a phase difference across a second pair of antennas, but not across the different pairs of antennas, the UE may use a single pair of antennas for UL MIMO data transmissions per spatial layer. Because the UE is able to maintain a phase difference across a subset of antennas, the MIMO configuration is said to be “partially-coherent.
  • the entry in the codebook for one of the pairs of antennas may have a zero value indicating that only one of the pairs will be used per spatial layer for UL MIMO data transmissions. If the transmission involves two spatial layers, the UE may use both pairs, one on each layer.
  • a non-coherent MIMO configuration may be indicated when the UE is unable to maintain a phase difference across any antennas.
  • the UE may use a single antenna per spatial layer for data transmissions to the base station.
  • a single antenna codebook entry may have a non-zero value indicating the antenna that may be used for data transmissions for each spatial layer, and the remaining antenna codebook entries may each have a zero value indicating these antennas may not be used for data transmissions for that spatial layer. If the transmission involves more than one spatial layer, the UE may use a different antenna for each spatial layer.
  • the maximum number of layers available at the UE for a UL MIMO data transmission, the fully coherent MIMO configuration, the partially coherent MIMO configuration, and/or the non-coherent MIMO configuration indicated by the UE may remain in place for a duration of the connection with the network (e.g., for the duration of an RRC connection) . In certain scenarios, however, the UE may benefit from switching between different MIMO configurations during the same RRC connection.
  • a UE may initially indicate a capability to use a fully coherent MIMO configuration for four antennas.
  • a fully coherent MIMO configuration may use an undesirable amount of power, such that when the battery level of the UE drops below a threshold level, the quality-of-service (QoS) may be increased by switching to a partially coherent MIMO configuration that uses two antennas or a non-coherent MIMO configuration that uses one antenna in order to conserve battery power.
  • QoS quality-of-service
  • the QoS may be increased by switching from partially coherent MIMO configuration or a non-coherent MIMO configuration to a fully coherent MIMO configuration in order to increase data throughput.
  • the UE may determine (e.g., based on past learning) that certain capabilities, such as using fully coherent MIMO configuration, may have limited benefit in scenarios in which the UE has UL data transmissions that are less than a threshold number or less than a threshold size.
  • the QoS may be increased by switching from a fully coherent MIMO configuration to a non-coherent MIMO configuration in order to conserve battery power.
  • the present disclosure provides a solution by enabling a UE to request a different MIMO configuration, and switch to the different MIMO configuration when the network accepts the request, e.g., as described below in connection with any of FIGs. 4A-7.
  • FIGs. 4A and 4B are diagrams 400, 410, respectively, illustrating technique (s) that may be used by a UE 402 to switch from a first UL configuration to a second UL configuration during a duration of the same RRC connection in accordance with certain aspects of the disclosure.
  • the UE 402 may correspond to, e.g., UE 104, 350, the apparatus 602/602'.
  • the base station 404 may correspond to, e.g., base station 102, 180, 310, 650.
  • UL configurations are described below in connection with a number of antennas, UL MIMO coherence categories, and/or a set of antennas used for SRSs, the UL configurations may be additionally and/or alternatively associated with a UL rank, and/or port compatibility information (e.g., hardware restrictions at the UE 402 that may limit which antennas may be concurrently used for UL MIMO transmissions) without departing from the scope of the present disclosure.
  • port compatibility information e.g., hardware restrictions at the UE 402 that may limit which antennas may be concurrently used for UL MIMO transmissions
  • the UE 402 may select (at 401) and advertise the UE’s 402 capabilities (e.g., based on one or more local conditions at the UE 402) to the base station 404.
  • the local conditions may include, for example, at least one of a power level associated with the UE 402, a number of UL transmissions at the UE 402, a location of the UE 402, an antenna blockage, or a docking status of the UE 402, just to name a few.
  • a power level associated with the UE 402 e.g., a number of UL transmissions at the UE 402, a location of the UE 402, an antenna blockage, or a docking status of the UE 402, just to name a few.
  • a user 450 may hold the UE 402 in a first orientation where neither the first antenna 435a, the second antenna 435b, the third antenna 435c, nor the fourth antenna 435d are blocked by the user’s hand. Furthermore, the UE 402 in FIG. 4A may have full battery power.
  • the base station 404 may respond with signaling that indicates that the UE 402 should use a first UL configuration that is associated with the UE’s capabilities.
  • the first UL configuration may include one or more of a maximum number of UL MIMO layers, a fully coherent MIMO configuration, a partially coherent MIMO configuration, a non-coherent MIMO configuration, etc..
  • the UE 402 may select (at 401) a fully coherent MIMO configuration for communications with the base station 404, which may provide the highest data throughput without compromising QoS since the battery is fully charged and none of the antennas 435a, 435b, 435c, 435d are blocked.
  • the UE 402 may transmit (at 403) a UL capability message to the base station 404 indicating the UE’s capability of using a fully coherent MIMO configuration.
  • the base station 404 may schedule resources for the UE 402 based at least in part on the fully coherent MIMO configuration in FIG.
  • the UE 402 may communicate (at 405) one or more UL data transmissions to the base station 404 using the fully coherent configuration (e.g., using all of the antennas 435a, 435b, 435c, 435d) .
  • the UE 402 may detect (at 407) a change in at least one the local condition at the UE 402.
  • the detected change may be in connection with an orientation of the UE 402, and hence, a blockage of certain antennas that were previously unblocked.
  • the user 450 may change how the UE 402 is held such that the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand.
  • the UE 402 may detect (at 407) the orientation change between FIG. 4A and 4B, e.g., using a gyroscope at the UE 402, detecting a decrease in signal strength associated with the second antenna 435b and the fourth antenna 435d, etc.
  • the blockage of certain antennas may be caused by a power docking station (e.g., when the UE 402 is a laptop, table, smart phone, etc. ) .
  • the power source availability of the UE 402 may be increased when the UE 402 is docked at the docking station.
  • the UE 402 may want to switch from a non-coherent configuration to a fully coherent configuration, for example.
  • the UE 402 may select (at 409) a second UL configuration that corresponds to the new local conditions. Because the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand in FIG. 4B, the UE 402 may select (at 409) a partially coherent MIMO configuration that uses the first antenna 435a and the third antenna 435c, and/or select the first antenna 435a and the third antenna 435c for use in sending SRSs to the base station 404.
  • the UE 402 may transmit (at 411) a request to use the second UL configuration. In certain configurations, the request may be transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
  • the request may include information associated with the second UL configuration, e.g., such as a codebook specifying which antennas may be used for subsequent UL MIMO data transmissions, a MIMO coherence category, etc.
  • the base station 404 may determine which antenna (s) and/or UL MIMO coherence category the UE 402 intends to use upon switching to the second UL configuration.
  • the request may omit information associated with the second UL configuration, and instead, only indicate that the UE 402 intends to change configurations.
