WO2019210385A1 - A system and a method of fabrication of arsenic glass - Google Patents

A system and a method of fabrication of arsenic glass Download PDF

Info

Publication number
WO2019210385A1
WO2019210385A1 PCT/CA2018/050502 CA2018050502W WO2019210385A1 WO 2019210385 A1 WO2019210385 A1 WO 2019210385A1 CA 2018050502 W CA2018050502 W CA 2018050502W WO 2019210385 A1 WO2019210385 A1 WO 2019210385A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
pellets
furnace
range
glass
Prior art date
Application number
PCT/CA2018/050502
Other languages
French (fr)
Inventor
Khalil Nasrallah
Romain Barbaroux
Jean-Marc Lalancette
David Lemieux
Original Assignee
Dundee Sustainable Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dundee Sustainable Technologies Inc. filed Critical Dundee Sustainable Technologies Inc.
Priority to PCT/CA2018/050502 priority Critical patent/WO2019210385A1/en
Priority to CN201811448997.1A priority patent/CN110407456A/en
Publication of WO2019210385A1 publication Critical patent/WO2019210385A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/028Ingredients allowing introduction of lead or other easily volatile or dusty compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions

Definitions

  • the present disclosure relates to a glass incorporating arsenic. More specifically, the present disclosure is concerned with a method of fabrication thereof.
  • the origins of the arsenic can be pure arsenious or arsenic oxides, flue dusts tainted with antimony, cadmium or lead, beside arsenic combined with iron.
  • the fusion was achieved at atmospheric pressure and at a temperature in the range between 950 and 1250 °C.
  • a method of fabrication of arsenic glass comprising forming pellets of an arsenic-containing glass-forming mixture, and melting the pellets in a direct heating furnace.
  • FIG. 1 is a schematized view of a system according to an embodiment of an aspect of the present disclosure.
  • FIG. 2 is a flowchart of a method according to an embodiment of an aspect of the present disclosure. DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • the dust generation when feeding the furnace was less than 3 w/w % of the charge. Gases from the furnace could be directed to a dust collection system, allowing the recycling of the particulates matters, as well recycling of volatilized arsenic to the pelletizer.
  • Feeding of the furnace was done after unloading 75% weight of the charge of the liquid glass formed within the furnace, to a ladle as will be described hereinbelow, as it was noted that leaving a charge of the liquid glass formed within the furnace facilitates the integration of the new charge by wetting the new charge liquid. It was thus possible to achieve the vitrification at a 50 Kg-scale of arsenic-containing glass-forming mixture and obtain a glass with arsenic content of 20 w/w % As. The cost per weight unit of vitrified arsenic is five to ten times lower than the cost of production of scorodite, which is a current approach to arsenic sequestration.
  • the method 200 comprises feeding a glass mixture 12 and water, in a mixer 14, such as a ribbon mixer for example (step 220) for humidification at a moisture content in a range between about between 7 and about 10 w/w %, for example of 9 w/w %.
  • a mixer 14 such as a ribbon mixer for example
  • the resulting humidified arsenic-containing glass-forming mixture is then directed to a pelletizer 16 for agglomeration into pellets, which is found to minimize formation of dust (step 230).
  • Fines 18 are recycled to the mixer 14 (step 232).
  • the arsenic-containing glass-forming mixture 12 comprises arsenic in a range between about 10 and about 25 %w/w, and glass forming elements.
  • the arsenic may be pure arsenious or arsenic oxides, flue dusts tainted with antimony, cadmium or lead, beside arsenic combined with iron for example.
