WO2019212273A1 - Sealing glass composition and solid oxide fuel cell using same - Google Patents

Sealing glass composition and solid oxide fuel cell using same Download PDF

Info

Publication number
WO2019212273A1
WO2019212273A1 PCT/KR2019/005304 KR2019005304W WO2019212273A1 WO 2019212273 A1 WO2019212273 A1 WO 2019212273A1 KR 2019005304 W KR2019005304 W KR 2019005304W WO 2019212273 A1 WO2019212273 A1 WO 2019212273A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
sealing
sealing glass
solid oxide
oxide fuel
Prior art date
Application number
PCT/KR2019/005304
Other languages
French (fr)
Korean (ko)
Inventor
김남진
김영석
임상혁
Original Assignee
엘지전자 주식회사
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 주식회사 엘지화학 filed Critical 엘지전자 주식회사
Publication of WO2019212273A1 publication Critical patent/WO2019212273A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a glass composition that can be used as a sealing material and a solid oxide fuel cell using the same.
  • Solid oxide fuel cells are chemical cells that generate electricity by receiving oxidizing gases such as air and reducing fuel gases such as H 2 , CO, and CH 4 at high temperatures, respectively.
  • SOFC has advantages such as high thermal efficiency and low dependence on expensive catalysts due to high operating temperature.
  • SOFC is composed of unit cell consisting of cathode, solid electrolyte, and anode, and planar design according to the type of interconnects that connect unit cells to each other. ), Tubular design, and plat tube design, and the development of sealing material is essential for flat SOFCs to prevent mixing between fuels and to join components within a unit cell.
  • the low and medium temperature solid oxide fuel cell operating at 600 °C ⁇ 800 °C has a number of advantages over the existing high temperature solid oxide fuel cell operating at 800 °C ⁇ 1000 °C.
  • the connector In the case of high temperature solid oxide fuel cell, it is necessary to use the connector as ceramic due to the problem of metal oxidation.
  • the manufacturing cost can be lowered because the metal connector can be used.
  • the BOP balance of plant
  • the short current path shows excellent characteristics in terms of efficiency and power density compared to the cylindrical shape, but since most of the materials constituting the ceramic composite are monolithic, there are technical problems due to the complicated manufacturing process.
  • development of a sealing glass material is essential as a sealing material for bonding between component layers. If fuel gas and air gas are mixed at a high temperature, the SOFC stack structure may be damaged due to heat generation or explosion due to oxidation of fuel gas by air. In addition, when the partial pressure of each gas is lowered at the fuel electrode and the air electrode by mixing the two gases, the electromotive force is reduced and normal electricity production is not achieved.
  • sealing glass compositions applied to solid oxide fuel cells operating at 800 ° C to 1000 ° C are widely known.
  • the sealing material applied to the solid oxide fuel cell operating at 800 °C ⁇ 1000 °C is heat-treated at least 850 °C or more, there is a problem that is difficult to use in the low-temperature solid oxide fuel cell.
  • the existing sealing material contains a certain amount of components for improving the flowability of the glass, but does not have a suitable component and composition ratio that can match the thermal expansion coefficient with the base material, there is a problem such as cracking during long-term operation of SOFC. .
  • an object of the present invention is to provide a new sealing glass composition having excellent durability while improving the high temperature fluidity of the glass and matching the coefficient of thermal expansion with the base material to prevent peeling or breakage.
  • an object of this invention is to provide the new sealing glass composition excellent in chemical durability and heat resistance in SOFC operation conditions of 600-700 degreeC, even if heat processing is carried out at 800 degrees C or less.
  • the sealing glass composition according to the present invention comprises 5 to 30% by weight of SiO 2 , 3 to 35% by weight of B 2 O 3 , and BaO 30 to 65 wt% and CaO 2-20 wt%.
  • the sealing glass composition according to the present invention has a content of SiO 2 . It may be less than 1/2 of the content of BaO, and also the content of CaO may be less than the content of B 2 O 3 .
  • At least one of Al 2 O 3 , ZrO 2 and La 2 O 3 to provide a new sealing glass composition excellent in chemical durability and heat resistance under SOFC operating conditions of 600 ⁇ 700 °C while the heat treatment is carried out at 800 °C or less. It may further include.
  • the sealing glass composition according to the present invention has a novel component system containing SiO 2 , B 2 O 3 , BaO and CaO in a unique composition ratio of the present invention, which is suitable for a solid oxide fuel cell operating at low and low temperatures unlike a conventional sealing material glass composition. Can be used.
  • the sealing glass composition according to the present invention may have an optimum ratio of SiO 2 and BaO, and may also have an optimum ratio of CaO and B 2 O 3 to improve the high temperature fluidity of the glass and to have a coefficient of thermal expansion with the base material. Is matched and there is an effect that peeling or breakage does not occur.
  • the sealing glass composition according to the present invention may further include at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 , which may be subjected to heat treatment at 800 ° C. or lower, and to chemical durability at SOFC operating conditions of 600 to 700 ° C. It is effective in excellent heat resistance.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a planar solid oxide fuel cell.
  • Example 3 is a SEM image showing the sealing material according to Example 5 and the sealing material according to Comparative Example 1 compared with each other.
  • Example 3 is a SEM image showing a state change of Example 5 according to the operating conditions.
  • sealing glass composition suitable for application to a medium to low temperature solid oxide fuel cell driven at a temperature of about 600 ⁇ 700 °C. Accordingly, the present inventors have completed a novel sealing glass composition which is particularly suitable for a heat treatment process (sealing process) at 800 ° C. or lower and excellent in durability even when applied to a medium-low temperature solid oxide fuel cell for a long time.
  • the sealing glass composition according to the present invention includes 5 to 30% by weight of SiO 2 , 3 to 35% by weight of B 2 O 3 , 30 to 65% by weight of BaO and 2 to 20% by weight of CaO.
  • SiO 2 is a component for improving the glass forming ability and forming the network structure of the glass.
  • Sealing glass composition according to the present invention comprises the SiO 2 in the range of 5 to 30% by weight.
  • the SiO 2 is contained in less than 5% by weight crystallization of the glass is easily generated, there is a problem that the sealing itself is difficult, and when the SiO 2 is contained in excess of 30% by weight, the fusion flow at a high temperature is sharply increased. Accordingly, there is a problem that sufficient sealing is not achieved between components.
  • B 2 O 3 together with SiO 2 , serves as a glass former to allow sufficient vitrification and corresponds to a component that lowers the melting temperature, softening temperature, and high temperature viscosity of the glass and reduces the amount of crystallization of the glass composition.
  • the sealing glass composition according to the present invention contains 3 to 35% by weight of the B 2 O 3 .
  • the softening point is increased to increase the viscosity at high temperatures may lower the airtightness.
  • the B 2 O 3 is included in excess of 35% by weight, the water resistance of the sealing material is weak, and above all, there is a problem that may cause material degradation during long-term operation of the low-temperature SOFC.
  • BaO is a component that can suppress the devitrification of the glass and improve the fluidity by lowering the high temperature viscosity.
  • the sealing glass composition according to the present invention contains 30 to 65% by weight of BaO. If BaO is included in less than 30% by weight may cause a problem that the flowability of the glass is lowered.
