WO2019208897A1 - METHOD FOR SCREENING INFLAMMATORY RESPONSE REGULATOR TARGETING PKCα-LSD1-NFκB PATHWAY AND USE THEREOF - Google Patents

METHOD FOR SCREENING INFLAMMATORY RESPONSE REGULATOR TARGETING PKCα-LSD1-NFκB PATHWAY AND USE THEREOF Download PDF

Info

Publication number
WO2019208897A1
WO2019208897A1 PCT/KR2018/015605 KR2018015605W WO2019208897A1 WO 2019208897 A1 WO2019208897 A1 WO 2019208897A1 KR 2018015605 W KR2018015605 W KR 2018015605W WO 2019208897 A1 WO2019208897 A1 WO 2019208897A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsd1
inflammatory response
lps
pkcα
cells
Prior art date
Application number
PCT/KR2018/015605
Other languages
French (fr)
Korean (ko)
Inventor
백성희
김동하
남혜진
김근일
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to JP2020523259A priority Critical patent/JP6906826B6/en
Publication of WO2019208897A1 publication Critical patent/WO2019208897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/12Post-translational modifications [PTMs] in chemical analysis of biological material alkylation, e.g. methylation, (iso-)prenylation, farnesylation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/14Post-translational modifications [PTMs] in chemical analysis of biological material phosphorylation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7095Inflammation

Definitions

  • NF- ⁇ B signals Inflammatory responses mediated by NF- ⁇ B signals are essential for the host's defense against pathogen invasion.
  • the regulatory mechanisms of NF- ⁇ B signaling are well studied, but epigenetic regulation of this inflammatory response is not well known.
  • Sepsis begins when bacterial products such as endotoxin bind to Toll-like receptors, signaling is relayed through adapter molecules, and nuclear factor kappa-light-chain-enhancer of activated Bcells) is known to follow the signal up to and including the transcription factor (TF) (Abraham, J. Infect. Dis. 2003; 187: S364-S369; Tiruppathi et al., Nat. Immunol. 2014; 15: 239247).
  • TF transcription factor
  • NF- ⁇ B signaling one of the inflammation-related molecules in systemic inflammatory diseases, must be carefully regulated to fine tune the inflammatory response (Caldwell et al., Genes Dev. 2014; 28: 2120-2133).
  • US Patent Publication No. 2009-0317833 relates to a method for screening a substance that binds to a TLR4 (toll-like receptor) intracellular region, a signaling pathway for TLR4 by binding to TLR4, whose transcription is regulated by NF- ⁇ B. Blocking mechanisms to initiate inflammation.
  • TLR4 toll-like receptor
  • the present application seeks to provide a therapeutic screening method based on a novel inflammatory trigger mechanism.
  • a method of providing a cell expressing PCKa, LSD1 and NF- ⁇ B Treating the cells with a stimulus capable of inducing an NF- ⁇ B mediated inflammatory response, wherein the treatment causes an inflammatory response by the PCK ⁇ ->LSD1-> NF- ⁇ B pathway in the cells, Treating a test substance that is expected to inhibit an inflammatory response by the pathway; And when the inflammatory response by the pathway is inhibited in the cells treated with the test substance as a result of the treatment, compared with the control group not treated with the test substance, selecting the test substance as an inflammatory inhibition candidate.
  • Inhibition of the inflammatory response by the pathway may include reducing phosphorylation of LSD1, demethylation of p65 subunit of NF- ⁇ B or binding of LSD1 and p65 subunit.
  • the stimuli that can induce NF- ⁇ B mediated inflammatory responses by the PCK ⁇ -> LSD1-> NF- ⁇ B pathway are different receptors that accept stimuli, but the PCK ⁇ -> LSD1-> NF- ⁇ B pathway NF Stimulation that activates, induces, or triggers and amplifies pathways by - ⁇ B, such as tumor necrosis factor ⁇ (TNF ⁇ ), interleukin 1-beta (IL-1 ⁇ ), pathogen-associated molecular pattern (PAMP), or bacterial LPS (lipopolysaccharides) It is a stimulus that works specifically for the immune situation.
  • TNF ⁇ tumor necrosis factor ⁇
  • IL-1 ⁇ interleukin 1-beta
  • PAMP pathogen-associated molecular pattern
  • bacterial LPS lipopolysaccharides
  • the cells that can be used in the method according to the present invention are used macrophage, such as mouse leukmic monocyte-macrophage (264.7) or bone marrow-derived macrophage (BMDM) derived from mouse macrophages.
  • macrophage such as mouse leukmic monocyte-macrophage (264.7) or bone marrow-derived macrophage (BMDM) derived from mouse macrophages.
  • the cells may be provided as an animal model except human.
  • Candidates selected by the method according to the invention can be used for the treatment of NF- ⁇ B mediated inflammatory diseases such as chronic inflammatory disease sepsis, autoimmune diseases or rheumatoid arthritis.
  • Inflammatory responses mediated by NF- ⁇ B signals are essential for the host's defense against pathogen invasion.
  • the regulatory mechanism of NF- ⁇ B signaling is well studied, but epigenetic regulation of the inflammatory response is not well known.
  • PKC ⁇ -LSD1-NF- ⁇ B a new signal transduction axis called PKC ⁇ -LSD1-NF- ⁇ B is important for the activation and amplification of the inflammatory response.
  • PKC ⁇ migrates to the nucleus to phosphorylate LSD1.
  • LSD1 phosphorylation is required for p65 binding and promotes demethylation of p65 to enhance the stability of p65 protein.
  • FIG. 1 shows that LSD1 is phosphorylated in response to inflammatory signals by PKC ⁇
  • A H & E staining of lungs after 6 hours of intraperitoneal injection of PBS or LPS (10 mg / kg body weight) into wild type and Lsd1 SA / SA mice One picture (6 experiments in each group). Scale bar, 100 ⁇ m. The image shown is representative of three independent experiments.
  • B Survival was monitored for 72 hours after LPS injection into wild-type (11 mice) and Lsd1 SA / SA mice (10 mice) of similar age and weight.
  • BMDM was extracted from wild-type and Lsd1 SA / SA mice, treated with LPS for 2 hours (or not treated with LPS) or immunized with the indicated antibody. Blot.
  • D Immune blot data of lung tissue extracted from wild type and Lsd1 SA / SA mice (6 per group). Mice were injected with Go6976 (1 mg per kg body weight, dissolved in corn oil) or corn oil, a solvent of Go6976, 1 hour before LPS intraperitoneal injection (10 mg injection per kg body weight, tested 6 hours after injection).
  • E Immunoblot in wild-type BMDM after LPS treatment for the indicated time.
  • Tubilin antibody was used as a control for loading of cytoplasmic proteins.
  • laminA / C antibodies were used as loading controls for nuclear proteins.
  • F BMDM cells were treated with LPS for 2 hours with or without Go6976 for 6 hours. After that, only nuclear protein was isolated and extracted and immunoprecipitation experiments of PKC ⁇ and LSD1 were performed.
  • G Immunoblot experiments were performed with the indicated antibodies by separating LPS from BMDM for the indicated time.
  • H After treatment with LPS for 2 hours according to the indicated concentration, only the nuclear protein of BMDM was isolated and immunoblot experiments were performed with the indicated antibody.
  • FIG. 2 shows that phosphorylation of LSD1 induced by LPS is required for activation of NF- ⁇ B target genes at the genome-wide level.
  • A Flowchart showing strategy of RNA sequencing analysis.
  • B hierarchical clustering result, 3,558 differently expressed genes (Differentially Expressed Gene or less, DEG) were identified. Transcriptional Sart Site (TSS) The presence or absence of the p65 peak around +/- 2.5kbps was drawn.
  • TSS Transcriptional Sart Site
  • C Gene ontology (GO) analysis of the cluster 1 genes revealed that genes involved in cytokine production and inflammatory responses were significantly distributed in the cluster 1 gene pool.
  • D De novo motif analysis for p65 peak near TSS of gene in cluster 1. Hypergeometric p-values were calculated.
  • Figure 3 shows that LPS-induced LSD1 phosphorylation is required for recruiting p65 to the promoter of the target gene
  • A 2 hours treatment of LPS in BMDM cells, immunoprecipitation experiment after extraction of p65 and LSD1 binding only nuclear protein It was performed through.
  • B In vitro kinase experiments using wild and dominant negative forms of PKC ⁇ . GST-LSD1 and GST-p65 were purified from E. coli and used as substrate.
  • C In vitro GST pulldown experiments were performed using phosphorylated GST-LSD1 (which preceded the kinase experiment with PKC ⁇ prior to the GST pulldown experiment) and p65.
  • Figure 5 shows that the PKC ⁇ -LSD1 phosphorylation axis modulates a sustained inflammatory response
  • A mRNAs of Mcp-1, Il-6, Cebpd by treatment of LPS according to the time indicated in BMDM of wild type and Lsd1 SA / SA mice was detected via quantitative RT-PCR.
  • B Go6976 was pretreated with BMDM in wild-type mice for 6 hours, followed by LPS treatment according to the indicated time, and mRNAs of Mcp-1, Il-6 and Cebpd were detected via quantitative RT-PCR.
  • C LPS was treated according to the indicated time in BMDM, and the nucleoprotein was extracted to confirm the endogenous binding state of p65 and LSD1.
  • FIG. 6 shows that sustained expression of p65 in the nucleus and hence activation of the inflammatory response is via PKC ⁇ -LSD1-NF ⁇ B signaling.
  • A Immunoblots were performed using LPS-treated and nucleoproteins with designated antibodies according to the time indicated in BMDM of wild-type and Lsd1 SA / SA mice.