  • the glass forming elements comprises silica and alkaline oxides such as Na 2 0, CaO and MgO, i.e.
  • silica in a range between about 20 and about 40 %w/w, ferric oxide in a range between about 5 and about 15 %w/w, sodium in a range between about 5 and about 15 %w/w and calcium oxide in a range between about 1 and about 15 %w/w.
  • oxides may be supplied by sodium carbonate, feldspar, fayalite, sand, lime or recycled glass.
  • Resulting wet pellets 20, i.e. with pellets of the arsenic-containing glass-forming mixture with a moisture content of 9 w/w % ⁇ 1 w/w %, are dried and preheated in a dryer 22 (step 240); dusts 24 from the drying step 240 are collected in a dust collector 26 (step 250).
  • step 240 the pellets 28 formed in the pelletizer 16 are dried at a temperature in the range between about 190°C and about 210 °C, for example at about 200°C, down to a moisture content of 0.5% w/w for example, and submitted to a continuous direct pre-heating at a temperature in the range between about 290°C and 310°C, for example at about 300°C by increasing the dehydration temperature.
  • Preheated pellets 28 are transferred to a dosing vessel 30 (step 260), for feeding into a furnace 32 (step 270), for a direct heating to a temperature in the range between about 950 and 1250 °C.
  • Flue gases and dusts 38 containing amounts of volatilized arsenic representing between about 5 and about 20% w/w of the initial arsenic in the glass mixture 12 are directed to the dust collector 26 (step 282). Solids 40 are collected and recycled to the mixer 14 (step 284). Cleaned flue gases 42 may be evacuated to a chimney 46 (step 286).
  • the furnace 32 is moved to a casting position (C) (step 290) and molten glass 50 is collected in a ladle 52 (step 300). Leaving molten glass 50, in a range between about 20 and 30 % w/w, for example about 25 % w/w, within the furnace 32 is found to facilitate the integration of the new charge by wetting the added material (step 270).
  • the furnace 32 may be selected as a rotating vessel, which can be selectively rotated between feeding position (F) (step 270), melting position (M) (step 280) and casting position (C) (step 290), by means of a hydraulic unit 34 for example.
  • feeding into the furnace (step 270) is done in the feeding position (F)’ of the furnace 32 (step 272).
  • the furnace 32 is positioned in the melting position (M) in front of a burner 36 (step 274) for direct heating, the burner 36 being directed on the charge within the furnace 32 for the melting step (step 280).
  • Natural gas or light oil as combustible for example step 270). Fusion is achieved at a temperature in the range between about 950 and 1250 °C of about 1200°C.
  • the furnace 32 is rotated to the casting position (C) (step 290).
  • Such a furnace allows a continuous operation, the loading (position (F) of the furnace) and discharge (position (C) of the furnace) of the furnace being achieved by tilting the furnace either to have access to a feeder or to a casting mold.
  • the furnace 32 is equipped with a particulate and arsenic collection unit, allowing recycling of these materials (see dust collector 26, chimney 46, step 282, step 284 and step 286 for example).
  • This invention relates to the production of a glass incorporating significant amounts of arsenic, from about 10 to about 20% w/w, in a continuous process, with a minimal loss of arsenic either by volatilization or particles losses during the melting operation, and a low energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method of fabrication of arsenic glass, comprising forming pellets of an arsenic-containing glass-forming mixture, and melting the pellets by direct heating to a temperature in a range between 950 and 1250°C.

