WO2019211886A1 - Time-of-flight mass spectrometer - Google Patents

Time-of-flight mass spectrometer Download PDF

Info

Publication number
WO2019211886A1
WO2019211886A1 PCT/JP2018/017386 JP2018017386W WO2019211886A1 WO 2019211886 A1 WO2019211886 A1 WO 2019211886A1 JP 2018017386 W JP2018017386 W JP 2018017386W WO 2019211886 A1 WO2019211886 A1 WO 2019211886A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
ion
voltage
time
collision cell
Prior art date
Application number
PCT/JP2018/017386
Other languages
French (fr)
Japanese (ja)
Inventor
朝是 大城
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2018/017386 priority Critical patent/WO2019211886A1/en
Priority to JP2020516980A priority patent/JP6881679B2/en
Publication of WO2019211886A1 publication Critical patent/WO2019211886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to a time-of-flight mass spectrometer (hereinafter referred to as “TOFMS” where appropriate), and more specifically, a quadrupole-flight for performing mass analysis by introducing ions dissociated by a collision cell into an orthogonal acceleration type TOFMS.
  • TOFMS time-of-flight mass spectrometer
  • the present invention relates to TOFMS such as a time-type mass spectrometer.
  • TOFMS is a method of orthogonal acceleration (also called “vertical acceleration” or “orthogonal extraction”) in which ions are accelerated and sent into flight space in a direction substantially orthogonal to the traveling direction of the ion flow derived from the sample component.
  • OA-TOFMS orthogonal acceleration
  • a quadrupole mass filter is disposed before the collision cell that dissociates ions by collision-induced dissociation, while an OA-TOFMS is disposed after the collision cell.
  • Q-TOFMS time-of-flight mass spectrometer
  • an acceleration voltage (“push-pull voltage” in Patent Document 1) for accelerating ions in a pulse manner is applied to the acceleration electrode at a predetermined timing. Only ions passing through the orthogonal acceleration part are accelerated toward the flight space, and other ions, that is, ions passing through the orthogonal acceleration part before or after applying the acceleration voltage are wasted.
  • the distance from the ion optical axis gradually increases as the ions travel through the plurality of rod electrodes constituting the ion guide disposed in the collision cell.
  • An axial potential distribution (strictly speaking, it is a pseudopotential distribution, but in this specification, the real potential derived from the pseudopotential and the DC voltage is referred to as “potential” for the sake of convenience). Is inclined downward in the ion traveling direction.
  • a potential barrier is formed in the space between the outlet end of the ion guide and the outlet side gate electrode by the direct current potential difference between the outlet side gate electrode provided at the outlet side opening of the collision cell, and the downward slope Ion can be accumulated in the space surrounded by the ion guide by the potential distribution and the potential barrier.
  • the magnitude of the force that pushes back the ions to overcome the potential barrier is changed by changing the height of the potential barrier according to the mass-to-charge ratio of the ion to be measured.
  • the dependence of the mass-to-charge ratio on the travel time for ions ejected from the collision cell to reach the orthogonal acceleration portion is reduced. This achieves a high duty cycle for ions having various mass to charge ratios.
  • the duty cycle may not be improved. is there.
  • MS 1 analysis When the mass-to-charge ratio of the ions to be measured is approximately the same when performing MS / MS analysis and when performing MS 1 analysis, the duty cycle can be set even if the potential barrier height for ion accumulation is the same. There is a clear difference. Therefore, for example, if the parameters are adjusted so that the duty cycle at the time of MS / MS analysis is as good as possible, the duty cycle at the time of MS 1 analysis is lowered, and the detection sensitivity of ions is lowered accordingly.
  • the present invention has been made to solve the above-mentioned problems, and its object is to improve the duty cycle when performing either MS / MS analysis or MS 1 analysis in a TOFMS such as Q-TOFMS. It is to provide a TOFMS capable of improving the sensitivity of the mass spectrum.
  • the present invention made in order to solve the above-described problems includes a collision cell for bringing ions incident with a predetermined energy into contact with a predetermined gas, and ions discharged from the collision cell.
  • a time-of-flight mass spectrometer comprising: an accelerating unit that accelerates in a direction different from the incident axis; and a separation detecting unit that separates and detects ions accelerated by the accelerating unit according to a mass-to-charge ratio.
  • a) An ion guide that is arranged inside the collision cell to focus ions near the ion optical axis by a high-frequency electric field in order to temporarily hold ions to be measured, and an exit end outside the ion guide.
  • An ion holding unit including an exit-side gate electrode that is disposed and forms a part of the collision cell or is separate from the collision cell; b) a voltage application unit for applying a DC voltage to the outlet side gate electrode; c) When holding the ions to be measured in the internal space of the ion guide, a DC voltage during holding is set so that the potential at the outlet gate electrode is higher than at the outlet end of the ion guide. In addition to applying to the electrode, when discharging ions from the ion guide, a DC voltage at the time of discharge is applied to the outlet-side gate electrode so that the potential at the outlet-side gate electrode is lower than the outlet end of the ion guide.
  • control unit controls the voltage application unit, and when the ion is introduced from the previous stage of the collision cell to the inside of the collision cell according to the magnitude of energy applied to the ion.
  • a control unit for changing the DC voltage It is characterized by having.
  • the holding DC voltage is set so as to increase the potential barrier.
  • the collision energy during MS / MS analysis is less than that during MS 1 analysis (strictly speaking, it is not “collision energy” because ions are not dissociated during MS 1 analysis, but for the sake of convenience in this specification, MS / MS analysis is performed. time, hereinafter) is high both collision energy when MS 1 analysis, the potential barrier is higher than that in the MS 1 analysis during MS / MS analysis.
  • the acceleration unit is typically an orthogonal acceleration unit that accelerates ions in a direction orthogonal to the incident axis.
  • the potential barrier formed between the exit end of the ion guide and the exit-side gate electrode is relatively high. Ions introduced into the collision cell come into contact with the collision gas and dissociate to generate various product ions, which also have a relatively large energy. If the potential barrier formed between the exit end of the ion guide and the exit-side gate electrode is low, product ions having large energy may leak over the potential barrier. Therefore, product ions having large energy do not get over the potential barrier and are reliably accumulated. Thereby, loss of ions to be measured can be suppressed, and the duty cycle can be improved.
  • the force to push back the ions changes, so that there is a difference in the site where many ions exist in the internal space of the ion guide.
  • the potential barrier is high, many ions are likely to exist in a portion closer to the entrance end in the internal space of the ion guide. Therefore, depending on the height of the potential barrier, there is a difference in the time (ion movement time) from when the potential barrier disappears until ions are emitted from the ion guide and reach the acceleration portion.
  • the control unit changes the holding DC voltage from the time when the discharge DC voltage is applied to the outlet gate electrode until the acceleration is accelerated by the acceleration unit. It is preferable that the delay time be changed.
  • the delay time may be increased when the potential barrier is high compared to when the potential barrier is low.
  • An appropriate delay time may be obtained in advance experimentally or by simulation. Thereby, the duty cycle can be further improved and ions can be detected with high sensitivity.
  • the MS / MS analysis mode for mass analysis of dissociated ions and the MS analysis mode for mass analysis of ions not to be dissociated can be selectively executed.
  • energy is applied to the ions so that the ions introduced into the collision cell are dissociated when they come into contact with a predetermined gas.
  • ions introduced into the collision cell are It is preferable that a lower energy than that at the time of dissociation is applied to the ions so that the dissociation does not occur when the gas contacts with a predetermined gas and cooling is performed.
  • a plurality of rod electrodes constituting the ion guide Is arranged not to be parallel to the ion optical axis but to be inclined with respect to the ion optical axis, the distance between the ion optical axis and the inner peripheral surface of the rod electrode in the plane orthogonal to the ion optical axis is directed in the ion traveling direction. It is good to gradually increase according to.
  • Another method disclosed in Patent Document 4 may be used.
  • the duty cycle can be improved regardless of whether the MS / MS analysis or the MS 1 analysis is performed, and thereby the sensitivity of the mass spectrum can be improved.
  • the collision energy may be changed, for example, depending on the type of target compound or to change the mode of cleavage even for the same compound. The cycle can be brought close to the best so that a good mass spectrum can be obtained.
  • the block diagram of the principal part of Q-TOFMS which is one Example of this invention.
  • the timing diagram of the applied voltage to the exit side gate electrode and the applied voltage of orthogonal acceleration in Q-TOFMS of a present Example The figure which shows the actual measurement result of the relationship between the push-back voltage, delay time, and signal strength under different collision energy.
  • FIG. 1 is a configuration diagram of the main part of the Q-TOFMS of this embodiment.
  • the Q-TOFMS of the present embodiment has a multi-stage differential exhaust system configuration, and in the chamber 1, an ionization chamber 2, a first intermediate vacuum chamber 3, and a second intermediate vacuum chamber, which are substantially at atmospheric pressure atmosphere. 4, a first analysis chamber 5 and a second analysis chamber 6 having the highest degree of vacuum are disposed.
  • the ionization chamber 2 is provided with an ESI spray 7 for performing electrospray ionization (ESI).
  • ESI electrospray ionization
  • a liquid sample containing the target compound is supplied to the ESI spray 7, charged droplets are sprayed from the tip of the spray 7.
  • ions derived from the target compound are generated.
  • the ionization method is not limited to this.
  • atmospheric pressure chemical ionization APCI
  • atmospheric pressure photoionization APPI
  • probe electrospray ionization other than ESI
  • An atmospheric pressure ionization method such as PESI method
  • a MALDI method can be used when the sample is in a solid state
  • an electron ionization (EI) method when the sample is in a gaseous state
  • a chemical ionization (CI) method or the like can be used.
  • ions generated in the ionization chamber 2 are sent to the first intermediate vacuum chamber 3 through the heating capillary 8, converged by the array type ion guide 9, and sent to the second intermediate vacuum chamber 4 through the skimmer 10. Further, the ions are converged by the multipole ion guide 11 and sent to the first analysis chamber 5.
  • a quadrupole mass filter 12 and a collision cell 13 in which a quadrupole ion guide 14 that functions as a linear ion trap is provided are installed in the first analysis chamber 5.
  • ions derived from the sample are introduced into the quadrupole mass filter 12, and at the time of MS / MS analysis, a specific mass-to-charge ratio (or mass-to-charge ratio range) corresponding to the voltage applied to the quadrupole mass filter 12 is obtained.
  • the ions that pass through the quadrupole mass filter 12. These ions are introduced into the collision cell 13 as precursor ions, and the precursor ions are dissociated by contact with the collision gas supplied from the outside into the collision cell 13 to generate various product ions.
  • the ion guide 14 functions as a linear ion trap, and product ions generated by dissociation are temporarily accumulated in the internal space of the ion guide 14.
  • the temporarily accumulated ions are discharged from the collision cell 13 at a predetermined timing, and introduced into the second analysis chamber 6 through the ion passage port 15 while being guided by the ion transport optical system 16.
  • the ion transport optical system 16 is disposed across the first analysis chamber 5 and the second analysis chamber 6 with the ion passage port 15 interposed therebetween.
  • an orthogonal acceleration unit 17 that is an ion emission source, a flight space 18 in which a reflector 19 is disposed, and an ion detector 20 are provided, and are orthogonal along the ion optical axis C.
  • the ions introduced into the acceleration unit 17 in the X-axis direction are accelerated in the Z-axis direction at a predetermined timing to start flying.
  • the ions first freely fly in the space where there is no electric field, and then are turned back by the reflected electric field formed by the reflector 19, and then freely fly in the space without the electric field and reach the ion detector 20 again.
  • a data processing unit (not shown) creates a time-of-flight spectrum indicating the relationship between the flight time and the ion intensity based on the detection signal from the ion detector 20, and converts the flight time to the mass-to-charge ratio based on the known calibration information.
  • a mass spectrum is created by conversion.
  • FIG. 2A is a detailed configuration diagram of components from the quadrupole mass filter 12 to the orthogonal acceleration unit 17 in FIG. 1, and FIG. 2B is a schematic potential distribution diagram in the axial direction.
  • the potential U 1 in the ion guide 14 is not a potential distribution on the ion optical axis C, but a pseudo potential received when the ion beam outside the ion optical axis C is transported toward the exit side. It is a gradient, and the potential distribution other than the ion guide 14 substantially indicates the potential distribution on the ion optical axis C.
  • the quadrupole mass filter 12 includes four rod electrodes arranged in parallel to the ion optical axis C. However, here, only two rod electrodes located on the XZ plane including the ion optical axis C are depicted (the same applies to the following quadrupole ion guide 14).
  • the quadrupole ion guide 14 is composed of four rod electrodes. These four rod electrodes are not parallel to the ion optical axis C as shown in FIG. In a), they are arranged so that the distance from the ion optical axis C gradually increases toward the right).
  • the rear end surface of the collision cell 13 serves as an exit-side gate electrode 132, and the exit-side gate electrode 132 and the quadrupole ion guide 14 substantially function as a linear ion trap.
  • the ion transport optical system 16 has a configuration in which a plurality of (in this example, five) disk-shaped electrode plates having a circular opening at the center are arranged along the ion optical axis C.
  • the orthogonal acceleration unit 17 includes an entrance electrode 171, an extrusion electrode 172, and a grid-shaped extraction electrode 173.
  • the quadrupole mass filter voltage generation unit 31 applies a predetermined voltage to each rod electrode of the quadrupole mass filter 12.
  • this voltage is a voltage obtained by superimposing a high-frequency voltage on a DC voltage, and the DC voltage and the amplitude of the high-frequency voltage are the mass charges to be selected.
  • a DC bias voltage is further added to a voltage obtained by synthesizing the DC voltage and the high frequency voltage.
  • the ion guide voltage generator 32 applies a predetermined voltage to each rod electrode of the quadrupole ion guide 14.
  • This voltage is obtained by adding a DC bias voltage to a high-frequency voltage for ion focusing.
  • the outlet side gate electrode voltage generator 33 applies a predetermined DC voltage to the outlet side gate electrode 132.
  • the ion transport optical system voltage generator 34 applies a predetermined DC voltage to each electrode plate included in the ion transport optical system 16.
  • the orthogonal acceleration unit voltage generator 35 applies predetermined voltages to the inlet electrode 171, the extrusion electrode 172, and the extraction electrode 173, respectively.
  • the energy applied to the ions introduced into the collision cell 13 is the bias voltage applied to the rod electrode of the quadrupole mass filter 12 and the rod electrode of the quadrupole ion guide 14. It is determined by the voltage difference from the bias voltage applied to the.
  • MS / MS analysis in the Q-TOFMS of this embodiment it is necessary to dissociate ions by collision-induced dissociation in the collision cell 13 as described above. And apply to the collision cell 13.
  • MS 1 analysis in the Q-TOFMS of the present embodiment in order to prevent ions from dissociating in the collision cell 13, a smaller collision energy is applied to the ions than during MS / MS analysis.
  • an inert gas is used as a cooling gas in the collision cell 13.
  • ions introduced into the collision cell 13 or product ions generated by dissociating the introduced ions by collision-induced dissociation are introduced into the internal space of the quadrupole ion guide 14. Once accumulated, the accumulated ions are discharged from the collision cell 13 and introduced into the orthogonal acceleration unit 17 through the ion transport optical system 16 for mass analysis.
  • FIGS. 3 and 4 are an explanatory diagram of ion behavior in the internal space of the quadrupole ion guide 14, and FIG. 4 is a timing diagram of the applied voltage to the exit-side gate electrode 132 and the applied voltage for orthogonal acceleration. Note that, here, the case where the ion to be measured is a positive ion is illustrated, but when the ion to be measured is a negative ion, it is obvious that the polarity of the voltage may be reversed between positive and negative.
  • the ion guide voltage generator 32 When accumulating ions in the internal space of the quadrupole ion guide 14, the ion guide voltage generator 32 applies voltages obtained by adding a high frequency voltage and a DC voltage to the four rod electrodes constituting the ion guide 14. Apply.
  • This high-frequency voltage is for forming a quadrupole high-frequency electric field that focuses ions near the ion optical axis C.
  • the DC voltage is mainly for forming a potential distribution along the ion optical axis C and for applying collision energy to the ions as described above.
  • the outlet-side gate electrode voltage generator 33 applies a predetermined DC voltage higher than that at the outlet end of the quadrupole ion guide 14 to the outlet-side gate electrode 132.
  • a solid line U 5 shown in FIG. 2B is a schematic potential distribution on the ion optical axis C in the space between the exit end of the quadrupole mass filter 12 and the entrance end of the quadrupole ion guide 14.
  • a solid line U 1 is an approximate potential distribution in the axial direction in the internal space when ions are accumulated in the internal space of the quadrupole ion guide 14.
  • the ions introduced into the collision cell 13 are given collision energy by the downward gradient potential distribution indicated by the solid line U 5 .
  • the rod electrode of the quadrupole ion guide 14 has the characteristic arrangement as described above, the potential distribution on the axis in the internal space of the ion guide 14 gradually decreases from the entrance end to the exit end. The shape is inclined downward.
  • the potential at the position of the exit-side gate electrode 132 is higher than the potential at the exit end of the quadrupole ion guide 14.
  • a potential barrier is formed in the space between the outlet end 14 (the position of the point P 1 in FIG. 2B) and the outlet-side gate electrode 132 (the position of the point P 2 in FIG. 2B). ing.
  • the ions introduced into the collision cell 13 or the product ions generated by dissociation in the collision cell 13 have a gentle downward gradient potential distribution formed in the internal space of the quadrupole ion guide 14. To move in the ion traveling direction (right direction in FIG. 2). And when it reaches the exit end of the quadrupole ion guide 14, it is pushed back by the potential barrier.
  • the control unit 30 controls the exit-side gate electrode voltage generation unit 33 so as to change the voltage applied to the exit-side gate electrode 132 in accordance with the collision energy applied to the ions introduced into the collision cell 13. . Specifically, the higher the collision energy, the higher the voltage applied to the outlet side gate electrode 132. Thereby, the potential barrier increases as the collision energy increases.
  • Two two-dot chain lines U 2 in FIG. 2B indicate potential barriers having different heights. As described above, since the collision energy is different between the MS 1 analysis and the MS / MS analysis, the higher one of the two one-dot chain lines U 2 has a relatively large collision energy. The lower one of the two one-dot chain lines U 2 indicates the potential barrier at the time of MS 1 analysis with a relatively small collision energy.
  • FIG. 3A shows the behavior of ions when the potential barrier is high, that is, when the collision energy is relatively large
  • FIG. 3B shows when the potential barrier is low, that is, when the collision energy is relatively small. It is a conceptual diagram which shows the behavior of the ion in a case.
  • the ions pushed back by the potential barrier climb the potential gradient indicated by the solid line U 1 , and when reaching a certain position, the energy becomes zero and the direction is reversed, and then the potential gradient again decreases.
  • the slope of the barrier is steep, so that the energy for pushing back ions is large, and the pushed-back ions are far from the exit end of the quadrupole ion guide 14 ( the position of the point P 3) Back up.
  • the ions introduced into the collision cell 13 have a large collision energy, the ions generated by the dissociation may travel toward the exit of the collision cell 13 with a relatively large energy. Many.
  • the outlet-side gate electrode voltage generator 33 sets the voltage applied to the outlet-side gate electrode 132 to be lower than the voltage at the outlet end of the quadrupole ion guide 14. The voltage is lowered to a voltage value higher than the voltage applied to the first electrode plate of the ion transport optical system 16.
  • a dotted line U 3 shown in FIG. 2B is a schematic potential distribution between the exit end of the quadrupole ion guide 14 and the first electrode plate of the ion transport optical system 16 at this time.
  • the potential barrier is eliminated, and a potential gradient inclined downward from the exit end of the quadrupole ion guide 14 toward the ion transport optical system 16 is formed.
  • the ions temporarily accumulated in the internal space of the guide 14 are released simultaneously toward the ion transport optical system 16.
  • different voltages are applied to the electrode plates included in the ion transport optical system 16 from the ion transport optical system voltage generator 34. Strictly speaking, the potential at the installation position of each electrode plate is not the same, but since it can be considered to be constant on average, the potential distribution is shown by a dotted line in FIG. Yes.
  • the orthogonal acceleration unit voltage generator 35 is pushed out. An acceleration voltage is applied to the electrode 172 and the extraction electrode 173 in a pulse manner. The delay time t at this time is determined as described later.
  • ions to be measured are introduced into the orthogonal acceleration unit 17 and exist in the space between the extrusion electrode 172 and the extraction electrode 173. Thereby, in the Q-TOFMS of the present embodiment, the ions to be measured can be reliably ejected toward the flight space 18 and used for mass analysis.
  • FIG. 5 shows the process from the discharge of ions from the collision cell 13 to the ejection of ions by the orthogonal acceleration unit 17 in the MS 1 analysis mode in which the collision energy (CE) is 5 eV and the MS / MS mode in which the collision energy is 20 eV.
  • CE collision energy
  • FIG. 5 shows the process from the discharge of ions from the collision cell 13 to the ejection of ions by the orthogonal acceleration unit 17 in the MS 1 analysis mode in which the collision energy (CE) is 5 eV and the MS / MS mode in which the collision energy is 20 eV.
  • CE collision energy
  • the compound to be measured is Na + (NaI) (m / z 172).
  • the “push-back voltage” is a voltage corresponding to the height of the potential barrier described above.
  • the duty cycle is estimated to be the best when the ionic strength is maximized. Therefore, it can be seen from this result that the duty cycle can be improved and the ion detection sensitivity can be improved by appropriately changing the height of the potential barrier during ion accumulation according to the collision energy.
  • the orthogonal acceleration voltage generator 35 may change the timing of applying the acceleration voltage to the extrusion electrode 172 and the extraction electrode 173 according to the collision energy or the height of the potential barrier. That is, when the collision energy is large, the delay time t is longer than that when the collision energy is small, and ions that reach the orthogonal acceleration unit 17 with a little delay compared with the case where the collision energy is small are preferably accelerated.
  • the MS 1 analysis and the MS / MS analysis which are the most typical examples when the collision energies are different from each other, have been described.
  • the collision energy is determined according to the target compound. It is generally performed to obtain different peak pattern mass spectra by changing or dissociating different compounds in different modes by changing the collision energy at the time of MS / MS analysis. Even in such a case, it is clear that the duty cycle can be improved and the ion detection sensitivity can be improved by appropriately changing the height of the potential barrier during ion accumulation according to the collision energy and changing the delay time t. is there.
  • the present invention is applied to Q-TOFMS using OA-TOFMS.
  • ions are accelerated in a direction different from the incident direction, such as an oblique direction rather than a direction orthogonal to the ion incident axis.
  • the present invention can be applied to an apparatus having a TOFMS configured to be injected.