  • B Representative images of immunofluorescence assays. Immunofluorescence experiments were performed by transfecting WT, SA, and KA mutant forms with HA tags on Lsd1 ⁇ / ⁇ MEF cells, followed by treatment with LPS for a designated time. HA (green); p65 (red); DAPI (blue)., Scale bar, 20 ⁇ m.
  • mice 7 shows that inhibition of PKC ⁇ or LSD1 activity in mice reduces mortality from sepsis
  • A Immunoblot experiments in lung tissue of wild type mice (3 in each group). Mice were injected with LPS intraperitoneal (10 mg per kg body weight, tested 6 hours after injection) 1 hour prior to Go6976 ((CAS 136194-77-9), selective PKC inhibitor, 1 mg per kg body weight) or GSK-LSD1 (1mg per kg of body weight) is injected into the abdominal cavity.
  • B Wild-type (blue line), Lsd1 SA / SA (red line) mice underwent CLP surgery (20 in each group). Survival of the animals was monitored every 6 hours for 144 hours after CLP surgery.
  • C, D 1 mg of Go6976 per kg of body weight (green lines, 20 animals each) (C) or GSK-LSD1 (in purple line, respectively) via intravenous injection at 12 and 50 hours after CLP surgery, respectively. 20 animals). Survival was monitored every 6 hours for 144 hours after CLP surgery. ** p ⁇ 0.01 (log-rank test) (BD)
  • E Representative picture of H & E in lung tissue after CLP surgery. Wild type and Lsd1 SA / SA mice. Alternatively, wild type mice were injected intravenously with Go6976, GSK-LSD1 or vehicle at 1 mg / kg of body weight 12 hours and 50 hours after surgery (6 per group), respectively. Mice were euthanized 72 hours after CLP surgery.
  • LSD1 lysine specific histone demethylase 1
  • PKC ⁇ Protein Kinase C ⁇
  • the present invention relates to a method for screening an inflammatory response inhibitor targeting the PCKa-> LSD1-> NF- ⁇ B pathway, which plays an important role in inducing an inflammatory response as disclosed herein.
  • the method according to the present invention comprises the steps of providing a cell expressing PCKa, LSD1 and NF- ⁇ B; Treating a stimulus capable of inducing an NF- ⁇ B mediated inflammatory response in the cell, wherein the treatment causes, triggers, or initiates an inflammatory response by the PCK ⁇ -> LSD1-> NF- ⁇ B pathway in the cell, Treating the cell with a test substance that is expected to inhibit the pathway or inhibit the inflammatory response caused by the pathway; And inhibiting the test substance when the pathway is inhibited or when the inflammatory response by the pathway is inhibited in cells treated with the test substance as compared with the control group not treated with the test substance. Screening for candidates.
  • PKC ⁇ protein kinase C alpha
  • PKC signaling also plays a critical role in the activation of the inflammatory response (Langlet et al., Eur. J. Immunol. 2010; 40: 505515), but the molecule for the target gene associated with the substrate of PKC and activation of the inflammatory response by PKC. The mechanism is not yet clear. It was found herein that the direct substrate of PKC ⁇ is LSD1, which phosphorylates LSD1 and does not phosphorylate (see FIG. 1, etc.).
  • Lysine specific demethylase 1 acts as a histone demethylase via a FAD dependent amine oxidase reaction (Metzger et al., Nature. 2005; 437: 436-439).
  • the other LSD1 demethylates the lysine group of the nonhistone protein methylated by SET7 / 9.
  • LSD1 binds to p65 constituting NF- ⁇ B and demethylates it, as described below. Demethylation was found to stabilize p65 and eventually amplify the inflammatory response by regulating the activity of transcription factors involved in NF- ⁇ B mediated inflammatory responses (see FIG. 4, etc.).
  • NF- ⁇ B is an inflammatory factor consisting of subunits of p65 / RelA, p50 / NF- ⁇ B1, p52, RelB and c-Rel (Oeckinghaus and Ghosh, Cold Spring Harb. Perspect. Biol. 2009; 1: a000034). They have a common N-terminal Rel homology region, a DNA binding region and a sequence capable of entering the nucleus at the C-terminus, which are important for dimer formation. The p65-p50 heterodimer is the most abundant and known to have the highest activity. In unstimulated cells, I ⁇ B proteins bind to NF- ⁇ B subunits and sequester them cytoplasmically.
  • NF- ⁇ B subunit migrates from the cytoplasm to the nucleus (Fuchs et al., Oncogene. 1999; 18: 2039-2046).
  • the NF- ⁇ B subunit migrated to the nucleus binds to the ⁇ B element of DNA and activates the expression of target genes involved in the inflammatory response.
  • coactivators for example CREB binding protein (CBP)
  • CBP CREB binding protein
  • phosphorylation of LSD1 in the LPS-induced PCK ⁇ -> LSD1-> NF- ⁇ B pathway is required for activation of NF- ⁇ B target genes at the genome-wide level (see FIG. 2) and is due to LPS treatment.
  • LSD1 phosphorylation is required to recruit NF- ⁇ B p65 to the promoter of the target gene as a promoter (see FIG. 3), showing that the binding of LSD1 and p65 and thus p65 demethylation increases the protein stabilization of p65 (FIG. 4). Reference). This protein stabilization of NF- ⁇ B p65 eventually causes an inflammatory response.
  • PKC ⁇ , LSD1 and NF- ⁇ B (p65) used in the method according to the present invention are known genes and protein sequences, for example human protein sequence is LSD1: NP_001343496.1, PKC ⁇ : NP_035231.2, NF- ⁇ B (p65) ) Is known as NP_033071.1.
  • LSD1 LSD1: NP_001343496.1
  • PKC ⁇ NP_035231.2
  • NF- ⁇ B (p65) ) Is known as NP_033071.1.
  • a full-length or fragment having a variety of origins and protein sequences derived from each and a sequence substantially identical thereto may be used as long as they have such a function. Substantially the same is applied to both protein and nucleic acid sequence levels, and compared to a reference or reference sequence, there may be one or more substitutions, deletions, or additions to base or amino acid residues, but overall differences in function It means having a level of functionality that doesn't exist or that degrades functionality. Homology is at least 61% homology, more preferably 70% phase when the target sequence is aligned to the maximum correspondence and the aligned sequence is analyzed using algorithms commonly used in the art.
  • homology even more preferably 80% homology, most preferably at least 90%, in particular at least 95% homology.
  • Alignment methods for sequence comparison are known in the art. For example, Smith and Waterman, Adv. Appl. Math. (1981) 2: 482; Needleman and Wunsch, J. Mol. Bio. (1970) 48: 443; Pearson and Lipman, Methods in Mol. Biol. (1988) 24: 307-31; Higgins and Sharp, Gene (1988) 73: 237-44; Higgins and Sharp, CABIOS (1989) 5: 151-3; Corpet et al., Nuc. Acids Res. (1988) 16: 10881-90; Huang et al., Comp. Appl. BioSci.
  • NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. (1990) 215: 403-10) is accessible from NBCI and the like, and can be used with blast, blastp, blasm, blastx, tblastn and tblastx. It can be used in conjunction with a sequence analysis program.
  • BLSAT is accessible at www.ncbi.nlm.nih.gov/BLAST/ and a method for comparing sequence homology using this program can be found at www.ncbi.nlm.nih.gov/BLAST/blast_help.html.
  • the PKC ⁇ , LSD1 and NF- ⁇ B proteins may be provided in the form of cells expressing it.
  • mammalian cells that express proteins (transient or stable transduction or endogenous expression), such as, but not limited to, PKC ⁇ , LSD1 and NF- ⁇ B are expressed and representative cells that can act include macrophages.
  • Macrophages may be from animal or established cell lines.
  • Raw 264.7 cell line or bone marrow-derived macrophage (BMDM) may be used.
  • a plasmid expressing the protein in a Raw 264.7 cell line can be used by transfection using a known method or a method described in the Examples herein.
  • PKC ⁇ -> LSD1-> NF- ⁇ B pathway is activated in the method according to the present invention
  • the substrate of PKC ⁇ is LSD1
  • phosphorylated LSD1 demethylates the p65 subunit of NF- ⁇ B Let's do it.
  • inhibition of the PKC ⁇ -> LSD1-> NF- ⁇ B signaling pathway results in a decrease or inhibition of phosphorylation of LSD1 by the PKC ⁇ , and / or of the p65 subunit of the NF- ⁇ B. Inhibition of demethylation, and / or inhibition or reduction of binding of LSD1 and p65.
  • inhibition of the pathway may be referred to as inhibition of the inflammatory response by the pathway.
  • Inhibition of this pathway or inflammatory response may be achieved by culturing cells expressing the proteins constituting the mechanism described above in a cell culture plate, and then adding a test substance thereto, Total protein can be extracted to determine the degree of phosphorylation of LSD1, LSD1 demethylation activity, the binding of LSD1 and NF- ⁇ B p65, or the degree of NF- ⁇ B p65 demethylation by LSD1.
  • the degree of phosphorylation inhibition in the method according to the present application can be measured using a known method, for example, can be confirmed using a protein blot method.
  • inhibiting the degree of phosphorylation of LSD1 protein can be selected as a candidate for the treatment of sepsis.
  • the protein may be labeled using a variety of markers such as protein tags, biotin, fluorescent materials, acetylation, radioisotopes or commercially available protein labeling kits for ease of detection, It can be detected using a detector suitable for the labeled material.
  • markers such as protein tags, biotin, fluorescent materials, acetylation, radioisotopes or commercially available protein labeling kits for ease of detection, It can be detected using a detector suitable for the labeled material.
  • Methylation or demethylation in the methods according to the invention can be carried out using known methods, including, but not limited to, the use of antibodies that specifically trafficize methylated proteins, see also Examples herein. can do.