Description

TITLE OF THE INVENTION A system and a method of fabrication of arsenic glass FIELD OF THE INVENTION
[0001] The present disclosure relates to a glass incorporating arsenic. More specifically, the present disclosure is concerned with a method of fabrication thereof.
BACKGROUND OF THE INVENTION
[0002] Methods for incorporation of arsenic in a glass phase in view of sequestrating arsenic have been reported (US Patent 8,990,790 and US Patent 9,849,438). Essentially these methods called for the fusion of a homogeneous mixture of a stabilized form of arsenic with a source of silica and alkaline oxides (Na20, CaO, MgO). Thermal stabilization of arsenic was achieved by formation of calcium salt of arsenic or by insertion with an oxide such as hematite. Various sources of silica and alkalis can be used such as fayalite, feldspath or recycled glass. The origins of the arsenic can be pure arsenious or arsenic oxides, flue dusts tainted with antimony, cadmium or lead, beside arsenic combined with iron. The fusion was achieved at atmospheric pressure and at a temperature in the range between 950 and 1250 °C.
[0003] These methods performed at laboratory scale have shown the potential of this approach to the sequestration of arsenic. Industrial implementation still needs to tackle problems such as the high volatility and the very high toxicity of the arsenic oxides. Moreover, for thermal efficiency, an industrial process has to be operated with a furnace constantly kept at the melting temperature of the mixture. The feeding being done in a hot crucible, dust control may also be an issue. The nature of the heating approach, either direct or indirect, may have a major impact on the energy efficiency as well as on the volatilization of the arsenic during the melting operation.
[0004] Therefore, the small-scale batch operations that have established the basis of the method left unsolved a number of parameters to be defined in order to allow operation at an industrial scale.
[0005] There is still a need in the art for a system and a method of fabrication of arsenic glass.
SUMMARY OF THE INVENTION
[0006] More specifically, in accordance with the present disclosure, there is provided a method of fabrication of arsenic glass, comprising forming pellets of an arsenic-containing glass-forming mixture, and melting the pellets in a direct heating furnace.
[0007] Other objects, advantages and features of the present disclosure will become more apparent upon reading of the following non-restrictive description of specific embodiments thereof, given by way of example only with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] In the appended drawings:
[0009] FIG. 1 is a schematized view of a system according to an embodiment of an aspect of the present disclosure; and
[0010] FIG. 2 is a flowchart of a method according to an embodiment of an aspect of the present disclosure. DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0011] The present disclosure is illustrated in further details by the following non-limiting examples.
[0012] In a first experiment, a gas-fire furnace with a capacity of 50 Kg of an arsenic-containing glass-forming mixture was used for indirect heating. The fusion was done at 1200 °C by heating an alumina crucible containing the glass mixture. It required 3 ½ hours to reach the fusion temperature of 1200 °C. The resulting glass met the EPA requirement of less than 5 mg As/L in leachate of the solid resulting from EPA 1311 procedure (EPA METHOD 1311 , Toxicity Characteristic Leaching Procedure, SW-846: Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. Washington, D.C., 1992). However, the energy consumption was extremely high, at 200 MBTU per ton of glass. The volatilization of arsenic was 17 w/w %, for a glass containing 20 w/w %, of arsenic at 1200 °C, in part due to the long heating period to reach fusion.
[0013] In a second experiment, a rotary furnace having a 25 Kg capacity was used for direct heating, using a burner directed on the rotating charge of the arsenic-containing glass-forming mixture. The fusion of the arsenic- containing glass-forming mixture was achieved at 1200 °C in one hour and the energy consumption reduced by a large amount, at 6.8 MBTU per ton of glass.
[0014] With indirect heating, it is easier to control the atmosphere over the charge and then it is expected to be easier to control and minimize volatilization, but the low heat transfer through walls of a large refractory crucible may cause high energy consumption. With direct heating, the flame being in direct contact with the material under fusion, the heat transfer is improved, but the important volume of gases circulating in the crucible is expected to favor volatilization.
[0015] Surprisingly, the volatilization of arsenic was similar for a glass containing 20 w/w % arsenic in both experiments described hereinabove.
[0016] Based on energy efficiency, a direct heating method was thus developed as described hereinbelow.
[0017] An issue when feeding of dust or mixture of fines particles in a hot space with important gas circulation is that the feed material escapes out of the furnace upon feeding. To overcome this problem, the charge was first pelletized, using a commercial pelletizer (Zhengzhou Equipment), yielding pellets of an oblong shape of 1 ½ “ by ¾“. Moisture at the level of 9 w/w % ± 1 w/w % was added to the arsenic containing glass forming mixture so as to control dust production during pelletization. The obtained pellets were then dried at 200 °C to prevent explosive fracture by steam caused by the flash heating of water in the pellets at the time of feeding to the furnace. Moreover, it was found that preheating these pellets to a temperature of about 300 °C prior to feeding allowed a faster melting in the furnace.