Abstract

According to the present invention, during MS/MS analysis, a collision energy (CE) greater than that for ordinary MS analysis is imparted to ions which are then introduced into a collision cell (13) where the ions are dissociated. Then, mass analysis is conducted by introducing the resultant product ions into an orthogonal accelerator (17) of an OA-TOFMS. The ions subject to mass analysis are temporarily accumulated in the interior space of an ion guide (14) by means of a potential barrier formed as a result of applying voltage to an exit-side gate electrode (132), while a control unit (30) controls a voltage generation unit (33) such that the potential barrier becomes increasingly higher with increase in CE. Even in the case when the CE is high, ions do not get past the potential barrier and are ensured to be accumulated in the interior space of the ion guide (14). Meanwhile, in the case when the CE is low, ions accumulate in clusters on the exit side of the ion guide (14), thereby resulting in an enhanced ion compression effect. With this configuration, it is possible to achieve an improved duty cycle and an enhanced ion detection sensitivity.

Description

飛行時間型質量分析装置Time-of-flight mass spectrometer
 本発明は飛行時間型質量分析装置(以下、適宜「TOFMS」と称す)に関し、さらに詳しくは、コリジョンセルで解離させたイオンを直交加速方式のTOFMSに導入して質量分析する四重極-飛行時間型質量分析装置などのTOFMSに関する。 The present invention relates to a time-of-flight mass spectrometer (hereinafter referred to as “TOFMS” where appropriate), and more specifically, a quadrupole-flight for performing mass analysis by introducing ions dissociated by a collision cell into an orthogonal acceleration type TOFMS. The present invention relates to TOFMS such as a time-type mass spectrometer.
 TOFMSの一つの方式として、試料成分由来のイオン流の進行方向と略直交する方向にイオンを加速して飛行空間へと送り込む、直交加速(「垂直加速」や「直交引出し」とも呼ばれる)方式のTOFMS(以下、適宜「OA-TOFMS」と称す)が知られている。例えば特許文献1、非特許文献1には、衝突誘起解離によりイオンを解離させるコリジョンセルの前段に四重極マスフィルタを配置する一方、コリジョンセルの後段にOA-TOFMSを配置した四重極-飛行時間型質量分析装置(以下、適宜「Q-TOFMS」と称す)が開示されている。 One method of TOFMS is a method of orthogonal acceleration (also called “vertical acceleration” or “orthogonal extraction”) in which ions are accelerated and sent into flight space in a direction substantially orthogonal to the traveling direction of the ion flow derived from the sample component. TOFMS (hereinafter referred to as “OA-TOFMS” where appropriate) is known. For example, in Patent Document 1 and Non-Patent Document 1, a quadrupole mass filter is disposed before the collision cell that dissociates ions by collision-induced dissociation, while an OA-TOFMS is disposed after the collision cell. A time-of-flight mass spectrometer (hereinafter referred to as “Q-TOFMS” as appropriate) is disclosed.
 OA-TOFMSの直交加速部では、パルス的にイオンを加速する加速電圧(特許文献1における「push-pull voltage」)が所定のタイミングで加速電極に印加されるため、その加速電圧の印加時点で直交加速部を通過しているイオンのみが飛行空間に向けて加速され、それ以外のイオン、つまりその加速電圧印加時よりも前又は後に直交加速部を通過するイオンは無駄になる。OA-TOFMSにおけるこのイオンの利用効率は一般にデューティサイクル(Duty Cycle)と呼ばれ、次の式で定義される(特許文献2等参照)。
  Duty Cycle[%]={(実際に測定に利用されるイオンの量)/(直交加速部へ到達したイオンの量)}×100
In the orthogonal acceleration part of OA-TOFMS, an acceleration voltage (“push-pull voltage” in Patent Document 1) for accelerating ions in a pulse manner is applied to the acceleration electrode at a predetermined timing. Only ions passing through the orthogonal acceleration part are accelerated toward the flight space, and other ions, that is, ions passing through the orthogonal acceleration part before or after applying the acceleration voltage are wasted. The utilization efficiency of ions in OA-TOFMS is generally called a duty cycle and is defined by the following equation (see Patent Document 2).
Duty Cycle [%] = {(Amount of ions actually used for measurement) / (Amount of ions reaching the orthogonal acceleration portion)} × 100
 上記式から分かるように、直交加速部に連続的にイオン流が導入される場合にはデューティサイクルは低くなる。そこでデューティサイクルを向上させるために、従来の一般的なQ-TOFMSでは、コリジョンセルの内部に測定対象であるイオンを一旦蓄積し、その蓄積したイオンをコリジョンセルから吐き出して圧縮された状態のイオン流を断続的に直交加速部に送り込み、そのイオン流が供給されたタイミングに合わせて直交加速部においてイオンを加速するという構成が採られている。 As can be seen from the above formula, when the ion flow is continuously introduced into the orthogonal acceleration section, the duty cycle becomes low. Therefore, in order to improve the duty cycle, in the conventional general Q-TOFMS, ions to be measured are temporarily accumulated in the collision cell, and the accumulated ions are discharged from the collision cell and compressed. A configuration is adopted in which the flow is intermittently sent to the orthogonal acceleration unit, and the ions are accelerated in the orthogonal acceleration unit in accordance with the timing at which the ion flow is supplied.
 例えば特許文献3に記載のQ-TOFMSでは、コリジョンセル内に配置されたイオンガイドを構成する複数本のロッド電極を、イオンが進行するに伴いイオン光軸(中心軸)からの距離が徐々に大きくなるように傾けて配置することで、軸方向のポテンシャル分布(厳密には疑似ポテンシャルの分布であるが、本明細書中では疑似ポテンシャル及び直流電圧由来の実ポテンシャルを、便宜上「ポテンシャル」という)がイオン進行方向に下り傾斜となるようにしている。そして、コリジョンセルの出口側開口に設けられた出口側ゲート電極との間の直流電位差によって、そのイオンガイドの出口端と出口側ゲート電極との間の空間にポテンシャル障壁を形成し、上記下り傾斜であるポテンシャル分布と上記ポテンシャル障壁とによって、イオンガイドで囲まれる空間にイオンを蓄積できるようにしている。 For example, in the Q-TOFMS described in Patent Document 3, the distance from the ion optical axis (center axis) gradually increases as the ions travel through the plurality of rod electrodes constituting the ion guide disposed in the collision cell. An axial potential distribution (strictly speaking, it is a pseudopotential distribution, but in this specification, the real potential derived from the pseudopotential and the DC voltage is referred to as “potential” for the sake of convenience). Is inclined downward in the ion traveling direction. Then, a potential barrier is formed in the space between the outlet end of the ion guide and the outlet side gate electrode by the direct current potential difference between the outlet side gate electrode provided at the outlet side opening of the collision cell, and the downward slope Ion can be accumulated in the space surrounded by the ion guide by the potential distribution and the potential barrier.
 さらにまた、該文献3に記載のQ-TOFMSでは、測定対象のイオンの質量電荷比に応じて上記ポテンシャル障壁の高さを変えることでポテンシャル障壁を乗り越えようとするイオンを押し返す力の大きさを調整し、それによって、コリジョンセルから吐き出されたイオンが直交加速部まで到達する移動時間の質量電荷比依存性を軽減している。これにより、様々な質量電荷比を有するイオンについて、高いデューティサイクルを実現している。 Furthermore, in the Q-TOFMS described in Document 3, the magnitude of the force that pushes back the ions to overcome the potential barrier is changed by changing the height of the potential barrier according to the mass-to-charge ratio of the ion to be measured. Thus, the dependence of the mass-to-charge ratio on the travel time for ions ejected from the collision cell to reach the orthogonal acceleration portion is reduced. This achieves a high duty cycle for ions having various mass to charge ratios.
米国特許第6285027号明細書US Pat. No. 6,285,027 特開2010-170848号公報JP 2010-170848 A 国際公開第2016/042632号パンフレットInternational Publication No. 2016/042632 Pamphlet 米国特許第7456388号明細書U.S. Pat. No. 7,456,388
 しかしながら、本発明者らの実験的な検討によれば、上述したように測定対象であるイオンの質量電荷比に応じてポテンシャル障壁の高さを調整しても、デューティサイクルが良好にならない場合がある。 However, according to the experimental study by the present inventors, even if the height of the potential barrier is adjusted according to the mass-to-charge ratio of the ion to be measured as described above, the duty cycle may not be improved. is there.
 例えば、Q-TOFMSでは、コリジョンセル内で衝突誘起解離により解離させたイオンを質量分析するMS/MS(=MS2)分析を行うことができるが、コリジョンセル内でイオンを解離させない通常の質量分析(MS1分析)を実行することも可能である。MS/MS分析を実行する場合とMS1分析を行う場合とで測定対象のイオンの質量電荷比が同程度であるとき、イオン蓄積のためのポテンシャル障壁の高さを同じにしてもデューティサイクルには明確な差が生じる。そのため、例えばMS/MS分析時のデューティサイクルができるだけ良好になるようにパラメータを調整すると、MS1分析時のデューティサイクルが低くなり、それだけイオンの検出感度が低下することになる。 For example, in Q-TOFMS, MS / MS (= MS 2 ) analysis can be performed for mass analysis of ions dissociated by collision-induced dissociation in the collision cell, but normal mass that does not dissociate ions in the collision cell. It is also possible to carry out an analysis (MS 1 analysis). When the mass-to-charge ratio of the ions to be measured is approximately the same when performing MS / MS analysis and when performing MS 1 analysis, the duty cycle can be set even if the potential barrier height for ion accumulation is the same. There is a clear difference. Therefore, for example, if the parameters are adjusted so that the duty cycle at the time of MS / MS analysis is as good as possible, the duty cycle at the time of MS 1 analysis is lowered, and the detection sensitivity of ions is lowered accordingly.
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、Q-TOFMS等のTOFMSにおいて、MS/MS分析、MS1分析のいずれを行う場合でもデューティサイクルを改善することによりマススペクトルの感度を向上させることができるTOFMSを提供することである。 The present invention has been made to solve the above-mentioned problems, and its object is to improve the duty cycle when performing either MS / MS analysis or MS 1 analysis in a TOFMS such as Q-TOFMS. It is to provide a TOFMS capable of improving the sensitivity of the mass spectrum.
 Q-TOFMSにおいてMS/MS分析を実行する場合には、コリジョンセル内で所定のガス(コリジョンガス)との接触によりイオンを解離させるために或る程度大きなエネルギ(コリジョンエネルギ)をイオンに付与してコリジョンセル内に導入する必要がある。これに対し、Q-TOFMSにおいてMS1分析を実行する場合には、コリジョンセル内に所定のガスが存在していても解離が生じないように、コリジョンセル内に導入されるイオンにはイオン解離操作時に比べて小さなエネルギが付与される。本発明者らは実験的な検討により、コリジョンセルに導入される際にイオンに付与されるエネルギ、つまりはコリジョンエネルギの違いにより、デューティサイクルを改善するためのポテンシャル障壁の高さが相違することを見いだした。そして、こうした知見に基づいて本発明を完成させるに至った。 When performing MS / MS analysis in Q-TOFMS, a certain amount of energy (collision energy) is applied to the ions in order to dissociate the ions by contact with a predetermined gas (collision gas) in the collision cell. Must be introduced into the collision cell. On the other hand, when performing MS 1 analysis in Q-TOFMS, ion dissociation is performed on ions introduced into the collision cell so that dissociation does not occur even if a predetermined gas is present in the collision cell. Small energy is given compared with the time of operation. As a result of experimental studies, the inventors have found that the height of the potential barrier for improving the duty cycle varies depending on the energy applied to the ions when introduced into the collision cell, that is, the collision energy. I found. And based on such knowledge, it came to complete this invention.
 即ち、上記課題を解決するためになされた本発明は、所定のエネルギを有して入射したイオンを所定のガスに接触させるためのコリジョンセルと、該コリジョンセルから排出されたイオンをそのイオン流の入射軸と異なる方向に加速する加速部と、該加速部で加速されたイオンを質量電荷比に応じて分離して検出する分離検出部と、を具備する飛行時間型質量分析装置であって、
 a)測定対象であるイオンを一時的に保持するために、前記コリジョンセルの内部に配置された、高周波電場によってイオンをイオン光軸付近に収束させるイオンガイドと、該イオンガイドの出口端外側に配置された、前記コリジョンセルの一部を構成する又は該コリジョンセルとは別体である出口側ゲート電極と、を含むイオン保持部と、
 b)前記出口側ゲート電極に直流電圧を印加する電圧印加部と、