  • the binding or interaction of LSD1 and the p65 subunit can be measured using various methods known in the art.
  • Co-immunoprecipitation, surface plasma resonance (SPR) and spectroscopy methods include, but are not limited to, further references on comparisons and detailed experimental methods on these methods. Berggard et al., (2007) "Methods for the detection and analysis of protein-protein interactions ", PROTEOMICS Vol7: pp 2833-2842.
  • the method according to the present invention comprises the step of inducing an inflammatory response mediated by the NF- ⁇ B signal in the cell, thereby activating the pathway consisting of PCK ⁇ , LSD1 and NF- ⁇ B as described above.
  • a variety of stimuli that can elicit an inflammatory response mediated by an NF- ⁇ B signal to a cell can be used herein, for example, a stimulus that can elicit an NF- ⁇ B mediated inflammatory response is TNF ⁇ (tumor necrosis).
  • IL-1 ⁇ interleukin 1-beta
  • PAMP pathogen-associated molecular pattern
  • LPS bacterial lipopolysaccharides
  • An inflammatory or inflammatory response herein is a protective response involving immune cells, blood vessels, and molecular mediators as a complex biological response of tissue to stimuli that is harmful to tissue, such as pathogens, stimulants, or damaged cells.
  • the inflammatory response is to eliminate the initial cause of cell damage, remove damaged cells or tissues, and initiate tissue repair. Inflammatory reactions are accompanied by symptoms such as fever, pain, redness and swelling.
  • the inflammatory response mediated by the NF- ⁇ B signal herein means a case where the NF- ⁇ B protein is activated by the aforementioned immune signal stimulation.
  • the pathways activating NF- ⁇ B in particular the pathway by demethylation of the p65 subunit by LSD1.
  • cytokines at the molecular level is increased, for example, IL-1 ⁇ , IL-6, MCP-1, TNF- ⁇ , and the like, thereby detecting the activation of the inflammatory response.
  • the cells are treated with test substances which are expected to inhibit the PCK ⁇ -> LSD1-> NF- ⁇ B pathway.
  • Inhibition of this pathway can be measured by reducing phosphorylation of LSD1 and / or demethylation of p65 subunit of NF- ⁇ B and / or reducing or inhibiting binding of LSD1 and p65.
  • Such reduction or inhibition means inhibition or reduction compared to a control not treated with the test substance, and one of ordinary skill in the art will readily be able to determine the extent of inhibition or reduction based on the disclosure herein and / or common sense in the art. In determining inhibition or reduction, one may also measure changes in the amount of cytokine expression that increases with activation of the inflammatory response.
  • Modulation herein includes activation of a particular biological function, stimulation or upregulation, or degradation or downregulation, or both, and regulation in an in vitro state, regulation in an in vivo state, in an ex vivo state, It includes all of the adjustments.
  • the regulation is the inhibition of the inflammatory response.
  • Test agents used in the methods herein are expected to act on the PCK ⁇ -> LSD1-> NF- ⁇ B pathway signaling system to reduce phosphorylation of LSD1, thereby regulating and specifically inhibiting demethylation of the p65 subunit of NF- ⁇ B.
  • a low molecular weight compound may be used as a test substance.
  • the test substance can be obtained from a library of synthetic or natural compounds and methods of obtaining libraries of such compounds are known in the art. Synthetic compound libraries are available from Maybridge Chemical Co. (UK), Comgenex (USA), Brandon Associates (USA), Microsource (USA), and Sigma-Aldrich (USA), and libraries of natural compounds are available from Pan Laboratories (USA) and Available from MycoSearch (USA).
  • Test materials can be obtained by a variety of combinatorial library methods known in the art, for example, biological libraries, spatially addressable parallel solid phase or solution phase libraries, deconvolution Required by the synthetic library method, the "1-bead 1-compound” library method, and the synthetic library method using affinity chromatography screening.
  • Methods of synthesizing molecular libraries are described in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90, 6909, 1993; Erb et al. Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann et al., J. Med. Chem.
  • compounds having a low molecular weight therapeutic effect may be used.
  • compounds of about 1000 Da in weight such as 400 Da, 600 Da or 800 Da can be used.
  • such compounds may form part of a compound library, and the number of compounds constituting the library may vary from tens to millions.
  • Such compound libraries include peptides, peptoids and other cyclic or linear oligomeric compounds, and low molecular compounds based on templates such as benzodiazepines, hydantoin, biaryls, carbocycles and polycycle compounds (such as naphthalene, phenoty) Azine, acridine, steroids, and the like), carbohydrate and amino acid derivatives, dihydropyridine, benzhydryl and heterocycles (such as triazine, indole, thiazolidine, etc.), but this is merely illustrative. It is not limited to this.
  • Biologics can also be used for screening, for example.
  • Biologics refers to cells or biomolecules
  • biomolecules refer to proteins, nucleic acids, carbohydrates, lipids or substances produced using cellular systems in vivo and ex vivo.
  • Biomolecules may be provided alone or in combination with other biomolecules or cells.
  • Biomolecules include, for example, proteins or biological organics found in polynucleotides, peptides, antibodies, or other plasma.
  • candidates are expected to inhibit phosphorylation of LSD1 and / or demethylation of p65 subunit of NF- ⁇ B and / or binding of LSD1 and p65 in the presence of the test substance as compared to the control group not in contact with the test substance.
  • Selected by substance. At least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or about Candidates may be selected to have an increase or decrease of at least 100% or higher.
  • Proteins as used herein can be prepared using methods known in the art. In particular, the use of genetic recombination technology.
  • the plasmid containing the corresponding gene encoding the protein may be delivered to prokaryotic or eukaryotic cells such as insect cells and mammalian cells, overexpressed and purified.
  • the plasmid may be used, for example, after transfection into an animal cell line, such as used in the exemplary embodiments herein, to purify the expressed protein, but is not limited thereto.
  • the protein may be labeled using a variety of markers such as biotin, fluorescent material, acetylation, radioisotopes, or commercially available protein labeling kits for ease of detection, and labeled materials. Can be detected using a detector suitable for.
  • the cell lysate or the result of in vitro translation is centrifuged, followed by precipitation, dialysis, and various column chromatography. Ion exchange chromatography, gel-permeation chromatography, HPLC, reverse phase-HPLC, preparative SDS-PAGE, affinity columns and the like are examples of column chromatography. Affinity columns can be made, for example, using anti-screening protein antibodies.
  • test substance used in the method may refer to the aforementioned.
  • Inflammatory response modulators in particular inhibitory substances, selected by the method according to the invention can be used as therapeutic agents for inflammatory diseases.
  • Inflammatory diseases herein include various symptoms or diseases caused by an inflammatory or inflammatory response, such as sepsis, allergy, asma, autoimmune diseases, hepatitis, glomerulonephritis, hepatitis, inflammatory bowel disease, reperfusion injury and transplant rejection, etc.
  • inflammatory or inflammatory response such as sepsis, allergy, asma, autoimmune diseases, hepatitis, glomerulonephritis, hepatitis, inflammatory bowel disease, reperfusion injury and transplant rejection, etc.
  • Various symptoms or diseases include various symptoms or diseases caused by an inflammatory or inflammatory response, such as sepsis, allergy, asma, autoimmune diseases, hepatitis, glomerulonephritis, hepatitis, inflammatory bowel disease, reperfusion injury and transplant rejection, etc.
  • NF- ⁇ B-mediated inflammatory response diseases caused in particular by the NF- ⁇ B-mediated inflammatory response include, but are not limited to, sepsis, rheumatoid arthritis or autoimmune diseases.
  • the method according to the invention is used in particular for the screening of sepsis therapeutic material.
  • the substances screened by the method according to the invention are also useful as therapeutic agents for sepsis.
  • septicemia refers to Enterococcus spp., Staphylococcus spp., Streptococcus spp, Enterobacteriacae family, Providencia spp. And Pseudomonas spp.
  • Lsd1 SA / SA mice showed higher survival rates with lower inflammatory cytokine production than WT mice under conditions that mimic sepsis.
  • treatment is a concept that includes inhibiting, eliminating, alleviating, alleviating, ameliorating, and / or preventing a disease or condition or condition resulting from the disease.
  • KCLB Dulbecco's modified Eagle's medium
  • ZelShield ZelShield (Minerva Biolabs GmbH) 1%, 10% FBS. To ensure conditions without mycoplasma, mycoplasma testing of all cells was routinely performed.
  • BMDM Preparation Mice were euthanized via CO 2 oversuction and mice obtained femur and tibia. After washing with 70% ethanol and cold PBS, the bone marrow was separated from the femur and tibia. Bone marrow cells were cultured in RPMI-1640 medium (Welgene, 1% ZelShield, 10% FBS) at a concentration of 1 ⁇ 10 6 to 2 ⁇ 10 6 / ml. Since then, Macrophage colony stimulating factor (10ng / ml, sigma) and 10% L929-conditioned medium were added to the cells and differentiated for 7-8 days.
  • RPMI-1640 medium Welgene, 1% ZelShield, 10% FBS
  • Antibodies and reagents Santa Cruz Biotechnology product: p65 antibody (sc-372, diluted 1: 1000 for immunoblot, diluted 1: 200 for immunofluorescence), LaminA / C antibody (sc-6215 , Diluted 1: 1000 for immunoblot, GFP antibody (sc-9996, diluted 1: 5000 for immunoblot), GST antibody (sc-459, diluted 1: 5000 for immunoblot) Use); Cell Signaling Products: LSD1 antibody (# 2139, diluted 1: 1000 for immunoblot), PKC ⁇ antibody (# 2056, diluted 1: 1000 for immunoblot); Abcam products: p65 antibody (ab7970), LSD1 antibody (ab17721), H3K9Ac antibody (ab4441), H3K9me2 antibody (ab1220), H3K4me2 antibody (ab32356); Novus product: LSD1 antibody (NB-100-1762), PKC ⁇ antibody (NB-110-57356, diluted 1: 1000 for immunoblo
  • HA antibody MMS-101R, diluted 1: 5000 for immunoblot, diluted 1: 200 for immunoflu
  • LPS Treatment After the cells were grown in the absence of FBS for 24 hours, LPS (1 ⁇ g / ml or the indicated concentration) was treated for the indicated time. Cells were collected and lysed according to each experimental method for use in immunoblot or quantitative RT-PCR or ChIP experiments.