[0018] The dust generation when feeding the furnace was less than 3 w/w % of the charge. Gases from the furnace could be directed to a dust collection system, allowing the recycling of the particulates matters, as well recycling of volatilized arsenic to the pelletizer.
[0019] Feeding of the furnace was done after unloading 75% weight of the charge of the liquid glass formed within the furnace, to a ladle as will be described hereinbelow, as it was noted that leaving a charge of the liquid glass formed within the furnace facilitates the integration of the new charge by wetting the new charge liquid. It was thus possible to achieve the vitrification at a 50 Kg-scale of arsenic-containing glass-forming mixture and obtain a glass with arsenic content of 20 w/w % As. The cost per weight unit of vitrified arsenic is five to ten times lower than the cost of production of scorodite, which is a current approach to arsenic sequestration.
[0020] In an embodiment of an aspect of the invention as illustrated for example in FIGs. 1 and 2, the method 200 comprises feeding a glass mixture 12 and water, in a mixer 14, such as a ribbon mixer for example (step 220) for humidification at a moisture content in a range between about between 7 and about 10 w/w %, for example of 9 w/w %. The resulting humidified arsenic-containing glass-forming mixture is then directed to a pelletizer 16 for agglomeration into pellets, which is found to minimize formation of dust (step 230). Fines 18 are recycled to the mixer 14 (step 232).
[0021] The arsenic-containing glass-forming mixture 12 comprises arsenic in a range between about 10 and about 25 %w/w, and glass forming elements. The arsenic may be pure arsenious or arsenic oxides, flue dusts tainted with antimony, cadmium or lead, beside arsenic combined with iron for example. The glass forming elements comprises silica and alkaline oxides such as Na20, CaO and MgO, i.e. silica in a range between about 20 and about 40 %w/w, ferric oxide in a range between about 5 and about 15 %w/w, sodium in a range between about 5 and about 15 %w/w and calcium oxide in a range between about 1 and about 15 %w/w. These oxides may be supplied by sodium carbonate, feldspar, fayalite, sand, lime or recycled glass.
[0022] Resulting wet pellets 20, i.e. with pellets of the arsenic-containing glass-forming mixture with a moisture content of 9 w/w % ± 1 w/w %, are dried and preheated in a dryer 22 (step 240); dusts 24 from the drying step 240 are collected in a dust collector 26 (step 250).
[0023] In step 240, the pellets 28 formed in the pelletizer 16 are dried at a temperature in the range between about 190°C and about 210 °C, for example at about 200°C, down to a moisture content of 0.5% w/w for example, and submitted to a continuous direct pre-heating at a temperature in the range between about 290°C and 310°C, for example at about 300°C by increasing the dehydration temperature.
[0024] Preheated pellets 28 are transferred to a dosing vessel 30 (step 260), for feeding into a furnace 32 (step 270), for a direct heating to a temperature in the range between about 950 and 1250 °C.
[0025] Flue gases and dusts 38 containing amounts of volatilized arsenic representing between about 5 and about 20% w/w of the initial arsenic in the glass mixture 12 are directed to the dust collector 26 (step 282). Solids 40 are collected and recycled to the mixer 14 (step 284). Cleaned flue gases 42 may be evacuated to a chimney 46 (step 286). When the fusion is complete, i. e. when the reacting mass is entirely liquid within the furnace 32, the furnace 32 is moved to a casting position (C) (step 290) and molten glass 50 is collected in a ladle 52 (step 300). Leaving molten glass 50, in a range between about 20 and 30 % w/w, for example about 25 % w/w, within the furnace 32 is found to facilitate the integration of the new charge by wetting the added material (step 270).
[0026] The furnace 32 may be selected as a rotating vessel, which can be selectively rotated between feeding position (F) (step 270), melting position (M) (step 280) and casting position (C) (step 290), by means of a hydraulic unit 34 for example. As schematized with dotted lines, feeding into the furnace (step 270) is done in the feeding position (F)’ of the furnace 32 (step 272). Then, the furnace 32 is positioned in the melting position (M) in front of a burner 36 (step 274) for direct heating, the burner 36 being directed on the charge within the furnace 32 for the melting step (step 280). Natural gas or light oil as combustible for example (step 270). Fusion is achieved at a temperature in the range between about 950 and 1250 °C of about 1200°C. Then the furnace 32 is rotated to the casting position (C) (step 290).
[0027] Such a furnace allows a continuous operation, the loading (position (F) of the furnace) and discharge (position (C) of the furnace) of the furnace being achieved by tilting the furnace either to have access to a feeder or to a casting mold. Moreover, the furnace 32 is equipped with a particulate and arsenic collection unit, allowing recycling of these materials (see dust collector 26, chimney 46, step 282, step 284 and step 286 for example).
[0028] This invention relates to the production of a glass incorporating significant amounts of arsenic, from about 10 to about 20% w/w, in a continuous process, with a minimal loss of arsenic either by volatilization or particles losses during the melting operation, and a low energy consumption.
[0029] The scope of the claims should not be limited by the embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
References
. EPA METHOD 1311, Toxicity Characteristic Leaching Procedure, SW-846: Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. Washington, D.C., 1992.

