WO2019211964A1 - Expandable reflector and expansion structure for expandable reflector - Google Patents

Expandable reflector and expansion structure for expandable reflector Download PDF

Info

Publication number
WO2019211964A1
WO2019211964A1 PCT/JP2019/014833 JP2019014833W WO2019211964A1 WO 2019211964 A1 WO2019211964 A1 WO 2019211964A1 JP 2019014833 W JP2019014833 W JP 2019014833W WO 2019211964 A1 WO2019211964 A1 WO 2019211964A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
reflector
main
deployable
sub
Prior art date
Application number
PCT/JP2019/014833
Other languages
French (fr)
Japanese (ja)
Inventor
和行 中村
中村 信子
小澤 悟
顕太郎 西
Original Assignee
株式会社テクノソルバ
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018239922A external-priority patent/JP7179290B2/en
Application filed by 株式会社テクノソルバ, 国立研究開発法人宇宙航空研究開発機構 filed Critical 株式会社テクノソルバ
Publication of WO2019211964A1 publication Critical patent/WO2019211964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • H01Q15/20Collapsible reflectors

Definitions

  • the present invention relates to a deployable reflector and a deployable structure for a deployable reflector.
  • Patent Document 1 describes a deployable antenna that has a plurality of flat trusses arranged radially around a folding center axis, and can be folded and unfolded like a folding umbrella around the folding center axis. .
  • the present invention has been made in view of the above-described problems, and a deployable reflector having a structure capable of suppressing an error in the shape of the reflector surface caused by an error in the end position of the deploying operation, and for the deployable reflector An unfolding structure is provided.
  • a reference axis A support structure configured to be deployable around the reference axis, and forming a concave support surface on one surface side in the expanded state;
  • a reflector part supported by the support surface of the support structure part and forming a reflector surface along the support surface;
  • the support structure is A plurality of main supports elongated in a radial direction around the reference axis;
  • a sub-support that is laid between adjacent main supports; It is composed including At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis, When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports.
  • the support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
  • a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports.
  • a reference axis It is configured to be deployable with reference to the reference axis, and a support structure portion that forms a concave support surface on one surface side in the expanded state;
  • a deployable structure for a deployable reflector that supports a reflector portion forming a reflector surface of a deployable reflector by the support surface
  • the support structure is A plurality of main supports elongated in a radial direction around the reference axis; A sub-support that is laid between adjacent main supports; It is composed including At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis, When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports.
  • the support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
  • a deployable structure for a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
  • the reflector surface is formed by the support structure portion being deployed in the circumferential direction centered on the reference axis, the shape error of the reflector surface due to the error in the end position of the deployment operation is suppressed. be able to.
  • FIG. 9A and FIG. 9B are views for explaining a connecting structure between a main support and a support element constituting the deployable reflector according to the embodiment, among which FIG. 9A is an exploded view.
  • FIG. 9B are perspective views of a connection state. It is a figure for demonstrating the connection structure of the main support body and support element which comprise the expandable reflector which concerns on embodiment, and the connection structure of support elements, among these, Fig.10 (a) is an exploded perspective view, FIG.
  • FIG. 13 (B) is a perspective view of a connection state. It is a top view for demonstrating the connection structure of the support elements which comprise the expandable reflector which concerns on embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • 13 (a) and 13 (b) are diagrams for explaining a structure for fixing the mesh (reflector portion) to the support element. Of these, FIG. 13 (a) shows the support element and the mesh as the plate surface of the support element.
  • FIG. 13B is a perspective view as viewed in the longitudinal direction. It is a figure for demonstrating the expansion
  • FIG. 15 (a) and 15 (b) are diagrams for explaining a modification of the connecting structure of the support elements constituting the deployable reflector, in which FIG. 15 (a) is a plan view and FIG. b) is a perspective view of the support element.
  • FIG. 16A is a schematic plan view showing a first modification of the arrangement of the support elements in the unit module
  • FIG. 16B is a schematic plan view showing a second modification of the arrangement of the support elements in the unit module.
  • FIG. 17 (a) and 17 (b) are schematic plan views for explaining Modification Example 1 of the unfolding mechanism. Of these, FIG. 17 (a) shows the storage state (folded state), and FIG. (B) shows a developed state.
  • FIG. 18 (a) and 18 (b) are schematic plan views for explaining Modification Example 2 of the unfolding mechanism.
  • FIG. 18 (a) shows the storage state (folded state)
  • FIG. (B) shows a developed state. It is a typical top view for demonstrating the modification 3 of an expansion
  • FIG. 20A and FIG. 20B is a schematic partial view for explaining a third modification of the deployment mechanism, in which FIG. 20A is a plan view and FIG. 20B is a plan view. It is a perspective view.
  • FIG. 21A and FIG. 21B is a schematic partial view for explaining Modification Example 4 of the deployment mechanism, in which FIG. 21A is a plan view and FIG. It is a perspective view.
  • FIG. 22A is a schematic plan view (partial view) for explaining Modification Example 5 of the deployment mechanism
  • FIG. 22B is a schematic plan view for explaining Modification Example 6 of the deployment mechanism.
  • FIG. 22A is a schematic plan view (partial view
  • the deployable reflector 100 includes a reference shaft 11, a support structure portion 12, and a reflector portion 50 (FIGS. 2, 13A, and 13B).
  • the reflector unit 50 is a mesh composed of a metal wire 51 as shown in FIG.
  • the support structure 12 is configured to be deployable around the reference shaft 11. In the unfolded state, the support structure portion 12 forms a concave support surface 13 (see FIG. 12) on one surface side of the support structure portion 12. In FIG. 2, the outline 52 of the reflector part 50 in the unfolded state is shown.
  • the reflector unit 50 covers substantially the entire support surface 13 of the support structure unit 12. Moreover, in each of FIG. 13A and FIG. 13B, only a part of the reflector unit 50 is shown.
  • the reflector unit 50 is supported by the support surface 13 of the support structure unit 12 and forms a reflector surface along the support surface 13.
  • the reference shaft 11 is formed in a linear bar shape.
  • the support structure portion 12 includes a plurality of main supports 20 that are long in the radial direction around the reference axis 11 and a sub-support 30 that is installed between adjacent main supports 20. It is configured. At least one of the plurality of main supports 20 is supported by the reference shaft 11, and an angle between the main support 20 and the adjacent main support 20 can be opened and closed with the reference shaft 11 as an axis center. When the angle between the main support 20 pivotally supported by the reference shaft 11 and the main support 20 adjacent to the main support 20 is opened, the main support 20 is installed between the main supports 20.
  • the sub support 30 expands in the circumferential direction around the reference axis 11.
  • the sub-support 30 has a lattice structure that defines a plurality of facets 37 (FIGS. 2 and 15).
  • a support surface 13 is formed by the plurality of main supports 20 and the sub-support 30 that is installed between the main supports 20.
  • the deployable structure 80 for a deployable reflector according to the present embodiment is obtained by removing the reflector portion 50 from the deployable reflector 100 according to the present embodiment. That is, the deployable structure 80 for a deployable reflector according to the present embodiment is configured to be deployable with reference to the reference shaft 11 and the reference shaft 11, and the concave support surface 13 is provided on one surface side in the deployed state.
  • a deployable structure for a deployable reflector that includes a support structure 12 and supports a reflector portion 50 that forms a reflector surface of the deployable reflector 100 with a support surface 13.
  • 11 includes a plurality of main supports 20 that are long in the radial direction around the center 11 and a sub-support 30 that is installed between adjacent main supports 20.
  • At least one of the bodies 20 is pivotally supported by the reference shaft 11, and an angle between the body 20 and the adjacent main support 20 can be opened and closed with the reference shaft 11 as an axis center.
  • the main support 20 is installed between the main supports 20.
  • the sub-support 30 is expanded in the circumferential direction around the reference axis 11 to form a lattice structure that defines a plurality of facets 37.
  • the sub-support 30 is between the main supports 20 and the main supports 20.
  • the support surface 13 is formed by the sub-support body 30 that is installed. It can be said that the deployable structure 80 for the deployable reflector is a framework that supports the reflector portion 50.
  • the reflector unit 50 is not shown.
  • the side on which the support surface 13 is located may be referred to as “up” and the opposite side may be referred to as “down”.
  • This convenient vertical direction does not necessarily coincide with the vertical direction when the deployable reflector 100 is manufactured or used.
  • the radial direction around the reference axis 11 may be referred to as the radial direction.
  • the deployable reflector 100 is, for example, deployed in outer space and used to reflect radio waves for transmitting or receiving radio waves.
  • the deployable reflector 100 can be used as, for example, a SAR (SAR: Synthetic Aperture Radar), a synthetic aperture radar, or a transmission or reception antenna for communication.
  • SAR Synthetic Aperture Radar
  • the place where the deployable reflector 100 is used is not limited to outer space, and may be, for example, the ground or the stratosphere.
  • each of the plurality of main supports 20 is formed in a plane shape parallel to the reference axis 11. More specifically, in the case of this embodiment, each of the plurality of main supports 20 is formed in a thin plate shape. That is, each of the plurality of main supports 20 is formed in a thin plate shape that is long in the radial direction around the reference axis 11 and parallel to the reference axis 11.
  • the main supports 20 are arranged so as to be substantially rotationally symmetric in plan view (when the support structure 12 is viewed in the axial direction of the reference shaft 11).
  • the support surface 13 is, for example, substantially circular in plan view. However, in the case of this embodiment, the support surface 13 is an offset parabolic surface.
  • the length of the main support body 20 in the radial direction around the reference axis 11 is slightly different from each other, for example (see FIG. 3).
  • the number of main supports 20 included in the support structure 12 is not particularly limited.
  • the support structure 12 includes, for example, 13 main supports 20.
  • one main support body 20 (fixed support body 20b described later) is fixed to a boom 61 described later.
  • another main support 20 (drive support 20a described later) adjacent to one side with respect to the fixed support 20b is in a state of being in surface contact with the fixed support 20b in the unfolded state (FIG. 2). reference).
  • the sub support 30 is not installed between the drive support 20a and the fixed support 20b.
  • eleven main supports 20 other than the drive support 20a and the fixed support 20b are referred to as driven supports 20c.
  • the support structure 12 includes a total of 12 sub-supports 30 (FIGS. 1 and 2).
  • a portion between a pair of adjacent main supports 20 may be referred to as a unit module 15.
  • Adjacent unit modules 15 share a main support 20 located at the boundary between them.
  • the unit module 15 does not exist between the drive support 20a and the fixed support 20b.
  • the support structure 12 is configured by twelve unit modules 15.
  • the main support 20 is more specifically, for example, as shown in FIGS. 7 and 8, a flat plate-like portion 21, a first support arm 25 fixed to the plate-like portion 21, and And a second support arm 26.
  • the plate-like portion 21 is formed in a thin plate shape that is long in the radial direction about the reference axis 11 and parallel to the reference axis 11.
  • Each of the first support arm 25 and the second support arm 26 is formed long in the radial direction.
  • Each of the first support arm 25 and the second support arm 26 is, for example, a flat plate member whose plate surface faces up and down, and is gradually tapered outward in the radial direction. That is, the dimensions of the first support arm 25 and the second support arm 26 in the circumferential direction around the reference axis 11 are reduced toward the outside in the radial direction.
  • the first support arm 25 and the second support arm 26 are pivotally supported on the reference shaft 11. That is, an insertion hole 25 a is formed at one end of the first support arm 25, and the first support arm 25 is arranged around the axis of the reference axis 11 by inserting the reference shaft 11 into the insertion hole 25 a. It is pivotally supported so that it can rotate. Similarly, an insertion hole 26 a is formed at one end of the second support arm 26, and the second support arm 26 is rotated around the axis of the reference axis 11 by inserting the reference shaft 11 into the insertion hole 26 a. It is pivotally supported by the shaft.
  • the first support arm 25 and the second support arm 26 of the fixed support 20b may be fixed to the reference shaft 11 or may be supported by the reference shaft 11. That is, the fixed support body 20 b may be fixed to the reference shaft 11 without being supported by the reference shaft 11, or may be supported by the reference shaft 11.
  • the other end of the first support arm 25, that is, the tip 25b, and the other end of the second support arm 26, that is, the tip 26b, are fixed to the radially inner end of the plate-like portion 21.
  • the plate-like portion 21 has, for example, two or three extending portions that extend radially inward.
  • each of the plate-like portions 21 of the fixed support body 20b and the driven support body 20c includes a first extension portion 22 located at a lower portion of the radially inner end portion of the plate-like portion 21 and the plate-like portion.
  • a second extending portion 23 located at the upper portion of the end portion on the radially inner side of the 21, and a third extending portion 24 located on the upper end portion of the end portion on the radially inner side of the plate-like portion 21.
  • the plate-like portion 21 of the drive support 20a includes a first extending portion 22 located at a lower portion of an end portion on the radially inner side of the plate-like portion 21 and an end portion on the radially inner side of the plate-like portion 21.
  • the second extending portion 23 is located at the upper end of the second extending portion 23, and the third extending portion 24 is not included.
  • the second support arm 26 is spaced apart from the first support arm 25.
  • the distal end portion 25 b of the first support arm 25 is fixed to the first extending portion 22 of the plate-like portion 21, and the distal end portion 26 b of the second support arm 26 is fixed to the second extending portion 23 of the plate-like portion 21. It is fixed to. Accordingly, the plate-like portion 21 is pivotally supported on the reference shaft 11 via a pair of upper and lower support arms (first support arm 25 and second support arm 26). That is, the main support 20 including the plate-like portion 21, the first support arm 25, and the second support arm 26 is pivotally supported on the reference shaft 11.
  • the first support arm 25 and the second support arm 26 of the fixed support 20b may be fixed to the reference shaft 11 as described above. Therefore, the fixed support 20b is fixed to the reference shaft 11. It may be.
  • the height difference between the height position where the first extension portion 22 is arranged and the height position where the second extension portion 23 is arranged is that the first support arm 25 is arranged. Is equal to the height difference between the height position where the second support arm 26 is disposed and the height position where the second support arm 26 is disposed.
  • first support arms 25 of the main support bodies 20 adjacent to each other have different height positions from each other by the thickness of the first support arm 25.
  • second support arms 26 of the main support bodies 20 adjacent to each other are different in height from each other by the thickness of the second support arm 26.
  • first support arms 25 are arranged to overlap each other, and the second support arms 26 are arranged to overlap each other.
  • the first support arm 25 at the uppermost position among the plurality of first support arms 25 and the second support arm 26 at the lowermost position among the plurality of second support arms 26 are disposed so as to overlap each other.
  • the boom 61 is connected to a structure of a spacecraft (hereinafter referred to as a space mechanism body) via, for example, a boom deployment mechanism (not shown).
  • the boom 61 is formed in a bar shape that is long in one direction.
  • the boom 61 extends in the radial direction about the reference shaft 11.
  • the fixed support body 20 b is fixed to the boom 61. More specifically, the lower edge portion of the plate-like portion 21 of the fixed support 20b is fixed along the longitudinal direction of the boom 61 (see FIGS. 4 and 12).
  • the plurality of main supports 20 13 main supports 20 in the case of the present embodiment
  • at least the 12 main supports 20 excluding the fixed supports 20 b are the reference shafts 11.
  • the plurality of main support bodies 20 included in the support structure 12 are close to each other in the circumferential direction and overlap each other in the circumferential direction.
  • the angle between the adjacent main supports 20 is opened (for example, each is opened at 30 degrees), and accordingly, it is installed between the adjacent main supports 20.
  • the sub-support 30 is expanded.
  • the sub-support 30 has a shape (lattice structure) that defines a plurality of facets 37.
  • the sub-support 30 includes a plurality of support elements 31 that form a lattice structure.
  • Each of the support elements 31 is formed in a plane shape parallel to the reference axis 11. More specifically, in the case of the present embodiment, each of the plurality of support elements 31 is formed in a thin plate shape.
  • the bending rigidity of the main support 20 is preferably larger than the bending rigidity of the support element 31.
  • the main support 20 and the support element 31 are made of the same material, and the plate thickness of the main support 20 is larger than the plate thickness of the support element 31.
  • the material of the plate-like portion 21 of the support element 31 and the main support 20 is not particularly limited, but each of the support element 31 and the plate-like portion 21 is made of, for example, carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics). can do.
  • CFRP Carbon Fiber Reinforced Plastics
  • the plurality of support elements 31 intersect in a lattice pattern.
  • a facet 37 is formed by the plurality of support elements 31.
  • the shape of the facet 37 formed by the plurality of support elements 31 of the sub-support 30 is a rhombus.
  • the facet 37 includes a facet 37 surrounded by a plurality of support elements 31 and a facet 37 surrounded by the plurality of support elements 31 and the main support 20.
  • the majority of the plurality of facets 37 defined by the sub-support 30 in the expanded state preferably has a shape elongated in the radial direction around the reference axis 11. Longer in the radial direction means that the dimension of the facet 37 in the radial direction is larger than the dimension of the facet 37 in the direction orthogonal to the radial direction in the plane of the facet 37.
  • the majority of the plurality of facets 37 is a rhombus that is long in the radial direction around the reference axis 11. More specifically, in the case of the present embodiment, substantially all facets 37 (the facets 37 except for the facets 37 at the peripheral edge of the support structure 12) are long diamonds in the radial direction around the reference axis 11. It is.
  • the sub-support body 30 includes a plurality of support elements 31 (which are arranged in parallel to one main support body 20 among the pair of main support bodies 20 sandwiching the sub-support body 30 therebetween.
  • a plurality of support elements 31 which are arranged in parallel to one main support body 20 among the pair of main support bodies 20 sandwiching the sub-support body 30 therebetween.
  • seven support elements 31 and a plurality of support elements 31 arranged in parallel to the other main support 20 (for example, seven support elements as shown in FIG. 5). 31).
  • a plurality of support elements 31 arranged in parallel to one main support 20 and a plurality of support elements 31 arranged in parallel to the other main support 20 intersect each other. .
  • FIGS. 5 and 7 it is possible to easily realize a structure in which each facet 37 has a diamond shape in the unfolded state.
  • the facet shape is square (the length of one side is 300 mm) and the case where the facet shape is an equilateral triangle (the length of one side is 300 mm), it was found that the latter has a smaller error. . If the facet shape is an equilateral triangle (the length of one side is 300 mm) and the facet shape is a rhombus (the length of one side is 312.5 mm, the apex angle is 45 degrees), the latter However, the error was found to be small.
  • the apex angle of the rhombus facet 37 is preferably less than 60 degrees, and more preferably less than 45 degrees.
  • the plurality of support elements 31 of the sub-support 30 intersect each other in a lattice shape.
  • the intersecting portion 32 (FIG. 5) between the support elements 31 is a swinging portion that allows the support elements 31 that intersect each other to swing each other.
  • the swinging axis of this swinging part is parallel to the reference shaft 11.
  • the swinging portion is a hinge configured by connecting the support elements 31 by an insertion structure.
  • the present invention is not limited to this example, and the swinging portion may be a portion that swings due to elastic deformation of the support element 31 itself.
  • one end portion 34 (FIG. 5) of the support element 31 is connected to the main support body 20, and this connection portion is also a swinging portion.
  • the swing axis of this swing part is also parallel to the reference axis 11.
  • connection structure between the main support 20 and the support element 31 and an example of a connection structure between the support elements 31 will be described with reference to FIGS. 9A to 10B.
  • the plate-like portion 21 of each main support 20 is formed with a plurality of slits 21c opened upward in a straight line. That is, the upper end of the slit 21 c reaches the upper edge 21 a of the plate-like portion 21, and the lower end of the slit 21 c does not reach the lower edge 21 b of the plate-like portion 21.
  • the plurality of slits 21c are arranged at equal intervals in the radial direction (radial direction).
  • each plate-like portion 21 has seven slits 21c.
  • the vertical dimension of each slit 21 c corresponds to the vertical dimension of the support element 31 at the connection point between the main support 20 and the support element 31. That is, the vertical dimension of the slit 21c located on the radially outer side is larger.
  • the support elements 31 of the adjacent sub-support bodies 30 are formed integrally with each other.
  • a support element 31 (support element 31 a) that constitutes one sub-support 30 and a support element 31 that constitutes the other sub-support 30 ( The support element 31b) is integrally formed.
  • the support elements 31a and 31b are bent with respect to each other at the boundary lines (end portions 34 of the support elements 31a and 31b), and can swing with respect to each other using the boundary lines as swing axes. . That is, the end portion 34 is a swinging portion between the support element 31a and the support element 31b.
  • the support elements 31a and 31b swingable, for example, a structure in which the resin thickness of the carbon fiber reinforced plastic constituting the support element 31 is locally thin at the end 34, or A structure in which carbon fibers are not locally impregnated with resin can be adopted.
  • the support element assembly 310 is a thin plate having a bent shape with a V shape in plan view.
  • the support elements 31 constituting the sub-support 30 have a plurality of types of lengths (for example, seven types of lengths).
  • the support element 31 connected to the radially inner portion of the plate-like portion 21 has a longer length, and the support element 31 connected to the radially outer portion of the plate-like portion 21 has a shorter length.
  • the support element assembly 310 is also prepared with a plurality of types of dimensions according to the type of length of the support element 31 (see FIG. 10A).
  • the deployable reflector 100 includes a support element 31 having a slit 33 opened upward as shown in FIGS. 9A and 9B and a slit 33 opened downward as shown in FIG. 10A. And a supporting element 31. That is, the deployable reflector 100 includes the support element assembly 310 having the slits 33 opened upward and the support element assembly 310 having the slits 33 opened downward.
  • the slit 33 of the support element 31 is formed at a position corresponding to the intersection 32 of the support elements 31 in the sub-support 30. More slits 33 are formed in the support element 31 that intersects more support elements 31.
  • the central portion of the support element assembly 310 (the end portion 34 of the support element 31) having the slit 33 that opens upward is moved to the main support 20. Insert into slit 21c.
  • the support element aggregate 310 having the slits 33 opened upward is inserted into the odd-numbered main support 20 in the circumferential order.
  • the center portion of the support element assembly 310 having the slit 33 that opens downward is inserted into the slit 21 c of the main support 20.
  • the support element assembly 310 having the slits 33 opened downward is inserted into the main support 20 that is even-numbered in the circumferential order.
  • the other is inserted into the slit 33 of each support element 31.
  • the intersection part 32 the rocking
  • the end part 34 of the support element 31 is connected to the fixed support 20b and the drive support 20a so as to be swingable.
  • each of the plurality of support elements 31 is formed in a thin plate shape, and the other of the support elements 31 that intersect each other is inserted into the slits 33 formed in the corresponding positions.
  • this engagement portion is a swinging portion (in this embodiment, a hinge). For this reason, while being able to connect the support elements 31 with a simple structure, it is possible to realize a configuration in which the support elements 31 swing.
  • the support element aggregate 310 is shared between the adjacent sub-supports 30. For this reason, a structure in which the sub-supports 30 are highly integrated can be realized.
  • a flexible adhesive tape 91 such as Kapton tape (registered trademark) is attached to the support elements 31 that intersect each other across the intersection 32.
  • Kapton tape registered trademark
  • the support elements 31 that intersect each other may be bonded to each other with a sheet made of the same material as that of the support element 31 straddling the intersection 32. That is, the intersecting portion 32 may be reinforced with a doubler structure.
  • the support surface 13 includes an upper edge 21 a of the plate-like portion 21 of the main support 20 and an upper edge 35 of the support element 31.
  • the curved surface is the support surface 13 (see FIGS. 1 and 12).
  • the shape of the support surface 13 may be a part of the surface of the polyhedron (lattice surface).
  • the vertical dimension of the plate-like part 21 gradually increases toward the tip side (radially outer side). More specifically, as shown in FIG. 12, the lower edge 21 b of the plate-like portion 21 extends in a straight line perpendicular to the reference axis 11, whereas the upper edge 21 a of the plate-like portion 21. Is gradually curved upward toward the tip side. Similarly, the vertical dimension of each support element 31 gradually increases as the distance from the reference axis 11 increases. More specifically, the lower edge 36 of the support element 31 extends in parallel to a plane including the upper edges 21 a of the plate-like portions 21 of the plurality of main supports 20.
  • the upper edge 35 of the support element 31 is gradually curved upward as it moves away from the reference axis 11.
  • the support surface 13 which is a smooth concave curved surface can be implement
  • the vertical dimension of the plate-like portion 21, that is, the vertical dimension of the main support 20 (the dimensions of the plate-like portion 21 and the main support 20 in the direction parallel to the axial direction of the reference shaft 11) It is larger than the vertical dimension (the dimension of the support element 31 in the direction parallel to the axial direction of the reference shaft 11). That is, the lower edge 36 of each support element 31 is located above a plane including the lower edges 21b of the plate-like portions 21 of the plurality of main supports 20.
  • the sub support 30 is provided on the upper part of the main support 20 (part on the support surface 13 side).
  • the reflector unit 50 is configured by knitting a plurality of metal wires 51 in a fine mesh shape.
  • the metal wire 51 constituting the reflector part 50 is fixed to the upper edge 35 of the support element 31 and the upper edge 21a of the plate-like part 21 of the main support 20.
  • FIG. 13B shows a state in which the metal wire 51 is fixed to the upper edge 35 of the support element 31.
  • a method for fixing the metal wire 51 is not particularly limited. For example, in a state where the reflector portion 50 is disposed along the support surface 13, a relatively soft adhesive 92 is supported on the support surface as shown in FIG. 13 may be bonded and fixed by potting from the lower side to the joint between the upper edge 35 or the upper edge 21a and the metal wire 51.
  • the reflector portion 50 is extended so as to have a shape along a mandrel (not shown) having a convex surface that fits the support surface 13.
  • the support surface 13 of the support structure portion 12 in the deployed state is abutted with the convex surface of the mandrel via the reflector portion 50.
  • the reflector line 50 is provided so as to cover almost the entire region of the support structure 12 in the unfolded state. In the unfolded state, the reflector portion 50 has a shape along the support surface 13.
  • the reflector portion 50 is fixed to the support structure portion 12 so as to be bent in a shape along the offset parabolic surface in the deployed state.
  • the support structure part 12 is slightly curved by the tension of the reflector part 50 by pulling the mandrel away from the reflector part 50.
  • the shape of the convex surface of the mandrel corresponds to the ideal shape of the support surface 13 and the reflector portion 50 so that the support surface 13 and the reflector portion 50 have an ideal shape when the support structure portion 12 is bent by the tension of the reflector portion 50.
  • the shape may be slightly different from the shape to be made.
  • the shape of the convex surface of the mandrel may be a shape corresponding to the ideal shape of the support surface 13 and the reflector portion 50.
  • each edge (upper edge 35) of the plurality of support elements 31 on one surface side (upper side) of the support structure portion 12 is a linear first support portion capable of supporting the reflector portion 50. . That is, the first support portion is continuously disposed on the upper edge 35 of each of the plurality of support elements 31. For this reason, the reflector part 50 can be supported by the support element 31 with high positional accuracy and high flexibility.
  • Each of the plurality of main supports 20 on the one surface side (upper side) of the support structure portion 12 has a linear second support capable of supporting the reflector portion 50.
  • the second support portion is continuously arranged on the upper edges 21 a of the plurality of main support bodies 20. For this reason, the reflector part 50 can be supported by the main support 20 with high positional accuracy and high flexibility.
  • one of the plurality of main supports 20 is a drive support 20a.
  • the drive support 20a is rotationally driven about the reference shaft 11 as a rotational axis by a rotational power applying mechanism 70 described below.
  • the deployable reflector 100 is folded (stored) (FIGS. 3, 4, and 12) (FIGS. 6 and 8 for the unit module 15) (FIG. 6, FIG. 8). 1, FIG. 2, FIG. 5) (the unit module 15 is transformed into FIG. 7).
  • the rotational power applying mechanism 70 rotates the motor 71 with respect to a motor 71 fixed to the boom 61 and a drive shaft (not shown) inserted into the reference shaft 11. And a drive transmission mechanism 72 that transmits power.
  • the drive transmission mechanism 72 has a pair of bevel gears meshed with each other, for example, to rotate the output shaft. The rotation is converted to a rotation in a direction orthogonal to the rotation and transmitted to the drive shaft.
  • the drive transmission mechanism 72 may include a speed reducer that reduces the rotational speed in the process of transmitting rotational power from the output shaft of the motor 71 to the drive shaft.
  • the rotational power applying mechanism 70 may include a power source (not shown) that supplies electric power to the motor 71, or electric power may be supplied from the space mechanism body to the motor 71 via a cable.
  • the drive support 20a is rotated in the circumferential direction about the reference shaft 11 by the rotational power applying mechanism 70. That is, the drive support 20a is rotated counterclockwise in FIG. In FIG. 14, the counterclockwise direction around the reference axis 11 is referred to as the rotation direction, and the opposite direction (clockwise direction) is referred to as the rotation direction rearward.
  • the angle between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotational direction is first increased. Open gradually. Along with this, the sub-support 30 between the drive support 20a and the driven support 20c is gradually developed.
  • the state shown in FIG. 14 is a state in which the development of the sub-support 30 between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotation direction is completed.
  • the angle between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotational direction is 30 degrees.
  • the main supports 20 are connected to each other (not always connected), or the drive shaft and the main support 20 are engaged.
  • the unfoldable reflector 100 is in the unfolded state as shown in FIG.
  • the drive support 20a and the fixed support 20b are in surface contact. Note that after the unfolded state, the drive of the motor 71 is stopped.
  • the unfolded reflector 100 In the retracted state (folded state), the unfolded reflector 100 has a fan-shaped planar shape as shown in FIG. 3, and in the unfolded state, the planar shape is substantially circular as shown in FIG.
  • the rotation axis of each main support 20 in the unfolding operation of the unfoldable reflector 100, is the common reference axis 11 (that is, there is one rotation axis). For this reason, since an error (variation) in the unfolding operation can be suppressed, the support surface 13 having a highly accurate shape can be easily formed. Further, since the unfolding operation itself is simple, a simple configuration can be adopted as the drive transmission mechanism 72.
  • the reference shaft 11 is formed in a cylindrical shape, and a rod-shaped drive shaft is inserted into the reference shaft 11.
  • the drive shaft is disposed through the reference shaft 11.
  • a lower fixing member 42 is fixed to one end portion (lower end portion) of the drive shaft outside (lower side) one end (lower end) of the reference shaft 11.
  • the rotational power application mechanism 70 rotates the drive shaft about the axis center of the reference shaft 11 by rotating the lower fixing member 42, for example.
  • an upper fixing member 43 is fixed to the other end portion (upper end portion) of the drive shaft.
  • the upper fixing member 43 is disposed on the upper surface of the second support arm 26 of the drive support 20a.
  • the second support arm 26 of the drive support 20a is fixed to the upper fixing member 43.
  • the second support arm 26 of each main support 20 is disposed adjacent to the top and bottom.
  • the second support arm 26 of the drive support 20a is disposed at the top, and the second support arm 26 of the driven support 20c adjacent to the drive support 20a is viewed from above.
  • the second support arm 26 of each driven support 20c is arranged in order from the top in the clockwise order in FIG.
  • the 2nd support arm 26 of the fixed support body 20b is arrange
  • the first support arm 25 of each main support 20 is disposed adjacent to the top and bottom.
  • the first support arm 25 of the drive support 20a is disposed at the top, and the first support arm 25 of the driven support 20c adjacent to the drive support 20a is from above. Arranged second.
  • the first support arm 25 of each driven support 20c is arranged in order from the top in the clockwise order in FIG.
  • the 1st support arm 25 of the fixed support body 20b is arrange
  • each main support 20 is supported by the reference shaft 11 with the same support strength. Can do.
  • first support arms 25 of the main support bodies 20 are arranged in a stepwise manner, and the second support arms 26 of the main support bodies 20 are arranged in a stepped manner.
  • positioned are divided up and down. Therefore, the first support arms 25 do not interfere with each other, the second support arms 26 do not interfere with each other, and the first support arm 25 and the second support arm 26 do not interfere with each other. For this reason, the dimension (fan-shaped angle) in the retracted state of the deployable reflector 100 can be made compact, and the unfolding operation can be performed smoothly.
  • the number of the main supports 20 that are supported by the reference shaft 11 is two or more, and the main supports 20 that are supported by the reference shaft 11. At least one of them is a drive support 20a that is rotationally driven.
  • the deployable reflector 100 further includes a rotational power applying mechanism 70 that rotates the drive support body 20a in the circumferential direction about the reference shaft 11 as a center of rotation, thereby bringing the support structure portion 12 into a deployed state.
  • the deployable reflector 100 may include a latch mechanism (not shown) that maintains the deployable reflector 100 in the deployed state.
  • the latch mechanism restricts the drive support 20a and the fixed support 20b from being separated from each other after the unfolding operation is completed. Further, it may be possible to deform the deployable reflector 100 from the deployed state to the retracted state (folded state) by rotating the drive support 20a in the circumferential direction in the opposite direction to the unfolding operation. Further, if necessary, the unfolding operation may be stopped halfway, the unfoldable reflector 100 may be folded, and then the unfolding operation may be performed again.
  • each part other than the plate-like part 21 and the support element 31 in the deployable reflector 100 is not particularly limited, but is preferably a material that is lightweight and can ensure sufficient strength.
  • a material that is lightweight and can ensure sufficient strength As an example, carbon fiber reinforced plastic is used. Alternatively, a metal material may be used.
  • the reflector surface is formed by the support structure portion 12 expanding in the circumferential direction (circumferential direction) centering on the reference axis 11. For this reason, unlike the case where the antenna unfolding operation is performed in a direction having a component perpendicular to the plane of the antenna as in Patent Document 1, the shape error of the reflector surface due to the error of the end position of the unfolding operation is greatly increased. Therefore, it is possible to form a highly accurate reflector surface.
  • the metal wire 51 of the reflector unit 50 is fixed directly to the upper edge 21 a of the plate-like part 21 of the main support 20 and the upper edge 35 of the support element 31.
  • the deployable reflector 100 according to the present embodiment does not need to include a cable network that is used in a general deployable reflector. Therefore, it is not necessary to take measures against pillow deformation due to cable catenary deformation, and it is possible to prevent problems caused by increasing the tension of the cable in order to reduce the pillow deformation.
  • connection structure between the support elements 31 constituting the sub-support 30 will be described with reference to FIGS.
  • the sub-support 30 has a joint 38 in which the support elements 31 are partially joined (surface joined), and the joint 38 is a swinging part.
  • bent portions 39 that can be bent more flexibly than other portions are formed on both sides of the portion where the joint portion 38 is formed.
  • the bent portion 39 may be a portion where the resin thickness of the carbon fiber reinforced plastic constituting the support element 31 is locally thinned, or a portion where the carbon fiber is not locally impregnated with resin.
  • the sub-support 30 constituting the unit module 15 has a support element 111 extending in the circumferential direction. More specifically, the support element 111 extends in a tangential direction with respect to the circumference around the reference axis 11. Further, the sub-support 30 has a plurality of support elements 111, and these support elements 111 extend in parallel with each other in the deployed state. For example, the support element 111 is installed between adjacent main supports 20. Each facet 37 has a triangular shape (for example, an isosceles triangular shape).
  • the edge (upper edge) of the support element 111 constitutes the support surface 13 together with the edge of the support element 31 (upper edge 35 described in the embodiment) and the edge of the main support 20 (upper edge 21a described in the embodiment). Then, the reflector unit 50 is supported.
  • the support element 111 is configured to be more flexible than the support element 31 so that the support element 111 can easily expand and contract in the circumferential direction. In the case of this modification, the other structures are the same as those in the above embodiment, and thus the description thereof is omitted.
  • the sub-support 30 does not include the support element 112 that is the outermost support element 111 among the support elements 111. However, the configuration including the support element 112 may also be adopted in the above embodiment.
  • the sub-support 30 constituting the unit module 15 includes a support element 111 that extends in the circumferential direction, as in Modification 1 of the arrangement of the support elements in the unit module.
  • the support element 31 extends in a direction orthogonal to the support element 111.
  • the edge (upper edge) of the support element 111 constitutes the support surface 13 together with the edge (upper edge 35) of the support element 31 and the edge (upper edge 21a) of the main support 20, and the reflector.
  • the part 50 is supported.
  • the support element 111 is configured more flexibly than the support element 31 so that it can be easily expanded and contracted in the circumferential direction.
  • the sub-support 30 does not include the support element 112 which is the outermost support element 111 among the support elements 111.
  • modified example 1 multi-joint deployment method of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 17 (a) and 17 (b).
  • the sub-support 30 and the reflector unit 50 are not shown.
  • the deployable reflector 100 according to the present modification is different from the deployable reflector 100 according to the above-described embodiment in the points described below, and is otherwise different from the deployable reflector 100 according to the above-described embodiment. It is constituted similarly.
  • the deployable reflector 100 includes a plurality of relative rotation members 121 that individually support the main support bodies 20 and a connection hinge 122 that connects the adjacent relative rotation members 121 so as to be mutually rotatable. And.
  • Each relative rotating member 121 has a trapezoidal planar shape, for example.
  • the relative rotation member 121 is formed in a shape having a thickness in a direction orthogonal to the paper surface of FIG. 17A, that is, a three-dimensional shape having a trapezoidal cross section.
  • the relative rotation members 121 are arranged in a line, and each main support 20 protrudes in one direction from the opposing relative rotation member 121.
  • the main supports 20 are arranged in parallel to each other.
  • the corners of the upper and lower bases of the trapezoidal shape (hereinafter referred to as long sides) are connected to each other via a connecting hinge 122.
  • the deployable reflector 100 further deforms the deployable reflector 100 into a deployed state shown in FIG. 17A by winding the cable 123 between the plurality of relative rotating members 121 and winding the cable 123.
  • Cable take-up mechanism 124 The cable 123 is routed along a smaller dimension (hereinafter referred to as a short side) of the trapezoidal upper and lower bases of the relative rotating member 121.
  • a ring member (not shown) is fixed to the short side of the relative rotation member 121, and the cable 123 is sequentially passed through the ring member of each relative rotation member 121.
  • the deployable reflector 100 includes, for example, two (or two sets) of cables 123, and one cable 123 is connected to the central relative rotation member 121 in FIG. 17A.
  • the ring members of the other six relative rotating members 121 arranged on the left side of the central relative rotating member 121 are sequentially inserted.
  • the tip of one cable 123 is fixed to the ring member of the relative rotation member 121 farthest from the central relative rotation member 121 among the six relative rotation members 121.
  • the other cable 123 is sequentially connected to the central relative rotating member 121 and the ring members of the other five relative rotating members 121 arranged on the right side of the central relative rotating member 121 in FIG. Is inserted.
  • the tip of the other cable 123 is fixed to the ring member of the relative rotation member 121 farthest from the central relative rotation member 121 among the five relative rotation members 121. Note that the deployable reflector 100 according to this modification does not include the rotational power applying mechanism 70 described in the above embodiment.
  • the cable winding mechanism 124 is provided, for example, at the central relative rotation member 121.
  • the cable winding mechanism 124 includes a motor 125 for winding two sets of cables 123 in synchronization with each other. By driving the motor 125 and winding the two sets of cables 123 in synchronism with each other, the portions of the adjacent relative rotation members 121 that become the hypotenuses in plan view are close to each other. Thereby, as shown in FIG.17 (b), the expansion
  • the planar shape of the deployable reflector 100 is a rectangular shape in the housed state. For this reason, at the time of launch, the deployable reflector 100 can be easily held by the space mechanism.
  • Modification Example 2 of Deployment Mechanism> modification 2 (elastic hinge deployment method) of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 18 (a) and 18 (b). 18A and 18B, the sub support 30 and the reflector unit 50 are not shown.
  • the deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example 1 shown in FIGS. 17A and 17B in the points described below.
  • the configuration is the same as that of the deployable reflector 100 according to the first modification.
  • the deployable reflector 100 does not include the cable 123, the cable winding mechanism 124 (including the motor 125), and the connecting hinge 122 shown in FIGS. 17 (a) and 17 (b). Instead, the deployable reflector 100 according to this modification includes an elastic hinge 131 and a latch mechanism 134 (including a motor 135).
  • the elastic hinge 131 is continuously disposed across the long sides of the plurality of relative rotating members 121.
  • the elastic hinge 131 may be locally constructed only between the long side ends of the adjacent relative rotating members 121.
  • the elastic hinge 131 is in a distorted state having an internal stress in the retracted state of the deployable reflector 100 shown in FIG. 18A, and is in an unstrained state in the expanded state shown in FIG. 18B.
  • the unfolding can be performed to some extent by the elastic energy of the spring of the elastic hinge 131.
  • the deployable reflector 100 includes a latch mechanism 134 for finally maintaining the deployable reflector 100 in the deployed state.
  • the latch mechanism 134 includes a motor 135 as an actuator for operating the latch mechanism 134.
  • deployment type reflector 100 becomes a rectangular shape in the accommodation state. For this reason, at the time of launch, the deployable reflector 100 can be easily held by the space mechanism.
  • the connection hinge 122 is not used for the connection between the relative rotation members 121. It is possible to eliminate the error of the unfolding operation due to the above, and it is possible to form the support surface 13 with higher accuracy.
  • Modification 3 of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 19 to 20B.
  • the sub-support 30 and the reflector unit 50 are not shown.
  • the deployable reflector 100 according to the present modification is different from the deployable reflector 100 according to the above-described embodiment in the points described below, and is otherwise different from the deployable reflector 100 according to the above-described embodiment. It is constituted similarly.
  • the deployable reflector 100 connects the main supports 20 adjacent to each other and separates the main supports 20 from each other.
  • a biasing portion 150 that biases elastically in the direction is provided.
  • the adjacent main supports 20 are elastically coupled to each other via the biasing portion 150.
  • the urging unit 150 is disposed between the main support tables 20 adjacent to each other.
  • the urging portion 150 is not disposed between the drive support 20a and the fixed support 20b. That is, for example, as shown in FIG.
  • the urging portions 150 are disposed between the support bodies 20c and between the driven support bodies 20c adjacent to each other.
  • the deployable reflector 100 is in the unfolded state as shown in FIG. 19 by the force by which each of the urging portions 150 urges the main supports 20 adjacent to each other in the direction of separating them.
  • each urging portion 150 is constituted by a single leaf spring 151, and the elastic force of the leaf spring 151 causes each other to
  • the adjacent main support bodies 20 are urged in a direction in which they are separated from each other.
  • Each part of the plate surface of each leaf spring 151 is parallel to the axial direction of the reference shaft 11.
  • the shape of each leaf spring 151 when viewed in the axial direction of the reference shaft 11 is bent into a convex V shape toward the radially inner side of the deployable reflector 100.
  • Both end portions of each leaf spring 151 are fixed portions 152 fixed to one of the main supports 20 adjacent to each other.
  • each leaf spring 151 excluding both end portions (a pair of fixing portions 152) is an erection portion 153 that is erected between adjacent main support bodies 20 and floats in the air.
  • the erection part 153 exerts an elastic force that urges the main supports 20 adjacent to each other in a direction in which they are separated from each other.
  • plate spring 151 is not specifically limited, From a viewpoint of weight reduction, it is preferable that it is a carbon fiber reinforced plastic. However, the leaf spring 151 may be made of other materials such as metal.
  • a method for fixing the fixing portion 152 of the leaf spring 151 to the main support 20 is not particularly limited, and may be adhesive fixing or fixing by fixing using a fixing member such as a bolt. .
  • the fixing portion 152 is fixed to the plate-like portion 21 of the main support 20 by surface bonding.
  • the deployable reflector 100 can be deployed by the elastic force of the urging unit 150 regardless of the power of the motor or the like.
  • the axial direction of the reference shaft 11 that is, substantially in the direction perpendicular to the reflector portion 50, that is, out of the plane of the reflecting mirror). Misalignment between the main supports 20 in the direction) can be regulated by the urging unit 150.
  • the urging portion 150 is configured by the leaf spring 151 and the surface direction of the leaf spring 151 is parallel to the axial direction of the reference shaft 11.
  • the deploying operation of the deployable reflector 100 can be performed with high positional accuracy.
  • the shape of the reflector unit 50 can be made closer to an ideal shape. That is, the reflector unit 50 can be developed into a desired shape with higher accuracy.
  • the deployable reflector is shown.
  • the number of urging portions 150 included in 100 is 12, and the angle between adjacent main supports 20 (excluding the angle between the drive support 20a and the fixed support 20b) is, for example, 30 degrees. .
  • the V-shaped opening angle of the leaf spring 151 is preferably an angle larger than 30 degrees.
  • the leaf springs 151 of the urging portions 150 adjacent to each other are interposed via the main support 20 positioned therebetween. It is preferable that they are pressed against each other. It is preferable that the spring force of the leaf spring 151 of each urging portion 150 is equal to each other.
  • the adjacent main supports 20 are close to each other, the V-shaped opening angle of each leaf spring 151 is narrowed, and each leaf spring 151 is The spring force is stored.
  • the deployable reflector 100 may include a deployment control mechanism (not shown) that controls the opening angle between adjacent main supports 20 during deployment.
  • the unfolding control mechanism includes a cable that is stretched between the main supports 20 in the circumferential direction of the unfolding type reflector 100, a winder that drives the cable out by a motor, and an operation of the winder. And a control unit that performs control.
  • the deployment control mechanism gradually extends the cable, so that the deployable reflector 100 gradually deploys according to the urging force of each urging portion 150.
  • the V-shaped opening angles of the leaf springs 151 are spread evenly, so that the sub-supports 30 unfold in parallel.
  • the deployable reflector 100 may include a latch mechanism for maintaining the deployable reflector 100 in the deployed state when the deploying operation is completed.
  • the latch mechanism locks the drive support 20a and the fixed support 20b to maintain the deployable reflector 100 in the deployed state.
  • FIG. 19 to FIG. 20B show an example in which the urging portion 150 is disposed at the central portion in the radial direction of the deployable reflector 100. More specifically, for example, as shown in FIG. 20 (b), the erection part 153 is preferably disposed at a position closer to the center than the plate-like part 21 in the radial direction of the deployable reflector 100. By disposing the urging portion 150 at the central portion in the radial direction of the deployable reflector 100, the size of the leaf spring 151 can be further reduced.
  • the arrangement of the urging portion 150 in the radial direction of the deployable reflector 100 is not particularly limited.
  • the urging portion 150 may be disposed at an intermediate portion in the radial direction of the deployable reflector 100. Further, the urging portion 150 may be disposed on an outer portion in the radial direction of the deployable reflector 100 (a peripheral edge portion of the deployable reflector 100). That is, the urging portion 150 may be provided at the distal end portion of the main support 20 with the reference shaft 11 as the base end. As the urging portion 150 is arranged at a position closer to the peripheral portion of the deployable reflector 100, the size of the leaf spring 151 becomes larger, but the displacement of the main supports 20 in the axial direction of the reference shaft 11 is urged. The effect of regulating by the portion 150 is enhanced.
  • the positions of the plurality of urging portions 150 may be equal to each other, or the urging portions 150 arranged at different positions such as different from each other may be provided. May be present. Further, the urging portions 150 may be provided at a plurality of locations in the radial direction of the deployable reflector 100 between the main supports 20 adjacent to each other.
  • an urging unit 150 may be provided on the upper portion of the main support 20 like an urging unit 150 indicated by a solid line in FIG. 20B, or a two-dot chain line in FIG. Like the urging portion 150 shown, the urging portion 150 may be provided in the lower portion of the main support 20. Moreover, the urging
  • the sub-support 30 is provided on the upper portion (the portion on the support surface 13 side) of the main support 20 (see FIGS. 4 and 7). For this reason, when the urging portion 150 is disposed in the intermediate portion or the outer portion (peripheral portion of the deployable reflector 100) in the radial direction of the deployable reflector 100, interference between the urging portion 150 and the sub support 30 is prevented. In order to avoid this, it is preferable to provide the urging portion 150 below the main support 20.
  • Modification 4 of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 21 (a) and 21 (b). 21A and 21B, the sub support 30 and the reflector unit 50 are not shown.
  • the shape of each leaf spring 151 when viewed in the axial direction of the reference shaft 11 is bent into a convex shape toward the radially outer side of the deployable reflector 100.
  • the deployable reflector 100 according to the present modification is otherwise configured in the same manner as the deployable reflector 100 according to the modification shown in FIGS. 19 to 20B. In the case of this modification, the same effect as that of Modification 3 of the deployment mechanism can be obtained.
  • the direction of bending of the leaf spring 151 is not limited to the direction of the third and fourth modifications, and may be convex downward, convex upward, or convex in other directions.
  • modified example 5 of the deployment mechanism of the deployable reflector will be described with reference to FIG. In FIG. 22A, illustration of the sub-support 30 and the reflector unit 50 is omitted.
  • the deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example shown in FIGS. 19 to 20B in the points described below, and from other points in FIG.
  • the configuration is the same as that of the deployable reflector 100 according to the modification shown in FIG.
  • the urging unit 150 includes a block unit 155 and two leaf springs 151.
  • the block portion 155 is a block shape having a trapezoidal shape or a sector shape when viewed in the axial direction of the reference shaft 11.
  • the material of the block part 155 is not specifically limited, For example, it can be set as a carbon fiber reinforced plastic.
  • the block portion 155 is arranged in such a direction that the dimension of the block portion 155 increases in the circumferential direction of the deployable reflector 100 toward the radially outer side of the deployable reflector 100.
  • each leaf spring 151 is a flat plate in a normal state where no external force is applied to the leaf spring 151.
  • each leaf spring 151 projects outward in the radial direction of the deployable reflector 100 with the block portion 155 as a reference.
  • the other surface of each leaf spring 151 is fixed to one plate-like portion 21 of the adjacent main supports 20 by surface bonding.
  • each leaf spring 151 in the retracted state of the deployable reflector 100, as shown by the two-dot chain line in FIG. It is bent against. That is, in each leaf spring 151, each leaf spring 151 is bent in a direction in which the portions protruding radially outward of the deployable reflector 100 from the block portion 155 approach each other, and each leaf spring 151 is a spring. It is in a state where power is stored.
  • the unfoldable reflector 100 is unfolded, the unfoldable reflector 100 is unfolded by a spring force that causes each leaf spring 151 to return to a flat plate state.
  • FIG.22 (b) illustration is abbreviate
  • FIG. The deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example shown in FIGS. 19 to 20B in the points described below, and from other points in FIG.
  • the configuration is the same as that of the deployable reflector 100 according to the modification shown in FIG.
  • the urging portion 150 includes a pair of leaf springs 151 in which one end portions 156 are fixed to each other by surface bonding.
  • the other end of each of the pair of leaf springs 151 is a fixed portion 152 that is fixed to one of the main supports 20 adjacent to each other.
  • the fixing portion 152 is fixed to the plate-like portion 21 of the main support 20 by surface bonding.
  • Each of the pair of leaf springs 151 is formed in an arcuate shape so that the distance between the pair of leaf springs 151 increases toward the other end (fixed portion 152 side) in a natural state where no external force is applied. Yes.
  • the portions other than the one end 156 of the pair of leaf springs 151 are in proximity to or in surface contact with each other. For this reason, in the storage state of the deployable reflector 100, the deployable reflector 100 can be made more compact.
  • the support element aggregate 310 is shared by the adjacent sub-supports 30
  • the support elements 31 constituting the individual sub-supports 30 may be completely separated from each other. That is, the support element 31a and the support element 31b may be separate from each other.
  • the end part 34 of each support element 31 is attached to the plate-like part 21 of the main support 20 so as to be swingable, for example.
  • the edge part 34 of each support element 31 may be connected with respect to the plate-shaped part 21 via the hinge mechanism which is not shown in figure.
  • the main support 20 is a thin plate
  • the main support 20 may be a frame (such as a frame having a truss structure).
  • the main support 20 is formed in a plane shape parallel to the reference axis 11 has been described.
  • the main support 20 may be a rod-shaped one.
  • the support element 31 is a thin plate has been described.
  • the support element 31 may be a frame (such as a frame having a truss structure).
  • This embodiment includes the following technical ideas.
  • the support structure is A plurality of main supports elongated in a radial direction around the reference axis; A sub-support that is laid between adjacent main supports; It is composed including At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis, When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports.
  • the support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
  • An unfoldable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
  • the sub-support is configured to include a plurality of support elements that form the lattice structure, Each of the said support elements is a expandable reflector as described in any one of (1) to (3) currently formed in the planar shape parallel to the said reference axis.
  • the deployable reflector according to (4) wherein the bending rigidity of the main support is greater than the bending rigidity of the support element.
  • the plurality of support elements intersect in a lattice pattern, and the intersection of the support elements is a swinging portion that allows the support elements to swing relative to each other (4) or The expandable reflector according to (5).
  • each of the plurality of support elements is formed in a thin plate shape.
  • Each of the plurality of support elements is formed in a thin plate shape, The support elements intersecting each other are engaged with each other by inserting the other into slits formed at corresponding positions, and this engagement position is the swinging portion (6).
  • the deployable reflector as described.
  • each of the plurality of support elements on the one surface side of the support structure portion are linear first support portions that can support the reflector portion (4) to (9).
  • Each edge of the plurality of main supports on the one surface side of the support structure portion is a linear second support portion capable of supporting the reflector portion (1) to (10 )
  • the deployable reflector according to (12), wherein a majority of the plurality of facets is a rhombus elongated in the radial direction.
  • the number of the main supports supported by the reference shaft is two or more, At least one of the main supports pivotally supported by the reference shaft is a drive support that is rotationally driven;
  • the unfoldable reflector further includes a rotational power applying mechanism (1) to (13) that causes the support structure to be unfolded by rotating the drive support in the circumferential direction around the reference axis as a rotation center.
  • the main supports adjacent to each other are connected to each other, and are provided with biasing portions that elastically bias the main supports in a direction to separate them from each other (1) to (13).
  • the expandable reflector according to any one of the above.
  • a reference axis It is configured to be deployable with reference to the reference axis, and a support structure portion that forms a concave support surface on one surface side in the expanded state;
  • a deployable structure for a deployable reflector that supports a reflector portion forming a reflector surface of a deployable reflector by the support surface
  • the support structure is A plurality of main supports elongated in a radial direction around the reference axis; A sub-support that is laid between adjacent main supports; It is composed including At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis, When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports.
  • the support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
  • a deployable structure for a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
  • Reference shaft 12 Support structure 13 Support surface 15 Unit module 20 Main support 20a Drive support 20b Fixed support 20c Driven support 21 Plate-like portion 21a Upper edge (second support) 21b Lower edge 21c Slit 22 First extending portion 23 Second extending portion 24 Third extending portion 25 First support arm 25a Insertion hole 25b Tip portion 26 Second support arm 26a Insertion hole 26b Tip portion 30 Sub support 31 Support element 31a Support element 31b Support element 310 Support element assembly 32 Intersection 33 Slit 34 End 35 Upper edge (first support) 36 Lower edge 37 Facet 38 Joint part 39 Bent part 42 Lower fixing member 43 Upper fixing member 50 Reflector part 51 Metal wire 52 Outline line 61 Boom 70 Rotating power application mechanism 71 Motor 72 Drive transmission mechanism 80 Deployable structure for deployable reflector 91 Adhesive Tape 92 Adhesive 100 Deployable Reflector 111 Support Element 112 Support Element 121 Relative Rotating Member 122 Connection Hinge 123 Cable 124 Cable Winding Mechanism 125 Motor 131 Elastic Hinge 134 Latch