  • the Ba component in the glass composition reacts with the Cr component derived from the base material (connecting material) formed of stainless steel, in particular, to generate BaCrO 4 , thereby causing a large change in the coefficient of thermal expansion of the sealing material. There is a problem that cracks may occur in the base material and the sealing material during a long time operation of the SOFC.
  • CaO corresponds to a component capable of controlling the coefficient of thermal expansion of the sealing glass composition and improving the durability of the sealing material.
  • the sealing glass composition according to the present invention contains 2 to 20% by weight of CaO. If the CaO is included in less than 2% by weight may not obtain the required coefficient of thermal expansion may cause a problem that the flowability of the glass is lowered. In addition, when the CaO is included in excess of 20% by weight, devitrification of the glass may occur, and there is a problem that high temperature fluidity may be lowered.
  • the content of the SiO 2 may be adjusted to 1/2 or less of the content of BaO.
  • the BaO component corresponds to the component which improves the fluidity as mentioned above, and is preferably contained at least twice the content of SiO 2 in order to impart proper fluidity in the component system of the sealing glass composition according to the present invention.
  • the content of SiO 2 exceeds 1/2 of the content of BaO, there is a problem that the sealing of the glass is poor because the flowability of the glass is reduced.
  • the sealing glass composition according to the present invention may be adjusted so that the content of CaO is less than the content of B 2 O 3 in order to match the coefficient of thermal expansion with the base material.
  • the sealing glass composition according to the present invention may be advantageous in matching the coefficient of thermal expansion with the base material while ensuring the flowability of the glass because CaO is contained in less than the content of B 2 O 3 .
  • the sealing glass composition according to the present invention may further include at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 to improve the chemical durability and heat resistance of the sealing material, preferably 0.1 to 20 weight It can be included in the range of%.
  • at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 is included in less than 0.1% by weight, the effect of improving chemical durability and heat resistance may be insignificant. There is a problem that can occur.
  • the sealing glass composition according to the present invention may further include one or more of SrO, MgO and ZnO to maintain an appropriate high temperature viscosity, preferably may be included in the range of 0.1 to 12% by weight.
  • SrO, MgO and ZnO may be included in less than 0.1% by weight, the effect of improving chemical durability and heat resistance may be insignificant, and when it is included in more than 12% by weight, crystallization of the glass is easily generated, making it difficult to seal. there is a problem.
  • the sealing glass composition according to the present invention may preferably have a hemispherical temperature of 800 ° C. or less so as to be suitable for a heat treatment process (sealing process) of 800 ° C. or less.
  • the hemispherical temperature may be measured by a microscopic method using a high temperature microscope, and means a temperature at which cylindrical test specimens fuse with each other to form a hemispherical mass.
  • the sealing glass composition which concerns on this invention has hemispherical temperature of 800 degrees C or less, sufficient airtightness can be ensured at the temperature of about 600-700 degreeC.
  • the present invention provides a solid oxide fuel cell including a sealing material formed of the aforementioned sealing glass composition. More preferably, the solid oxide fuel cell may be a low temperature solid oxide fuel cell operating in a temperature range of 600 ⁇ 700 °C.
  • a solid oxide fuel cell may include a cathode and an anode, an electrolyte, an interconnector, and a frame provided between the cathode and the anode, and the structure thereof is not particularly limited.
  • Solid oxide fuel cells are required to prevent gas mixing between the positive and negative electrodes and to provide a complete seal for electrical insulation at the edges of the electrodes, electrolytes and interconnectors of each cell.
  • the sealing material formed of the sealing glass composition according to the present invention may be applied to seal between each electrode and the interconnector, between the electrolyte and the interconnector, between the cell stack and the frame.
  • the sealing method of the solid oxide fuel cell according to the present invention is applied by applying the sealing glass composition according to the present invention to a portion in need of sealing, and performing heat treatment at a temperature of 800 ° C. or lower (sealing process). .
  • a sealing glass composition having a composition ratio shown in Table 1 below was prepared.
  • BaCO, CaO and SrO were used as raw materials of BaO 3 , CaCO 3 and SrCO 3 , respectively, and the same ingredients as those listed in Table 1 were used.
  • the prepared glass composition was melted in an electric furnace at a temperature range of 1200 to 1350 ° C. and then quenched dryly using a twin roll.
  • the cullet obtained by quenching was pulverized with a dry mill and passed through a 230 mesh sieve to prepare a glass powder having a D 50 particle size of 15 to 25 ⁇ m.
  • Example Comparative example One 2 3 4 5 One 2 SiO 2 24.2 18.2 18.8 16.9 26.3 39.8 38.7 B 2 O 3 13.5 10.4 11.5 12.1 11.1 9.1 8.7 BaO 53.1 52.1 51.8 51.9 50.8 38.3 44.7 CaO 9.2 11 12.7 8.2 7.5 0.9 1.1 Al 2 O 3 - 6.4 - 7.9 2.5 4.9 3.7 ZrO 2 - 0.2 - 0.3 One - - La 2 O 3 - 1.7 - 2 - 7.0 - SrO - - 3.1 0.5 0.8 - 3.1 MgO - - 1.4 0.2 - - - ZnO - - 0.7 - - - - - -
  • the powders prepared from the examples and the comparative examples were prepared into pellets, and then maintained at 750 ° C., and after the furnace cooling, the coefficient of thermal expansion was measured by using a TMA equipment (TMA-Q400 TA instrument).
  • Glass powders prepared according to Examples 1 to 5 were prepared as pellets and placed on stainless steel (SUS441), and then heat-treated at 750 ° C. for 5 hours. After the heat treatment, the exposure was carried out at 680 ° C. for 50 hours, and the change of the sealing material was examined.
  • Example Comparative example One 2 3 4 5 One 2 Coefficient of Thermal Expansion (CTE (x10 -7 / °C)) 104.2 103.1 105.5 107.7 103.6 87.14 93.1
  • Examples 1 to 5 fall within the range of 103 to 114 (x10 ⁇ 7 / ° C.).
  • the bonding base material is stainless steel (SUS441), and its thermal expansion coefficient corresponds to about 115 (x10 ⁇ 7 / ° C.).
  • Examples 1 to 5 show that the bonding base material and the thermal expansion coefficient match.
  • the thermal expansion coefficient was in the range of 85 to 95 (x10 ⁇ 7 / ° C.), and thus the bonding base material and the thermal expansion coefficient did not match.
  • sealing material prepared from Examples 1 to 5 and the sealing material prepared from the comparative example were placed on stainless steel (SUS441), and then heat-sealed at 750 ° C. for 5 hours to observe sealing properties.
  • FIG. 2 shows an SEM image of the sealing material according to Example 5 and Comparative Example 1.
  • the sealing material according to Example 5 has an appropriate high temperature viscosity (spreadability) in the maximum temperature range (700 ° C. to 800 ° C.) of the sealing process, thereby ensuring the airtightness of the SOFC.
  • the sealing material according to the comparative example has a high temperature viscosity, it is difficult to secure the airtightness and adhesive strength of the SOFC.
  • the sealing material produced from Examples 1 to 5 was heat-treated at 750 ° C. for 5 hours and exposed at 680 ° C. for 50 hours, and then the change of the sealing material was examined.
  • the change of the sealing material was examined after heat-sealing the sealing material produced from Examples 1-5 for 5 hours at 750 degreeC, and exposing for 150 hours at 680 degreeC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention relates to a glass composition available as a sealing material and a solid oxide fuel cell using same. A sealing glass composition according to the present invention comprises 5-30 wt% of SiO2, 3-35 wt% of B2O3, 30-65 wt% of BaO, and 2-20 wt% of CaO and can be properly employed, unlike conventional sealing glass compositions, in a solid oxide fuel cell operating at low and moderate temperatures.

