WO2019212253A1 - Antibody specifically binding to c-met, and use thereof - Google Patents

Antibody specifically binding to c-met, and use thereof Download PDF

Info

Publication number
WO2019212253A1
WO2019212253A1 PCT/KR2019/005257 KR2019005257W WO2019212253A1 WO 2019212253 A1 WO2019212253 A1 WO 2019212253A1 KR 2019005257 W KR2019005257 W KR 2019005257W WO 2019212253 A1 WO2019212253 A1 WO 2019212253A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
antibody
met
antigen
binding fragment
Prior art date
Application number
PCT/KR2019/005257
Other languages
French (fr)
Korean (ko)
Inventor
남도현
박현규
윤엽
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190050780A external-priority patent/KR102221755B1/en
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to JP2020561634A priority Critical patent/JP7240417B2/en
Priority to CN201980036982.0A priority patent/CN112601760A/en
Priority to EP19796175.8A priority patent/EP3808772A4/en
Priority to US17/052,196 priority patent/US20210363262A1/en
Priority to AU2019263432A priority patent/AU2019263432B2/en
Priority to CA3098983A priority patent/CA3098983A1/en
Publication of WO2019212253A1 publication Critical patent/WO2019212253A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to anti-c-Met antibodies cross-linking to human and mouse c-Met and uses thereof, and more particularly to anti-c-Met antibodies or antigen binding fragments thereof, such antibodies or antigen binding fragments thereof.
  • Bispecific antibodies or antibody-drug conjugates comprising, pharmaceutical compositions for the prevention or treatment of cancer comprising the same, nucleic acids encoding the antibodies or antigen-binding fragments thereof, vectors and host cells comprising the nucleic acids, anti-c using the same
  • HGF hepatocyte growth factor
  • EGF epidermal growth factor
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • RTKs receptor tyrosine kinases
  • Met proto-oncogene (c-Met) protein is known to be a proto-oncogene that expresses hepatocyte growth factor (HGF) / scatter factor (SF) receptors (Dean M et al., Nature. 318: 385). -388, 1985, Gherardi et al., Nat. Rev. Cancer. 12: 89-103, 2012), interact with HGF, the only known ligand, to induce mesenchymalepithelial transition (MET), Promote the growth, penetration and metastasis of cancer cells.
  • HGF hepatocyte growth factor
  • SF scatter factor
  • c-Met In the case of c-Met, it is considered to be an effective anticancer target because it is involved in the mechanism of development, metastasis, invasion, and neovascularization regardless of HGF, which is a ligand during the development of various tumors.
  • HGF a ligand during the development of various tumors.
  • c-Met inhibitors such as is active (Comoglio PM et al., Nat. Rev. Drug. Discov. 7: 504-516, 2008).
  • antagonistic antibodies against the anticancer target c-Met is a representative chemotherapy strategy by c-Met inhibition.
  • anti-c-Met antibodies it has been reported to inhibit the interaction of the ligand HGF and c-Met or to deactivate c-Met by inactivation.
  • the 'OA-5D5' one-armed antagonistic antibody developed as an anti-c-Met antibody is modified to have no side effects that induce c-Met dimerization as an agonist. It was developed as an antibody (Martens T et al., Clin. Cancer Res. 15: 6144-6152, 2006), and 'DN30' induces the inhibition of tumorigenesis by inactivating c-Met itself and losing its function.
  • the preclinical test results such as the ability to reduce tumor size and increase the number of days of survival, which can be identified when evaluating efficacy using a mouse tumor model, will mainly determine the therapeutic efficacy of the antibody.
  • the mouse tumor model used at this time is made by injecting human-derived cancer cells that overexpress anticancer targets.
  • the tumor microenvironment in mice is caused by the interference of not only the injected human tumor cells but also the mixed mouse-derived cells.
  • Tumor size reduction has been reported (Hoey T et al., Cell Stem Cell. 5: 168-177, 2009).
  • antibodies targeting vascular endothelial growth factor receptor 2 (VEGFR-2) or vascular endothelial growth factor (VEGF) are mouse tumor models.
  • the high tumor suppression effect suggested the need for cross-reactive antibody development (Huang J et al., Cytotechnology. 62: 61-71, 2010; Liang WC et al., J. Biol. Chem. 281: 951-). 961, 2006).
  • Hepatocyte growth factor a ligand
  • Hepatocyte growth factor also has a very high sequence similarity of over 90% between humans and mice (Tashiro K et al., PNAS. 87: 3200-3204, 1990). Since it is a Sema domain, there is a high possibility of developing and applying a cross-reactive antibody. Therefore, the development of antibodies that cross-react to human / mouse c-Met, which inhibits cancer-specific ligand-receptor action in the tumor tumor microenvironment against human / mouse c-Met, confirms effective preclinical studies in mouse tumor models. need.
  • Another object of the present invention is to provide a bispecific antibody or antibody-drug conjugate comprising the antibody or antigen-binding fragment thereof.
  • Still another object of the present invention is a nucleic acid encoding the anti-c-Met antibody or antigen-binding fragment thereof, a vector and host cell comprising the nucleic acid, a method for producing an anti-c-Met antibody or antigen-binding fragment thereof using the same. To provide.
  • Another object of the present invention is to provide the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the treatment of cancer.
  • Another object of the present invention is to provide the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the manufacture of a medicament for the treatment of cancer.
  • the present invention provides a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27; A heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31; A heavy chain variable region comprising a heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33; And a light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35; Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37; An anti-c-Met antibody or antigen-binding fragment thereof comprising a light chain variable region comprising a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39 is provided.
  • the present invention also provides a bispecific antibody or antibody-drug conjugate comprising said anti-c-Met antibody or antigen binding fragment thereof.
  • the present invention also provides pharmaceutical compositions and methods for the treatment or prevention of cancer comprising the anti-c-Met antibody or antigen-binding fragment thereof and / or the bispecific antibody or antibody-drug conjugate.
  • the present invention also provides a nucleic acid encoding the anti-c-Met antibody or antigen-binding fragment thereof, a vector and host cell comprising the nucleic acid, a method for producing an anti-c-Met antibody or antigen-binding fragment thereof using the same. do.
  • the present invention also provides a combination dosage composition for treating cancer and a method of treatment comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
  • the present invention also provides a method for treating cancer, characterized in that the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate is administered.
  • the present invention also provides the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the treatment of cancer and the antibody or antigen-binding fragment thereof or the bispecific antibody for the manufacture of a medicament for the treatment of cancer. Or the use of such antibody-drug conjugates.
  • 1 shows the heavy chain variable region sequence and CDR / Framework classification of the parent antibody (1F12).
  • 3 is a mutant library design of anti-c-Met antibodies.
  • Figure 4 shows the primer sequence for constructing a mutant library of anti-c-Met antibody.
  • Figure 6 shows the results of the agonist activity analysis of 16 anti-c-Met antibody affinity variants.
  • Figure 7 shows affinity results of the anti-c-Met antibody.
  • Figure 8 shows the results of gastric cancer cell line growth inhibition pattern analysis.
  • Figure 9 shows the results of the combined efficacy analysis with anti-c-Met antibody alone and immunotherapy in colorectal cancer cell line.
  • Figure 10 shows the results of analyzing the combined efficacy of anti-c-Met antibody and radiation therapy in colorectal cancer cell line.
  • Figure 11 shows the results of analysis of immune cell distribution in colorectal cancer subcutaneous animal model.
  • Affinity maturation refers to a technique for increasing the binding affinity of the antibody to the antigen by introducing a random mutation into the antibody gene, it can be very useful for the development of effective therapeutic and diagnostic antibody drugs.
  • affinity maturation three approaches are commonly used. Error prone PCR, randomization of target residues using degraded oligonucleotides, and chain shuffling. The portion that can be selected as a target residue is the complementarity determining region (CDR), which in particular is a logical target for randomization since CDR-H3 and CDR-L3 tend to dominate antibody-antigen interactions.
  • CDR complementarity determining region
  • the binding affinity of an antibody is improved by changing the amino acid in the target antibody gene CDR region.
  • This method has been reported to increase the binding affinity by 22 times by changing the amino acid in CDR-H3 of AKA (humanized antibody binding to tumor-associated glycoprotein 72) (Hong et al., J. Biol. Chem. 2006, 281, 6985-6992), antibodies developed against the Hepatitis B virus antigen also reported a 6-fold increase in binding affinity (Hong el al., J. Microbiol. 2007, 45, 528-533).
  • the present invention relates to an anti-c-Met antibody or antigen-binding fragment thereof that specifically binds to c-Met.
  • heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27;
  • a heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31;
  • a heavy chain variable region comprising a heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33;
  • a light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35;
  • Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37;
  • An anti-c-Met antibody or antigen-binding fragment thereof comprising a light chain variable region comprising a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39.
  • the anti-c-Met antibody or antigen-binding fragment thereof is a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27;
  • a heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31;
  • Heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33, each having at least 80% sequence homology, preferably at least 90% sequence homology, more preferably 99% sequence homology
  • An antibody or antigen-binding fragment thereof comprising the heavy chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
  • light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35
  • Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37;
  • An antibody or antigen-binding fragment thereof comprising the light chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
  • the anti-c-Met antibody or antigen-binding fragment thereof is a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 40 and 42 to 48 and in the group consisting of SEQ ID NO: 41 and 49 to 54 It may be characterized by including the selected light chain variable region.
  • An antibody or antigen-binding fragment thereof comprising the sequence having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention.
  • a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 41 and 49 to 54 and having at least 80% sequence homology, preferably at least 90% sequence homology, more preferably 99%
  • An antibody or antigen-binding fragment thereof comprising the light chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
  • anti-c-Met antibody or antigen-binding fragment thereof according to the present invention the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention, an antibody or a portion thereof in which a part of the amino acid sequence is substituted through conservative substitution Antigen binding fragments are also included.
  • “conservative substitutions” refers to modifications of a polypeptide comprising replacing one or more amino acids with amino acids having similar biochemical properties that do not cause loss of the biological or biochemical function of the polypeptide.
  • a “conservative amino acid substitution” is a substitution that replaces an amino acid residue with an amino acid residue having a similar side chain.
  • a class of amino acid residues with similar side chains is defined in the art and is well known.
  • amino acids with basic side chains eg lysine, arginine, histidine
  • amino acids with acidic side chains eg aspartic acid, glutamic acid
  • amino acids with uncharged polar side chains eg glycine , Asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • amino acids with non-polar side chains eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains Amino acids (eg threonine, valine, isoleucine) and amino acids having aromatic side chains (eg tyrosine, phenylalanine, tryptophan, histidine). It is anticipated that the antibodies of the invention may have conservative amino acid substitutions and still retain activity.
  • c-Met specific antibody refers to an antibody that binds to c-Met resulting in inhibition of the biological activity of c-Met, and is used interchangeably with “anti-c-Met antibody”.
  • the "anti-c-Met antibody” is a concept including both a polyclonal antibody and a monoclonal antibody (monoclonal antibody, monoclonal antibody), preferably a monoclonal antibody, intact whole antibody ( whole antibody).
  • the whole antibody is a structure having two full-length light chains and two full-length heavy chains, and includes a constant region, and each light chain is connected by heavy and disulfide bonds.
  • the total antibody of the anti-c-Met antibody according to the present invention includes the IgA, IgD, IgE, IgM and IgG forms, wherein IgG is a subtype and includes IgG1, IgG2, IgG3 and IgG4.
  • the anti-c-Met antibody according to the invention is preferably, but not limited to, a fully human antibody selected from a human antibody library.
  • Antigen binding fragment of an anti-c-Met antibody means a fragment having the function of binding to the antigen of the anti-c-Met antibody, ie c-Met, Fab, Fab ', As a concept including F (ab ') 2 , scFv (scFv) 2 , scFv-Fc, Fv, and the like, the term “antibody fragment” is used interchangeably herein.
  • the Fab has one antigen binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain, and a first constant region of the heavy chain (CH1 domain).
  • F (ab ') 2 antibody Fab' is a cysteine residue of the hinge region is generated yirumyeonseo a disulfide bond.
  • variable fragment refers to a minimum antibody fragment having only a heavy chain variable region and a light chain variable region.
  • Double-chain Fv (dsFv) is a disulfide bond, which is linked to a heavy chain variable region and a light chain variable region, and short-chain Fv (scFv) is generally covalently linked to a heavy chain variable region and a light chain variable region through a peptide linker. .
  • Such antibody fragments can be obtained using proteolytic enzymes (e.g., restriction digestion of the entire antibody with papain yields Fab, cleavage with pepsin yields F (ab ') 2 fragments), Genetic recombination techniques (e.g., DNA encoding the heavy chain or variable region thereof and DNA encoding the light chain or variable region thereof as a template, and amplified by PCR (Polymerase Chain Reaction) method using primer pairs , Amplification by combining a DNA linking a peptide linker and a primer pair such that both ends are linked to a heavy chain or a variable region and a light chain or a variable region, respectively.
  • proteolytic enzymes e.g., restriction digestion of the entire antibody with papain yields Fab, cleavage with pepsin yields F (ab ') 2 fragments
  • Genetic recombination techniques e.g., DNA encoding the heavy chain or variable region thereof and DNA encoding the light chain or variable region thereof
  • the term “heavy chain” refers to a variable length domain VH comprising an amino acid sequence having sufficient variable region sequence to confer specificity to an antigen and a full length heavy chain comprising three constant region domains CH1, CH2 and CH3 It means all fragments.
  • the term “light chain” herein also refers to both the full-length light chain and fragment thereof including the variable region domain VL and the constant region domain CL, including the amino acid sequence having sufficient variable region sequence to confer specificity to the antigen.
  • CDR complementarity determining region
  • the anti-c-Met antibody or antigen-binding fragment thereof may be characterized by having a specific binding capacity to human c-Met.
  • it may be characterized by having cross-linking ability with respect to human c-Met and mouse c-Met, but is not limited thereto.
  • the present invention relates to an antibody-drug conjugate (ADC) in which a drug is conjugated to the anti-c-Met antibody or an antigen-binding fragment thereof.
  • ADC antibody-drug conjugate
  • ADCs Antibody-drug conjugates require the anticancer drug to be stably bound to the antibody until the anticancer drug is delivered to the target cancer cell. Drug delivered to the target must be released from the antibody to induce killing of the target cell. This requires that the drug binds to the antibody stably and at the same time has sufficient cytotoxicity to induce the death of the target cell when released from the target cell.
  • the cytotoxic substances including drugs such as the anti-c-Met antibody or antigen-binding fragment thereof and an anticancer agent are bound to each other (eg, by covalent bonds, peptide bonds, etc.) to conjugate or fusion proteins ( In the form of cytotoxic substances and / or markers).
  • the cytotoxic substance may be any substance that is toxic to cancer cells, particularly solid cancer cells, and may be one or more selected from the group consisting of radioisotopes, cytotoxic compounds, cytotoxic proteins, anticancer agents, and the like. It is not limited to this.
  • the cytotoxin protein is selected from the group consisting of lysine (ricin), saporin (saporin), gelonin (gelonin), momordin (momordin), deboganin (debouganin), diphtheria toxin, pseudomonas toxin, etc. It may be one or more, but is not limited thereto.
  • the radioisotope may be at least one selected from the group consisting of 131I, 188Rh, 90Y, and the like, but is not limited thereto.
  • the cytotoxin compound is duocarmycin, monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), N2'-diacetyl-N2 '-( 3-mercapto-1-oxopropyl) maytansine (N2'-deacetyl-N2 '-(3-mercapto-1-oxopropyl) maytansine; DM1), PBD (Pyrrolobenzodiazepine) dimer, and the like. However, it is not limited thereto.
  • the antibody-drug conjugate may be according to techniques well known in the art.
  • the antibody-drug conjugate may be characterized in that the antibody or antigen-binding fragment thereof is bound to the drug through a linker.
  • the linker may be a cleavable linker or a non-cleavable linker.
  • the linker is a linking site between the anti-c-Met antibody and the drug, for example the linker is in a form that is cleavable under intracellular conditions, i.e. the drug is released from the antibody through cleavage of the linker in the intracellular environment. do.
  • the linker may be cleaved by a cleavage agent present in an intracellular environment such as a lysosomal or endosome, and may be a peptide linker that may be cleaved by an intracellular peptidase or protease enzyme such as a lysosomal or endosomal protease.
  • Peptide linkers generally have at least two amino acids in length.
  • the cleavage agent may include cathepsin B and cathepsin D, plasmin, and may hydrolyze the peptide to release the drug into target cells.
  • the peptide linker may be cleaved by thiol dependent protease cathepsin-B, which is highly expressed in cancer tissue, for example Phe-Leu or Gly-Phe-Leu-Gly linkers can be used.
  • the peptide linker may be cleaved by, for example, an intracellular protease, and may be a Val-Cit linker or a Phe-Lys linker.
  • the cleavable linker is pH sensitive, and may be sensitive to hydrolysis at a specific pH value.
  • pH sensitive linkers can be hydrolyzed under acidic conditions.
  • acid labile linkers that can be hydrolyzed in lysosomes such as hydrazones, semicarbazones, thiosemicarbazones, cis-aconitic amides, orthoesters, acetals, Ketal and the like.
  • the linker may be cleaved under reducing conditions, for example disulfide linkers.
  • SATA N-succinimidyl-S-acetylthioacetate
  • SPDP N-succinimidyl-3- (2-pyridyldithio) propionate
  • SPDB N-succinimidyl-3- (2-pyridyldithio) butyrate
  • N-succinimidyl-oxycarbonyl SMPT Various alpha disulfide bonds can be formed using -alpha-methyl-alpha- (2
  • the drug and / or drug-linker may be conjugated randomly through lysine of the antibody or through cysteine which is exposed when the disulfide bond chain is reduced.
  • the linker-drug may be bound via a genetically engineered tag, such as cysteine present in a peptide or protein.
  • the genetically engineered tag eg, peptide or protein, may comprise an amino acid motif that can be recognized by, for example, an isoprenoid transferase.
  • the peptide or protein has a deletion at the carboxy terminus of the peptide or protein, or has an addition via covalent attachment of a spacer unit to the carboxy (C) terminus of the peptide or protein.
  • the peptide or protein may be directly covalently linked to an amino acid motif or covalently linked to a spacer unit to be linked to an amino acid motif.
  • the amino acid spacer unit is composed of 1 to 20 amino acids, of which a glycine unit is preferable.
  • the linker may comprise a beta-glucuronide linker which is present in a large number in lysosomes or is hydrolyzed by beta-glucuronidase which is overexpressed in some tumor cells.
  • the hydrophilicity is high, and when combined with drugs having high hydrophobic properties, the solubility of the antibody-drug complex can be increased.
  • the present invention relates to a beta-glucuronide linker disclosed in Korean Patent Publication No. 2015-0137015, for example, a beta-glucuronide linker comprising a self-immolative group. Can be used.
  • linker may be, for example, a non-cleavable linker, and the drug is released through only one step of antibody hydrolysis to produce, for example, an amino acid-linker-drug complex.
  • This type of linker may be a thioether group or maleimidocaproyl, and may maintain stability in blood.
  • the drug may be characterized as a chemotherapeutic agent, toxin, micro RNA (miRNA), siRNA, shRNA or radioisotope.
  • the drug may be bound to the antibody with an agent that exhibits a pharmacological effect.
  • the chemotherapeutic agent may be a cytotoxic agent or an immunosuppressant. Specifically, it may include a microtubulin inhibitor, a mitosis inhibitor, a topoisomerase inhibitor, or a chemotherapeutic agent that can function as a DNA intercalator. It may also include immunomodulatory compounds, anticancer agents, antiviral agents, antibacterial agents, antifungal agents, antiparasitic agents or combinations thereof.
  • Such drugs include, for example, maytansinoids, orstatin, aminopterin, actinomycin, bleomycin, thalidomide, camptocecin, N8-acetyl spermidine, 1- (2 chloroethyl) -1,2- Dimethyl sulfonyl hydrazide, esperamycin, etoposide, 6-mercaptopurine, dolastatin, tricortesene, calicheamicin, taxol, taxanes, paclitaxel, docetaxel, methotrexate, Vincristine, vinblastine, doxorubicin, melphalan, chlorambucil, duocarmycin, L-asparaginase, mercaptopurine, thioguanine, hydroxyurea Cytarabine, cyclophosphamide, ifosfamide, nitrosourea, cisplatin, carboplatin, mitomycin; mitomycin; mito
  • the drug is an amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate which can react to form covalent bonds with electrophilic groups on linkers and linker reagents. And one or more nucleophilic groups selected from the group consisting of arylhydrazide groups.
  • the present invention relates to a bispecific antibody comprising the anti-c-Met antibody or antigen-binding fragment thereof.
  • the bispecific antibody is one of two arms of the antibody, one arm comprises an anti-c-Met antibody or antigen-binding fragment thereof according to the invention, and the other cancer ( arm) comprises a form comprising an antibody specific for an antigen other than c-Met, preferably an cancer-associated antigen or an immune gateway protein antigen, or an antibody or antigen-binding fragment thereof that specifically binds to an immune cell-associated antigen. it means.
  • the antigen to which the antibody other than the anti-c-Met antibody included in the double antibody binds is preferably a cancer-associated antigen or an immune gateway protein antigen, HGF, EGFR, EGFRvIII, Her2, Her3, IGF-1R, VEGF, VEGFR.
  • the present invention relates to a pharmaceutical composition for preventing and / or treating cancer comprising the anti-c-Met antibody or antigen-binding fragment thereof.
  • the present invention relates to a pharmaceutical composition for preventing and / or treating cancer comprising the bispecific antibody or antibody-drug conjugate.
  • the cancer may be related to the expression or overexpression of c-Met.
  • cancer and “tumor” are used in the same sense and refer to or mean the physiological state of a mammal, which is typically characterized by unregulated cell growth / proliferation.
  • the anti-c-Met antibody inhibits the growth of cancer cells derived from various carcinomas due to high anti-c-Met binding and thus suppression of c-Met function, and the Inhibition of phosphorylation inhibits c-Met signaling and inhibits neovascularization. Therefore, the antibodies of the present invention are very effective for the prevention and treatment of cancer.
  • the cancer or carcinoma that can be treated with the composition of the present invention is not particularly limited and includes both solid and hematological cancers.
  • examples of such cancers include breast cancer, colon cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, small intestine cancer, endocrine Cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer and bone marrow cancer, but is not limited thereto.
  • the cancer may be primary or metastatic cancer. More preferably, the cancer that can be prevented or treated by the pharmaceutical composition may be characterized as a c-Met expressing cancer.
  • the pharmaceutical composition may be used in combination treatment with radiation.
  • the present invention requires a therapeutically effective amount of the anti-c-Met antibody or antigen-binding fragment thereof and / or the bispecific antibody or antibody-drug conjugate, for the prevention and / or treatment of c-Met related diseases. It relates to a method of preventing and / or treating c-Met-related diseases, comprising administering to a patient.
  • the prevention and / or treatment method may further comprise identifying a patient in need of prevention and / or treatment of the disease prior to the administering step.
  • the method of treatment comprises the steps of administering a pharmaceutical composition comprising an anti-c-Met antibody or antigen binding fragment thereof; And irradiating the radiation; may be characterized in that it comprises a.
  • the radiation may be characterized in that the irradiation (irradiation) is 2Gy ⁇ 10Gy, but is not limited thereto.
  • the number of times of radiation treatment and the amount of time between the radiation treatment and the administration of the pharmaceutical composition may vary according to the method of the present invention, but preferably the administration of the pharmaceutical composition or the administration of the pharmaceutical composition simultaneously with the irradiation. It may be characterized by irradiating radiation after 10 to 20 days, but is not limited thereto.
  • the present invention relates to the use of said antibody or antigen-binding fragment thereof, said bispecific antibody or antibody-drug conjugate for the treatment of cancer.
  • the invention relates to the use of said antibody or antigen-binding fragment thereof said bispecific antibody or antibody-drug conjugate for the manufacture of a medicament for the treatment of cancer.
  • the anti-c-Met antibody or antigen-binding fragment thereof is provided as a single active ingredient, administered in combination with a cytotoxic substance such as an anticancer agent, or a cell such as an anticancer agent. It may be provided in the form of a conjugate (antibody-drug conjugate (ADC)) conjugated with a toxic substance.
  • ADC antibody-drug conjugate
  • the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention can be used for use in combination with a conventional therapeutic agent. That is, the anti-c-Met antibody or antigen-binding fragment thereof, and the pharmaceutical composition comprising the same according to the present invention may be used at the same time or sequentially administered with a conventional therapeutic agent such as an anticancer agent.
  • the pharmaceutical composition may be characterized by comprising a therapeutically effective amount of an anti-c-Met antibody or antigen-binding fragment thereof, and a pharmaceutically acceptable carrier.
  • the "pharmaceutically acceptable carrier” is a substance that can be added to the active ingredient to help formulate or stabilize the formulation and does not cause significant deleterious toxic effects on the patient.
  • Pharmaceutically acceptable carriers are conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
  • the pharmaceutical composition may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, in addition to the above components.
  • lubricants wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like.
  • suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
  • compositions of the invention may be administered parenterally, for example by intravenous infusion, subcutaneous infusion, intramuscular infusion, intraperitoneal infusion and the like.
  • Suitable dosages of the pharmaceutical compositions of the present invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, and usually The skilled practitioner can readily determine and prescribe a dosage effective for the desired treatment or prophylaxis.
  • the daily dose of the pharmaceutical composition of the present invention is 0.0001 to 100 mg / kg.
  • pharmaceutically effective amount means an amount sufficient to prevent or treat cancer.
  • compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or by incorporating into a multi-dose container.
  • the formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, suppositories, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • nucleic acids may be present in cells, cell lysates, or in partially purified or substantially pure form. Nucleic acids are prepared by other cellular components or other contaminants, for example, by standard techniques, including alkali / SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and others well known in the art. When purified from nucleic acids or proteins of other cells, they are "isolated” or “substantially pure.” Nucleic acids of the invention may be, for example, DNA or RNA, and may or may not include intron sequences.
  • the nucleic acid encoding the anti-c-Met antibody may be characterized in that it comprises a sequence selected from the group consisting of SEQ ID NO: 55 to 69.
  • the polynucleotide sequence encoding the heavy chain of the antibody according to the present invention is SEQ ID NO: 55 or 57 to 63 and / or the polynucleotide sequence encoding the light chain of the antibody according to the present invention is SEQ ID NO: 56 or 64 to 69.
  • the present invention relates to a recombinant expression vector comprising the nucleic acid.
  • DNA encoding partial or full-length light and heavy chains can be prepared using standard molecular biology techniques (e.g., PCR amplification or hybrid expression of the desired antibody). CDNA cloning using a cutting board), and DNA can be “bind to work” into transcription and translation control sequences and inserted into the expression vector.
  • binding to work may mean that the gene encoding the antibody is ligated into the vector such that the transcriptional and translational control sequences in the vector serve the intended function of regulating the transcription and translation of the antibody gene.
  • the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
  • the light chain gene of the antibody and the heavy chain gene of the antibody are inserted into separate vectors, or both genes are inserted into the same expression vector.
  • Antibodies are inserted into expression vectors by standard methods (eg ligation of complementary restriction enzyme sites on antibody gene fragments and vectors, or blunt terminal ligation if no restriction enzyme sites are present).
  • the recombinant expression vector may encode a signal peptide that facilitates secretion of the antibody chain from the host cell.
  • the antibody chain gene can be cloned into the vector such that the signal peptide binds to the amino terminus of the antibody chain gene in frame.
  • the signal peptide may be an immunoglobulin signal peptide or a heterologous signal peptide (ie, a signal peptide derived from an immunoglobulin non-protein).
  • the recombinant expression vector has a regulatory sequence that controls the expression of the antibody chain gene in the host cell.
  • a “regulatory sequence” can include promoters, enhancers and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of antibody chain genes.
  • promoters e.g., promoters, enhancers and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of antibody chain genes.
  • expression control elements e.g, polyadenylation signals
  • the design of the expression vector can vary by differently selecting regulatory sequences depending on factors such as the selection of host cells to be transformed, the expression level of the protein, and the like.
  • the present invention relates to a host cell comprising the nucleic acid or the vector.
  • the host cell according to the present invention is preferably selected from the group consisting of animal cells, plant cells, yeast, E. coli and insect cells, but is not limited thereto.
  • the host cell according to the present invention is E. coli, Bacillus subtilis, Streptomyces sp., Pseudomonas sp., Proteus mirabilis or Staphyllo Prokaryotic cells, such as the Staphylococcus sp.
  • fungi such as Aspergillus sp., Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces sp.
  • Neuro Eukaryotic cells such as yeast, such as Neurospora crassa, other lower eukaryotic cells, and cells of higher eukaryotes such as cells from insects.
  • COS7 cells monkey kidney cells (COS7) cells, NSO cells, SP2 / 0 cells, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) cells , MDCK, myeloma cell lines, HuT 78 cells and HEK293 cells and the like are available, but are not limited to these.
  • COS7 cells monkey kidney cells (COS7) cells
  • NSO cells NSO cells
  • SP2 / 0 cells Chinese hamster ovary (CHO) cells
  • W138 W138
  • BHK baby hamster kidney
  • MDCK myeloma cell lines
  • HuT 78 cells and HEK293 cells and the like are available, but are not limited to these.
  • CHO cells can be used.
  • the nucleic acid or the vector is transfected or transfected into a host cell.
  • Many different types of techniques commonly used to introduce exogenous nucleic acids (DNA or RNA) into prokaryotic or eukaryotic host cells for “transfection” or “transfection”, such as electrophoresis, calcium phosphate precipitation, DEAE-dextran transfection or lipofection may be used.
  • Various expression host / vector combinations can be used to express anti-glycancan 3 antibodies according to the present invention.
  • Suitable expression vectors for eukaryotic hosts include, but are not limited to, expression control sequences derived from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus and retrovirus. .
  • Expression vectors that can be used in bacterial hosts include broader hosts such as bacterial plasmids derived from Escherichia coli, such as pET, pRSET, pBluescript, pGEX2T, pUC vectors, col E1, pCR1, pBR322, pMB9, and derivatives thereof. Plasmids with ranges, phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as ⁇ gt10 and ⁇ gt11, NM989, and other DNA phages such as M13 and filamentary single-stranded DNA phages.
  • Useful expression vectors for yeast cells are 2 ° C. plasmids and derivatives thereof.
  • a useful vector for insect cells is pVL941.
  • the present invention provides a method for producing an anti-c-Met antibody or antigen-binding fragment thereof, comprising the step of culturing the host cell to express an anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. It is about.
  • the antibody When a recombinant expression vector capable of expressing the anti-c-Met antibody or antigen-binding fragment thereof is introduced into a mammalian host cell, the antibody is for a period of time sufficient to allow the antibody to be expressed in the host cell, or more preferably in the host cell. Can be prepared by culturing the host cell for a period sufficient to allow the antibody to be secreted into the culture medium in which is cultured.
  • the expressed antibody may be purified from the host cell to be homogeneous. Separation or purification of the antibody can be carried out by separation, purification methods, such as chromatography, which are used in conventional proteins.
  • the chromatography can include, for example, affinity chromatography comprising a Protein A column, Protein G column, ion exchange chromatography or hydrophobic chromatography.
  • the antibody can be separated and purified by further combining filtration, ultrafiltration, salting out, dialysis and the like.
  • the anti-c-Met antibody or antigen-binding fragment thereof and the pharmaceutical composition comprising the same according to the present invention can be used for use in combination with a conventional therapeutic agent.
  • the present invention relates to a combination dosage composition for treating cancer and a method of treatment comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
  • the other cancer therapeutic agent means all therapeutic agents that can be used for cancer treatment, in addition to the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention.
  • the cancer treatment agent may be characterized in that the immune gateway inhibitor, but is not limited thereto.
  • the body's immune system has an immunoassay system to suppress the hyperimmune response caused by T-cell overproliferation.
  • the immune checkpoint system is called an immune checkpoint, and the proteins involved in the immune checkpoint are called immune checkpoint proteins.
  • immune gates function to inhibit hyper-immune responses caused by T-cell overactivation and / or hyperproliferation, but cancer cells exploit these immune barriers to prevent T-cells from attacking themselves. It is free from the attack, and ultimately the cancer progresses.
  • the first type of immunoblock inhibitor the therapeutic agent ipilimumab, a cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) -specific monoclonal antibody
  • CTLA-4 cytotoxic T-lymphocyte associated antigen-4
  • monoclonal antibodies specific for programmed cell death-1 (PD-1) and programmed death ligand-1 (PD-L1), ligands for PD-1 are being developed.
  • Representative examples include nivolumab, pembrolizumab, avelumab, atezolizumab and durvalumab.
  • PD-1 or PD-L1 inhibitors are found in malignant melanoma as well as in tumors whose effects vary.
  • the immune gateway inhibitor means an immune checkpoint inhibitor or a checkpoint inhibitor, and may be characterized in that the anti-CTLA-4 antibody, anti-PD-1 antibody or anti-PD-L1 antibody, but is not limited thereto.
  • Ipilimumab, Nivolumab, Pembrolizumab, Atezlizumab, Avelumab or Durvalumab may be used.
  • the present invention is not limited thereto.
  • the cancer is breast cancer, colon cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, small intestine Cancer, endocrine cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer or bone marrow cancer, but is not limited thereto.
  • “Combination” means that the anti-c-Met antibody or antigen-binding fragment thereof and each of the other cancer therapeutic agents may be administered simultaneously, sequentially, or in reverse order, and administered in a combination of an appropriate effective amount within the scope of those skilled in the art. Can be.
  • the combination dosage composition includes an anti-c-Met antibody, and the configuration thereof is the same as the composition included in the composition for preventing or treating cancer described above, and thus the description of each composition is equally applicable to the composition for combination administration. .
  • the c-Met target antibody 1F12 was selected using phage display technology, and directed evolution was used to improve the affinity of the antibody.
  • the variable region of the antibody is divided into a complementarity-determining region (CDR) and a framework region, and CDRs contribute greatly to the antigen-antibody binding.
  • CDR complementarity-determining region
  • the heavy chain variable region and the light chain variable region of the parent antibody are as shown in FIGS. 1 and 2.
  • the CDR and framework regions of antibodies were classified based on KABAT numbering (Table 1).
  • the DNA sequence of the 1F12 mutant single chain variable fragment (sfiI-VH-linker-VL-sfiI) in which the CDRs used for constructing mutant libraries were randomized was obtained by using overlapping extension PCR using primers shown in Table 2 below. .
  • Cysteine is present at VH99 and VH100d of heavy chain CDR-H3 (Fig. 1), and these two positions form an interchain disulfide bond, which stabilizes the structure of CDR-H3. Therefore, these two sites do not use NNK codons. TGT codons were used to retain the residues.
  • pComb3X scFv expression vector (OmpA leader sequence-sfiI-VH-linker-VL-sfiI-His-HA-Amber codon-pIII) was linearized by removing the insert sequence using sfiI (NEB) restriction enzyme.
  • Mutant libraries were constructed by inserting sfiI-VH-linker-VL-sfiI into which the position of each CDR was 20 amino acids by NNK degenerate codon into the linearized vector by using T4 ligase (NEB) into the linearized vector. Completed.
  • the constructed mutant libraries used TG1 E. coli as host cells, and had a transformant of about 3.10 x 1010.
  • the mutant libraries were recovered in phage form, and the phage display technology was used to enrich the antibody pool with higher binding capacity to c-Met, and affinity variants were selected by screening using ELISA.
  • 13 affinity clones were selected, and the clones were 1F12_H35H, 1F12_H53D, 1F12_H57K, 1F12_H58D, 1F12_H60N, 1F12_H100eH, 1F12_H100hR 1F12_L26D, 1F12_L27BD, 1F12F1F1F12F.
  • 1F12-H35H means that the amino acid at position 35 of the 1F12 heavy chain is replaced with Histidine (H)
  • 1F12_L26D means a mutation in which the amino acid at position 26 of the 1F12 light chain is substituted with Aspartic acid.
  • 1F12_H2L3 is an antibody prepared by combining a heavy chain expression vector in which the heavy chain variable region position 53 is substituted with Aspartic acid and a light chain expression vector in which the light chain variable region position 50 is substituted with Glutamic acid (7 heavy chain mutation expression vectors and 6 The light chain mutant expression vectors of the species were prepared as the second and third expression vectors, respectively).
  • 1F12_H100hR antibodies were expressed and purified in mammalian cells and used in subsequent experiments.
  • the CDR sequences of a total of 17 improved antibodies are shown in Table 3, and the heavy and light chain variable region sequences are shown in Table 4.
  • the polynucleotide sequence encoding each improved antibody is shown in Table 5.
  • Agonist activity analysis is essential for the development of c-Met antibodies.
  • Typical antibodies have a bivalent structure with two paratopes that recognize the target in Y-form.
  • one c-Met antibody binds to two target antigens, c-Met, which induces agonist activity that induces c-Met dimerization, activating a lower signal transduction pathway.
  • Genentech developed the 5D5 antibody using Hybridoma technology, but the antibody binds to c-Met and shows a similar effect to HGF / SF, the ligand of c-Met, resulting in agonist activity that enhances the signal transduction pathway. To minimize this phenomenon, the 5D5 antibody was modified to OA-5D5, a one-arm form, and agonist activity was minimized.
  • Akt phosphorylation was measured to quantify the agonist activity of the parental antibody 1F12 and 16 affinity variants. Specifically, Serum starvation proceeded for 24 hours when the Caki-1 renal cell carcinoma cell line reached a confluency of about 70% per well in RPMI1640 complete medium (+ 10% FBS) in a 96 well cell culture plate. The parent antibody and 16 affinity variants were treated. As a control, 5D5, a c-Met agonist antibody, OA-5D5 with minimal agonist activity, and HGF / SF (R & D systems), a ligand for c-Met, were used.
  • PBS was treated with the same volume as the vehicle treated samples, antibodies were treated at 10 ⁇ g / mL, HGF / SF was treated at 50 ng / L.
  • the treatment time of antibody and ligand was 30 minutes, and the experiment was carried out in three iterations. 30 minutes after each sample treatment, the cells were washed once with 1X PBS and cell lysis was performed using lysis buffer. Subsequently, Akt phosphorylation was measured using a PathScan® Phospho-Akt Sandwich ELISA Kit (Cell signaling technology) according to the manufacturer's manual. The luminescent signal for each well was measured, and the PBS treatment group was 0%, HGF / SF. Treatment groups were converted to 100% to quantify the agonist activity of each antibody.
  • 5D5 c-Met agonist antibody induced 86.01% of Akt phosphorylation and showed agonist activity similar to that of HGF.
  • the modified OA-5D5 one-armed monovalent antibody showed a 30.46% reduced agonist activity to minimize agonist activity.
  • agonist activity of the 1F12 parent antibody was found to be 18.23%, and agonist activity of the 16 affinity variants is shown in Table 6 below (FIG. 6).
  • ELISA-based affinity analysis was performed in three iterations.
  • a 96-well ELISA plate (Costar) was coated with recombinant human c-Met (Sino biological) at 50 ng / well overnight at 4 ° C. The next day after blocking for 1 hour with 3% skim milk solution, it was washed three times using 1X PBST (Cell signaling technology).
  • Each antibody was diluted 1/2 to 200 nM in PBS (Gibco) and treated in each well in a volume of 100 ⁇ L and allowed to stand for 1 hour at room temperature.
  • the OD450 was measured using a UV / VIS spectrophotometer, and normalization of this value resulted in an increase in the affinity of the 1F12_H2L3, 1F12_H2L6, 1F12_H3L5, and 1F12_H6L5 clones compared to the parent antibody (1F12), with the highest affinity of the 1F12_H3L5 clone. It was confirmed (FIG. 7).
  • MKN45 is a c-Met amplified gastric cancer cell line, obtained from JCRB Cell Bank (Japan), and cultured in a medium in which 10% FBS was added to RPMI1640 to maintain the cells.
  • Onartuzumab (OA-5D5; monovalent c-Met Antibody, Genentech) was used as a control antibody, and an antibody expression vector was prepared based on published antibody sequences.
  • Transient expression using the Expi293 expression system (Gibco) was performed, and purification was performed by Affinity chromatography equipped with Mabselect sure (GE) on AKTA york (GE), and purity of 98% or higher was confirmed by SE-HPLC analysis.
  • ELISA and SPR analysis confirmed the similarity with the literature.
  • MC38 cells which are mouse colon cancer tumor cells, were transplanted into mice to prepare tumor animal models and evaluated tumor growth inhibitory ability according to 1F12_H3L5 administration.
  • MC38 was prepared to have 200000 cells per 100 ⁇ L, using Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) in a 1: 1 mixture. Prepared cells were transplanted using a 1cc syringe (26G) at 100 ⁇ L in the region of the right back of 7-8 week old C57BL / 6 female mice.
  • HBSS Hank's Salt
  • Basal Matrigel Basal Matrigel
  • 1F12_H3L5 (20 mg / kg, ip) and Atezolizumab (5 mg / kg, ip) was started twice a week from the 5th day.
  • Tumor size was measured by calculating the long axis and short axis in millimeters (mm) using a caliper to calculate the formula ((long axis) ⁇ (short axis) 2 ⁇ 0.5).
  • MC38 cells which are mouse colon cancer tumor cells, were transplanted into mice to prepare tumor animal models and evaluated tumor growth inhibitory ability according to 1F12_H3L5 administration.
  • MC38 was prepared to have 200000 cells per 100 ⁇ L, wherein Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) were used in a 1: 1 mixture.
  • Prepared cells were transplanted using a 1cc syringe (26G) at 100 ⁇ L in the region of the right back of 7-8 week old C57BL / 6 female mice.
  • Tumor size was measured by calculating the long axis and short axis in millimeters (mm) using a caliper to calculate the formula ((long axis) ⁇ (short axis) 2 ⁇ 0.5).
  • mice were anesthetized at 20 days after tumor implantation and irradiated with 2Gy single doses of the subcutaneous tumor using a radiation irradiator.
  • an MC38 animal model was prepared and analyzed for the expression of immune cells in tumor tissues.
  • MC38 was prepared to have 200000 cells per 100 ⁇ L, wherein Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) were used in a 1: 1 mixture. Prepared cells were transplanted using a 1cc syringe (26G) at 100 ⁇ L in the region of the right back of 7-8 week old C57BL / 6 female mice. Tumor tissue was secured by autopsy at the time of tumor size of about 800-1000 mm 3 and analyzed by RNA sequencing using isolated tumor tissue. For the analysis, the gene expression signature of each major immune cell reported in the paper was analyzed.
  • HBSS Hank's Salt
  • Gibco Basal Matrigel
  • tumor tissues were separated into single cells. Analysis of PD-L1 in tumor cells was performed by staining CD45 and PD-L1, which are immune cell markers in single cells. In order to exclude immune cells invading tumor cells, expression of PD-L1 was confirmed in cells without expression of CD45.
  • Antibodies or antigen-binding fragments thereof that bind to c-Met according to the present invention can bind to human and mouse c-Met with high affinity, thereby confirming more accurate preclinical results in efficacy evaluation using a mouse tumor model.
  • Antibodies or antigen-binding fragments thereof that bind to c-Met according to the present invention can be usefully used for the prevention or treatment of a desired cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to an anti-c-Met antibody that is cross-reactive to human and mouse c-Met, and a use thereof and, more specifically, to: an anti-c-Met antibody or an antigen-binding fragment thereof; a bispecific antibody or an antibody-drug conjugate comprising the antibody or an antigen-binding fragment thereof; a pharmaceutical composition for preventing or treating cancer, comprising same; a nucleic acid coding for the antibody or an antigen-binding fragment thereof; a vector and a host cell comprising the nucleic acid; a method for preparing an anti-c-Met antibody or an antigen-binding fragment thereof by using same; and a co-administered cancer treatment composition containing the anti-c-Met antibody or an antigen-binding fragment thereof and another cancer treatment agent. An antibody binding to c-Met and an antigen-binding fragment thereof, according to the present invention, can bind to human and mouse c-Met with high affinity, and thus more accurate preclinical results can be identified in an efficacy evaluation by using mouse tumor models. An antibody binding to c-Met and an antigen-binding fragment thereof, according to the present invention, can be effectively used in the prevention or treatment of target cancer.

