WO2019211137A1 - Two-wire tilt switch - Google Patents

Two-wire tilt switch Download PDF

Info

Publication number
WO2019211137A1
WO2019211137A1 PCT/EP2019/060484 EP2019060484W WO2019211137A1 WO 2019211137 A1 WO2019211137 A1 WO 2019211137A1 EP 2019060484 W EP2019060484 W EP 2019060484W WO 2019211137 A1 WO2019211137 A1 WO 2019211137A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
per
sensor element
supply
output
Prior art date
Application number
PCT/EP2019/060484
Other languages
French (fr)
Inventor
Manfred Höhn
Michael Hirt
Original Assignee
HÖHN Neigungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HÖHN Neigungstechnik GmbH filed Critical HÖHN Neigungstechnik GmbH
Publication of WO2019211137A1 publication Critical patent/WO2019211137A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/02Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/06Switches operated by change of speed

Definitions

  • the invention relates to a process and products as per the first portion of the independent claims.
  • switches must be treated as hazardous waste for disposal. In many jurisdictions, mercury is now a restricted substance, and most modern applications have eliminated it. A metal ball and contact wires can directly replace it but may require additional circuitry to eliminate switch bounce. This method of action is further elucidated in FRADEN, Jacob. Handbook of Modern Sensors - Physics, Designs and Applications. 5th edition.
  • US 5751074 A (EDWARD B PRIOR ) 05.12.1998 discloses an electrical switch sensitive to an externally applied inertial and gravitational force, having an enclosure with a closed space; a conductive fluid filing a first portion of the space and a non- conductive medium filling a second portion of the space, the conductive fluid and the non-conductive medium having differing densities; at least two electrodes in communication with the space; an electrical circuit coupled the contacts and having electrical connections for connection with a power source and a load, having a semiconductor switching device, which is responsive to a current through the contacts, a current through the contacts causing the semiconductor switching device to change in conductivity.
  • An externally applied force e.g., gravity or inertial force, causes the conductive fluid to move within the enclosure with respect to the contacts, altering a current through the contacts, and thereby changing a conducting state of the semiconductor switching device.
  • the switch resides within a housing, containing both the enclosure and the electrical circuit.
  • JP H 09274842 A (R B CONTROLS KK) 21.10.1997 discloses an earth leakage breaker.
  • An operation test switch is provided in the earth leakage breaker, and when the switch is manually turned on, a part of the current bypasses a leakage detecting unit through a resistor, and the condition the same as the case where a leakage is generated can be artificially generated.
  • a leakage is intentionally generated, a relay is electrified, and a relay contact is turned off.
  • An inclination switch is connected in parallel with the switch, and when the inclination switch is inclined at the predetermined angle or more and turned off, the condition that a leakage is generated in the same way as the condition that the switch is turned off is generated, and a relay contact is turned off to stop the power supply to an equipment.
  • JP 2000146579 A (TOYO DENSO KK) 26.05.2000 discloses a time- constant circuit formed out of capacitors and a resistor in a detecting circuit and a constant current circuit in the collector of a controlling transistor.
  • the detecting circuit formed to output a detected signal of high level when a Hall detects the rotational condition of a movement beyond a prescribed angle and comes into a switch-on state, is provided with a time constant circuit consisting of capacitors and a resistor therein.
  • a constant current circuit is provided which supplies constant current to the collector of a controlling transistor.
  • a breakdown diode is provided to serve as a constant current circuit. As a result, a battery power supply is changed into constant voltage, and collector current which is consistently constant is fed through the resistor in turning-on the transistor.
  • the invention proposes a two-wire tilt switch based on electronics which, by design of a combined supply and output stage, is supplied in both the switch’s open and closed states.
  • the combined supply and output stage is constructed to
  • a MEMS acceleration sensor with analog output signal may be used within the scope of the invention.
  • MEMS sensor are very low and can thus be supplied by a combined supply and output stage as outlined above. Further, the switching point of a tilt switch based on a MEMS sensor may be easily adjusted by suitable analog or digital signal processing of the sensor output signal.
  • a switch as per the invention requires only two terminals and may serve to retrofit any device depending on mercury switches.
  • Figure 1 shows the structural features of the two-wire tilt switch.
  • Figure 2 illustrates a typical application of the two-wire tilt switch.
  • the two-wire tilt switch 1 is essentially composed of a combined supply and output stage 2, a sensor element 3, and an evaluation logic 4.
  • the supply and output stage 2 is designed to, in the open state of the
  • the supply and output stage 2 exhibits low resistance between the supply pin 5 and the switching output 6 while sustaining low residual voltage - typically about 3 V - to power internal supplies 7 and 8 of the sensor element 3 and evaluation logic 4, respectively.
  • the sensor element 3 is an analog MEMS
  • the evaluation logic 4 is configured such that it sets or resets,
  • output signal 10 of the evaluation logic 4 depending on the output signal 9 of the sensor element 3.
  • the evaluation logic 4 is further capable of evaluating and logically connecting two switching levels. For instance, output signal 10 may be set while output signal 9 is within a first interval, reset while it is within a second, intermediate interval, and set again while it is within a third interval. In a preferred embodiment, such design is employed to implement an axisymmetric switching behavior of the tilt switch.
  • the supply pin 5 is connected to a positive supply voltage
  • Vcc voltage at the common collector
  • the invention is applicable, inter alia, throughout the electronics industry.
  • JP H 09274842 A (R B CONTROLS KK) 21.10.1997
  • JP 2000146579 A (TOYO DENSO KK) 26.05.2000