Description

실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지Sealing Glass Composition and Solid Oxide Fuel Cell Using the Same
본 발명은 실링재로 사용할 수 있는 유리 조성물 및 이를 이용한 고체산화물 연료전지에 관한 것이다.The present invention relates to a glass composition that can be used as a sealing material and a solid oxide fuel cell using the same.
고체산화물 연료전지(Solid Oxide Fuel Cell; SOFC)는 공기와 같은 산화성 가스와 H2, CO, CH4와 같은 환원성 연료가스를 각각 고온에서 공급받아 전기를 발생시키는 화학전지이다. SOFC는 높은 운전온도로 인하여 높은 열효율, 고가 촉매에 대한 낮은 의존도 등의 장점이 있다.Solid oxide fuel cells (SOFCs) are chemical cells that generate electricity by receiving oxidizing gases such as air and reducing fuel gases such as H 2 , CO, and CH 4 at high temperatures, respectively. SOFC has advantages such as high thermal efficiency and low dependence on expensive catalysts due to high operating temperature.
그러나, SOFC에서는 구성재료가 고온에 노출되므로 전지 구성재료의 내구성이 큰 문제가 된다. 그 때문에 실용화를 앞두고 작동온도 중저온용 재료나 전지 구성 등에 대한 기초적인 연구를 필요로 하고 있다.However, in SOFC, since the component material is exposed to high temperature, durability of the battery component material becomes a big problem. For this reason, basic research on the operating temperature, medium and low temperature materials, battery configuration, etc. is needed prior to practical use.
SOFC는 양극(cathode), 고체전해질(solid electrolyte), 음극(anode)으로 이루어진 단위전지(unit cell)로 구성되어 있으며, 단위전지를 서로 연결시키는 접속자(interconnect)의 형태에 따라 평판형(planar design), 원통형(tubular design) 및 평관형(plat tube design)이 있으며 평판형 SOFC에는 연료간의 혼합을 막고 단위전지 내의 구성요소 사이의 접합을 위해 실링재의 개발이 필수적이다.SOFC is composed of unit cell consisting of cathode, solid electrolyte, and anode, and planar design according to the type of interconnects that connect unit cells to each other. ), Tubular design, and plat tube design, and the development of sealing material is essential for flat SOFCs to prevent mixing between fuels and to join components within a unit cell.
최근에 중저온 SOFC의 실용화를 위해 많은 연구가 진행 중이다. 600℃~800℃에서 작동하는 중저온 고체산화물 연료전지의 경우 800℃~1000℃에서 작동하는 기존의 고온 고체산화물 연료전지에 비해 많은 장점을 가지고 있다. 고온 고체산화물 연료전지의 경우는 금속 산화 문제로 인하여 접속자를 세라믹으로 써야 하지만 작동온도가 700℃ 이하로 내려가면 금속 접속자를 사용할 수 있기 때문에 제조원가를 낮출 수 있고, 고체산화물 연료전지 시스템의 가격의 50% 정도를 차지하는 BOP (balance of plant)의 디자인과 재료선택에 있어서 선택의 폭이 넓어져 제조 원가를 혁신적으로 낮출 수 있다. 또한 저온에 작동할수록 스타트업(start up)과 셧다운(shut down)등의 열사이클 대응이 용이하며 내구성을 증가시킬 수 있다.Recently, a lot of research is in progress for the practical use of low-temperature SOFC. The low and medium temperature solid oxide fuel cell operating at 600 ℃ ~ 800 ℃ has a number of advantages over the existing high temperature solid oxide fuel cell operating at 800 ℃ ~ 1000 ℃. In the case of high temperature solid oxide fuel cell, it is necessary to use the connector as ceramic due to the problem of metal oxidation. However, when the operating temperature is lowered below 700 ℃, the manufacturing cost can be lowered because the metal connector can be used. In terms of design and material selection of the BOP (balance of plant), which accounts for about%, the choice of materials can be lowered and the manufacturing cost can be lowered. In addition, the lower the temperature, the easier it is to respond to thermal cycles such as start-up and shutdown, and increase durability.
평판형의 경우는 짧은 전류경로로 인해 원통형에 비해 효율성 및 전력밀도면에서 우수한 특성을 보이지만 이를 구성하는 재료 대부분이 세라믹 복합 단일체이므로 취성 파괴의 문제점과 더불어 복잡한 제조공정에 따른 기술적 문제가 있다. 특히 구성층 사이를 접합하기 위한 밀봉 재료로서 실링 유리재의 개발이 필수적이다. 만약, 고온에서 연료가스와 공기가스가 혼합이 일어나는 경우에는 공기에 의한 연료가스의 산화반응에 의해 발열 또는 폭발에 따라 SOFC 스택 구조의 손상을 초래하여 운전이 정지된다. 또한 두 가스의 혼합에 의해 연료극과 공기극에서 각 가스 분압이 낮아지면, 기전력이 감소되어 정상적인 전기 생산이 이루어지지 않는다.In the case of the flat plate type, the short current path shows excellent characteristics in terms of efficiency and power density compared to the cylindrical shape, but since most of the materials constituting the ceramic composite are monolithic, there are technical problems due to the complicated manufacturing process. In particular, development of a sealing glass material is essential as a sealing material for bonding between component layers. If fuel gas and air gas are mixed at a high temperature, the SOFC stack structure may be damaged due to heat generation or explosion due to oxidation of fuel gas by air. In addition, when the partial pressure of each gas is lowered at the fuel electrode and the air electrode by mixing the two gases, the electromotive force is reduced and normal electricity production is not achieved.
현재 평판형 SOFC에서 요구되는 장기 밀봉 성능과 소재에 대한 신뢰성 모두를 만족할 수 있는 적합한 밀봉 방법과 실링재에 대하여 많은 기술개발이 수행되고 있으나 SOFC의 실용화 및 상용화가 가능한 정도의 기술 개발이 이루어지지 못하고 있는 실정이다.Currently, many technologies have been developed for suitable sealing methods and sealing materials that can satisfy both the long-term sealing performance and reliability of materials required for flat panel SOFCs, but the technology to the extent that the SOFC can be commercialized and commercialized has not been developed. It is true.
이와 관련하여 800℃~1000℃에서 작동하는 고체산화물 연료전지에 적용되는 실링 유리 조성물이 널리 알려져 있다.In this regard, sealing glass compositions applied to solid oxide fuel cells operating at 800 ° C to 1000 ° C are widely known.
그러나, 800℃~1000℃에서 작동하는 고체산화물 연료전지에 적용되는 실링재는 최소 850℃ 이상에서 열처리가 행해지기 때문에 중저온 고체산화물 연료전지에 사용되기 어려운 문제점이 있다.However, since the sealing material applied to the solid oxide fuel cell operating at 800 ℃ ~ 1000 ℃ is heat-treated at least 850 ℃ or more, there is a problem that is difficult to use in the low-temperature solid oxide fuel cell.
또한, 기존의 실링재는 유리의 유동성을 향상시키기 위한 성분을 일정량 포함하지만, 모재와의 열팽창 계수를 매칭할 수 있는 적절한 성분 및 조성비를 갖지 못하여 SOFC의 장시간 운전시 균열이 발생하는 등의 문제점이 있다.In addition, the existing sealing material contains a certain amount of components for improving the flowability of the glass, but does not have a suitable component and composition ratio that can match the thermal expansion coefficient with the base material, there is a problem such as cracking during long-term operation of SOFC. .
또한, 기존의 실링재와는 달리 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 실링 유리 조성물의 개발이 요구되고 있다.In addition, unlike conventional sealing materials, while the heat treatment is performed at 800 ℃ or less, the development of a sealing glass composition excellent in chemical durability and heat resistance under SOFC operating conditions of 600 ~ 700 ℃ is required.
본 발명은 600~700℃의 중저온에서 작동하는 고체산화물 연료전지에 사용되기 적합한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a novel sealing glass composition suitable for use in solid oxide fuel cells operating at medium to low temperatures of 600 to 700 ° C.
또한 본 발명은, 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않고 내구성이 우수한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a new sealing glass composition having excellent durability while improving the high temperature fluidity of the glass and matching the coefficient of thermal expansion with the base material to prevent peeling or breakage.
또한 본 발명은, 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.Moreover, an object of this invention is to provide the new sealing glass composition excellent in chemical durability and heat resistance in SOFC operation conditions of 600-700 degreeC, even if heat processing is carried out at 800 degrees C or less.
중저온에서 작동하는 고체산화물 연료전지에 사용되기 적합한 실링 유리 조성물을 제공하기 위해, 본 발명에 따른 실링 유리 조성물은 SiO2 5~30 중량%, B2O3 3~35 중량%, BaO 30~65 중량% 및 CaO 2~20 중량%를 포함한다.In order to provide a sealing glass composition suitable for use in a solid oxide fuel cell operating at low and low temperatures, the sealing glass composition according to the present invention comprises 5 to 30% by weight of SiO 2 , 3 to 35% by weight of B 2 O 3 , and BaO 30 to 65 wt% and CaO 2-20 wt%.