Description

C-MET에 특이적으로 결합하는 항체 및 그의 용도Antibodies that specifically bind to C-MET and uses thereof
본 발명은 인간 및 마우스 c-Met에 교차결합하는 항-c-Met 항체 및 그 용도에 관한 것으로, 더욱 상세하게는 항-c-Met 항체 또는 이의 항원 결합 단편, 상기 항체 또는 이의 항원 결합 단편을 포함하는 이중특이 항체 또는 항체-약물 접합체, 이를 포함하는 암의 예방 또는 치료용 약학 조성물, 상기 항체 또는 이의 항원 결합 단편을 코딩하는 핵산, 상기 핵산을 포함하는 벡터 및 숙주세포, 이를 이용한 항-c-Met 항체 또는 이의 항원 결합 단편의 제조 방법 및 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및 다른 암 치료제를 포함하는 암 치료용 병용 투여 조성물에 관한 것이다.The present invention relates to anti-c-Met antibodies cross-linking to human and mouse c-Met and uses thereof, and more particularly to anti-c-Met antibodies or antigen binding fragments thereof, such antibodies or antigen binding fragments thereof. Bispecific antibodies or antibody-drug conjugates comprising, pharmaceutical compositions for the prevention or treatment of cancer comprising the same, nucleic acids encoding the antibodies or antigen-binding fragments thereof, vectors and host cells comprising the nucleic acids, anti-c using the same A method for producing a -Met antibody or antigen-binding fragment thereof, and a combination dosage composition for treating cancer, comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
간세포성장인자(hepatocyte growth factor; HGF), 표피성장인자(epidermal growth factor; EGF), 혈관내피성장인자(vascular endothelial growth factor; VEGF), 섬유아세포 성장인자(fibroblast growth factor; FGF)와 같은 다양한 성장 인자들은 세포 표면의 수용체 타이로신 키나아제(receptor tyrosine kinase; RTK)들과 상호작용하여 발생단계에서 뿐 아니라 세포 성장, 분화, 혈관신생, 조직 재생 등과 같은 중요한 세포생리적 조절을 유도한다. 이러한 성장인자와 수용체들이 변이, 과발현, 자체활성 촉진 등 생리적인 측면에서 탈조절 될 경우, 비정상적 세포 성장 또는 분화를 야기함으로써 암의 발달을 개시, 촉진시킨다(Lemmon MA & Schlessinger J, Cell. 141:1117-1134, 2010).Various growths such as hepatocyte growth factor (HGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF) Factors interact with receptor tyrosine kinases (RTKs) on the cell surface to induce important cytophysiological regulation, such as cell growth, differentiation, angiogenesis, tissue regeneration, as well as developmental stages. When these growth factors and receptors are deregulated in physiological aspects such as mutation, overexpression, and self-activation, they initiate and promote cancer development by causing abnormal cell growth or differentiation (Lemmon MA & Schlessinger J, Cell. 141: 1117-1134, 2010).
MET(met proto-oncogene; c-Met) 단백질은 간세포성장인자(HGF)/산란인자(scatter factor; SF) 수용체를 발현하는 원종양유전자로 알려져 있으며(Dean M et al., Nature. 318:385-388, 1985, Gherardi et al., Nat. Rev. Cancer. 12:89-103, 2012), 유일하게 알려진 리간드인 HGF와 상호 작용하여 중간엽-상피 이행(mesenchymalepithelial transition; MET)을 유도하고, 암세포의 성장, 침투, 전이 기능을 촉진한다. c-Met의 경우, 여러 종양의 발달과정에서 리간드인 HGF와 상관없이 발생, 전이, 침습, 신생혈관 유도 등의 기작에도 관여하기 때문에 효과적인 항암 표적으로 여겨지고 있으며, 이러한 배경으로 인해 화학약물, 단클론항체 등과 같은 c-Met 저해제 관련 연구가 활발하다(Comoglio PM et al., Nat. Rev. Drug. Discov. 7:504-516, 2008).Met proto-oncogene (c-Met) protein is known to be a proto-oncogene that expresses hepatocyte growth factor (HGF) / scatter factor (SF) receptors (Dean M et al., Nature. 318: 385). -388, 1985, Gherardi et al., Nat. Rev. Cancer. 12: 89-103, 2012), interact with HGF, the only known ligand, to induce mesenchymalepithelial transition (MET), Promote the growth, penetration and metastasis of cancer cells. In the case of c-Met, it is considered to be an effective anticancer target because it is involved in the mechanism of development, metastasis, invasion, and neovascularization regardless of HGF, which is a ligand during the development of various tumors. The research on c-Met inhibitors such as is active (Comoglio PM et al., Nat. Rev. Drug. Discov. 7: 504-516, 2008).
항암표적 c-Met에 대한 길항 항체(antagonistic antibody)의 개발은 대표적인 c-Met 저해에 의한 항암치료 전략이다. 항 c-Met 항체의 경우, 리간드인 HGF와 c-Met의 상호작용을 저해하거나, c-Met을 분해하여 불활성화 시키는 것으로 보고되고 있다. 예를 들어, 항 c-Met 항체로 개발된 ‘OA-5D5’ 한팔 길항 항체(one-armed antagonistic antibody)는 작용제(agonist)로서 c-Met 이량화(dmierization)를 유도하는 부작용을 갖지 않도록 변형된 항체로 개발 되었으며(Martens T et al., Clin. Cancer Res. 15:6144-6152, 2006), ‘DN30’의 경우, c-Met 자체의 불활성화를 유도해 기능을 상실시킴으로써 종양형성 억제를 유도하도록 개발되었다(Petrelli A et al., PNAS. 103:5090-5095, 2006). 하지만 한팔 길항 항체의 경우는 항체 단독 처리에 의한 종양 억제 효과는 미미한 반면, 화학요법과 함께 처리될 때에 유의적인 치료 효과를 보였고, c-Met 불활성화 항체는 리간드와 경쟁하는 양상이 낮고 작용제(agonist)로서의 효과를 부분적으로 보이는 단점이 있는 것으로 확인되었다. 따라서 인간 c-Met의 기능을 억제하는 치료용 항체의 개발은 지속적으로 요구되고 있다.The development of antagonistic antibodies against the anticancer target c-Met is a representative chemotherapy strategy by c-Met inhibition. In the case of anti-c-Met antibodies, it has been reported to inhibit the interaction of the ligand HGF and c-Met or to deactivate c-Met by inactivation. For example, the 'OA-5D5' one-armed antagonistic antibody developed as an anti-c-Met antibody is modified to have no side effects that induce c-Met dimerization as an agonist. It was developed as an antibody (Martens T et al., Clin. Cancer Res. 15: 6144-6152, 2006), and 'DN30' induces the inhibition of tumorigenesis by inactivating c-Met itself and losing its function. (Petrelli A et al., PNAS. 103: 5090-5095, 2006). However, single-armed antagonist antibody showed only minimal tumor suppression effect by treatment with antibody alone, but showed significant therapeutic effect when treated with chemotherapy, while c-Met inactivated antibody had low competition with ligand and agonist. It was confirmed that there is a drawback that shows the effect as) partially. Therefore, there is a continuous need for the development of therapeutic antibodies that inhibit the function of human c-Met.
항암표적 항체 개발에 있어, in vitro 효능 평가뿐 아니라 마우스 종양모델을 이용한 in vivo 전임상 효능 평가가 필요하다. 특히, 마우스 종양모델을 이용한 효능 평가 시 확인 가능한 종양 크기 감소 능력, 생존 일수 증가와 같은 전임상 실험 결과를 통해 해당 항체의 치료 효능을 주요하게 판단하게 된다. 이 때 이용되는 마우스 종양모델은 항암표적을 과발현하는 인간 유래의 암세포를 주입하여 만들어지는데, 실제로 마우스 내 종양 미세환경(tumor microenvironment)은 주입된 인간 종양 세포뿐 아니라 혼재된 마우스 유래 세포들의 간섭으로 인해 항체의 치료효과 확인 시 전임상 결과와 임상 결과와의 상관관계가 낮을 확률이 높다(Talmadge JE et al., Am. J. Pathol. 170:793-804, 2007). 따라서, 인간 유래 항암표적만을 억제하는 항체뿐 아니라, 마우스 유래 항암표적 또는 리간드를 억제하는 항체와의 조합처치(combinatorial treatment) 또는 인간/마우스 이종 항암 표적에 특이적인 항체가 종양모델에서 보다 정확한 전임상 치료 결과를 보여줄 수 있다. 예를 들어, 종양 내 혈관신생(angiogenesis)을 억제하는 항 Dll4(delta like ligand 4) 항체의 경우, 인간 Dll4 에 대한 항체뿐 아니라 마우스 Dll4에 대한 항체를 마우스 종양모델에 조합처치 하였을 때 유의적으로 종양의 크기가 줄어드는 결과가 보고되었다(Hoey T et al., Cell Stem Cell. 5:168-177, 2009). 또한 혈관내피세포성장인자 수용체 2(VEGFR-2) 또는 혈관내피세포성장인자(VEGF)를 표적하는 항체의 경우에서도, 인간/마우스 이종 항암표적에 교차반응(cross-reactive)하는 항체가 마우스 종양모델에서 높은 종양 억제 효과를 보임으로써 교차반응 항체 개발의 필요성을 시사하였다(Huang J et al., Cytotechnology. 62:61-71, 2010; Liang W-C et al., J. Biol. Chem. 281:951-961, 2006).In the development of anti-cancer target antibodies, in vivo preclinical efficacy evaluation using mouse tumor model as well as in vitro efficacy evaluation is required. In particular, the preclinical test results such as the ability to reduce tumor size and increase the number of days of survival, which can be identified when evaluating efficacy using a mouse tumor model, will mainly determine the therapeutic efficacy of the antibody. The mouse tumor model used at this time is made by injecting human-derived cancer cells that overexpress anticancer targets. Actually, the tumor microenvironment in mice is caused by the interference of not only the injected human tumor cells but also the mixed mouse-derived cells. In confirming the therapeutic effect of antibodies, there is a high probability that the correlation between preclinical and clinical results is low (Talmadge JE et al., Am. J. Pathol. 170: 793-804, 2007). Thus, not only antibodies that inhibit only human-derived anticancer targets, but also combination treatments with mouse-derived anticancer targets or antibodies that inhibit ligands, or antibodies specific for human / mouse heterologous anticancer targets, are more accurate in preclinical treatment in tumor models. You can show the result. For example, in the case of anti-Dll4 (delta like ligand 4) antibodies that inhibit angiogenesis in tumors, the antibody against mouse Dll4 as well as the antibody to human Dll4 is significantly combined with the mouse tumor model. Tumor size reduction has been reported (Hoey T et al., Cell Stem Cell. 5: 168-177, 2009). In addition, in the case of antibodies targeting vascular endothelial growth factor receptor 2 (VEGFR-2) or vascular endothelial growth factor (VEGF), antibodies that cross-reactive with human / mouse heterologous anticancer targets are mouse tumor models. The high tumor suppression effect suggested the need for cross-reactive antibody development (Huang J et al., Cytotechnology. 62: 61-71, 2010; Liang WC et al., J. Biol. Chem. 281: 951-). 961, 2006).
이와 같이, c-Met의 기능만을 억제하는 항 c-Met 항체의 경우, 인간 또는 마우스 유래 간세포성장인자의 오토크린(autocrine)/파라크린(paracrine) 작용에 대한 마우스 c-Met 수용체 억제 작용이 없어 마우스 종양모델에서의 전임상 효능 평가시 그 효과를 평가하는데 어려움이 있다. 인간 c-Met(P08581, UniProtKB/Swiss-Prot)은 1,390개, 마우스 c-Met(P16056, UniProtKB/Swiss-Prot)은 1,379개의 아미노산으로 구성되어 있어 서로 89% 이상의 높은 서열 유사성을 갖는다(Chan AML et al., Oncogene. 2:593-599, 1988). 리간드인 간세포성장인자 역시 인간과 마우스 사이에 90% 이상의 매우 높은 서열 유사성이 있으며(Tashiro K et al., PNAS. 87:3200-3204, 1990), 리간드와 수용체가 작용하는 대표적인 위치 역시 세마 부위(Sema domain)이기 때문에 교차반응 항체의 개발 및 적용 가능성이 높다고 할 수 있다. 따라서, 인간/마우스 c-Met에 대한 항체종양 미세 환경 내 암 특이 리간드-수용체 작용을 억제하여 마우스 종양모델에서 효과적인 전임상 연구결과를 확인할 수 있는 인간/마우스 c-Met에 교차반응하는 항체의 개발이 필요하다.As such, anti-c-Met antibodies that inhibit only c-Met function have no mouse c-Met receptor inhibitory action on autocrine / paracrine action of human or mouse hepatocyte growth factor. There is a difficulty in evaluating the effects of preclinical efficacy evaluation in mouse tumor models. Human c-Met (P08581, UniProtKB / Swiss-Prot) consists of 1,390 amino acids and mouse c-Met (P16056, UniProtKB / Swiss-Prot) consists of 1,379 amino acids, which have more than 89% high sequence similarity with each other (Chan AML et al., Oncogene. 2: 593-599, 1988). Hepatocyte growth factor, a ligand, also has a very high sequence similarity of over 90% between humans and mice (Tashiro K et al., PNAS. 87: 3200-3204, 1990). Since it is a Sema domain, there is a high possibility of developing and applying a cross-reactive antibody. Therefore, the development of antibodies that cross-react to human / mouse c-Met, which inhibits cancer-specific ligand-receptor action in the tumor tumor microenvironment against human / mouse c-Met, confirms effective preclinical studies in mouse tumor models. need.
이러한 기술적 배경하에서, 본 발명자들은 인간 및 마우스 c-Met에 교차결합능을 가지며, 친화도 성숙(affinity maturation) 과정을 이용하여 c-Met과의 결합능이 개선된 개량 항체를 개발하고 본 발명을 완성하였다.Under these technical backgrounds, the present inventors have developed an improved antibody having cross-linking ability to human and mouse c-Met, improved affinity with c-Met using affinity maturation process, and completed the present invention. .
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
발명의 요약Summary of the Invention
본 발명의 목적은 c-Met에 특이적으로 결합하는 항-c-Met 항체 또는 이의 항원 결합 단편을 제공하는 데 있다.It is an object of the present invention to provide an anti-c-Met antibody or antigen binding fragment thereof that specifically binds to c-Met.
본 발명의 다른 목적은 상기 항체 또는 이의 항원 결합 단편을 포함하는 이중특이 항체 또는 항체-약물 접합체를 제공하는 데 있다.Another object of the present invention is to provide a bispecific antibody or antibody-drug conjugate comprising the antibody or antigen-binding fragment thereof.
본 발명의 또 다른 목적은 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및/또는 상기 이중특이 항체 또는 항체-약물 접합체를 포함하는 암의 예방 또는 치료용 약학 조성물 및 치료 방법을 제공하는 데 있다.It is another object of the present invention to provide a pharmaceutical composition and a method for treating or preventing cancer comprising the anti-c-Met antibody or antigen-binding fragment thereof and / or the bispecific antibody or antibody-drug conjugate. .
본 발명의 또 다른 목적은 상기 항-c-Met 항체 또는 이의 항원 결합 단편을 코딩하는 핵산, 상기 핵산을 포함하는 벡터 및 숙주세포, 이를 이용한 항-c-Met 항체 또는 이의 항원 결합 단편의 제조 방법을 제공하는 데 있다.Still another object of the present invention is a nucleic acid encoding the anti-c-Met antibody or antigen-binding fragment thereof, a vector and host cell comprising the nucleic acid, a method for producing an anti-c-Met antibody or antigen-binding fragment thereof using the same. To provide.
본 발명의 또 다른 목적은 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및 다른 암 치료제를 포함하는 암 치료용 병용 투여 조성물 및 치료 방법을 제공하는 데 있다.It is another object of the present invention to provide a combination dosage composition for treating cancer and a method of treatment comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
본 발명의 또 다른 목적은 암의 치료를 위한 상기 항체 또는 이의 항원 결합 단편 또는 상기 이중특이 항체 또는 상기 항체-약물 접합체의 용도를 제공하는 데 있다.Another object of the present invention is to provide the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the treatment of cancer.
본 발명의 또 다른 목적은 암 치료용 약제 제조를 위한 상기 항체 또는 이의 항원 결합 단편 또는 상기 이중특이 항체 또는 상기 항체-약물 접합체의 사용을 제공한다.Another object of the present invention is to provide the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the manufacture of a medicament for the treatment of cancer.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 또는 27의 아미노산 서열을 포함하는 중쇄(heavy chain) CDR1; 서열번호 2 및 28 내지 31로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR2; 서열번호 3, 32 및 33으로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR3를 포함하는 중쇄 가변영역; 및 서열번호 4, 34 및 35로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄(light chain) CDR1; 서열번호 5, 36 및 37로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR2; 서열번호 6, 38 및 39로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR3를 포함하는 경쇄 가변영역을 포함하는 항-c-Met 항체 또는 이의 항원 결합 단편을 제공한다.In order to achieve the above object, the present invention provides a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27; A heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31; A heavy chain variable region comprising a heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33; And a light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35; Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37; An anti-c-Met antibody or antigen-binding fragment thereof comprising a light chain variable region comprising a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39 is provided.
본 발명은 또한, 상기 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하는 이중특이 항체 또는 항체-약물 접합체를 제공한다.The present invention also provides a bispecific antibody or antibody-drug conjugate comprising said anti-c-Met antibody or antigen binding fragment thereof.
본 발명은 또한, 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및/또는 상기 이중특이 항체 또는 항체-약물 접합체를 포함하는 암의 예방 또는 치료용 약학 조성물 및 치료 방법을 제공한다.The present invention also provides pharmaceutical compositions and methods for the treatment or prevention of cancer comprising the anti-c-Met antibody or antigen-binding fragment thereof and / or the bispecific antibody or antibody-drug conjugate.
본 발명은 또한, 상기 항-c-Met 항체 또는 이의 항원 결합 단편을 코딩하는 핵산, 상기 핵산을 포함하는 벡터 및 숙주세포, 이를 이용한 항-c-Met 항체 또는 이의 항원 결합 단편의 제조 방법을 제공한다.The present invention also provides a nucleic acid encoding the anti-c-Met antibody or antigen-binding fragment thereof, a vector and host cell comprising the nucleic acid, a method for producing an anti-c-Met antibody or antigen-binding fragment thereof using the same. do.
본 발명은 또한, 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및 다른 암 치료제를 포함하는 암 치료용 병용 투여 조성물 및 치료 방법을 제공한다.The present invention also provides a combination dosage composition for treating cancer and a method of treatment comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
본 발명은 또한, 상기 항체 또는 이의 항원 결합 단편 또는 상기 이중특이 항체 또는 상기 항체-약물 접합체를 투여하는 것을 특징으로 하는 암의 치료방법을 제공한다.The present invention also provides a method for treating cancer, characterized in that the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate is administered.
본 발명은 또한, 암의 치료를 위한 상기 항체 또는 이의 항원 결합 단편 또는 상기 이중특이 항체 또는 상기 항체-약물 접합체의 용도 및 암 치료용 약제 제조를 위한 상기 항체 또는 이의 항원 결합 단편 또는 상기 이중특이 항체 또는 상기 항체-약물 접합체의 사용을 제공한다.The present invention also provides the use of the antibody or antigen-binding fragment thereof or the bispecific antibody or the antibody-drug conjugate for the treatment of cancer and the antibody or antigen-binding fragment thereof or the bispecific antibody for the manufacture of a medicament for the treatment of cancer. Or the use of such antibody-drug conjugates.
도 1은 모항체(1F12)의 중쇄 가변영역 서열 및 CDR/Framework 분류를 나타낸 것이다.1 shows the heavy chain variable region sequence and CDR / Framework classification of the parent antibody (1F12).
도 2는 모항체(1F12)의 경쇄 가변영역 서열 및 CDR/Framework 분류를 나타낸 것이다.2 shows the light chain variable region sequences and CDR / Framework classification of the parent antibody (1F12).
도 3은 항-c-Met 항체의 mutant library 디자인이다.3 is a mutant library design of anti-c-Met antibodies.
도 4는 항-c-Met 항체의 mutant library 구축을 위한 프라이머 서열을 나타낸 것이다.Figure 4 shows the primer sequence for constructing a mutant library of anti-c-Met antibody.
도 5는 항-c-Met 항체 affinity variants의 CDR 서열을 나타낸 것이다.5 shows the CDR sequences of anti-c-Met antibody affinity variants.
도 6은 항-c-Met 항체 affinity variants 16종의 agonist activity 분석 결과를 나타낸 것이다.Figure 6 shows the results of the agonist activity analysis of 16 anti-c-Met antibody affinity variants.
도 7은 항-c-Met 항체의 affinity 결과를 나타낸 것이다.Figure 7 shows affinity results of the anti-c-Met antibody.
도 8은 위암 세포주 성장억제 양상 분석 결과를 나타낸 것이다.Figure 8 shows the results of gastric cancer cell line growth inhibition pattern analysis.
도 9는 대장암 세포주에서 항-c-Met 항체 단독 및 면역치료제와의 병용 효능 분석 결과를 나타낸 것이다.Figure 9 shows the results of the combined efficacy analysis with anti-c-Met antibody alone and immunotherapy in colorectal cancer cell line.
도 10은 대장암 세포주에서 항-c-Met 항체와 방사선 치료와의 병용 효능을 분석한 결과를 나타낸 것이다.Figure 10 shows the results of analyzing the combined efficacy of anti-c-Met antibody and radiation therapy in colorectal cancer cell line.
도 11은 대장암 피하이식 동물모델에서 면역세포 분포에 대한 분석 결과를 나타낸 것이다.Figure 11 shows the results of analysis of immune cell distribution in colorectal cancer subcutaneous animal model.
도 12는 대장암 피하이식 동물모델에서 항-c-Met 항체 투여 후 종양세포에서의 PD-L1 발현 변화를 나타낸 것이다.12 shows the change of PD-L1 expression in tumor cells after administration of anti-c-Met antibody in colorectal cancer subcutaneous animal model.
발명의 상세한 설명 및 바람직한 구현예Detailed Description of the Invention and Preferred Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
항체 효능 향상을 위해 항체공학기술의 응용이 요구된다. 그 중 항원에 대한 항체의 친화도를 성숙 시키는 친화도 성숙(affinity maturation) 방법이 있다. Affinity maturation은 무작위 돌연변이를 항체 유전자에 도입하여 항원에 대한 항체의 결합친화성을 증가시키는 기술을 말하며, 효과적인 치료 및 진단용 항체 신약 개발에 매우 유용하게 사용될 수 있다. 시험관 내 affinity maturation을 위해, 일반적으로 3가지 접근 방법이 사용된다. 오류가 발생하기 쉬운 PCR, 퇴화된 올리고 뉴클레오타이드를 사용하는 표적 잔기의 랜덤화 및 사슬 셔플링(chain shuffling)을 포함한다. 표적 잔기로 선택할 수 있는 부분은 상보성 결정 영역(complementarity determining region, CDR)으로서, 특히 CDR-H3와 CDR-L3이 항체-항원 상호작용을 지배하는 경향이 있으므로 무작위화를 위한 논리적 표적이 된다. 표적이 되는 항체 유전자 CDR 부위에 있는 아미노산을 변화시킴으로써 항체의 결합친화성을 높이는 것이다. 이 방법을 통해 AKA(tumor-associated glycoprotein 72와 결합하는 인간화 항체)의 CDR-H3에 있는 아미노산을 변화시켜 결합친화성을 22배 증가시킨 보고가 있으며(Hong et al., J. Biol. Chem. 2006, 281, 6985-6992), Hepatitis B virus 항원에 대해 개발한 항체 또한 결합친화성을 6배까지 증가시킨 보고가 있다(Hong el al., J. Microbiol. 2007, 45, 528-533).Application of antibody engineering technology is required to improve antibody efficacy. Among them, there is an affinity maturation method for maturing the affinity of the antibody for the antigen. Affinity maturation refers to a technique for increasing the binding affinity of the antibody to the antigen by introducing a random mutation into the antibody gene, it can be very useful for the development of effective therapeutic and diagnostic antibody drugs. For in vitro affinity maturation, three approaches are commonly used. Error prone PCR, randomization of target residues using degraded oligonucleotides, and chain shuffling. The portion that can be selected as a target residue is the complementarity determining region (CDR), which in particular is a logical target for randomization since CDR-H3 and CDR-L3 tend to dominate antibody-antigen interactions. The binding affinity of an antibody is improved by changing the amino acid in the target antibody gene CDR region. This method has been reported to increase the binding affinity by 22 times by changing the amino acid in CDR-H3 of AKA (humanized antibody binding to tumor-associated glycoprotein 72) (Hong et al., J. Biol. Chem. 2006, 281, 6985-6992), antibodies developed against the Hepatitis B virus antigen also reported a 6-fold increase in binding affinity (Hong el al., J. Microbiol. 2007, 45, 528-533).