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

An expandable reflector (100) is provided with: a support structure section (12) for forming a concave support surface in an expanded state; and a reflector section that is supported on the support surface and that forms a reflector surface. The support structure section (12) includes: a plurality of main support bodies (20) that are elongated along radiation directions from a reference axis (11) at the center; and a sub-support body (30) that is constructed between neighboring main support bodies (20). At least one of the plurality of main support bodies (20) is pivotally supported on the reference axis (11), and the angle relative to a neighboring main support body (20) can be increased and decreased about the reference axis 11 serving as an axial center. As a result of the angle between the main support body (20) pivotally supported by the reference axis (11) and the neighboring main support body (20) being increased, the sub-support body (30) expands in a circumferential direction so as to establish a lattice structure for defining a plurality of facets (37). In an expanded state, the support surface is formed by the plurality of main support bodies (20) and the sub-support body (30).

Description

展開式リフレクタ及び展開式リフレクタ用展開構造物Deployable reflector and deployable structure for deployable reflector
 本発明は、展開式リフレクタ及び展開式リフレクタ用展開構造物に関する。 The present invention relates to a deployable reflector and a deployable structure for a deployable reflector.
 宇宙空間で用いられるアンテナ用などのリフレクタとしては、折り畳まれた状態で宇宙空間に運搬された後、宇宙空間において展開される、展開式リフレクタがある。 As reflectors for antennas used in outer space, there is a deployable reflector that is deployed in outer space after being transported in a folded state.
 特許文献1には、折り畳み中心軸の周囲に放射状に複数配置された平面トラスを有し、折り畳み中心軸を中心にして折り畳み傘のようにして折り畳み及び展開が可能な展開アンテナについて記載されている。 Patent Document 1 describes a deployable antenna that has a plurality of flat trusses arranged radially around a folding center axis, and can be folded and unfolded like a folding umbrella around the folding center axis. .
特開平11-112228号公報Japanese Patent Laid-Open No. 11-112228
 しかしながら、特許文献1の技術では、アンテナの展開動作の終了位置の誤差に起因して、鏡面(リフレクタ面)の形状に大きな誤差が生じ得る。 However, in the technique of Patent Document 1, a large error may occur in the shape of the mirror surface (reflector surface) due to an error in the end position of the antenna deployment operation.
 本発明は、上記の課題に鑑みなされたものであり、展開動作の終了位置の誤差に起因するリフレクタ面の形状の誤差を抑制することが可能な構造の展開式リフレクタ、及び、展開式リフレクタ用展開構造物を提供するものである。 The present invention has been made in view of the above-described problems, and a deployable reflector having a structure capable of suppressing an error in the shape of the reflector surface caused by an error in the end position of the deploying operation, and for the deployable reflector An unfolding structure is provided.
 本発明によれば、基準軸と、
 前記基準軸の周囲に展開可能に構成されており、展開状態において凹面状の支持面を一方の面側に形成する支持構造部と、
 前記支持構造部の前記支持面に支持され、前記支持面に沿ったリフレクタ面を形成するリフレクタ部と、
 を備え、
 前記支持構造部は、
 前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
 隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
 を含んで構成されており、
 前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
 前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
 展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタが提供される。
According to the invention, a reference axis;
A support structure configured to be deployable around the reference axis, and forming a concave support surface on one surface side in the expanded state;
A reflector part supported by the support surface of the support structure part and forming a reflector surface along the support surface;
With
The support structure is
A plurality of main supports elongated in a radial direction around the reference axis;
A sub-support that is laid between adjacent main supports;
It is composed including
At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
In the unfolded state, there is provided a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports.
 また、本発明によれば、基準軸と、
 前記基準軸を基準として展開可能に構成されており、展開状態において一方の面側に凹面状の支持面を形成する支持構造部と、
 を備え、
 展開式リフレクタのリフレクタ面を形成するリフレクタ部を前記支持面によって支持する展開式リフレクタ用の展開構造物であって、
 前記支持構造部は、
 前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
 隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
 を含んで構成されており、
 前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
 前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
 展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタ用展開構造物が提供される。
According to the present invention, a reference axis;
It is configured to be deployable with reference to the reference axis, and a support structure portion that forms a concave support surface on one surface side in the expanded state;
With
A deployable structure for a deployable reflector that supports a reflector portion forming a reflector surface of a deployable reflector by the support surface,
The support structure is
A plurality of main supports elongated in a radial direction around the reference axis;
A sub-support that is laid between adjacent main supports;
It is composed including
At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
There is provided a deployable structure for a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
 本発明によれば、支持構造部が基準軸を中心とする周方向に展開することでリフレクタ面が形成されるため、展開動作の終了位置の誤差に起因するリフレクタ面の形状の誤差を抑制することができる。 According to the present invention, since the reflector surface is formed by the support structure portion being deployed in the circumferential direction centered on the reference axis, the shape error of the reflector surface due to the error in the end position of the deployment operation is suppressed. be able to.
実施形態に係る展開式リフレクタの斜視図であり、展開状態を示す。It is a perspective view of a deployment type reflector concerning an embodiment, and shows a deployment state. 実施形態に係る展開式リフレクタの平面図であり、展開状態を示す。It is a top view of the deployment type reflector concerning an embodiment, and shows a deployment state. 実施形態に係る展開式リフレクタの平面図であり、収納状態(折り畳み状態)を示す。It is a top view of the deployment type reflector concerning an embodiment, and shows a storage state (folded state). 実施形態に係る展開式リフレクタの斜視図であり、収納状態(折り畳み状態)を示す。It is a perspective view of a deployment type reflector concerning an embodiment, and shows a storage state (folded state). 実施形態に係る展開式リフレクタの単位モジュールの平面図であり、展開状態を示す。It is a top view of a unit module of a deployment type reflector concerning an embodiment, and shows a deployment state. 実施形態に係る展開式リフレクタの単位モジュールの平面図であり、収納状態(折り畳み状態)を示す。It is a top view of the unit module of the deployment type reflector concerning an embodiment, and shows a storage state (folded state). 実施形態に係る展開式リフレクタの単位モジュールの斜視図であり、展開状態を示す。It is a perspective view of a unit module of a deployment type reflector concerning an embodiment, and shows a deployment state. 実施形態に係る展開式リフレクタの単位モジュールの斜視図であり、収納状態(折り畳み状態)を示す。It is a perspective view of the unit module of the deployment type reflector concerning an embodiment, and shows an accommodation state (folded state). 図9(a)及び図9(b)は実施形態に係る展開式リフレクタを構成するメイン支持体と支持要素との連結構造を説明するための図であり、このうち図9(a)は分解斜視図、図9(b)は連結状態の斜視図である。FIG. 9A and FIG. 9B are views for explaining a connecting structure between a main support and a support element constituting the deployable reflector according to the embodiment, among which FIG. 9A is an exploded view. A perspective view and FIG.9 (b) are perspective views of a connection state. 実施形態に係る展開式リフレクタを構成するメイン支持体と支持要素との連結構造並びに支持要素どうしの連結構造を説明するための図であり、このうち図10(a)は分解斜視図、図10(b)は連結状態の斜視図である。It is a figure for demonstrating the connection structure of the main support body and support element which comprise the expandable reflector which concerns on embodiment, and the connection structure of support elements, among these, Fig.10 (a) is an exploded perspective view, FIG. (B) is a perspective view of a connection state. 実施形態に係る展開式リフレクタを構成する支持要素どうしの連結構造を説明するための平面図である。It is a top view for demonstrating the connection structure of the support elements which comprise the expandable reflector which concerns on embodiment. 図2のA-A線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図13(a)及び図13(b)は支持要素に対するメッシュ(リフレクタ部)の固定構造を説明するための図であり、このうち図13(a)は支持要素及びメッシュを支持要素の板面の長手方向に視た図、図13(b)は斜視図である。13 (a) and 13 (b) are diagrams for explaining a structure for fixing the mesh (reflector portion) to the support element. Of these, FIG. 13 (a) shows the support element and the mesh as the plate surface of the support element. FIG. 13B is a perspective view as viewed in the longitudinal direction. 実施形態に係る展開式リフレクタの展開動作を説明するための図である。It is a figure for demonstrating the expansion | deployment operation | movement of the expansion | deployment type reflector which concerns on embodiment. 図15(a)及び図15(b)は展開式リフレクタを構成する支持要素どうしの連結構造の変形例を説明するための図であり、このうち図15(a)は平面図、図15(b)は支持要素の斜視図である。15 (a) and 15 (b) are diagrams for explaining a modification of the connecting structure of the support elements constituting the deployable reflector, in which FIG. 15 (a) is a plan view and FIG. b) is a perspective view of the support element. 図16(a)は単位モジュールにおける支持要素の配置の変形例1を示す模式的な平面図であり、図16(b)は単位モジュールにおける支持要素の配置の変形例2を示す模式的な平面図である。FIG. 16A is a schematic plan view showing a first modification of the arrangement of the support elements in the unit module, and FIG. 16B is a schematic plan view showing a second modification of the arrangement of the support elements in the unit module. FIG. 図17(a)及び図17(b)は展開機構の変形例1を説明するための模式的な平面図であり、このうち図17(a)は収納状態(折り畳み状態)を示し、図17(b)は展開状態を示す。17 (a) and 17 (b) are schematic plan views for explaining Modification Example 1 of the unfolding mechanism. Of these, FIG. 17 (a) shows the storage state (folded state), and FIG. (B) shows a developed state. 図18(a)及び図18(b)は展開機構の変形例2を説明するための模式的な平面図であり、このうち図18(a)は収納状態(折り畳み状態)を示し、図18(b)は展開状態を示す。18 (a) and 18 (b) are schematic plan views for explaining Modification Example 2 of the unfolding mechanism. Of these, FIG. 18 (a) shows the storage state (folded state), and FIG. (B) shows a developed state. 展開機構の変形例3を説明するための模式的な平面図である(全体図)。It is a typical top view for demonstrating the modification 3 of an expansion | deployment mechanism (overall view). 図20(a)及び図20(b)の各々は展開機構の変形例3を説明するための模式的な部分図であり、このうち図20(a)は平面図、図20(b)は斜視図である。Each of FIG. 20A and FIG. 20B is a schematic partial view for explaining a third modification of the deployment mechanism, in which FIG. 20A is a plan view and FIG. 20B is a plan view. It is a perspective view. 図21(a)及び図21(b)の各々は展開機構の変形例4を説明するための模式的な部分図であり、このうち図21(a)は平面図、図21(b)は斜視図である。Each of FIG. 21A and FIG. 21B is a schematic partial view for explaining Modification Example 4 of the deployment mechanism, in which FIG. 21A is a plan view and FIG. It is a perspective view. 図22(a)は展開機構の変形例5を説明するための模式的な平面図(部分図)であり、図22(b)は展開機構の変形例6を説明するための模式的な平面図(部分図)である。FIG. 22A is a schematic plan view (partial view) for explaining Modification Example 5 of the deployment mechanism, and FIG. 22B is a schematic plan view for explaining Modification Example 6 of the deployment mechanism. FIG.
発明の詳細な説明Detailed Description of the Invention
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本実施形態に係る展開式リフレクタ100は、基準軸11と、支持構造部12と、リフレクタ部50(図2、図13(a)、図13(b))と、を備えている。リフレクタ部50は、図13(b)に示すように、金属線51により構成されたメッシュである。
 支持構造部12は、基準軸11の周囲に展開可能に構成されている。支持構造部12は、展開状態において、凹面状の支持面13(図12参照)を、当該支持構造部12の一方の面側に形成する。
 図2においては、展開状態におけるリフレクタ部50の外形線52を示している。リフレクタ部50は、支持構造部12の支持面13のほぼ全域を覆っている。また、図13(a)及び図13(b)の各々には、リフレクタ部50の一部分のみを示している。
 リフレクタ部50は、支持構造部12の支持面13に支持され、支持面13に沿ったリフレクタ面を形成する。
 基準軸11は、直線状の棒状に形成されている。
 支持構造部12は、基準軸11を中心とする放射方向に長尺な複数のメイン支持体20と、隣り合うメイン支持体20どうしの間に架設されているサブ支持体30と、を含んで構成されている。
 複数のメイン支持体20の少なくとも1つは、基準軸11に軸支されており、隣のメイン支持体20との間の角度が基準軸11を軸中心として開閉可能となっている。
 基準軸11に軸支されているメイン支持体20と、当該メイン支持体20の隣のメイン支持体20との間の角度が開くことにより、これらメイン支持体20どうしの間に架設されているサブ支持体30が基準軸11を中心とする周方向に展開する。これにより、サブ支持体30は、複数のファセット37(図2、図15)を画定する格子構造となる。
 展開状態において、複数のメイン支持体20と、これらメイン支持体20どうしの間に架設されているサブ支持体30と、により支持面13が形成される。
The deployable reflector 100 according to the present embodiment includes a reference shaft 11, a support structure portion 12, and a reflector portion 50 (FIGS. 2, 13A, and 13B). The reflector unit 50 is a mesh composed of a metal wire 51 as shown in FIG.
The support structure 12 is configured to be deployable around the reference shaft 11. In the unfolded state, the support structure portion 12 forms a concave support surface 13 (see FIG. 12) on one surface side of the support structure portion 12.
In FIG. 2, the outline 52 of the reflector part 50 in the unfolded state is shown. The reflector unit 50 covers substantially the entire support surface 13 of the support structure unit 12. Moreover, in each of FIG. 13A and FIG. 13B, only a part of the reflector unit 50 is shown.
The reflector unit 50 is supported by the support surface 13 of the support structure unit 12 and forms a reflector surface along the support surface 13.
The reference shaft 11 is formed in a linear bar shape.
The support structure portion 12 includes a plurality of main supports 20 that are long in the radial direction around the reference axis 11 and a sub-support 30 that is installed between adjacent main supports 20. It is configured.
At least one of the plurality of main supports 20 is supported by the reference shaft 11, and an angle between the main support 20 and the adjacent main support 20 can be opened and closed with the reference shaft 11 as an axis center.
When the angle between the main support 20 pivotally supported by the reference shaft 11 and the main support 20 adjacent to the main support 20 is opened, the main support 20 is installed between the main supports 20. The sub support 30 expands in the circumferential direction around the reference axis 11. Thereby, the sub-support 30 has a lattice structure that defines a plurality of facets 37 (FIGS. 2 and 15).
In the unfolded state, a support surface 13 is formed by the plurality of main supports 20 and the sub-support 30 that is installed between the main supports 20.
 また、本実施形態に係る展開式リフレクタ用展開構造物80は、本実施形態に係る展開式リフレクタ100からリフレクタ部50を除いたものである。
 すなわち、本実施形態に係る展開式リフレクタ用展開構造物80は、基準軸11と、基準軸11を基準として展開可能に構成されており展開状態において一方の面側に凹面状の支持面13を形成する支持構造部12とを備え、展開式リフレクタ100のリフレクタ面を形成するリフレクタ部50を支持面13によって支持する展開式リフレクタ用の展開構造物であって、支持構造部12は、基準軸11を中心とする放射方向に長尺な複数のメイン支持体20と、隣り合うメイン支持体20どうしの間に架設されているサブ支持体30とを含んで構成されており、複数のメイン支持体20の少なくとも1つは、基準軸11に軸支されており、隣のメイン支持体20との間の角度が基準軸11を軸中心として開閉可能となっている。
 基準軸11に軸支されているメイン支持体20と、当該メイン支持体20の隣のメイン支持体20との間の角度が開くことにより、これらメイン支持体20どうしの間に架設されているサブ支持体30が基準軸11を中心とする周方向に展開して複数のファセット37を画定する格子構造となり、展開状態において、複数のメイン支持体20と、これらメイン支持体20どうしの間に架設されているサブ支持体30と、により支持面13が形成される。
 展開式リフレクタ用展開構造物80は、リフレクタ部50を支持する骨組である、と言える。
Further, the deployable structure 80 for a deployable reflector according to the present embodiment is obtained by removing the reflector portion 50 from the deployable reflector 100 according to the present embodiment.
That is, the deployable structure 80 for a deployable reflector according to the present embodiment is configured to be deployable with reference to the reference shaft 11 and the reference shaft 11, and the concave support surface 13 is provided on one surface side in the deployed state. A deployable structure for a deployable reflector that includes a support structure 12 and supports a reflector portion 50 that forms a reflector surface of the deployable reflector 100 with a support surface 13. 11 includes a plurality of main supports 20 that are long in the radial direction around the center 11 and a sub-support 30 that is installed between adjacent main supports 20. At least one of the bodies 20 is pivotally supported by the reference shaft 11, and an angle between the body 20 and the adjacent main support 20 can be opened and closed with the reference shaft 11 as an axis center.
When the angle between the main support 20 pivotally supported by the reference shaft 11 and the main support 20 adjacent to the main support 20 is opened, the main support 20 is installed between the main supports 20. The sub-support 30 is expanded in the circumferential direction around the reference axis 11 to form a lattice structure that defines a plurality of facets 37. In the expanded state, the sub-support 30 is between the main supports 20 and the main supports 20. The support surface 13 is formed by the sub-support body 30 that is installed.
It can be said that the deployable structure 80 for the deployable reflector is a framework that supports the reflector portion 50.
 図1、図3~図8、図12、及び、図14~図16では、リフレクタ部50の図示を省略している。
 本明細書においては、便宜的に、支持構造部12の表裏の面のうち、支持面13が位置する側を上といい、その反対側を下という場合がある。この便宜的な上下方向は、展開式リフレクタ100を製造または使用する際における上下方向とは必ずしも一致しない。また、基準軸11を中心とする放射方向のことを、径方向と称する場合がある。
In FIGS. 1, 3 to 8, 12, and 14 to 16, the reflector unit 50 is not shown.
In the present specification, for convenience, among the front and back surfaces of the support structure 12, the side on which the support surface 13 is located may be referred to as “up” and the opposite side may be referred to as “down”. This convenient vertical direction does not necessarily coincide with the vertical direction when the deployable reflector 100 is manufactured or used. In addition, the radial direction around the reference axis 11 may be referred to as the radial direction.
 展開式リフレクタ100は、例えば、宇宙空間で展開されて、電波を送信又は受信するための電波の反射に用いられるものである。
 展開式リフレクタ100は、例えば、SAR(SAR:Synthetic Aperture Radar)、合成開口レーダー、又は通信用の送信又は受信アンテナなどとして用いることができる。
 なお、展開式リフレクタ100を使用する場所は、宇宙空間に限らず、例えば、地上や成層圏などであってもよい。
The deployable reflector 100 is, for example, deployed in outer space and used to reflect radio waves for transmitting or receiving radio waves.
The deployable reflector 100 can be used as, for example, a SAR (SAR: Synthetic Aperture Radar), a synthetic aperture radar, or a transmission or reception antenna for communication.
Note that the place where the deployable reflector 100 is used is not limited to outer space, and may be, for example, the ground or the stratosphere.
 本実施形態の場合、図4等に示すように、複数のメイン支持体20の各々は、基準軸11に対して平行な面状に形成されている。
 より詳細には、本実施形態の場合、複数のメイン支持体20の各々は、薄板状に形成されている。
 すなわち、複数のメイン支持体20の各々は、基準軸11を中心とする放射方向に長尺で基準軸11に対して平行な薄板状に形成されている。
 メイン支持体20どうしは、平面視(基準軸11の軸方向に支持構造部12を視たとき)において、概ね回転対称な配置とされている。支持面13は、例えば、平面視略円形である。
 ただし、本実施形態の場合、支持面13は、オフセットパラボラ面である。また、基準軸11を中心とする放射方向におけるメイン支持体20の長さは、例えば互いに若干異なっている(図3参照)。
In the case of this embodiment, as shown in FIG. 4 and the like, each of the plurality of main supports 20 is formed in a plane shape parallel to the reference axis 11.
More specifically, in the case of this embodiment, each of the plurality of main supports 20 is formed in a thin plate shape.
That is, each of the plurality of main supports 20 is formed in a thin plate shape that is long in the radial direction around the reference axis 11 and parallel to the reference axis 11.
The main supports 20 are arranged so as to be substantially rotationally symmetric in plan view (when the support structure 12 is viewed in the axial direction of the reference shaft 11). The support surface 13 is, for example, substantially circular in plan view.
However, in the case of this embodiment, the support surface 13 is an offset parabolic surface. Moreover, the length of the main support body 20 in the radial direction around the reference axis 11 is slightly different from each other, for example (see FIG. 3).
 支持構造部12が備えるメイン支持体20の数は、特に限定されないが、本実施形態の場合、支持構造部12は、例えば、13個のメイン支持体20を備えている。
 このうち、1つのメイン支持体20(後述する固定支持体20b)は、後述するブーム61に固定されている。
 また、固定支持体20bに対して一方側に隣接する他の1つのメイン支持体20(後述する駆動支持体20a)は、展開状態において、固定支持体20bと面接触する状態となる(図2参照)。駆動支持体20aと固定支持体20bと間には、サブ支持体30が架設されていない。
 複数のメイン支持体20のうち、駆動支持体20a及び固定支持体20b以外の11個のメイン支持体20は、従動支持体20cと称する。
 隣り合う従動支持体20cどうしの間、固定支持体20bに対して隣接する従動支持体20cと固定支持体20bとの間、駆動支持体20aに対して隣接する従動支持体20cと駆動支持体20aとの間には、それぞれサブ支持体30が架設されている。
 従って、本実施形態の場合、支持構造部12は、合計12個のサブ支持体30を備えている(図1、図2)。
The number of main supports 20 included in the support structure 12 is not particularly limited. In the present embodiment, the support structure 12 includes, for example, 13 main supports 20.
Among these, one main support body 20 (fixed support body 20b described later) is fixed to a boom 61 described later.
Further, another main support 20 (drive support 20a described later) adjacent to one side with respect to the fixed support 20b is in a state of being in surface contact with the fixed support 20b in the unfolded state (FIG. 2). reference). The sub support 30 is not installed between the drive support 20a and the fixed support 20b.
Among the plurality of main supports 20, eleven main supports 20 other than the drive support 20a and the fixed support 20b are referred to as driven supports 20c.
Between the adjacent driven supports 20c, between the driven support 20c and the fixed support 20b adjacent to the fixed support 20b, and between the driven support 20c and the drive support 20a adjacent to the drive support 20a. Sub-supports 30 are installed between the two.
Therefore, in this embodiment, the support structure 12 includes a total of 12 sub-supports 30 (FIGS. 1 and 2).
 支持構造部12において、隣り合う一対のメイン支持体20間の部分を、単位モジュール15と称する場合がある。隣り合う単位モジュール15は、それらの境界に位置するメイン支持体20を共有している。なお、駆動支持体20aと固定支持体20bとの間には単位モジュール15が存在していない。
 本実施形態の場合、支持構造部12は、12個の単位モジュール15により構成されている。
In the support structure 12, a portion between a pair of adjacent main supports 20 may be referred to as a unit module 15. Adjacent unit modules 15 share a main support 20 located at the boundary between them. The unit module 15 does not exist between the drive support 20a and the fixed support 20b.
In the case of the present embodiment, the support structure 12 is configured by twelve unit modules 15.
 ここで、メイン支持体20は、より詳細には、例えば、図7及び図8に示すように、平板状の板状部21と、板状部21に固定されている第1支持アーム25及び第2支持アーム26と、を備えて構成されている。
 板状部21は、基準軸11を中心とする放射方向に長尺で基準軸11に対して平行な薄板状に形成されている。
 第1支持アーム25及び第2支持アーム26の各々は放射方向に長尺に形成されている。第1支持アーム25及び第2支持アーム26の各々は、例えば、板面が上下を向く平板状の部材であり、且つ、径方向外側に向けて次第に先細になっている。すなわち、基準軸11を中心とする周方向における第1支持アーム25及び第2支持アーム26の寸法が、径方向外側に向けて縮小している。
Here, the main support 20 is more specifically, for example, as shown in FIGS. 7 and 8, a flat plate-like portion 21, a first support arm 25 fixed to the plate-like portion 21, and And a second support arm 26.
The plate-like portion 21 is formed in a thin plate shape that is long in the radial direction about the reference axis 11 and parallel to the reference axis 11.
Each of the first support arm 25 and the second support arm 26 is formed long in the radial direction. Each of the first support arm 25 and the second support arm 26 is, for example, a flat plate member whose plate surface faces up and down, and is gradually tapered outward in the radial direction. That is, the dimensions of the first support arm 25 and the second support arm 26 in the circumferential direction around the reference axis 11 are reduced toward the outside in the radial direction.
 第1支持アーム25及び第2支持アーム26は、基準軸11に軸支されている。
 すなわち、第1支持アーム25の一端部には、挿通孔25aが形成されており、この挿通孔25aに基準軸11が挿通されることによって、第1支持アーム25は基準軸11の軸周りに回転可能に軸支されている。
 同様に、第2支持アーム26の一端部には、挿通孔26aが形成されており、この挿通孔26aに基準軸11が挿通されることによって、第2支持アーム26は基準軸11の軸周りに回転可能に軸支されている。
 なお、固定支持体20bの第1支持アーム25及び第2支持アーム26は、基準軸11に対して固定されていてもよいし、基準軸11に軸支されていてもよい。すなわち、固定支持体20bは、基準軸11に軸支されておらず基準軸11に固定されていてもよいし、基準軸11に軸支されていてもよい。
The first support arm 25 and the second support arm 26 are pivotally supported on the reference shaft 11.
That is, an insertion hole 25 a is formed at one end of the first support arm 25, and the first support arm 25 is arranged around the axis of the reference axis 11 by inserting the reference shaft 11 into the insertion hole 25 a. It is pivotally supported so that it can rotate.
Similarly, an insertion hole 26 a is formed at one end of the second support arm 26, and the second support arm 26 is rotated around the axis of the reference axis 11 by inserting the reference shaft 11 into the insertion hole 26 a. It is pivotally supported by the shaft.