 c)前記イオンガイドの内部空間に測定対象であるイオンを保持する際に、少なくとも該イオンガイドの出口端よりも前記出口側ゲート電極におけるポテンシャルが高くなるような保持時直流電圧を該出口側ゲート電極に印加するとともに、前記イオンガイドからイオンを放出する際には、該イオンガイドの出口端よりも前記出口側ゲート電極におけるポテンシャルが低くなるような放出時直流電圧を該出口側ゲート電極に印加するべく前記電圧印加部を制御する制御部であって、前記コリジョンセルの前段から該コリジョンセルの内部にイオンが導入される際に該イオンに付与されるエネルギの大きさに応じて前記保持時直流電圧を変化させる制御部と、
 を備えることを特徴としている。
That is, the present invention made in order to solve the above-described problems includes a collision cell for bringing ions incident with a predetermined energy into contact with a predetermined gas, and ions discharged from the collision cell. A time-of-flight mass spectrometer comprising: an accelerating unit that accelerates in a direction different from the incident axis; and a separation detecting unit that separates and detects ions accelerated by the accelerating unit according to a mass-to-charge ratio. ,
a) An ion guide that is arranged inside the collision cell to focus ions near the ion optical axis by a high-frequency electric field in order to temporarily hold ions to be measured, and an exit end outside the ion guide. An ion holding unit including an exit-side gate electrode that is disposed and forms a part of the collision cell or is separate from the collision cell;
b) a voltage application unit for applying a DC voltage to the outlet side gate electrode;
c) When holding the ions to be measured in the internal space of the ion guide, a DC voltage during holding is set so that the potential at the outlet gate electrode is higher than at the outlet end of the ion guide. In addition to applying to the electrode, when discharging ions from the ion guide, a DC voltage at the time of discharge is applied to the outlet-side gate electrode so that the potential at the outlet-side gate electrode is lower than the outlet end of the ion guide. Preferably, the control unit controls the voltage application unit, and when the ion is introduced from the previous stage of the collision cell to the inside of the collision cell according to the magnitude of energy applied to the ion. A control unit for changing the DC voltage;
It is characterized by having.
 本発明では、コリジョンセルに導入されるイオンに付与されるエネルギ、つまりはコリジョンエネルギが大きいほど、測定対象であるイオンを保持する際にイオンガイドの出口端と出口側ゲート電極との間に形成されるポテンシャル障壁が高くなるように保持時直流電圧を設定する。通常、MS/MS分析時にはMS1分析時に比べてコリジョンエネルギ(厳密に言えば、MS1分析時にはイオンを解離させないので「コリジョンエネルギ」ではないが、本明細書では便宜的に、MS/MS分析時、MS1分析時ともにコリジョンエネルギという)が高いため、MS/MS分析時にはMS1分析時に比べて上記ポテンシャル障壁は高くなる。 In the present invention, the larger the energy applied to the ions introduced into the collision cell, that is, the collision energy, the more the ion to be measured is formed between the exit end of the ion guide and the exit-side gate electrode. The holding DC voltage is set so as to increase the potential barrier. Usually, the collision energy during MS / MS analysis is less than that during MS 1 analysis (strictly speaking, it is not “collision energy” because ions are not dissociated during MS 1 analysis, but for the sake of convenience in this specification, MS / MS analysis is performed. time, hereinafter) is high both collision energy when MS 1 analysis, the potential barrier is higher than that in the MS 1 analysis during MS / MS analysis.
 相対的に小さなコリジョンエネルギを有してコリジョンセルにイオンが導入されたとき、イオンガイドの出口端と出口側ゲート電極との間に形成されるポテンシャル障壁が相対的に低いため、必要以上にイオンは押し戻されず、イオンガイド内の出口付近に集中的に蓄積され易い。そのため、放出時直流電圧が出口側ゲート電極に印加されて上記ポテンシャル障壁が無くなったときに、測定対象のイオンがあまり分散せずに加速部に到達する。それにより、デューティサイクルを改善することができる。なお、加速部は典型的には入射軸と直交する方向にイオンを加速する直交加速部である。 When ions are introduced into the collision cell with a relatively small collision energy, the potential barrier formed between the exit end of the ion guide and the exit-side gate electrode is relatively low. Are not pushed back and tend to accumulate intensively near the exit in the ion guide. Therefore, when a direct current voltage at the time of emission is applied to the exit-side gate electrode and the potential barrier disappears, ions to be measured reach the acceleration part without being dispersed much. Thereby, the duty cycle can be improved. The acceleration unit is typically an orthogonal acceleration unit that accelerates ions in a direction orthogonal to the incident axis.
 一方、相対的に大きなコリジョンエネルギを有してコリジョンセルにイオンが導入されたとき、イオンガイドの出口端と出口側ゲート電極との間に形成されるポテンシャル障壁は相対的に高い。コリジョンセルに導入されたイオンはコリジョンガスに接触して解離し各種のプロダクトイオンが生成されるが、このプロダクトイオンも比較的大きなエネルギを有している。イオンガイドの出口端と出口側ゲート電極との間に形成されるポテンシャル障壁が低いと、大きなエネルギを有するプロダクトイオンがポテンシャル障壁を乗り越えて漏出してしまうおそれがあるが、本発明では、ポテンシャル障壁が高いので大きなエネルギを有するプロダクトイオンもポテンシャル障壁を乗り越えず、確実に蓄積される。それにより、測定対象のイオンの損失が抑えられ、デューティサイクルを改善することができる。 On the other hand, when ions are introduced into the collision cell with a relatively large collision energy, the potential barrier formed between the exit end of the ion guide and the exit-side gate electrode is relatively high. Ions introduced into the collision cell come into contact with the collision gas and dissociate to generate various product ions, which also have a relatively large energy. If the potential barrier formed between the exit end of the ion guide and the exit-side gate electrode is low, product ions having large energy may leak over the potential barrier. Therefore, product ions having large energy do not get over the potential barrier and are reliably accumulated. Thereby, loss of ions to be measured can be suppressed, and the duty cycle can be improved.
 ただし、ポテンシャル障壁の高さを変えるとイオンを押し戻す力が変わるため、イオンガイドの内部空間でイオンが多く存在する部位に差が生じる。具体的には、ポテンシャル障壁が高いとイオンガイドの内部空間でより入口端に近い部位にイオンが多く存在し易い。そのため、ポテンシャル障壁の高さによって、該ポテンシャル障壁が無くなったときにイオンがイオンガイドから発して加速部に到達するまでの時間(イオンの移動時間)に差が生じる。 However, if the height of the potential barrier is changed, the force to push back the ions changes, so that there is a difference in the site where many ions exist in the internal space of the ion guide. Specifically, when the potential barrier is high, many ions are likely to exist in a portion closer to the entrance end in the internal space of the ion guide. Therefore, depending on the height of the potential barrier, there is a difference in the time (ion movement time) from when the potential barrier disappears until ions are emitted from the ion guide and reach the acceleration portion.
 そこで、本発明において好ましくは、前記制御部は、前記保持時直流電圧を変化させるのに伴い、放出時直流電圧を前記出口側ゲート電極に印加する時点から前記加速部でイオンを加速させるまでの遅延時間を変化させる構成とするとよい。 Therefore, in the present invention, preferably, the control unit changes the holding DC voltage from the time when the discharge DC voltage is applied to the outlet gate electrode until the acceleration is accelerated by the acceleration unit. It is preferable that the delay time be changed.
 具体的には、測定対象のイオンの質量電荷比が同程度であっても、ポテンシャル障壁が高いときには低いときに比べて上記遅延時間を長くするとよい。適切な遅延時間は予め実験的に又はシミュレーションにより求めておけばよい。これにより、より一層、デューティサイクルを向上させ、高い感度で以てイオンを検出することができる。 Specifically, even if the mass-to-charge ratio of ions to be measured is about the same, the delay time may be increased when the potential barrier is high compared to when the potential barrier is low. An appropriate delay time may be obtained in advance experimentally or by simulation. Thereby, the duty cycle can be further improved and ions can be detected with high sensitivity.
 また本発明では、解離させたイオンを質量分析するMS/MS分析モードと、解離させないイオンを質量分析するMS分析モードと、を選択的に実行可能であり、
 MS/MS分析モードにおいては前記コリジョンセルに導入されたイオンが所定のガスに接触したときに解離するようなエネルギを該イオンに付与し、MS分析モードにおいては前記コリジョンセルに導入されたイオンが所定のガスに接触したときに解離が生じずクーリングされるように解離時よりも低いエネルギを該イオンに付与する構成とするとよい。
In the present invention, the MS / MS analysis mode for mass analysis of dissociated ions and the MS analysis mode for mass analysis of ions not to be dissociated can be selectively executed.
In the MS / MS analysis mode, energy is applied to the ions so that the ions introduced into the collision cell are dissociated when they come into contact with a predetermined gas. In the MS analysis mode, ions introduced into the collision cell are It is preferable that a lower energy than that at the time of dissociation is applied to the ions so that the dissociation does not occur when the gas contacts with a predetermined gas and cooling is performed.
 なお、本発明において、イオンガイドの内部に軸方向にイオンを輸送する下り傾斜のポテンシャル分布を形成するために、特許文献3に開示されているように、イオンガイドを構成する複数本のロッド電極をイオン光軸と平行ではなくイオン光軸に対し傾けて配置することで、イオン光軸に直交する面内でのイオン光軸とロッド電極内周面との間の距離をイオン進行方向に向かうに従い徐々に大きくするとよい。また、特許文献4に開示されている別の方法を用いてもよい。 In the present invention, in order to form a downwardly inclined potential distribution for transporting ions in the axial direction inside the ion guide, as disclosed in Patent Document 3, a plurality of rod electrodes constituting the ion guide. Is arranged not to be parallel to the ion optical axis but to be inclined with respect to the ion optical axis, the distance between the ion optical axis and the inner peripheral surface of the rod electrode in the plane orthogonal to the ion optical axis is directed in the ion traveling direction. It is good to gradually increase according to. Another method disclosed in Patent Document 4 may be used.
 本発明によれば、MS/MS分析、MS1分析のいずれを行う場合でもデューティサイクルを改善することができ、それによりマススペクトルの感度を向上させることができる。また、MS/MS分析を実行する際に、例えば目的化合物の種類に応じて、或いは、同じ化合物でも開裂の態様を変えるために、コリジョンエネルギが変更されることがあるが、そうした場合でも常にデューティサイクルを最良に近い状態にすることができ、それにより良好なマススペクトルを得ることができる。 According to the present invention, the duty cycle can be improved regardless of whether the MS / MS analysis or the MS 1 analysis is performed, and thereby the sensitivity of the mass spectrum can be improved. Also, when performing MS / MS analysis, the collision energy may be changed, for example, depending on the type of target compound or to change the mode of cleavage even for the same compound. The cycle can be brought close to the best so that a good mass spectrum can be obtained.
本発明の一実施例であるQ-TOFMSの要部の構成図。The block diagram of the principal part of Q-TOFMS which is one Example of this invention. 本実施例のQ-TOFMSにおける四重極マスフィルタと直交加速部との間の詳細構成図(a)、及び、軸方向の概略ポテンシャル分布を示す図(b)。The detailed block diagram (a) between the quadrupole mass filter and orthogonal acceleration part in Q-TOFMS of a present Example, and the figure (b) which shows schematic potential distribution of an axial direction. 本実施例のQ-TOFMSにおけるイオンガイド内部空間でのイオン挙動の説明図。Explanatory drawing of the ion behavior in the ion guide internal space in Q-TOFMS of a present Example. 本実施例のQ-TOFMSにおける出口側ゲート電極への印加電圧及び直交加速の印加電圧のタイミング図。The timing diagram of the applied voltage to the exit side gate electrode and the applied voltage of orthogonal acceleration in Q-TOFMS of a present Example. 異なるコリジョンエネルギの下での押し戻し電圧、遅延時間、及び信号強度の関係の実測結果を示す図。The figure which shows the actual measurement result of the relationship between the push-back voltage, delay time, and signal strength under different collision energy.