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electronic Switches (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

Problem: Known tilt switches are less than ideally suited for replacing mercury switches. Solution: A tilt switch (1) having an open state and a closed state and comprising an electronics assembly (3, 4), characterized in a combined supply and output stage (2) configured such that the assembly (3, 4) is supplied in both states.

Description

Description
Two-wire tilt switch
Technical Field
[0001] The invention relates to a process and products as per the first portion of the independent claims.
Background Art
[0002] In the art of electrical engineering, by the term“mercury switch” is known an electrical switch that closes a circuit when a small amount of the liquid metal mercury connects metal electrodes. The mercury tilt switch represents the most common design of this control element. It remains in a defined state (open or closed) when tilted one direction with respect to horizontal and enters the other state when tilted the other direction.
[0003] Since mercury is a poisonous heavy metal, devices containing such
switches must be treated as hazardous waste for disposal. In many jurisdictions, mercury is now a restricted substance, and most modern applications have eliminated it. A metal ball and contact wires can directly replace it but may require additional circuitry to eliminate switch bounce. This method of action is further elucidated in FRADEN, Jacob. Handbook of Modern Sensors - Physics, Designs and Applications. 5th edition.
Cham Heidelberg New York Dordrecht London: Springer, 2016. ISBN 3319193023.
[0004] In recent years, the industry has developed a broad portfolio of tilt
switches and sensors. Owing to the widespread availability of sensor elements based on MEMS technology, numerous solutions have flooded the market. State-of-the-art tilt sensors measure inclination at a precision of approximately 0.01 degrees and offer programmable switching points and various analog and digital interfaces.
[0005] Furthermore, solutions based on liquid or pendulum elements are
available, typically being evaluated inductively, capacitively, or optically. However, these devices as well are increasingly displaced by MEMS technology. [0006] US 5751074 A (EDWARD B PRIOR ) 05.12.1998 discloses an electrical switch sensitive to an externally applied inertial and gravitational force, having an enclosure with a closed space; a conductive fluid filing a first portion of the space and a non- conductive medium filling a second portion of the space, the conductive fluid and the non-conductive medium having differing densities; at least two electrodes in communication with the space; an electrical circuit coupled the contacts and having electrical connections for connection with a power source and a load, having a semiconductor switching device, which is responsive to a current through the contacts, a current through the contacts causing the semiconductor switching device to change in conductivity. An externally applied force, e.g., gravity or inertial force, causes the conductive fluid to move within the enclosure with respect to the contacts, altering a current through the contacts, and thereby changing a conducting state of the semiconductor switching device. The switch resides within a housing, containing both the enclosure and the electrical circuit.
[0007] JP H 09274842 A (R B CONTROLS KK) 21.10.1997 discloses an earth leakage breaker. An operation test switch is provided in the earth leakage breaker, and when the switch is manually turned on, a part of the current bypasses a leakage detecting unit through a resistor, and the condition the same as the case where a leakage is generated can be artificially generated. When a leakage is intentionally generated, a relay is electrified, and a relay contact is turned off. An inclination switch is connected in parallel with the switch, and when the inclination switch is inclined at the predetermined angle or more and turned off, the condition that a leakage is generated in the same way as the condition that the switch is turned off is generated, and a relay contact is turned off to stop the power supply to an equipment.
[0008] JP 2000146579 A (TOYO DENSO KK) 26.05.2000 discloses a time- constant circuit formed out of capacitors and a resistor in a detecting circuit and a constant current circuit in the collector of a controlling transistor. The detecting circuit, formed to output a detected signal of high level when a Hall detects the rotational condition of a movement beyond a prescribed angle and comes into a switch-on state, is provided with a time constant circuit consisting of capacitors and a resistor therein. A constant current circuit is provided which supplies constant current to the collector of a controlling transistor. A breakdown diode is provided to serve as a constant current circuit. As a result, a battery power supply is changed into constant voltage, and collector current which is consistently constant is fed through the resistor in turning-on the transistor.
Summary of invention
[0009] The invention as claimed is hereinafter disclosed in such a way that the technical problem with which it deals can be appreciated and the solution can be understood.
Technical Problem
[0010] The described solutions as per the prior art bears two significant