The first support arm 25 and the second support arm 26 of the fixed support 20b may be fixed to the reference shaft 11 or may be supported by the reference shaft 11. That is, the fixed support body 20 b may be fixed to the reference shaft 11 without being supported by the reference shaft 11, or may be supported by the reference shaft 11.
 第1支持アーム25の他端部すなわち先端部25b、及び、第2支持アーム26の他端部すなわち先端部26bは、板状部21における径方向内側の端部に固定されている。
 板状部21は、例えば、径方向内側に延出している2つ又は3つの延出部を有している。
 一例として、固定支持体20b及び従動支持体20cの各々の板状部21は、当該板状部21の径方向内側の端部における下部に位置する第1延出部22と、当該板状部21の径方向内側の端部における上部に位置する第2延出部23と、当該板状部21の径方向内側の端部における上端部に位置する第3延出部24と、の3つの延出部を有する。
 また、駆動支持体20aの板状部21は、当該板状部21の径方向内側の端部における下部に位置する第1延出部22と、当該板状部21の径方向内側の端部における上端部に位置する第2延出部23と、の2つの延出部を有しており、第3延出部24は有していない。
 各メイン支持体20において、第2支持アーム26は第1支持アーム25の上側に離間して配置されている。
 第1支持アーム25の先端部25bは、板状部21の第1延出部22に固定されており、第2支持アーム26の先端部26bは、板状部21の第2延出部23に固定されている。これにより、板状部21は、上下一対の支持アーム(第1支持アーム25、第2支持アーム26)を介して基準軸11に軸支されている。すなわち、板状部21、第1支持アーム25及び第2支持アーム26を含むメイン支持体20が、基準軸11に軸支されている。ただし、固定支持体20bの第1支持アーム25及び第2支持アーム26については、上記のように、基準軸11に固定されていてもよく、従って、固定支持体20bは基準軸11に固定されていてもよい。
 各メイン支持体20において、第1延出部22が配置されている高さ位置と第2延出部23が配置されている高さ位置との高低差は、第1支持アーム25が配置されている高さ位置と第2支持アーム26が配置されている高さ位置との高低差と等しくなっている。
The other end of the first support arm 25, that is, the tip 25b, and the other end of the second support arm 26, that is, the tip 26b, are fixed to the radially inner end of the plate-like portion 21.
The plate-like portion 21 has, for example, two or three extending portions that extend radially inward.
As an example, each of the plate-like portions 21 of the fixed support body 20b and the driven support body 20c includes a first extension portion 22 located at a lower portion of the radially inner end portion of the plate-like portion 21 and the plate-like portion. A second extending portion 23 located at the upper portion of the end portion on the radially inner side of the 21, and a third extending portion 24 located on the upper end portion of the end portion on the radially inner side of the plate-like portion 21. Has an extension.
Further, the plate-like portion 21 of the drive support 20a includes a first extending portion 22 located at a lower portion of an end portion on the radially inner side of the plate-like portion 21 and an end portion on the radially inner side of the plate-like portion 21. The second extending portion 23 is located at the upper end of the second extending portion 23, and the third extending portion 24 is not included.
In each main support body 20, the second support arm 26 is spaced apart from the first support arm 25.
The distal end portion 25 b of the first support arm 25 is fixed to the first extending portion 22 of the plate-like portion 21, and the distal end portion 26 b of the second support arm 26 is fixed to the second extending portion 23 of the plate-like portion 21. It is fixed to. Accordingly, the plate-like portion 21 is pivotally supported on the reference shaft 11 via a pair of upper and lower support arms (first support arm 25 and second support arm 26). That is, the main support 20 including the plate-like portion 21, the first support arm 25, and the second support arm 26 is pivotally supported on the reference shaft 11. However, the first support arm 25 and the second support arm 26 of the fixed support 20b may be fixed to the reference shaft 11 as described above. Therefore, the fixed support 20b is fixed to the reference shaft 11. It may be.
In each main support 20, the height difference between the height position where the first extension portion 22 is arranged and the height position where the second extension portion 23 is arranged is that the first support arm 25 is arranged. Is equal to the height difference between the height position where the second support arm 26 is disposed and the height position where the second support arm 26 is disposed.
 ここで、互いに隣り合うメイン支持体20の第1支持アーム25どうしは、第1支持アーム25の厚み分だけ、互いに高さ位置が異なっている。
 同様に、互いに隣り合うメイン支持体20の第2支持アーム26どうしは第2支持アーム26の厚み分だけ、互いに高さ位置が異なっている。
 図4及び図8に示すように、第1支持アーム25どうしは互いに重ねて配置されているとともに、第2支持アーム26どうしは互いに重ねて配置されている。
 また、複数の第1支持アーム25のうち最上位置の第1支持アーム25と、複数の第2支持アーム26のうち最下位置の第2支持アーム26とは互いに重ねて配置されている。
 なお、サブ支持体30の折り畳み状態においても、サブ支持体30及びリフレクタ部50の嵩張りに応じて、互いに隣り合うメイン支持体20の第1支持アーム25どうしの回転位相、並びに、互いに隣り合うメイン支持体20の第2支持アーム26どうしの回転位相は、基準軸11の周方向において若干ずれている(図4参照)。
Here, the first support arms 25 of the main support bodies 20 adjacent to each other have different height positions from each other by the thickness of the first support arm 25.
Similarly, the second support arms 26 of the main support bodies 20 adjacent to each other are different in height from each other by the thickness of the second support arm 26.
As shown in FIGS. 4 and 8, the first support arms 25 are arranged to overlap each other, and the second support arms 26 are arranged to overlap each other.
The first support arm 25 at the uppermost position among the plurality of first support arms 25 and the second support arm 26 at the lowermost position among the plurality of second support arms 26 are disposed so as to overlap each other.
Even in the folded state of the sub support 30, the rotation phases of the first support arms 25 of the adjacent main support 20 and the adjacent ones of the sub support 30 and the reflector portion 50 are adjacent to each other. The rotational phases of the second support arms 26 of the main support 20 are slightly shifted in the circumferential direction of the reference shaft 11 (see FIG. 4).
 ブーム61は、例えば、ブーム展開機構(不図示)を介して、宇宙機の構体(以下、宇宙機構体)に連結されている。
 ブーム61は、一方向に長尺な棒状に形成されている。ブーム61は、基準軸11を中心とする放射方向に延在している。
 上記のように、固定支持体20bはブーム61に固定されている。より詳細には、固定支持体20bの板状部21の下縁部が、ブーム61の長手方向に沿って固定されている(図4、図12参照)。
 支持構造部12が備える複数のメイン支持体20(本実施形態の場合、13個のメイン支持体20)のうち、少なくとも、固定支持体20bを除く12個のメイン支持体20は、基準軸11に軸支されており、基準軸11を中心軸として、ブーム61及び固定支持体20bに対して回転可能となっている。
 基準軸11に軸支されている12個のメイン支持体20のうち、1個は駆動支持体20aであり、他の11個は従動支持体20cである。
The boom 61 is connected to a structure of a spacecraft (hereinafter referred to as a space mechanism body) via, for example, a boom deployment mechanism (not shown).
The boom 61 is formed in a bar shape that is long in one direction. The boom 61 extends in the radial direction about the reference shaft 11.
As described above, the fixed support body 20 b is fixed to the boom 61. More specifically, the lower edge portion of the plate-like portion 21 of the fixed support 20b is fixed along the longitudinal direction of the boom 61 (see FIGS. 4 and 12).
Among the plurality of main supports 20 (13 main supports 20 in the case of the present embodiment) provided in the support structure 12, at least the 12 main supports 20 excluding the fixed supports 20 b are the reference shafts 11. And is rotatable with respect to the boom 61 and the fixed support 20b about the reference shaft 11 as a central axis.
Of the twelve main supports 20 supported by the reference shaft 11, one is a drive support 20a, and the other 11 is a driven support 20c.
 図3及び図4に示す折り畳み状態(収納状態)では、支持構造部12が備える複数のメイン支持体20は、周方向において互いに近接するとともに、周方向において互いに重なった状態となる。
 図1及び図2に示す展開状態では、隣り合うメイン支持体20どうしの間の角度が開き(例えば、それぞれ30度に開き)、それに伴い、隣り合うメイン支持体20どうしの間に架設されているサブ支持体30が展開する。
 展開状態では、サブ支持体30は、複数のファセット37を画定する形状(格子構造)となる。
In the folded state (stored state) shown in FIGS. 3 and 4, the plurality of main support bodies 20 included in the support structure 12 are close to each other in the circumferential direction and overlap each other in the circumferential direction.
In the unfolded state shown in FIG. 1 and FIG. 2, the angle between the adjacent main supports 20 is opened (for example, each is opened at 30 degrees), and accordingly, it is installed between the adjacent main supports 20. The sub-support 30 is expanded.
In the unfolded state, the sub-support 30 has a shape (lattice structure) that defines a plurality of facets 37.
 サブ支持体30は、格子構造を形成する複数の支持要素31を備えて構成されている。支持要素31の各々は、基準軸11に対して平行な面状に形成されている。
 より詳細には、本実施形態の場合、複数の支持要素31の各々は、薄板状に形成されている。
The sub-support 30 includes a plurality of support elements 31 that form a lattice structure. Each of the support elements 31 is formed in a plane shape parallel to the reference axis 11.
More specifically, in the case of the present embodiment, each of the plurality of support elements 31 is formed in a thin plate shape.
 支持要素31の曲げ剛性よりもメイン支持体20の曲げ剛性の方が大きいことが好ましい。例えば、メイン支持体20と支持要素31とは互いに同様の材料により構成されており、メイン支持体20の板厚が、支持要素31の板厚よりも厚い。
 支持要素31及びメイン支持体20の板状部21の材料は、特に限定されないが、支持要素31及び板状部21の各々は、例えば、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)により構成することができる。
The bending rigidity of the main support 20 is preferably larger than the bending rigidity of the support element 31. For example, the main support 20 and the support element 31 are made of the same material, and the plate thickness of the main support 20 is larger than the plate thickness of the support element 31.
The material of the plate-like portion 21 of the support element 31 and the main support 20 is not particularly limited, but each of the support element 31 and the plate-like portion 21 is made of, for example, carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics). can do.
 複数の支持要素31は、格子状に交差している。展開状態においては、これら複数の支持要素31によりファセット37が形成されるようになっている。
 本実施形態の場合、図5に示すように、サブ支持体30の複数の支持要素31により形成されるファセット37の形状は菱形である。なお、ファセット37には、複数の支持要素31により囲まれているファセット37と、複数の支持要素31とメイン支持体20とにより囲まれているファセット37とが含まれている。
The plurality of support elements 31 intersect in a lattice pattern. In the unfolded state, a facet 37 is formed by the plurality of support elements 31.
In the case of this embodiment, as shown in FIG. 5, the shape of the facet 37 formed by the plurality of support elements 31 of the sub-support 30 is a rhombus. The facet 37 includes a facet 37 surrounded by a plurality of support elements 31 and a facet 37 surrounded by the plurality of support elements 31 and the main support 20.
 展開状態のサブ支持体30が画定する複数のファセット37の過半数は、基準軸11を中心とする放射方向に長尺な形状となっていることが好ましい。放射方向に長尺であるとは、ファセット37の面内において、放射方向におけるファセット37の寸法が、放射方向に対して直交する方向におけるファセット37の寸法よりも大きいことを意味する。
 本実施形態の場合、複数のファセット37の過半数は、基準軸11を中心とする放射方向に長尺な菱形である。
 より詳細には、本実施形態の場合、実質的にすべてのファセット37(支持構造部12の周縁部のファセット37を除くファセット37)が、基準軸11を中心とする放射方向に長尺な菱形である。
The majority of the plurality of facets 37 defined by the sub-support 30 in the expanded state preferably has a shape elongated in the radial direction around the reference axis 11. Longer in the radial direction means that the dimension of the facet 37 in the radial direction is larger than the dimension of the facet 37 in the direction orthogonal to the radial direction in the plane of the facet 37.
In the case of the present embodiment, the majority of the plurality of facets 37 is a rhombus that is long in the radial direction around the reference axis 11.
More specifically, in the case of the present embodiment, substantially all facets 37 (the facets 37 except for the facets 37 at the peripheral edge of the support structure 12) are long diamonds in the radial direction around the reference axis 11. It is.
 本実施形態の場合、サブ支持体30は、当該サブ支持体30を間に挟む一対のメイン支持体20のうち、一方のメイン支持体20に対して平行に配置された複数の支持要素31(例えば、図5に示すように、7つの支持要素31)と、他方のメイン支持体20に対して平行に配置された複数の支持要素31(例えば、図5に示すように、7つの支持要素31)と、を備えている。
 そして、一方のメイン支持体20に対して平行に配置された複数の支持要素31と、他方のメイン支持体20に対して平行に配置された複数の支持要素31と、が互いに交差している。このため、図5及び図7に示すように、展開状態において各ファセット37が菱形となる構造を容易に実現できる。
In the case of the present embodiment, the sub-support body 30 includes a plurality of support elements 31 (which are arranged in parallel to one main support body 20 among the pair of main support bodies 20 sandwiching the sub-support body 30 therebetween. For example, as shown in FIG. 5, seven support elements 31) and a plurality of support elements 31 arranged in parallel to the other main support 20 (for example, seven support elements as shown in FIG. 5). 31).
A plurality of support elements 31 arranged in parallel to one main support 20 and a plurality of support elements 31 arranged in parallel to the other main support 20 intersect each other. . For this reason, as shown in FIGS. 5 and 7, it is possible to easily realize a structure in which each facet 37 has a diamond shape in the unfolded state.
 ここで、張力を付与した状態のリフレクタ部50をファセット37に架設した状態でのリフレクタ部50の形状と、理想形状との誤差を解析(非線形解析)した結果について説明する。この解析は、リフレクタ部50の物性(弾性率、厚さ及び張力)も考慮して行った。
 ファセットの形状が菱形の場合、狭い方の内角(以下、頂角と称する)がより小さいほど、誤差が小さくなることが分かった。
 また、菱形の一辺の長さがより短くなるほど、誤差が小さくなることが分かった。
 ファセットの形状が正方形(一辺の長さが300mm)の場合と、ファセットの形状が正三角形の場合(一辺の長さが300mm)とを比較すると、後者の方が誤差が小さくなることが分かった。
 ファセットの形状が正三角形の場合(一辺の長さが300mm)と、ファセットの形状が菱形(一辺の長さが312.5mmで、頂角が45度)の場合とを比較すると、後者の方が誤差が小さくなることが分かった。
 以上より、ファセットを菱形にすることが、張力を付与した状態のリフレクタ部50をファセット37に架設した状態でのリフレクタ部50の形状と、理想形状との誤差を低減する観点で好ましいことが分かる。
Here, the result of analyzing (nonlinear analysis) an error between the shape of the reflector unit 50 in a state where the reflector unit 50 in a state where tension is applied is mounted on the facet 37 and the ideal shape will be described. This analysis was performed in consideration of the physical properties (elastic modulus, thickness, and tension) of the reflector unit 50.
It was found that when the facet shape is a rhombus, the smaller the narrower interior angle (hereinafter referred to as apex angle), the smaller the error.
Moreover, it turned out that an error becomes small, so that the length of one side of a rhombus becomes shorter.
Comparing the case where the facet shape is square (the length of one side is 300 mm) and the case where the facet shape is an equilateral triangle (the length of one side is 300 mm), it was found that the latter has a smaller error. .
If the facet shape is an equilateral triangle (the length of one side is 300 mm) and the facet shape is a rhombus (the length of one side is 312.5 mm, the apex angle is 45 degrees), the latter However, the error was found to be small.
From the above, it can be seen that it is preferable to make the facets rhombus from the viewpoint of reducing an error between the shape of the reflector portion 50 in a state where the reflector portion 50 in a state where tension is applied is mounted on the facet 37 and the ideal shape. .
 上記のようにファセット37の過半数が放射方向に長尺であることにより、張力を付与した状態のリフレクタ部50をファセット37に架設した状態でのリフレクタ部50の形状と、理想形状との誤差を低減することができる。また、複数のファセット37の過半数が放射方向に長尺な菱形であることにより、この誤差をより一層低減することができる。
 菱形のファセット37の頂角は、60度未満であることが好ましく、45度未満であることがより好ましい。
Since the majority of the facets 37 are elongated in the radial direction as described above, an error between the shape of the reflector portion 50 in a state where the reflector portion 50 in a state where a tension is applied and the facet 37 is installed and the ideal shape is reduced. Can be reduced. In addition, since the majority of the plurality of facets 37 are diamonds that are long in the radial direction, this error can be further reduced.
The apex angle of the rhombus facet 37 is preferably less than 60 degrees, and more preferably less than 45 degrees.
 本実施形態の場合、サブ支持体30の複数の支持要素31は、格子状に交差している。支持要素31どうしの交差部32(図5)は、互いに交差している支持要素31どうしを相互に揺動可能とさせる揺動部となっている。この揺動部の揺動軸は、基準軸11に対して平行である。本実施形態の場合、揺動部は、後述するように、支持要素どうし31が差し込み構造によって連結されることにより構成されたヒンジである。ただし、本発明は、この例に限らず、揺動部は、支持要素31自体の弾性変形で揺動する部分であってもよい。
 サブ支持体30を間に挟む一対のメイン支持体20どうしの間の角度が開く際には、交差部32(揺動部)において、互いに交差している支持要素31どうしが揺動し、サブ支持体30が展開する。
 逆に、サブ支持体30を間に挟む一対のメイン支持体20どうしの間の角度が閉じる際には、交差部32(揺動部)において、互いに交差している支持要素31どうしが揺動し、サブ支持体30が折り畳まれる。
In the case of the present embodiment, the plurality of support elements 31 of the sub-support 30 intersect each other in a lattice shape. The intersecting portion 32 (FIG. 5) between the support elements 31 is a swinging portion that allows the support elements 31 that intersect each other to swing each other. The swinging axis of this swinging part is parallel to the reference shaft 11. In the case of this embodiment, as will be described later, the swinging portion is a hinge configured by connecting the support elements 31 by an insertion structure. However, the present invention is not limited to this example, and the swinging portion may be a portion that swings due to elastic deformation of the support element 31 itself.
When the angle between the pair of main supports 20 sandwiching the sub support 30 is opened, the support elements 31 intersecting each other are swung at the intersecting portion 32 (swing portion), and the sub The support 30 is deployed.
On the contrary, when the angle between the pair of main supports 20 sandwiching the sub support 30 is closed, the support elements 31 intersecting each other are swung at the intersecting portion 32 (swinging portion). Then, the sub support 30 is folded.
 より詳細には、本実施形態の場合、支持要素31の一方の端部34(図5)は、メイン支持体20に連結されており、この連結部も揺動部となっている。この揺動部の揺動軸も、基準軸11に対して平行である。
 サブ支持体30を間に挟む一対のメイン支持体20どうしの間の角度が開く際には、各支持要素31が一方の端部34の揺動部において、メイン支持体20に対して揺動し、サブ支持体30が展開する。
 逆に、サブ支持体30を間に挟む一対のメイン支持体20どうしの間の角度が閉じる際には、各支持要素31が一方の端部34の揺動部において、メイン支持体20に対して揺動し、サブ支持体30が折り畳まれる。
More specifically, in the case of the present embodiment, one end portion 34 (FIG. 5) of the support element 31 is connected to the main support body 20, and this connection portion is also a swinging portion. The swing axis of this swing part is also parallel to the reference axis 11.
When the angle between the pair of main supports 20 sandwiching the sub support 30 is opened, each support element 31 swings relative to the main support 20 at the swinging portion of one end 34. Then, the sub support 30 is developed.
On the contrary, when the angle between the pair of main supports 20 sandwiching the sub support 30 is closed, each support element 31 is moved relative to the main support 20 at the swinging portion of one end 34. And the sub-support 30 is folded.
 ここで、図9(a)から図10(b)を用いて、メイン支持体20と支持要素31との連結構造の一例、並びに、支持要素31どうしの連結構造の一例を説明する。 Here, an example of a connection structure between the main support 20 and the support element 31 and an example of a connection structure between the support elements 31 will be described with reference to FIGS. 9A to 10B.
 例えば、図9(a)に示すように、各メイン支持体20の板状部21には、上向きに開いた複数のスリット21cが上下に直線状に形成されている。つまり、スリット21cの上端は、板状部21の上縁21aに達しており、スリット21cの下端は、板状部21の下縁21bには達していない。
 これら複数のスリット21cは、例えば、放射方向(径方向)において等間隔に配置されている。一例として、各板状部21には、7つのスリット21cが形成されている。各スリット21cの上下寸法は、メイン支持体20と支持要素31との連結箇所における支持要素31の上下寸法と対応している。すなわち、径方向外側に位置するスリット21cほど、上下寸法が大きくなっている。
For example, as shown in FIG. 9A, the plate-like portion 21 of each main support 20 is formed with a plurality of slits 21c opened upward in a straight line. That is, the upper end of the slit 21 c reaches the upper edge 21 a of the plate-like portion 21, and the lower end of the slit 21 c does not reach the lower edge 21 b of the plate-like portion 21.
For example, the plurality of slits 21c are arranged at equal intervals in the radial direction (radial direction). As an example, each plate-like portion 21 has seven slits 21c. The vertical dimension of each slit 21 c corresponds to the vertical dimension of the support element 31 at the connection point between the main support 20 and the support element 31. That is, the vertical dimension of the slit 21c located on the radially outer side is larger.
 また、例えば、隣り合うサブ支持体30の支持要素31は、互いに一体に形成されている。図9(a)に示すように、隣り合うサブ支持体30のうち一方のサブ支持体30を構成する支持要素31(支持要素31a)と、他方のサブ支持体30を構成する支持要素31(支持要素31b)と、が一体に形成されている。
 これら支持要素31a、31bは、互いの境界線(各支持要素31a、31bの端部34)において、相互に折り曲げられており、この境界線を揺動軸として相互に揺動可能となっている。つまり、端部34が支持要素31aと支持要素31bとの間の揺動部となっている。
 なお、支持要素31a、31bどうしを揺動可能とするためには、例えば、端部34において、支持要素31を構成する炭素繊維強化プラスチックの樹脂肉厚が局部的に薄くなっている構造、又は、局部的に炭素繊維が樹脂を含浸していない構造を採用することができる。
Further, for example, the support elements 31 of the adjacent sub-support bodies 30 are formed integrally with each other. As shown in FIG. 9A, among the adjacent sub-supports 30, a support element 31 (support element 31 a) that constitutes one sub-support 30 and a support element 31 that constitutes the other sub-support 30 ( The support element 31b) is integrally formed.
The support elements 31a and 31b are bent with respect to each other at the boundary lines (end portions 34 of the support elements 31a and 31b), and can swing with respect to each other using the boundary lines as swing axes. . That is, the end portion 34 is a swinging portion between the support element 31a and the support element 31b.
In order to make the support elements 31a and 31b swingable, for example, a structure in which the resin thickness of the carbon fiber reinforced plastic constituting the support element 31 is locally thin at the end 34, or A structure in which carbon fibers are not locally impregnated with resin can be adopted.
 以下、支持要素31aと支持要素31bとの集合体を、支持要素集合体310と称する。
 支持要素集合体310は、平面視V字状の折れ曲がり形状の薄板である。
 本実施形態の場合、図5に示すように、サブ支持体30を構成する支持要素31には、複数種類の長さ(例えば7種類の長さ)のものがある。板状部21において径方向内側の部分に連結されている支持要素31ほど長さが長く、板状部21において径方向外側の部分に連結されている支持要素31ほど長さが短い。
 支持要素集合体310についても、支持要素31の長さの種類に応じて、複数種類の寸法のものが準備されている(図10(a)参照)。
Hereinafter, an assembly of the support element 31a and the support element 31b is referred to as a support element assembly 310.
The support element assembly 310 is a thin plate having a bent shape with a V shape in plan view.
In the case of this embodiment, as shown in FIG. 5, the support elements 31 constituting the sub-support 30 have a plurality of types of lengths (for example, seven types of lengths). The support element 31 connected to the radially inner portion of the plate-like portion 21 has a longer length, and the support element 31 connected to the radially outer portion of the plate-like portion 21 has a shorter length.
The support element assembly 310 is also prepared with a plurality of types of dimensions according to the type of length of the support element 31 (see FIG. 10A).
 展開式リフレクタ100は、図9(a)及び図9(b)に示すように上向きに開いたスリット33を有する支持要素31と、図10(a)に示すように下向きに開いたスリット33を有する支持要素31と、を有している。つまり、展開式リフレクタ100は、上向きに開いたスリット33を有する支持要素集合体310と、下向きに開いたスリット33を有する支持要素集合体310と、を有する。
 支持要素31のスリット33は、サブ支持体30における支持要素31どうしの交差部32と対応する位置に形成されている。より多くの支持要素31と交差する支持要素31には、より多くのスリット33が形成されている。
The deployable reflector 100 includes a support element 31 having a slit 33 opened upward as shown in FIGS. 9A and 9B and a slit 33 opened downward as shown in FIG. 10A. And a supporting element 31. That is, the deployable reflector 100 includes the support element assembly 310 having the slits 33 opened upward and the support element assembly 310 having the slits 33 opened downward.
The slit 33 of the support element 31 is formed at a position corresponding to the intersection 32 of the support elements 31 in the sub-support 30. More slits 33 are formed in the support element 31 that intersects more support elements 31.
 先ず、図9(a)及び図9(b)に示すように、上向きに開いたスリット33を有する支持要素集合体310の中央部(支持要素31の端部34)を、メイン支持体20のスリット21cに差し込む。ここで、複数のメイン支持体20のうち、周方向における配置順序が奇数番目のメイン支持体20に対し、上向きに開いたスリット33を有する支持要素集合体310を差し込む。 First, as shown in FIGS. 9A and 9B, the central portion of the support element assembly 310 (the end portion 34 of the support element 31) having the slit 33 that opens upward is moved to the main support 20. Insert into slit 21c. Here, among the plurality of main supports 20, the support element aggregate 310 having the slits 33 opened upward is inserted into the odd-numbered main support 20 in the circumferential order.
 次に、図10(a)及び図10(b)に示すように、下向きに開いたスリット33を有する支持要素集合体310の中央部を、メイン支持体20のスリット21cに差し込む。ここで、複数のメイン支持体20のうち、周方向における配置順序が偶数番目のメイン支持体20に対し、下向きに開いたスリット33を有する支持要素集合体310を差し込む。
 この際に、互いに交差する支持要素31については、各支持要素31のスリット33に対し、他方を差し込む。これにより、支持要素31どうしの交差部32(本実施形態の場合、ヒンジである揺動部)が形成される。
 なお、固定支持体20bと駆動支持体20aに対しては、それぞれ支持要素31の端部34を揺動可能に連結する。
Next, as shown in FIGS. 10A and 10B, the center portion of the support element assembly 310 having the slit 33 that opens downward is inserted into the slit 21 c of the main support 20. Here, among the plurality of main supports 20, the support element assembly 310 having the slits 33 opened downward is inserted into the main support 20 that is even-numbered in the circumferential order.
At this time, for the support elements 31 that intersect each other, the other is inserted into the slit 33 of each support element 31. Thereby, the intersection part 32 (the rocking | fluctuation part which is a hinge in this embodiment) of the support elements 31 is formed.