 以下、本発明の一実施例であるQ-TOFMSについて、添付図面を参照して説明する。 Hereinafter, Q-TOFMS which is an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は本実施例のQ-TOFMSの要部の構成図である。本実施例のQ-TOFMSは、多段差動排気系の構成を有しており、チャンバ1内には、略大気圧雰囲気であるイオン化室2、第1中間真空室3、第2中間真空室4、第1分析室5、及び、最も真空度が高い第2分析室6が配設されている。 FIG. 1 is a configuration diagram of the main part of the Q-TOFMS of this embodiment. The Q-TOFMS of the present embodiment has a multi-stage differential exhaust system configuration, and in the chamber 1, an ionization chamber 2, a first intermediate vacuum chamber 3, and a second intermediate vacuum chamber, which are substantially at atmospheric pressure atmosphere. 4, a first analysis chamber 5 and a second analysis chamber 6 having the highest degree of vacuum are disposed.
 イオン化室2には、エレクトロスプレイイオン化(ESI)を行うためのESIスプレー7が設けられ、目的化合物を含む液体試料がESIスプレー7に供給されると、該スプレー7先端から帯電液滴が噴霧され、該液滴が分裂するとともに溶媒が蒸発する過程で目的化合物由来のイオンが生成される。なお、イオン化法はこれに限るものではなく、例えば、試料が液体である場合には、ESI以外の大気圧化学イオン化(APCI)法、大気圧光イオン化(APPI)法、探針エレクトロスプレーイオン化(PESI)法などの大気圧イオン化法が使用可能であり、また試料が固体状である場合にはMALDI法などが使用可能であり、試料が気体状である場合には電子イオン化(EI)法、化学イオン化(CI)法などが利用可能である。 The ionization chamber 2 is provided with an ESI spray 7 for performing electrospray ionization (ESI). When a liquid sample containing the target compound is supplied to the ESI spray 7, charged droplets are sprayed from the tip of the spray 7. In the process where the droplet breaks and the solvent evaporates, ions derived from the target compound are generated. The ionization method is not limited to this. For example, when the sample is a liquid, atmospheric pressure chemical ionization (APCI) method, atmospheric pressure photoionization (APPI) method, probe electrospray ionization (other than ESI) ( An atmospheric pressure ionization method such as PESI method can be used, and a MALDI method can be used when the sample is in a solid state, and an electron ionization (EI) method when the sample is in a gaseous state, A chemical ionization (CI) method or the like can be used.
 イオン化室2内で生成された各種イオンは加熱キャピラリ8を通して第1中間真空室3へ送られ、アレイ型イオンガイド9により収束されてスキマー10を通して第2中間真空室4へ送られる。さらに、イオンは多重極型イオンガイド11により収束されて第1分析室5へ送られる。第1分析室5内には、四重極マスフィルタ12と、リニアイオントラップとして機能する四重極型イオンガイド14が内部に設けられたコリジョンセル13と、が設置されている。試料由来の各種イオンは四重極マスフィルタ12に導入され、MS/MS分析時には、四重極マスフィルタ12に印加されている電圧に応じた特定の質量電荷比(又は質量電荷比範囲)を有するイオンが該四重極マスフィルタ12を通り抜ける。このイオンはプリカーサイオンとしてコリジョンセル13に導入され、コリジョンセル13内に外部から供給されるコリジョンガスとの接触によってプリカーサイオンは解離し、各種のプロダクトイオンが生成される。 Various ions generated in the ionization chamber 2 are sent to the first intermediate vacuum chamber 3 through the heating capillary 8, converged by the array type ion guide 9, and sent to the second intermediate vacuum chamber 4 through the skimmer 10. Further, the ions are converged by the multipole ion guide 11 and sent to the first analysis chamber 5. In the first analysis chamber 5, a quadrupole mass filter 12 and a collision cell 13 in which a quadrupole ion guide 14 that functions as a linear ion trap is provided are installed. Various ions derived from the sample are introduced into the quadrupole mass filter 12, and at the time of MS / MS analysis, a specific mass-to-charge ratio (or mass-to-charge ratio range) corresponding to the voltage applied to the quadrupole mass filter 12 is obtained. The ions that pass through the quadrupole mass filter 12. These ions are introduced into the collision cell 13 as precursor ions, and the precursor ions are dissociated by contact with the collision gas supplied from the outside into the collision cell 13 to generate various product ions.
 イオンガイド14はリニア型イオントラップとして機能し、解離により生成されたプロダクトイオンはイオンガイド14の内部空間に一時的に蓄積される。そして、一時的に蓄積されていたイオンは所定のタイミングでコリジョンセル13から排出され、イオン輸送光学系16により案内されつつイオン通過口15を経て第2分析室6内に導入される。イオン輸送光学系16は、イオン通過口15を挟んで第1分析室5と第2分析室6とに跨って配置されている。 The ion guide 14 functions as a linear ion trap, and product ions generated by dissociation are temporarily accumulated in the internal space of the ion guide 14. The temporarily accumulated ions are discharged from the collision cell 13 at a predetermined timing, and introduced into the second analysis chamber 6 through the ion passage port 15 while being guided by the ion transport optical system 16. The ion transport optical system 16 is disposed across the first analysis chamber 5 and the second analysis chamber 6 with the ion passage port 15 interposed therebetween.
 第2分析室6内には、イオン射出源である直交加速部17と、リフレクタ19が配置された飛行空間18と、イオン検出器20とが設けられており、イオン光軸Cに沿って直交加速部17にX軸方向に導入されたイオンは所定のタイミングでZ軸方向に加速されることで飛行を開始する。飛行空間18においてイオンはまず無電場である空間中を自由飛行したあと、リフレクタ19により形成されている反射電場で折り返され、再び無電場の空間中を自由飛行してイオン検出器20に到達する。イオンが直交加速部17を出発した時点からイオン検出器20に到達するまでの飛行時間は、そのイオンの質量電荷比に依存する。したがって、図示しないデータ処理部は、イオン検出器20による検出信号に基づいて飛行時間とイオン強度との関係を示す飛行時間スペクトルを作成し、既知の校正情報に基づいて飛行時間を質量電荷比に換算することでマススペクトルを作成する。 In the second analysis chamber 6, an orthogonal acceleration unit 17 that is an ion emission source, a flight space 18 in which a reflector 19 is disposed, and an ion detector 20 are provided, and are orthogonal along the ion optical axis C. The ions introduced into the acceleration unit 17 in the X-axis direction are accelerated in the Z-axis direction at a predetermined timing to start flying. In the flight space 18, the ions first freely fly in the space where there is no electric field, and then are turned back by the reflected electric field formed by the reflector 19, and then freely fly in the space without the electric field and reach the ion detector 20 again. . The flight time from when the ions leave the orthogonal acceleration unit 17 until they reach the ion detector 20 depends on the mass-to-charge ratio of the ions. Therefore, a data processing unit (not shown) creates a time-of-flight spectrum indicating the relationship between the flight time and the ion intensity based on the detection signal from the ion detector 20, and converts the flight time to the mass-to-charge ratio based on the known calibration information. A mass spectrum is created by conversion.
 図2(a)は図1中の四重極マスフィルタ12から直交加速部17までの構成要素の詳細な構成図、図2(b)は軸方向の概略ポテンシャル分布図である。なお、図2(b)において、イオンガイド14におけるポテンシャルU1はイオン光軸C上のポテンシャル分布ではなく、イオン光軸C外のイオンビームが出口側に向かって輸送される際に受ける疑似ポテンシャル勾配であり、イオンガイド14以外のポテンシャル分布は実質的にイオン光軸C上のポテンシャル分布を示している。 2A is a detailed configuration diagram of components from the quadrupole mass filter 12 to the orthogonal acceleration unit 17 in FIG. 1, and FIG. 2B is a schematic potential distribution diagram in the axial direction. In FIG. 2B, the potential U 1 in the ion guide 14 is not a potential distribution on the ion optical axis C, but a pseudo potential received when the ion beam outside the ion optical axis C is transported toward the exit side. It is a gradient, and the potential distribution other than the ion guide 14 substantially indicates the potential distribution on the ion optical axis C.
 四重極マスフィルタ12はイオン光軸Cに平行に配置された4本のロッド電極を含む。ただし、ここではイオン光軸Cを含むX-Z平面上に位置する2本のロッド電極のみを描出している(以下の四重極型イオンガイド14も同様)。四重極型イオンガイド14は4本のロッド電極からなるが、この4本のロッド電極は図2(a)に示すように、イオン光軸Cに平行ではなく、イオン進行方向(図2(a)では右方向)に向かってイオン光軸Cからの距離が徐々に大きくなるように傾けて配置されている。コリジョンセル13の後端面は出口側ゲート電極132となっており、この出口側ゲート電極132と四重極型イオンガイド14とが実質的にリニア型イオントラップとして機能する。イオン輸送光学系16は、中央に円形開口を有する円盤状の電極板がイオン光軸Cに沿って複数(この例では5枚)配列された構成である。直交加速部17は、入口電極171、押出電極172、及びグリッド状の引出電極173、を含む。 The quadrupole mass filter 12 includes four rod electrodes arranged in parallel to the ion optical axis C. However, here, only two rod electrodes located on the XZ plane including the ion optical axis C are depicted (the same applies to the following quadrupole ion guide 14). The quadrupole ion guide 14 is composed of four rod electrodes. These four rod electrodes are not parallel to the ion optical axis C as shown in FIG. In a), they are arranged so that the distance from the ion optical axis C gradually increases toward the right). The rear end surface of the collision cell 13 serves as an exit-side gate electrode 132, and the exit-side gate electrode 132 and the quadrupole ion guide 14 substantially function as a linear ion trap. The ion transport optical system 16 has a configuration in which a plurality of (in this example, five) disk-shaped electrode plates having a circular opening at the center are arranged along the ion optical axis C. The orthogonal acceleration unit 17 includes an entrance electrode 171, an extrusion electrode 172, and a grid-shaped extraction electrode 173.
 制御部30の制御の下に、四重極マスフィルタ電圧発生部31は四重極マスフィルタ12の各ロッド電極に所定の電圧を印加する。四重極マスフィルタ12で特定の質量電荷比を有するイオンを選択する場合、この電圧は直流電圧に高周波電圧を重畳した電圧であり、その直流電圧と高周波電圧の振幅とはそれぞれ選択したい質量電荷比に応じたものである。また、この直流電圧と高周波電圧とを合成した電圧にさらに直流バイアス電圧が加算される。イオンガイド電圧発生部32は四重極型イオンガイド14の各ロッド電極に所定の電圧を印加する。この電圧はイオン収束用の高周波電圧に直流バイアス電圧が加算されたものである。出口側ゲート電極電圧発生部33は出口側ゲート電極132に所定の直流電圧を印加する。また、イオン輸送光学系電圧発生部34はイオン輸送光学系16に含まれる各電極板にそれぞれ所定の直流電圧を印加する。直交加速部電圧発生部35は入口電極171、押出電極172及び引出電極173にそれぞれ所定の電圧を印加する。 Under the control of the control unit 30, the quadrupole mass filter voltage generation unit 31 applies a predetermined voltage to each rod electrode of the quadrupole mass filter 12. When an ion having a specific mass-to-charge ratio is selected by the quadrupole mass filter 12, this voltage is a voltage obtained by superimposing a high-frequency voltage on a DC voltage, and the DC voltage and the amplitude of the high-frequency voltage are the mass charges to be selected. Depending on the ratio. Further, a DC bias voltage is further added to a voltage obtained by synthesizing the DC voltage and the high frequency voltage. The ion guide voltage generator 32 applies a predetermined voltage to each rod electrode of the quadrupole ion guide 14. This voltage is obtained by adding a DC bias voltage to a high-frequency voltage for ion focusing. The outlet side gate electrode voltage generator 33 applies a predetermined DC voltage to the outlet side gate electrode 132. The ion transport optical system voltage generator 34 applies a predetermined DC voltage to each electrode plate included in the ion transport optical system 16. The orthogonal acceleration unit voltage generator 35 applies predetermined voltages to the inlet electrode 171, the extrusion electrode 172, and the extraction electrode 173, respectively.