  • the base station 404 may send a message that instructs the UE 402 to send information associated with the second UL configuration, and the UE 402 may send the information associated with the second UL configuration upon receipt of the message.
  • the base station 404 may determine whether to accept or reject the UE’s 402 request upon receipt of the information associated with the second UL configuration, and may transmit (at 413) a response either accepting or rejecting the UE’s 402 request. In some implementations, the absence of a response may indicate the rejection of the request.
  • the base station 404 may determine whether to accept or reject the UE’s 402 request, e.g., based on one or more of network traffic, QoS requirements, uplink channel quality, etc.
  • the response may be transmitted via RRC signaling, DCI, and/or a group-common PDCCH.
  • the UE 402 may communicate (at 415) UL data transmissions and/or SRSs using the second UL configuration (e.g., using a partially coherent MIMO configuration, using the first antenna 435a and the third antenna 435c, etc. ) .
  • the UE 402 may continue sending UL data transmissions and/or SRSs to the base station 404 using the first UL configuration.
  • the UE 402 may refrain (at 417) from transmitting a subsequent request for a UL configuration switch until a timer expires (e.g., 1 ms, 10 ms, 100 ms, etc. ) .
  • the base station 404 may request for an update of the UE’s 402 capabilities (e.g., UL MIMO configuration, UL rank, number of antennas used for UL communications, port compatibility information, set of ports for SRSs, etc. ) based on current local conditions at the UE 402.
  • the UE 402 may determine the current capabilities, and transmit information associated with the UE’s 402 current capabilities to the base station 404.
  • the base station 404 may send an acknowledgement to the UE 402 upon receipt of the information, and the UE 402 may transmit UL data transmissions using the updated capabilities once the acknowledgement is received.
  • the UE 402 of the present disclosure may have increased flexibility in optimizing the tradeoff between power consumption and throughput performance.
  • the network throughput performance may also benefit from the UE flexibility described above.
  • FIG. 5 is a flowchart 500 of a method of wireless communication. The method may be performed by a UE (e.g., UE 104, 350, 402, the apparatus 602/602') . In FIG. 5, optional operations are indicated with dashed lines.
  • a UE e.g., UE 104, 350, 402, the apparatus 602/602'.
  • optional operations are indicated with dashed lines.
  • the UE may communicate with a base station using a first UL configuration during a duration of an RRC connection.
  • the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs.
  • the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration.
  • the UE 402 may communicate (at 405) one or more UL data transmissions to the base station 404 using the fully coherent configuration (e.g., using all of the antennas 435a, 435b, 435c, 435d) .
  • the UE may select a second UL configuration for communication with the base station based on one or more local conditions at the UE.
  • the second UL configuration may be associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  • the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  • the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  • the UE 402 may select (at 409) a second UL configuration that corresponds to the new local conditions. Because the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand in FIG.
  • the UE 402 may select (at 409) a partially coherent MIMO configuration that uses the first antenna 435a and the third antenna 435c, and/or select the first antenna 435a and the third antenna 435c for use in sending SRSs to the base station 404.
  • the UE may transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  • the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
  • the UE 402 may transmit (at 411) a request to use the second UL configuration.
  • the request to use the second UL configuration may include information associated with the second UL configuration. In certain other implementations, at 506, the request to use the second UL configuration may not include information associated with the second UL configuration.
  • the operation may move to 512. Otherwise, when the request does not include information associated with the second UL configuration, the operation may move to 508.
  • the UE may receive, from the base station, a message instructing the UE to send information associated with the second UL configuration.
  • the request transmitted (at 411) may omit information associated with the second UL configuration, and instead, only indicate that the UE 402 intends to change configurations.
  • the UE 402 may receive a message from the base station 404 that instructs the UE 402 to send information associated with the second UL configuration.
  • the UE may transmit the information associated with the second UL configuration upon receiving the message from the base station. For example, referring to FIG. 4B, the UE 402 may send the information associated with the second UL configuration upon receipt of the message.
  • the UE may receive, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection.
  • the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, DCI, or a group-common PDCCH.
  • the base station 404 may transmit (at 413) a response either accepting or rejecting the UE’s 402 request.
  • the UE may determine whether the base station accepts or rejects the request to use the second UL configuration. For example, referring to FIG. 4B, the UE 402 may determine whether the base station 404 accepts or rejects the request based on information included in the response.
  • the operation moves to 516. Otherwise, upon determining that the response rejects the UE’s request to use the second UL configuration, the operation moves to 518.
  • the UE may communicate with the base station using the second UL configuration during the duration of the RRC connection when the response from the base station accepts the second UL configuration.
  • the UE 402 may communicate (at 415) UL data transmissions and/or SRSs using the second UL configuration (e.g., using a partially coherent MIMO configuration, using the first antenna 435a and the third antenna 435c, etc. ) when the response accepts the UE’s 402 request.
  • the UE may refrain from transmitting a subsequent request until an expiration of a timer during the duration of the RRC connection when the response rejects the request to use the second UL configuration for communication with the base station.
  • the UE 402 may continue sending UL data transmissions and/or SRSs to the base station 404 using the first UL configuration when the response rejects the UE’s 402 request.
  • the UE 402 may refrain (at 417) from transmitting a subsequent request for a UL configuration switch until a timer expires (e.g., 1 ms, 10 ms, 100 ms, etc. ) .
  • FIG. 6 is a conceptual data flow diagram 600 illustrating the data flow between different means/components in an exemplary apparatus 602.
  • the apparatus may be a UE (e.g., UE 104, 350, 402, the apparatus 602') in communication with a base station 650 (e.g., base station 102, 180, 310, 404) .
  • the apparatus may include a reception component 604, a local condition (s) component 606, a UL configuration component 608, a determination component 610, and a transmission component 612.
  • the transmission component 612 may be configured to communicate with a base station using a first UL configuration during a duration of an RRC connection.
  • the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs.
  • the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration.
  • the local condition (s) component 606 may be configured to determine one or more local condition (s) at the apparatus 602. For example, the local condition (s) component 606 may be configured to periodically determine whether local conditions have changed, and to send a signal indicating a change in local condition (s) to the UL configuration component 608.
  • the UL configuration component 608 may be configured to select a second UL configuration for communication with the base station 650 based on one or more local conditions at the UE.
  • the second UL configuration may be associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  • the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  • the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  • the UL configuration component 608 may be configured to generate a request to use the second UL configuration, and send the request to the transmission component 612.
  • the transmission component 612 may be configured to transmit, to the base station 650, a request to use the second UL configuration during the duration of the RRC connection.
  • the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
  • the request to use the second UL configuration may include information associated with the second UL configuration. In certain other implementations, the request to use the second UL configuration may not include information associated with the second UL configuration.
  • the reception component 604 may be configured to receive, from the base station 650, a message instructing the UE to send information associated with the second UL configuration.
  • the reception component 604 may be configured to send the message to the UL configuration component 608.