In addition, the end part 34 of the support element 31 is connected to the fixed support 20b and the drive support 20a so as to be swingable.
 このように、本実施形態の場合、複数の支持要素31の各々は薄板状に形成されており、互いに交差する支持要素31は、各々の対応箇所に形成されたスリット33に他方が差し込まれることで互いに係合しており、且つ、この係合箇所が揺動部(本実施形態ではヒンジ)となっている。
 このため、簡易な構造によって、支持要素31どうしを連結することができるとともに、支持要素31どうしが揺動する構成を実現できる。
Thus, in the case of this embodiment, each of the plurality of support elements 31 is formed in a thin plate shape, and the other of the support elements 31 that intersect each other is inserted into the slits 33 formed in the corresponding positions. Are engaged with each other, and this engagement portion is a swinging portion (in this embodiment, a hinge).
For this reason, while being able to connect the support elements 31 with a simple structure, it is possible to realize a configuration in which the support elements 31 swing.
 また、本実施形態の場合、隣り合うサブ支持体30間で、支持要素集合体310を共用する構造となっている。このため、サブ支持体30どうしの一体性が高い構造を実現できる。 Further, in the case of the present embodiment, the support element aggregate 310 is shared between the adjacent sub-supports 30. For this reason, a structure in which the sub-supports 30 are highly integrated can be realized.
 例えば、図11に示すように、互いに交差する支持要素31には、交差部32を跨いで、カプトンテープ(登録商標)などの可撓性の粘着テープ91が貼り付けられている。
 この構成により、揺動部の動作の自由度は確保しつつ、互いに交差する支持要素31が互いのスリット33から脱落することを抑制できる。
 または、互いに交差する支持要素31は、支持要素31と同様の材料により構成されているシートが、交差部32を跨いで接着されていてもよい。すなわち、交差部32は、ダブラ構造にして補強されていてもよい。
For example, as shown in FIG. 11, a flexible adhesive tape 91 such as Kapton tape (registered trademark) is attached to the support elements 31 that intersect each other across the intersection 32.
With this configuration, it is possible to prevent the support elements 31 that intersect each other from dropping from the slits 33 while securing the degree of freedom of operation of the swinging portion.
Alternatively, the support elements 31 that intersect each other may be bonded to each other with a sheet made of the same material as that of the support element 31 straddling the intersection 32. That is, the intersecting portion 32 may be reinforced with a doubler structure.
 支持面13は、メイン支持体20の板状部21の上縁21aと、支持要素31の上縁35と、によって構成されている。
 本実施形態の場合、展開状態でも複数のメイン支持体20の板状部21の上縁21aと各サブ支持体30の複数の支持要素31の上縁35とを含む仮想的な1個の凹曲面が、支持面13である(図1、図12参照)。ただし、支持面13の形状は、多面体の表面の一部分(格子面)であってもよい。
The support surface 13 includes an upper edge 21 a of the plate-like portion 21 of the main support 20 and an upper edge 35 of the support element 31.
In the case of the present embodiment, even in the unfolded state, one virtual recess including the upper edges 21a of the plate-like portions 21 of the plurality of main support bodies 20 and the upper edges 35 of the plurality of support elements 31 of each sub-support body 30. The curved surface is the support surface 13 (see FIGS. 1 and 12). However, the shape of the support surface 13 may be a part of the surface of the polyhedron (lattice surface).
 ここで、各メイン支持体20の板状部21は、先端側(径方向外側)に向けて、当該板状部21の上下寸法が徐々に大きくなっている。より詳細には、図12に示すように、板状部21の下縁21bは、基準軸11に対して直交する直線状に延在しているのに対し、板状部21の上縁21aは、先端側に向けて徐々に上向きに湾曲している。
 同様に、各支持要素31は、基準軸11から遠ざかるにつれて、当該支持要素31の上下寸法が徐々に大きくなっている。より詳細には、支持要素31の下縁36は、複数のメイン支持体20の板状部21の上縁21aを含む平面に対して平行に延在している。これに対し、支持要素31の上縁35は、基準軸11から遠ざかるにつれて、徐々に上向きに湾曲している。
 これにより、滑らかな凹曲面である支持面13を実現できるようになっている。
 なお、板状部21の上下寸法、すなわちメイン支持体20の上下寸法(基準軸11の軸方向に対して平行な方向における板状部21及びメイン支持体20の寸法)は、支持要素31の上下寸法(基準軸11の軸方向に対して平行な方向における支持要素31の寸法)よりも大きい。つまり、各支持要素31の下縁36は、複数のメイン支持体20の板状部21の下縁21bを含む平面よりも上方に位置している。
 換言すれば、サブ支持体30は、メイン支持体20の上部(支持面13側の部分)に設けられている。
Here, as for the plate-like part 21 of each main support 20, the vertical dimension of the plate-like part 21 gradually increases toward the tip side (radially outer side). More specifically, as shown in FIG. 12, the lower edge 21 b of the plate-like portion 21 extends in a straight line perpendicular to the reference axis 11, whereas the upper edge 21 a of the plate-like portion 21. Is gradually curved upward toward the tip side.
Similarly, the vertical dimension of each support element 31 gradually increases as the distance from the reference axis 11 increases. More specifically, the lower edge 36 of the support element 31 extends in parallel to a plane including the upper edges 21 a of the plate-like portions 21 of the plurality of main supports 20. On the other hand, the upper edge 35 of the support element 31 is gradually curved upward as it moves away from the reference axis 11.
Thereby, the support surface 13 which is a smooth concave curved surface can be implement | achieved.
The vertical dimension of the plate-like portion 21, that is, the vertical dimension of the main support 20 (the dimensions of the plate-like portion 21 and the main support 20 in the direction parallel to the axial direction of the reference shaft 11) It is larger than the vertical dimension (the dimension of the support element 31 in the direction parallel to the axial direction of the reference shaft 11). That is, the lower edge 36 of each support element 31 is located above a plane including the lower edges 21b of the plate-like portions 21 of the plurality of main supports 20.
In other words, the sub support 30 is provided on the upper part of the main support 20 (part on the support surface 13 side).
 図13(b)に示すように、リフレクタ部50は、複数の金属線51を目が細かいメッシュ状に編むことによって構成されている。
 リフレクタ部50を構成する金属線51は、支持要素31の上縁35及びメイン支持体20の板状部21の上縁21aに固定される。図13(b)には、金属線51を支持要素31の上縁35に固定した状態を示す。
 金属線51を固定する方法は、特に限定されないが、例えば、リフレクタ部50を支持面13に沿って配置した状態で、図13(a)に示すように、比較的柔らかい接着剤92を支持面13の下側から上縁35又は上縁21aと金属線51との接合箇所にポッティングすることによって接着固定することが挙げられる。
 なお、リフレクタ部50を支持面13に沿って配置するためには、例えば、支持面13と嵌合する形状の凸面を有するマンドレル(不図示)に沿う形状となるようにリフレクタ部50を引き延ばした状態(リフレクタ部50に張力を付与した状態)で、展開状態の支持構造部12の支持面13を、リフレクタ部50を介してマンドレルの凸面と突き合わせる。
 リフレクタ部50の外形線52を図2に示すように、リフレクタ部50は、展開状態において支持構造部12のほぼ全域を覆うように設けられている。
 展開状態において、リフレクタ部50は、支持面13に沿った形状となる。すなわち、リフレクタ部50は、展開状態においてオフセットパラボラ面に沿った形状に湾曲するように、支持構造部12に固定されている。
 例えば、リフレクタ部50を支持構造部12に固定した後で、リフレクタ部50からマンドレルを引き離すことで、リフレクタ部50の張力により支持構造部12が若干湾曲する。支持構造部12がリフレクタ部50の張力により湾曲した状態において、支持面13及びリフレクタ部50が理想形状となるように、マンドレルの凸面の形状は、支持面13及びリフレクタ部50の理想形状と対応する形状とは若干異なる形状となっていてもよい。
 或いは、リフレクタ部50の張力が小さい場合には、マンドレルの凸面の形状は、支持面13及びリフレクタ部50の理想形状と対応する形状であってもよい。
As shown in FIG. 13B, the reflector unit 50 is configured by knitting a plurality of metal wires 51 in a fine mesh shape.
The metal wire 51 constituting the reflector part 50 is fixed to the upper edge 35 of the support element 31 and the upper edge 21a of the plate-like part 21 of the main support 20. FIG. 13B shows a state in which the metal wire 51 is fixed to the upper edge 35 of the support element 31.
A method for fixing the metal wire 51 is not particularly limited. For example, in a state where the reflector portion 50 is disposed along the support surface 13, a relatively soft adhesive 92 is supported on the support surface as shown in FIG. 13 may be bonded and fixed by potting from the lower side to the joint between the upper edge 35 or the upper edge 21a and the metal wire 51.
In order to arrange the reflector portion 50 along the support surface 13, for example, the reflector portion 50 is extended so as to have a shape along a mandrel (not shown) having a convex surface that fits the support surface 13. In the state (a state where tension is applied to the reflector portion 50), the support surface 13 of the support structure portion 12 in the deployed state is abutted with the convex surface of the mandrel via the reflector portion 50.
As shown in FIG. 2, the reflector line 50 is provided so as to cover almost the entire region of the support structure 12 in the unfolded state.
In the unfolded state, the reflector portion 50 has a shape along the support surface 13. That is, the reflector portion 50 is fixed to the support structure portion 12 so as to be bent in a shape along the offset parabolic surface in the deployed state.
For example, after fixing the reflector part 50 to the support structure part 12, the support structure part 12 is slightly curved by the tension of the reflector part 50 by pulling the mandrel away from the reflector part 50. The shape of the convex surface of the mandrel corresponds to the ideal shape of the support surface 13 and the reflector portion 50 so that the support surface 13 and the reflector portion 50 have an ideal shape when the support structure portion 12 is bent by the tension of the reflector portion 50. The shape may be slightly different from the shape to be made.
Alternatively, when the tension of the reflector portion 50 is small, the shape of the convex surface of the mandrel may be a shape corresponding to the ideal shape of the support surface 13 and the reflector portion 50.
 ここで、支持構造部12の一方の面側(上側)における複数の支持要素31の各々の縁辺(上縁35)は、リフレクタ部50を支持可能な線状の第1支持部となっている。すなわち、第1支持部は、複数の支持要素31の各々の上縁35に連続して配置されている。このため、リフレクタ部50を支持要素31によって高い位置精度で且つ高い自由度で支持することができる。 Here, each edge (upper edge 35) of the plurality of support elements 31 on one surface side (upper side) of the support structure portion 12 is a linear first support portion capable of supporting the reflector portion 50. . That is, the first support portion is continuously disposed on the upper edge 35 of each of the plurality of support elements 31. For this reason, the reflector part 50 can be supported by the support element 31 with high positional accuracy and high flexibility.
 また、支持構造部12の一方の面側(上側)における複数のメイン支持体20の各々の縁辺(板状部21の上縁21a)は、リフレクタ部50を支持可能な線状の第2支持部となっている。すなわち、第2支持部は、複数のメイン支持体20の上縁21aに連続して配置されている。このため、リフレクタ部50をメイン支持体20によって高い位置精度で且つ高い自由度で支持することができる。 Each of the plurality of main supports 20 on the one surface side (upper side) of the support structure portion 12 (the upper edge 21a of the plate-like portion 21) has a linear second support capable of supporting the reflector portion 50. Has become a department. That is, the second support portion is continuously arranged on the upper edges 21 a of the plurality of main support bodies 20. For this reason, the reflector part 50 can be supported by the main support 20 with high positional accuracy and high flexibility.
 上記のように、複数のメイン支持体20のうちの1つは、駆動支持体20aとなっている。駆動支持体20aは、以下に説明する回転動力付与機構70によって、基準軸11を回転軸として回転駆動される。駆動支持体20aが回転駆動されることによって、展開式リフレクタ100が折り畳み状態(収納状態)(図3、図4、図12)(単位モジュール15については図6、図8)から展開状態(図1、図2、図5)(単位モジュール15については図7)に変形する。 As described above, one of the plurality of main supports 20 is a drive support 20a. The drive support 20a is rotationally driven about the reference shaft 11 as a rotational axis by a rotational power applying mechanism 70 described below. When the drive support 20a is rotationally driven, the deployable reflector 100 is folded (stored) (FIGS. 3, 4, and 12) (FIGS. 6 and 8 for the unit module 15) (FIG. 6, FIG. 8). 1, FIG. 2, FIG. 5) (the unit module 15 is transformed into FIG. 7).
 図12に示すように、回転動力付与機構70は、一例として、ブーム61に固定されているモータ71と、基準軸11内に挿通されているドライブシャフト(不図示)に対してモータ71の回転動力を伝達する駆動伝達機構72と、を備えて構成されている。
 モータ71の出力軸がブーム61に対して平行に配置されている場合、駆動伝達機構72は、例えば、互いに噛み合っている一対のかさ歯車を有していることなどによって、出力軸の回転を、当該回転に対して直交する方向の回転に変換して、ドライブシャフトに伝達できるように構成されている。
 駆動伝達機構72は、モータ71の出力軸からドライブシャフトに回転動力を伝達する過程で回転速度を低速にする減速機を備えていてもよい。
 回転動力付与機構70は、モータ71に電力を供給する図示しない電源を備えていてもよいし、宇宙機構体からケーブルを介してモータ71に電力が供給されるようになっていてもよい。
As shown in FIG. 12, as an example, the rotational power applying mechanism 70 rotates the motor 71 with respect to a motor 71 fixed to the boom 61 and a drive shaft (not shown) inserted into the reference shaft 11. And a drive transmission mechanism 72 that transmits power.
When the output shaft of the motor 71 is arranged parallel to the boom 61, the drive transmission mechanism 72 has a pair of bevel gears meshed with each other, for example, to rotate the output shaft. The rotation is converted to a rotation in a direction orthogonal to the rotation and transmitted to the drive shaft.
The drive transmission mechanism 72 may include a speed reducer that reduces the rotational speed in the process of transmitting rotational power from the output shaft of the motor 71 to the drive shaft.
The rotational power applying mechanism 70 may include a power source (not shown) that supplies electric power to the motor 71, or electric power may be supplied from the space mechanism body to the motor 71 via a cable.
 展開式リフレクタ100を折り畳み状態(収納状態)から展開状態に変形させるには、回転動力付与機構70によって、基準軸11を回転中心として駆動支持体20aを周方向に回転させる。すなわち、駆動支持体20aを図14において反時計回りに回転させる。なお、図14において、基準軸11を中心とする反時計回りの方向を、回転方向と称し、その反対方向(時計回りの方向)を回転方向後方と称する。 To deform the unfoldable reflector 100 from the folded state (stored state) to the unfolded state, the drive support 20a is rotated in the circumferential direction about the reference shaft 11 by the rotational power applying mechanism 70. That is, the drive support 20a is rotated counterclockwise in FIG. In FIG. 14, the counterclockwise direction around the reference axis 11 is referred to as the rotation direction, and the opposite direction (clockwise direction) is referred to as the rotation direction rearward.
 回転動力付与機構70によって駆動支持体20aを回転させることによって、先ず、駆動支持体20aと、当該駆動支持体20aに対して回転方向後方側に隣接する従動支持体20cと、の間の角度が徐々に開く。これに伴い、これら駆動支持体20a及び従動支持体20cの間のサブ支持体30が徐々に展開する。 By rotating the drive support 20a by the rotational power applying mechanism 70, first, the angle between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotational direction is first increased. Open gradually. Along with this, the sub-support 30 between the drive support 20a and the driven support 20c is gradually developed.
 図14に示す状態は、駆動支持体20aと、当該駆動支持体20aに対して回転方向後方側に隣接する従動支持体20cと、の間のサブ支持体30の展開が完了した状態である。この状態では、駆動支持体20aと、当該駆動支持体20aに対して回転方向後方側に隣接する従動支持体20cと、の間の角度は30度となっている。
 例えば、引き続き駆動支持体20aが回転駆動されることによって、順次、回転方向後方側のサブ支持体30が展開するようになっている。そのような動作を実現するため、例えば、メイン支持体20どうしが連結(常時連結とは限らない)されているか、又は、ドライブシャフトとメイン支持体20とが係合している。
 展開動作の結果、展開式リフレクタ100は図2に示すような展開状態となる。
 展開状態では、例えば、駆動支持体20aと固定支持体20bとが面接触する状態となる。
 なお、展開状態となった後、モータ71の駆動が停止する。
The state shown in FIG. 14 is a state in which the development of the sub-support 30 between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotation direction is completed. In this state, the angle between the drive support 20a and the driven support 20c adjacent to the drive support 20a on the rear side in the rotational direction is 30 degrees.
For example, when the drive support body 20a is continuously rotated, the sub-support bodies 30 on the rear side in the rotation direction are sequentially deployed. In order to realize such an operation, for example, the main supports 20 are connected to each other (not always connected), or the drive shaft and the main support 20 are engaged.
As a result of the unfolding operation, the unfoldable reflector 100 is in the unfolded state as shown in FIG.
In the unfolded state, for example, the drive support 20a and the fixed support 20b are in surface contact.
Note that after the unfolded state, the drive of the motor 71 is stopped.
 展開式リフレクタ100は、収納状態(折り畳み状態)では、図3に示すように平面形状が扇形とであり、展開状態では、図2に示すように平面形状が略円形になる。
 本実施形態の場合、展開式リフレクタ100の展開動作において、各メイン支持体20の回転軸が共通の基準軸11である(つまり回転軸が1つである)。このため、展開動作の誤差(バラツキ)を抑制できるため、容易に、高精度の形状の支持面13を形成することができる。
 また、展開動作自体がシンプルなため、駆動伝達機構72として簡易な構成を採用することができる。
In the retracted state (folded state), the unfolded reflector 100 has a fan-shaped planar shape as shown in FIG. 3, and in the unfolded state, the planar shape is substantially circular as shown in FIG.
In the case of the present embodiment, in the unfolding operation of the unfoldable reflector 100, the rotation axis of each main support 20 is the common reference axis 11 (that is, there is one rotation axis). For this reason, since an error (variation) in the unfolding operation can be suppressed, the support surface 13 having a highly accurate shape can be easily formed.
Further, since the unfolding operation itself is simple, a simple configuration can be adopted as the drive transmission mechanism 72.
 一例として、基準軸11は、筒状に形成されており、基準軸11内には、棒状のドライブシャフトが挿通されている。ドライブシャフトは、基準軸11を貫通して配置されている。
 基準軸11の一端(下端)の外部(下側)において、ドライブシャフトの一端部(下端部)には、下側固定部材42が固定されている。
 回転動力付与機構70は、例えば、下側固定部材42を回転させることによって、ドライブシャフトを基準軸11の軸中心を中心として軸回転させる。
 また、基準軸11の他端(上端)の外部(上側)において、ドライブシャフトの他端部(上端部)には、上側固定部材43が固定されている。
 上側固定部材43は、駆動支持体20aの第2支持アーム26の上面に配置されている。上側固定部材43には、駆動支持体20aの第2支持アーム26が固定されている。
As an example, the reference shaft 11 is formed in a cylindrical shape, and a rod-shaped drive shaft is inserted into the reference shaft 11. The drive shaft is disposed through the reference shaft 11.
A lower fixing member 42 is fixed to one end portion (lower end portion) of the drive shaft outside (lower side) one end (lower end) of the reference shaft 11.
The rotational power application mechanism 70 rotates the drive shaft about the axis center of the reference shaft 11 by rotating the lower fixing member 42, for example.
In addition, on the outside (upper side) of the other end (upper end) of the reference shaft 11, an upper fixing member 43 is fixed to the other end portion (upper end portion) of the drive shaft.
The upper fixing member 43 is disposed on the upper surface of the second support arm 26 of the drive support 20a. The second support arm 26 of the drive support 20a is fixed to the upper fixing member 43.
 例えば、各メイン支持体20の第2支持アーム26は、上下に隣接して配置されている。
 複数の第2支持アーム26の中では、駆動支持体20aの第2支持アーム26が最も上に配置されており、駆動支持体20aと隣接する従動支持体20cの第2支持アーム26が上から2番目に配置されている。以下、図2において時計回りの順に従って、各従動支持体20cの第2支持アーム26が上から順に配置されている。そして、固定支持体20bの第2支持アーム26が最も下に配置されている。
 同様に、各メイン支持体20の第1支持アーム25は、上下に隣接して配置されている。
 複数の第1支持アーム25の中では、駆動支持体20aの第1支持アーム25が最も上に配置されており、駆動支持体20aと隣接する従動支持体20cの第1支持アーム25が上から2番目に配置されている。以下、図2において時計回りの順に従って、各従動支持体20cの第1支持アーム25が上から順に配置されている。そして、固定支持体20bの第1支持アーム25が最も下に配置されている。
For example, the second support arm 26 of each main support 20 is disposed adjacent to the top and bottom.
Among the plurality of second support arms 26, the second support arm 26 of the drive support 20a is disposed at the top, and the second support arm 26 of the driven support 20c adjacent to the drive support 20a is viewed from above. Arranged second. Hereinafter, the second support arm 26 of each driven support 20c is arranged in order from the top in the clockwise order in FIG. And the 2nd support arm 26 of the fixed support body 20b is arrange | positioned lowest.
Similarly, the first support arm 25 of each main support 20 is disposed adjacent to the top and bottom.
Among the plurality of first support arms 25, the first support arm 25 of the drive support 20a is disposed at the top, and the first support arm 25 of the driven support 20c adjacent to the drive support 20a is from above. Arranged second. Hereinafter, the first support arm 25 of each driven support 20c is arranged in order from the top in the clockwise order in FIG. And the 1st support arm 25 of the fixed support body 20b is arrange | positioned lowest.
 このため、各メイン支持体20の第1支持アーム25と第2支持アーム26との上下間隔を互いに同等にできるため、各メイン支持体20を互いに同等の支持強度で基準軸11により支持させることができる。 For this reason, since the vertical interval between the first support arm 25 and the second support arm 26 of each main support 20 can be made equal to each other, each main support 20 is supported by the reference shaft 11 with the same support strength. Can do.
 また、各メイン支持体20の第1支持アーム25が互いに段違いに配置されているとともに、各メイン支持体20の第2支持アーム26が互いに段違いに配置されている。また、複数のメイン支持体20の第1支持アーム25が配置されている領域と、複数のメイン支持体20の第2支持アーム26が配置されている領域とが、上下に分かれている。
 このため、第1支持アーム25どうしが干渉せず、第2支持アーム26どうしが干渉せず、しかも、第1支持アーム25と第2支持アーム26とが干渉しないようになっている。
 このため、展開式リフレクタ100の収納状態における寸法(扇形の角度)をコンパクトにすることができるとともに、展開動作をスムーズに行うことができるようになっている。
Further, the first support arms 25 of the main support bodies 20 are arranged in a stepwise manner, and the second support arms 26 of the main support bodies 20 are arranged in a stepped manner. Moreover, the area | region where the 1st support arm 25 of the some main support body 20 is arrange | positioned, and the area | region where the 2nd support arm 26 of the some main support body 20 are arrange | positioned are divided up and down.
Therefore, the first support arms 25 do not interfere with each other, the second support arms 26 do not interfere with each other, and the first support arm 25 and the second support arm 26 do not interfere with each other.
For this reason, the dimension (fan-shaped angle) in the retracted state of the deployable reflector 100 can be made compact, and the unfolding operation can be performed smoothly.
 このように、本実施形態に係る展開式リフレクタ100において、基準軸11に軸支されているメイン支持体20の数が2つ以上であり、基準軸11に軸支されているメイン支持体20のうちの少なくとも1つは、回転駆動される駆動支持体20aである。
 当該展開式リフレクタ100は、更に、基準軸11を回転中心として駆動支持体20aを周方向に回転させることによって支持構造部12を展開状態にする回転動力付与機構70を備えている。
As described above, in the deployable reflector 100 according to this embodiment, the number of the main supports 20 that are supported by the reference shaft 11 is two or more, and the main supports 20 that are supported by the reference shaft 11. At least one of them is a drive support 20a that is rotationally driven.
The deployable reflector 100 further includes a rotational power applying mechanism 70 that rotates the drive support body 20a in the circumferential direction about the reference shaft 11 as a center of rotation, thereby bringing the support structure portion 12 into a deployed state.
 なお、展開式リフレクタ100は、展開式リフレクタ100を展開状態に維持させるラッチ機構(不図示)を備えていてもよい。このラッチ機構は、例えば、展開動作の完了後において、駆動支持体20aと固定支持体20bとが相互に離間することを規制する。
 また、展開動作のときとは逆方向に駆動支持体20aを周方向に回転させることによって、展開式リフレクタ100を展開状態から収納状態(折り畳み状態)に変形させることが可能であってもよい。また、必要により展開動作を途中で停止させ、展開式リフレクタ100を折り畳み、その後、展開動作をやり直すことが可能であってもよい。
The deployable reflector 100 may include a latch mechanism (not shown) that maintains the deployable reflector 100 in the deployed state. For example, the latch mechanism restricts the drive support 20a and the fixed support 20b from being separated from each other after the unfolding operation is completed.
Further, it may be possible to deform the deployable reflector 100 from the deployed state to the retracted state (folded state) by rotating the drive support 20a in the circumferential direction in the opposite direction to the unfolding operation. Further, if necessary, the unfolding operation may be stopped halfway, the unfoldable reflector 100 may be folded, and then the unfolding operation may be performed again.
 展開式リフレクタ100における板状部21及び支持要素31以外の各部の材料は、特に限定されないが、軽量で且つ十分な強度を確保できる材料であることが好ましく、一例として、炭素繊維強化プラスチックを用いてもよいし、金属材料を用いてもよい。 The material of each part other than the plate-like part 21 and the support element 31 in the deployable reflector 100 is not particularly limited, but is preferably a material that is lightweight and can ensure sufficient strength. As an example, carbon fiber reinforced plastic is used. Alternatively, a metal material may be used.
 以上のような実施形態によれば、支持構造部12が基準軸11を中心とする周方向(円周方向)に展開することでリフレクタ面が形成される。このため、特許文献1のようにアンテナの展開動作がアンテナの面直方向成分を持つ向きに行われる場合とは異なり、展開動作の終了位置の誤差に起因するリフレクタ面の形状の誤差を大幅に低減することができ、高精度のリフレクタ面を形成することが可能となる。 According to the embodiment as described above, the reflector surface is formed by the support structure portion 12 expanding in the circumferential direction (circumferential direction) centering on the reference axis 11. For this reason, unlike the case where the antenna unfolding operation is performed in a direction having a component perpendicular to the plane of the antenna as in Patent Document 1, the shape error of the reflector surface due to the error of the end position of the unfolding operation is greatly increased. Therefore, it is possible to form a highly accurate reflector surface.
 また、本実施形態の場合、メイン支持体20の板状部21の上縁21aと、支持要素31の上縁35に対して直にリフレクタ部50の金属線51が固定されている。このため、本実施形態に係る展開式リフレクタ100は、一般的な展開式リフレクタで用いられるようなケーブルネットワークを備える必要がない。よって、ケーブルのカテナリ変形によるピロー変形への対策が不要となり、また、このピロー変形を低減するためにケーブルの張力を増大させることに起因する不具合も生じないようにできる。 In the present embodiment, the metal wire 51 of the reflector unit 50 is fixed directly to the upper edge 21 a of the plate-like part 21 of the main support 20 and the upper edge 35 of the support element 31. For this reason, the deployable reflector 100 according to the present embodiment does not need to include a cable network that is used in a general deployable reflector. Therefore, it is not necessary to take measures against pillow deformation due to cable catenary deformation, and it is possible to prevent problems caused by increasing the tension of the cable in order to reduce the pillow deformation.