  • RNA-seq analysis RNA-seq libraries were prepared using TruSeq RNA Sample prep kit v2 (Illumina) according to the producer's instructions. RNA-seq libraries were pair-end sequencing in Illumina Hi-seq 3000/4000 SBS kit v3 (MACROGEN Inc.). All RNA-seq data was mapped in the mouse genome (mm9) using the Tophat package (Kim et al., Genome Biol. 2013; 14: R36). Differential analysis was performed using EdgeR packages with a false discovery rate (FDR) cutoff of 1 ⁇ 10 ⁇ 4 (Kim et al., Genome Biol. 2013; 14: R36; Robinson et al., Bioinformatics.
  • FDR false discovery rate
  • Hierarchical clustering analysis was performed using gene expression values of DEG. In particular, Ward's criterion was used for genes with 1- (correlation) as the distance measure. Cluster heatmaps were drawn using the z score in the sample for each gene. ChIP-seq data was mapped to the mouse genome using Bowtie. Peaks for p65 were performed with Homer's findPeaks command using the matching input control. In each DEG, the p65 peak located within 10 kbps of TSS was examined. De novo p65 peaks were performed using the findMotifsGenome command in Homer.
  • GRO-seq Global run-on sequencing
  • ChIP experiment Cells were cross- linked in 1% formaldehyde for 10 minutes and washed twice with cold PBS. The cells were placed in 1 ml of harvest buffer (0.1 M Tris-HCl [pH 9.4], added 10 mM DTT before the experiment), scraped with a scraper, placed in a 1.5 ml tube, placed at 30 ° C. for 15 minutes, and then centrifuged at 6000 rpm for 3 minutes. It was.
  • harvest buffer 0.1 M Tris-HCl [pH 9.4], added 10 mM DTT before the experiment
  • buffer I 0.25% Triton X-100, 10 mM EDTA, 10 mM HEPES [pH 6.5], and 0.5 mM EGTA
  • buffer II 200 mM NaCl, 1 mM EDTA, 10 mM HEPES [pH 6.5], and 0.5 mM EGTA
  • ChIP lysis buffer 50 mM Tris-HCl [pH 8.1], 1% SDS, 10 mM EDTA [pH 7.6]
  • protease inhibitor cocktail before the experiment
  • Chromatin extract made from DNA fragments of 250 bp in average length was diluted with dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl [pH 8.1], added protease inhibitor cocktail before the experiment).
  • the antibody was added and immunoprecipitated overnight at 4 ° C. The next day, 40 ⁇ l of protein A / G sepharose beads were added and rotated at 4 ° C. for 2 hours.
  • TSE I buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], and 150 mM NaCl
  • TSE II buffer (0.1% SDS, 1% Triton X- 100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], and 500 mM NaCl
  • buffer III (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 10 mM Tris-HCl [pH 8.1] and 1 mM EDTA), three times TE buffer (10 mM Tris-HCl [pH 8.0], and 1 mM EDTA).
  • Elution buffer 1% SDS, 0.1 M NaHCO 3
  • QIA quick Gel Extraction Kit QIAGEN
  • Purified DNA was analyzed via quantitative RT-PCR. 2 ⁇ l of a total of 50 ul of DNA was used for PCR. Sequence information of the PCR primer is as follows.
  • mouse Il-6 Reverse 5'-TGTGTGTCGTCTGTCATGCG-3 '.
  • ChIP-seq analysis ChIP-seq analysis : ChIP-seq libraries were prepared using a KAPA library preparation kit according to the manufacturer's instructions. The ChIP-seq library was single-ended sequenced in Illumina Hi-seq 4000 SBS kit v3 (MACROGEN Inc.). ChIP-seq reads were aligned to the mouse reference genome (NCBI build 37, mm9) using Bowtie (Langmead et al., Genome Biol. 2009; 10: R25). Only unique peaks were used by HOMER for peak calling and annotating (Heinz et al., Mol. Cell. 2010; 38: 576-589). After LPS treatment, the p65 peak overlapping with LSD1 was considered. The BedGraph file was created and viewed in the Santa Cruz Genome Browser at the University of California. P65 (SC-372) and LSD1 (ab1772) antibodies were used for ChIP-seq.
  • Tissue Lysate Lung tissue was washed with cold PBS before homogenizing, to remove blood. Lungs were added to RIPA buffer (150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl [pH 7.5], and 2 mM EDTA [pH 8.0], protease inhibitor cocktail before the experiment). ), And then, centrifuged at 4 °C, 14,000g, clean supernatant was used for immunoblot experiment.
  • RIPA buffer 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl [pH 7.5], and 2 mM EDTA [pH 8.0], protease inhibitor cocktail before the experiment.
  • the pellet which is the nucleus part, was centrifuged at 120 g 4 ° C for 1 minute. Discard the supernatant and re-dissolve the pellet in buffer C (20 mM HEPES [pH 7.9], 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, pre-test DTT, PMSF, protease inhibitors added) and then sonicate as whole cell lysate. do. All lysates were quantified by Bradford and analyzed via SDS-PAGE.
  • GST fusion constructs were expressed in Rosetta E. coli bacteria (Novagen). Crude extracts were prepared by sonication in GST binding buffer (125 mM NaCl, 20 mM Tris-HCl [pH 7.8], 10% Glycerol, 0.1% NP-40, 0.5 mM DTT added before protease inhibitors), 30 at 13000 rpm. Lysates were centrifuged for minutes. Only the supernatant was separated and 100ul of glutathione-Sepharose beads (GE Healthcare) was added and rotated overnight at 4 ° C.
  • GST binding buffer 125 mM NaCl, 20 mM Tris-HCl [pH 7.8], 10% Glycerol, 0.1% NP-40, 0.5 mM DTT added before protease inhibitors
  • p65 protein was prepared using cold methionine of TNT T7 Quick Coupled Transcription / Translation system (Promega, L1170) as directed by the producer. In vitro kinase experiments with cold ATP were performed to produce phosphorylated GST-LSD1 before GST pull-down experiments. Phosphorylated LSD1 was divided into two tubes by the same amount, and one tube was treated with 1000 units of ⁇ -phosphatase (NEB, P0753) and reacted for 30 minutes at 30 ° C.
  • NAB ⁇ -phosphatase
  • GST fusion proteins bound to beads were washed with buffer (150 mM NaCl, 25 mM Tris-HCl [pH 8.0], 10% Glycerol, 0.1% NP-40, and 1 mM EDTA) and mixed with p65 protein synthesized in vitro Rotation was performed at 4 ° C. for 1 hour in GST binding buffer. Beads were washed 7 times with GST binding buffer, and the sample buffer was boiled for 10 minutes and analyzed by SDS-PAGE and immunoblot.
  • buffer 150 mM NaCl, 25 mM Tris-HCl [pH 8.0], 10% Glycerol, 0.1% NP-40, and 1 mM EDTA
  • methylation assay buffer 50 mM Tris-HCl [pH 8.5], 20 mM KCl, 10 mM MgCl 2 , 10 mM Mb-mercaptoethanol, and 250 mM sucrose.
  • methylation assay buffer 50 mM Tris-HCl [pH 8.5], 20 mM KCl, 10 mM MgCl 2 , 10 mM Mb-mercaptoethanol, and 250 mM sucrose.
  • In vitro methylation experiments were performed with flag-p65 bound to beads, GST-SET7 / 9 protein isolated from beads (L-Glutathione reduced, Sigma G4251) and SAM (Sigma, A7007) in methylation assay buffer was performed overnight.
  • wash buffer 50 mM NaH 2 PO 4 [pH8.0], 10 mM Tris-HCl [pH8.0] to completely remove SET7 / 9 protein bound to bead-defected flag-p65 prior to in vitro demethylation experiments ], 500 mM NaCl, and 0.5% TritonX-100
  • demethylation buffer 50 mM Tris-HCl [pH 8.5], 50 mM KCl, 5 mM MgCl 2 , 5% glycerol, and 0.5 mM PMSF.
  • LSD1 protein or phosphorylated LSD1 protein was added. After reacting at 37 ° C. overnight, 2X sample buffer was added, boiled for 10 minutes, SDS-PAGE, and analyzed by immunoblot.
  • Beads were buffer A, buffer B (8 M urea, 0.1 M Na 2 PO 4 / NaH 2 PO 4 , 0.01 M Tris-Cl [pH8.0], and 10 mM ⁇ -mercaptoethanol), buffer C (8 M urea, After washing with 0.1 M Na 2 PO 4 / NaH 2 PO 4 , 0.01 M Tris-Cl [pH6.3], and 10 mM ⁇ -mercaptoethanol, the proteins attached to the beads were buffer D (200 mM imidazole, 0.15 M). Tris-Cl [pH 6.7], 30% glycerol, 0.72 M ⁇ -mercaptoethanol, and 5% SDS). And analyzed by immunoblot.
  • Denatured immunoprecipitation for endogenous ubiquitination assay Raw264.7 cells were broken in denaturing buffer (50 mM Tris-HCl [pH 7.5], 70 mM ⁇ -Mercaptoethanol, and 1% SDS) and boiled for 5 minutes at 95 ° C. After dilution with non-denaturing lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, and 1% Triton X-100), immunoprecipitation was carried out using p65 antibody. Samples were analyzed by immunoblot using FK2 antibody.