  • the UL configuration component 608 may be configured to send information associated with the second UL configuration to the transmission component 612.
  • the transmission component 612 may be configured to transmit the information associated with the second UL configuration upon receiving the message from the base station 650.
  • the reception component 604 may be configured to receive, from the base station 650, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection.
  • the response that accepts or rejects the request to use the second UL configuration for communication with the base station 650 is received via RRC signaling, DCI, or a group-common PDCCH.
  • the reception component 604 may be configured to send the response to the determination component 610.
  • the determination component 610 may be configured to determine whether the base station 650 accepts or rejects the request to use the second UL configuration based at least in part on information included in the response.
  • the determination component 610 may be configured to send a signal indicating whether the second UL configuration is accepted or rejected to the UL configuration component 608.
  • the UL configuration component 608 may send a signal indicating the acceptance of the second UL configuration to the transmission component 612. Otherwise, upon receiving a signal that rejects the UE’s request to use the second UL configuration, the UL configuration component 608 may send a signal indicating the rejection of the second UL configuration to the transmission component 612.
  • the transmission component 612 may be configured to communicate with the base station 650 using the second UL configuration during the duration of the RRC connection when the response from the base station 650 accepts the second UL configuration.
  • the transmission component 612 may refrain from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when the response rejects the request to use the second UL configuration.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 5. As such, each block in the aforementioned flowchart of FIG. 5 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 602'employing a processing system 714.
  • the processing system 714 may be implemented with a bus architecture, represented generally by the bus 724.
  • the bus 724 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 714 and the overall design constraints.
  • the bus 724 links together various circuits including one or more processors and/or hardware components, represented by the processor 704, the components 604, 606, 608, 610, 612, and the computer-readable medium /memory 706.
  • the bus 724 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 714 may be coupled to a transceiver 710.
  • the transceiver 710 is coupled to one or more antennas 720.
  • the transceiver 710 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 710 receives a signal from the one or more antennas 720, extracts information from the received signal, and provides the extracted information to the processing system 714, specifically the reception component 604.
  • the transceiver 710 receives information from the processing system 714, specifically the transmission component 612, and based on the received information, generates a signal to be applied to the one or more antennas 720.
  • the processing system 714 includes a processor 704 coupled to a computer-readable medium /memory 706.
  • the processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 706.
  • the software when executed by the processor 704, causes the processing system 714 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 706 may also be used for storing data that is manipulated by the processor 704 when executing software.
  • the processing system 714 further includes at least one of the components 604, 606, 608, 610, 612.
  • the components may be software components running in the processor 704, resident/stored in the computer readable medium /memory 706, one or more hardware components coupled to the processor 704, or some combination thereof.
  • the processing system 714 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 602/602'for wireless communication may include means for communicating with a base station using a first UL configuration during a duration of an RRC connection.
  • the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs.
  • the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration.
  • the apparatus 602/602'for wireless communication may include means for selecting a second UL configuration for communication with the base station based on one or more local conditions at the UE.
  • the second UL configuration may be associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  • the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  • the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  • the apparatus 602/602'for wireless communication may include means for transmitting, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  • the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
  • the request to use the second UL configuration may include information associated with the second UL configuration.
  • the request to use the second UL configuration may not include information associated with the second UL configuration.
  • the apparatus 602/602'for wireless communication may include means for receiving, from the base station, a message instructing the UE to send information associated with the second UL configuration when the request does not include information associated with the second UL configuration.
  • the apparatus 602/602'for wireless communication may include means for transmitting the information associated with the second UL configuration upon receiving the message from the base station.
  • the apparatus 602/602'for wireless communication may include means for receiving, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection.
  • the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, DCI, or a group-common PDCCH.
  • the apparatus 602/602'for wireless communication may include means for determining whether the base station accepts or rejects the request to use the second UL configuration.
  • the apparatus 602/602'for wireless communication may include means for communicating with the base station using the second UL configuration during the duration of the RRC connection when the response from the base station accepts the second UL configuration.
  • the apparatus 602/602'for wireless communication may include means for refraining from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when the response rejects the request to use the second UL configuration for communication with the base station.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 602 and/or the processing system 714 of the apparatus 602'configured to perform the functions recited by the aforementioned means.
  • the processing system 714 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may communicate with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection. In certain other aspects, the apparatus may select a second UL configuration for communication with the base station based on one or more local conditions at the UE. In certain other aspects, the apparatus may transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.

Description

UPLINK CONFIGURATION CHANGE REQUEST BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to an uplink configuration change request.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may communicate with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection. In certain other aspects, the apparatus may select a second UL configuration for communication with the base station based on one or more local conditions at the UE. In certain other aspects, the apparatus may transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a DL subframe, DL channels within the DL subframe, an UL subframe, and UL channels within the UL subframe, respectively, for a 5G/NR frame structure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIGs. 4A and 4B are diagrams illustrating technique (s) that may be used by a UE to switch from a first UL configuration to a second UL configuration in accordance with certain aspects of the disclosure.
FIG. 5 is a flowchart of a method of wireless communication.
FIG. 6 is a conceptual data flow diagram illustrating the data flow between different means/components in an exemplary apparatus.
FIG. 7 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction  set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, and an Evolved Packet Core (EPC) 160. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) . In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160) with each other over backhaul links 134 (e.g., X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx  MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 192. The D2D communication link 192 may use the DL/UL WWAN spectrum. The D2D communication link 192 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102'may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The gNodeB (gNB) 180 may operate in millimeter wave (mmW) frequencies and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the  electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 184 with the UE 104 to compensate for the extremely high path loss and short range.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to transmit an uplink configuration change request to the base station 180 (as illustrated at 198) , e.g., as described below in connection with any of FIGs. 2A-7.