 <支持要素どうしの連結構造の変形例>
 次に、図15(a)及び図15(b)を用いて、サブ支持体30を構成する支持要素31どうしの連結構造の変形例を説明する。
 図15(a)に示すように、本変形例の場合、支持要素31どうしが交差していない。サブ支持体30は、支持要素31どうしが部分的に接合(面接合)されている接合部38を有し、接合部38が揺動部となっている。
 なお、図15(b)に示すように、支持要素31において、接合部38を形成する部分の両側には、それぞれ他部よりも柔軟に屈曲可能な屈曲部39が形成されていることが好ましい。
 屈曲部39は、支持要素31を構成する炭素繊維強化プラスチックの樹脂肉厚が局部的に薄くなっている部分、又は、局部的に炭素繊維が樹脂を含浸していない部分とすることができる。
<Variation of connecting structure between support elements>
Next, a modified example of the connection structure between the support elements 31 constituting the sub-support 30 will be described with reference to FIGS.
As shown in FIG. 15A, in the case of this modification, the support elements 31 do not intersect each other. The sub-support 30 has a joint 38 in which the support elements 31 are partially joined (surface joined), and the joint 38 is a swinging part.
As shown in FIG. 15 (b), in the support element 31, it is preferable that bent portions 39 that can be bent more flexibly than other portions are formed on both sides of the portion where the joint portion 38 is formed. .
The bent portion 39 may be a portion where the resin thickness of the carbon fiber reinforced plastic constituting the support element 31 is locally thinned, or a portion where the carbon fiber is not locally impregnated with resin.
 <単位モジュールにおける支持要素の配置の変形例1>
 次に、図16(a)を用いて、単位モジュール15における支持要素31の配置の変形例1を説明する。
 本変形例の場合、単位モジュール15を構成するサブ支持体30は、周方向に延在する支持要素111を有している。より詳細には、支持要素111は、基準軸11を中心とする円周に対する接線方向に延在している。また、サブ支持体30は、複数の支持要素111を有しており、これら支持要素111は展開状態において互いに平行に延在するようになっている。支持要素111は、例えば、隣り合うメイン支持体20間に架設されている。ファセット37の形状は、それぞれ三角形状(例えば二等辺三角形状)となっている。
 支持要素111の縁辺(上縁)は、支持要素31の縁辺(実施形態で説明した上縁35)及びメイン支持体20の縁辺(実施形態で説明した上縁21a)とともに、支持面13を構成し、リフレクタ部50を支持する。
 支持要素111は、周方向において容易に伸縮可能となるように、支持要素31よりも更に柔軟に構成されている。
 本変形例の場合、その他の構造については、上記の実施形態と同様であるため、説明を省略する。
 なお、サブ支持体30は、支持要素111のうち、最外周の支持要素111である支持要素112については、備えていないことも好ましい。ただし、上記の実施形態においても、支持要素112を備える構成を採用してもよい。
<Modification Example 1 of Arrangement of Support Elements in Unit Module>
Next, Modification 1 of the arrangement of the support elements 31 in the unit module 15 will be described with reference to FIG.
In the case of this modification, the sub-support 30 constituting the unit module 15 has a support element 111 extending in the circumferential direction. More specifically, the support element 111 extends in a tangential direction with respect to the circumference around the reference axis 11. Further, the sub-support 30 has a plurality of support elements 111, and these support elements 111 extend in parallel with each other in the deployed state. For example, the support element 111 is installed between adjacent main supports 20. Each facet 37 has a triangular shape (for example, an isosceles triangular shape).
The edge (upper edge) of the support element 111 constitutes the support surface 13 together with the edge of the support element 31 (upper edge 35 described in the embodiment) and the edge of the main support 20 (upper edge 21a described in the embodiment). Then, the reflector unit 50 is supported.
The support element 111 is configured to be more flexible than the support element 31 so that the support element 111 can easily expand and contract in the circumferential direction.
In the case of this modification, the other structures are the same as those in the above embodiment, and thus the description thereof is omitted.
In addition, it is also preferable that the sub-support 30 does not include the support element 112 that is the outermost support element 111 among the support elements 111. However, the configuration including the support element 112 may also be adopted in the above embodiment.
 <単位モジュールにおける支持要素の配置の変形例2>
 次に、図16(b)を用いて、単位モジュール15における支持要素31の配置の変形例2を説明する。
 本変形例の場合、単位モジュール15を構成するサブ支持体30は、単位モジュールにおける支持要素の配置の変形例1と同様に、周方向に延在する支持要素111を有する。
 また、本変形例の場合、上記の実施形態及び変形例1(図16(a))とは異なり、支持要素31は、支持要素111に対して直交する方向に延在している。
 本変形例の場合も、支持要素111の縁辺(上縁)は、支持要素31の縁辺(上縁35)及びメイン支持体20の縁辺(上縁21a)とともに、支持面13を構成し、リフレクタ部50を支持する。
 本変形例の場合も、支持要素111は、周方向において容易に伸縮可能となるように、支持要素31よりも更に柔軟に構成されている。
 本変形例の場合も、サブ支持体30は、支持要素111のうち、最外周の支持要素111である支持要素112については、備えていないことも好ましい。
<Modification Example 2 of Arrangement of Support Elements in Unit Module>
Next, a second modification of the arrangement of the support elements 31 in the unit module 15 will be described with reference to FIG.
In the case of this modification, the sub-support 30 constituting the unit module 15 includes a support element 111 that extends in the circumferential direction, as in Modification 1 of the arrangement of the support elements in the unit module.
In the case of this modification, unlike the above embodiment and Modification 1 (FIG. 16A), the support element 31 extends in a direction orthogonal to the support element 111.
Also in this modification, the edge (upper edge) of the support element 111 constitutes the support surface 13 together with the edge (upper edge 35) of the support element 31 and the edge (upper edge 21a) of the main support 20, and the reflector. The part 50 is supported.
Also in this modification, the support element 111 is configured more flexibly than the support element 31 so that it can be easily expanded and contracted in the circumferential direction.
Also in this modification, it is preferable that the sub-support 30 does not include the support element 112 which is the outermost support element 111 among the support elements 111.
 <展開機構の変形例1>
 次に、図17(a)及び図17(b)を用いて、展開式リフレクタの展開機構の変形例1(多関節展開方式)を説明する。なお、図17(a)及び図17(b)において、サブ支持体30及びリフレクタ部50については図示を省略している。
 本変形例に係る展開式リフレクタ100は、以下に説明する点で、上記の実施形態に係る展開式リフレクタ100と相違しており、その他の点では、上記の実施形態に係る展開式リフレクタ100と同様に構成されている。
<Modification Example 1 of Deployment Mechanism>
Next, modified example 1 (multi-joint deployment method) of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 17 (a) and 17 (b). In FIGS. 17A and 17B, the sub-support 30 and the reflector unit 50 are not shown.
The deployable reflector 100 according to the present modification is different from the deployable reflector 100 according to the above-described embodiment in the points described below, and is otherwise different from the deployable reflector 100 according to the above-described embodiment. It is constituted similarly.
 本変形例の場合、展開式リフレクタ100は、各メイン支持体20を個別に支持する複数の相対回転部材121と、隣り合う相対回転部材121どうしを相互に回転可能に連結している連結ヒンジ122と、を備えている。
 各相対回転部材121は、例えば、平面形状が台形状となっている。相対回転部材121は、図17(a)の紙面に対して直交する方向に厚みがある形状、すなわち、平断面形状が台形の立体形状に形成されている。
In the case of this modification, the deployable reflector 100 includes a plurality of relative rotation members 121 that individually support the main support bodies 20 and a connection hinge 122 that connects the adjacent relative rotation members 121 so as to be mutually rotatable. And.
Each relative rotating member 121 has a trapezoidal planar shape, for example. The relative rotation member 121 is formed in a shape having a thickness in a direction orthogonal to the paper surface of FIG. 17A, that is, a three-dimensional shape having a trapezoidal cross section.
 図17(a)に示すように、収納状態においては、相対回転部材121は一列に並んで配置されており、各メイン支持体20は対向する相対回転部材121から一方向に突出している。収納状態において、メイン支持体20どうしは互いに平行に配置されている。 As shown in FIG. 17A, in the housed state, the relative rotation members 121 are arranged in a line, and each main support 20 protrudes in one direction from the opposing relative rotation member 121. In the stored state, the main supports 20 are arranged in parallel to each other.
 隣り合う相対回転部材121は、台形状の上底と下底とのうち寸法が大きい方(以下、長辺と称する)の角部どうしが、連結ヒンジ122を介して相互に連結されている。 In the adjacent relative rotating members 121, the corners of the upper and lower bases of the trapezoidal shape (hereinafter referred to as long sides) are connected to each other via a connecting hinge 122.
 展開式リフレクタ100は、更に、複数の相対回転部材121間に架け渡されているケーブル123と、このケーブル123を巻き取ることによって展開式リフレクタ100を図17(a)に示す展開状態に変形させるためのケーブル巻取機構124と、を備えている。
 ケーブル123は、相対回転部材121の台形状の上底と下底とのうち寸法が小さい方(以下、短辺と称する)に沿って引き回されている。相対回転部材121の短辺には、例えば、図示しないリング部材が固定されており、ケーブル123は、各相対回転部材121のリング部材に順次に通されている。
 より詳細には、展開式リフレクタ100は、例えば、2つ(又は2組)のケーブル123を有しており、一方のケーブル123は、中央の相対回転部材121と、図17(a)において当該中央の相対回転部材121の左側に配置されている他の6個の相対回転部材121のリング部材に順次に挿通されている。この6個の相対回転部材121のうち中央の相対回転部材121から最も遠い相対回転部材121のリング部材に対して、一方のケーブル123の先端が固定されている。
 また、他方のケーブル123は、中央の相対回転部材121と、図17(a)において当該中央の相対回転部材121の右側に配置されている他の5個の相対回転部材121のリング部材に順次に挿通されている。この5個の相対回転部材121のうち中央の相対回転部材121から最も遠い相対回転部材121のリング部材に対して、他方のケーブル123の先端が固定されている。
 なお、本変形例に係る展開式リフレクタ100は、上記の実施形態で説明した回転動力付与機構70を備えていない。
The deployable reflector 100 further deforms the deployable reflector 100 into a deployed state shown in FIG. 17A by winding the cable 123 between the plurality of relative rotating members 121 and winding the cable 123. Cable take-up mechanism 124.
The cable 123 is routed along a smaller dimension (hereinafter referred to as a short side) of the trapezoidal upper and lower bases of the relative rotating member 121. For example, a ring member (not shown) is fixed to the short side of the relative rotation member 121, and the cable 123 is sequentially passed through the ring member of each relative rotation member 121.
More specifically, the deployable reflector 100 includes, for example, two (or two sets) of cables 123, and one cable 123 is connected to the central relative rotation member 121 in FIG. 17A. The ring members of the other six relative rotating members 121 arranged on the left side of the central relative rotating member 121 are sequentially inserted. The tip of one cable 123 is fixed to the ring member of the relative rotation member 121 farthest from the central relative rotation member 121 among the six relative rotation members 121.
Further, the other cable 123 is sequentially connected to the central relative rotating member 121 and the ring members of the other five relative rotating members 121 arranged on the right side of the central relative rotating member 121 in FIG. Is inserted. The tip of the other cable 123 is fixed to the ring member of the relative rotation member 121 farthest from the central relative rotation member 121 among the five relative rotation members 121.
Note that the deployable reflector 100 according to this modification does not include the rotational power applying mechanism 70 described in the above embodiment.
 ケーブル巻取機構124は、例えば、中央の相対回転部材121に設けられている。ケーブル巻取機構124は、2組のケーブル123を互いに同期させて巻き取るためのモータ125を有する。
 モータ125を駆動させて2組のケーブル123を互いに同期させて巻き取ることにより、隣り合う相対回転部材121の、平面視において斜辺となる部分どうしが互いに近接する。これにより、図17(b)に示すように、展開式リフレクタ100が展開状態となる。
The cable winding mechanism 124 is provided, for example, at the central relative rotation member 121. The cable winding mechanism 124 includes a motor 125 for winding two sets of cables 123 in synchronization with each other.
By driving the motor 125 and winding the two sets of cables 123 in synchronism with each other, the portions of the adjacent relative rotation members 121 that become the hypotenuses in plan view are close to each other. Thereby, as shown in FIG.17 (b), the expansion | deployment type reflector 100 will be in an expansion | deployment state.
 本変形例の場合、図17(a)に示すように、展開式リフレクタ100の平面形状は、収納状態では長方形状となる。このため、打ち上げ時において、宇宙機構体による展開式リフレクタ100の保持を容易に行うことができる。 In the case of this modification, as shown in FIG. 17A, the planar shape of the deployable reflector 100 is a rectangular shape in the housed state. For this reason, at the time of launch, the deployable reflector 100 can be easily held by the space mechanism.
 <展開機構の変形例2>
 次に、図18(a)及び図18(b)を用いて、展開式リフレクタの展開機構の変形例2(弾性ヒンジ展開方式)を説明する。なお、図18(a)及び図18(b)において、サブ支持体30及びリフレクタ部50については図示を省略している。
<Modification Example 2 of Deployment Mechanism>
Next, modification 2 (elastic hinge deployment method) of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 18 (a) and 18 (b). 18A and 18B, the sub support 30 and the reflector unit 50 are not shown.
 本変形例に係る展開式リフレクタ100は、以下に説明する点で、図17(a)及び図17(b)に示す変形例1に係る展開式リフレクタ100と相違しており、その他の点では、変形例1に係る展開式リフレクタ100と同様に構成されている。 The deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example 1 shown in FIGS. 17A and 17B in the points described below. The configuration is the same as that of the deployable reflector 100 according to the first modification.
 本変形例の場合、展開式リフレクタ100は、図17(a)及び図17(b)に示すケーブル123、ケーブル巻取機構124(モータ125を含む)及び連結ヒンジ122を備えていない。
 その代わりに、本変形例に係る展開式リフレクタ100は、弾性ヒンジ131及びラッチ機構134(モータ135を含む)を備えている。
In the case of this modification, the deployable reflector 100 does not include the cable 123, the cable winding mechanism 124 (including the motor 125), and the connecting hinge 122 shown in FIGS. 17 (a) and 17 (b).
Instead, the deployable reflector 100 according to this modification includes an elastic hinge 131 and a latch mechanism 134 (including a motor 135).
 弾性ヒンジ131は、例えば、複数の相対回転部材121の長辺間に亘って連続的に配置されている。ただし、隣り合う相対回転部材121の長辺の端部どうしの間にのみ局部的に弾性ヒンジ131が架設されていてもよい。
 弾性ヒンジ131は、図18(a)に示す展開式リフレクタ100の収納状態では、内部応力を有するひずみ状態となっており、図18(b)に示す展開状態では無ひずみ状態となる。
 展開動作の際には、弾性ヒンジ131が有するバネの弾性エネルギにより、ある程度まで展開が可能である。展開式リフレクタ100は、最終的に展開式リフレクタ100を展開状態に維持させるためのラッチ機構134を備えている。ラッチ機構134は、当該ラッチ機構134を作動させるためのアクチュエータとしてのモータ135を備えている。
For example, the elastic hinge 131 is continuously disposed across the long sides of the plurality of relative rotating members 121. However, the elastic hinge 131 may be locally constructed only between the long side ends of the adjacent relative rotating members 121.
The elastic hinge 131 is in a distorted state having an internal stress in the retracted state of the deployable reflector 100 shown in FIG. 18A, and is in an unstrained state in the expanded state shown in FIG. 18B.
During the unfolding operation, the unfolding can be performed to some extent by the elastic energy of the spring of the elastic hinge 131. The deployable reflector 100 includes a latch mechanism 134 for finally maintaining the deployable reflector 100 in the deployed state. The latch mechanism 134 includes a motor 135 as an actuator for operating the latch mechanism 134.
 本変形例の場合も、図18(a)に示すように、展開式リフレクタ100の平面形状は、収納状態では長方形状となる。このため、打ち上げ時において、宇宙機構体による展開式リフレクタ100の保持を容易に行うことができる。
 また、本変形例の場合は、図17(a)及び図17(b)に示す変形例1とは異なり、相対回転部材121どうしの連結に連結ヒンジ122を用いないため、連結ヒンジ122におけるガタによる展開動作の誤差を排除することができ、より高精度の支持面13を形成することが可能である。
Also in the case of this modification, as shown to Fig.18 (a), the planar shape of the expansion | deployment type reflector 100 becomes a rectangular shape in the accommodation state. For this reason, at the time of launch, the deployable reflector 100 can be easily held by the space mechanism.
In the case of this modification, unlike the modification 1 shown in FIGS. 17A and 17B, the connection hinge 122 is not used for the connection between the relative rotation members 121. It is possible to eliminate the error of the unfolding operation due to the above, and it is possible to form the support surface 13 with higher accuracy.
 <展開機構の変形例3>
 次に、図19から図20(b)を用いて、展開式リフレクタの展開機構の変形例3を説明する。なお、図19から図20(b)において、サブ支持体30及びリフレクタ部50については図示を省略している。
 本変形例に係る展開式リフレクタ100は、以下に説明する点で、上記の実施形態に係る展開式リフレクタ100と相違しており、その他の点では、上記の実施形態に係る展開式リフレクタ100と同様に構成されている。
<Modification 3 of the deployment mechanism>
Next, modification 3 of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 19 to 20B. In FIG. 19 to FIG. 20B, the sub-support 30 and the reflector unit 50 are not shown.
The deployable reflector 100 according to the present modification is different from the deployable reflector 100 according to the above-described embodiment in the points described below, and is otherwise different from the deployable reflector 100 according to the above-described embodiment. It is constituted similarly.
 上記の実施形態では、モータ71を含む回転動力付与機構70の駆動力により展開式リフレクタ100の展開を行う例を説明したが、本変形例の場合、展開式リフレクタ100は、回転動力付与機構70を備えていない。
 その代わりに、図19に示すように、本変形例の場合、展開式リフレクタ100は、互いに隣り合うメイン支持体20どうしを相互に連結しているとともに、これらメイン支持体20どうしを互いに離間させる方向に弾性的に付勢する付勢部150を備えている。換言すれば、隣り合うメイン支持体20どうしが、付勢部150を介して弾性的に結合されている。
 付勢部150は、互いに隣り合うメイン支持台20どうしの間に配置されている。ただし、例えば、駆動支持体20aと固定支持体20bとの間には付勢部150は配置されていない。すなわち、例えば、図19に示すように、駆動支持体20aと当該駆動支持体20aの隣に位置する従動支持体20cとの間、固定支持体20bと当該固定支持体20bの隣に位置する従動支持体20cとの間、及び、互いに隣り合う従動支持体20cどうしの間に、それぞれ付勢部150が配置されている。
 各付勢部150が、互いに隣り合うメイン支持体20どうしを互いに離間させる方向に付勢する力によって、展開式リフレクタ100が図19に示すような展開状態となる。
In the above embodiment, the example in which the deployable reflector 100 is deployed by the driving force of the rotational power applying mechanism 70 including the motor 71 has been described. Not equipped.
Instead, as shown in FIG. 19, in the case of this modification, the deployable reflector 100 connects the main supports 20 adjacent to each other and separates the main supports 20 from each other. A biasing portion 150 that biases elastically in the direction is provided. In other words, the adjacent main supports 20 are elastically coupled to each other via the biasing portion 150.
The urging unit 150 is disposed between the main support tables 20 adjacent to each other. However, for example, the urging portion 150 is not disposed between the drive support 20a and the fixed support 20b. That is, for example, as shown in FIG. 19, between the driving support 20 a and the driven support 20 c positioned next to the driving support 20 a, the driven support positioned next to the fixed support 20 b and the fixed support 20 b. The urging portions 150 are disposed between the support bodies 20c and between the driven support bodies 20c adjacent to each other.
The deployable reflector 100 is in the unfolded state as shown in FIG. 19 by the force by which each of the urging portions 150 urges the main supports 20 adjacent to each other in the direction of separating them.
 図20(a)及び図20(b)に示すように、本変形例の場合、各付勢部150は、1枚の板バネ151により構成されており、板バネ151の弾性力によって、互いに隣り合うメイン支持体20どうしを互いに離間させる方向に付勢する。
 各板バネ151の板面の各部は、基準軸11の軸方向に対して平行となっている。基準軸11の軸方向に視たときの各板バネ151の形状は、展開式リフレクタ100の径方向内側に向けて凸のV字形状に屈曲している。各板バネ151の両端部は、互いに隣り合うメイン支持体20の一方ずつに固定されている固定部152である。各板バネ151において両端部(一対の固定部152)を除く部分は、互いに隣り合うメイン支持体20どうしの間に架設されていて宙に浮いている架設部153である。主として架設部153が、互いに隣り合うメイン支持体20どうしを互いに離間させる方向に付勢する弾性力を発揮する。
As shown in FIG. 20A and FIG. 20B, in the case of this modification, each urging portion 150 is constituted by a single leaf spring 151, and the elastic force of the leaf spring 151 causes each other to The adjacent main support bodies 20 are urged in a direction in which they are separated from each other.
Each part of the plate surface of each leaf spring 151 is parallel to the axial direction of the reference shaft 11. The shape of each leaf spring 151 when viewed in the axial direction of the reference shaft 11 is bent into a convex V shape toward the radially inner side of the deployable reflector 100. Both end portions of each leaf spring 151 are fixed portions 152 fixed to one of the main supports 20 adjacent to each other. A portion of each leaf spring 151 excluding both end portions (a pair of fixing portions 152) is an erection portion 153 that is erected between adjacent main support bodies 20 and floats in the air. Mainly, the erection part 153 exerts an elastic force that urges the main supports 20 adjacent to each other in a direction in which they are separated from each other.
 板バネ151の材料は、特に限定されないが、軽量化の観点で、炭素繊維強化プラスチックであることが好ましい。ただし、板バネ151は、金属など、その他の材料により構成されていてもよい。
 板バネ151の固定部152をメイン支持体20に固定する方法は、特に限定されず、接着固定であってもよいし、ボルトなどの止着部材を用いた止着による固定であってもよい。
 例えば、固定部152は、メイン支持体20の板状部21に対して面接合により固定されている。
Although the material of the leaf | plate spring 151 is not specifically limited, From a viewpoint of weight reduction, it is preferable that it is a carbon fiber reinforced plastic. However, the leaf spring 151 may be made of other materials such as metal.
A method for fixing the fixing portion 152 of the leaf spring 151 to the main support 20 is not particularly limited, and may be adhesive fixing or fixing by fixing using a fixing member such as a bolt. .
For example, the fixing portion 152 is fixed to the plate-like portion 21 of the main support 20 by surface bonding.
 本変形例の場合、モータ等の動力によらず、付勢部150の弾性力によって、展開式リフレクタ100を展開することができる。
 また、付勢部150を介して隣り合うメイン支持体20どうしが機械的に連結されているので、基準軸11の軸方向(つまり、ほぼリフレクタ部50の面直方向、すなわち反射鏡の面外方向)におけるメイン支持体20どうしの位置ずれを、付勢部150によって規制することができる。特に、本変形例の場合、付勢部150は、板バネ151により構成されているとともに、板バネ151の面方向が基準軸11の軸方向に対して平行となっているため、付勢部150によって、より良好に、反射鏡の面外方向におけるメイン支持体20どうしの位置ずれを規制することができる。
 このため、例えば、基準軸11と第1支持アーム25及び第2支持アーム26との連結部に多少のガタ(遊び)が存在していても、展開式リフレクタ100の展開動作を高い位置精度で行うことができ、リフレクタ部50の形状をより理想的な形状に近づけることができる。つまり、リフレクタ部50をより精度良く所望の形状に展開することが可能となる。
In the case of this modification, the deployable reflector 100 can be deployed by the elastic force of the urging unit 150 regardless of the power of the motor or the like.
In addition, since the adjacent main supports 20 are mechanically connected to each other via the urging portion 150, the axial direction of the reference shaft 11 (that is, substantially in the direction perpendicular to the reflector portion 50, that is, out of the plane of the reflecting mirror). Misalignment between the main supports 20 in the direction) can be regulated by the urging unit 150. In particular, in the case of this modification, the urging portion 150 is configured by the leaf spring 151 and the surface direction of the leaf spring 151 is parallel to the axial direction of the reference shaft 11. By 150, it is possible to better regulate the positional deviation between the main supports 20 in the out-of-plane direction of the reflecting mirror.
For this reason, for example, even if there is some play (play) in the connecting portion between the reference shaft 11 and the first support arm 25 and the second support arm 26, the deploying operation of the deployable reflector 100 can be performed with high positional accuracy. The shape of the reflector unit 50 can be made closer to an ideal shape. That is, the reflector unit 50 can be developed into a desired shape with higher accuracy.
 なお、上記のように、メイン支持体20の数が合計13個であり、展開状態において駆動支持体20aと固定支持体20bとが互いに面接触する場合、図19に示すように、展開式リフレクタ100が備える付勢部150の数は12であり、隣り合うメイン支持体20どうしの角度(駆動支持体20aと固定支持体20bとの間の角度を除く)は、例えば、それぞれ30度となる。この場合、板バネ151に外力が作用していない通常状態において、板バネ151のV字形状の開角度は、30度よりも大きい角度であることが好ましい。
 つまり、各付勢部150の板バネ151の弾性力によって展開式リフレクタ100が展開した状態において、隣り合う付勢部150の板バネ151どうしが、これらの間に位置するメイン支持体20を介して互いに押し合っている状態となることが好ましい。
 各付勢部150の板バネ151のバネ力は、互いに等しいことが好ましい。
 本変形例の場合、展開式リフレクタ100の収納状態では、隣り合うメイン支持体20どうしが近接しているとともに、各板バネ151のV字形状の開角度が狭まっており、各板バネ151はばね力を蓄えた状態となっている。
As described above, when the total number of the main supports 20 is 13, and the drive support 20a and the fixed support 20b are in surface contact with each other in the deployed state, as shown in FIG. 19, the deployable reflector is shown. The number of urging portions 150 included in 100 is 12, and the angle between adjacent main supports 20 (excluding the angle between the drive support 20a and the fixed support 20b) is, for example, 30 degrees. . In this case, in a normal state where no external force is applied to the leaf spring 151, the V-shaped opening angle of the leaf spring 151 is preferably an angle larger than 30 degrees.
That is, in a state where the deployable reflector 100 is deployed by the elastic force of the leaf spring 151 of each urging portion 150, the leaf springs 151 of the urging portions 150 adjacent to each other are interposed via the main support 20 positioned therebetween. It is preferable that they are pressed against each other.
It is preferable that the spring force of the leaf spring 151 of each urging portion 150 is equal to each other.
In the case of this modified example, in the retracted state of the deployable reflector 100, the adjacent main supports 20 are close to each other, the V-shaped opening angle of each leaf spring 151 is narrowed, and each leaf spring 151 is The spring force is stored.