downsides compared to the mercury switch: Due to the use of a sensor element that must be evaluated electronically, a power supply and at least one switching output are needed which, when procured at a level of robustness and reliability comparable to that of a mercury switch, are considerably more expensive. For existing applications requiring a one-to- one replacement of legacy switches, this often represents a major technical and pricing problem.
Solution to Problem
[0011] The invention proposes a two-wire tilt switch based on electronics which, by design of a combined supply and output stage, is supplied in both the switch’s open and closed states.
[0012] Preferably, the combined supply and output stage is constructed to
produce a small voltage drop across the switch in its closed state and a low leakage current through the switch in its open state. This ensures that the switch electronics continues to be supplied in both switching states.
[0013] In most use cases, these characteristics prove unproblematic, since for applications such as PLC inputs, switching relays, or simple consumers, such behavior lies well within the tolerated range. Switching arrangements of this type are known, for example, in the field of inductive proximity switches and considered customary for both AC and DC switches.
[0014] As a sensor element, a MEMS acceleration sensor with analog output signal may be used within the scope of the invention. The currents and voltages required for the operation and signal evaluation of such
MEMS sensor are very low and can thus be supplied by a combined supply and output stage as outlined above. Further, the switching point of a tilt switch based on a MEMS sensor may be easily adjusted by suitable analog or digital signal processing of the sensor output signal.
Advantageous effect of invention
[0015] A switch as per the invention requires only two terminals and may serve to retrofit any device depending on mercury switches.
Brief description of drawings
[0016] Figure 1 shows the structural features of the two-wire tilt switch.
[0017] Figure 2 illustrates a typical application of the two-wire tilt switch.
Description of embodiments
[0018] The two-wire tilt switch 1 is essentially composed of a combined supply and output stage 2, a sensor element 3, and an evaluation logic 4.
[0019] The supply and output stage 2 is designed to, in the open state of the
switch, exhibit high resistance between the supply pin 5 and the switching output 6 while still permitting a low residual current - typically below 1 mA - for internal supply of the sensor element 7 and evaluation logic 8.
[0020] In the closed state of the switch, the supply and output stage 2 exhibits low resistance between the supply pin 5 and the switching output 6 while sustaining low residual voltage - typically about 3 V - to power internal supplies 7 and 8 of the sensor element 3 and evaluation logic 4, respectively.
[0021] In the present embodiment, the sensor element 3 is an analog MEMS
sensor with low current consumption - typically below 500 mA - that provides an analog output signal 9 to the evaluation logic 4. The voltage of the output signal 9 corresponds to the inclination angle of the MEMS sensor with respect to the horizontal plane. [0022] The evaluation logic 4 is configured such that it sets or resets,
respectively, the output signal 10 of the evaluation logic 4 depending on the output signal 9 of the sensor element 3. The evaluation logic 4 is further capable of evaluating and logically connecting two switching levels. For instance, output signal 10 may be set while output signal 9 is within a first interval, reset while it is within a second, intermediate interval, and set again while it is within a third interval. In a preferred embodiment, such design is employed to implement an axisymmetric switching behavior of the tilt switch.
[0023] The output signal 10 of the evaluation logic 4 toggles the state of the
combined output and supply stage 2 between the switch’s open state (high resistance) and closed state (low resistance).
[0024] In Figure 2, the supply pin 5 is connected to a positive supply voltage
(traditionally referred to as“voltage at the common collector”, Vcc) while the switching output 6 connects to an attached load 11. The second terminal of the connected load 11 is connected to ground (GND) 12.
Industrial applicability
[0025] The invention is applicable, inter alia, throughout the electronics industry.
Reference signs list
[0026] The following reference key lists each reference sign along with the
designation of the feature which it indicates.
[0027]
1 Two-wire tilt switch
2 Combined supply and output stage
3 Sensor element
4 Evaluation logic
5 Supply pin (Vcc)
6 Switching output
7 Internal supply of sensor element
8 Internal supply of evaluation logic
9 Output signal of sensor element
10 Output signal of evaluation logic 1 1 Attached load 12 Ground (GND)
Citation list
[0028] The following literature is cited throughout this document.
Patent literature
[0029] US 5751074 A (EDWARD B PRIOR ) 05.12.1998
[0030] JP H 09274842 A (R B CONTROLS KK) 21.10.1997
[0031] JP 2000146579 A (TOYO DENSO KK) 26.05.2000
Non-patent literature
[0032] FRADEN, Jacob. Handbook of Modern Sensors - Physics, Designs and Applications. 5th edition. Cham Heidelberg New York Dordrecht London: Springer, 2016. ISBN 3319193023.