 ここでは、コリジョンセル13内に導入されるイオンに付与されるエネルギ、つまりはコリジョンエネルギは四重極マスフィルタ12のロッド電極に印加されるバイアス電圧と、四重極型イオンガイド14のロッド電極に印加されるバイアス電圧との電圧差により決まる。本実施例のQ-TOFMSにおいてMS/MS分析を実行する際には、上述したように、コリジョンセル13内で衝突誘起解離によりイオンを解離させる必要があるため、比較的大きなコリジョンエネルギをイオンに付与してコリジョンセル13に導入する。一方、本実施例のQ-TOFMSにおいてMS1分析を実行する際には、コリジョンセル13内でイオンが解離しないようにするために、MS/MS分析時に比べて小さなコリジョンエネルギをイオンに付与してコリジョンセル13に導入する。なお、MS1分析時にはコリジョンセル13内でイオン解離を行わないが、コリジョンセル13に導入されたイオンが持つエネルギを減じて捕捉され易くするために、クーリングガスとして不活性ガスをコリジョンセル13内に導入する。 Here, the energy applied to the ions introduced into the collision cell 13, that is, the collision energy, is the bias voltage applied to the rod electrode of the quadrupole mass filter 12 and the rod electrode of the quadrupole ion guide 14. It is determined by the voltage difference from the bias voltage applied to the. When performing MS / MS analysis in the Q-TOFMS of this embodiment, it is necessary to dissociate ions by collision-induced dissociation in the collision cell 13 as described above. And apply to the collision cell 13. On the other hand, when performing MS 1 analysis in the Q-TOFMS of the present embodiment, in order to prevent ions from dissociating in the collision cell 13, a smaller collision energy is applied to the ions than during MS / MS analysis. To the collision cell 13. In MS 1 analysis, ion dissociation is not performed in the collision cell 13, but in order to reduce the energy of ions introduced into the collision cell 13 and make it easy to be captured, an inert gas is used as a cooling gas in the collision cell 13. To introduce.
 本実施例のQ-TOFMSでは、コリジョンセル13内に導入されたイオン、或いはその導入されたイオンを衝突誘起解離により解離させることで生成したプロダクトイオンを四重極型イオンガイド14の内部空間に一旦蓄積し、その蓄積したイオンをコリジョンセル13から排出してイオン輸送光学系16を通して直交加速部17に導入し質量分析する。その際の動作について、図2に加えて図3、図4を参照して説明する。図3は四重極型イオンガイド14の内部空間におけるイオン挙動の説明図、図4は出口側ゲート電極132への印加電圧及び直交加速の印加電圧のタイミング図である。なお、ここでは、測定対象のイオンが正イオンである場合を例示しているが、測定対象のイオンが負イオンである場合には、電圧の極性を正負反転すればよいことは明らかである。 In the Q-TOFMS of this embodiment, ions introduced into the collision cell 13 or product ions generated by dissociating the introduced ions by collision-induced dissociation are introduced into the internal space of the quadrupole ion guide 14. Once accumulated, the accumulated ions are discharged from the collision cell 13 and introduced into the orthogonal acceleration unit 17 through the ion transport optical system 16 for mass analysis. The operation at that time will be described with reference to FIGS. 3 and 4 in addition to FIG. FIG. 3 is an explanatory diagram of ion behavior in the internal space of the quadrupole ion guide 14, and FIG. 4 is a timing diagram of the applied voltage to the exit-side gate electrode 132 and the applied voltage for orthogonal acceleration. Note that, here, the case where the ion to be measured is a positive ion is illustrated, but when the ion to be measured is a negative ion, it is obvious that the polarity of the voltage may be reversed between positive and negative.
 四重極型イオンガイド14の内部空間にイオンを蓄積する際に、イオンガイド電圧発生部32は該イオンガイド14を構成する4本のロッド電極にそれぞれ高周波電圧と直流電圧とを加算した電圧を印加する。この高周波電圧はイオンをイオン光軸C付近に収束させる四重極高周波電場を形成するためのものである。一方、直流電圧は主としてイオン光軸Cに沿ったポテンシャル分布を形成するため、及び、上述したようにコリジョンエネルギをイオンに付与するためのものである。また、イオンを蓄積する際には、出口側ゲート電極電圧発生部33は出口側ゲート電極132に四重極型イオンガイド14の出口端よりも高い所定の直流電圧を印加する。 When accumulating ions in the internal space of the quadrupole ion guide 14, the ion guide voltage generator 32 applies voltages obtained by adding a high frequency voltage and a DC voltage to the four rod electrodes constituting the ion guide 14. Apply. This high-frequency voltage is for forming a quadrupole high-frequency electric field that focuses ions near the ion optical axis C. On the other hand, the DC voltage is mainly for forming a potential distribution along the ion optical axis C and for applying collision energy to the ions as described above. Further, when ions are accumulated, the outlet-side gate electrode voltage generator 33 applies a predetermined DC voltage higher than that at the outlet end of the quadrupole ion guide 14 to the outlet-side gate electrode 132.
 図2(b)中に示す実線U5は、四重極マスフィルタ12の出口端と四重極型イオンガイド14の入口端との間の空間におけるイオン光軸C上の概略ポテンシャル分布である。また、 実線U1は、四重極型イオンガイド14の内部空間にイオンを蓄積するときの、その内部空間における軸方向の概略ポテンシャル分布である。上述したように、コリジョンセル13に導入されるイオンは実線U5で示される下り傾斜のポテンシャル分布によりコリジョンエネルギを付与される。また、四重極型イオンガイド14のロッド電極は上述したような特徴的な配置であるために、該イオンガイド14の内部空間における軸上のポテンシャル分布は入口端から出口端に向かって緩やかに下傾する形状となっている。 A solid line U 5 shown in FIG. 2B is a schematic potential distribution on the ion optical axis C in the space between the exit end of the quadrupole mass filter 12 and the entrance end of the quadrupole ion guide 14. . A solid line U 1 is an approximate potential distribution in the axial direction in the internal space when ions are accumulated in the internal space of the quadrupole ion guide 14. As described above, the ions introduced into the collision cell 13 are given collision energy by the downward gradient potential distribution indicated by the solid line U 5 . In addition, since the rod electrode of the quadrupole ion guide 14 has the characteristic arrangement as described above, the potential distribution on the axis in the internal space of the ion guide 14 gradually decreases from the entrance end to the exit end. The shape is inclined downward.
 一方、図2(b)中に一点鎖線U2で示すように、出口側ゲート電極132の位置のポテンシャルは四重極型イオンガイド14の出口端のポテンシャルよりも高くなっており、該イオンガイド14の出口端(図2(b)中の点P1の位置)と出口側ゲート電極132(図2(b)中の点P2の位置)との間の空間にはポテンシャル障壁が形成されている。 On the other hand, as indicated by a one-dot chain line U 2 in FIG. 2B, the potential at the position of the exit-side gate electrode 132 is higher than the potential at the exit end of the quadrupole ion guide 14. A potential barrier is formed in the space between the outlet end 14 (the position of the point P 1 in FIG. 2B) and the outlet-side gate electrode 132 (the position of the point P 2 in FIG. 2B). ing.
 上述したようにコリジョンセル13内に導入されたイオン又はコリジョンセル13内で解離によって生成されたプロダクトイオンは、四重極型イオンガイド14の内部空間に形成されている緩やかな下り傾斜のポテンシャル分布に従ってイオン進行方向(図2での右方向)に移動する。そして、四重極型イオンガイド14の出口端に達するとポテンシャル障壁によって押し返される。ここで、制御部30は、コリジョンセル13に導入されるイオンに付与されるコリジョンエネルギに応じて出口側ゲート電極132への印加電圧を変えるように、出口側ゲート電極電圧発生部33を制御する。具体的には、コリジョンエネルギが大きいほど出口側ゲート電極132への印加電圧を高くする。これにより、コリジョンエネルギが大きいほどポテンシャル障壁は高くなる。 As described above, the ions introduced into the collision cell 13 or the product ions generated by dissociation in the collision cell 13 have a gentle downward gradient potential distribution formed in the internal space of the quadrupole ion guide 14. To move in the ion traveling direction (right direction in FIG. 2). And when it reaches the exit end of the quadrupole ion guide 14, it is pushed back by the potential barrier. Here, the control unit 30 controls the exit-side gate electrode voltage generation unit 33 so as to change the voltage applied to the exit-side gate electrode 132 in accordance with the collision energy applied to the ions introduced into the collision cell 13. . Specifically, the higher the collision energy, the higher the voltage applied to the outlet side gate electrode 132. Thereby, the potential barrier increases as the collision energy increases.
 図2(b)中の二本の一点鎖線U2は、異なる高さのポテンシャル障壁を示している。上述したように、MS1分析時とMS/MS分析時とではコリジョンエネルギが異なるから、ここでは、二本の一点鎖線U2のうちの高いほうはコリジョンエネルギが相対的に大きなMS/MS分析時のポテンシャル障壁を示し、二本の一点鎖線U2のうちの低いほうはコリジョンエネルギが相対的に小さなMS1分析時のポテンシャル障壁を示す。 Two two-dot chain lines U 2 in FIG. 2B indicate potential barriers having different heights. As described above, since the collision energy is different between the MS 1 analysis and the MS / MS analysis, the higher one of the two one-dot chain lines U 2 has a relatively large collision energy. The lower one of the two one-dot chain lines U 2 indicates the potential barrier at the time of MS 1 analysis with a relatively small collision energy.
 図3(a)はポテンシャル障壁が高い場合の、つまりは相対的にコリジョンエネルギが大きい場合のイオンの挙動、図3(b)はポテンシャル障壁が低い場合の、つまりは相対的にコリジョンエネルギが小さい場合のイオンの挙動、を示す概念図である。 FIG. 3A shows the behavior of ions when the potential barrier is high, that is, when the collision energy is relatively large, and FIG. 3B shows when the potential barrier is low, that is, when the collision energy is relatively small. It is a conceptual diagram which shows the behavior of the ion in a case.
 ポテンシャル障壁によって押し返されたイオンは、実線U1で示されるポテンシャルの傾斜を上り、或る位置まで達するとエネルギがゼロになって方向を反転し、再びポテンシャルの傾斜を下る。図3(a)に示すようにポテンシャル障壁が高いと該障壁の傾斜が急であるためイオンを押し返すエネルギが大きく、押し返されたイオンは四重極型イオンガイド14の出口端から遠い位置(点P3の位置)まで戻る。また、コリジョンセル13に導入されたイオンは大きなコリジョンエネルギを有しているため、解離により生成されたイオン自体も比較的大きなエネルギを有した状態でコリジョンセル13の出口に向かって進行することが多い。そのため、ポテンシャル障壁が低いとイオンがポテンシャル障壁を乗り越えてコリジョンセル13から漏出してしまう可能性があるが、ここではポテンシャル障壁が高いので、大きなエネルギを有するイオンも確実に押し返すことができる。これにより、イオンの損失を回避して、多くの量のイオンを四重極型イオンガイド14の内部空間に蓄積することができる。 The ions pushed back by the potential barrier climb the potential gradient indicated by the solid line U 1 , and when reaching a certain position, the energy becomes zero and the direction is reversed, and then the potential gradient again decreases. As shown in FIG. 3A, when the potential barrier is high, the slope of the barrier is steep, so that the energy for pushing back ions is large, and the pushed-back ions are far from the exit end of the quadrupole ion guide 14 ( the position of the point P 3) Back up. In addition, since the ions introduced into the collision cell 13 have a large collision energy, the ions generated by the dissociation may travel toward the exit of the collision cell 13 with a relatively large energy. Many. Therefore, if the potential barrier is low, ions may get over the potential barrier and leak from the collision cell 13. However, since the potential barrier is high here, ions having large energy can be pushed back with certainty. Thereby, it is possible to avoid a loss of ions and accumulate a large amount of ions in the internal space of the quadrupole ion guide 14.
 一方、図3(b)に示すようにポテンシャル障壁が低いと該障壁の傾斜は相対的に緩いため、イオンを押し返すエネルギは小さく、押し返されたイオンは四重極型イオンガイド14の出口端から近い位置(点P3’の位置)までしか戻らない。即ち、この場合には、イオンガイド14の出口端に比較的近い狭い空間にイオンを蓄積することができる。また、ポテンシャル障壁は低いので、イオンが大きなエネルギを有しているとポテンシャル障壁を乗り越えてしまうおそれがあるが、コリジョンセル13に導入されるイオンに付与されるコリジョンエネルギは小さいので、イオンは低いポテンシャル障壁で以て確実に押し返される。したがって、多くの量のイオンを四重極型イオンガイド14の出口端に近い空間に蓄積することができる。 On the other hand, as shown in FIG. 3B, when the potential barrier is low, the inclination of the barrier is relatively gentle, so that the energy for pushing back ions is small, and the pushed back ions are at the exit end of the quadrupole ion guide 14. It returns only to a position close to (position of point P 3 '). That is, in this case, ions can be accumulated in a narrow space relatively close to the exit end of the ion guide 14. In addition, since the potential barrier is low, there is a possibility that ions have a large energy, the potential barrier may be overcome. However, since the collision energy imparted to the ions introduced into the collision cell 13 is small, the ions are low. The potential barrier will surely push you back. Therefore, a large amount of ions can be accumulated in a space near the exit end of the quadrupole ion guide 14.