 展開式リフレクタ100は、展開時において隣り合うメイン支持体20どうしの開角度を制御する展開制御機構(不図示)を備えていてもよい。この展開制御機構は、展開式リフレクタ100の周方向に反って各メイン支持体20間に架け渡されたケーブルと、このケーブルの繰り出し動作をモータ駆動により行う巻取機と、巻取機の動作制御を行う制御部と、を備えて構成されている。
 この場合、展開制御機構が徐々にケーブルを繰り出すことによって、展開式リフレクタ100が各付勢部150の付勢力に従って徐々に展開する。本変形例の展開動作においては、例えば、各板バネ151のV字形状の開角度が均等に広がるため、各サブ支持体30が並列的に展開する。
The deployable reflector 100 may include a deployment control mechanism (not shown) that controls the opening angle between adjacent main supports 20 during deployment. The unfolding control mechanism includes a cable that is stretched between the main supports 20 in the circumferential direction of the unfolding type reflector 100, a winder that drives the cable out by a motor, and an operation of the winder. And a control unit that performs control.
In this case, the deployment control mechanism gradually extends the cable, so that the deployable reflector 100 gradually deploys according to the urging force of each urging portion 150. In the unfolding operation of the present modification, for example, the V-shaped opening angles of the leaf springs 151 are spread evenly, so that the sub-supports 30 unfold in parallel.
 本変形例の場合も、展開式リフレクタ100は、展開動作が完了した状態で展開式リフレクタ100を展開状態に維持させるためのラッチ機構を備えていてもよい。ラッチ機構は、例えば、駆動支持体20aと固定支持体20bとを相互にロックすることで、展開式リフレクタ100を展開状態に維持させる。 Also in the case of this modification, the deployable reflector 100 may include a latch mechanism for maintaining the deployable reflector 100 in the deployed state when the deploying operation is completed. For example, the latch mechanism locks the drive support 20a and the fixed support 20b to maintain the deployable reflector 100 in the deployed state.
 図19から図20(b)には、展開式リフレクタ100の径方向における中心部に付勢部150が配置されている例を示している。より詳細には、例えば、図20(b)に示すように、架設部153は、展開式リフレクタ100の径方向において、板状部21よりも中心寄りの位置に配置されていることも好ましい。展開式リフレクタ100の径方向における中心部に付勢部150が配置されていることによって、板バネ151の寸法をより小さくすることができる。
 ただし、展開式リフレクタ100の径方向における付勢部150の配置は、特に限定されない。例えば、展開式リフレクタ100の径方向における中間部に付勢部150が配置されていてもよい。また、展開式リフレクタ100の径方向における外側の部分(展開式リフレクタ100の周縁部)に付勢部150が配置されていてもよい。すなわち、基準軸11を基端としたメイン支持体20の先端部に付勢部150が設けられていてもよい。
 展開式リフレクタ100の周縁部に近い位置に付勢部150が配置されているほど、板バネ151の寸法が大きくなるが、基準軸11の軸方向におけるメイン支持体20どうしの位置ずれを付勢部150によって規制する効果が高まる。
 展開式リフレクタ100の径方向において、複数の付勢部150の位置は、互いに等しくてもよいし、互いに異なる位置になっているなど、他とは異なる位置に配置されている付勢部150が存在していてもよい。
 また、互いに隣り合うメイン支持体20どうしの間において、展開式リフレクタ100の径方向における複数箇所に付勢部150が設けられていてもよい。
FIG. 19 to FIG. 20B show an example in which the urging portion 150 is disposed at the central portion in the radial direction of the deployable reflector 100. More specifically, for example, as shown in FIG. 20 (b), the erection part 153 is preferably disposed at a position closer to the center than the plate-like part 21 in the radial direction of the deployable reflector 100. By disposing the urging portion 150 at the central portion in the radial direction of the deployable reflector 100, the size of the leaf spring 151 can be further reduced.
However, the arrangement of the urging portion 150 in the radial direction of the deployable reflector 100 is not particularly limited. For example, the urging portion 150 may be disposed at an intermediate portion in the radial direction of the deployable reflector 100. Further, the urging portion 150 may be disposed on an outer portion in the radial direction of the deployable reflector 100 (a peripheral edge portion of the deployable reflector 100). That is, the urging portion 150 may be provided at the distal end portion of the main support 20 with the reference shaft 11 as the base end.
As the urging portion 150 is arranged at a position closer to the peripheral portion of the deployable reflector 100, the size of the leaf spring 151 becomes larger, but the displacement of the main supports 20 in the axial direction of the reference shaft 11 is urged. The effect of regulating by the portion 150 is enhanced.
In the radial direction of the deployable reflector 100, the positions of the plurality of urging portions 150 may be equal to each other, or the urging portions 150 arranged at different positions such as different from each other may be provided. May be present.
Further, the urging portions 150 may be provided at a plurality of locations in the radial direction of the deployable reflector 100 between the main supports 20 adjacent to each other.
 また、上下方向における付勢部150の配置も、特に限定されない。例えば、図20(b)に実線で示される付勢部150のように、メイン支持体20の上部に付勢部150が設けられていてもよいし、図20(b)に二点鎖線で示される付勢部150のように、メイン支持体20の下部に付勢部150が設けられていてもよい。また、上下方向における複数箇所にそれぞれ付勢部150が設けられていてもよい。すなわち、例えば、図20(b)に実線で示される付勢部150と図20(b)に二点鎖線で示される付勢部150との双方が設けられていてもよい。
 ここで、上記のように、サブ支持体30は、メイン支持体20の上部(支持面13側の部分)に設けられている(図4、図7参照)。このため、展開式リフレクタ100の径方向における中間部や外側の部分(展開式リフレクタ100の周縁部)に付勢部150を配置する場合は、付勢部150とサブ支持体30との干渉を避けるため、付勢部150をメイン支持体20の下部に設けることが好ましい。
Further, the arrangement of the urging unit 150 in the vertical direction is not particularly limited. For example, an urging unit 150 may be provided on the upper portion of the main support 20 like an urging unit 150 indicated by a solid line in FIG. 20B, or a two-dot chain line in FIG. Like the urging portion 150 shown, the urging portion 150 may be provided in the lower portion of the main support 20. Moreover, the urging | biasing part 150 may be provided in each of the several places in an up-down direction. That is, for example, both an urging portion 150 indicated by a solid line in FIG. 20B and an urging portion 150 indicated by a two-dot chain line in FIG. 20B may be provided.
Here, as described above, the sub-support 30 is provided on the upper portion (the portion on the support surface 13 side) of the main support 20 (see FIGS. 4 and 7). For this reason, when the urging portion 150 is disposed in the intermediate portion or the outer portion (peripheral portion of the deployable reflector 100) in the radial direction of the deployable reflector 100, interference between the urging portion 150 and the sub support 30 is prevented. In order to avoid this, it is preferable to provide the urging portion 150 below the main support 20.
 <展開機構の変形例4>
 次に、図21(a)及び図21(b)を用いて、展開式リフレクタの展開機構の変形例4を説明する。なお、図21(a)及び図21(b)において、サブ支持体30及びリフレクタ部50については図示を省略している。
 本変形例の場合、基準軸11の軸方向に視たときの各板バネ151の形状は、展開式リフレクタ100の径方向外側に向けて凸の形状に屈曲している。
 本変形例に係る展開式リフレクタ100は、その他の点では、図19から図20(b)に示す変形例に係る展開式リフレクタ100と同様に構成されている。
 本変形例の場合も、展開機構の変形例3と同様の効果が得られる。
<Modification 4 of the deployment mechanism>
Next, modification 4 of the deployment mechanism of the deployable reflector will be described with reference to FIGS. 21 (a) and 21 (b). 21A and 21B, the sub support 30 and the reflector unit 50 are not shown.
In the case of this modification, the shape of each leaf spring 151 when viewed in the axial direction of the reference shaft 11 is bent into a convex shape toward the radially outer side of the deployable reflector 100.
The deployable reflector 100 according to the present modification is otherwise configured in the same manner as the deployable reflector 100 according to the modification shown in FIGS. 19 to 20B.
In the case of this modification, the same effect as that of Modification 3 of the deployment mechanism can be obtained.
 なお、板バネ151の屈曲の方向は、変形例3及び変形例4の向きに限らず、下に凸でもよいし、上に凸でもよいし、その他の向きに凸であってもよい。 Note that the direction of bending of the leaf spring 151 is not limited to the direction of the third and fourth modifications, and may be convex downward, convex upward, or convex in other directions.
 <展開機構の変形例5>
 次に、図22(a)を用いて、展開式リフレクタの展開機構の変形例5を説明する。なお、図22(a)において、サブ支持体30及びリフレクタ部50については図示を省略している。
 本変形例に係る展開式リフレクタ100は、以下に説明する点で、図19から図20(b)に示す変形例に係る展開式リフレクタ100と相違しており、その他の点では、図19から図20(b)に示す変形例に係る展開式リフレクタ100と同様に構成されている。
<Modification 5 of the deployment mechanism>
Next, modified example 5 of the deployment mechanism of the deployable reflector will be described with reference to FIG. In FIG. 22A, illustration of the sub-support 30 and the reflector unit 50 is omitted.
The deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example shown in FIGS. 19 to 20B in the points described below, and from other points in FIG. The configuration is the same as that of the deployable reflector 100 according to the modification shown in FIG.
 本変形例の場合、付勢部150は、ブロック部155と、2枚の板バネ151と、を備えて構成されている。
 ブロック部155は、基準軸11の軸方向に視たときの形状が台形状又は扇形形状の、ブロック状のものである。ブロック部155の材料は、特に限定されないが、例えば、炭素繊維強化プラスチックとすることができる。ブロック部155は、展開式リフレクタ100の径方向外側ほど、展開式リフレクタ100の周方向において当該ブロック部155の寸法が大きくなる向きで、配置されている。
 本変形例の場合、各板バネ151は、当該板バネ151に外力が作用していない通常状態において平板状のものである。各板バネ151の一端部154の各々の一方の面は、ブロック部155の側面に固定されている。各板バネ151は、ブロック部155を基準として、展開式リフレクタ100の径方向外側に突出している。各板バネ151の他方の面は、互いに隣り合うメイン支持体20のうちの一方ずつの板状部21に対して面接合により固定されている。
In the case of this modification, the urging unit 150 includes a block unit 155 and two leaf springs 151.
The block portion 155 is a block shape having a trapezoidal shape or a sector shape when viewed in the axial direction of the reference shaft 11. Although the material of the block part 155 is not specifically limited, For example, it can be set as a carbon fiber reinforced plastic. The block portion 155 is arranged in such a direction that the dimension of the block portion 155 increases in the circumferential direction of the deployable reflector 100 toward the radially outer side of the deployable reflector 100.
In the case of this modification, each leaf spring 151 is a flat plate in a normal state where no external force is applied to the leaf spring 151. One surface of each end portion 154 of each leaf spring 151 is fixed to the side surface of the block portion 155. Each leaf spring 151 projects outward in the radial direction of the deployable reflector 100 with the block portion 155 as a reference. The other surface of each leaf spring 151 is fixed to one plate-like portion 21 of the adjacent main supports 20 by surface bonding.
 本変形例の場合、展開式リフレクタ100の収納状態では、図22(a)に二点鎖線で示されるように、一の付勢部150を構成する2つの板バネ151が、各々の弾性力に抗して屈曲している。すなわち、各板バネ151において、ブロック部155よりも展開式リフレクタ100の径方向外側に突出している部分どうしが、互いに近づく方向に、各板バネ151が屈曲しており、各板バネ151はばね力を蓄えた状態となっている。
 展開式リフレクタ100の展開時には、各板バネ151が平板状の状態に復帰しようとするばね力によって、展開式リフレクタ100が展開する。
In the case of this modification, in the retracted state of the deployable reflector 100, as shown by the two-dot chain line in FIG. It is bent against. That is, in each leaf spring 151, each leaf spring 151 is bent in a direction in which the portions protruding radially outward of the deployable reflector 100 from the block portion 155 approach each other, and each leaf spring 151 is a spring. It is in a state where power is stored.
When the unfoldable reflector 100 is unfolded, the unfoldable reflector 100 is unfolded by a spring force that causes each leaf spring 151 to return to a flat plate state.
 <展開機構の変形例6>
 次に、図22(b)を用いて、展開式リフレクタの展開機構の変形例6を説明する。なお、図22(b)において、サブ支持体30及びリフレクタ部50については図示を省略している。
 本変形例に係る展開式リフレクタ100は、以下に説明する点で、図19から図20(b)に示す変形例に係る展開式リフレクタ100と相違しており、その他の点では、図19から図20(b)に示す変形例に係る展開式リフレクタ100と同様に構成されている。
<Modification 6 of the deployment mechanism>
Next, Modification 6 of the deployment mechanism of the deployment type reflector will be described with reference to FIG. In addition, in FIG.22 (b), illustration is abbreviate | omitted about the sub support body 30 and the reflector part 50. FIG.
The deployable reflector 100 according to the present modified example is different from the deployable reflector 100 according to the modified example shown in FIGS. 19 to 20B in the points described below, and from other points in FIG. The configuration is the same as that of the deployable reflector 100 according to the modification shown in FIG.
 本変形例の場合、付勢部150は、一端部156どうしが互いに面接合により固定された一対の板バネ151により構成されている。
 一対の板バネ151の各々の他端部は、互いに隣り合うメイン支持体20の一方ずつに固定されている固定部152である。固定部152は、メイン支持体20の板状部21に対して面接合により固定されている。
 これら一対の板バネ151の各々は、外力が付与されていない自然状態において、他端部側(固定部152側)に向けて互いの距離が広がるように、弧状に湾曲した形状に形成されている。
 本変形例の場合、展開式リフレクタ100の収納状態では、一対の板バネ151における一端部156以外の部分どうしが、互いに近接又は面接触する状態となる。このため、展開式リフレクタ100の収納状態において、展開式リフレクタ100をよりコンパクトにすることができる。
In the case of this modification, the urging portion 150 includes a pair of leaf springs 151 in which one end portions 156 are fixed to each other by surface bonding.
The other end of each of the pair of leaf springs 151 is a fixed portion 152 that is fixed to one of the main supports 20 adjacent to each other. The fixing portion 152 is fixed to the plate-like portion 21 of the main support 20 by surface bonding.
Each of the pair of leaf springs 151 is formed in an arcuate shape so that the distance between the pair of leaf springs 151 increases toward the other end (fixed portion 152 side) in a natural state where no external force is applied. Yes.
In the case of this modification, in the retracted state of the deployable reflector 100, the portions other than the one end 156 of the pair of leaf springs 151 are in proximity to or in surface contact with each other. For this reason, in the storage state of the deployable reflector 100, the deployable reflector 100 can be made more compact.
 以上、図面を参照して実施形態及び変形例を説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the modification were demonstrated with reference to drawings, these are illustrations of this invention and can also employ | adopt various structures other than the above.
 例えば、上記においては、隣り合うサブ支持体30で支持要素集合体310を共用する例を説明したが、個々のサブ支持体30を構成する支持要素31どうしが完全に分離していてもよい。つまり、支持要素31aと支持要素31bとが互いに別体となっていてもよい。この場合、各支持要素31の端部34は、例えば、メイン支持体20の板状部21に対して揺動可能に取り付けられている。或いは、各支持要素31の端部34は、図示しないヒンジ機構を介して板状部21に対して連結されていてもよい。 For example, in the above description, the example in which the support element aggregate 310 is shared by the adjacent sub-supports 30 has been described, but the support elements 31 constituting the individual sub-supports 30 may be completely separated from each other. That is, the support element 31a and the support element 31b may be separate from each other. In this case, the end part 34 of each support element 31 is attached to the plate-like part 21 of the main support 20 so as to be swingable, for example. Or the edge part 34 of each support element 31 may be connected with respect to the plate-shaped part 21 via the hinge mechanism which is not shown in figure.
 また、上記においては、メイン支持体20が薄板状である例を説明したが、メイン支持体20は枠体(トラス構造の枠体など)であってもよい。
 また、上記においては、メイン支持体20が基準軸11に対して平行な面状に形成されている例を説明したが、メイン支持体20は棒状のものであってもよい。
 また、上記においては、支持要素31が薄板状である例を説明したが、支持要素31は枠体(トラス構造の枠体など)であってもよい。
In the above description, the example in which the main support 20 is a thin plate has been described. However, the main support 20 may be a frame (such as a frame having a truss structure).
In the above description, the example in which the main support 20 is formed in a plane shape parallel to the reference axis 11 has been described. However, the main support 20 may be a rod-shaped one.
In the above description, the example in which the support element 31 is a thin plate has been described. However, the support element 31 may be a frame (such as a frame having a truss structure).
 本実施形態は以下の技術思想を包含する。
(1)基準軸と、
 前記基準軸の周囲に展開可能に構成されており、展開状態において凹面状の支持面を一方の面側に形成する支持構造部と、
 前記支持構造部の前記支持面に支持され、前記支持面に沿ったリフレクタ面を形成するリフレクタ部と、
 を備え、
 前記支持構造部は、
 前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
 隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
 を含んで構成されており、
 前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
 前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
 展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタ。
(2)前記複数のメイン支持体の各々は、前記基準軸に対して平行な面状に形成されている(1)に記載の展開式リフレクタ。
(3)前記複数のメイン支持体の各々は、薄板状に形成されている(2)に記載の展開式リフレクタ。
(4)前記サブ支持体は、前記格子構造を形成する複数の支持要素を備えて構成されており、
 前記支持要素の各々は前記基準軸に対して平行な面状に形成されている(1)から(3)のいずれか一項に記載の展開式リフレクタ。
(5)前記支持要素の曲げ剛性よりも前記メイン支持体の曲げ剛性の方が大きい(4)に記載の展開式リフレクタ。
(6)前記複数の支持要素は、格子状に交差しており、前記支持要素どうしの交差部は、前記支持要素どうしを相互に揺動可能とさせる揺動部となっている(4)又は(5)に記載の展開式リフレクタ。
(7)前記支持要素どうしが部分的に接合されている接合部を有し、
 前記接合部が、前記支持要素どうしを相互に揺動可能とさせる揺動部となっている(4)又は(5)に記載の展開式リフレクタ。
(8)前記複数の支持要素の各々は、薄板状に形成されている(4)から(7)のいずれか一項に記載の展開式リフレクタ。
(9)前記複数の支持要素の各々は、薄板状に形成されており、
 互いに交差する前記支持要素は、各々の対応箇所に形成されたスリットに他方が差し込まれることで互いに係合しており、且つ、この係合箇所が前記揺動部となっている(6)に記載の展開式リフレクタ。
(10)前記支持構造部の前記一方の面側における前記複数の支持要素の各々の縁辺は、前記リフレクタ部を支持可能な線状の第1支持部となっている(4)から(9)のいずれか一項に記載の展開式リフレクタ。
(11)前記支持構造部の前記一方の面側における前記複数のメイン支持体の各々の縁辺は、前記リフレクタ部を支持可能な線状の第2支持部となっている(1)から(10)のいずれか一項に記載の展開式リフレクタ。
(12)前記複数のファセットの過半数は、前記放射方向に長尺な形状である(1)から(11)のいずれか一項に記載の展開式リフレクタ。
(13)前記複数のファセットの過半数は、前記放射方向に長尺な菱形である(12)に記載の展開式リフレクタ。
(14)前記基準軸に軸支されている前記メイン支持体の数が2つ以上であり、
 前記基準軸に軸支されている前記メイン支持体のうちの少なくとも1つは、回転駆動される駆動支持体であり、
 当該展開式リフレクタは、更に、前記基準軸を回転中心として前記駆動支持体を周方向に回転させることによって前記支持構造部を展開状態にする回転動力付与機構を備えている(1)から(13)のいずれか一項に記載の展開式リフレクタ。
(15)互いに隣り合うメイン支持体どうしを相互に連結しているとともに、これらメイン支持体どうしを互いに離間させる方向に弾性的に付勢する付勢部を備えている(1)から(13)のいずれか一項に記載の展開式リフレクタ。
(16)基準軸と、
 前記基準軸を基準として展開可能に構成されており、展開状態において一方の面側に凹面状の支持面を形成する支持構造部と、
 を備え、
 展開式リフレクタのリフレクタ面を形成するリフレクタ部を前記支持面によって支持する展開式リフレクタ用の展開構造物であって、
 前記支持構造部は、
 前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
 隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
 を含んで構成されており、
 前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
 前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
 展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタ用展開構造物。
This embodiment includes the following technical ideas.
(1) a reference axis;
A support structure configured to be deployable around the reference axis, and forming a concave support surface on one surface side in the expanded state;
A reflector part supported by the support surface of the support structure part and forming a reflector surface along the support surface;
With
The support structure is
A plurality of main supports elongated in a radial direction around the reference axis;
A sub-support that is laid between adjacent main supports;
It is composed including
At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
An unfoldable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
(2) The deployable reflector according to (1), wherein each of the plurality of main supports is formed in a planar shape parallel to the reference axis.
(3) The deployable reflector according to (2), wherein each of the plurality of main supports is formed in a thin plate shape.
(4) The sub-support is configured to include a plurality of support elements that form the lattice structure,
Each of the said support elements is a expandable reflector as described in any one of (1) to (3) currently formed in the planar shape parallel to the said reference axis.
(5) The deployable reflector according to (4), wherein the bending rigidity of the main support is greater than the bending rigidity of the support element.
(6) The plurality of support elements intersect in a lattice pattern, and the intersection of the support elements is a swinging portion that allows the support elements to swing relative to each other (4) or The expandable reflector according to (5).
(7) having a joint where the support elements are partially joined;
The deployable reflector according to (4) or (5), wherein the joint portion is a swinging portion that enables the support elements to swing relative to each other.
(8) The deployable reflector according to any one of (4) to (7), wherein each of the plurality of support elements is formed in a thin plate shape.
(9) Each of the plurality of support elements is formed in a thin plate shape,
The support elements intersecting each other are engaged with each other by inserting the other into slits formed at corresponding positions, and this engagement position is the swinging portion (6). The deployable reflector as described.
(10) The edges of each of the plurality of support elements on the one surface side of the support structure portion are linear first support portions that can support the reflector portion (4) to (9). The expandable reflector according to any one of the above.
(11) Each edge of the plurality of main supports on the one surface side of the support structure portion is a linear second support portion capable of supporting the reflector portion (1) to (10 ) A deployable reflector according to any one of the above.
(12) The deployable reflector according to any one of (1) to (11), wherein a majority of the plurality of facets has an elongated shape in the radial direction.
(13) The deployable reflector according to (12), wherein a majority of the plurality of facets is a rhombus elongated in the radial direction.
(14) The number of the main supports supported by the reference shaft is two or more,
At least one of the main supports pivotally supported by the reference shaft is a drive support that is rotationally driven;
The unfoldable reflector further includes a rotational power applying mechanism (1) to (13) that causes the support structure to be unfolded by rotating the drive support in the circumferential direction around the reference axis as a rotation center. ) A deployable reflector according to any one of the above.
(15) The main supports adjacent to each other are connected to each other, and are provided with biasing portions that elastically bias the main supports in a direction to separate them from each other (1) to (13). The expandable reflector according to any one of the above.
(16) a reference axis;
It is configured to be deployable with reference to the reference axis, and a support structure portion that forms a concave support surface on one surface side in the expanded state;
With
A deployable structure for a deployable reflector that supports a reflector portion forming a reflector surface of a deployable reflector by the support surface,
The support structure is
A plurality of main supports elongated in a radial direction around the reference axis;
A sub-support that is laid between adjacent main supports;
It is composed including
At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
A deployable structure for a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
 この出願は、2018年5月1日に出願された日本出願特願2018-88076号、及び、2018年12月21日に出願された日本出願特願2018-239922号を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application is based on Japanese Patent Application No. 2018-88076 filed on May 1, 2018 and Japanese Patent Application No. 2018-239922 filed on December 21, 2018. Alleged and incorporated herein in its entirety.
11 基準軸
12 支持構造部
13 支持面
15 単位モジュール
20 メイン支持体
20a 駆動支持体
20b 固定支持体
20c 従動支持体
21 板状部
21a 上縁(第2支持部)
21b 下縁
21c スリット
22 第1延出部
23 第2延出部
24 第3延出部
25 第1支持アーム
25a 挿通孔
25b 先端部
26 第2支持アーム
26a 挿通孔
26b 先端部
30 サブ支持体
31 支持要素
31a 支持要素
31b 支持要素
310 支持要素集合体
32 交差部
33 スリット
34 端部
35 上縁(第1支持部)
36 下縁
37 ファセット
38 接合部
39 屈曲部
42 下側固定部材
43 上側固定部材
50 リフレクタ部
51 金属線
52 外形線
61 ブーム
70 回転動力付与機構
71 モータ
72 駆動伝達機構
80 展開式リフレクタ用展開構造物
91 粘着テープ
92 接着剤
100 展開式リフレクタ
111 支持要素
112 支持要素
121 相対回転部材
122 連結ヒンジ
123 ケーブル
124 ケーブル巻取機構
125 モータ
131 弾性ヒンジ
134 ラッチ機構
135 モータ
150 付勢部
151 板バネ
152 固定部
153 架設部
154 端部
155 ブロック部
156 他端部
11 Reference shaft 12 Support structure 13 Support surface 15 Unit module 20 Main support 20a Drive support 20b Fixed support 20c Driven support 21 Plate-like portion 21a Upper edge (second support)
21b Lower edge 21c Slit 22 First extending portion 23 Second extending portion 24 Third extending portion 25 First support arm 25a Insertion hole 25b Tip portion 26 Second support arm 26a Insertion hole 26b Tip portion 30 Sub support 31 Support element 31a Support element 31b Support element 310 Support element assembly 32 Intersection 33 Slit 34 End 35 Upper edge (first support)
36 Lower edge 37 Facet 38 Joint part 39 Bent part 42 Lower fixing member 43 Upper fixing member 50 Reflector part 51 Metal wire 52 Outline line 61 Boom 70 Rotating power application mechanism 71 Motor 72 Drive transmission mechanism 80 Deployable structure for deployable reflector 91 Adhesive Tape 92 Adhesive 100 Deployable Reflector 111 Support Element 112 Support Element 121 Relative Rotating Member 122 Connection Hinge 123 Cable 124 Cable Winding Mechanism 125 Motor 131 Elastic Hinge 134 Latch Mechanism 135 Motor 150 Energizing Section 151 Plate Spring 152 Fixed Section 153 Construction part 154 End part 155 Block part 156 Other end part