FIG. 2A is a diagram 200 illustrating an example of a DL subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of channels within a DL subframe. FIG. 2C is a diagram 250 illustrating an example of an UL subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of channels within an UL subframe. The 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is  assumed to be TDD, with subframe 4 a DL subframe and subframe 7 an UL subframe. While subframe 4 is illustrated as providing just DL and subframe 7 is illustrated as providing just UL, any particular subframe may be split into different subsets that provide both UL and DL. Note that the description infra applies also to a 5G/NR frame structure that is FDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kKz, where μ is the numerology 0-5. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A, 2C provide an example of slot configuration 1 with 7 symbols per slot and numerology 0 with 2 slots per subframe. The subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 μs.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE (indicated as R) . The RS may include demodulation RS (DM-RS) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various channels within a DL subframe of a frame. The physical control format indicator channel (PCFICH) is within symbol 0 of slot 0, and carries a control format indicator (CFI) that indicates whether the physical downlink control channel (PDCCH) occupies 1, 2, or 3 symbols (FIG. 2B illustrates a PDCCH that occupies 3 symbols) . The PDCCH carries downlink control information (DCI) within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A UE may be configured with a UE-specific enhanced PDCCH (ePDCCH) that also carries DCI. The ePDCCH may have 2, 4, or 8 RB pairs (FIG. 2B shows two RB pairs, each subset including one RB pair) . The physical hybrid automatic repeat request (ARQ) (HARQ) indicator channel (PHICH) is also within symbol 0 of slot 0 and carries the HARQ indicator (HI) that indicates HARQ acknowledgement (ACK) /negative ACK (NACK) feedback based on the physical uplink shared channel (PUSCH) . The primary synchronization channel (PSCH) may be within symbol 6 of slot 0 within  subframes  0 and 5 of a frame. The PSCH carries a primary synchronization signal (PSS) that is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. The secondary synchronization channel (SSCH) may be within symbol 5 of slot 0 within  subframes  0 and 5 of a frame. The SSCH carries a secondary synchronization signal (SSS) that is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DL-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSCH and SSCH to form a synchronization signal (SS) /PBCH block. The MIB provides a number of RBs in the DL system bandwidth, a PHICH configuration, and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry demodulation reference signals (DM-RS) for channel estimation at the base station. The UE may additionally transmit sounding reference signals (SRS) in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various channels within an UL subframe of a frame. A physical random access channel (PRACH) may be within one or more subframes within a frame based on the PRACH configuration. The PRACH may include six consecutive RB pairs within a subframe. The PRACH allows the UE to perform initial system access and achieve UL synchronization. A physical uplink control channel (PUCCH) may be located on edges of the UL system bandwidth. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a RRC layer, and layer 2 includes a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction  through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated  with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with  mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Upon establishing a connection with a wireless communication network, a UE may transmit one or more messages that indicate one or more capabilities to a serving base station. If the UE has more than one antenna, the message may indicate the UE’s capabilities related to UL MIMO capabilities.
In certain implementations, the message may be a maxNumberMIMO-LayersCB-PUSCH codebook message that indicates the maximum number of supported MIMO layers at the UE for a PUSCH transmission with codebook  precoding. When the UE indicates the maximum number of supported MIMO layers, the UE may also indicate support of a PUSCH codebook coherency subset by transmitting a pusch-TransCoherence message. The pusch-TransCoherence message may indicate support of a MIMO coherence category such as a fully coherent MIMO configuration, a partially coherent MIMO configuration, and/or a non-coherent MIMO configuration.
A fully coherent MIMO configuration may be indicated when the UE is able to maintain a phase difference between all of its antennas. For example, when the base station detects a phase difference in the SRS transmitted by different antennas at the UE, the phase difference may be preserved when the UE transmits an UL MIMO data transmission using all antennas. When the pusch-TransCoherence message indicates a fully coherent MIMO configuration, all of the antenna codebook entries may have a non-zero value indicating that all the antennas may be used for the UL MIMO data transmission.
A partially-coherent MIMO configuration may be indicated when the UE is able to maintain a phase difference between one or more pairs of antennas but not across different pairs of antennas. For example, if the UE has four antennas and is able to maintain a phase difference across a first pair of antennas and maintain a phase difference across a second pair of antennas, but not across the different pairs of antennas, the UE may use a single pair of antennas for UL MIMO data transmissions per spatial layer. Because the UE is able to maintain a phase difference across a subset of antennas, the MIMO configuration is said to be “partially-coherent. ” When the pusch-TransCoherence message indicates a partially-coherent MIMO configuration, the entry in the codebook for one of the pairs of antennas may have a zero value indicating that only one of the pairs will be used per spatial layer for UL MIMO data transmissions. If the transmission involves two spatial layers, the UE may use both pairs, one on each layer.
A non-coherent MIMO configuration may be indicated when the UE is unable to maintain a phase difference across any antennas. Hence, in the non-coherent MIMO configuration, the UE may use a single antenna per spatial layer for data transmissions to the base station. When the pusch-TransCoherence message  indicates a non-coherent MIMO configuration, a single antenna codebook entry may have a non-zero value indicating the antenna that may be used for data transmissions for each spatial layer, and the remaining antenna codebook entries may each have a zero value indicating these antennas may not be used for data transmissions for that spatial layer. If the transmission involves more than one spatial layer, the UE may use a different antenna for each spatial layer.
The maximum number of layers available at the UE for a UL MIMO data transmission, the fully coherent MIMO configuration, the partially coherent MIMO configuration, and/or the non-coherent MIMO configuration indicated by the UE may remain in place for a duration of the connection with the network (e.g., for the duration of an RRC connection) . In certain scenarios, however, the UE may benefit from switching between different MIMO configurations during the same RRC connection.
For example, a UE may initially indicate a capability to use a fully coherent MIMO configuration for four antennas. However, using a fully coherent MIMO configuration may use an undesirable amount of power, such that when the battery level of the UE drops below a threshold level, the quality-of-service (QoS) may be increased by switching to a partially coherent MIMO configuration that uses two antennas or a non-coherent MIMO configuration that uses one antenna in order to conserve battery power. Conversely, when the UE is connected to a power source and the battery level reaches a threshold level, the QoS may be increased by switching from partially coherent MIMO configuration or a non-coherent MIMO configuration to a fully coherent MIMO configuration in order to increase data throughput.
In certain implementations, the UE may determine (e.g., based on past learning) that certain capabilities, such as using fully coherent MIMO configuration, may have limited benefit in scenarios in which the UE has UL data transmissions that are less than a threshold number or less than a threshold size. In such scenarios, the QoS may be increased by switching from a fully coherent MIMO configuration to a non-coherent MIMO configuration in order to conserve battery power.
There is a need to support a UL MIMO configuration switch during an RRC connection such that network scheduling decisions are in alignment with the UE’s new MIMO configuration.
The present disclosure provides a solution by enabling a UE to request a different MIMO configuration, and switch to the different MIMO configuration when the network accepts the request, e.g., as described below in connection with any of FIGs. 4A-7.
FIGs. 4A and 4B are diagrams 400, 410, respectively, illustrating technique (s) that may be used by a UE 402 to switch from a first UL configuration to a second UL configuration during a duration of the same RRC connection in accordance with certain aspects of the disclosure. The UE 402 may correspond to, e.g.,  UE  104, 350, the apparatus 602/602'. The base station 404 may correspond to, e.g.,  base station  102, 180, 310, 650. Although UL configurations are described below in connection with a number of antennas, UL MIMO coherence categories, and/or a set of antennas used for SRSs, the UL configurations may be additionally and/or alternatively associated with a UL rank, and/or port compatibility information (e.g., hardware restrictions at the UE 402 that may limit which antennas may be concurrently used for UL MIMO transmissions) without departing from the scope of the present disclosure.