Claims

Claims
1. A method of fabrication of arsenic glass, comprising forming pellets of an arsenic- containing glass-forming mixture, and melting the pellets in a direct heating furnace.
2. The method of claim 1 , wherein the arsenic-containing glass-forming mixture comprises arsenic in a range between 30 and 50 %w/w and glass forming elements.
3. The method of claim 1 , wherein the arsenic-containing glass-forming mixture comprises arsenic in a range between 10 and 25 % w/w.
4. The method of claim 1 , wherein said forming the pellets comprises mixing the arsenic- containing glass-forming mixture with water in an amount in a range between 7 and 10 w/w %, and pelletizing a resulting humidified arsenic-containing glass-forming mixture.
5. The method of claim 1 , wherein said forming the pellets comprises forming pellets of a size comprised in a range between 1“½ and ¾“.
6. The method of claim 1, comprising pre-heating the pellets prior to said melting.
7. The method of claim 1 , wherein said melting is achieved by direct heating to a temperature in a range between 950 and 1250 °C.
8. The method of claim 1 , comprising pre-heating the pellets prior to said melting, said pre-heating comprising heating the pellets to a temperature in a range between 290°C and 310°C, and said melting is achieved by direct heating to a temperature in a range between 950°C and 1250 °C.
9. The method of claim 1 , wherein said forming the pellets comprises mixing the arsenic- containing glass-forming mixture with water in an amount in a range between 7 and 10 w/w %, and pelletizing a resulting humidified arsenic-containing glass-forming mixture; said method comprising, prior to said melting, drying the resulting pellets and heating the dried pellets.
10. The method of claim 1 , wherein said forming the pellets comprises mixing the arsenic- containing glass-forming mixture with water in an amount in a range between 7 and 10 w/w %, and pelletizing a resulting humidified arsenic-containing glass-forming mixture; said method comprising, prior to said melting, drying the resulting pellets and heating the dried pellets to a temperature in a range between 290°C and 310°C, said melting being achieved by direct heating to a temperature in a range between 950°C and 1250 °C.
11. The method of claim 1 , comprising feeding the pellets to a furnace positioned in a feeding position, moving the furnace to a melting position, moving the furnace after said melting to a casting position for recovery of molten glass formed within the furnace and moving the furnace back to the feeding position in a continuous process.
12. The method of claim 1 , comprising feeding the pellets to a furnace positioned in a feeding position, moving the furnace to a melting position, moving the furnace after said melting to a casting position for collecting molten glass formed within the furnace, and moving the furnace back to the feeding position in a continuous process, wherein said collecting molten glass formed within the furnace comprises collecting between 70 and 80 % w/w of the molten glass formed within the furnace.
13. The method of claim 1 , wherein said melting is achieved by directing a flame on the pellets in the furnace.
14. The method of claim 1 , wherein the arsenic-containing glass-forming mixture comprises an initial arsenic content in a range between 10 and 25 %w/w and glass forming elements, a resulting glass incorporates arsenic in a range between 10 and 20% w/w.
15. The method of claim 1 , wherein the arsenic-containing glass-forming mixture comprises an initial arsenic content in a range between 10 and 25 %w/w and glass forming elements, a resulting glass incorporates arsenic in a range between 10 and 20% w/w, the method comprising collecting volatilized arsenic representing between 5 and 20% w/w of the initial arsenic content and recycling solids from said melting.
PCT/CA2018/050502 2018-04-30 2018-04-30 A system and a method of fabrication of arsenic glass WO2019210385A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CA2018/050502 WO2019210385A1 (en) 2018-04-30 2018-04-30 A system and a method of fabrication of arsenic glass
CN201811448997.1A CN110407456A (en) 2018-04-30 2018-11-28 A kind of system and method manufacturing arsenic glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2018/050502 WO2019210385A1 (en) 2018-04-30 2018-04-30 A system and a method of fabrication of arsenic glass