Claims

Claims
Claim 1. A tilt switch (1)
having an open state and a closed state and
comprising an electronics assembly (3, 4),
characterized in
a combined supply and output stage (2) configured such that the assembly (3, 4) is supplied in both states.
Claim 2. Switch (1) as per Claim 1 ,
characterized in that
the assembly (3, 4) comprises a sensor element (3) and an evaluation logic (4).
Claim 3. Switch (1) as per Claim 2,
characterized in that
the supply and output stage (2) has a supply pin (5) and a switching output (6).
Claim 4. Switch (1) as per Claim 3,
characterized in that
the supply and output stage (2) is adapted to offer high resistance in the open state while allowing residual current to pass between the supply pin (5) and the switching output (6).
Claim 5. Switch (1) as per Claim 4,
characterized in that
the residual current amounts to less than 1 mA.
Claim 6. Switch (1) as per Claim 3, Claim 4, or Claim 5,
characterized in that
the supply and output stage (2) is adapted to offer low resistance in the closed state while allowing residual voltage to drop between the supply pin (5) and the switching output (6).
Claim 7. Switch (1) as per Claim 6,
characterized in that
the residual voltage approximates 3 V.
Claim 8. Switch (1) as per any of Claim 2 through Claim 7,
characterized in that
the sensor element (3) is microelectromechanical.
Claim 9. Switch (1) as per any of Claim 2 through Claim 8,
characterized in that
the sensor element (3) exhibits current consumption below 500 mA.
Claim 10. Switch (1) as per any of Claim 2 through Claim 9,
characterized in that
the sensor element (3) is adapted to output an analog signal (9).
Claim 11. Switch (1) as per Claim 10,
characterized in that
the analog signal (9) is a voltage signal.
Claim 12. Switch ( 1 ) as per Claim 10 or Claim 11 ,
characterized in that
the sensor element (3) is configured such that when the sensor element (3) is supplied with power, the analog signal (9) of the sensor indicates an inclination angle of the sensor element (3) with respect to a horizontal plane.
Claim 13. Switch (1) as per Claim 10, Claim 11 , or Claim 12,
characterized in that
the evaluation logic (4) is adapted to output a digital signal (10) depending on the analog signal (9).
Claim 14. Switch (1) as per Claim 13,
characterized in that
the evaluation logic (4) is configured such that when the sensor element (3) is supplied, the digital signal (10) is set only if the analog signal (9) falls within a predetermined range.
Claim 15. Switch (1) as per any of the preceding claims,
characterized in that
the combined supply and output stage (2) is adapted to toggle the switch (1) between the open state and the closed state depending on the digital signal (10).
PCT/EP2019/060484 2018-05-02 2019-04-24 Two-wire tilt switch WO2019211137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18170467.7 2018-05-02
EP18170467.7A EP3564980B1 (en) 2018-05-02 2018-05-02 Two-wire tilt switch