Claims (16)

  1.  基準軸と、
     前記基準軸の周囲に展開可能に構成されており、展開状態において凹面状の支持面を一方の面側に形成する支持構造部と、
     前記支持構造部の前記支持面に支持され、前記支持面に沿ったリフレクタ面を形成するリフレクタ部と、
     を備え、
     前記支持構造部は、
     前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
     隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
     を含んで構成されており、
     前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
     前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
     展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタ。
    A reference axis;
    A support structure configured to be deployable around the reference axis, and forming a concave support surface on one surface side in the expanded state;
    A reflector part supported by the support surface of the support structure part and forming a reflector surface along the support surface;
    With
    The support structure is
    A plurality of main supports elongated in a radial direction around the reference axis;
    A sub-support that is laid between adjacent main supports;
    It is composed including
    At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
    When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
    An unfoldable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
  2.  前記複数のメイン支持体の各々は、前記基準軸に対して平行な面状に形成されている請求項1に記載の展開式リフレクタ。 The deployable reflector according to claim 1, wherein each of the plurality of main supports is formed in a plane shape parallel to the reference axis.
  3.  前記複数のメイン支持体の各々は、薄板状に形成されている請求項2に記載の展開式リフレクタ。 The deployable reflector according to claim 2, wherein each of the plurality of main supports is formed in a thin plate shape.
  4.  前記サブ支持体は、前記格子構造を形成する複数の支持要素を備えて構成されており、
     前記支持要素の各々は前記基準軸に対して平行な面状に形成されている請求項1から3のいずれか一項に記載の展開式リフレクタ。
    The sub-support is configured to include a plurality of support elements that form the lattice structure,
    The deployable reflector according to any one of claims 1 to 3, wherein each of the support elements is formed in a planar shape parallel to the reference axis.
  5.  前記支持要素の曲げ剛性よりも前記メイン支持体の曲げ剛性の方が大きい請求項4に記載の展開式リフレクタ。 The deployable reflector according to claim 4, wherein the bending rigidity of the main support is larger than the bending rigidity of the support element.
  6.  前記複数の支持要素は、格子状に交差しており、前記支持要素どうしの交差部は、前記支持要素どうしを相互に揺動可能とさせる揺動部となっている請求項4又は5に記載の展開式リフレクタ。 6. The plurality of support elements intersect with each other in a lattice pattern, and the intersection between the support elements is a swinging portion that enables the support elements to swing with respect to each other. Expandable reflector.
  7.  前記支持要素どうしが部分的に接合されている接合部を有し、
     前記接合部が、前記支持要素どうしを相互に揺動可能とさせる揺動部となっている請求項4又は5に記載の展開式リフレクタ。
    Having a joint where the support elements are partly joined;
    The deployable reflector according to claim 4 or 5, wherein the joint portion is a swinging portion that enables the support elements to swing relative to each other.
  8.  前記複数の支持要素の各々は、薄板状に形成されている請求項4から7のいずれか一項に記載の展開式リフレクタ。 The deployable reflector according to any one of claims 4 to 7, wherein each of the plurality of support elements is formed in a thin plate shape.
  9.  前記複数の支持要素の各々は、薄板状に形成されており、
     互いに交差する前記支持要素は、各々の対応箇所に形成されたスリットに他方が差し込まれることで互いに係合しており、且つ、この係合箇所が前記揺動部となっている請求項6に記載の展開式リフレクタ。
    Each of the plurality of support elements is formed in a thin plate shape,
    The support elements intersecting with each other are engaged with each other by inserting the other into a slit formed at each corresponding location, and the engagement location is the swinging portion. The deployable reflector as described.
  10.  前記支持構造部の前記一方の面側における前記複数の支持要素の各々の縁辺は、前記リフレクタ部を支持可能な線状の第1支持部となっている請求項4から9のいずれか一項に記載の展開式リフレクタ。 10. The edge of each of the plurality of support elements on the one surface side of the support structure portion is a linear first support portion capable of supporting the reflector portion. Expandable reflector as described in 1.
  11.  前記支持構造部の前記一方の面側における前記複数のメイン支持体の各々の縁辺は、前記リフレクタ部を支持可能な線状の第2支持部となっている請求項1から10のいずれか一項に記載の展開式リフレクタ。 The edge of each of the plurality of main supports on the one surface side of the support structure portion is a linear second support portion capable of supporting the reflector portion. The expandable reflector according to the item.
  12.  前記複数のファセットの過半数は、前記放射方向に長尺な形状である請求項1から11のいずれか一項に記載の展開式リフレクタ。 The deployable reflector according to any one of claims 1 to 11, wherein a majority of the plurality of facets has an elongated shape in the radial direction.
  13.  前記複数のファセットの過半数は、前記放射方向に長尺な菱形である請求項12に記載の展開式リフレクタ。 The deployable reflector according to claim 12, wherein a majority of the plurality of facets is a rhombus elongated in the radial direction.
  14.  前記基準軸に軸支されている前記メイン支持体の数が2つ以上であり、
     前記基準軸に軸支されている前記メイン支持体のうちの少なくとも1つは、回転駆動される駆動支持体であり、
     当該展開式リフレクタは、更に、前記基準軸を回転中心として前記駆動支持体を周方向に回転させることによって前記支持構造部を展開状態にする回転動力付与機構を備えている請求項1から13のいずれか一項に記載の展開式リフレクタ。
    The number of the main supports supported by the reference shaft is two or more;
    At least one of the main supports pivotally supported by the reference shaft is a drive support that is rotationally driven;
    14. The deployable reflector further includes a rotational power applying mechanism that places the support structure in a deployed state by rotating the drive support in the circumferential direction around the reference axis as a rotation center. The deployable reflector according to any one of the above.
  15.  互いに隣り合うメイン支持体どうしを相互に連結しているとともに、これらメイン支持体どうしを互いに離間させる方向に弾性的に付勢する付勢部を備えている請求項1から13のいずれか一項に記載の展開式リフレクタ。 The main support bodies adjacent to each other are connected to each other, and a biasing portion that elastically biases the main support bodies in a direction to separate them from each other is provided. Expandable reflector as described in 1.
  16.  基準軸と、
     前記基準軸を基準として展開可能に構成されており、展開状態において一方の面側に凹面状の支持面を形成する支持構造部と、
     を備え、
     展開式リフレクタのリフレクタ面を形成するリフレクタ部を前記支持面によって支持する展開式リフレクタ用の展開構造物であって、
     前記支持構造部は、
     前記基準軸を中心とする放射方向に長尺な複数のメイン支持体と、
     隣り合う前記メイン支持体どうしの間に架設されているサブ支持体と、
     を含んで構成されており、
     前記複数のメイン支持体の少なくとも1つは、前記基準軸に軸支されており、隣の前記メイン支持体との間の角度が前記基準軸を軸中心として開閉可能となっており、
     前記基準軸に軸支されている前記メイン支持体と、当該メイン支持体の隣の前記メイン支持体との間の角度が開くことにより、これらメイン支持体どうしの間に架設されている前記サブ支持体が前記基準軸を中心とする周方向に展開して複数のファセットを画定する格子構造となり、
     展開状態において、前記複数のメイン支持体と、これらメイン支持体どうしの間に架設されている前記サブ支持体と、により前記支持面が形成される展開式リフレクタ用展開構造物。
    A reference axis;
    It is configured to be deployable with reference to the reference axis, and a support structure portion that forms a concave support surface on one surface side in the expanded state;
    With
    A deployable structure for a deployable reflector that supports a reflector portion forming a reflector surface of a deployable reflector by the support surface,
    The support structure is
    A plurality of main supports elongated in a radial direction around the reference axis;
    A sub-support that is laid between adjacent main supports;
    It is composed including
    At least one of the plurality of main supports is pivotally supported by the reference shaft, and an angle between the adjacent main support can be opened and closed around the reference shaft as an axis,
    When the angle between the main support that is pivotally supported by the reference shaft and the main support adjacent to the main support is widened, the sub support is installed between the main supports. The support is developed in a circumferential direction centered on the reference axis to form a lattice structure that defines a plurality of facets,
    A deployable structure for a deployable reflector in which the support surface is formed by the plurality of main supports and the sub-support provided between the main supports in the unfolded state.
PCT/JP2019/014833 2018-05-01 2019-04-03 Expandable reflector and expansion structure for expandable reflector WO2019211964A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-088076 2018-05-01
JP2018088076 2018-05-01
JP2018-239922 2018-12-21
JP2018239922A JP7179290B2 (en) 2018-05-01 2018-12-21 Deployable reflector and deployable structure for deployable reflector