아울러, 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않는 새로운 실링 유리 조성물을 제공하기 위해, 본 발명에 따른 실링 유리 조성물은 SiO2의 함량이 상기 BaO의 함량의 1/2 이하일 수 있고, 또한 CaO의 함량은 B2O3의 함량 미만일 수 있다. In addition, in order to improve the high temperature fluidity of the glass and to provide a new sealing glass composition in which the thermal expansion coefficient with the base material is matched so that no peeling or breakage occurs, the sealing glass composition according to the present invention has a content of SiO 2 . It may be less than 1/2 of the content of BaO, and also the content of CaO may be less than the content of B 2 O 3 .
아울러, 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 새로운 실링 유리 조성물을 제공하기 위해 Al2O3, ZrO2 및 La2O3 가운데 1종 이상을 더 포함할 수 있다.In addition, at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 to provide a new sealing glass composition excellent in chemical durability and heat resistance under SOFC operating conditions of 600 ~ 700 ℃ while the heat treatment is carried out at 800 ℃ or less. It may further include.
본 발명에 따른 실링 유리 조성물은 SiO2, B2O3, BaO 및 CaO를 본 발명 특유의 조성비로 포함한 새로운 성분계를 가짐으로써 종래의 실링재 유리 조성물과 달리 중저온에서 작동하는 고체산화물 연료전지에 적합하게 사용될 수 있다.The sealing glass composition according to the present invention has a novel component system containing SiO 2 , B 2 O 3 , BaO and CaO in a unique composition ratio of the present invention, which is suitable for a solid oxide fuel cell operating at low and low temperatures unlike a conventional sealing material glass composition. Can be used.
아울러, 본 발명에 따른 실링 유리 조성물은 SiO2와 BaO의 최적비를 가질 수 있으며, 또한 CaO와 B2O3의 최적비를 가질 수 있어 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않는 효과가 있다.In addition, the sealing glass composition according to the present invention may have an optimum ratio of SiO 2 and BaO, and may also have an optimum ratio of CaO and B 2 O 3 to improve the high temperature fluidity of the glass and to have a coefficient of thermal expansion with the base material. Is matched and there is an effect that peeling or breakage does not occur.
더 나아가 본 발명에 따른 실링 유리 조성물은 Al2O3, ZrO2 및 La2O3 가운데 1종 이상을 더 포함하여 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 효과가 있다.Furthermore, the sealing glass composition according to the present invention may further include at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 , which may be subjected to heat treatment at 800 ° C. or lower, and to chemical durability at SOFC operating conditions of 600 to 700 ° C. It is effective in excellent heat resistance.
도 1은 평판형 고체산화물 연료전지의 개략적인 구조를 도시한 단면도이다.1 is a cross-sectional view showing a schematic structure of a planar solid oxide fuel cell.
도 3은 실시예 5에 따른 실링재와 비교예 1에 따른 실링재를 서로 대비하여 나타낸 SEM 이미지이다.3 is a SEM image showing the sealing material according to Example 5 and the sealing material according to Comparative Example 1 compared with each other.
도 3은 운전조건에 따라 실시예 5의 상태 변화를 나타낸 SEM 이미지이다.3 is a SEM image showing a state change of Example 5 according to the operating conditions.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.The above objects, features, and advantages will be described in detail below, and thus, those skilled in the art may easily implement the technical idea of the present invention. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.The present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only this embodiment to make the disclosure of the present invention complete and to those skilled in the art to fully understand the scope of the invention It is provided to inform you.
이하, 본 발명에 따른 실링 유리 조성물 및 이를 이용한 고체산화물 연료전지에 대해 상세히 설명하기로 한다.Hereinafter, the sealing glass composition and the solid oxide fuel cell using the same according to the present invention will be described in detail.
<실링 유리 조성물><Sealing glass composition>
약 600~700℃에서 온도조건에서 구동되는 중저온 고체산화물 연료전지에 적용되기 적합한 실링 유리 조성물의 개발이 요구되고 있다. 이에 본 발명자들은 특히 800℃ 이하에서 열처리 공정(실링 공정)에 적합하며 중저온 고체산화물 연료전지에 장시간 적용되어도 내구성이 우수한 신규의 실링 유리 조성물을 완성하였다.There is a need for the development of a sealing glass composition suitable for application to a medium to low temperature solid oxide fuel cell driven at a temperature of about 600 ~ 700 ℃. Accordingly, the present inventors have completed a novel sealing glass composition which is particularly suitable for a heat treatment process (sealing process) at 800 ° C. or lower and excellent in durability even when applied to a medium-low temperature solid oxide fuel cell for a long time.
본 발명에 따른 실링 유리 조성물은 SiO2 5~30 중량%, B2O3 3~35 중량%, BaO 30~65 중량% 및 CaO 2~20 중량%를 포함한다.The sealing glass composition according to the present invention includes 5 to 30% by weight of SiO 2 , 3 to 35% by weight of B 2 O 3 , 30 to 65% by weight of BaO and 2 to 20% by weight of CaO.
SiO2는 유리형성능력을 향상시키며 유리의 망목구조를 형성하기 위한 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 SiO2를 5~30 중량%의 범위로 포함한다. 상기 SiO2가 5 중량% 미만으로 포함되면 유리의 결정화가 쉽게 발생되어 실링 자체가 어려운 문제가 있고 상기 SiO2가 30 중량%를 초과하여 포함되면 고온에서의 융합 흐름(fusion flow)이 급격히 높아짐에 따라 구성 부품간에 충분한 실링이 이루어지지 못하는 문제점이 있다.SiO 2 is a component for improving the glass forming ability and forming the network structure of the glass. Sealing glass composition according to the present invention comprises the SiO 2 in the range of 5 to 30% by weight. When the SiO 2 is contained in less than 5% by weight crystallization of the glass is easily generated, there is a problem that the sealing itself is difficult, and when the SiO 2 is contained in excess of 30% by weight, the fusion flow at a high temperature is sharply increased. Accordingly, there is a problem that sufficient sealing is not achieved between components.
B2O3는 SiO2와 더불어 충분한 유리화가 가능하도록 유리 형성제로서의 역할을 하며 유리의 용융 온도, 연화 온도, 고온 점도를 낮추고 유리 조성물의 결정화 양을 감소시키는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 B2O3를 3~35 중량% 포함한다. 상기 B2O3가 3 중량% 미만으로 포함되면 연화점이 상승하여 고온에서의 점도가 높아 기밀성이 저하될 수 있다. 또한 상기 B2O3가 35 중량%를 초과하여 포함되면 실링재의 내수성이 약해지고 무엇보다 중저온 SOFC의 장시간 운전시 재료의 열화가 발생할 수 있는 문제가 있다.B 2 O 3, together with SiO 2 , serves as a glass former to allow sufficient vitrification and corresponds to a component that lowers the melting temperature, softening temperature, and high temperature viscosity of the glass and reduces the amount of crystallization of the glass composition. The sealing glass composition according to the present invention contains 3 to 35% by weight of the B 2 O 3 . When the B 2 O 3 is included in less than 3% by weight, the softening point is increased to increase the viscosity at high temperatures may lower the airtightness. In addition, when the B 2 O 3 is included in excess of 35% by weight, the water resistance of the sealing material is weak, and above all, there is a problem that may cause material degradation during long-term operation of the low-temperature SOFC.
BaO는 유리의 실투를 억제시키며 고온 점도를 낮추어 유동성을 향상시킬 수 있는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 BaO를 30~65 중량% 포함한다. 상기 BaO가 30 중량% 미만으로 포함되면 유리의 유동성이 저하되는 문제점이 발생할 수 있다. 또한 상기 BaO가 65 중량%를 초과하여 포함되면 유리 조성물 내의 Ba 성분이 특히 스테인리스 강으로 형성된 모재(연결재)에서 나온 Cr 성분과 반응하여 BaCrO4를 생성하게 되며 이를 통해 실링재의 열팽창계수에 큰 변화를 주어 SOFC의 장시간 작동 시 모재와 실링재에 크랙이 발생될 수 있는 문제가 있다.BaO is a component that can suppress the devitrification of the glass and improve the fluidity by lowering the high temperature viscosity. The sealing glass composition according to the present invention contains 30 to 65% by weight of BaO. If BaO is included in less than 30% by weight may cause a problem that the flowability of the glass is lowered. In addition, when BaO is included in excess of 65% by weight, the Ba component in the glass composition reacts with the Cr component derived from the base material (connecting material) formed of stainless steel, in particular, to generate BaCrO 4 , thereby causing a large change in the coefficient of thermal expansion of the sealing material. There is a problem that cracks may occur in the base material and the sealing material during a long time operation of the SOFC.