Referring to FIG. 4A, the UE 402 may select (at 401) and advertise the UE’s 402 capabilities (e.g., based on one or more local conditions at the UE 402) to the base station 404. The local conditions may include, for example, at least one of a power level associated with the UE 402, a number of UL transmissions at the UE 402, a location of the UE 402, an antenna blockage, or a docking status of the UE 402, just to name a few. In the example illustrated in FIG. 4A, a user 450 may hold the UE 402 in a first orientation where neither the first antenna 435a, the second antenna 435b, the third antenna 435c, nor the fourth antenna 435d are blocked by the user’s hand. Furthermore, the UE 402 in FIG. 4A may have full battery power. The base station 404 may respond with signaling that indicates that the UE 402 should use a first UL configuration that is associated with the UE’s capabilities. For example, the first UL configuration may include one or more of a maximum number  of UL MIMO layers, a fully coherent MIMO configuration, a partially coherent MIMO configuration, a non-coherent MIMO configuration, etc..
Hence, the UE 402 may select (at 401) a fully coherent MIMO configuration for communications with the base station 404, which may provide the highest data throughput without compromising QoS since the battery is fully charged and none of the  antennas  435a, 435b, 435c, 435d are blocked. The UE 402 may transmit (at 403) a UL capability message to the base station 404 indicating the UE’s capability of using a fully coherent MIMO configuration. The base station 404 may schedule resources for the UE 402 based at least in part on the fully coherent MIMO configuration in FIG. 4A, and the UE 402 may communicate (at 405) one or more UL data transmissions to the base station 404 using the fully coherent configuration (e.g., using all of the  antennas  435a, 435b, 435c, 435d) .
Referring to FIG. 4B, the UE 402 may detect (at 407) a change in at least one the local condition at the UE 402. For example, the detected change may be in connection with an orientation of the UE 402, and hence, a blockage of certain antennas that were previously unblocked. As seen in FIG. 4B, the user 450 may change how the UE 402 is held such that the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand. The UE 402 may detect (at 407) the orientation change between FIG. 4A and 4B, e.g., using a gyroscope at the UE 402, detecting a decrease in signal strength associated with the second antenna 435b and the fourth antenna 435d, etc. In a scenario not illustrated in FIGs. 4A and 4B, the blockage of certain antennas may be caused by a power docking station (e.g., when the UE 402 is a laptop, table, smart phone, etc. ) . Additionally and/or alternatively, the power source availability of the UE 402 may be increased when the UE 402 is docked at the docking station. Hence, in this scenario, the UE 402 may want to switch from a non-coherent configuration to a fully coherent configuration, for example.
Upon detecting the change in the local condition (s) , the UE 402 may select (at 409) a second UL configuration that corresponds to the new local conditions. Because the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand in FIG. 4B, the UE 402 may select (at 409) a partially coherent MIMO  configuration that uses the first antenna 435a and the third antenna 435c, and/or select the first antenna 435a and the third antenna 435c for use in sending SRSs to the base station 404. The UE 402 may transmit (at 411) a request to use the second UL configuration. In certain configurations, the request may be transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
In certain implementations, the request may include information associated with the second UL configuration, e.g., such as a codebook specifying which antennas may be used for subsequent UL MIMO data transmissions, a MIMO coherence category, etc. In other words, the base station 404 may determine which antenna (s) and/or UL MIMO coherence category the UE 402 intends to use upon switching to the second UL configuration.
In certain other implementations, the request may omit information associated with the second UL configuration, and instead, only indicate that the UE 402 intends to change configurations. Here, the base station 404 may send a message that instructs the UE 402 to send information associated with the second UL configuration, and the UE 402 may send the information associated with the second UL configuration upon receipt of the message.
In either implementation, the base station 404 may determine whether to accept or reject the UE’s 402 request upon receipt of the information associated with the second UL configuration, and may transmit (at 413) a response either accepting or rejecting the UE’s 402 request. In some implementations, the absence of a response may indicate the rejection of the request. The base station 404 may determine whether to accept or reject the UE’s 402 request, e.g., based on one or more of network traffic, QoS requirements, uplink channel quality, etc. The response may be transmitted via RRC signaling, DCI, and/or a group-common PDCCH.
When the response accepts the UE’s 402 request, the UE 402 may communicate (at 415) UL data transmissions and/or SRSs using the second UL configuration (e.g., using a partially coherent MIMO configuration, using the first antenna 435a and the third antenna 435c, etc. ) . Conversely, when the response rejects the UE’s 402 request, the UE 402 may continue sending UL data transmissions and/or SRSs to the base station 404 using the first UL configuration. The UE 402 may refrain (at  417) from transmitting a subsequent request for a UL configuration switch until a timer expires (e.g., 1 ms, 10 ms, 100 ms, etc. ) .
In certain other implementations, the base station 404 may request for an update of the UE’s 402 capabilities (e.g., UL MIMO configuration, UL rank, number of antennas used for UL communications, port compatibility information, set of ports for SRSs, etc. ) based on current local conditions at the UE 402. The UE 402 may determine the current capabilities, and transmit information associated with the UE’s 402 current capabilities to the base station 404. The base station 404 may send an acknowledgement to the UE 402 upon receipt of the information, and the UE 402 may transmit UL data transmissions using the updated capabilities once the acknowledgement is received.
Using the technique (s) described in connection with FIGs. 4A and 4B, the UE 402 of the present disclosure may have increased flexibility in optimizing the tradeoff between power consumption and throughput performance. The network throughput performance may also benefit from the UE flexibility described above.
FIG. 5 is a flowchart 500 of a method of wireless communication. The method may be performed by a UE (e.g.,  UE  104, 350, 402, the apparatus 602/602') . In FIG. 5, optional operations are indicated with dashed lines.
At 502, the UE may communicate with a base station using a first UL configuration during a duration of an RRC connection. In certain aspects, the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs. In certain other aspects, the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration. For example, referring to FIG. 4A, the UE 402 may communicate (at 405) one or more UL data transmissions to the base station 404 using the fully coherent configuration (e.g., using all of the  antennas  435a, 435b, 435c, 435d) .
At 504, the UE may select a second UL configuration for communication with the base station based on one or more local conditions at the UE. In certain aspects, the second UL configuration may be associated with one or more of a second  number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs. In certain other aspects, the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration. In certain other aspects, the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status. For example, referring to FIG. 4B, the UE 402 may select (at 409) a second UL configuration that corresponds to the new local conditions. Because the second antenna 435b and the fourth antenna 435d are blocked by the user’s hand in FIG. 4B, the UE 402 may select (at 409) a partially coherent MIMO configuration that uses the first antenna 435a and the third antenna 435c, and/or select the first antenna 435a and the third antenna 435c for use in sending SRSs to the base station 404.
At 506, the UE may transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection. In certain aspects, the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message. For example, referring to FIG. 4B, the UE 402 may transmit (at 411) a request to use the second UL configuration.