 こうしてイオンを一時的に蓄積したあと、所定のタイミングで、出口側ゲート電極電圧発生部33は出口側ゲート電極132に印加する電圧を、四重極型イオンガイド14の出口端の電圧よりも低くイオン輸送光学系16の初段の電極板への印加電圧よりも高い電圧値まで引き下げる。図2(b)中に示す点線U3は、このときの四重極型イオンガイド14出口端とイオン輸送光学系16の初段電極板との間の概略ポテンシャル分布である。 After the ions are temporarily accumulated in this way, at a predetermined timing, the outlet-side gate electrode voltage generator 33 sets the voltage applied to the outlet-side gate electrode 132 to be lower than the voltage at the outlet end of the quadrupole ion guide 14. The voltage is lowered to a voltage value higher than the voltage applied to the first electrode plate of the ion transport optical system 16. A dotted line U 3 shown in FIG. 2B is a schematic potential distribution between the exit end of the quadrupole ion guide 14 and the first electrode plate of the ion transport optical system 16 at this time.
 図2(b)に示すように、上記ポテンシャル障壁はなくなり、四重極型イオンガイド14出口端からイオン輸送光学系16に向けて下傾したポテンシャル勾配が形成されるため、四重極型イオンガイド14の内部空間に一時的に蓄積されていたイオンはイオン輸送光学系16に向けて一斉に放出される。なお、イオン輸送光学系16においてイオンをイオン光軸C付近に収束させつつ輸送するために、イオン輸送光学系電圧発生部34からイオン輸送光学系16に含まれる各電極板にはそれぞれ異なる電圧が印加されており、厳密にいえばその各電極板の設置位置のポテンシャルは同一ではないが、平均的にみれば一定であるとみなし得るので、図2(b)ではポテンシャル分布を点線で示している。 As shown in FIG. 2 (b), the potential barrier is eliminated, and a potential gradient inclined downward from the exit end of the quadrupole ion guide 14 toward the ion transport optical system 16 is formed. The ions temporarily accumulated in the internal space of the guide 14 are released simultaneously toward the ion transport optical system 16. In order to transport ions while converging them in the vicinity of the ion optical axis C in the ion transport optical system 16, different voltages are applied to the electrode plates included in the ion transport optical system 16 from the ion transport optical system voltage generator 34. Strictly speaking, the potential at the installation position of each electrode plate is not the same, but since it can be considered to be constant on average, the potential distribution is shown by a dotted line in FIG. Yes.
 図4に示すように、四重極型イオンガイド14(つまりはコリジョンセル13)からイオンが排出される時点から所定の遅延時間tが経過して時点で、直交加速部電圧発生部35は押出電極172及び引出電極173にそれぞれ加速電圧をパルス的に印加する。このときの遅延時間tは後述するように決められる。直交加速部17において加速電圧が印加される際には、測定対象であるイオンがちょうど直交加速部17に導入され、押出電極172と引出電極173との間の空間に存在している。それによって、本実施例のQ-TOFMSでは、測定対象であるイオンを確実に飛行空間18に向けて射出し、質量分析に供することができる。 As shown in FIG. 4, when a predetermined delay time t elapses from the time when ions are ejected from the quadrupole ion guide 14 (that is, the collision cell 13), the orthogonal acceleration unit voltage generator 35 is pushed out. An acceleration voltage is applied to the electrode 172 and the extraction electrode 173 in a pulse manner. The delay time t at this time is determined as described later. When an acceleration voltage is applied in the orthogonal acceleration unit 17, ions to be measured are introduced into the orthogonal acceleration unit 17 and exist in the space between the extrusion electrode 172 and the extraction electrode 173. Thereby, in the Q-TOFMS of the present embodiment, the ions to be measured can be reliably ejected toward the flight space 18 and used for mass analysis.
 次に、上述したようにコリジョンエネルギに応じてイオン蓄積時のポテンシャル障壁の高さを変えることで、目的とする試料成分由来のイオンの強度を増加させることができることを実験的に確認した結果について説明する。
 図5は、コリジョンエネルギ(CE)を5eVとしたMS1分析モードとコリジョンエネルギを20eVとしたMS/MSモードとについて、コリジョンセル13からのイオン排出から直交加速部17でイオンを射出するまでの遅延時間tを横軸に、コリジョンセル13の出口における折り返し電圧を縦軸にとったときに実測されるイオンのピーク強度を等高線で示した図である。測定対象の化合物はNa(NaI)(m/z 172)である。また、ここで「押し返し電圧」とは上述したポテンシャル障壁の高さに相当する電圧である。
Next, as a result of experimentally confirming that the intensity of ions derived from the target sample component can be increased by changing the height of the potential barrier during ion accumulation according to the collision energy as described above. explain.
FIG. 5 shows the process from the discharge of ions from the collision cell 13 to the ejection of ions by the orthogonal acceleration unit 17 in the MS 1 analysis mode in which the collision energy (CE) is 5 eV and the MS / MS mode in which the collision energy is 20 eV. It is a figure which showed the peak intensity of the ion actually measured when the delay time t was taken on a horizontal axis and the folding voltage in the exit of the collision cell 13 was taken on the vertical axis by a contour line. The compound to be measured is Na + (NaI) (m / z 172). Here, the “push-back voltage” is a voltage corresponding to the height of the potential barrier described above.
 図5(a)、(b)において斜め格子パターンで示されている領域がイオン強度が最も高い領域である。この結果から、CE=5eVにおいてイオン強度が最大になるのは押し返し電圧が約2V、CE=20eVにおいてイオン強度が最大になるのは押し返し電圧が約7Vであることが分かる。イオン強度が最大になるときにデューティサイクルは最良の状態であると推定される。したがって、この結果から、コリジョンエネルギに応じてイオン蓄積時のポテンシャル障壁の高さを適切に変えることで、デューティサイクルを改善してイオンの検出感度を向上させることができることが分かる。 5A and 5B, the region indicated by the diagonal lattice pattern is the region having the highest ion intensity. From this result, it can be seen that when CE = 5 eV, the ionic strength is maximized when the push-back voltage is about 2V, and when CE = 20 eV, the ionic strength is maximized when the push-back voltage is about 7V. The duty cycle is estimated to be the best when the ionic strength is maximized. Therefore, it can be seen from this result that the duty cycle can be improved and the ion detection sensitivity can be improved by appropriately changing the height of the potential barrier during ion accumulation according to the collision energy.
 また、図5から、イオン強度が最大になるときの遅延時間tもコリジョンエネルギによって明らかに異なることが分かる。即ち、この実測例では、CE=5eVのときには遅延時間tが18~19us、CE=20eVのときには遅延時間tが約22~23usでイオン強度が最大となる。これは、上述したように、コリジョンエネルギが大きくポテンシャル障壁が高いと、イオンがより大きく押し返されるためにコリジョンセル13からイオンが排出されるときの出発位置が全体的に四重極型イオンガイド14の入口に近い側になることによると推測される。こうしたことから、直交加速部電圧発生部35は、押出電極172及び引出電極173にそれぞれ加速電圧を印加するタイミングをコリジョンエネルギに応じて又はポテンシャル障壁の高さに応じて変えるとよい。即ち、コリジョンエネルギが大きい場合には小さい場合に比べて遅延時間tを長くし、コリジョンエネルギが小さい場合に比べて少し遅れて直交加速部17に到達するイオンを効率良く加速するようにするとよい。 Also, from FIG. 5, it can be seen that the delay time t when the ion intensity is maximized is also clearly different depending on the collision energy. That is, in this measurement example, when CE = 5 eV, the delay time t is 18 to 19 us, and when CE = 20 eV, the delay time t is about 22 to 23 us and the ion intensity becomes maximum. This is because, as described above, when the collision energy is large and the potential barrier is high, the ions are pushed back more largely, so that the starting position when ions are ejected from the collision cell 13 is entirely a quadrupole ion guide. It is presumed that it is due to the side closer to the entrance of 14. For this reason, the orthogonal acceleration voltage generator 35 may change the timing of applying the acceleration voltage to the extrusion electrode 172 and the extraction electrode 173 according to the collision energy or the height of the potential barrier. That is, when the collision energy is large, the delay time t is longer than that when the collision energy is small, and ions that reach the orthogonal acceleration unit 17 with a little delay compared with the case where the collision energy is small are preferably accelerated.
 なお、上記説明では、コリジョンエネルギが相違する場合の例として最も典型的な例であるMS1分析とMS/MS分析とについて述べたが、MS/MS分析の実行時に目的の化合物によってコリジョンエネルギを変えたり、或いは、一つの化合物についてMS/MS分析の際のコリジョンエネルギを変えることで異なる態様で解離させて異なるピークパターンのマススペクトルを取得したりすることは一般に行われている。こうした場合にも、コリジョンエネルギに応じてイオン蓄積時のポテンシャル障壁の高さを適宜変えると共に遅延時間tを変えることで、デューティサイクルを改善してイオンの検出感度を向上させることができることは明らかである。 In the above description, the MS 1 analysis and the MS / MS analysis, which are the most typical examples when the collision energies are different from each other, have been described. However, when the MS / MS analysis is performed, the collision energy is determined according to the target compound. It is generally performed to obtain different peak pattern mass spectra by changing or dissociating different compounds in different modes by changing the collision energy at the time of MS / MS analysis. Even in such a case, it is clear that the duty cycle can be improved and the ion detection sensitivity can be improved by appropriately changing the height of the potential barrier during ion accumulation according to the collision energy and changing the delay time t. is there.
 また上記実施例は、本発明をOA-TOFMSを用いたQ-TOFMSに適用したものであるが、イオンの入射軸に直交する方向ではなく斜め方向など、入射方向と異なる方向にイオンを加速して射出させる構成のTOFMSを有する装置に本発明を適用できることは明らかである。 In the above embodiment, the present invention is applied to Q-TOFMS using OA-TOFMS. However, ions are accelerated in a direction different from the incident direction, such as an oblique direction rather than a direction orthogonal to the ion incident axis. Obviously, the present invention can be applied to an apparatus having a TOFMS configured to be injected.
 また、上記実施例はあくまでも本発明の一例であり、本発明の趣旨の範囲で適宜変更、修正、追加などを行っても本願請求の範囲に包含されることは明らかである。 Further, the above-described embodiment is merely an example of the present invention, and it is obvious that any change, modification, addition or the like as appropriate within the scope of the present invention is included in the scope of the claims of the present application.
1…チャンバ
2…イオン化室
3…第1中間真空室
4…第2中間真空室
5…第1分析室
6…第2分析室
7…ESIスプレー
8…加熱キャピラリ
9…アレイ型イオンガイド
10…スキマー
11…多重極型イオンガイド
12…四重極マスフィルタ
13…コリジョンセル
132…出口側ゲート電極
14…四重極型イオンガイド
15…イオン通過口
16…イオン輸送光学系
17…直交加速部
171…入口電極
172…押出電極
173…引出電極
18…飛行空間
19…リフレクタ
20…イオン検出器
30…制御部
31…四重極マスフィルタ電圧発生部
32…イオンガイド電圧発生部
33…出口側ゲート電極電圧発生部
34…イオン輸送光学系電圧発生部
35…直交加速部電圧発生部
C…イオン光軸
DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Ionization chamber 3 ... 1st intermediate | middle vacuum chamber 4 ... 2nd intermediate | middle vacuum chamber 5 ... 1st analysis chamber 6 ... 2nd analysis chamber 7 ... ESI spray 8 ... Heating capillary 9 ... Array type ion guide 10 ... Skimmer DESCRIPTION OF SYMBOLS 11 ... Multipole type ion guide 12 ... Quadrupole mass filter 13 ... Collision cell 132 ... Exit side gate electrode 14 ... Quadrupole type ion guide 15 ... Ion passage port 16 ... Ion transport optical system 17 ... Orthogonal acceleration part 171 ... Entrance electrode 172 ... Extrusion electrode 173 ... Extraction electrode 18 ... Flight space 19 ... Reflector 20 ... Ion detector 30 ... Control part 31 ... Quadrupole mass filter voltage generation part 32 ... Ion guide voltage generation part 33 ... Exit side gate electrode voltage Generator 34 ... Ion transport optical system voltage generator 35 ... Orthogonal accelerator voltage generator C ... Ion optical axis