본 발명은 일 관점에서, c-Met에 특이적으로 결합하는 항-c-Met 항체 또는 이의 항원 결합 단편에 관한 것이다. 바람직하게는, 서열번호 1 또는 27의 아미노산 서열을 포함하는 중쇄(heavy chain) CDR1; 서열번호 2 및 28 내지 31로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR2; 서열번호 3, 32 및 33으로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR3를 포함하는 중쇄 가변영역; 및 서열번호 4, 34 및 35로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄(light chain) CDR1; 서열번호 5, 36 및 37로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR2; 서열번호 6, 38 및 39로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR3를 포함하는 경쇄 가변영역을 포함하는 항-c-Met 항체 또는 이의 항원 결합 단편에 관한 것이다.In one aspect, the present invention relates to an anti-c-Met antibody or antigen-binding fragment thereof that specifically binds to c-Met. Preferably, heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27; A heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31; A heavy chain variable region comprising a heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33; And a light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35; Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37; An anti-c-Met antibody or antigen-binding fragment thereof comprising a light chain variable region comprising a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39.
본 발명에 있어서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편은 서열번호 1 또는 27의 아미노산 서열을 포함하는 중쇄 CDR1; 서열번호 2 및 28 내지 31로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR2; 서열번호 3, 32 및 33으로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR3와 각각 80% 이상의 서열 상동성, 바람직하게는 90% 이상의 서열 상동성, 더욱 바람직하게는 99%의 서열 상동성을 가지는 서열을 포함하는 중쇄 가변영역을 포함하며, 본 발명에 따른 c-Met과 동일한 특성을 가지는 항체 또는 이의 항원 결합 단편도 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편의 권리범위에 포함된다.In the present invention, the anti-c-Met antibody or antigen-binding fragment thereof is a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27; A heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31; Heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33, each having at least 80% sequence homology, preferably at least 90% sequence homology, more preferably 99% sequence homology An antibody or antigen-binding fragment thereof comprising the heavy chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
또한, 서열번호 4, 34 및 35로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR1; 서열번호 5, 36 및 37로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR2; 서열번호 6, 38 및 39로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR3와 각각 80% 이상의 서열 상동성, 바람직하게는 90% 이상의 서열 상동성, 더욱 바람직하게는 99%의 서열 상동성을 가지는 서열을 포함하는 경쇄 가변영역을 포함하며, 본 발명에 따른 c-Met과 동일한 특성을 가지는 항체 또는 이의 항원 결합 단편도 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편의 권리범위에 포함된다.In addition, light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35; Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37; Each having at least 80% sequence homology, preferably at least 90% sequence homology, and more preferably 99% sequence homology with a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39 An antibody or antigen-binding fragment thereof comprising the light chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
본 발명에 있어서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편은 서열번호 40 및 42 내지 48로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 가변영역 및 서열번호 41 및 49 내지 54로 구성된 군에서 선택된 경쇄 가변영역을 포함하는 것을 특징으로 할 수 있다.In the present invention, the anti-c-Met antibody or antigen-binding fragment thereof is a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 40 and 42 to 48 and in the group consisting of SEQ ID NO: 41 and 49 to 54 It may be characterized by including the selected light chain variable region.
한편, 서열번호 40 및 42 내지 48로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 가변영역과 80% 이상의 서열 상동성, 바람직하게는 90% 이상의 서열 상동성, 더욱 바람직하게는 99%의 서열 상동성을 가지는 서열을 포함하며, 본 발명에 따른 c-Met과 동일한 특성을 가지는 항체 또는 이의 항원 결합 단편도 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편의 권리범위에 포함되며,Meanwhile, at least 80% sequence homology, preferably at least 90% sequence homology, and more preferably 99% sequence homology with a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 40 and 42 to 48 An antibody or antigen-binding fragment thereof comprising the sequence having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention.
서열번호 41 및 49 내지 54로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 가변영역과 80% 이상의 서열 상동성, 바람직하게는 90% 이상의 서열 상동성, 더욱 바람직하게는 99%의 서열 상동성을 가지는 서열을 포함하는 경쇄 가변영역을 포함하며, 본 발명에 따른 c-Met과 동일한 특성을 가지는 항체 또는 이의 항원 결합 단편도 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편의 권리범위에 포함된다.A light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 41 and 49 to 54 and having at least 80% sequence homology, preferably at least 90% sequence homology, more preferably 99% An antibody or antigen-binding fragment thereof comprising the light chain variable region comprising a sequence and having the same properties as c-Met according to the present invention is also included in the scope of the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. do.
또한, 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편에는 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편에서, 보존적 치환을 통해 아미노산 서열의 일부가 치환된 항체 또는 이의 항원 결합 단편도 포함된다.In addition, the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention, the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention, an antibody or a portion thereof in which a part of the amino acid sequence is substituted through conservative substitution Antigen binding fragments are also included.
본 명세서에서 “보존적 치환”이란 1개 이상의 아미노산을 해당 폴리펩티드의 생물학적 또는 생화학적 기능의 손실을 야기하지 않는 유사한 생화학적 특성을 갖는 아미노산으로 치환하는 것을 포함하는 폴리펩티드의 변형을 의미한다. “보존적 아미노산 치환”은 아미노산 잔기를 유사한 측쇄를 갖는 아미노산 잔기로 대체시키는 치환이다. 유사한 측쇄를 갖는 아미노산 잔기 부류는 해당 기술분야에 규정되어 있으며, 잘 알려져 있다. 이들 부류는 염기성 측쇄를 갖는 아미노산(예를 들어, 라이신, 아르기닌, 히스티딘), 산성 측쇄를 갖는 아미노산(예를 들어, 아스파르트산, 글루탐산), 대전되지 않은 극성 측쇄를 갖는 아미노산(예를 들어, 글리신, 아스파라진, 글루타민, 세린, 트레오닌, 티로신, 시스테인), 비-극성 측쇄를 갖는 아미노산(예를 들어, 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 메티오닌, 트립토판), 베타-분지된 측쇄를 갖는 아미노산(예를 들어, 트레오닌, 발린, 이소류신) 및 방향족 측쇄를 갖는 아미노산(예를 들어, 티로신, 페닐알라닌, 트립토판, 히스티딘)을 포함한다. 본 발명의 항체가 보존적 아미노산 치환을 갖고 여전히 활성을 보유할 수 있음이 예상된다.As used herein, “conservative substitutions” refers to modifications of a polypeptide comprising replacing one or more amino acids with amino acids having similar biochemical properties that do not cause loss of the biological or biochemical function of the polypeptide. A “conservative amino acid substitution” is a substitution that replaces an amino acid residue with an amino acid residue having a similar side chain. A class of amino acid residues with similar side chains is defined in the art and is well known. These classes include amino acids with basic side chains (eg lysine, arginine, histidine), amino acids with acidic side chains (eg aspartic acid, glutamic acid), amino acids with uncharged polar side chains (eg glycine , Asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains Amino acids (eg threonine, valine, isoleucine) and amino acids having aromatic side chains (eg tyrosine, phenylalanine, tryptophan, histidine). It is anticipated that the antibodies of the invention may have conservative amino acid substitutions and still retain activity.
본 명세서에서 용어 “c-Met 특이적 항체”는 c-Met에 결합하여 c-Met의 생물학적 활성의 억제를 초래하는 항체를 의미하며, “항-c-Met 항체”와 혼용되어 사용된다.As used herein, the term “c-Met specific antibody” refers to an antibody that binds to c-Met resulting in inhibition of the biological activity of c-Met, and is used interchangeably with “anti-c-Met antibody”.
본 발명에 있어서, “항-c-Met 항체”는 다클론 항체(polyclonal antibody) 및 단클론 항체(단일클론 항체, monoclonal antibody)를 모두 포함하는 개념으로, 바람직하게는 단클론 항체이며, 온전한 전체 항체(whole antibody) 형태를 가질 수 있다. 전체 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조로서, 불변영역을 포함하는 구조이며, 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다.In the present invention, the "anti-c-Met antibody" is a concept including both a polyclonal antibody and a monoclonal antibody (monoclonal antibody, monoclonal antibody), preferably a monoclonal antibody, intact whole antibody ( whole antibody). The whole antibody is a structure having two full-length light chains and two full-length heavy chains, and includes a constant region, and each light chain is connected by heavy and disulfide bonds.
본 발명에 따른 항-c-Met 항체의 전체 항체는 IgA, IgD, IgE, IgM 및 IgG 형태를 포함하는 개념으로, IgG는 아형(subtype)으로, IgG1, IgG2, IgG3 및 IgG4를 포함한다.The total antibody of the anti-c-Met antibody according to the present invention includes the IgA, IgD, IgE, IgM and IgG forms, wherein IgG is a subtype and includes IgG1, IgG2, IgG3 and IgG4.
본 발명에 따른 항-c-Met 항체는 인간 항체 라이브러리(human antibody library)로부터 선별된 완전 인간 항체(fully human antibody)인 것이 바람직하지만, 이에 한정되는 것은 아니다.The anti-c-Met antibody according to the invention is preferably, but not limited to, a fully human antibody selected from a human antibody library.
본 발명에 따른 항-c-Met 항체의 “항원 결합 단편”은 항-c-Met 항체의 항원, 즉 c-Met과 결합할 수 있는 기능을 보유하고 있는 단편을 의미하며, Fab, Fab', F(ab')2, scFv (scFv)2, scFv-Fc, 및 Fv 등을 포함하는 개념으로, 본 명세서에서는“항체 단편”과 동일한 의미로 혼용되어 사용된다.“Antigen binding fragment” of an anti-c-Met antibody according to the present invention means a fragment having the function of binding to the antigen of the anti-c-Met antibody, ie c-Met, Fab, Fab ', As a concept including F (ab ') 2 , scFv (scFv) 2 , scFv-Fc, Fv, and the like, the term “antibody fragment” is used interchangeably herein.
상기 Fab은 경쇄 및 중쇄의 가변영역과 경쇄의 불변영역 및 중쇄의 첫 번째 불변영역(CH1 도메인)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C 말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab과 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다.The Fab has one antigen binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain, and a first constant region of the heavy chain (CH1 domain). Fab 'differs from Fab in that it has a hinge region comprising at least one cysteine residue at the C terminus of the heavy chain CH1 domain. F (ab ') 2 antibody Fab' is a cysteine residue of the hinge region is generated yirumyeonseo a disulfide bond.
상기 Fv(variable fragment)는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각을 의미한다. 이중쇄 Fv(dsFv)는 디설파이드 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고, 단쇄 Fv(scFv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변영역과 경쇄의 가변영역이 공유 결합으로 연결되어 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고, 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 유전자 재조합 기술(예를 들어, 항체의 중쇄 또는 이의 가변영역을 코딩하는 DNA 및 경쇄 또는 이의 가변 영역을 코딩하는 DNA를 주형으로 하고, 프라이머쌍을 이용하여 PCR(Polymerase Chain Reaction)법에 의해 증폭시키고, 펩티드 링커를 코딩하는 DNA와 양 말단이 각각 중쇄 또는 이의 가변영역 및 경쇄 또는 이의 가변영역과 연결되도록 하는 프라이머쌍을 조합하여 증폭)을 통하여 제작할 수 있다.The variable fragment (Fv) refers to a minimum antibody fragment having only a heavy chain variable region and a light chain variable region. Double-chain Fv (dsFv) is a disulfide bond, which is linked to a heavy chain variable region and a light chain variable region, and short-chain Fv (scFv) is generally covalently linked to a heavy chain variable region and a light chain variable region through a peptide linker. . Such antibody fragments can be obtained using proteolytic enzymes (e.g., restriction digestion of the entire antibody with papain yields Fab, cleavage with pepsin yields F (ab ') 2 fragments), Genetic recombination techniques (e.g., DNA encoding the heavy chain or variable region thereof and DNA encoding the light chain or variable region thereof as a template, and amplified by PCR (Polymerase Chain Reaction) method using primer pairs , Amplification by combining a DNA linking a peptide linker and a primer pair such that both ends are linked to a heavy chain or a variable region and a light chain or a variable region, respectively.
본 명세서에서, 용어“중쇄”는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VH 및 3 개의 불변영역 도메인 CH1, CH2 및 CH3를 포함하는 전체길이 중쇄 및 이의 단편을 모두 의미한다. 또한 본 명세서에서 용어“경쇄”는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VL 및 불변영역 도메인 CL을 포함하는 전체길이 경쇄 및 이의 단편을 모두 의미한다.As used herein, the term “heavy chain” refers to a variable length domain VH comprising an amino acid sequence having sufficient variable region sequence to confer specificity to an antigen and a full length heavy chain comprising three constant region domains CH1, CH2 and CH3 It means all fragments. The term “light chain” herein also refers to both the full-length light chain and fragment thereof including the variable region domain VL and the constant region domain CL, including the amino acid sequence having sufficient variable region sequence to confer specificity to the antigen.
본 명세서에서, 용어 “상보성 결정 영역(complementarity determining region, CDR)”은 면역글로블린 중쇄 및 경쇄의 고가변 영역(hypervariable region)의 아미노산 서열을 의미한다(Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., U.S. Department of Health and Human Services, National Institutes of Health (1987)). 중쇄(CDRH1, CDRH2 및 CDRH3) 및 경쇄(CDRL1, CDRL2 및 CDRL3)에는 각각 3개의 CDRs이 포함되어 있다. CDR은 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공한다.As used herein, the term “complementarity determining region (CDR)” refers to the amino acid sequences of the hypervariable regions of immunoglobulin heavy and light chains (Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., US Department of Health and Human Services, National Institutes of Health (1987)). The heavy chains (CDRH1, CDRH2 and CDRH3) and light chains (CDRL1, CDRL2 and CDRL3) each contain three CDRs. CDRs provide key contact residues for the antibody to bind antigen or epitope.
본 발명에 있어서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편은 인간 c-Met에 대하여 특이적 결합능을 갖는 것을 특징으로 할 수 있다. 바람직하게는, 인간 c-Met 및 마우스 c-Met에 대하여 교차결합능을 갖는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the anti-c-Met antibody or antigen-binding fragment thereof may be characterized by having a specific binding capacity to human c-Met. Preferably, it may be characterized by having cross-linking ability with respect to human c-Met and mouse c-Met, but is not limited thereto.
본 발명은 다른 관점에서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편에 약물이 접합된 항체-약물 접합체(Antibody-drug conjugate, ADC)에 관한 것이다.In another aspect, the present invention relates to an antibody-drug conjugate (ADC) in which a drug is conjugated to the anti-c-Met antibody or an antigen-binding fragment thereof.
항체-약물 접합체(Antibody-drug conjugate, ADC)는 타겟 암세포로 항암 약물을 전달하기 전까지 항암 약물이 항체에 안정적으로 결합되어 있어야 한다. 타겟으로 전달된 약물은 항체로부터 유리되어 타겟 세포의 사멸을 유도해야 한다. 이를 위해서는 약물이 항체에 안정적으로 결합함과 동시에 타겟 세포에서 유리될 때는 타겟 세포의 사멸을 유도할 충분한 세포독성을 가져야 한다.Antibody-drug conjugates (ADCs) require the anticancer drug to be stably bound to the antibody until the anticancer drug is delivered to the target cancer cell. Drug delivered to the target must be released from the antibody to induce killing of the target cell. This requires that the drug binds to the antibody stably and at the same time has sufficient cytotoxicity to induce the death of the target cell when released from the target cell.
본 발명에 있어서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편과 항암제 등 약물을 포함하는 세포독성물질은 서로 결합(예컨대, 공유결합, 펩타이드 결합 등에 의함)되어 접합체(conjugate) 또는 융합 단백질(세포독성물질 및/또는 표지물질이 단백질인 경우)의 형태로 사용될 수 있다. 상기 세포독성물질은 암세포, 특히 고형암세포에 대하여 독성을 갖는 모든 물질일 수 있으며, 방사선동위원소, 세포 독소 화합물(small molecule), 세포 독성 단백질, 항암제 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 세포 독소 단백질은 리신(ricin), 사포린(saporin), 젤로닌(gelonin), 모로딘(momordin), 데보가닌 (debouganin), 디프테리아독소, 녹농균독소(pseudomonas toxin) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 방사선동위원소로는 131I, 188Rh, 90Y 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 세포 독소 화합물은 듀오카마이신(duocarmycin), 모노메틸 아우리스타틴 E(monomethyl auristatin E; MMAE), 모노메틸 아우리스타틴 F(monomethyl auristatin F; MMAF), N2'-디아세틸-N2'-(3-머캅토-1-옥소프로필)메이탄신(N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)maytansine; DM1), PBD(Pyrrolobenzodiazepine) dimer 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the cytotoxic substances including drugs such as the anti-c-Met antibody or antigen-binding fragment thereof and an anticancer agent are bound to each other (eg, by covalent bonds, peptide bonds, etc.) to conjugate or fusion proteins ( In the form of cytotoxic substances and / or markers). The cytotoxic substance may be any substance that is toxic to cancer cells, particularly solid cancer cells, and may be one or more selected from the group consisting of radioisotopes, cytotoxic compounds, cytotoxic proteins, anticancer agents, and the like. It is not limited to this. The cytotoxin protein is selected from the group consisting of lysine (ricin), saporin (saporin), gelonin (gelonin), momordin (momordin), deboganin (debouganin), diphtheria toxin, pseudomonas toxin, etc. It may be one or more, but is not limited thereto. The radioisotope may be at least one selected from the group consisting of 131I, 188Rh, 90Y, and the like, but is not limited thereto. The cytotoxin compound is duocarmycin, monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), N2'-diacetyl-N2 '-( 3-mercapto-1-oxopropyl) maytansine (N2'-deacetyl-N2 '-(3-mercapto-1-oxopropyl) maytansine; DM1), PBD (Pyrrolobenzodiazepine) dimer, and the like. However, it is not limited thereto.
본 발명에 있어서, 상기 항체-약물 접합체는 본 발명이 속하는 기술분야에 잘 알려진 기술에 따른 것일 수 있다.In the present invention, the antibody-drug conjugate may be according to techniques well known in the art.
본 발명에 있어서, 상기 항체-약물 접합체는 상기 항체 또는 이의 항원 결합 단편이 링커를 통하여 약물과 결합되는 것을 특징으로 할 수 있다.In the present invention, the antibody-drug conjugate may be characterized in that the antibody or antigen-binding fragment thereof is bound to the drug through a linker.
본 발명에 있어서, 상기 링커는 절단성 링커 또는 비절단성 링커인 것을 특징으로 할 수 있다.In the present invention, the linker may be a cleavable linker or a non-cleavable linker.
상기 링커는 항-c-Met 항체와 약물 사이를 연결하는 부위로, 예를 들어 상기 링커는 세포 내 조건에서 절단 가능한 형태 즉, 세포 내 환경에서 항체에서 약물이 링커의 절단을 통해 방출될 수 있도록 한다.The linker is a linking site between the anti-c-Met antibody and the drug, for example the linker is in a form that is cleavable under intracellular conditions, i.e. the drug is released from the antibody through cleavage of the linker in the intracellular environment. do.
상기 링커는 세포 내 환경 예를 들어 리소좀 또는 엔도좀에 존재하는 절단제에 의해 절단될 수 있으며, 세포 내 펩티다아제 또는 프로테아제 효소 예를 들어 리소좀 또는 엔도좀 프로테아제에 의해 절단될 수 있는 펩타이드 링커일 수 있다. 일반적으로 펩타이드 링커는 적어도 2개 이상의 아미노산 길이를 가진다. 상기 절단제는 카텝신 B 및 카텝신 D, 플라스민을 포함할 수 있으며, 펩타이드를 가수분해 하여 약물을 표적 세포 내로 방출할 수 있도록 한다. 상기 펩타이드 링커는 티올 의존성 프로테아제 카텝신-B에 의해 절단될 수 있고, 이는 암 조직에서 고발현되며, 예를 들어 Phe-Leu 또는 Gly-Phe-Leu-Gly 링커가 사용될 수 있다. 또한, 상기 펩타이드 링커는 예를 들어 세포 내 프로테아제에 의해 절단될 수 있는 것으로, Val-Cit 링커이거나 Phe-Lys 링커일 수 있다.The linker may be cleaved by a cleavage agent present in an intracellular environment such as a lysosomal or endosome, and may be a peptide linker that may be cleaved by an intracellular peptidase or protease enzyme such as a lysosomal or endosomal protease. . Peptide linkers generally have at least two amino acids in length. The cleavage agent may include cathepsin B and cathepsin D, plasmin, and may hydrolyze the peptide to release the drug into target cells. The peptide linker may be cleaved by thiol dependent protease cathepsin-B, which is highly expressed in cancer tissue, for example Phe-Leu or Gly-Phe-Leu-Gly linkers can be used. In addition, the peptide linker may be cleaved by, for example, an intracellular protease, and may be a Val-Cit linker or a Phe-Lys linker.
본 발명에 있어서, 상기 절단성 링커는 pH 민감성으로, 특정 pH 값에서 가수분해에 민감할 수 있다. 일반적으로, pH 민감성 링커는 산성 조건에서 가수분해될 수 있음을 나타낸다. 예를 들어, 리소좀에서 가수분해될 수 있는 산성 불안정 링커 예를 들어, 하이드라존, 세미카바존, 티오세미카바존, 시스-아코니틱 아마이드(cis-aconitic amide), 오르쏘에스테르, 아세탈, 케탈 등일 수 있다.In the present invention, the cleavable linker is pH sensitive, and may be sensitive to hydrolysis at a specific pH value. In general, it is shown that pH sensitive linkers can be hydrolyzed under acidic conditions. For example, acid labile linkers that can be hydrolyzed in lysosomes such as hydrazones, semicarbazones, thiosemicarbazones, cis-aconitic amides, orthoesters, acetals, Ketal and the like.
상기 링커는 환원 조건에서 절단될 수도 있으며, 예를 들어 이황화 링커가 이에 해당할 수 있다. SATA(N-succinimidyl-S-acetylthioacetate), SPDP(N-succinimidyl-3-(2-pyridyldithio)propionate), SPDB(N-succinimidyl-3-(2-pyridyldithio)butyrate) 및 SMPT(N-succinimidyl-oxycarbonyl-alpha-methyl-alpha-(2-pyridyl-dithio)toluene)를 사용하여 다양한 이황화 결합이 형성될 수 있다.The linker may be cleaved under reducing conditions, for example disulfide linkers. N-succinimidyl-S-acetylthioacetate (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SPDP), N-succinimidyl-3- (2-pyridyldithio) butyrate (SPDB), and N-succinimidyl-oxycarbonyl SMPT Various alpha disulfide bonds can be formed using -alpha-methyl-alpha- (2-pyridyl-dithio) toluene).