CaO는 실링 유리 조성물의 열팽창계수를 제어하고 실링재의 내구성을 향상시킬 수 있는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 CaO를 2~20 중량% 포함한다. 상기 CaO가 2 중량% 미만으로 포함되면 요구되는 열팽창계수를 얻지 못하고 유리의 유동성이 저하되는 문제점이 발생할 수 있다. 또한 상기 CaO가 20 중량%를 초과하여 포함되면 유리의 실투가 발생할 수 있고 또한 고온 유동성이 저하될 수 있는 문제가 있다.CaO corresponds to a component capable of controlling the coefficient of thermal expansion of the sealing glass composition and improving the durability of the sealing material. The sealing glass composition according to the present invention contains 2 to 20% by weight of CaO. If the CaO is included in less than 2% by weight may not obtain the required coefficient of thermal expansion may cause a problem that the flowability of the glass is lowered. In addition, when the CaO is included in excess of 20% by weight, devitrification of the glass may occur, and there is a problem that high temperature fluidity may be lowered.
보다 바람직하게는, 본 발명에 따른 실링 유리 조성물은 상기 상기 SiO2의 함량이 상기 BaO의 함량의 1/2 이하로 조절될 수 있다. BaO 성분은 앞서 언급한 바와 같이 유동성을 향상시키는 성분에 해당하며 특히 본 발명에 따른 실링 유리 조성물의 성분계에서 적절한 유동성을 부여하기 위해 SiO2의 함량의 2배 이상 함유되는 것이 바람직하다. 반대로 SiO2의 함량이 BaO의 함량의 1/2을 초과하여 함유되면 유리의 유동성이 저하되어 실링이 잘 이루어지지 않는 문제가 있다.More preferably, in the sealing glass composition according to the present invention, the content of the SiO 2 may be adjusted to 1/2 or less of the content of BaO. The BaO component corresponds to the component which improves the fluidity as mentioned above, and is preferably contained at least twice the content of SiO 2 in order to impart proper fluidity in the component system of the sealing glass composition according to the present invention. On the contrary, if the content of SiO 2 exceeds 1/2 of the content of BaO, there is a problem that the sealing of the glass is poor because the flowability of the glass is reduced.
또한 본 발명에 따른 실링 유리 조성물은 바람직하게는 모재와의 열팽창계수를 매칭하기 위해서 상기 CaO의 함량이 B2O3의 함량 미만이 되도록 조절할 수 있다. 본 발명에 따른 실링 유리 조성물은 CaO가 B2O3의 함량 미만으로 포함됨으로 인해 유리의 유동성을 확보함과 동시에 모재와의 열팽창계수 매칭에 유리할 수 있다. In addition, the sealing glass composition according to the present invention may be adjusted so that the content of CaO is less than the content of B 2 O 3 in order to match the coefficient of thermal expansion with the base material. The sealing glass composition according to the present invention may be advantageous in matching the coefficient of thermal expansion with the base material while ensuring the flowability of the glass because CaO is contained in less than the content of B 2 O 3 .
다음으로, 본 발명에 따른 실링 유리 조성물은 실링재의 화학적 내구성과 내열성 향상을 위해 Al2O3, ZrO2 및 La2O3 가운데 1종 이상을 더 포함할 수 있고, 바람직하게는 0.1 ~ 20 중량%의 범위로 포함될 수 있다. 상기 Al2O3, ZrO2 및 La2O3 가운데 1종 이상이 0.1 중량% 미만으로 포함되면 화학적 내구성과 내열성 향상 효과가 미미할 수 있고, 또한 20 중량%를 초과하여 포함되면 오히려 유리의 실투가 발생할 수 있는 문제가 있다.Next, the sealing glass composition according to the present invention may further include at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 to improve the chemical durability and heat resistance of the sealing material, preferably 0.1 to 20 weight It can be included in the range of%. When at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 is included in less than 0.1% by weight, the effect of improving chemical durability and heat resistance may be insignificant. There is a problem that can occur.
아울러 본 발명에 따른 실링 유리 조성물은 적정 고온 점도를 유지할 수 있도록 SrO, MgO 및 ZnO 가운데 1종 이상을 더 포함할 수 있고, 바람직하게는 0.1 ~ 12 중량%의 범위로 포함될 수 있다. 상기 SrO, MgO 및 ZnO 가운데 1종 이상이 0.1 중량% 미만으로 포함되면 화학적 내구성과 내열성 향상 효과가 미미할 수 있고, 또한 12 중량%를 초과하여 포함되면 오히려 유리의 결정화가 쉽게 발생되어 실링이 어려워지는 문제가 있다.In addition, the sealing glass composition according to the present invention may further include one or more of SrO, MgO and ZnO to maintain an appropriate high temperature viscosity, preferably may be included in the range of 0.1 to 12% by weight. When at least one of the SrO, MgO and ZnO is included in less than 0.1% by weight, the effect of improving chemical durability and heat resistance may be insignificant, and when it is included in more than 12% by weight, crystallization of the glass is easily generated, making it difficult to seal. there is a problem.
또한 본 발명에 따른 실링 유리 조성물은 800 ℃ 이하의 열처리 공정(실링 공정)에 적합할 수 있도록 바람직하게는 800 ℃ 이하의 반구형 온도 (hemisphere temperature)를 가질 수 있다. 상기 반구형 온도는 고온 현미경을 이용하여 현미경 방법으로 측정할 수 있으며, 원통형인 시험 시편이 서로 융합하여 반구형 매스를 형성하는 온도를 의미한다. 본 발명에 따른 실링 유리 조성물이 800 ℃ 이하의 반구형 온도를 가짐으로써 약 600 ~ 700 ℃의 온도에서 충분한 기밀성을 확보할 수 있다.In addition, the sealing glass composition according to the present invention may preferably have a hemispherical temperature of 800 ° C. or less so as to be suitable for a heat treatment process (sealing process) of 800 ° C. or less. The hemispherical temperature may be measured by a microscopic method using a high temperature microscope, and means a temperature at which cylindrical test specimens fuse with each other to form a hemispherical mass. When the sealing glass composition which concerns on this invention has hemispherical temperature of 800 degrees C or less, sufficient airtightness can be ensured at the temperature of about 600-700 degreeC.
<고체산화물 연료전지 및 이의 실링 방법><Solid oxide fuel cell and sealing method thereof>
본 발명은 앞서 언급한 실링 유리 조성물로 형성되는 실링재를 포함한 고체산화물 연료전지를 제공한다. 보다 바람직하게는 상기 고체산화물 연료전지는 600 ~ 700 ℃ 온도 범위에서 작동하는 중저온 고체산화물 연료전지일 수 있다. The present invention provides a solid oxide fuel cell including a sealing material formed of the aforementioned sealing glass composition. More preferably, the solid oxide fuel cell may be a low temperature solid oxide fuel cell operating in a temperature range of 600 ~ 700 ℃.
도 1을 참조하면, 고체산화물 연료전지는 음극과 양극, 상기 음극와 양극 사이에 구비된 전해질, 인터커넥터 및 프레임을 포함할 수 있으며, 그 구조가 특별히 제한되는 것은 아니다.Referring to FIG. 1, a solid oxide fuel cell may include a cathode and an anode, an electrolyte, an interconnector, and a frame provided between the cathode and the anode, and the structure thereof is not particularly limited.
고체산화물 연료전지는 상기 양극와 음극의 가스 혼합을 방지하고, 각 셀의 전극, 전해질 및 인터커넥터의 가장자리에 전기적 절연을 위해서 완벽한 밀봉이 요구된다.Solid oxide fuel cells are required to prevent gas mixing between the positive and negative electrodes and to provide a complete seal for electrical insulation at the edges of the electrodes, electrolytes and interconnectors of each cell.
이를 위해 본 발명에 따른 실링 유리 조성물로 형성된 실링재는 각 전극과 인터커넥터 사이, 전해질과 인터커넥터 사이, 셀 스택과 프레임 사이를 밀봉하도록 적용될 수 있다. To this end, the sealing material formed of the sealing glass composition according to the present invention may be applied to seal between each electrode and the interconnector, between the electrolyte and the interconnector, between the cell stack and the frame.
또한, 본 발명에 따른 실링 유리 조성물로 형성된 실링재는 고체산화물 연료전지의 구조에 따라 여러 부분에 적용될 수 있다.In addition, the sealing material formed of the sealing glass composition according to the present invention can be applied to various parts depending on the structure of the solid oxide fuel cell.
본 발명에 따른 고체산화물 연료전지의 실링 방법은 실링이 필요한 부분에 본 발명에 따른 실링 유리 조성물을 도포하는 등의 방식으로 적용하고 800 ℃ 이하의 온도에서 열처리하는 공정(실링 공정)을 통해 수행된다.The sealing method of the solid oxide fuel cell according to the present invention is applied by applying the sealing glass composition according to the present invention to a portion in need of sealing, and performing heat treatment at a temperature of 800 ° C. or lower (sealing process). .