Publications (1)

Publication Number Publication Date
WO2019211964A1 true WO2019211964A1 (en) 2019-11-07

Family

ID=68386387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014833 WO2019211964A1 (en) 2018-05-01 2019-04-03 Expandable reflector and expansion structure for expandable reflector

Country Status (1)

Country Link
WO (1) WO2019211964A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113503A (en) * 1983-11-24 1985-06-20 Nippon Telegr & Teleph Corp <Ntt> Expanding antenna
JPH01252007A (en) * 1988-03-31 1989-10-06 Nec Eng Ltd Assembly type parabola antenna
JPH02133300A (en) * 1988-11-15 1990-05-22 Toshiba Corp Extension construction, antenna and solar cell in extension form using this construction
JPH10200329A (en) * 1997-01-14 1998-07-31 Nippon Telegr & Teleph Corp <Ntt> Approximately spherical frame construction
JPH11112228A (en) * 1997-09-29 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Expanding antenna
JP2001036334A (en) * 1999-06-18 2001-02-09 Trw Inc Method for packing reflecting mesh, suspended line device and layout auxiliary device for surrounding truss reflecting mirror
JP2002220096A (en) * 2001-01-29 2002-08-06 Natl Space Development Agency Of Japan Storable and unfoldable framed structure
US20060102796A1 (en) * 2004-10-20 2006-05-18 Clark Paul R Folding retractable protective dome for space vehicle equipment
JP2008100652A (en) * 2006-10-20 2008-05-01 Japan Aerospace Exploration Agency Movable hinge
JP2014171091A (en) * 2013-03-04 2014-09-18 Nec Corp Foldable reflector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113503A (en) * 1983-11-24 1985-06-20 Nippon Telegr & Teleph Corp <Ntt> Expanding antenna
JPH01252007A (en) * 1988-03-31 1989-10-06 Nec Eng Ltd Assembly type parabola antenna
JPH02133300A (en) * 1988-11-15 1990-05-22 Toshiba Corp Extension construction, antenna and solar cell in extension form using this construction
JPH10200329A (en) * 1997-01-14 1998-07-31 Nippon Telegr & Teleph Corp <Ntt> Approximately spherical frame construction
JPH11112228A (en) * 1997-09-29 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Expanding antenna
JP2001036334A (en) * 1999-06-18 2001-02-09 Trw Inc Method for packing reflecting mesh, suspended line device and layout auxiliary device for surrounding truss reflecting mirror
JP2002220096A (en) * 2001-01-29 2002-08-06 Natl Space Development Agency Of Japan Storable and unfoldable framed structure
US20060102796A1 (en) * 2004-10-20 2006-05-18 Clark Paul R Folding retractable protective dome for space vehicle equipment
JP2008100652A (en) * 2006-10-20 2008-05-01 Japan Aerospace Exploration Agency Movable hinge
JP2014171091A (en) * 2013-03-04 2014-09-18 Nec Corp Foldable reflector

Similar Documents

Publication Publication Date Title
US6463709B2 (en) Modular deployable antenna
RU2607837C2 (en) Deployable satellite antenna large-size reflector
US7059094B2 (en) Frame structure
JP6494907B2 (en) Apparatus for deploying and restoring a flexible structure, and a flexible and deployable structure and satellite comprising both such apparatuses
EP3111508B1 (en) Mesh reflector with truss structure
WO2014127813A1 (en) Deployable support structure
EP2482378B1 (en) Deployable antenna
JP6878613B2 (en) Reflectors, deployable antennas, and spacecraft
JP2008187650A (en) Deployable antenna
JP7179290B2 (en) Deployable reflector and deployable structure for deployable reflector
WO2019211964A1 (en) Expandable reflector and expansion structure for expandable reflector
EP4024606B1 (en) Deployable assembly for antennae
JPH07223597A (en) Two-dimensional development structure body
JP7414221B2 (en) Deployable solar cells, deployable structures, and spacecraft
JP3422404B2 (en) Spherical approximation frame structure
JPH0659880B2 (en) Deployable frame structure
JPH08186424A (en) Module type expandable antenna
JP3133056B2 (en) Synchronous drive mechanism for deployable antenna and ring
JPH02283598A (en) Expanding truss structure and hinge mechanism with expansive force
JP2001278197A (en) Developing type truss structure and antenna device using it
JP2003276695A (en) Method and mechanism for developing space structural body
JPS6249706A (en) Expansion type antenna reflector
JPH0561801B2 (en)
JPS62188402A (en) Expansion antenna reflector
WO2005027186A2 (en) Expansion-type reflection mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796530

Country of ref document: EP

Kind code of ref document: A1