본 발명에 있어서, 상기 약물 및/또는 약물-링커는 항체의 라이신을 통해 무작위로 접합되거나, 이황화 결합 사슬을 환원하였을 때 노출되는 시스테인을 통해 접합될 수 있다. 경우에 따라서, 유전공학적으로 제작된 태그 예를 들어, 펩타이드 또는 단백질에 존재하는 시스테인을 통해 링커-약물이 결합될 수 있다. 상기 유전공학적으로 제작된 태그 예를 들어, 펩타이드 또는 단백질은 예를 들어, 이소프레노이드 트랜스퍼라제에 의하여 인식될 수 있는 아미노산 모티프를 포함할 수 있다. 상기 펩타이드 또는 단백질은 펩타이드 또는 단백질의 카복시 말단에서 결실(deletion)을 가지거나, 펩타이드 또는 단백질의 카복시(C) 말단에 스페이서 유닛의 공유결합을 통한 부가를 갖는다. 상기 펩타이드 또는 단백질은 아미노산 모티프와 바로 공유결합 되거나, 스페이서 유닛과 공유결합 되어 아미노산 모티프와 연결될 수 있다. 상기 아미노산 스페이서 유닛은 1 내지 20개의 아미노산으로 구성되며, 그 중에서 글리신(glycine) 유닛이 바람직하다.In the present invention, the drug and / or drug-linker may be conjugated randomly through lysine of the antibody or through cysteine which is exposed when the disulfide bond chain is reduced. In some cases, the linker-drug may be bound via a genetically engineered tag, such as cysteine present in a peptide or protein. The genetically engineered tag, eg, peptide or protein, may comprise an amino acid motif that can be recognized by, for example, an isoprenoid transferase. The peptide or protein has a deletion at the carboxy terminus of the peptide or protein, or has an addition via covalent attachment of a spacer unit to the carboxy (C) terminus of the peptide or protein. The peptide or protein may be directly covalently linked to an amino acid motif or covalently linked to a spacer unit to be linked to an amino acid motif. The amino acid spacer unit is composed of 1 to 20 amino acids, of which a glycine unit is preferable.
상기 링커는 리소좀에서 다수 존재하거나, 또는 몇몇 종양세포에서 과발현되는 베타-글루쿠로니데이즈(β-glucuronidase)에 의해 인식되어 가수분해 되는 베타-글루쿠로나이드 링커를 포함할 수 있다. 펩타이드 링커와는 달리 친수성(hydrophilicity)이 커서 소수성의 성질이 높은 약물과 결합시 항체-약물 복합체의 용해도를 증가시킬 수 있는 장점을 지닌다.The linker may comprise a beta-glucuronide linker which is present in a large number in lysosomes or is hydrolyzed by beta-glucuronidase which is overexpressed in some tumor cells. Unlike the peptide linker, the hydrophilicity is high, and when combined with drugs having high hydrophobic properties, the solubility of the antibody-drug complex can be increased.
이와 관련하여, 본 발명에서는 대한민국 특허공개공보 제2015-0137015호에 개시된 베타-글루쿠로나이드 링커, 예를 들어 자가-희생기(self-immolative group)를 포함하는 베타-글루쿠로나이드 링커를 사용할 수 있다.In this regard, the present invention relates to a beta-glucuronide linker disclosed in Korean Patent Publication No. 2015-0137015, for example, a beta-glucuronide linker comprising a self-immolative group. Can be used.
또한, 상기 링커는 예를 들어 비절단성 링커일 수 있으며, 항체 가수분해 한 단계만을 통해 약물이 방출되어, 예를 들어 아미노산-링커-약물 복합체를 생산한다. 이러한 유형의 링커는 티오에테르기 또는 말레이미도카프로일기(maleimidocaproyl)일 수 있고, 혈액 내 안정성을 유지할 수 있다.In addition, the linker may be, for example, a non-cleavable linker, and the drug is released through only one step of antibody hydrolysis to produce, for example, an amino acid-linker-drug complex. This type of linker may be a thioether group or maleimidocaproyl, and may maintain stability in blood.
본 발명에 있어서, 상기 약물은 화학요법제, 독소, 마이크로 RNA(miRNA), siRNA, shRNA 또는 방사성 동위원소인 것을 특징으로 할 수 있다. 상기 약물은 약리학적 효과를 나타내는 제제로 항체에 결합될 수 있다.In the present invention, the drug may be characterized as a chemotherapeutic agent, toxin, micro RNA (miRNA), siRNA, shRNA or radioisotope. The drug may be bound to the antibody with an agent that exhibits a pharmacological effect.
상기 화학요법제는 세포독성 제제 또는 면역억제제일 수 있다. 구체적으로 마이크로투불린 억제제, 유사분열 억제제, 토포이소머라아제 억제제, 또는 DNA 인터컬레이터로서 기능할 수 있는 화학요법제를 포함할 수 있다. 또한, 면역조절 화합물, 항암제, 항바이러스제, 항박테리아제, 항진균제, 구충제 또는 이들의 조합을 포함할 수 있다.The chemotherapeutic agent may be a cytotoxic agent or an immunosuppressant. Specifically, it may include a microtubulin inhibitor, a mitosis inhibitor, a topoisomerase inhibitor, or a chemotherapeutic agent that can function as a DNA intercalator. It may also include immunomodulatory compounds, anticancer agents, antiviral agents, antibacterial agents, antifungal agents, antiparasitic agents or combinations thereof.
상기 약물에는 예를 들어, 마이탄시노이드, 오리스타틴, 아미노프테린, 악티노마이신, 블레오마이신, 탈리도마이드, 캄프토쎄신, N8-아세틸 스퍼미딘, 1-(2 클로로에틸)-1,2-다이메틸 술포닐 하이드라자이드, 에스퍼라마이신, 에토포사이드, 6-머캅토퓨린, 돌라스타틴, 트리코테센, 칼리케아미신, 탁솔(taxol), 탁산, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 메토트렉세이트, 빈크리스틴, 빈블라스틴, 독소루비신, 멜팔란, 클로람부실, 듀오카마이신, L-아스파라기나제(L-asparaginase), 머캡토퓨린(mercaptopurine), 티오구아닌(thioguanine), 하이드록시우레아(hydroxyurea), 시타라빈(cytarabine), 사이클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 니트로소우레아(nitrosourea), 시스플라틴(cisplatin), 카보플라틴(carboplatin), 미토마이신(mitomycin; 미토마이신 A, 미토마이신 C), 다카바진(dacarbazine), 프로카바진(procarbazine), 토포테칸(topotecan), 질소 머스터드(nitrogen mustard), 사이톡산(cytoxan), 5-플루오로우라실(5-fluorouracil), CNU(bischloroethylnitrosourea), 이리노테칸(irinotecan), 캄포토테신(camptothecin), 이다루비신(idarubicin), 다우노루비신(daunorubicin), 닥티노마이신(dactinomycin), 플리카마이신(plicamycin), 아스파라기나제(asparaginase), 비노렐빈(vinorelbine), 클로로람부실(chlorambucil), 멜파란(melphalan), 카르무스틴(carmustine), 로무스틴(lomustine), 부설판(busuLfan), 트레오설판(treosulfan), 데카바진(decarbazine), 테니포시드(teniposide), 토포테칸(topotecan), 9-아미노캠프토테신(9-aminocamptothecin), 크리스나톨(crisnatol), 트리메트렉세이트(trimetrexate), 마이코페놀산(mycophenolic acid), 티아조퓨린(tiazofurin), 리바비린(ribavirin), EICAR(5-ethynyl-1-beta-Dribofuranosylimidazole-4-carboxamide), 하이드록시우레아(hydroxyurea), 데프록사민(deferoxamine), 플룩수리딘(floxuridine), 독시플루리딘(doxifluridine), 랄티트렉세드(raltitrexed), 시타라빈(cytarabine(ara C)), 시토신 아라비노시드(cytosine arabinoside), 플루다라빈(fludarabine), 타목시펜(tamoxifen), 라록시펜(raloxifene), 메게스트롤(megestrol), 고세렐린(goserelin), 류프롤리드 아세테이트(leuprolide acetate), 플루타미드(flutamide), 바이칼루타마이드(bicalutamide), EB1089, CB1093, KH1060, 베르테포르핀(verteporfin), 프탈로시아닌(phthalocyanine), 광감작제 Pe4(photosensitizer Pe4), 데메톡시-하이포크레린 A(demethoxy-hypocrellin A), 인터페론-α(Interferon-α), 인터페론-γ(Interferon-γ), 종양 괴사 인자(tumor necrosis factor), 젬시타빈(Gemcitabine), 벨케이드(velcade),레블리미드(Revlimid), 로바스타틴(lovastatin), 1-메틸-4-페닐피리디늄 이온(1-methyl-4-phenylpyridiniumion), 스타우로스포린(staurosporine), 악티노마이신 D(actinomycin D), 닥티노마이신(dactinomycin), 블레오마이신 A2(bleomycin A2), 블레오마이신 B2(bleomycinB2), 페플로마이신(peplomycin), 에피루비신(epirubicin), 피라루비신(pirarubicin), 조루비신(zorubicin), 마이토산트론(mitoxantrone), 베라파밀(verapamil) 및 탑시가르긴(thapsigargin), 핵산 분해 효소 및 세균이나 동식물 유래의 독소로 구성된 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.Such drugs include, for example, maytansinoids, orstatin, aminopterin, actinomycin, bleomycin, thalidomide, camptocecin, N8-acetyl spermidine, 1- (2 chloroethyl) -1,2- Dimethyl sulfonyl hydrazide, esperamycin, etoposide, 6-mercaptopurine, dolastatin, tricortesene, calicheamicin, taxol, taxanes, paclitaxel, docetaxel, methotrexate, Vincristine, vinblastine, doxorubicin, melphalan, chlorambucil, duocarmycin, L-asparaginase, mercaptopurine, thioguanine, hydroxyurea Cytarabine, cyclophosphamide, ifosfamide, nitrosourea, cisplatin, carboplatin, mitomycin; mitomycin; mitomycin A, Mitomycin C), Dhaka Dacarbazine, procarbazine, topotecan, topotecan, nitrogen mustard, cytoxan, 5-fluorouracil, CNU (bischloroethylnitrosourea), irinotecan ), Camptothecin, idarubicin, daunorubicin, dactinomycin, plicamycin, asparaginase, vinorelbine, Chlorambucil, melphalan, carmustine, lomustine, busuLfan, treosulfan, decarbazine, teniposide , Topotecan, 9-aminocamptothecin, 9-aminocamptothecin, crisnatol, trimmetrexate, mycophenolic acid, tiazofurin, ribavirin ( ribavirin), EICAR (5-ethynyl-1-beta-Dribofuranosylimidazole-4-carboxamide), hydroxyurea Hydroxyurea, deferoxamine, floxuridine, doxifluridine, raltitrexed, cytarabine (ara C), cytosine arabinoside (cytosine) arabinoside, fludarabine, tamoxifen, tamoxifen, raloxifene, megestrol, goserelin, leuprolide acetate, flutamide , Bicalutamide, EB1089, CB1093, KH1060, verteporfin, phthalocyanine, photosensitizer Pe4, demethoxy-hypocrellin A, deferon-hypocrellin A Interferon-α, Interferon-γ, tumor necrosis factor, gemcitabine, velcade, Revlimid, lovastatin, 1 -Methyl-4-phenylpyridinium ion (1-methyl-4-phenylpyridiniumion), staurosporine , Actinomycin D, dactinomycin, bleomycin A2, bleomycin B2, bleomycin B2, peplomycin, epirubicin, pyrubicin pirarubicin, zorubicin, mitosantron, mitoxantrone, verapamil and thapsigargin, nucleic acid degrading enzymes and toxins derived from bacteria or plants, but not limited thereto. It doesn't happen.
본 발명에 있어서, 상기 약물은 링커 및 링커 시약 상의 친전자성 기와 공유결합을 형성하기 위해 반응할 수 있는 아민, 티올, 히드록실, 히드라지드, 옥심, 히드라진, 티오세미카바존, 히드라진 카르복실레이트, 및 아릴히드라지드기로 구성된 군에서 선택된 하나 이상의 친핵기를 포함할 수 있다.In the present invention, the drug is an amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate which can react to form covalent bonds with electrophilic groups on linkers and linker reagents. And one or more nucleophilic groups selected from the group consisting of arylhydrazide groups.
본 발명은 또 다른 관점에서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하는 이중특이 항체(Bispecific antibody)에 관한 것이다.In another aspect, the present invention relates to a bispecific antibody comprising the anti-c-Met antibody or antigen-binding fragment thereof.
본 발명에 있어서, 상기 이중특이 항체는 항체의 2개의 암(arm) 중에서, 하나의 암(arm)은 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하고, 나머지 다른 암(arm)은 c-Met 이외의 다른 항원, 바람직하게는 암 관련 항원 또는 면역관문 단백질 항원에 특이적인 항체, 또는 면역효능세포 관련 항원에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편을 포함하는 형태를 의미한다.In the present invention, the bispecific antibody is one of two arms of the antibody, one arm comprises an anti-c-Met antibody or antigen-binding fragment thereof according to the invention, and the other cancer ( arm) comprises a form comprising an antibody specific for an antigen other than c-Met, preferably an cancer-associated antigen or an immune gateway protein antigen, or an antibody or antigen-binding fragment thereof that specifically binds to an immune cell-associated antigen. it means.
상기 이중항체에 포함되는 항-c-Met 항체 이외의 항체가 결합하는 항원은, 바람직하게는 암 관련 항원 또는 면역관문 단백질 항원으로 HGF, EGFR, EGFRvIII, Her2, Her3, IGF-1R, VEGF, VEGFR-1, VEGFR-2, VEGFR-3, Ang2, Dll4, NRP1, FGFR, FGFR2, FGFR3, c-Kit, MUC1, MUC16, CD20, CD22, CD27, CD30, CD33, CD40, CD52, CD70, CD79, DDL3, Folate R1, Nectin 4, Trop2, gpNMB, Axl, BCMA, PD-1, PD-L1, PD-L2, CTLA4, BTLA, 4-1BB, ICOS, GITR, OX40, VISTA, TIM-3, LAG-3, KIR, B7.1, B7.2, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, EphA2, EphA4, EphB2, E-셀렉틴(selectin), EpCam, CEA, PSMA, PSA, c-MET 등에서 선택될 수 있고, 면역효능세포 관련 항원으로는 TCR/CD3, CD16(FcγRIIIa) CD44, CD56, CD69, CD64(FcγRI), CD89, CD11b/CD18(CR3) 등이 선택될 수 있지만, 이에 한정되는 것은 아니다.The antigen to which the antibody other than the anti-c-Met antibody included in the double antibody binds is preferably a cancer-associated antigen or an immune gateway protein antigen, HGF, EGFR, EGFRvIII, Her2, Her3, IGF-1R, VEGF, VEGFR. -1, VEGFR-2, VEGFR-3, Ang2, Dll4, NRP1, FGFR, FGFR2, FGFR3, c-Kit, MUC1, MUC16, CD20, CD22, CD27, CD30, CD33, CD40, CD52, CD70, CD79, DDL3 , Folate R1, Nectin 4, Trop2, gpNMB, Axl, BCMA, PD-1, PD-L1, PD-L2, CTLA4, BTLA, 4-1BB, ICOS, GITR, OX40, VISTA, TIM-3, LAG-3 , KIR, B7.1, B7.2, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, EphA2, EphA4, EphB2, E-selectin, EpCam, CEA, PSMA, PSA, c-MET, and the like, and TCR / CD3, CD16 (FcγRIIIa) CD44, CD56, CD69, CD64 (FcγRI), CD89, CD11b / CD18 (CR3), and the like, may be selected as antigens related to immune cells. However, the present invention is not limited thereto.
본 발명은 또 다른 관점에서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하는 암의 예방 및/또는 치료용 약학 조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for preventing and / or treating cancer comprising the anti-c-Met antibody or antigen-binding fragment thereof.
본 발명은 또 다른 관점에서, 상기 이중특이 항체 또는 항체-약물 접합체를 포함하는 암의 예방 및/또는 치료용 약학 조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for preventing and / or treating cancer comprising the bispecific antibody or antibody-drug conjugate.
본 발명에 있어서, 상기 암은 c-Met의 발현 또는 과발현과 관련된 것일 수 있다.In the present invention, the cancer may be related to the expression or overexpression of c-Met.
본 발명에 있어서, “암”과 “종양”은 동일한 의미로 사용되며, 전형적으로 조절되지 않은 세포 성장/증식을 특징으로 하는 포유동물의 생리학적 상태를 지칭하거나 의미한다.In the present invention, "cancer" and "tumor" are used in the same sense and refer to or mean the physiological state of a mammal, which is typically characterized by unregulated cell growth / proliferation.
본 발명에 있어서, 상기 항-c-Met 항체는 높은 항-c-Met 결합 및 이에 따른 c-Met 기능 억제로 인해 다양한 암종 유래의 암세포의 성장을 억제하며, c-Met과 하부 신호 전달물질들의 인산화를 억제함으로써 c-Met 신호전달을 억제하고, 신생혈관 형성을 억제한다. 따라서, 본 발명의 항체는 암의 예방 및 치료에 매우 유효하다.In the present invention, the anti-c-Met antibody inhibits the growth of cancer cells derived from various carcinomas due to high anti-c-Met binding and thus suppression of c-Met function, and the Inhibition of phosphorylation inhibits c-Met signaling and inhibits neovascularization. Therefore, the antibodies of the present invention are very effective for the prevention and treatment of cancer.
본 발명의 조성물로 치료할 수 있는 암 또는 암종은 특별히 제한되지 않으며, 고형암 및 혈액암을 모두 포함한다. 이러한 암의 예로는 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 및 골수암을 포함할 수 있으나, 이에 한정되는 것은 아니다. 상기 암은 원발성 암 또는 전이성 암일 수 있다. 보다 바람직하게는, 상기 약학 조성물에 의해 예방 또는 치료될 수 있는 암은 c-Met 발현 암인 것을 특징으로 할 수 있다.The cancer or carcinoma that can be treated with the composition of the present invention is not particularly limited and includes both solid and hematological cancers. Examples of such cancers include breast cancer, colon cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, small intestine cancer, endocrine Cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer and bone marrow cancer, but is not limited thereto. The cancer may be primary or metastatic cancer. More preferably, the cancer that can be prevented or treated by the pharmaceutical composition may be characterized as a c-Met expressing cancer.
본 발명에 있어서, 상기 약학 조성물은 방사선을 사용한 병용 치료에 사용되는 것을 특징으로 할 수 있다.In the present invention, the pharmaceutical composition may be used in combination treatment with radiation.
본 발명은 또 다른 관점에서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및/또는 상기 이중특이 항체 또는 항체-약물 접합체의 치료적 유효량을 c-Met 관련 질병의 예방 및/또는 치료를 필요로 하는 환자에게 투여하는 단계를 포함하는, c-Met 관련 질병의 예방 및/또는 치료 방법에 관한 것이다. 상기 예방 및/또는 치료 방법은 상기 투여 단계 이전에 상기 질병의 예방 및/또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다.In another aspect, the present invention requires a therapeutically effective amount of the anti-c-Met antibody or antigen-binding fragment thereof and / or the bispecific antibody or antibody-drug conjugate, for the prevention and / or treatment of c-Met related diseases. It relates to a method of preventing and / or treating c-Met-related diseases, comprising administering to a patient. The prevention and / or treatment method may further comprise identifying a patient in need of prevention and / or treatment of the disease prior to the administering step.
본 발명에 있어서, 상기 치료 방법은 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하는 약학 조성물을 투여하는 단계; 및 방사선을 조사하는 단계;를 포함하는 것을 특징으로 할 수 있다.In the present invention, the method of treatment comprises the steps of administering a pharmaceutical composition comprising an anti-c-Met antibody or antigen binding fragment thereof; And irradiating the radiation; may be characterized in that it comprises a.
상기 방사선은 조사(irradiation)량이 2Gy~10Gy인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.The radiation may be characterized in that the irradiation (irradiation) is 2Gy ~ 10Gy, but is not limited thereto.
본 발명의 방법은 방사선 치료횟수 및 방사선 치료와 약학 조성물 투여 사이의 시간량은 본 발명의 방법에 따라 다양할 수 있으나, 바람직하게는 방사선 조사와 동시에 약학 조성물을 투여하거나, 약학 조성물을 투여한 후 10일~20일 후에 방사선을 조사하는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the method of the present invention, the number of times of radiation treatment and the amount of time between the radiation treatment and the administration of the pharmaceutical composition may vary according to the method of the present invention, but preferably the administration of the pharmaceutical composition or the administration of the pharmaceutical composition simultaneously with the irradiation. It may be characterized by irradiating radiation after 10 to 20 days, but is not limited thereto.
본 발명은 또 다른 관점에서, 암의 치료를 위한 상기 항체 또는 이의 항원 결합 단편 상기 이중특이 항체 또는 항체-약물 접합체의 용도에 관한 것이다.In another aspect, the present invention relates to the use of said antibody or antigen-binding fragment thereof, said bispecific antibody or antibody-drug conjugate for the treatment of cancer.
본 발명은 또 다른 관점에서, 암 치료용 약제 제조를 위한 상기 항체 또는 이의 항원 결합 단편 상기 이중특이 항체 또는 항체-약물 접합체의 사용에 관한 것이다.In another aspect, the invention relates to the use of said antibody or antigen-binding fragment thereof said bispecific antibody or antibody-drug conjugate for the manufacture of a medicament for the treatment of cancer.
본 발명에 따른 상기 약학 조성물, 치료 방법 및 용도에 있어서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편은 단독 유효성분으로 제공되거나, 항암제 등의 세포독성 물질과 병용 투여 되거나, 항암제 등의 세포독성물질과 접합된 접합체(antibody-drug conjugate; ADC) 형태로 제공될 수 있다.In the pharmaceutical composition, treatment method and use according to the present invention, the anti-c-Met antibody or antigen-binding fragment thereof is provided as a single active ingredient, administered in combination with a cytotoxic substance such as an anticancer agent, or a cell such as an anticancer agent. It may be provided in the form of a conjugate (antibody-drug conjugate (ADC)) conjugated with a toxic substance.
본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편, 및 이를 포함하는 약학 조성물은 종래의 치료제와 병용하여 사용하는 용도로 사용될 수 있다. 즉, 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편, 및 이를 포함하는 약학 조성물은 기존의 항암제 등의 치료제와 동시에 투여되거나, 순차적으로 투여되는 용도로 사용될 수 있다.The anti-c-Met antibody or antigen-binding fragment thereof according to the present invention, and a pharmaceutical composition comprising the same, can be used for use in combination with a conventional therapeutic agent. That is, the anti-c-Met antibody or antigen-binding fragment thereof, and the pharmaceutical composition comprising the same according to the present invention may be used at the same time or sequentially administered with a conventional therapeutic agent such as an anticancer agent.
본 발명에 있어서, 상기 약학 조성물은 치료 유효량의 항-c-Met 항체 또는 이의 항원 결합 단편, 및 약제학적으로 허용되는 담체를 포함하는 것을 특징으로 할 수 있다.In the present invention, the pharmaceutical composition may be characterized by comprising a therapeutically effective amount of an anti-c-Met antibody or antigen-binding fragment thereof, and a pharmaceutically acceptable carrier.
상기 “약제학적으로(제약상) 허용되는 담체”는 제제를 제제화하거나 또는 안정화시키는 것을 돕기 위해서 활성 성분에 추가될 수 있는 물질이고, 환자에게 유의한 해로운 독성 효과를 야기하지 않는다. 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다.The "pharmaceutically acceptable carrier" is a substance that can be added to the active ingredient to help formulate or stabilize the formulation and does not cause significant deleterious toxic effects on the patient. Pharmaceutically acceptable carriers are conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
상기 약학 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다.The pharmaceutical composition may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약학 조성물은 비경구로 투여할 수 있고, 예컨대 정맥 내 주입, 피하 주입, 근육 주입, 복강 주입 등으로 투여할 수 있다.The pharmaceutical compositions of the invention may be administered parenterally, for example by intravenous infusion, subcutaneous infusion, intramuscular infusion, intraperitoneal infusion and the like.
본 발명의 약학 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001 내지 100 ㎎/㎏이다. 본 명세서에서 용어 “약제학적 유효량”은 암의 예방 또는 치료하는 데 충분한 양을 의미한다.Suitable dosages of the pharmaceutical compositions of the present invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, and usually The skilled practitioner can readily determine and prescribe a dosage effective for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, the daily dose of the pharmaceutical composition of the present invention is 0.0001 to 100 mg / kg. As used herein, the term “pharmaceutically effective amount” means an amount sufficient to prevent or treat cancer.
본 발명의 약학 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 산제, 좌제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or by incorporating into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, suppositories, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
본 발명은 또 다른 관점에서, 본 발명에 따른 항-c-Met 항체를 코딩하는 핵산에 관한 것이다. 본 명세서에서 사용되는 핵산은 세포, 세포 용해물(lysate) 중에 존재하거나, 또는 부분적으로 정제된 형태 또는 실질적으로 순수한 형태로 존재할 수도 있다. 핵산은 알칼리/SDS 처리, CsCl 밴드화(banding), 컬럼 크로마토그래피, 아가로스 겔 전기 영동 및 해당 기술분야에 잘 알려진 기타의 것을 포함하는 표준 기술에 의해 다른 세포 성분 또는 기타 오염 물질, 예를 들어 다른 세포의 핵산 또는 단백질로부터 정제되어 나올 경우 “단리”되거나 “실질적으로 순수하게 된” 것이다. 본 발명의 핵산은 예를 들어 DNA 또는 RNA일 수 있으며, 인트론 서열을 포함하거나 포함하지 않을 수 있다.In another aspect, the invention relates to a nucleic acid encoding an anti-c-Met antibody according to the invention. As used herein, nucleic acids may be present in cells, cell lysates, or in partially purified or substantially pure form. Nucleic acids are prepared by other cellular components or other contaminants, for example, by standard techniques, including alkali / SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and others well known in the art. When purified from nucleic acids or proteins of other cells, they are "isolated" or "substantially pure." Nucleic acids of the invention may be, for example, DNA or RNA, and may or may not include intron sequences.