Claims (4)

  1.  所定のエネルギを有して入射したイオンを所定のガスに接触させるためのコリジョンセルと、該コリジョンセルから排出されたイオンをそのイオン流の入射軸と異なる方向に加速する加速部と、該加速部で加速されたイオンを質量電荷比に応じて分離して検出する分離検出部と、を具備する飛行時間型質量分析装置であって、
     a)測定対象であるイオンを一時的に保持するために、前記コリジョンセルの内部に配置された、高周波電場によってイオンをイオン光軸付近に収束させるイオンガイドと、該イオンガイドの出口端外側に配置された、前記コリジョンセルの一部を構成する又は該コリジョンセルとは別体である出口側ゲート電極と、を含むイオン保持部と、
     b)前記出口側ゲート電極に直流電圧を印加する電圧印加部と、
     c)前記イオンガイドの内部空間に測定対象であるイオンを保持する際に、少なくとも該イオンガイドの出口端よりも前記出口側ゲート電極におけるポテンシャルが高くなるような保持時直流電圧を該出口側ゲート電極に印加するとともに、前記イオンガイドからイオンを放出する際には、該イオンガイドの出口端よりも前記出口側ゲート電極におけるポテンシャルが低くなるような放出時直流電圧を該出口側ゲート電極に印加するべく前記電圧印加部を制御する制御部であって、前記コリジョンセルの前段から該コリジョンセルの内部にイオンが導入される際に該イオンに付与されるエネルギの大きさに応じて前記保持時直流電圧を変化させる制御部と、
     を備えることを特徴とする飛行時間型質量分析装置。
    A collision cell for bringing ions incident with a predetermined energy into contact with a predetermined gas, an accelerating unit for accelerating ions ejected from the collision cell in a direction different from the incident axis of the ion flow, and the acceleration A time-of-flight mass spectrometer comprising: a separation detection unit that separates and detects ions accelerated by the unit according to a mass-to-charge ratio;
    a) An ion guide that is arranged inside the collision cell to focus ions near the ion optical axis by a high-frequency electric field in order to temporarily hold ions to be measured, and an exit end outside the ion guide. An ion holding unit including an exit-side gate electrode that is disposed and forms a part of the collision cell or is separate from the collision cell;
    b) a voltage application unit for applying a DC voltage to the outlet side gate electrode;
    c) When holding the ions to be measured in the internal space of the ion guide, a DC voltage during holding is set so that the potential at the outlet gate electrode is higher than at the outlet end of the ion guide. In addition to applying to the electrode, when discharging ions from the ion guide, a DC voltage at the time of discharge is applied to the outlet-side gate electrode so that the potential at the outlet-side gate electrode is lower than the outlet end of the ion guide. Preferably, the control unit controls the voltage application unit, and when the ion is introduced from the previous stage of the collision cell to the inside of the collision cell according to the magnitude of energy applied to the ion. A control unit for changing the DC voltage;
    A time-of-flight mass spectrometer.
  2.  請求項1に記載の飛行時間型質量分析装置であって、
     前記制御部は、前記コリジョンセルに導入されるイオンに付与されるエネルギが相対的に大きい場合には前記保持時直流電圧を相対的に大きい値とし、該エネルギが相対的に小さい場合には前記保持時直流電圧を相対的に小さい値とするように、前記電圧印加部を制御することを特徴とする飛行時間型質量分析装置。
    The time-of-flight mass spectrometer according to claim 1,
    When the energy applied to the ions introduced into the collision cell is relatively large, the control unit sets the holding DC voltage to a relatively large value, and when the energy is relatively small, The time-of-flight mass spectrometer is characterized in that the voltage application unit is controlled so that the holding DC voltage is a relatively small value.
  3.  請求項1に記載の飛行時間型質量分析装置であって、
     前記制御部は、前記保持時直流電圧を変化させるのに伴い、放出時直流電圧を前記出口側ゲート電極に印加する時点から前記加速部でイオンを加速させるまでの遅延時間を変化させることを特徴とする飛行時間型質量分析装置。
    The time-of-flight mass spectrometer according to claim 1,
    The control unit changes a delay time from when the DC voltage at the time of emission is applied to the exit-side gate electrode to when ions are accelerated by the acceleration unit, as the DC voltage at the time of holding is changed. A time-of-flight mass spectrometer.
  4.  請求項1~3のいずれか1項に記載の飛行時間型質量分析装置であって、
     解離させたイオンを質量分析するMS/MS分析モードと、解離させないイオンを質量分析するMS分析モードと、を選択的に実行可能であり、MS/MS分析モードにおいては前記コリジョンセルに導入されたイオンが所定のガスに接触したときに解離するようなエネルギを該イオンに付与し、MS分析モードにおいては前記コリジョンセルに導入されたイオンが所定のガスに接触したときに解離が生じずクーリングされるように解離時よりも低いエネルギを該イオンに付与することを特徴とする飛行時間型質量分析装置。
    The time-of-flight mass spectrometer according to any one of claims 1 to 3,
    MS / MS analysis mode for mass analysis of dissociated ions and MS analysis mode for mass analysis of non-dissociated ions can be selectively performed, and the MS / MS analysis mode was introduced into the collision cell. Energy is given to the ions so that they dissociate when they come into contact with a predetermined gas. In the MS analysis mode, when ions introduced into the collision cell come into contact with a predetermined gas, they are cooled without dissociation. A time-of-flight mass spectrometer characterized in that energy lower than that at the time of dissociation is applied to the ions.
PCT/JP2018/017386 2018-05-01 2018-05-01 Time-of-flight mass spectrometer WO2019211886A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/017386 WO2019211886A1 (en) 2018-05-01 2018-05-01 Time-of-flight mass spectrometer
JP2020516980A JP6881679B2 (en) 2018-05-01 2018-05-01 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017386 WO2019211886A1 (en) 2018-05-01 2018-05-01 Time-of-flight mass spectrometer