  • denaturing buffer 50 mM Tris-HCl [pH 7.5], 70 mM ⁇ -Mercaptoethanol, and 1% SDS
  • non-denaturing lysis buffer 20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EG
  • Immunofluorescence Assay Lsd1 ⁇ / ⁇ MEFs were grown on cover slips coated with 1% gelatin. Cells were washed twice with PBS for immunofluorescence experiments and fixed for 2 minutes with 2% formaldehyde. The cells were washed twice with PBS dissolved in 0.1% triton-X 100. Cells were incubated in 0.5% triton-X 100 dissolved PBS for 5 minutes to infiltrate the antibody and then blocked with blocking buffer (5% BSA in 0.1% PBS-T) to prevent nonspecific binding of the antibody. .
  • CLP cecal ligation and puncture
  • RC2 rodent gas anesthesia machine
  • Forme 2% isoflurane
  • JW pharmaceutical 2% isoflurane
  • Anesthesia was first anesthetized in the breathing chamber and through the facial mask to allow for natural breathing during surgery.
  • CLP-induced sepsis was performed as previously described (Wang et al., Nat. Med. 2004; 10: 1216-1221).
  • a 2 cm midline incision was placed to expose the cecum and adjacent intestines.
  • the cecum was then tightly bound to 5.00 mm from the end of the cecum using 3.0-silk sutures and punctured using a 22 gauge needle.
  • the cecum was then gently squeezed out and a small amount of feces was drained out of the perforation and returned to place in the abdominal cavity.
  • the open surgical site was closed with a 4.0-silk suture.
  • Hematoxylin and eosin (H & E) staining Lung samples were extracted from each mouse to analyze histological changes in mouse lungs, washed in PBS three times to remove blood and 4 ° C. in 4% formaldehyde solution (Junsei) Fixed for 20 hours. After fixation the samples were dehydrated with ethanol series and paraffin embedded. Sections were made 4 ⁇ m thick and placed on slides. Slides were deparaffinized and rehydrated in a 60 ° C. oven and then stained with hematoxylin (Sigma). Slides were soaked three times in acidic alcohol to remove excess staining and counterstained with eosin (Sigma). Then washed with ethanol series, soaked in xylene and mounted. Blind analysis was performed by light microscopy to evaluate lung structure, tissue edema and infiltration of inflammatory cells in lung tissue.
  • Lsd1 SA / SA mice Wild-type (WT) and Lsd1 SA / SA mice were used to analyze LPS-induced inflammation and acute lung injury mouse models. Histopathological examination confirmed that WT mice injected with LPS showed severe lung and alveolar damage, but the response was significantly weakened in Lsd1 SA / SA mice (FIG. 1A). 80% of WT mice died within 66 hours of LPS administration, but only 30% of Lsd1 SA / SA mice died within the same time period (FIG. 1B).
  • Lsd1 SA / SA mice are less likely to develop LPS-induced inflammatory reactions, acute lung injury, and thus have low mortality.
  • LPS treatment of bone marrow-derived macrophages (BMDM) from WT mice induced PKC ⁇ and LSD1 phosphorylation
  • BMDM from Lsd1 SA / SA mice induced phosphorylation of PKC ⁇ but not LSD1 phosphorylation. It was confirmed (Fig. 1C).
  • BMDM bone marrow-derived macrophages
  • phosphorylation of LPS-induced LSD1 was also detected in lung tissue lysate in WT mice.
  • mice were pre-injected with Go6976 and injected with LPS it was also confirmed that phosphorylation of LSD1 was completely blocked (FIG. 1D).
  • RNA-sequencing was performed after LPS treatment on BMDM extracted from WT and Lsd1 SA / SA mice (FIG. 2A).
  • LPS treatment total transcription amounts of WT and Lsd1 SA / SA BMDM were compared to identify a total of 3,558 differently expressed genes (hereinafter referred to as DEGs) by unsupervised hierarchical cluster analysis (see experimental method). Of these genes, we were particularly interested in the gene pool (cluster1 in FIG.
  • LSD1 Since p65 was identified as a major TF (transcription factor) regulated by phosphorylated LSD1, we investigated whether LSD1 binds to p65 in response to LPS. It was confirmed in BMDM cells that LSD1 binds to p65 in the nucleus upon LPS treatment (FIG. 3A). Since LSD1 was phosphorylated in response to LPS, it was assumed that phosphorylated LSD1 would bind to p65. In vitro kinase experiments were performed with p65 as a substrate because PKC ⁇ is likely to directly phosphorylate p65 as well as LSD1. PKC ⁇ did not phosphorylate p65 (FIG. 3B).
  • LSD1 phosphorylation is important for binding to p65.
  • GST pulldown analysis was performed using LSD1 phosphorylated in vitro. Prior to GST pulldown analysis, kinase experiments using PKC ⁇ were performed to obtain phosphorylated LSD1. GST pulldown analysis revealed that p65 binds directly to phosphorylated LSD1 and that treatment with phosphatase almost completely eliminates binding between LSD1 and p65 (FIG. 3C). This data indicates that LSD-induced LSD1 phosphorylation by PKC ⁇ is essential for binding to p65 in the nucleus.
  • histone H3K9 acetylation levels increased on the Mcp-1 and Il-6 promoters in WT BMDM upon LPS treatment, but not on Lsd1 SA / SA BMDM (FIG. 3D). It is presumed that histone H3K9 acetylation did not increase because p65, the TF in Lsd1 SA / SA BMDM, was not recruited to the target promoter after LPS treatment. Furthermore, treatment of Go6976 in Raw264.7 macrophages almost completely blocked histone H3K9 acetylation, LSD1 and p65 recruitment to Mcp-1 and Il-6 promoters (FIG. 3E). These data indicate that phosphorylation of LPS-induced LSD1 is important for binding to p65, and that LSD1 and p65 recruitment of some NF- ⁇ B target promoters controls the phosphorylation of LSD1.
  • LSD1 phosphorylation is important for recruiting p65 to the target promoter properly in response to LPS
  • the study focused on how LSD1 regulates p65. It was found that p65 was methylated by the SET7 / 9 methylase by the K314 / 315 site and that methylation of p65 caused degradation of p65 (Yang et al., EMBO J. 2009; 28: 1055-1066). However, the identity of demethylases responsible for p65 demethylation and thus stabilization of p65 protein is unknown. We first investigated whether LSD1 is responsible for the demethylation of p65.
  • LSD1 K661A (KA) mutant Prior to in vivo demethylation analysis using the LSD1 K661A (KA) mutant lacking enzyme activity, the LSD1 KA mutant was first identified for its effect on binding to p65. LSD1 WT and LSD1 KA mutants showed similar binding to p65 upon LPS treatment, but LSD1 S112A (SA) mutants with phosphorylation defects failed to bind to p65 (FIG. 4A). Thereafter, demethylation analysis of p65 was performed and found that methylation of p65 by SET7 / 9 was eliminated by LSD1 WT while SA or KA mutants of LSD1 could not eliminate p65 methylation (FIG. 4B).
  • SA LSD1 S112A
  • the LSD1 SA mutant had demethylation enzyme activity similar to WT, but failed to demethylate p65 because binding to p65 requires phosphorylation of LSD1.
  • TFs are lineage specific transcriptional regulators. All TFs cooperate with each other to regulate LPS-induced transcriptional responses.
  • RNA-seq analysis de novo motif analysis using the Cluster1 gene confirmed PU.1 and C / EBP as well as p65 as the major TF (FIG. 2D).
  • Cebpd Cebpd as one of the genes induced in LSD1 phosphorylation dependent manner in cluster 1. It was hypothesized that LSD1 phosphorylation regulates subsequent signal activation and amplification of the inflammatory response, since phosphorylation of LSD1 was induced 60 minutes after high doses of LPS, at which point Class I TF and Class II TF were relayed. Therefore, expression of inflammatory genes in WT and Lsd1 SA / SA BMDM was analyzed over time of LPS treatment.
  • LSD1 WT gave Lsd1 put - / - showed a p65 protein stabilization in the nucleus only MEFs LSD SA or semi Lsd1 put KA mutation - / - did not the MEFs (Fig. 6B).
  • immunoblot analysis was performed on nuclear fractions treated with Go6976 or GSK-LSD1. Treatment with Go6976 or GSK-LSD1 failed to stabilize p65 at 60 minutes after LPS treatment in WT BMDM (FIG.
  • mice were injected with Go6976 or GSK-LSD1, the lung tissue was nuclear fractionated, and immunoblot analysis was performed.
  • LPS-induced systemic inflammation is much lower in Lsd1 SA / SA mice than in WT controls (FIGS. 1A and 1B), we sought to reaffirm previous findings in more severe sepsis mouse models.
  • LPS infusion and surgery to bind and puncture the caecum (CLP) is a mouse model widely used to mimic human sepsis in rats.
  • LPS injection mimics the early clinical characteristics of sepsis to induce systemic inflammation, but the CLP-induced sepsis model is a model that exhibits a cytokine profile similar to human sepsis, with a defecation secreting an immune response.
  • Separation induced by various strains was induced through CLP surgery in WT and Lsd1 SA / SA mice of matching age, sex and weight.
  • WT mice had a mortality rate of 100% within 90 hours after CLP surgery, whereas 50% of Lsd1 SA / SA mice survived 144 hours after CLP surgery (FIG. 7B).
  • PKC ⁇ or LSD1 activity reduced mortality and lung damage.
  • Inflammatory responses are the main defense against invading pathogens and must be maintained until the pathogens are completely cleared to prevent the development of the disease caused by the pathogen.