본 발명에 있어서, 상기 항-c-Met 항체를 코딩하는 핵산은 서열번호 55 내지 69로 구성된 군에서 선택된 서열을 포함하는 것을 특징으로 할 수 있다. 구체적으로, 본 발명에 따른 항체의 중쇄를 코딩하는 폴리뉴클레오티드 서열은 서열번호 55 또는 57 내지 63 및/또는 본 발명에 따른 항체의 경쇄를 코딩하는 폴리뉴클레오티드 서열은 서열번호 56 또는 64 내지 69이다.In the present invention, the nucleic acid encoding the anti-c-Met antibody may be characterized in that it comprises a sequence selected from the group consisting of SEQ ID NO: 55 to 69. Specifically, the polynucleotide sequence encoding the heavy chain of the antibody according to the present invention is SEQ ID NO: 55 or 57 to 63 and / or the polynucleotide sequence encoding the light chain of the antibody according to the present invention is SEQ ID NO: 56 or 64 to 69.
본 발명은 또 다른 관점에서, 상기 핵산을 포함하는 재조합 발현 벡터에 관한 것이다. 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편의 발현을 위하여, 부분적이거나 전장인 경쇄 및 중쇄를 코딩하는 DNA를 표준 분자 생물학 기술(예를 들어 PCR 증폭 또는 목적 항체를 발현하는 하이브리도마를 사용한 cDNA 클로닝)로 수득할 수 있으며, DNA가 전사 및 번역 제어 서열에 “작동되도록 결합”되어 발현 벡터 내로 삽입될 수 있다.In another aspect, the present invention relates to a recombinant expression vector comprising the nucleic acid. For the expression of anti-c-Met antibodies or antigen-binding fragments thereof according to the invention, DNA encoding partial or full-length light and heavy chains can be prepared using standard molecular biology techniques (e.g., PCR amplification or hybrid expression of the desired antibody). CDNA cloning using a cutting board), and DNA can be “bind to work” into transcription and translation control sequences and inserted into the expression vector.
본 명세서에서 사용되는 용어 “작동되도록 결합”은 벡터 내의 전사 및 번역 제어 서열이 항체 유전자의 전사 및 번역을 조절하는 의도된 기능을 하도록 항체를 코딩하는 유전자가 벡터 내로 라이게이션된다는 것을 의미할 수 있다. 발현 벡터 및 발현 제어 서열은 사용되는 발현용 숙주세포와 상용성 있도록 선택된다. 항체의 경쇄 유전자 및 항체의 중쇄 유전자는 별개의 벡터 내로 삽입되거나, 두 유전자 모두 동일한 발현 벡터 내로 삽입된다. 항체는 표준 방법(예를 들어 항체 유전자 단편 및 벡터 상의 상보성 제한 효소 부위의 라이게이션, 또는 제한 효소 부위가 전혀 존재하지 않을 경우 블런트(blunt) 말단 라이게이션)으로 발현 벡터 내로 삽입된다. 경우에 따라서, 상기 재조합 발현 벡터는 숙주세포로부터의 항체 사슬의 분비를 용이하게 하는 신호 펩티드를 코딩할 수 있다. 항체 사슬 유전자는 신호 펩티드가 프레임에 맞게 항체 사슬 유전자의 아미노 말단에 결합되도록 벡터 내로 클로닝될 수 있다. 신호 펩티드는 면역글로불린 신호 펩티드 또는 이종성 신호 펩티드(즉, 면역글로불린 외 단백질 유래의 신호 펩티드)일 수 있다. 또한, 상기 재조합 발현 벡터는 숙주세포에서 항체 사슬 유전자의 발현을 제어하는 조절서열을 지닌다. “조절서열”은 항체 사슬 유전자의 전사 또는 번역을 제어하는 프로모터, 인핸서 및 기타 발현 제어 요소(예를 들어 폴리아데닐화 신호)를 포함할 수 있다. 통상의 기술자는 형질전환시킬 숙주세포의 선택, 단백질의 발현 수준 등과 같은 인자에 따라 조절 서열을 달리 선택하여, 발현 벡터의 디자인이 달라질 수 있음을 인식할 수 있다.As used herein, the term “binding to work” may mean that the gene encoding the antibody is ligated into the vector such that the transcriptional and translational control sequences in the vector serve the intended function of regulating the transcription and translation of the antibody gene. . The expression vector and expression control sequences are chosen to be compatible with the expression host cell used. The light chain gene of the antibody and the heavy chain gene of the antibody are inserted into separate vectors, or both genes are inserted into the same expression vector. Antibodies are inserted into expression vectors by standard methods (eg ligation of complementary restriction enzyme sites on antibody gene fragments and vectors, or blunt terminal ligation if no restriction enzyme sites are present). In some cases, the recombinant expression vector may encode a signal peptide that facilitates secretion of the antibody chain from the host cell. The antibody chain gene can be cloned into the vector such that the signal peptide binds to the amino terminus of the antibody chain gene in frame. The signal peptide may be an immunoglobulin signal peptide or a heterologous signal peptide (ie, a signal peptide derived from an immunoglobulin non-protein). In addition, the recombinant expression vector has a regulatory sequence that controls the expression of the antibody chain gene in the host cell. A “regulatory sequence” can include promoters, enhancers and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of antibody chain genes. Those skilled in the art can recognize that the design of the expression vector can vary by differently selecting regulatory sequences depending on factors such as the selection of host cells to be transformed, the expression level of the protein, and the like.
본 발명은 또 다른 관점에서, 상기 핵산 또는 상기 벡터를 포함하는 숙주세포에 관한 것이다. 본 발명에 따른 숙주세포는 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택되는 것이 바람직하지만, 이에 한정되는 것은 아니다.In another aspect, the present invention relates to a host cell comprising the nucleic acid or the vector. The host cell according to the present invention is preferably selected from the group consisting of animal cells, plant cells, yeast, E. coli and insect cells, but is not limited thereto.
구체적으로는 본 발명에 따른 숙주세포는 대장균, 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스 속(Streptomyces sp.), 슈도모나스 속(Pseudomonas sp.), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스 속(Staphylococcus sp.)과 같은 원핵 세포일 수 있다. 또한, 아스페르길러스 속(Aspergillus sp.)과 같은 진균, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 쉬조사카로마세스 속(Schizosaccharomyces sp.) 및 뉴로스포라 크라사(Neurospora crassa)와 같은 효모, 그 밖의 하등진핵 세포, 및 곤충으로부터의 세포와 같은 고등 진핵생물의 세포와 같은 진핵 세포일 수 있다.Specifically, the host cell according to the present invention is E. coli, Bacillus subtilis, Streptomyces sp., Pseudomonas sp., Proteus mirabilis or Staphyllo Prokaryotic cells, such as the Staphylococcus sp. Also, fungi such as Aspergillus sp., Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces sp. And Neuro Eukaryotic cells such as yeast, such as Neurospora crassa, other lower eukaryotic cells, and cells of higher eukaryotes such as cells from insects.
또한 식물이나 포유동물로부터 유래할 수 있다. 바람직하게는, 원숭이 신장 세포7(COS7: monkey kidney cells)세포, NSO 세포, SP2/0 세포, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney)세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK293 세포 등이 이용 가능하지만 이에 한정되지 않는다. 특히 바람직하게는 CHO 세포가 사용될 수 있다.It can also be derived from plants or mammals. Preferably, monkey kidney cells (COS7) cells, NSO cells, SP2 / 0 cells, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) cells , MDCK, myeloma cell lines, HuT 78 cells and HEK293 cells and the like are available, but are not limited to these. Especially preferably CHO cells can be used.
상기 핵산 또는 상기 벡터는 숙주세포에 형질주입 또는 트랜스펙션(transfection)된다. “형질주입” 또는 “트랜스펙션”시키기 위해 원핵 또는 진핵 숙주세포 내로 외인성 핵산(DNA 또는 RNA)을 도입하는 데에 통상 사용되는 여러 종류의 다양한 기술, 예를 들어 전기 영동법, 인산칼슘 침전법, DEAE-덱스트란 트랜스펙션 또는 리포펙션(lipofection) 등을 사용할 수 있다. 본 발명에 따른 항-글리피칸 3 항체를 발현시키기 위해 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵숙주에 적합한 발현 벡터로는 이들로 한정되는 것은 아니지만 SV40, 소 유두종바이러스, 아네노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열이 포함된다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pET, pRSET, pBluescript, pGEX2T, pUC벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 대장균(Escherichia coli)에서 얻어지는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2℃ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL941이다.The nucleic acid or the vector is transfected or transfected into a host cell. Many different types of techniques commonly used to introduce exogenous nucleic acids (DNA or RNA) into prokaryotic or eukaryotic host cells for “transfection” or “transfection”, such as electrophoresis, calcium phosphate precipitation, DEAE-dextran transfection or lipofection may be used. Various expression host / vector combinations can be used to express anti-glycancan 3 antibodies according to the present invention. Suitable expression vectors for eukaryotic hosts include, but are not limited to, expression control sequences derived from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus and retrovirus. . Expression vectors that can be used in bacterial hosts include broader hosts such as bacterial plasmids derived from Escherichia coli, such as pET, pRSET, pBluescript, pGEX2T, pUC vectors, col E1, pCR1, pBR322, pMB9, and derivatives thereof. Plasmids with ranges, phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as λgt10 and λgt11, NM989, and other DNA phages such as M13 and filamentary single-stranded DNA phages. Useful expression vectors for yeast cells are 2 ° C. plasmids and derivatives thereof. A useful vector for insect cells is pVL941.
본 발명은 또 다른 관점에서, 상기 숙주세포를 배양하여 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편을 발현시키는 단계를 포함하는 항-c-Met 항체 또는 이의 항원 결합 단편의 제조 방법에 관한 것이다.In another aspect, the present invention provides a method for producing an anti-c-Met antibody or antigen-binding fragment thereof, comprising the step of culturing the host cell to express an anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. It is about.
상기 항-c-Met 항체 또는 이의 항원 결합 단편을 발현할 수 있는 재조합 발현 벡터가 포유류 숙주세포 내로 도입될 경우 항체는 숙주세포에서 항체가 발현되게 하기에 충분한 기간 동안, 또는 더 바람직하게는 숙주세포가 배양되는 배양 배지 내로 항체가 분비되게 하기에 충분한 기간 동안 숙주세포를 배양함으로써 제조될 수 있다.When a recombinant expression vector capable of expressing the anti-c-Met antibody or antigen-binding fragment thereof is introduced into a mammalian host cell, the antibody is for a period of time sufficient to allow the antibody to be expressed in the host cell, or more preferably in the host cell. Can be prepared by culturing the host cell for a period sufficient to allow the antibody to be secreted into the culture medium in which is cultured.
경우에 따라서, 발현된 항체는 숙주세포로부터 분리하여 균일하도록 정제할 수 있다. 상기 항체의 분리 또는 정제는 통상의 단백질에서 사용되고 있는 분리, 정제 방법, 예를 들어 크로마토그래피에 의해 수행될 수 있다. 상기 크로마토그래피는 예를 들어, 프로틴 A 컬럼, 프로틴 G 컬럼을 포함하는 친화성 크로마토그래피, 이온 교환 크로마토그래피 또는 소수성 크로마토그래피를 포함할 수 있다. 상기 크로마토그래피 이외에, 추가로 여과, 초여과, 염석, 투석 등을 조합함으로써 항체를 분리, 정제할 수 있다.In some cases, the expressed antibody may be purified from the host cell to be homogeneous. Separation or purification of the antibody can be carried out by separation, purification methods, such as chromatography, which are used in conventional proteins. The chromatography can include, for example, affinity chromatography comprising a Protein A column, Protein G column, ion exchange chromatography or hydrophobic chromatography. In addition to the above chromatography, the antibody can be separated and purified by further combining filtration, ultrafiltration, salting out, dialysis and the like.
본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편 및 이를 포함하는 약학 조성물은 종래의 치료제와 병용하여 사용하는 용도로 사용될 수 있다.The anti-c-Met antibody or antigen-binding fragment thereof and the pharmaceutical composition comprising the same according to the present invention can be used for use in combination with a conventional therapeutic agent.
따라서, 본 발명은 또 다른 관점에서, 상기 항-c-Met 항체 또는 이의 항원 결합 단편 및 다른 암 치료제를 포함하는 암 치료용 병용 투여 조성물 및 치료 방법에 관한 것이다.Thus, in another aspect, the present invention relates to a combination dosage composition for treating cancer and a method of treatment comprising the anti-c-Met antibody or antigen-binding fragment thereof and other cancer therapeutic agents.
상기 다른 암 치료제는 본 발명에 따른 항-c-Met 항체 또는 이의 항원 결합 단편 이외에, 암 치료를 위해 사용될 수 있는 모든 치료제를 의미한다. 본 발명에 있어서, 상기 암 치료제는 면역관문억제제인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.The other cancer therapeutic agent means all therapeutic agents that can be used for cancer treatment, in addition to the anti-c-Met antibody or antigen-binding fragment thereof according to the present invention. In the present invention, the cancer treatment agent may be characterized in that the immune gateway inhibitor, but is not limited thereto.
우리 몸의 면역 시스템은 T-세포의 과다증식으로 인한 과다면역 반응을 억제하기 위한 면역검문 체계를 가지고 있다. 이러한 면역검문 체계를 면역관문(immune checkpoint)이라고 하며, 면역관문에 관여되는 단백질들을 면역관문 단백질(immune checkpoint protein)이라고 한다. 본질적으로 면역관문은 T-세포의 과활성화 및/또는 과다증식에 의한 과잉면역 반응을 억제하는 기능을 수행하지만, 암 세포는 이런 면역관문을 악용하여 T-세포가 자신을 공격하지 못하도록 함으로써 면역 시스템에 의한 공격에서 벗어나게 되며, 궁극적으로 암이 진행되는 결과를 초래한다.The body's immune system has an immunoassay system to suppress the hyperimmune response caused by T-cell overproliferation. The immune checkpoint system is called an immune checkpoint, and the proteins involved in the immune checkpoint are called immune checkpoint proteins. In essence, immune gates function to inhibit hyper-immune responses caused by T-cell overactivation and / or hyperproliferation, but cancer cells exploit these immune barriers to prevent T-cells from attacking themselves. It is free from the attack, and ultimately the cancer progresses.
이러한 면역관문의 억제제를 이용하여, 암 등의 질환을 치료할 수 있음은 이미 해당 기술분야에 알려져 있으며, 현재 면역관문 단백질을 표적으로 하는 항체 의약품이 시판 중에 있고, 다양한 면역관문 억제제가 개발 중에 있다.It is already known in the art to treat such diseases as cancer using inhibitors of such immune gates, and antibody pharmaceuticals targeting immunogate protein are commercially available and various immunogate inhibitors are under development.
최초로 개발된 면역관문 억제제 형태의 치료제는 면역관문 수용체인 CTLA-4(cytotoxic T-lymphocyte associated antigen-4) 특이적인 단클론 항체인 ipilimumab으로, 전이성 악성 흑색종에서 그 효과를 보여주었다. 이어서, PD-1(programmed cell death-1)과 PD-1에 대한 리간드인 PD-L1(programmed death ligand-1)에 특이적인 단클론 항체들이 개발되고 있으며, 대표적인 것들로는 nivolumab, pembrolizumab, avelumab, atezolizumab과 durvalumab 등이 있다. PD-1 또는 PD-L1 억제제는 악성 흑색종뿐만 아니라 그 효과가 다양한 종양들에서 나타난다.The first type of immunoblock inhibitor, the therapeutic agent ipilimumab, a cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) -specific monoclonal antibody, has been shown to be effective in metastatic malignant melanoma. Subsequently, monoclonal antibodies specific for programmed cell death-1 (PD-1) and programmed death ligand-1 (PD-L1), ligands for PD-1, are being developed. Representative examples include nivolumab, pembrolizumab, avelumab, atezolizumab and durvalumab. PD-1 or PD-L1 inhibitors are found in malignant melanoma as well as in tumors whose effects vary.
본 발명에 있어서, 상기 면역관문억제제는 immune checkpoint inhibitor 또는 checkpoint inhibitor를 의미하고, 항-CTLA-4 항체, 항-PD-1 항체 또는 항-PD-L1 항체인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며, 구체적으로는 이필리무맙(Ipilimumab), 니볼루맙(Nivolumab), 펨브롤리주맙(Pembrolizumab), 아테졸리주맙(Atezolizumab), 아벨루맙(Avelumab) 또는 더발루맙(Durvalumab) 등이 사용될 수 있지만, 이에 한정되는 것은 아니다.In the present invention, the immune gateway inhibitor means an immune checkpoint inhibitor or a checkpoint inhibitor, and may be characterized in that the anti-CTLA-4 antibody, anti-PD-1 antibody or anti-PD-L1 antibody, but is not limited thereto. In particular, Ipilimumab, Nivolumab, Pembrolizumab, Atezlizumab, Avelumab or Durvalumab may be used. However, the present invention is not limited thereto.
본 발명에 있어서, 상기 암은 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 또는 골수암인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the cancer is breast cancer, colon cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, small intestine Cancer, endocrine cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer or bone marrow cancer, but is not limited thereto.
“병용”은 항-c-Met 항체 또는 이의 항원 결합 단편과, 다른 암 치료제 각각이 동시, 순차적, 또는 역순으로 투여될 수 있음을 의미하는 것으로, 통상의 기술자의 범위 내 적절한 유효량의 조합으로 투여될 수 있다.“Combination” means that the anti-c-Met antibody or antigen-binding fragment thereof and each of the other cancer therapeutic agents may be administered simultaneously, sequentially, or in reverse order, and administered in a combination of an appropriate effective amount within the scope of those skilled in the art. Can be.
본 발명의 일 실시예에서, 항-PD-L1 항체와 본 발명에 따른 항-c-Met 항체를 병용투여한 경우, 종양의 성장을 더욱 억제하는 것을 확인하였다.In one embodiment of the present invention, when the anti-PD-L1 antibody and the anti-c-Met antibody according to the present invention in combination, it was confirmed that further suppress the growth of the tumor.
상기 병용 투여 조성물은 항-c-Met 항체를 포함하고, 이와 관련된 구성은 앞서 설명한 암의 예방 또는 치료용 조성물에 포함된 구성과 동일하므로 각 구성에 대한 설명은 병용 투여용 조성물에서도 동일하게 적용된다.The combination dosage composition includes an anti-c-Met antibody, and the configuration thereof is the same as the composition included in the composition for preventing or treating cancer described above, and thus the description of each composition is equally applicable to the composition for combination administration. .
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: 친화도 성숙을 위한 돌연변이 라이브러리 구축Example 1: Mutation Library Construction for Affinity Maturation
c-Met 표적항체 1F12는 phage display 기술을 이용하여 선별되었으며, 이 항체의 친화도개량을 위해 Directed evolution법을 사용하였다. 항체의 가변영역은 Complementarity-determining region(CDR)과 Framework region으로 구분되며, 항원-항체 간의 결합에는 CDR이 크게 기여한다. 모항체의 중쇄 가변영역과 경쇄 가변영역은 도 1 및 도 2에 나타낸 바와 같다. KABAT numbering법을 기준으로 항체의 CDR과 Framework region을 구분하였다(표 1).The c-Met target antibody 1F12 was selected using phage display technology, and directed evolution was used to improve the affinity of the antibody. The variable region of the antibody is divided into a complementarity-determining region (CDR) and a framework region, and CDRs contribute greatly to the antigen-antibody binding. The heavy chain variable region and the light chain variable region of the parent antibody are as shown in FIGS. 1 and 2. The CDR and framework regions of antibodies were classified based on KABAT numbering (Table 1).
Figure PCTKR2019005257-appb-T000001
Figure PCTKR2019005257-appb-T000001
모항체(1F12) 중쇄와 경쇄의 가변영역에 존재하는 총 6개의 CDR에 NNK degenerate codon을 이용한 10 종의 mutant libraries(1F12-H1mut, 1F12-H2-1mut, 1F12-H2-2mut, 1F12-H3-1mut, 1F12-H3-2mut, 1F12-L1-1mut, 1F12-L1-2mut, 1F12-L2mut, 1F12-L3-1mut, 1F12-L3-2mut)를 제작하였다(도 3). Mutant libraries 구축에 사용될 CDR의 서열이 임의화된 1F12 돌연변이 single chain variable fragment(sfiI-VH-linker-VL-sfiI)의 DNA 서열은 하기 표 2에 나타낸 프라이머들을 이용한 overlapping extension PCR법을 이용하여 확보하였다.Ten mutant libraries (1F12-H1mut, 1F12-H2-1mut, 1F12-H2-2mut, 1F12-H3-) using NNK degenerate codons in a total of six CDRs in the variable region of the parent antibody (1F12) heavy and light chains 1mut, 1F12-H3-2mut, 1F12-L1-1mut, 1F12-L1-2mut, 1F12-L2mut, 1F12-L3-1mut, 1F12-L3-2mut) were prepared (FIG. 3). The DNA sequence of the 1F12 mutant single chain variable fragment (sfiI-VH-linker-VL-sfiI) in which the CDRs used for constructing mutant libraries were randomized was obtained by using overlapping extension PCR using primers shown in Table 2 below. .
Figure PCTKR2019005257-appb-T000002
Figure PCTKR2019005257-appb-T000002
Figure PCTKR2019005257-appb-I000001
Figure PCTKR2019005257-appb-I000001
이 때 중쇄 CDR-H3의 VH99와 VH100d에 Cysteine이 존재하고(도 1), 이 두 위치는 interchain disulfide bond를 형성하여, CDR-H3 구조를 안정화 시키므로, 이 두 부위에는 NNK codon을 사용하지 않고 Cysteine 잔기를 유지시키기 위해 TGT codon을 사용하였다. pComb3X scFv 발현 벡터(OmpA leader sequence-sfiI-VH-linker-VL-sfiI-His-HA-Amber codon-pIII)를 sfiI(NEB) 제한효소를 이용하여, insert 서열을 제거하여, 벡터를 선형화 시켰다. 이 선형화된 벡터에 CDR 각각의 위치가 NNK degenerate codon에 의해 20개의 아미노산으로 임의화된 sfiI-VH-linker-VL-sfiI을 linearized vector내로 T4 ligase(NEB)를 이용한 삽입을 수행하여, mutant libraries 구축을 완료하였다.Cysteine is present at VH99 and VH100d of heavy chain CDR-H3 (Fig. 1), and these two positions form an interchain disulfide bond, which stabilizes the structure of CDR-H3. Therefore, these two sites do not use NNK codons. TGT codons were used to retain the residues. pComb3X scFv expression vector (OmpA leader sequence-sfiI-VH-linker-VL-sfiI-His-HA-Amber codon-pIII) was linearized by removing the insert sequence using sfiI (NEB) restriction enzyme. Mutant libraries were constructed by inserting sfiI-VH-linker-VL-sfiI into which the position of each CDR was 20 amino acids by NNK degenerate codon into the linearized vector by using T4 ligase (NEB) into the linearized vector. Completed.
실시예 2: 친화도개량항체 선별Example 2: Screening for Affinity Modified Antibodies
구축된 mutant libraries는 숙주세포로 TG1 대장균을 사용하였으며, 약 3.10 x 1010의 형질전환체를 가진다. 이 mutant libraries는 phage 형태로 회수되었으며, phage display 기술을 적용하여, c-Met에 더 높은 결합능을 보이는 antibody pool을 enrichment 시켰고, ELISA를 이용한 screening을 통해 affinity variants가 선별되었다. 최초로 13종의 친화도가 향상된 클론을 선별하였으며, 그 클론들은 1F12_H35H, 1F12_H53D, 1F12_H57K, 1F12_H58D, 1F12_H60N, 1F12_H100eH, 1F12_H100hR 1F12_L26D, 1F12_L27bD, 1F12_L50E, 1F12_L51D, 1F12_L95aR, 1F12_L96D이다. 1F12-H35H는 KABAT numbering 기준, 1F12 중쇄의 35번 위치의 아미노산이 Histidine(H)으로 치환됨을 의미하고, 1F12_L26D는 1F12 경쇄의 26번 위치의 아미노산이 Aspartic acid로 치환된 돌연변이를 의미한다. 이 13종의 친화도 개량 돌연변이 항체들은 포유세포에서 full-length human IgG1으로 제조하기 위한 생산벡터를 구축하였으며, Expi293 expression system(Gibco)을 이용해 제조사의 매뉴얼대로 수행하였다. 그 결과 1F12_H100hR(모항체에서 중쇄 100h 위치의 아미노산이 Arginine으로 치환된 클론)은 반복적인 제조에서 모두 항체 발현이 되지 않았다. 1F12의 중쇄 CDR 잔기 치환 항체 6종과 경쇄 CDR 잔기 치환 항체가 6종이 확보되었으며, 이를 조합한 항체 4종을 추가로 제조하였다(1F12_H2L3, 1F12_H2L6, 1F12_H3L5, 1F12_H6L5). 1F12_H2L3은 중쇄 가변영역 53번 위치가 Aspartic acid로 치환된 중쇄 발현 벡터와 경쇄 가변영역 50번 위치가 Glutamic acid로 치환된 경쇄 발현 벡터를 조합하여 제조한 항체이다(7종의 중쇄 돌연변이 발현 벡터와 6종의 경쇄 돌연변이 발현 벡터 중 각각 2번째와 3번째의 발현 벡터로 제조하였음을 의미한다). 결론적으로 도 5에서 1F12_H100hR을 제외한 항체들이 포유세포에서 발현 및 정제되어 후속 실험에 사용되었다.The constructed mutant libraries used TG1 E. coli as host cells, and had a transformant of about 3.10 x 1010. The mutant libraries were recovered in phage form, and the phage display technology was used to enrich the antibody pool with higher binding capacity to c-Met, and affinity variants were selected by screening using ELISA. For the first time, 13 affinity clones were selected, and the clones were 1F12_H35H, 1F12_H53D, 1F12_H57K, 1F12_H58D, 1F12_H60N, 1F12_H100eH, 1F12_H100hR 1F12_L26D, 1F12_L27BD, 1F12F1F1F12F. 1F12-H35H means that the amino acid at position 35 of the 1F12 heavy chain is replaced with Histidine (H), and 1F12_L26D means a mutation in which the amino acid at position 26 of the 1F12 light chain is substituted with Aspartic acid. These 13 affinity-mutant antibodies were constructed to produce production vectors for the production of full-length human IgG1 in mammalian cells, and were performed according to the manufacturer's manual using the Expi293 expression system (Gibco). As a result, 1F12_H100hR (a clone in which the amino acid at the heavy chain 100h position was replaced with Arginine in the parent antibody) did not all express the antibody in repeated preparation. Six heavy chain CDR residue-substituted antibodies and six light chain CDR residue-substituted antibodies of 1F12 were obtained, and four antibodies in combination thereof were further prepared (1F12_H2L3, 1F12_H2L6, 1F12_H3L5, 1F12_H6L5). 1F12_H2L3 is an antibody prepared by combining a heavy chain expression vector in which the heavy chain variable region position 53 is substituted with Aspartic acid and a light chain expression vector in which the light chain variable region position 50 is substituted with Glutamic acid (7 heavy chain mutation expression vectors and 6 The light chain mutant expression vectors of the species were prepared as the second and third expression vectors, respectively). In conclusion, in FIG. 5, except for 1F12_H100hR, antibodies were expressed and purified in mammalian cells and used in subsequent experiments.