Publications (1)

Publication Number Publication Date
WO2019211886A1 true WO2019211886A1 (en) 2019-11-07

Family

ID=68386406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017386 WO2019211886A1 (en) 2018-05-01 2018-05-01 Time-of-flight mass spectrometer

Country Status (2)

Country Link
JP (1) JP6881679B2 (en)
WO (1) WO2019211886A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042632A1 (en) * 2014-09-18 2016-03-24 株式会社島津製作所 Time-of-flight mass spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042632A1 (en) * 2014-09-18 2016-03-24 株式会社島津製作所 Time-of-flight mass spectrometer

Also Published As

Publication number Publication date
JP6881679B2 (en) 2021-06-02
JPWO2019211886A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US10043648B2 (en) High duty cycle ion spectrometer
US10923339B2 (en) Orthogonal acceleration time-of-flight mass spectrometry
US9947520B2 (en) Ion analyzer including detector for detecting fragment ions generated by ion-dissociation
JP6596103B2 (en) Multiple reflection type TOF mass spectrometer and TOF mass spectrometry method
US7820961B2 (en) Mass spectrometer and method of mass spectrometry
US6744040B2 (en) Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer
US6683301B2 (en) Charged particle trapping in near-surface potential wells
US7109480B2 (en) Ion source and methods for MALDI mass spectrometry
US7064319B2 (en) Mass spectrometer
US9865444B2 (en) Time-of-flight mass spectrometer
US20200152440A1 (en) Time of flight mass analyser with spatial focussing
JP2009533670A (en) Method for enhancing ion content in mass spectrometer
JP2011509513A (en) Linear ion trap
JP2011210698A (en) Tandem time-of-flight mass spectrometer
US20130221216A1 (en) Method and apparatus for improving the throughput of a charged particle analysis system
JP5226292B2 (en) Tandem time-of-flight mass spectrometry
JP6202214B2 (en) Time-of-flight mass spectrometer
EP3249680B1 (en) Systems and methods for reducing the kinetic energy spread of ions radially ejected from a linear ion trap
US20120085905A1 (en) Tandem Time-of-Flight Mass Spectrometer
WO2019211886A1 (en) Time-of-flight mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917053

Country of ref document: EP

Kind code of ref document: A1