Publications (1)

Publication Number Publication Date
WO2019210385A1 true WO2019210385A1 (en) 2019-11-07

Family

ID=68358065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2018/050502 WO2019210385A1 (en) 2018-04-30 2018-04-30 A system and a method of fabrication of arsenic glass

Country Status (2)

Country Link
CN (1) CN110407456A (en)
WO (1) WO2019210385A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1331673A (en) * 1971-07-01 1973-09-26 Glasforskningsinstitutet Processes for making pelletized glass batches
US4094667A (en) * 1977-01-31 1978-06-13 Dravo Corporation Melting of fine particulate material in a high-speed rotary furnace
CA2757587A1 (en) * 2010-11-11 2012-05-11 Air Products And Chemicals, Inc. Selective adjustment of heat flux for increased uniformity of heating a charge material in a tilt rotary furnace
US8998790B2 (en) * 2012-10-16 2015-04-07 Dundee, Technologies Durables Inc. Method and composition for sequestration of arsenic
WO2016205925A1 (en) * 2015-06-23 2016-12-29 Dundee Sustainable Technologies Inc. A method and composition for sequestration of arsenic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1331673A (en) * 1971-07-01 1973-09-26 Glasforskningsinstitutet Processes for making pelletized glass batches
US4094667A (en) * 1977-01-31 1978-06-13 Dravo Corporation Melting of fine particulate material in a high-speed rotary furnace
CA2757587A1 (en) * 2010-11-11 2012-05-11 Air Products And Chemicals, Inc. Selective adjustment of heat flux for increased uniformity of heating a charge material in a tilt rotary furnace
US8998790B2 (en) * 2012-10-16 2015-04-07 Dundee, Technologies Durables Inc. Method and composition for sequestration of arsenic
WO2016205925A1 (en) * 2015-06-23 2016-12-29 Dundee Sustainable Technologies Inc. A method and composition for sequestration of arsenic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Arsenic Stabilisation", DUNDEE TECHNOLOGIES, 15 September 2017 (2017-09-15), Retrieved from the Internet <URL:http://dundeetechnologies.com/arsenic-stabilisation> *

Also Published As

Publication number Publication date
CN110407456A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
KR100234844B1 (en) Direct reduction process and apparatus from steel making waste
KR100327034B1 (en) Method of producing reduced iron pellets
US10287204B2 (en) Pellet
CN109402399A (en) The method for handling hazardous waste
CN104556036A (en) Method for preparing solid calcium carbide
CN103740939A (en) Method for producing molten iron and recovering zinc by utilizing zinc-containing dust or sludge in steelworks
CN102320715B (en) Presintering treatment process of glass batch and device thereof
CZ297756B6 (en) Increase in yield of cement clinker
CN110283996A (en) A kind of smelting process of energy-saving and environment-friendly copper-contained sludge
KR900014610A (en) Process for recovering nonferrous metals from oxidized dust and kiln for continuous supply vertical dry distillation
AU2018202993B2 (en) A system and a method for fabrication of arsenic glass
US11168014B2 (en) System and method of fabrication of arsenic glass
CS253590B2 (en) Method of glass raw materials melting
RU2247159C2 (en) Method of utilization of secondary raw materials containing iron, zinc and lead
WO2019210385A1 (en) A system and a method of fabrication of arsenic glass
CA3003236A1 (en) A system and a method for fabrication of arsenic glass
CN110997579B (en) Production of glass from a mixture comprising calcium oxide, and glass furnace
JPH11116299A (en) Artificial lightweight aggregate and its production
CN104370440A (en) Batch melting method
CA1107510A (en) Method and apparatus for preparing molten glass
AU550283B2 (en) Directed flow, thin layer glass fusion
CN103596889A (en) Glass melting furnace
SU831833A1 (en) Method of processing zinc-containing dusts and siblimes
AU519499B2 (en) Pollution abating, energy conserving glass manufacturing process
JP2625218B2 (en) Method for firing coal ash granules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917243

Country of ref document: EP

Kind code of ref document: A1