In certain implementations, at 506, the request to use the second UL configuration may include information associated with the second UL configuration. In certain other implementations, at 506, the request to use the second UL configuration may not include information associated with the second UL configuration. When the request includes information associated with the second UL configuration, the operation may move to 512. Otherwise, when the request does not include information associated with the second UL configuration, the operation may move to 508.
At 508, the UE may receive, from the base station, a message instructing the UE to send information associated with the second UL configuration. For example, referring to FIG. 4B, the request transmitted (at 411) may omit information associated with the second UL configuration, and instead, only indicate that the UE  402 intends to change configurations. Here, the UE 402 may receive a message from the base station 404 that instructs the UE 402 to send information associated with the second UL configuration.
At 510, the UE may transmit the information associated with the second UL configuration upon receiving the message from the base station. For example, referring to FIG. 4B, the UE 402 may send the information associated with the second UL configuration upon receipt of the message.
At 512, the UE may receive, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection. In certain aspects, the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, DCI, or a group-common PDCCH. For example, referring to FIG. 4B, the base station 404 may transmit (at 413) a response either accepting or rejecting the UE’s 402 request.
At 514, the UE may determine whether the base station accepts or rejects the request to use the second UL configuration. For example, referring to FIG. 4B, the UE 402 may determine whether the base station 404 accepts or rejects the request based on information included in the response.
Upon determining that the response accepts the UE’s request to use the second UL configuration, the operation moves to 516. Otherwise, upon determining that the response rejects the UE’s request to use the second UL configuration, the operation moves to 518.
At 516, the UE may communicate with the base station using the second UL configuration during the duration of the RRC connection when the response from the base station accepts the second UL configuration. For example, referring to FIG. 4B, the UE 402 may communicate (at 415) UL data transmissions and/or SRSs using the second UL configuration (e.g., using a partially coherent MIMO configuration, using the first antenna 435a and the third antenna 435c, etc. ) when the response accepts the UE’s 402 request.
At 518, the UE may refrain from transmitting a subsequent request until an expiration of a timer during the duration of the RRC connection when the response  rejects the request to use the second UL configuration for communication with the base station. For example, referring to FIG. 4B, the UE 402 may continue sending UL data transmissions and/or SRSs to the base station 404 using the first UL configuration when the response rejects the UE’s 402 request. The UE 402 may refrain (at 417) from transmitting a subsequent request for a UL configuration switch until a timer expires (e.g., 1 ms, 10 ms, 100 ms, etc. ) .
FIG. 6 is a conceptual data flow diagram 600 illustrating the data flow between different means/components in an exemplary apparatus 602. The apparatus may be a UE (e.g.,  UE  104, 350, 402, the apparatus 602') in communication with a base station 650 (e.g.,  base station  102, 180, 310, 404) . The apparatus may include a reception component 604, a local condition (s) component 606, a UL configuration component 608, a determination component 610, and a transmission component 612.
The transmission component 612 may be configured to communicate with a base station using a first UL configuration during a duration of an RRC connection. In certain aspects, the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs. In certain other aspects, the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration.
The local condition (s) component 606 may be configured to determine one or more local condition (s) at the apparatus 602. For example, the local condition (s) component 606 may be configured to periodically determine whether local conditions have changed, and to send a signal indicating a change in local condition (s) to the UL configuration component 608.
The UL configuration component 608 may be configured to select a second UL configuration for communication with the base station 650 based on one or more local conditions at the UE. In certain aspects, the second UL configuration may be associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility  information, or a second set of ports for SRSs. In certain other aspects, the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration. In certain other aspects, the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status. The UL configuration component 608 may be configured to generate a request to use the second UL configuration, and send the request to the transmission component 612.
The transmission component 612 may be configured to transmit, to the base station 650, a request to use the second UL configuration during the duration of the RRC connection. In certain aspects, the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message.
In certain implementations, the request to use the second UL configuration may include information associated with the second UL configuration. In certain other implementations, the request to use the second UL configuration may not include information associated with the second UL configuration. When the request does not include information associated with the second UL configuration, the reception component 604 may be configured to receive, from the base station 650, a message instructing the UE to send information associated with the second UL configuration. The reception component 604 may be configured to send the message to the UL configuration component 608. The UL configuration component 608 may be configured to send information associated with the second UL configuration to the transmission component 612.
The transmission component 612 may be configured to transmit the information associated with the second UL configuration upon receiving the message from the base station 650.
The reception component 604 may be configured to receive, from the base station 650, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the  RRC connection. In certain aspects, the response that accepts or rejects the request to use the second UL configuration for communication with the base station 650 is received via RRC signaling, DCI, or a group-common PDCCH. The reception component 604 may be configured to send the response to the determination component 610.
The determination component 610 may be configured to determine whether the base station 650 accepts or rejects the request to use the second UL configuration based at least in part on information included in the response. The determination component 610 may be configured to send a signal indicating whether the second UL configuration is accepted or rejected to the UL configuration component 608.
Upon receiving a signal that accepts the UE’s request to use the second UL configuration, the UL configuration component 608 may send a signal indicating the acceptance of the second UL configuration to the transmission component 612. Otherwise, upon receiving a signal that rejects the UE’s request to use the second UL configuration, the UL configuration component 608 may send a signal indicating the rejection of the second UL configuration to the transmission component 612.
The transmission component 612 may be configured to communicate with the base station 650 using the second UL configuration during the duration of the RRC connection when the response from the base station 650 accepts the second UL configuration.