총 17종의 개량 항체의 CDR 서열을 표 3에 나타내었으며, 중쇄 및 경쇄 가변영역 서열을 표 4에 나타내었다. 또한, 각 개량 항체를 코딩하는 폴리뉴클레오티드 서열을 표 5에 나타내었다.The CDR sequences of a total of 17 improved antibodies are shown in Table 3, and the heavy and light chain variable region sequences are shown in Table 4. In addition, the polynucleotide sequence encoding each improved antibody is shown in Table 5.
Figure PCTKR2019005257-appb-T000003
Figure PCTKR2019005257-appb-T000003
Figure PCTKR2019005257-appb-I000002
Figure PCTKR2019005257-appb-I000002
Figure PCTKR2019005257-appb-I000003
Figure PCTKR2019005257-appb-I000003
Figure PCTKR2019005257-appb-I000004
Figure PCTKR2019005257-appb-I000004
Figure PCTKR2019005257-appb-T000004
Figure PCTKR2019005257-appb-T000004
Figure PCTKR2019005257-appb-I000005
Figure PCTKR2019005257-appb-I000005
Figure PCTKR2019005257-appb-I000006
Figure PCTKR2019005257-appb-I000006
Figure PCTKR2019005257-appb-I000007
Figure PCTKR2019005257-appb-I000007
Figure PCTKR2019005257-appb-I000008
Figure PCTKR2019005257-appb-I000008
Figure PCTKR2019005257-appb-T000005
Figure PCTKR2019005257-appb-T000005
Figure PCTKR2019005257-appb-I000009
Figure PCTKR2019005257-appb-I000009
Figure PCTKR2019005257-appb-I000010
Figure PCTKR2019005257-appb-I000010
Figure PCTKR2019005257-appb-I000011
Figure PCTKR2019005257-appb-I000011
Figure PCTKR2019005257-appb-I000012
Figure PCTKR2019005257-appb-I000012
Figure PCTKR2019005257-appb-I000013
Figure PCTKR2019005257-appb-I000013
Figure PCTKR2019005257-appb-I000014
Figure PCTKR2019005257-appb-I000014
Figure PCTKR2019005257-appb-I000015
Figure PCTKR2019005257-appb-I000015
Figure PCTKR2019005257-appb-I000016
Figure PCTKR2019005257-appb-I000016
Figure PCTKR2019005257-appb-I000017
Figure PCTKR2019005257-appb-I000017
Figure PCTKR2019005257-appb-I000018
Figure PCTKR2019005257-appb-I000018
실시예 3: Agonist activity 분석Example 3: Agonist activity analysis
c-Met 항체의 개발에 있어 agonist activity 분석은 필수적이다. 일반적인 항체는 Y-형태로 표적을 인지하는 paratope 2개를 가지는 bivalent 구조를 가진다. 이로 인해 1개의 c-Met 항체는 표적 항원인 c-Met 2개에 결합하게 되고, 이는 오히려 c-Met dimerization을 유도하여, 하부 신호 전달 경로를 활성화 시키는 agonist activity를 초래한다. Genentech는 Hybridoma 기술을 이용하여 5D5 항체를 개발하였으나, 이 항체는 c-Met에 결합하여 c-Met의 ligand인 HGF/SF와 유사한 효과를 보이며, 신호 전달 경로를 오히려 강화하는 agonist activity를 초래하였다. 이 현상을 최소화하기 위해, 5D5 항체는 one-arm 형태인 OA-5D5로 개량되었고, agonist activity는 최소화 되었다.Agonist activity analysis is essential for the development of c-Met antibodies. Typical antibodies have a bivalent structure with two paratopes that recognize the target in Y-form. As a result, one c-Met antibody binds to two target antigens, c-Met, which induces agonist activity that induces c-Met dimerization, activating a lower signal transduction pathway. Genentech developed the 5D5 antibody using Hybridoma technology, but the antibody binds to c-Met and shows a similar effect to HGF / SF, the ligand of c-Met, resulting in agonist activity that enhances the signal transduction pathway. To minimize this phenomenon, the 5D5 antibody was modified to OA-5D5, a one-arm form, and agonist activity was minimized.
모항체인 1F12와 16종의 affinity variants의 agonist activity를 정량하기 위해 Akt 인산화정도를 측정하였다. 상세하게는, 96 well 세포 배양 플레이트에 Caki-1 renal cell carcinoma 세포주가 RPMI1640 완전배지(+10% FBS)에서 well당 약 70%의 confluency에 도달하였을 때, Serum starvation이 24시간 진행되었다. 모항체와 affinity variant 16종이 처리되었고, 대조군으로 c-Met agonist 항체인 5D5와 최소한의 agonist 활성을 보이는 OA-5D5, c-Met의 ligand인 HGF/SF(R&D systems)가 사용되었다. PBS는 시료의 vehicle로 처리된 시료와 동일 volume으로 처리하였으며, 항체들은 10 μg/mL로 처리되었고, HGF/SF는 50 ng/L로 처리되었다. 항체와 ligand의 처리시간은 30분이며, 3번 반복으로 실험이 진행되었다. 각 시료 처리 30분 후, 곧바로 1X PBS로 1회 세척을 진행하고, lysis buffer를 이용해 cell lysis를 진행하였다. 이 후 Akt 인산화 측정은 PathScan® Phospho-Akt Sandwich ELISA Kit(Cell signaling technology)를 이용해, 제조사의 매뉴얼대로 수행하였으며, 각 well에 대한 luminescent signal을 측정하여, PBS 처리 그룹은 0%로, HGF/SF 처리그룹은 100%로 변환하여, 각 항체들의 agonist 활성을 수치화 하였다. 5D5 c-Met agonist 항체는 86.01%의 Akt 인산화를 유도하였으며, HGF와 유사한 정도의 agonist 활성을 보였다. Agonist 활성을 최소화하기 위해 개량된 OA-5D5 one-armed monovalent antibody의 경우 30.46%의 감소된 agonist 활성을 보였다. 이에 비해 1F12 모항체의 agonist 활성은 18.23%로 확인되었으며, 16종 affinity variants의 agonist 활성은 하기 표 6에 나타내었다(도 6).Akt phosphorylation was measured to quantify the agonist activity of the parental antibody 1F12 and 16 affinity variants. Specifically, Serum starvation proceeded for 24 hours when the Caki-1 renal cell carcinoma cell line reached a confluency of about 70% per well in RPMI1640 complete medium (+ 10% FBS) in a 96 well cell culture plate. The parent antibody and 16 affinity variants were treated. As a control, 5D5, a c-Met agonist antibody, OA-5D5 with minimal agonist activity, and HGF / SF (R & D systems), a ligand for c-Met, were used. PBS was treated with the same volume as the vehicle treated samples, antibodies were treated at 10 μg / mL, HGF / SF was treated at 50 ng / L. The treatment time of antibody and ligand was 30 minutes, and the experiment was carried out in three iterations. 30 minutes after each sample treatment, the cells were washed once with 1X PBS and cell lysis was performed using lysis buffer. Subsequently, Akt phosphorylation was measured using a PathScan® Phospho-Akt Sandwich ELISA Kit (Cell signaling technology) according to the manufacturer's manual. The luminescent signal for each well was measured, and the PBS treatment group was 0%, HGF / SF. Treatment groups were converted to 100% to quantify the agonist activity of each antibody. 5D5 c-Met agonist antibody induced 86.01% of Akt phosphorylation and showed agonist activity similar to that of HGF. The modified OA-5D5 one-armed monovalent antibody showed a 30.46% reduced agonist activity to minimize agonist activity. In comparison, agonist activity of the 1F12 parent antibody was found to be 18.23%, and agonist activity of the 16 affinity variants is shown in Table 6 below (FIG. 6).
Figure PCTKR2019005257-appb-T000006
Figure PCTKR2019005257-appb-T000006
실시예 4: Affinity 분석Example 4: Affinity Assay
ELISA 기반 친화도 분석은 3번 반복으로 진행하였다. 96 well ELISA용 plate(Costar)에 recombinant human c-Met(Sino biological)이 50 ng/well로 4℃에서 overnight로 코팅하였다. 다음 날 3% skim milk 용액으로 1시간 블로킹을 진행 후, 1X PBST(Cell signaling technology)를 이용하여 3회 세척하였다. PBS(Gibco)에 각각의 항체들을 200 nM 부터 1/2씩 희석하여 100 μL 부피로 각 well에 처리하고 상온에서 1시간 동안 정치하였다. 1X PBST(Cell signaling technology)를 이용하여 3회 세척 후, 1:10000으로 3% skim milk 용액에 희석된 anti-human Fab-HRP(Thermo scientific) 2차 항체를 각 well에 100 μL로 1시간 동안 상온에서 정치하였다. 각각의 well을 1X PBST(Cell signaling technology)를 이용하여 5회 세척 후, TMB 용액(Thermo scientific)을 각 well에 100 μL 처리하고, 발색이 시작되어 적절히 푸른색으로 변하였을 때, STOP 용액(Cell signaling technology)를 100 μL 처리하여, 반응을 종료시켰다. UV/VIS spectrophotometer를 이용하여 OD450을 측정하였고, 이 수치를 normalization한 결과, 모항체(1F12) 대비 1F12_H2L3, 1F12_H2L6, 1F12_H3L5 및 1F12_H6L5 클론의 친화도가 상승되었으며, 1F12_H3L5 클론이 가장 높은 친화도를 나타냄을 확인하였다(도 7).ELISA-based affinity analysis was performed in three iterations. A 96-well ELISA plate (Costar) was coated with recombinant human c-Met (Sino biological) at 50 ng / well overnight at 4 ° C. The next day after blocking for 1 hour with 3% skim milk solution, it was washed three times using 1X PBST (Cell signaling technology). Each antibody was diluted 1/2 to 200 nM in PBS (Gibco) and treated in each well in a volume of 100 μL and allowed to stand for 1 hour at room temperature. After washing three times using 1X PBST (Cell signaling technology), anti-human Fab-HRP (Thermo scientific) secondary antibody diluted in 3% skim milk solution at 1: 10000 was added to each well at 100 μL for 1 hour. It was allowed to stand at room temperature. Each well was washed 5 times using 1X PBST (Cell signaling technology), and then 100 μL of TMB solution (Thermo scientific) was treated to each well. The reaction was terminated by 100 μL of signaling technology). The OD450 was measured using a UV / VIS spectrophotometer, and normalization of this value resulted in an increase in the affinity of the 1F12_H2L3, 1F12_H2L6, 1F12_H3L5, and 1F12_H6L5 clones compared to the parent antibody (1F12), with the highest affinity of the 1F12_H3L5 clone. It was confirmed (FIG. 7).
실시예 5: 암세포 성장억제능 분석Example 5 Analysis of Cancer Cell Growth Inhibition
MKN45는 c-Met 증폭 위암 세포주이며, JCRB Cell Bank(Japan)에서 획득하였고, RPMI1640에 10% FBS가 첨가된 배지에서 배양하여 세포를 유지하였다. 대조 항체로 Onartuzumab(OA-5D5; monovalent c-Met Antibody, Genentech)을 사용하였으며, 공개된 항체 서열을 기반으로 항체 발현 벡터를 제작하였다. Expi293 expression system(Gibco)을 이용한 Transient expression을 하여, Mabselect sure(GE)를 AKTA avant(GE)에 장착한 Affinity chromatography법으로 정제를 진행하였고, SE-HPLC 분석을 통해 98% 이상의 순도를 확인하였으며, ELISA와 SPR 분석을 통해 문헌들과 유사성을 확인하였다. 세포 성장 억제능 분석을 위해서 96 well assay plate(Corning, 3610)에 RPMN1640 + 10% FBS의 조성을 가진 완전배양배지에 3000 cells/well로 분주하고, overnight 배양하여 세포들을 부착시킨 후, 배지를 제거하고, 최고 100 nM 부터 1/5씩 항체를 완전배양배지에 희석하여 배지를 100 μL씩 처리 하였다. 72시간 뒤 Cell Titer Glo(Promega)를 각 well에 100 μL 처리 후, Infinite M200 Pro(TECAN)으로 Cell Viability를 분석하였다. 그 결과 개량전 항체(1F12)와 대조 항체 onartuzumab 대비 1F12_H2L3, 1F12_H2L6, 1F12_H3L5 및 1F12_H6L5 항체의 효능이 좋은 것을 확인하였으며, 1F12_H3L5 항체의 효능이 가장 좋음을 확인하였다(도 8).MKN45 is a c-Met amplified gastric cancer cell line, obtained from JCRB Cell Bank (Japan), and cultured in a medium in which 10% FBS was added to RPMI1640 to maintain the cells. Onartuzumab (OA-5D5; monovalent c-Met Antibody, Genentech) was used as a control antibody, and an antibody expression vector was prepared based on published antibody sequences. Transient expression using the Expi293 expression system (Gibco) was performed, and purification was performed by Affinity chromatography equipped with Mabselect sure (GE) on AKTA avant (GE), and purity of 98% or higher was confirmed by SE-HPLC analysis. ELISA and SPR analysis confirmed the similarity with the literature. For cell growth inhibition assay, 3000 cells / well were aliquoted into a complete culture medium containing RPMN1640 + 10% FBS in a 96 well assay plate (Corning, 3610), the cells were cultured overnight, and then the medium was removed. Antibodies were diluted in complete culture medium up to 100/5 from 100 nM and treated with 100 μL of medium. After 72 hours, Cell Titer Glo (Promega) was treated with 100 μL in each well, and cell viability was analyzed with Infinite M200 Pro (TECAN). As a result, it was confirmed that the efficacy of the 1F12_H2L3, 1F12_H2L6, 1F12_H3L5 and 1F12_H6L5 antibody is better than the antibody (1F12) and the control antibody onartuzumab (FIG. 8).
실시예 6: 동물모델에서 종양성장 억제능 평가Example 6: Assessment of Tumor Growth Inhibition in Animal Models
종양세포가 이식된 동물모델에서 종양성장 억제능을 평가하기 위하여 마우스 대장암 종양세포인 MC38 세포를 마우스에 이식하여 종양동물모델을 제작하여 1F12_H3L5 투여에 따른 종양성장 억제능을 평가하였다.In order to evaluate the tumor growth inhibitory ability in the animal model transplanted with tumor cells, MC38 cells, which are mouse colon cancer tumor cells, were transplanted into mice to prepare tumor animal models and evaluated tumor growth inhibitory ability according to 1F12_H3L5 administration.
MC38을 100 μL당 200000 cell이 존재하도록 준비하였으며, 이때 Hank’s Salt(HBSS) solution(Gibco) 과 Basal Matrigel(Corning®)을 1 : 1 로 섞은 solution을 이용하였다. 준비된 세포는 7-8주령의 C57BL/6 암컷 마우스의 우측허리뒤쪽 부위에 100 μL씩 1cc 주사기(26G)를 이용하여 이식하였다. MC38 was prepared to have 200000 cells per 100 μL, using Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) in a 1: 1 mixture. Prepared cells were transplanted using a 1cc syringe (26G) at 100 μL in the region of the right back of 7-8 week old C57BL / 6 female mice.
MC38 세포주를 각각 마우스에 이식한 이후 5일째부터 1F12_H3L5(20 mg/kg, i.p.), Atezolizumab(5 mg/kg, i.p.) 투여를 시작하여 주 2회 투여 진행하였다. 병용투여에 따른 반응성을 평가하기 위하여 종양이식 후 5일째 되는 시점에서 단독투여군과 같이 1F12_H3L5(20 mg/kg, i.p.), Atezolizumab(5 mg/kg, i.p.) 병용투여를 진행하였으며, 병용투여시 1F12_H3L5(20 mg/kg, i.p.)을 먼저 투여 후 이어서 Atezolizumab(5 mg/kg, i.p.)을 투여하였다. 종양 크기는 캘리퍼를 이용하여 장축과 단축을 미리미터(mm) 단위로 측정하여 [(장축) × (단축)2 ×0.5]의 계산식으로 산출하여 측정하였다.After transplanting the MC38 cell lines into mice, the administration of 1F12_H3L5 (20 mg / kg, ip) and Atezolizumab (5 mg / kg, ip) was started twice a week from the 5th day. To evaluate the responsiveness of co-administration, 1F12_H3L5 (20 mg / kg, ip) and Atezolizumab (5 mg / kg, ip) were co-administered with the single-administered group at 5 days after tumor transplantation. (20 mg / kg, ip) was first administered followed by Atezolizumab (5 mg / kg, ip). Tumor size was measured by calculating the long axis and short axis in millimeters (mm) using a caliper to calculate the formula ((long axis) × (short axis) 2 × 0.5).
평가결과 MC38 종양 동물모델에서는 1F12_H3L5(20 mg/kg, i.p.) 투여에 따라 유의미한 종양 억제능이 관찰되지 않았고, Atezolizumab(5 mg/kg, i.p.) 투여군에서는 약 40-50%의 종양이 억제된 것을 관찰할 수 있었다. 동일 모델에서의 병용투여군(1F12_H3L5 + Atezolizumab)에서는 대조군 대비 종양이 발생하지 않음을 확인하였으며(종양 이식 후 22일째), 실험을 종료한 43일경에는 해당 병용투여군에서 1 개체에서만 종양이 형성되고 나머지 4 개체는 지속적으로 종양이 형성되지 않는 것을 관찰하였다.The results showed that no significant tumor suppression was observed in the MC38 tumor animal model following the administration of 1F12_H3L5 (20 mg / kg, ip), and about 40-50% of the tumor was suppressed in the Atezolizumab (5 mg / kg, ip) group. Could. In the co-administration group (1F12_H3L5 + Atezolizumab) in the same model, it was confirmed that tumors did not occur compared to the control group (day 22 after tumor transplantation). Subjects continued to observe no tumor formation.
MC38 종양 동물모델에서 진행된 동물 시험결과는 1F12_H3L5와 대표적인 면역관문억제제로 알려져 있는 Atezolizumab(PD-L1 억제제)과의 병용투여를 통하여 1F12_H3L5의 치료효능이 증대될 수 있음을 시사한다(도 9).Animal test results conducted in MC38 tumor animal model suggest that 1F12_H3L5 can be enhanced by co-administration of 1F12_H3L5 with Atezolizumab (PD-L1 inhibitor), which is known as a representative immune gateway inhibitor (FIG. 9).
실시예 7: 동물모델에서 방사선 치료와의 병용치료 반응성 평가Example 7 Evaluation of Combination Therapy Reactivity with Radiation Therapy in Animal Models
종양세포가 이식된 동물모델에서 종양성장 억제능을 평가하기 위하여 마우스 대장암 종양세포인 MC38 세포를 마우스에 이식하여 종양동물모델을 제작하여 1F12_H3L5 투여에 따른 종양성장 억제능을 평가하였다.In order to evaluate the tumor growth inhibitory ability in the animal model transplanted with tumor cells, MC38 cells, which are mouse colon cancer tumor cells, were transplanted into mice to prepare tumor animal models and evaluated tumor growth inhibitory ability according to 1F12_H3L5 administration.
MC38을 100 μL당 200000 cell이 존재하도록 준비하였으며, 이때 Hank’s Salt(HBSS) solution(Gibco)과 Basal Matrigel(Corning®)을 1 : 1 로 섞은 solution을 이용하였다. 준비된 세포는 7-8주령의 C57BL/6 암컷 마우스의 우측허리뒤쪽 부위에 100 μL씩 1cc 주사기(26G)를 이용하여 이식하였다. 종양 크기는 캘리퍼를 이용하여 장축과 단축을 미리미터(mm) 단위로 측정하여 [(장축) × (단축)2 ×0.5]의 계산식으로 산출하여 측정하였다. 방사선 치료를 위하여 종양 이식 후 20일이 되는 시점에서 마우스를 마취하여 방사선 조사기를 이용하여 피하이식된 종양에 방사선을 2Gy 단회 조사하였다.MC38 was prepared to have 200000 cells per 100 μL, wherein Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) were used in a 1: 1 mixture. Prepared cells were transplanted using a 1cc syringe (26G) at 100 μL in the region of the right back of 7-8 week old C57BL / 6 female mice. Tumor size was measured by calculating the long axis and short axis in millimeters (mm) using a caliper to calculate the formula ((long axis) × (short axis) 2 × 0.5). For radiotherapy, mice were anesthetized at 20 days after tumor implantation and irradiated with 2Gy single doses of the subcutaneous tumor using a radiation irradiator.
시험 결과, 시험 종료시점 기준으로 방사선 조사군에서 약 80%에 가까운 종양성장 억제가 관찰되었으며, 방사선 조사와 함께 1F12_H3L5 또는 Atezolizumab을 각각 투여한 경우 약 90%에 가까운 종양 성장 억제능이 확인되었다(도 10).As a result of the test, nearly 80% of tumor growth inhibition was observed in the radiation group at the end of the test, and nearly 90% of tumor growth inhibition was observed when 1F12_H3L5 or Atezolizumab was administered together with irradiation (Fig. 10). ).
실시예 8: MC38 동물모델 종양에서의 면역세포 발현 분석Example 8 Analysis of Immune Cell Expression in MC38 Animal Model Tumors
면역관문억제제(Immune-checkpoint inhibitor) 등과의 병용투여 전략 등의 매커니즘 분석을 위하여, MC38 동물모델을 제작하여 종양조직에서의 면역세포 발현분석을 진행하였다.In order to analyze the mechanism of the co-administration strategy with the immuno-checkpoint inhibitor, an MC38 animal model was prepared and analyzed for the expression of immune cells in tumor tissues.
MC38을 100 μL당 200000 cell이 존재하도록 준비하였으며, 이때 Hank’s Salt(HBSS) solution(Gibco)과 Basal Matrigel(Corning®)을 1 : 1 로 섞은 solution을 이용하였다. 준비된 세포는 7-8주령의 C57BL/6 암컷 마우스의 우측허리뒤쪽 부위에 100 μL씩 1cc 주사기(26G)를 이용하여 이식하였다. 종양크기가 약 800-1000 mm3 되는 시점에서 부검하여 종양조직을 확보하였으며, 분리된 종양조직을 이용하여 RNA sequencing을 진행하여 분석하였다. 분석을 위하여 기존에 논문으로 보고된 주요 면역세포 별 gene expression signature를 이용하여 분석하였다.MC38 was prepared to have 200000 cells per 100 μL, wherein Hank's Salt (HBSS) solution (Gibco) and Basal Matrigel (Corning®) were used in a 1: 1 mixture. Prepared cells were transplanted using a 1cc syringe (26G) at 100 μL in the region of the right back of 7-8 week old C57BL / 6 female mice. Tumor tissue was secured by autopsy at the time of tumor size of about 800-1000 mm 3 and analyzed by RNA sequencing using isolated tumor tissue. For the analysis, the gene expression signature of each major immune cell reported in the paper was analyzed.
MC38 종양조직에서 주요 면역세포 발현을 확인한 결과, 면역 세포 침윤이 많은 종양으로 확인된다 (도 11). 따라서 MC38 종양 모델에서 면역관문억제제 치료 및 종양면역관련 치료 반응성이 나타날 가능성이 높음을 시사하며, 향후 시험에서 종양의 면역세포 발현 경향에 따라 치료 반응성을 예측할 수 있을 것으로 예상된다.As a result of confirming the major immune cell expression in MC38 tumor tissue, it is confirmed that tumors with a large number of immune cell infiltration (Fig. 11). Therefore, it is highly likely that the MC38 tumor model is likely to show immunoreactivity suppressor treatment and tumor immunotherapy-related responsiveness, and it is expected that future responsiveness will be predicted according to the tendency of tumor cell expression.
실시예 9: 종양에서의 면역체크포인트 PD-L1 분석Example 9: Immune Checkpoint PD-L1 Analysis in Tumors
MC38 모델에서 1F12_H3L5를 투여한 마우스와 투여하지 않은 마우스의 종양세포에서 면역체크포인트인 PD-L1의 발현 변화를 확인하고자, 종양 조직은 단일 세포로 분리하는 과정을 수행하였다. 단일 세포에서 면역세포 마커인 CD45와 PD-L1의 염색을 통해 종양세포에서의 PD-L1에 대한 분석을 수행하였다. 종양세포에 침습한 면역세포를 배제하기 위하여 CD45의 발현이 없는 세포에서 PD-L1의 발현을 확인하였다.In order to confirm the expression changes of PD-L1, an immune checkpoint in tumor cells of 1F12_H3L5 and non-administered mice in the MC38 model, tumor tissues were separated into single cells. Analysis of PD-L1 in tumor cells was performed by staining CD45 and PD-L1, which are immune cell markers in single cells. In order to exclude immune cells invading tumor cells, expression of PD-L1 was confirmed in cells without expression of CD45.
그 결과, 1F12_H3L5를 투여한 마우스 개체에서 PD-L1의 발현하는 세포가 2배 이상 증가함을 확인하였다(도 12). 이는 1F12_H3L5와 PD-L1 저해제에 대한 민감도를 증가시킬 수 있음을 시사한다.As a result, it was confirmed that the cells expressing PD-L1 more than doubled in mouse subjects to which 1F12_H3L5 was administered (FIG. 12). This suggests that sensitivity to 1F12_H3L5 and PD-L1 inhibitors may be increased.
본 발명에 따른 c-Met에 결합하는 항체 또는 이의 항원 결합 단편은 인간 및 마우스 c-Met에 높은 친화력으로 결합할 수 있어 마우스 종양모델을 이용한 효능 평가에서 보다 정확한 전임상 결과를 확인할 수 있다. 본 발명에 따른 c-Met에 결합하는 항체 또는 이의 항원 결합 단편은 목적하는 암의 예방 또는 치료에 유용하게 사용될 수 있다.Antibodies or antigen-binding fragments thereof that bind to c-Met according to the present invention can bind to human and mouse c-Met with high affinity, thereby confirming more accurate preclinical results in efficacy evaluation using a mouse tumor model. Antibodies or antigen-binding fragments thereof that bind to c-Met according to the present invention can be usefully used for the prevention or treatment of a desired cancer.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.