  • the inflammatory response also has a deleterious effect due to the activation of excessive inflammation, such as sepsis, so in order to avoid this, it must be terminated in a timely manner after the pathogen is removed. Therefore, understanding the molecular mechanisms of how excessive inflammatory responses are detected and maintained is essential to mitigate sepsis-induced mortality or organ damage.
  • the evidence that LSD1 phosphorylation by PKC ⁇ plays an important role in maintaining the protein stability of p65 and sustained inflammatory response after excessive LPS treatment.
  • Lsd1 SA / SA mouse mice In vivo studies using Lsd1 SA / SA mouse mice have elucidated the function of LSD1 phosphorylation by PKC ⁇ in severe inflammatory responses. Lsd1 SA / SA mice that do not undergo phosphorylation of LSD1 significantly reduced excessive inflammatory response and tissue damage in sepsis shock. Go6976 or GSK-LSD1 treatment also significantly reduced excessive systemic inflammatory responses, demonstrating that PKC ⁇ activity and LSD1 activity are critical for activation of the inflammatory response.
  • the PKC ⁇ -LSD1-NF- ⁇ B signaling cascade was found to play an important role in amplifying the inflammatory response and inducing inflammatory diseases including sepsis in response to excessive inflammatory stimuli.
  • LSD1 phosphorylation dependent genes responding to high doses of LPS include genes associated with sepsis and genes associated with Class II / III TF.
  • the IL-6 and Mcp-1 genes of cluster 1 are well known genes associated with sepsis (Rincon, Trends Immunol. 2012; 33: 571-577).
  • Cebpd ⁇ / ⁇ mice show less LPS-induced acute lung injury compared to WT and show reduced Il-6 gene expression, which is a phenotype similar to that of Lsd1 SA / SA mice.
  • PKC ⁇ enters the nucleus and phosphorylates LSD1 upon excessive inflammatory stimuli
  • PKC ⁇ connects the cytoplasm to the nucleus and recognizes and transmits an external excessive inflammatory stimulus for further activation of the inflammatory response. I think it functions as.
  • Excessive inflammatory stimuli have found that LSD1 becomes a substrate of PKC ⁇ and functions as a demethylase of p65, increasing the stabilization of the p65 protein.
  • inhibition of LSD1 activity with GSK-LSD1 or PKC ⁇ activity with Go6976 results in less tissue damage and higher survival by CLP surgery. Proved.
  • the present invention indicates that the PKC ⁇ -LSD1-NF- ⁇ B signal transduction axis can be a potential therapeutic target in inflammatory diseases.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present application discloses a method for screening an inflammatory response regulator targeting PKCα-LSD1-NF-κB. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability of the p65 protein. Therefore, the method according to the present application can be advantageously used for developing a therapeutic agent for treating systemic inflammatory diseases including sepsis by regulating PKCα or LSD1 activity.

Description

PKCα-LSD1-NFκB 경로를 표적으로 하는 염증반응 조절제 스크리닝 방법용도Screening method for inflammatory response modulators targeting the PKCα-LSD1-NFκB pathway
염증조절 기전을 기반으로 하는 치료제 개발과 관련된 기술분야이다.It is a technical field related to the development of therapeutic agents based on inflammation control mechanisms.
NF-κB 신호에 의해 매개되는 염증 반응은 병원균의 침입에 대한 숙주의 방어에 필수적이다. NF-κB 신호 전달의 조절 메커니즘은 잘 연구되었지만, 이러한 염증 반응의 후성적 조절은 잘 알려져 있지 않았다. Inflammatory responses mediated by NF-κB signals are essential for the host's defense against pathogen invasion. The regulatory mechanisms of NF-κB signaling are well studied, but epigenetic regulation of this inflammatory response is not well known.
특히 염증 반응으로 인한 패혈증은 치사율이 70%에 이르고 중환자실 입원환자의 20%를 차지하며 전 세계적으로 하루에만 1500명 이상 사망하는 심각한 질환이다. 하지만 다른 질병에 비해 사망률이 상당히 높음에도 불구하고 아직까지 특별한 치료약이 개발되지 못하고 있다. 현재 판매중인 유일한 패혈증 치료제는 다국적 제약사 릴리(Eli Lilly CO.)의 지그리스(Xigris)가 있다. 지그리스는 활성화된 단백질 C와 유사한 물질로 염증을 낮추고, 혈액응고를 완화시킨다. 이 치료제의 경우 2001년 감염으로 인한 높은 사망위험이 있는 성인 환자들에게 사용이 승인됐었으나, 소아 임상 실험의 결과 지그리스(Xigris)는 중증 혈액 감염 소아에 효과가 없으며 머리 출혈등의 심각한 부작용을 유발하여 임상 실험을 중단시킨 상태이다. In particular, sepsis due to an inflammatory response is a serious disease with a mortality rate of 70%, accounting for 20% of ICU inpatients and more than 1500 deaths per day worldwide. However, despite the relatively high mortality rate compared to other diseases, no special treatment has been developed. The only treatment for sepsis currently on sale is Xigris, a multinational pharmaceutical company, Lilly CO. Ziglis is a substance similar to activated protein C that lowers inflammation and relieves blood clotting. The drug was approved for use in adult patients at high risk of death due to infection in 2001. However, pediatric clinical trials have shown that Xigris is not effective for children with severe blood infections and has severe side effects such as head bleeding. Causing clinical trials to cease.
최근에는 패혈증에서 보이는 초기 과도한 선천성 면역 반응이 면역 반응 불능(immunoparalysis)을 유도하고, 대다수의 사망 환자의 경우에 초기 과도한 면역 반응에 의한 사망보다는 일차 병원균 혹은 이차 병원균에 대항한 면역 반응 불능에 의해 사망하는 것으로 보고된 바 있다(Docke, W. D. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nature Med. 3, 678-81 (1997)). 이러한 결과는 초기 염증성 싸이토카인의 억제기술만으로는 패혈증의 치료가 한계가 있음을 나타낸다. In recent years, the initial excessive innate immune response seen in sepsis induces immunoparalysis and, in the majority of deaths, deaths due to inability to fight primary or secondary pathogens rather than death due to initial excess immune responses. (Docke, WD et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nature Med. 3, 678-81 (1997)). These results indicate that the treatment of sepsis is limited only by the early inflammatory cytokine suppression technology.
따라서 안전하고 높은 치료효과를 얻을 수 있는 다양한 기전에 근거한 새로운 약제 개발이 절실한 상황이다. Therefore, there is an urgent need to develop new drugs based on various mechanisms to obtain safe and high therapeutic effects.
패혈증은 엔도톡신(endotoxin)과 같은 박테리아 생성물이 Toll 유사 수용체(Toll-like receptor)에 결합하여 시작되고, 아답터 분자를 통해 시그널링이 중계되고, NF-κB(nuclear factor kappa-light-chain-enhancer of activated Bcells) 포함하는 전사 인자(TF)까지 신호가 이어지는 것이 알려져 있다(Abraham, J. Infect. Dis. 2003; 187: S364-S369; Tiruppathi et al., Nat. Immunol. 2014; 15: 239247). 전신성 염증 질환에서 염증 관련된 분자 중 하나인 NF-κB 신호 전달은 염증 반응을 미세하게 조정하기 위해 반드시 정교하게 조절되어야 한다(Caldwell et al., Genes Dev. 2014; 28: 2120-2133). Sepsis begins when bacterial products such as endotoxin bind to Toll-like receptors, signaling is relayed through adapter molecules, and nuclear factor kappa-light-chain-enhancer of activated Bcells) is known to follow the signal up to and including the transcription factor (TF) (Abraham, J. Infect. Dis. 2003; 187: S364-S369; Tiruppathi et al., Nat. Immunol. 2014; 15: 239247). NF-κB signaling, one of the inflammation-related molecules in systemic inflammatory diseases, must be carefully regulated to fine tune the inflammatory response (Caldwell et al., Genes Dev. 2014; 28: 2120-2133).
미국 공개특허공보 제2009-0317833호는 TLR4(toll-like receptor) 세포내 영역에 결합하는 물질의 스크리닝방법에 관한 것으로, NF-κB에 의해 전사가 조절되는 TLR4에 결합하여 TLR4에 대한 신호전달 경로를 차단하여 염증을 조절하는 기전을 개시한다. US Patent Publication No. 2009-0317833 relates to a method for screening a substance that binds to a TLR4 (toll-like receptor) intracellular region, a signaling pathway for TLR4 by binding to TLR4, whose transcription is regulated by NF-κB. Blocking mechanisms to initiate inflammation.
그러나, 면역 체계가 병원균 노출의 강도와 노출의 지속 기간을 어떻게 감지하는지, 또는 어떤 신호 전달 경로 또는 신호 캐스케이드가 추가적인 활성화를 결정하는지에 대한 분자적 메커니즘을 근거로 한 치료제의 개발이 필요하다. However, there is a need for the development of therapeutics based on molecular mechanisms of how the immune system detects the intensity and duration of exposure of pathogens, or which signal transduction pathways or signal cascades determine additional activation.
본원은 새로운 염증반응 유발 기전에 근거한 치료제 스크리닝 방법을 제공하고자 한다.The present application seeks to provide a therapeutic screening method based on a novel inflammatory trigger mechanism.