The transmission component 612 may refrain from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when the response rejects the request to use the second UL configuration.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 5. As such, each block in the aforementioned flowchart of FIG. 5 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the  stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 602'employing a processing system 714. The processing system 714 may be implemented with a bus architecture, represented generally by the bus 724. The bus 724 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 714 and the overall design constraints. The bus 724 links together various circuits including one or more processors and/or hardware components, represented by the processor 704, the  components  604, 606, 608, 610, 612, and the computer-readable medium /memory 706. The bus 724 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 714 may be coupled to a transceiver 710. The transceiver 710 is coupled to one or more antennas 720. The transceiver 710 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 710 receives a signal from the one or more antennas 720, extracts information from the received signal, and provides the extracted information to the processing system 714, specifically the reception component 604. In addition, the transceiver 710 receives information from the processing system 714, specifically the transmission component 612, and based on the received information, generates a signal to be applied to the one or more antennas 720. The processing system 714 includes a processor 704 coupled to a computer-readable medium /memory 706. The processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 706. The software, when executed by the processor 704, causes the processing system 714 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 706 may also be used for storing data that is manipulated by the processor 704 when executing software. The processing system 714 further includes at least one of the  components  604, 606, 608, 610, 612. The components may be software components  running in the processor 704, resident/stored in the computer readable medium /memory 706, one or more hardware components coupled to the processor 704, or some combination thereof. The processing system 714 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
In certain configurations, the apparatus 602/602'for wireless communication may include means for communicating with a base station using a first UL configuration during a duration of an RRC connection. In certain aspects, the first UL configuration may be associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL MIMO coherence category, first port compatibility information, or a first set of ports for SRSs. In certain other aspects, the first UL MIMO coherence category may include one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration. In certain other configurations, the apparatus 602/602'for wireless communication may include means for selecting a second UL configuration for communication with the base station based on one or more local conditions at the UE. In certain aspects, the second UL configuration may be associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs. In certain other aspects, the second UL MIMO coherence category may include another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration. In certain other aspects, the one or more local conditions at the UE may include at least one of a power level associated with the UE, a number of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status. In certain other configurations, the apparatus 602/602'for wireless communication may include means for transmitting, to the base station, a request to use the second UL configuration during the duration of the RRC connection. In certain aspects, the request to use the second UL configuration is transmitted via a PUCCH, a PUSCH, a MAC control element, or an RRC message. In certain aspects, the request to use the second UL configuration may include information associated with the second  UL configuration. In certain other aspects, the request to use the second UL configuration may not include information associated with the second UL configuration. In certain other configurations, the apparatus 602/602'for wireless communication may include means for receiving, from the base station, a message instructing the UE to send information associated with the second UL configuration when the request does not include information associated with the second UL configuration. In certain other configurations, the apparatus 602/602'for wireless communication may include means for transmitting the information associated with the second UL configuration upon receiving the message from the base station. In certain other configurations, the apparatus 602/602'for wireless communication may include means for receiving, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection. In certain aspects, the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, DCI, or a group-common PDCCH. In certain other configurations, the apparatus 602/602'for wireless communication may include means for determining whether the base station accepts or rejects the request to use the second UL configuration. In certain other configurations, the apparatus 602/602'for wireless communication may include means for communicating with the base station using the second UL configuration during the duration of the RRC connection when the response from the base station accepts the second UL configuration. In certain other configurations, the apparatus 602/602'for wireless communication may include means for refraining from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when the response rejects the request to use the second UL configuration for communication with the base station. The aforementioned means may be one or more of the aforementioned components of the apparatus 602 and/or the processing system 714 of the apparatus 602'configured to perform the functions recited by the aforementioned means. As described supra, the processing system 714 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration,  the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described  throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2018086290-appb-000001
Figure PCTCN2018086290-appb-000002
Figure PCTCN2018086290-appb-000003
Figure PCTCN2018086290-appb-000004
Figure PCTCN2018086290-appb-000005
Figure PCTCN2018086290-appb-000006

Claims (44)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    communicating with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection;
    selecting a second UL configuration for communication with the base station based on one or more local conditions at the UE; and
    transmitting, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  2. The method of claim 1, further comprising:
    communicating with the base station using the second UL configuration during the duration of the RRC connection when a response from the base station accepts the second UL configuration.
  3. The method of claim 1, wherein the first UL configuration is associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL multiple-input multiple-output (MIMO) coherence category, first port compatibility information, or a first set of ports for sounding reference signals (SRSs) .
  4. The method of claim 3, wherein the second UL configuration is associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  5. The method of claim 4, wherein:
    the first UL MIMO coherence category includes one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration, and
    the second UL MIMO coherence category includes another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  6. The method of claim 1, wherein the one or more local conditions at the UE includes at least one of a power level associated with the UE, an amount of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  7. The method of claim 1, wherein the request to use the second UL configuration includes information associated with the second UL configuration.
  8. The method of claim 1, wherein the request to use the second UL configuration does not include information associated with the second UL configuration, the method further comprising:
    receiving, from the base station, a message instructing the UE to send the information associated with the second UL configuration; and
    transmitting the information associated with the second UL configuration upon receiving the message from the base station.
  9. The method of claim 1, wherein the request to use the second UL configuration is transmitted via a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a medium access control (MAC) control element, or a RRC message.
  10. The method of claim 1, further comprising:
    receiving, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection,
    wherein the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, downlink control information (DCI) , or a group-common physical downlink control channel (PDCCH) .
  11. The method of claim 1, further comprising:
    refraining from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when a response rejects the request to use the second UL configuration for communication with the base station.
  12. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for communicating with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection;
    means for selecting a second UL configuration for communication with the base station based on one or more local conditions at the UE; and
    means for transmitting, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  13. The apparatus of claim 12, further comprising:
    means for communicating with the base station using the second UL configuration during the duration of the RRC connection when a response from the base station accepts the second UL configuration.
  14. The apparatus of claim 12, wherein the first UL configuration is associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL multiple-input multiple-output (MIMO) coherence category, first port compatibility information, or a first set of ports for sounding reference signals (SRSs) .
  15. The apparatus of claim 14, wherein the second UL configuration is associated with one or more of a second number of antennas at the UE, a second UL rank, a second  UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  16. The apparatus of claim 15, wherein:
    the first UL MIMO coherence category includes one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration, and
    the second UL MIMO coherence category includes another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  17. The apparatus of claim 12, wherein the one or more local conditions at the UE includes at least one of a power level associated with the UE, an amount of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  18. The apparatus of claim 12, wherein the request to use the second UL configuration includes information associated with the second UL configuration.
  19. The apparatus of claim 12, wherein the request to use the second UL configuration does not include information associated with the second UL configuration, the apparatus further comprising:
    means for receiving, from the base station, a message instructing the UE to send the information associated with the second UL configuration; and
    means for transmitting the information associated with the second UL configuration upon receiving the message from the base station.
  20. The apparatus of claim 12, wherein the request to use the second UL configuration is transmitted via a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a medium access control (MAC) control element, or a RRC message.
  21. The apparatus of claim 12, further comprising:
    means for receiving, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection,
    wherein the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, downlink control information (DCI) , or a group-common physical downlink control channel (PDCCH) .
  22. The apparatus of claim 12, further comprising:
    means for refraining from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when a response rejects the request to use the second UL configuration for communication with the base station.
  23. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    communicate with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection;
    select a second UL configuration for communication with the base station based on one or more local conditions at the UE; and
    transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  24. The apparatus of claim 23, further comprising code to:
    communicate with the base station using the second UL configuration during the duration of the RRC connection when a response from the base station accepts the second UL configuration.
  25. The apparatus of claim 23, wherein the first UL configuration is associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL multiple- input multiple-output (MIMO) coherence category, first port compatibility information, or a first set of ports for sounding reference signals (SRSs) .
  26. The apparatus of claim 25, wherein the second UL configuration is associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  27. The apparatus of claim 26, wherein:
    the first UL MIMO coherence category includes one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration, and
    the second UL MIMO coherence category includes another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  28. The apparatus of claim 23, wherein the one or more local conditions at the UE includes at least one of a power level associated with the UE, an amount of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  29. The apparatus of claim 23, wherein the request to use the second UL configuration includes information associated with the second UL configuration.