이하, 이하, 실시예를 통해 본 발명의 구체적인 태양을 살펴보기로 한다.Hereinafter, specific embodiments of the present invention will be described with reference to Examples.
<실시예><Example>
<실링 유리 조성물의 제조><Production of Sealing Glass Composition>
하기 표 1에 기재된 조성비를 갖는 실링 유리 조성물을 제조하였다. 각 성분 가운데 BaO, CaO 및 SrO의 원재료는 각각 BaCO3, CaCO3 및 SrCO3를 사용하였고 나머지 성분은 하기 표 1에 기재된 성분과 동일한 성분을 사용하였다. 제조된 유리 조성물을 전기로에서 1200 ~ 1350 ℃의 온도 범위에서 용융시킨 후 트윈롤을 이용하여 건식으로 급냉하였다. 급냉하여 얻은 컬릿을 건식분쇄기로 분쇄 후 230 메쉬 시브에 통과시켜 D50 입경이 15 ~ 25 ㎛인 유리 분말을 제조하였다.A sealing glass composition having a composition ratio shown in Table 1 below was prepared. BaCO, CaO and SrO were used as raw materials of BaO 3 , CaCO 3 and SrCO 3 , respectively, and the same ingredients as those listed in Table 1 were used. The prepared glass composition was melted in an electric furnace at a temperature range of 1200 to 1350 ° C. and then quenched dryly using a twin roll. The cullet obtained by quenching was pulverized with a dry mill and passed through a 230 mesh sieve to prepare a glass powder having a D 50 particle size of 15 to 25 μm.
성분(중량%)Ingredient (% by weight) 실시예Example 비교예Comparative example
1One 22 33 44 55 1One 22
SiO2 SiO 2 24.224.2 18.218.2 18.818.8 16.916.9 26.326.3 39.839.8 38.738.7
B2O3 B 2 O 3 13.513.5 10.410.4 11.511.5 12.112.1 11.111.1 9.19.1 8.78.7
BaOBaO 53.153.1 52.152.1 51.851.8 51.951.9 50.850.8 38.338.3 44.744.7
CaOCaO 9.29.2 1111 12.712.7 8.28.2 7.57.5 0.90.9 1.11.1
Al2O3 Al 2 O 3 -- 6.46.4 -- 7.97.9 2.52.5 4.94.9 3.73.7
ZrO2 ZrO 2 -- 0.20.2 -- 0.30.3 1One -- --
La2O3 La 2 O 3 -- 1.71.7 -- 22 -- 7.07.0 --
SrOSrO -- -- 3.13.1 0.50.5 0.80.8 -- 3.13.1
MgOMgO -- -- 1.41.4 0.20.2 -- -- --
ZnOZnO -- -- 0.70.7 -- -- -- --
<실험예>Experimental Example
상기 실시예 및 비교예에 의해 제조된 실링 유리 조성물에 대해 열팽창계수를 측정하고 시편을 제작하여 모재(스테인리스강)와의 반응성을 검토하였다. 물성 측정 및 반응성에 대한 결과는 하기 표 2에 정리하였다.The coefficient of thermal expansion of the sealing glass compositions prepared in Examples and Comparative Examples was measured, and specimens were prepared to examine their reactivity with the base metal (stainless steel). Physical property measurement and reactivity results are summarized in Table 2 below.
1. 열팽창계수(CTE(x10-7/℃)) 측정1. Measurement of coefficient of thermal expansion (CTE (x10 -7 / ℃))
상기 실시예 및 비교예로부터 제작한 분말을 펠릿으로 제작한 후 750℃에서 유지하고 노냉(furnace cooling) 후 TMA 장비(TMA-Q400 TA instrument)를 이용하여 열팽창계수를 측정하였다.The powders prepared from the examples and the comparative examples were prepared into pellets, and then maintained at 750 ° C., and after the furnace cooling, the coefficient of thermal expansion was measured by using a TMA equipment (TMA-Q400 TA instrument).
2. 실링재와 모재의 반응성 검토2. Review of reactivity of sealing materials and base materials
실시예 1 내지 5에 의해 제작된 유리 분말을 펠릿으로 제작하고 스테인리스 강(SUS441) 위에 올린 후 750℃에서 5시간 열처리 하였다. 열처리를 끝낸 이후 680℃에서 50시간 노출하고 실링재의 변화를 검토하였다. Glass powders prepared according to Examples 1 to 5 were prepared as pellets and placed on stainless steel (SUS441), and then heat-treated at 750 ° C. for 5 hours. After the heat treatment, the exposure was carried out at 680 ° C. for 50 hours, and the change of the sealing material was examined.
실시예Example 비교예Comparative example
1One 22 33 44 55 1One 22
열팽창계수(CTE(x10-7/℃))Coefficient of Thermal Expansion (CTE (x10 -7 / ℃)) 104.2104.2 103.1103.1 105.5105.5 107.7107.7 103.6103.6 87.1487.14 93.193.1
상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 1~5는 열팽창 계수가 103 ~ 114 (x10-7/℃) 의 범위 내에 속한다. 접합 모재는 스테인리스 강(SUS441)으로서 이의 열팽창계수는 약 115 (x10-7/℃)에 해당하는 바, 실시예 1~5는 접합 모재와 열팽창계수가 매칭이 되는 것을 알 수 있다. 그러나, 비교예 1~2는 열팽창 계수가 85 ~ 95 (x10-7/℃)의 범위에 해당하여 접합 모재와 열팽창계수가 매칭이 되지 않는 것을 확인할 수 있다.As described in Table 2, Examples 1 to 5 according to the present invention fall within the range of 103 to 114 (x10 −7 / ° C.). The bonding base material is stainless steel (SUS441), and its thermal expansion coefficient corresponds to about 115 (x10 −7 / ° C.). Examples 1 to 5 show that the bonding base material and the thermal expansion coefficient match. However, in Comparative Examples 1 and 2, the thermal expansion coefficient was in the range of 85 to 95 (x10 −7 / ° C.), and thus the bonding base material and the thermal expansion coefficient did not match.
다음으로, 실시예 1 내지 5로부터 제작된 실링재와 비교예로부터 제작된 실링재를 스테인리스 강(SUS441) 위에 올린 후 750℃에서 5시간 열처리한 이후 실링 특성을 관찰하였다.Next, the sealing material prepared from Examples 1 to 5 and the sealing material prepared from the comparative example were placed on stainless steel (SUS441), and then heat-sealed at 750 ° C. for 5 hours to observe sealing properties.
실시예 1 내지 5는 모두 가스 기밀성 등과 같은 실링 특성이 양호하였으나, 비교예에 따른 실링재는 열처리 조건에서의 고온 유동성이 너무 낮아 가스 기밀성에 문제점이 발생한 것을 확인할 수 있었다. 특히, 도 2에는 실시예 5와 비교예 1에 따른 실링재의 SEM 이미지가 도시되어 있다. 도 2를 참조하면, 실시예 5에 따른 실링재는 실링 공정의 최대 온도 범위(700 ~ 800℃)에서 적절한 고온점도(퍼짐성)을 가져 SOFC의 기밀성 확보가 가능하다. 그러나, 비교예에 따른 실링재는 너무 높은 고온점도를 가지기 때문에 SOFC의 기밀성 및 접착 강도의 확보가 어렵다.Examples 1 to 5 all had good sealing characteristics such as gas tightness, but the sealing material according to the comparative example was found to have a problem in gas tightness because the high temperature fluidity under heat treatment conditions was too low. In particular, Figure 2 shows an SEM image of the sealing material according to Example 5 and Comparative Example 1. Referring to FIG. 2, the sealing material according to Example 5 has an appropriate high temperature viscosity (spreadability) in the maximum temperature range (700 ° C. to 800 ° C.) of the sealing process, thereby ensuring the airtightness of the SOFC. However, since the sealing material according to the comparative example has a high temperature viscosity, it is difficult to secure the airtightness and adhesive strength of the SOFC.
다음으로, 실시예 1 내지 5로부터 제작된 실링재를 750℃에서 5시간 열처리하고 680℃에서 50시간 노출한 이후 실링재의 변화를 검토하였다. 또한, 실시예 1 내지 5로부터 제작된 실링재를 750℃에서 5시간 열처리하고 680℃에서 150시간 노출한 이후 실링재의 변화를 검토하였다.Next, the sealing material produced from Examples 1 to 5 was heat-treated at 750 ° C. for 5 hours and exposed at 680 ° C. for 50 hours, and then the change of the sealing material was examined. In addition, the change of the sealing material was examined after heat-sealing the sealing material produced from Examples 1-5 for 5 hours at 750 degreeC, and exposing for 150 hours at 680 degreeC.
실시예 1 내지 5로부터 제작되고 열처리된 이후 장기 노출된 실링재의 표면을 주사전자현미경(SEM)으로 관찰하였다. 이 가운데 실시예 5에 대한 SEM 이미지를 도 3에 도시하였다.The surface of the long-term exposed sealing material after fabrication and heat treatment from Examples 1 to 5 was observed by scanning electron microscopy (SEM). SEM image of Example 5 is shown in FIG. 3.
관찰 결과, 실시예 1 내지 5는 680℃에서 장시간 노출에도 불구하고 실링재가 결정화하거나 균일이 발생하는 등의 변화는 관찰되지 않았다.As a result, in Examples 1 to 5, no change such as crystallization or uniformity of the sealing material was observed in spite of prolonged exposure at 680 ° C.
이상과 같이 본 발명에 대해 설명하였으나, 본 명세서에 개시된 실시예에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.Although the present invention has been described as described above, the present invention is not limited to the embodiments disclosed herein, and it is obvious that various modifications can be made by those skilled in the art within the scope of the technical idea of the present invention. In addition, even if the above described embodiments of the present invention while not explicitly described and described the effect of the effect of the configuration of the present invention, it is obvious that the effect predictable by the configuration is also to be recognized.