Publications (1)

Publication Number Publication Date
WO2019211137A1 true WO2019211137A1 (en) 2019-11-07

Family

ID=62116244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/060484 WO2019211137A1 (en) 2018-05-02 2019-04-24 Two-wire tilt switch

Country Status (2)

Country Link
EP (1) EP3564980B1 (en)
WO (1) WO2019211137A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274842A (en) 1996-04-02 1997-10-21 R B Controls Kk Earth leakage breaker with overturn detecting function
US5751074A (en) 1995-09-08 1998-05-12 Edward B. Prior & Associates Non-metallic liquid tilt switch and circuitry
JP2000095494A (en) * 1998-09-25 2000-04-04 Toyota Autom Loom Works Ltd Hydraulic control device and fork lift of industrial vehicle
JP2000146579A (en) 1998-11-05 2000-05-26 Toyo Denso Co Ltd Tilt sensor
US20080309438A1 (en) * 2007-06-12 2008-12-18 General Electric Company Micro-electromechanical system based switching
US20120325629A1 (en) * 2011-06-22 2012-12-27 Xiao-Feng Li Tilt Switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751074A (en) 1995-09-08 1998-05-12 Edward B. Prior & Associates Non-metallic liquid tilt switch and circuitry
JPH09274842A (en) 1996-04-02 1997-10-21 R B Controls Kk Earth leakage breaker with overturn detecting function
JP2000095494A (en) * 1998-09-25 2000-04-04 Toyota Autom Loom Works Ltd Hydraulic control device and fork lift of industrial vehicle
JP2000146579A (en) 1998-11-05 2000-05-26 Toyo Denso Co Ltd Tilt sensor
US20080309438A1 (en) * 2007-06-12 2008-12-18 General Electric Company Micro-electromechanical system based switching
US20120325629A1 (en) * 2011-06-22 2012-12-27 Xiao-Feng Li Tilt Switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRADEN, JACOB: "Handbook of Modern Sensors - Physics, Designs and Applications", 2016, SPRINGER

Also Published As

Publication number Publication date
EP3564980A1 (en) 2019-11-06
EP3564980B1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
KR102519118B1 (en) Battery protection circuit
JP5266084B2 (en) Overcurrent protection circuit
KR101291367B1 (en) Temperature detection circuit
US9214806B1 (en) ESD protecting circuit
EP3564980B1 (en) Two-wire tilt switch
EP3382895A1 (en) Electronic device provided with secondary failure preventing circuit
EP3170191B1 (en) Universal contact input supporting programmable wetting current
US10763055B2 (en) Pin configurable smart current sensor
JP2010193033A (en) Overcurrent protection circuit
CN109283990B (en) Reset signal processing circuit
CN107167164B (en) Magnetic sensor and magnetic sensor device
CN214669449U (en) Interface protection circuit, gun insertion detection circuit, electric vehicle control circuit and vehicle
US20210166903A1 (en) Elctrical contactor
US3114083A (en) Timing circuit
JP6797035B2 (en) Magnetic sensor and magnetic sensor device
Usai et al. Balancing pull-in and adhesion stability margins in non-volatile NEM switches
JP2014062825A (en) Voltage detection circuit, and voltage detection method
US7940021B2 (en) Motor sensing circuit with transient voltage suppression
US20240105411A1 (en) Status detection circuit and remotely operable switch
US9122281B1 (en) Simplified method and device for sensing water level in a reservoir
MXPA02011873A (en) Apparatus and method for reducing electromigration.
JP2024073681A (en) Signal output circuit and semiconductor integrated circuit device
CN113614548A (en) Amplifier arrangement for amplifying a current
JP2007298288A (en) Electronic device, and contact state detection device of its connection part
CN116250054A (en) Electronic module and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19718416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19718416

Country of ref document: EP

Kind code of ref document: A1