한 양태에서 본원은 PCKa, LSD1 및 NF-κB을 발현하는 세포를 제공하는 단계; 상기 세포에 NF-κB 매개된 염증반응을 유발할 수 있는 자극을 처리하는 단계로, 상기 처리에 의해 상기 세포에서 PCKα->LSD1-> NF-κB 경로에 의한 염증반응이 유발되고, 상기 세포에 상기 경로에 의한 염증반응을 억제할 것으로 기대되는 시험물질을 처리하는 단계; 및 상기 처리 결과, 상기 시험물질로 처리되지 않은 대조군과 비교하여 상기 시험물질로 처리된 세포에서 상기 경로에 의한 염증반응이 억제된 경우, 상기 시험물질을 염증반응 억제 후보물질로 선별하는 단계를 포함하며, 상기 경로에 의한 상기 염증반응의 억제는 상기 LSD1의 인산화 감소, 상기 NF-κB의 p65 서브유닛의 탈메틸화의 억제 또는 상기 LSD1과 상기 p65 서브유닛의 결합 감소 중 하나 이상으로 측정되는 것인, NF-κB 신호에 의해 매개되는 염증 반응 억제제 스크리닝 방법을 제공한다. In one aspect provided herein is a method of providing a cell expressing PCKa, LSD1 and NF-κB; Treating the cells with a stimulus capable of inducing an NF-κB mediated inflammatory response, wherein the treatment causes an inflammatory response by the PCKα->LSD1-> NF-κB pathway in the cells, Treating a test substance that is expected to inhibit an inflammatory response by the pathway; And when the inflammatory response by the pathway is inhibited in the cells treated with the test substance as a result of the treatment, compared with the control group not treated with the test substance, selecting the test substance as an inflammatory inhibition candidate. Inhibition of the inflammatory response by the pathway may include reducing phosphorylation of LSD1, demethylation of p65 subunit of NF-κB or binding of LSD1 and p65 subunit. Provided are methods for screening inflammatory response inhibitors mediated by NF-κB signals, measured in at least one of the decreases.
일 구현예에서 상기 PCKα->LSD1-> NF-κB 경로에 의한 NF-κB 매개된 염증반응을 유발할 수 있는 자극은 자극을 수용하는 수용체는 상이하나, PCKα->LSD1-> NF-κB 경로 NF-κB에 의한 경로를 활성화 또는 유발 또는 촉발 및 증폭시킬 수 있는 자극으로, TNFα(tumor necrosis factorα), IL-1β(interleukin 1-beta), PAMP(pathogen-associated molecular pattern) 또는 박테리아 LPS(lipopolysaccharides)와 같은 면역상황 특이적으로 작용하는 자극이다. In one embodiment, the stimuli that can induce NF-κB mediated inflammatory responses by the PCKα-> LSD1-> NF-κB pathway are different receptors that accept stimuli, but the PCKα-> LSD1-> NF-κB pathway NF Stimulation that activates, induces, or triggers and amplifies pathways by -κB, such as tumor necrosis factorα (TNFα), interleukin 1-beta (IL-1β), pathogen-associated molecular pattern (PAMP), or bacterial LPS (lipopolysaccharides) It is a stimulus that works specifically for the immune situation.
일 구현예에서 본원에 따른 방법에 사용될 수 있는 세포는 대식세포 예를 들면 마우스 대식세포 유래인 Raw 264.7(mouse leukemic monocyte-macrophage) 또는 BMDM(bone marrow-derived macrophage)이 사용된다. In one embodiment the cells that can be used in the method according to the present invention are used macrophage, such as mouse leukmic monocyte-macrophage (264.7) or bone marrow-derived macrophage (BMDM) derived from mouse macrophages.
일 구현예에서 본원에 따른 방법에서 PCKa, LSD1 및 NF-κB을 발현하는 세포 대신에, 또는 상기 세포는 인간을 제외한 동물모델로서 제공될 수 있다. In one embodiment instead of the cells expressing PCKa, LSD1 and NF-κB in the method according to the invention, or the cells may be provided as an animal model except human.
본원에 따른 방법에 의해 선별된 후보물질은 NF-κB 매개된 염증질환의 치료 예를 들면 만성 염증 질환 패혈증, 자가면역질환 또는 류마티스관절염 치료제로 사용될 수 있다. Candidates selected by the method according to the invention can be used for the treatment of NF-κB mediated inflammatory diseases such as chronic inflammatory disease sepsis, autoimmune diseases or rheumatoid arthritis.
NF-κB 신호에 의해 매개되는 염증 반응은 병원균의 침입에 대한 숙주의 방어에 필수적이다. NF-κB 신호 전달의 조절 메커니즘은 잘 연구되었지만, 염증 반응의 후성적 조절은 잘 알려져 있지 않았다. 본 발명에서는 염증 반응의 활성화와 증폭에 PKCα-LSD1-NF-κB이라는 새로운 신호 전달 축이 중요하다는 것을 확인하였다. 과도한 염증성 자극에 반응하여, PKCα는 핵으로 이동하여 LSD1을 인산화 시킨다. LSD1 인산화는 p65 결합에 필요하며, p65의 탈메틸화를 촉진하여 p65 단백질의 안정성을 향상시킨다. 본원에 따르면 Lsd1SA/SA 마우스를 사용한 LSD1 인산화의 제거 및 야생형 마우스에서 PKCα 또는 LSD1 활성의 억제가 패혈증이 유발한 염증성 폐 손상 및 사망률을 감소시키는 것으로 나타났다. 이는 PKCα-LSD1-NF-κB 신호 전달 캐스케이드가 염증 반응의 제어에 중요한 것을 나타내고, 이러한 신호 전달을 표적으로 하는 약물의 개발은 패혈증을 포함한 전신성 염증 질환의 치료제 개발에 유용하게 사용될 수 있다. Inflammatory responses mediated by NF-κB signals are essential for the host's defense against pathogen invasion. The regulatory mechanism of NF-κB signaling is well studied, but epigenetic regulation of the inflammatory response is not well known. In the present invention, it was confirmed that a new signal transduction axis called PKCα-LSD1-NF-κB is important for the activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα migrates to the nucleus to phosphorylate LSD1. LSD1 phosphorylation is required for p65 binding and promotes demethylation of p65 to enhance the stability of p65 protein. Removal of LSD1 phosphorylation using Lsd1 SA / SA mice and inhibition of PKCα or LSD1 activity in wild-type mice has been shown to reduce inflammatory lung injury and mortality caused by sepsis. This indicates that the PKCα-LSD1-NF-κB signaling cascade is important for the control of the inflammatory response, and the development of drugs that target such signaling can be useful in the development of therapeutic agents for systemic inflammatory diseases including sepsis.
도 1은 LSD1이 PKCα에 의하여 염증신호에 반응하여 인산화 되는 것을 나타낸다 (A) 야생형과 Lsd1SA/SA 마우스에 PBS 혹은 LPS(몸무게 1kg 당 10mg 주사)를 복강내 주사하고 6시간 이후 폐의 H&E 염색한 그림(각 그룹당 6마리씩 실험). 스케일 바, 100μm. 보여지는 이미지는 세 번의 독립실험을 통한 대표이미지이다. (B) 나이, 무게가 유사한 야생형(11마리)과 Lsd1SA/SA 마우스(10마리)에 LPS를 주사한 이후 72시간 동안 생존율을 모니터하였다. (**p<0.01, log-rank test) (C) 야생형과 Lsd1SA/SA 마우스에서 BMDM을 추출하여, LPS를 2시간 동안 처리한 이후(혹은 처리하지 LPS를 처리하지 않거나) 표시된 항체로 면역 블랏하였다. (D) 야생형과 Lsd1SA/SA 마우스(그룹당 6마리)에서 추출한 폐 조직의 면역 블랏 데이터. 마우스는 LPS 복강주사(몸무게 1kg 당 10mg 주사, 주사 후 6시간 이후에 실험함) 1시간 전에 Go6976 (몸무게 1kg당 1mg주사, corn oil에 녹임) 혹은 Go6976의 용매인 corn oil을 주사하였다. (E) 표시된 시간동안 LPS를 처리한 이후, 야생형 BMDM에서 면역블랏을 한 결과이다. tubilin 항체는 세포질 단백질의 로딩 컨트롤로 사용되었다. laminA/C항체는 핵 단백질의 로딩컨트롤로 사용되었다. (F) BMDM 세포에 Go6976을 6시간 동안 처리하거나 처리하지 않은 상태에서 LPS를 2시간 동안 처리하였다. 그 이후 핵 단백질만 분리 추출하여 PKCα와 LSD1의 면역침강실험을 수행하였다. (G) 표시된 시간동안 BMDM에 LPS를 처리하여 핵단백질만 분리하여 표시된 항체로 면역블랏 실험을 수행하였다. (H) LPS를 표시된 농도에 따라 2시간 동안 처리한 이후 BMDM의 핵 단백질만 분리하여 표시된 항체로 면역블랏 실험을 수행하였다.1 shows that LSD1 is phosphorylated in response to inflammatory signals by PKCα (A) H & E staining of lungs after 6 hours of intraperitoneal injection of PBS or LPS (10 mg / kg body weight) into wild type and Lsd1 SA / SA mice One picture (6 experiments in each group). Scale bar, 100 μm. The image shown is representative of three independent experiments. (B) Survival was monitored for 72 hours after LPS injection into wild-type (11 mice) and Lsd1 SA / SA mice (10 mice) of similar age and weight. (** p <0.01, log-rank test) (C) BMDM was extracted from wild-type and Lsd1 SA / SA mice, treated with LPS for 2 hours (or not treated with LPS) or immunized with the indicated antibody. Blot. (D) Immune blot data of lung tissue extracted from wild type and Lsd1 SA / SA mice (6 per group). Mice were injected with Go6976 (1 mg per kg body weight, dissolved in corn oil) or corn oil, a solvent of Go6976, 1 hour before LPS intraperitoneal injection (10 mg injection per kg body weight, tested 6 hours after injection). (E) Immunoblot in wild-type BMDM after LPS treatment for the indicated time. Tubilin antibody was used as a control for loading of cytoplasmic proteins. laminA / C antibodies were used as loading controls for nuclear proteins. (F) BMDM cells were treated with LPS for 2 hours with or without Go6976 for 6 hours. After that, only nuclear protein was isolated and extracted and immunoprecipitation experiments of PKCα and LSD1 were performed. (G) Immunoblot experiments were performed with the indicated antibodies by separating LPS from BMDM for the indicated time. (H) After treatment with LPS for 2 hours according to the indicated concentration, only the nuclear protein of BMDM was isolated and immunoblot experiments were performed with the indicated antibody.