Claims (10)

  1. SiO2 5~30 중량%,SiO 2 5-30 wt%,
    B2O3 3~35 중량%,B 2 O 3 3-35 wt%,
    BaO 30~65 중량% 및30-65 wt% BaO and
    CaO 2~20 중량%를 포함하는CaO containing 2-20 wt%
    실링 유리 조성물.Sealing glass composition.
  2. 제 1항에 있어서,The method of claim 1,
    상기 SiO2의 함량은 상기 BaO의 함량의 1/2 이하인 것을 특징으로 하는 실링 유리 조성물.The content of SiO 2 is a sealing glass composition, characterized in that less than 1/2 of the content of BaO.
  3. 제 1항에 있어서,The method of claim 1,
    상기 CaO의 함량은 B2O3의 함량 미만인 것을 특징으로 하는 실링 유리 조성물.The content of CaO is a sealing glass composition, characterized in that less than the content of B 2 O 3 .
  4. 제 1항에 있어서,The method of claim 1,
    Al2O3, ZrO2 및 La2O3 가운데 1종 이상을 더 포함하는 것을 특징으로 하는 실링 유리 조성물.Sealing glass composition, characterized in that it further comprises at least one of Al 2 O 3 , ZrO 2 and La 2 O 3 .
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 Al2O3, ZrO2 및 La2O3 가운데 1종 이상이At least one of the Al 2 O 3 , ZrO 2 and La 2 O 3
    0.1 ~ 20 중량%의 범위로 포함되는 것을 특징으로 하는 실링 유리 조성물.Sealing glass composition, characterized in that included in the range of 0.1 to 20% by weight.
  6. 제 1항에 있어서,The method of claim 1,
    SrO, MgO 및 ZnO 가운데 1종 이상을 더 포함하는 것을 특징으로 하는 실링 유리 조성물.Sealing glass composition, characterized in that it further comprises at least one of SrO, MgO and ZnO.
  7. 제 6항에 있어서,The method of claim 6,
    상기 SrO, MgO 및 ZnO 가운데 1종 이상이At least one of the SrO, MgO and ZnO is
    0.1 ~ 12 중량%의 범위로 포함되는 것을 특징으로 하는 실링 유리 조성물.Sealing glass composition, characterized in that included in the range of 0.1 to 12% by weight.
  8. 제 1항에 있어서,The method of claim 1,
    반구형 온도가 800 ℃ 이하인 것을 특징으로 하는 실링 유리 조성물.Hemispherical temperature is 800 degrees C or less, The sealing glass composition characterized by the above-mentioned.
  9. 제1항 내지 제8항 가운데 어느 한 항에 기재된 실링 유리 조성물로 형성된 실링재를 포함하는 고체 산화물 연료전지.The solid oxide fuel cell containing the sealing material formed from the sealing glass composition of any one of Claims 1-8.
  10. 제1항 내지 제8항 가운데 어느 한 항에 기재된 실링 유리 조성물을 800 ℃ 이하에서 열처리하는 공정을 포함하는 고체 산화물 연료전지의 실링 방법.The sealing method of the solid oxide fuel cell containing the process of heat-processing the sealing glass composition of any one of Claims 1-8 at 800 degrees C or less.
PCT/KR2019/005304 2018-05-04 2019-05-03 Sealing glass composition and solid oxide fuel cell using same WO2019212273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0052028 2018-05-04
KR1020180052028A KR20190127426A (en) 2018-05-04 2018-05-04 Sealing glass composition and solid oxide fuel cell using the same