Claims (20)

  1. 서열번호 1 또는 27의 아미노산 서열을 포함하는 중쇄(heavy chain) CDR1; 서열번호 2 및 28 내지 31로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR2; 서열번호 3, 32 및 33으로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 CDR3를 포함하는 중쇄 가변영역; 및Heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1 or 27; A heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 28-31; A heavy chain variable region comprising a heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 32 and 33; And
    서열번호 4, 34 및 35로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄(light chain) CDR1; 서열번호 5, 36 및 37로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR2; 서열번호 6, 38 및 39로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 CDR3를 포함하는 경쇄 가변영역을 포함하는 항-c-Met 항체 또는 이의 항원 결합 단편.Light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 34 and 35; Light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 36 and 37; An anti-c-Met antibody or antigen-binding fragment thereof comprising a light chain variable region comprising a light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 38 and 39.
  2. 제1항에 있어서, 서열번호 40 및 42 내지 48로 구성된 군에서 선택된 아미노산 서열을 포함하는 중쇄 가변영역 및 서열번호 41 및 49 내지 54로 구성된 군에서 선택된 아미노산 서열을 포함하는 경쇄 가변영역을 포함하는 것을 특징으로 하는 항-c-Met 항체 또는 이의 항원 결합 단편.The method of claim 1, wherein the heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 40 and 42 to 48 and the light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41 and 49 to 54 An anti-c-Met antibody or antigen-binding fragment thereof.
  3. 제1항 또는 제2항에 있어서, 단클론 항체인 것을 특징으로 하는 항-c-Met 항체 또는 이의 항원 결합 단편.The anti-c-Met antibody or antigen-binding fragment thereof according to claim 1 or 2, which is a monoclonal antibody.
  4. 제1항 또는 제2항에 있어서, 상기 항원 결합 단편은 상기 항-c-Met 항체의 scFv, (scFv)2, scFv-Fc, Fab, Fab' 및 F(ab')2로 이루어진 군에서 선택되는 것을 특징으로 하는 항-c-Met 항체 또는 이의 항원 결합 단편.The method of claim 1, wherein the antigen-binding fragment is selected from the group consisting of scFv, (scFv) 2 , scFv-Fc, Fab, Fab 'and F (ab') 2 of the anti-c-Met antibody. An anti-c-Met antibody or antigen-binding fragment thereof.
  5. 제1항에 있어서, 상기 항체 또는 이의 항원 결합 단편은 인간 c-Met 및 마우스 c-Met에 교차결합하는 것을 특징으로 하는 항-c-Met 항체 또는 이의 항원 결합 단편.The anti-c-Met antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment thereof cross-links to human c-Met and mouse c-Met.
  6. 제1항의 항-c-Met 항체 또는 이의 항원 결합 단편을 포함하는 이중특이 항체(bispecific antibody) 또는 항체-약물 접합체(antibody-drug conjugate).A bispecific antibody or antibody-drug conjugate comprising the anti-c-Met antibody of claim 1 or an antigen binding fragment thereof.
  7. 제1항의 항-c-Met 항체 또는 이의 항원 결합 단편을 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating cancer, comprising the anti-c-Met antibody of claim 1 or an antigen-binding fragment thereof as an active ingredient.
  8. 제6항의 이중특이 항체 또는 항체-약물 접합체를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating cancer, comprising the bispecific antibody or antibody-drug conjugate of claim 6 as an active ingredient.
  9. 제7항 또는 제8항에 있어서, 상기 암은 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 또는 골수암인 것을 특징으로 하는 약학 조성물.The method of claim 7 or 8, wherein the cancer is breast cancer, colon cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon Pharmaceutical composition, characterized in that cancer, vaginal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer or bone marrow cancer.
  10. 제7항 또는 제8항에 있어서, 방사선을 사용한 병용 치료에 사용되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 7 or 8, which is used for combination treatment with radiation.
  11. 제1항에 따른 항-c-Met 항체 또는 이의 항원 결합 단편을 코딩하는 핵산.A nucleic acid encoding an anti-c-Met antibody or antigen binding fragment thereof according to claim 1.
  12. 제11항에 따른 핵산을 포함하는 재조합 발현 벡터.A recombinant expression vector comprising the nucleic acid according to claim 11.
  13. 제12항에 따른 재조합 발현 벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant expression vector according to claim 12.
  14. 제13항에 있어서, 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택된 것임을 특징으로 하는 숙주세포.The host cell according to claim 13, wherein the host cell is selected from the group consisting of animal cells, plant cells, yeast, E. coli and insect cells.
  15. 제13항에 있어서, 원숭이 신장 세포7(COS7: monkey kidney cells) 세포, NSO 세포, SP2/0 세포, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney) 세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK293 세포, 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스 속(Streptomyces sp.), 슈도모나스 속(Pseudomonas sp.), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스 속(Staphylococcus sp.), 아스페르길러스 속(Aspergillus sp.), 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 쉬조사카로마세스 속(Schizosaccharomyces sp.) 및 뉴로스포라 크라사(Neurosporacrassa)로 구성된 군에서 선택되는 것을 특징으로 하는 숙주세포.The method of claim 13, wherein monkey kidney cells (COS7) cells, NSO cells, SP2 / 0 cells, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) ) Cells, MDCK, myeloma cell line, HuT 78 cells and HEK293 cells, Bacillus subtilis, Streptomyces sp., Pseudomonas sp., Proteus mirabilis Or the genus Staphylococcus sp., Aspergillus sp., Pichia pastoris, Saccharomyces cerevisiae, Schizocaromas genus (Schizosaccharomyces sp.) And neurosporacrasa (Neurosporacrassa) host cell, characterized in that selected from the group consisting of.
  16. 제13항 내지 제15항 중 어느 한 항에 따른 숙주세포를 배양하는 단계를 포함하는 항-c-Met 항체 또는 이의 항원 결합 단편의 제조 방법.A method for preparing an anti-c-Met antibody or antigen-binding fragment thereof, comprising culturing the host cell according to any one of claims 13 to 15.
  17. 제1항의 항-c-Met 항체 또는 이의 항원 결합 단편 및 다른 암 치료제를 포함하는 암 치료용 병용 투여 조성물.A combination dosage composition for treating cancer, comprising the anti-c-Met antibody or antigen-binding fragment thereof of claim 1 and another cancer therapeutic agent.
  18. 제17항에 있어서, 상기 다른 암 치료제는 면역관문억제제인 것을 특징으로 하는 병용 투여 조성물.18. The combination dosage composition of claim 17, wherein the other cancer therapeutic agent is an immune gateway inhibitor.
  19. 제18항에 있어서, 상기 면역관문억제제는 항-CTLA-4 항체, 항-PD-1 항체 또는 항-PD-L1 항체인 것을 특징으로 하는 병용 투여 조성물.19. The combination dosage composition of claim 18, wherein the immune gateway inhibitor is an anti-CTLA-4 antibody, an anti-PD-1 antibody or an anti-PD-L1 antibody.
  20. 제17항에 있어서, 상기 암은 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 또는 골수암인 것을 특징으로 하는 병용 투여 조성물.The method of claim 17, wherein the cancer is breast cancer, colon cancer, lung cancer, gastric cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, Concomitant administration composition characterized in that it is small bowel cancer, endocrine cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer or bone marrow cancer.
PCT/KR2019/005257 2018-05-02 2019-05-02 Antibody specifically binding to c-met, and use thereof WO2019212253A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020561634A JP7240417B2 (en) 2018-05-02 2019-05-02 Antibody that specifically binds to C-MET and use thereof
CN201980036982.0A CN112601760A (en) 2018-05-02 2019-05-02 Antibodies that specifically bind to C-MET and uses thereof
EP19796175.8A EP3808772A4 (en) 2018-05-02 2019-05-02 Antibody specifically binding to c-met, and use thereof
US17/052,196 US20210363262A1 (en) 2018-05-02 2019-05-02 Antibody specifically binding to c-met, and use thereof
AU2019263432A AU2019263432B2 (en) 2018-05-02 2019-05-02 Antibody specifically binding to c-Met, and use thereof
CA3098983A CA3098983A1 (en) 2018-05-02 2019-05-02 Antibody specifically binding to c-met, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180050837 2018-05-02
KR10-2018-0050837 2018-05-02
KR1020190050780A KR102221755B1 (en) 2018-05-02 2019-04-30 Antibody specifically binding to c-Met and Use thereof
KR10-2019-0050780 2019-04-30