  30. The apparatus of claim 23, wherein the request to use the second UL configuration does not include information associated with the second UL configuration, the apparatus further comprising code to:
    receive, from the base station, a message instructing the UE to send the information associated with the second UL configuration; and
    transmit the information associated with the second UL configuration upon receiving the message from the base station.
  31. The apparatus of claim 23, wherein the request to use the second UL configuration is transmitted via a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a medium access control (MAC) control element, or a RRC message.
  32. The apparatus of claim 23, wherein the at least one processor is further configured to:
    receive, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection,
    wherein the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, downlink control information (DCI) , or a group-common physical downlink control channel (PDCCH) .
  33. The apparatus of claim 23, further comprising code to:
    refrain from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when a response rejects the request to use the second UL configuration for communication with the base station.
  34. A computer-readable medium storing computer executable code of a user equipment (UE) , comprising code to:
    communicate with a base station using a first uplink (UL) configuration during a duration of a radio resource control (RRC) connection;
    select a second UL configuration for communication with the base station based on one or more local conditions at the UE; and
    transmit, to the base station, a request to use the second UL configuration during the duration of the RRC connection.
  35. The computer-readable medium of claim 34, further comprising code to:
    communicate with the base station using the second UL configuration during the duration of the RRC connection when a response from the base station accepts the second UL configuration.
  36. The computer-readable medium of claim 34, wherein the first UL configuration is associated with one or more of a first number of antennas at the UE, a first UL rank, a first UL multiple-input multiple-output (MIMO) coherence category, first port compatibility information, or a first set of ports for sounding reference signals (SRSs) .
  37. The computer-readable medium of claim 36, wherein the second UL configuration is associated with one or more of a second number of antennas at the UE, a second UL rank, a second UL MIMO coherence category, second port compatibility information, or a second set of ports for SRSs.
  38. The computer-readable medium of claim 37, wherein:
    the first UL MIMO coherence category includes one of a coherent MIMO configuration, a non-coherent MIMO configuration, or a partially coherent MIMO configuration, and
    the second UL MIMO coherence category includes another one of the coherent MIMO configuration, the non-coherent MIMO configuration, or the partially coherent MIMO configuration.
  39. The computer-readable medium of claim 34, wherein the one or more local conditions at the UE includes at least one of a power level associated with the UE, an amount of UL transmissions at the UE, a location of the UE, at least one antenna blockage, or a docking status.
  40. The computer-readable medium of claim 34, wherein the request to use the second UL configuration includes information associated with the second UL configuration.
  41. The computer-readable medium of claim 34, wherein the request to use the second UL configuration does not include information associated with the second UL configuration, the computer-readable medium further comprising code to:
    receive, from the base station, a message instructing the UE to send the information associated with the second UL configuration; and
    transmit the information associated with the second UL configuration upon receiving the message from the base station.
  42. The computer-readable medium of claim 34, wherein the request to use the second UL configuration is transmitted via a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a medium access control (MAC) control element, or a RRC message.
  43. The computer-readable medium of claim 34, further comprising code to:
    receive, from the base station, a response that accepts or rejects the request to use the second UL configuration for communication with the base station during the duration of the RRC connection,
    wherein the response that accepts or rejects the request to use the second UL configuration for communication with the base station is received via RRC signaling, downlink control information (DCI) , or a group-common physical downlink control channel (PDCCH) .
  44. The computer-readable medium of claim 34, further comprising code to:
    refrain from transmitting a subsequent request during the duration of the RRC connection until an expiration of a timer when a response rejects the request to use the second UL configuration for communication with the base station.
PCT/CN2018/086290 2018-05-10 2018-05-10 Uplink configuration change request WO2019213889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086290 WO2019213889A1 (en) 2018-05-10 2018-05-10 Uplink configuration change request

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086290 WO2019213889A1 (en) 2018-05-10 2018-05-10 Uplink configuration change request

Publications (1)

Publication Number Publication Date
WO2019213889A1 true WO2019213889A1 (en) 2019-11-14

Family

ID=68467231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086290 WO2019213889A1 (en) 2018-05-10 2018-05-10 Uplink configuration change request

Country Status (1)

Country Link
WO (1) WO2019213889A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103280A1 (en) * 2012-01-06 2013-07-11 엘지전자 주식회사 Method and apparatus for allocating channels related to uplink bundling
CN103875294A (en) * 2011-08-12 2014-06-18 诺基亚通信公司 Resource reconfiguration for up-link transmission
CN105207762A (en) * 2010-11-09 2015-12-30 高通股份有限公司 Method And Apparatus For Improving Uplink Transmission Mode Configuration
CN105309017A (en) * 2013-06-18 2016-02-03 Lg电子株式会社 Method for controlling electric power in wireless communication system supporting change in purpose of wireless resource and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207762A (en) * 2010-11-09 2015-12-30 高通股份有限公司 Method And Apparatus For Improving Uplink Transmission Mode Configuration
CN103875294A (en) * 2011-08-12 2014-06-18 诺基亚通信公司 Resource reconfiguration for up-link transmission
WO2013103280A1 (en) * 2012-01-06 2013-07-11 엘지전자 주식회사 Method and apparatus for allocating channels related to uplink bundling
CN105309017A (en) * 2013-06-18 2016-02-03 Lg电子株式会社 Method for controlling electric power in wireless communication system supporting change in purpose of wireless resource and apparatus therefor

Similar Documents

Publication Publication Date Title
US10757622B2 (en) Switching from a priority-based reselection mechanism to a rank-based reselection mechanism
EP3278624B1 (en) Systems, methods, and apparatus for managing a relay connection in a wireless communications network
US11356162B2 (en) CSI reporting for multiple transmission points
US10959251B2 (en) Parallel processing of uplink and downlink transmissions
EP3571874B1 (en) Methods and apparatus related to time tracking in multi carrier systems
US10841934B2 (en) Priority rule for signal repetition collisions
US11445499B2 (en) MCS/rank adjustment when multiplexing data in a control region
US20200351782A1 (en) Data transfer between an inactive mode user equipment and a wireless network
AU2017246108B2 (en) Scheduling request collection through license-assisted operation
US11546881B2 (en) Resource reselection in sidelink
US11576052B2 (en) Panel specific uplink transmission
US20190053042A1 (en) Signaling user equipment capability information
WO2019161537A1 (en) Paging signal monitoring
EP3520474B1 (en) Signaling to indicate whether physical broadcast channel repetition is enabled in a target cell
US11470678B2 (en) Broadcast of multiple physical cell identity ranges
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
WO2021088005A1 (en) Methods and apparatus to facilitate dual connectivity power control mode
US11129059B2 (en) Method and apparatus for providing redirection for reception of broadcast content in a 5G stand alone environment
US10341985B2 (en) Area calibration and beamforming refinement
WO2019213889A1 (en) Uplink configuration change request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918385

Country of ref document: EP

Kind code of ref document: A1