Publications (1)

Publication Number Publication Date
WO2019212273A1 true WO2019212273A1 (en) 2019-11-07

Family

ID=68386090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005304 WO2019212273A1 (en) 2018-05-04 2019-05-03 Sealing glass composition and solid oxide fuel cell using same

Country Status (2)

Country Link
KR (1) KR20190127426A (en)
WO (1) WO2019212273A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1660954A (en) * 2004-02-25 2005-08-31 哈尔滨工业大学 High temperature suitable sealing material in use for fuel cell of solid oxide and preparing method
KR101182379B1 (en) * 2011-03-04 2012-09-12 주식회사 휘닉스소재 Sealant composition for solid oxide fuel cell, method of preparing the same, and solid oxide fuel cell including the same
JP2013203627A (en) * 2012-03-29 2013-10-07 Asahi Glass Co Ltd Glass composition
KR20150052017A (en) * 2012-07-23 2015-05-13 엠오-싸이 코포레이션 Viscous sealing glass compositions for solid oxide fuels cells
JP2017141124A (en) * 2016-02-09 2017-08-17 株式会社ノリタケカンパニーリミテド Glass composition and use thereof
US20180029926A1 (en) * 2015-02-09 2018-02-01 Nihon Yamamura Glass Co., Ltd. Glass composition for sealing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1660954A (en) * 2004-02-25 2005-08-31 哈尔滨工业大学 High temperature suitable sealing material in use for fuel cell of solid oxide and preparing method
KR101182379B1 (en) * 2011-03-04 2012-09-12 주식회사 휘닉스소재 Sealant composition for solid oxide fuel cell, method of preparing the same, and solid oxide fuel cell including the same
JP2013203627A (en) * 2012-03-29 2013-10-07 Asahi Glass Co Ltd Glass composition
KR20150052017A (en) * 2012-07-23 2015-05-13 엠오-싸이 코포레이션 Viscous sealing glass compositions for solid oxide fuels cells
US20180029926A1 (en) * 2015-02-09 2018-02-01 Nihon Yamamura Glass Co., Ltd. Glass composition for sealing
JP2017141124A (en) * 2016-02-09 2017-08-17 株式会社ノリタケカンパニーリミテド Glass composition and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO, LINGHONG: "Application of BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramic seals in largesizeplanar IT -SOFC", CERAMICS INTERNATIONAL, vol. 41, no. 8, 2 March 2015 (2015-03-02), pages 9239 - 9243, XP029141035 *

Also Published As

Publication number Publication date
KR20190127426A (en) 2019-11-13

Similar Documents

Publication Publication Date Title
US7258942B2 (en) Multilayer compressive seal for sealing in high temperature devices
US7521387B2 (en) Alkali-free composite sealant materials for solid oxide fuel cells
WO2015016599A1 (en) Solid oxide fuel cell and method for manufacturing same
CN101072676A (en) Glass and glass-ceramic sealant compositions
JP2014096277A (en) Seal material for solid oxide type fuel battery use
JP2015513512A (en) Composition for the production of glass solder for high temperature applications and its use
CN100438183C (en) Medium and high temperature sealing method of plate type solid oxide fuel battery and its sealing material
WO2020091528A1 (en) Sealing glass composition and solid oxide fuel cell using same
WO2020111837A1 (en) Sealant glass composition and solid oxide fuel cell using same
WO2016200206A1 (en) Cathode composition, cathode and fuel cell including same
KR101182379B1 (en) Sealant composition for solid oxide fuel cell, method of preparing the same, and solid oxide fuel cell including the same
WO2019212273A1 (en) Sealing glass composition and solid oxide fuel cell using same
KR102651661B1 (en) crystalline glass composition
Ohara et al. A new sealant material for solid oxide fuel cells using glass-ceramic
WO2016190699A1 (en) Oxide particles, cathode including same, and fuel cell including same
WO2017047995A1 (en) Composition for solid oxide fuel cell sealant, sealant using same and method for preparing same
KR101013845B1 (en) Manufacturing Method of Sealing Glass for Intermediate Temperature Planar SOFC
KR19990049582A (en) Composition, Manufacturing Method and Application Method of Glass Sealant for Solid Electrolyte Fuel Cell
WO2015005570A1 (en) Ceramic powder for solid oxide fuel cell metal separating plate protection film, manufacturing method therefor and manufacturing method for solid oxide fuel cell metal separating plate protection film using same
JP5180904B2 (en) Solid oxide fuel cell and bonding material
WO2021261692A1 (en) Solid oxide fuel cell comprising anode having alkali-based promoter introduced therein
JP5290088B2 (en) Joining material for solid oxide fuel cell and method for producing the same
WO2017047994A1 (en) Composition for solid oxide fuel cell sealant, sealant using same and method for preparing same
CN110759743B (en) Glass-vermiculite composite sealing material and preparation method and application thereof
JPS62133677A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795896

Country of ref document: EP

Kind code of ref document: A1