Publications (1)

Publication Number Publication Date
WO2019212253A1 true WO2019212253A1 (en) 2019-11-07

Family

ID=68386451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005257 WO2019212253A1 (en) 2018-05-02 2019-05-02 Antibody specifically binding to c-met, and use thereof

Country Status (1)

Country Link
WO (1) WO2019212253A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592408A (en) * 2020-07-20 2021-04-02 北京鼎成肽源生物技术有限公司 Single-chain antibody targeting c-Met, chimeric antigen receptor, recombinant vector, CAR-T cell and application
CN115297889A (en) * 2020-09-01 2022-11-04 荣昌生物制药(烟台)股份有限公司 anti-c-Met antibody drug conjugate and application thereof
WO2023111337A1 (en) * 2021-12-17 2023-06-22 F. Hoffmann-La Roche Ag Antisense oligonucleotide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147189A (en) * 2013-06-18 2014-12-30 사회복지법인 삼성생명공익재단 Antibodies cross-reactive to Human and Mouse c-Met and Uses thereof
KR20150137015A (en) 2014-05-28 2015-12-08 주식회사 레고켐 바이오사이언스 Compounds comprising self-immolative group
KR20160017918A (en) * 2014-08-07 2016-02-17 주식회사 파멥신 c-Met Specific Human Antibody and Method for Manufacturing the Same
WO2017106810A2 (en) * 2015-12-17 2017-06-22 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147189A (en) * 2013-06-18 2014-12-30 사회복지법인 삼성생명공익재단 Antibodies cross-reactive to Human and Mouse c-Met and Uses thereof
KR20150137015A (en) 2014-05-28 2015-12-08 주식회사 레고켐 바이오사이언스 Compounds comprising self-immolative group
KR20160017918A (en) * 2014-08-07 2016-02-17 주식회사 파멥신 c-Met Specific Human Antibody and Method for Manufacturing the Same
WO2017106810A2 (en) * 2015-12-17 2017-06-22 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Science", 1995
"UniProtKB", Database accession no. P16056
CHAN AML ET AL., ONCOGENE, vol. 2, 1988, pages 593 - 599
COMOGLIO PM ET AL., NAT. REV. DRUG. DISCOV., vol. 7, 2008, pages 504 - 516
DATABASE NCBI 14 July 2016 (2016-07-14), "immunoglobulin gamma heavy chain variable region, partial [Homo sapiens", XP055653025, Database accession no. CAC28899.1 *
DATABASE NCBI 14 July 2016 (2016-07-14), SCHRINER: "immunoglobulin light chain variable region, partial [Homo sapiens", XP055653035, Database accession no. ABG38359.1 *
DEAN M. ET AL., NATURE, vol. 318, 1985, pages 385 - 388
GHERARDI ET AL., NAT. REV. CANCER, vol. 12, 2012, pages 89 - 103
HOEY T. ET AL., CELL STEM CELL, vol. 5, 2009, pages 168 - 177
HONG, J. MICROBIOL., vol. 45, 2007, pages 528 - 533
HUANG J. ET AL., CYTOTECHNOLOGY, vol. 62, 2010, pages 61 - 71
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1987, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
LEMMON M. A.SCHLESSINGER J., CELL, vol. 141, 2010, pages 1117 - 1134
LIANG W-C ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 6985 - 6992
MARTENS T ET AL., CLIN. CANCER RES., vol. 15, 2006, pages 6144 - 6152
PARK, H. K. ET AL.: "Tumor Inhibitory Effect of IRCR201, a Novel Cross-Reactive c-Met Antibody Targeting the PSI Domain", INT. J. MOL. SCI., vol. 18, no. 9, 1968, 2017, pages 1 - 22, XP055653011, DOI: 10.3390/ijms18091968 *
PETRELLI A ET AL., PNAS, vol. 103, 2006, pages 5090 - 5095
TALMADGE J.E. ET AL., AM. J. PATHOL., vol. 170, 2007, pages 793 - 804
TASHIRO K ET AL., PNAS, vol. 87, 1990, pages 3200 - 3204

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592408A (en) * 2020-07-20 2021-04-02 北京鼎成肽源生物技术有限公司 Single-chain antibody targeting c-Met, chimeric antigen receptor, recombinant vector, CAR-T cell and application
CN115297889A (en) * 2020-09-01 2022-11-04 荣昌生物制药(烟台)股份有限公司 anti-c-Met antibody drug conjugate and application thereof
WO2023111337A1 (en) * 2021-12-17 2023-06-22 F. Hoffmann-La Roche Ag Antisense oligonucleotide

Similar Documents

Publication Publication Date Title
AU2019229076B2 (en) Anti-TIGIT antibodies and uses thereof
CA2990572C (en) Method for selectively manufacturing antibody-drug conjugate
KR102508023B1 (en) Conjugates comprising cell-binding agents and cytotoxic agents
WO2019225777A1 (en) Anti-ror1 antibody and use thereof
WO2017052241A1 (en) Novel anti-mesothelin antibody and composition comprising the same
JP6735355B2 (en) Anti-Axl antibodies, antibody fragments and immunoconjugates thereof and their use
AU2018271751B2 (en) Anti-human interleukin-2 antibodies and uses thereof
JP2018524373A (en) Drug-conjugated bispecific antigen-binding construct
KR20170066421A (en) Anti-cll-1 antibodies and immunoconjugates
TW201625689A (en) Anti-B7-H4 antibodies and immunoconjugates
WO2019212253A1 (en) Antibody specifically binding to c-met, and use thereof
JP2008520186A (en) Novel antibody against mammalian EAG1 ion channel protein
WO2018174544A2 (en) Antibody binding specifically to muc1 and use thereof
WO2021107566A1 (en) Antibody against c-kit and use thereof
CN113195541A (en) Antibodies against PMEL17 and conjugates thereof
TW202233251A (en) Antibody drug conjugates
JP2024500242A (en) Complex of tumor-specific claudin 18.2 antibody and drug
WO2020004937A1 (en) Anti-bcma antibody-drug conjugate and use thereof
WO2016084993A1 (en) Novel egfrviii antibody and composition comprising same
WO2020071881A1 (en) Pdgf receptor antibody and use thereof
KR20240004708A (en) Antibody-drug conjugate targeting nectin-4 and method and use thereof
KR20230078152A (en) Antibody Specifically Binding to PSMA and Uses thereof
JP7240417B2 (en) Antibody that specifically binds to C-MET and use thereof
WO2024063624A1 (en) Antibody-drug conjugate comprising drug and antibody specifically binding to grp94 or antigen-binding fragment thereof
WO2022169269A1 (en) Anti-ctla-4 antibody and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3098983

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020561634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019796175

Country of ref document: EP

Effective date: 20201202

ENP Entry into the national phase

Ref document number: 2019263432

Country of ref document: AU

Date of ref document: 20190502

Kind code of ref document: A