도 2는 LPS로 유발된 LSD1의 인산화는 게놈 전체 수준에서 NF-κB 표적 유전자의 활성화에 필요하다는 것을 나타낸다 (A) RNA 시퀀싱 분석의 전략을 보여주는 순서도. (B) 계층적 클러스터링 결과 3,558개의 다르게 발현하는 유전자 (Differentially Expressed Gene 이하, DEG)를 확인하였다. 전사시작위치(Transcriptional Sart Site, 이하 TSS) +/- 2.5kbps 주변에 p65 피크의 유무를 그렸다. (C) 클러스터1 유전자의 GO(gene ontology) 분석을 통하여 사이토카인의 생산과 염증반응과 관련된 유전자가 클러스터1 유전자 풀에서 유의성 있게 많이 분포함을 확인하였다. (D) 클러스터1 내의 유전자의 TSS 근처에 p65 피크에 대한 De novo motif 분석. Hypergeometric p-값을 계산하였다. (E) 야생형과 Lsd1SA/SA 마우스의 BMDM에서 LPS 2시간 처리 유무에 따른 LSD1 인산화 의존 유전자의 quantitative RT-PCR 결과를 분석 (F) 야생형과 Lsd1SA/SA 마우스 (각 그룹당 6마리)의 폐 조직에서 LPS 6시간 복강주사 유무에 따른 LSD1 인산화 의존 유전자의 quantitative RT-PCR 결과 분석 (G) 야생형 마우스는 LPS 복강주사 (몸무게 1kg 당 10mg 주사, 주사 후 6시간 이후에 실험함) 1시간 전에 Go6976 (몸무게 1kg당 1mg주사, corn oil에 녹임) 혹은 Go6976의 용매인 corn oil을 주사하였다 (그룹당 6마리). 마우스의 폐 조직에서 LSD1 인산화 의존 유전자의 quantitative RT-PCR 결과 분석. 데이터는 평균± 표준편차로 표현되었다; n=3, *p<0.05, ***p<0.001 (Two-way ANOVA).2 shows that phosphorylation of LSD1 induced by LPS is required for activation of NF-κB target genes at the genome-wide level. (A) Flowchart showing strategy of RNA sequencing analysis. (B) hierarchical clustering result, 3,558 differently expressed genes (Differentially Expressed Gene or less, DEG) were identified. Transcriptional Sart Site (TSS) The presence or absence of the p65 peak around +/- 2.5kbps was drawn. (C) Gene ontology (GO) analysis of the cluster 1 genes revealed that genes involved in cytokine production and inflammatory responses were significantly distributed in the cluster 1 gene pool. (D) De novo motif analysis for p65 peak near TSS of gene in cluster 1. Hypergeometric p-values were calculated. (E) Analyzing quantitative RT-PCR results of LSD1 phosphorylation dependent gene with or without LPS 2 hours treatment in BMDM of wild type and Lsd1 SA / SA mice (F) Lungs of wild type and Lsd1 SA / SA mice (6 per group) Analysis of quantitative RT-PCR results of LSD1 phosphorylation dependent gene with or without LPS 6-hour intraperitoneal injection in tissues (1mg per kg body weight, dissolved in corn oil) or corn oil, a solvent of Go6976 (6 per group). To analyze the quantitative RT-PCR results of LSD1 phosphorylation-dependent genes in lung tissue of mice. Data are expressed as mean ± standard deviation; n = 3, * p <0.05, *** p <0.001 (Two-way ANOVA).
도 3은 LPS 유발 LSD1 인산화가 표적 유전자의 프로모터에 p65를 모집하는 데 필요하다는 것을 나타낸다 (A) BMDM 세포에서 LPS의 2시간 처리하고, p65와 LSD1의 결합을 핵단백질만 추출한 이후 면역침강실험을 통하여 수행하였다. (B) PKCα의 야생형과 dominant negative 형태를 사용한 in vitro 키나아제 실험. GST-LSD1과 GST-p65를 E. coli에서 정제하여 기질로 사용하였다. (C) In vitro GST pulldown 실험은 인산화된 GST-LSD1(GST pulldown 실험이 수행되기 전에 PKCα를 사용한 키나아제 실험이 선행되었음)와 p65를 사용하여 수행되었다. 이때, 1,000 unit의 λ-posphatase 유무에서 실험이 수행되었다. (D) 야생형과 Lsd1SA/SA 마우스의 BMDM에서 LPS 2시간 처리에 따른, LSD1 인산화 의존 표적 프로모터에서의 ChIP 실험. (E) 미리 6시간 동안 Go6976을 처리한 Raw264.7 세포에서 LPS 2시간 처리하고 LSD1 인산화 의존 표적 프로모터에서의 ChIP 실험을 수행. 데이터는 평균± 표준편차로 표현되었다; n=3, **p<0.01, ***p<0.001 (Two-way ANOVA) (D, E).Figure 3 shows that LPS-induced LSD1 phosphorylation is required for recruiting p65 to the promoter of the target gene (A) 2 hours treatment of LPS in BMDM cells, immunoprecipitation experiment after extraction of p65 and LSD1 binding only nuclear protein It was performed through. (B) In vitro kinase experiments using wild and dominant negative forms of PKCα. GST-LSD1 and GST-p65 were purified from E. coli and used as substrate. (C) In vitro GST pulldown experiments were performed using phosphorylated GST-LSD1 (which preceded the kinase experiment with PKCα prior to the GST pulldown experiment) and p65. At this time, the experiment was performed in the presence or absence of λ-posphatase of 1,000 units. (D) ChIP experiment in LSD1 phosphorylation dependent target promoter following LPS 2-hour treatment in BMDM of wild type and Lsd1 SA / SA mice. (E) LPS 2 hours in Raw264.7 cells treated with Go6976 for 6 hours in advance and ChIP experiments on LSD1 phosphorylation dependent target promoter. Data are expressed as mean ± standard deviation; n = 3, ** p <0.01, *** p <0.001 (Two-way ANOVA) (D, E).
도 4는 LSD1에 의한 p65의 탈메틸화가 p65의 단백질안정화를 증대시킨다는 것을 보여준다 (A) Raw264.7 세포에 LSD1의 flag tag을 가지고 있는 야생형 (WT), SA, 그리고 KA 돌연변이를 트랜스펙션하고 MG132를 4시간 처리한 이후, LPS를 2시간 동안 추가 처리하였다. 이 세포의 핵단백질만 추출하여 p65와 WT, SA, KA간의 면역침강 실험을 수행하였다. (B) Raw264.7 세포에 MG132를 4시간 처리하고 LPS를 2시간 동안 추가하여, 핵단백질만 추출한 이후 in vivo 탈메틸화 실험을 수행하였다. p65항체를 사용한 면역침강 실험 이후, p65의 메틸 특이 항체를 이용하여 p65의 메틸화를 탐지하였다. (C) 세포 lysate에서 기질인 flag-p65를 정제하였고, 메틸화효소로서 GST-SET7/9을 E. coli에서 정제하였으며, 탈메틸화효소인 His-LSD1은 E. coli에서 정제하여 in vitro 탈메틸화실험을 수행하였다. 탈메틸화실험 전에 인산화 된 LSD1을 얻기 위하여 PKCα를 사용한 in vitro 키나아제실험이 선행되었다. 반응물은 SDS-PAGE 이후, p65 K314/315 메틸화를 인지하는 항체를 사용하여 p65의 메틸화를 탐지하였다. (D) MG132가 4시간 동안 미리 처리된 야생형과 Lsd1SA/SA 마우스의 BMDM에 LPS 추가 2시간 처리하여 핵단백질만 추출한 이후 표기된 항체를 사용하여 면역블랏 실험을 수행. (E) Raw264.7 세포에 LSD1의 flag tag을 가지고 있는 야생형 (WT), SA, 그리고 KA 돌연변이를 트랜스펙션하고 MG132를 4시간 처리한 이후 LPS를 2시간 동안 추가 처리하였다. 이 단백질 추출물을 Ni2+-NTA bead를 사용하여 pulldown하였다. p65의 유비퀴틴화는 p65항체를 통하여 검출되었다. (F) MG132를 4시간 처리한 이후 LPS를 2시간 동안 추가 처리한 Raw264.7 세포에서 p65항체를 사용하여 면역 침강하였다. p65의 유비퀴틴화는 FK2항체를 통하여 검출되었다. (G) LSD1인산화를 매개한 p65의 탈메틸화가 p65의 안정화를 야기한다는 내용의 도식.4 shows that demethylation of p65 by LSD1 enhances protein stabilization of p65. (A) Raw264.7 cells transfected wild-type (WT), SA, and KA mutations with a flag tag of LSD1. After 4 hours of MG132 treatment, LPS was further treated for 2 hours. Only nuclear proteins of these cells were extracted and immunoprecipitation experiments were performed between p65 and WT, SA and KA. (B) Raw264.7 cells were treated with MG132 for 4 hours and LPS was added for 2 hours to extract only nuclear proteins, followed by in vivo demethylation experiments. After immunoprecipitation experiments with p65 antibodies, methylation of p65 was detected using methyl specific antibodies of p65. (C) Purified flag-p65 substrate in cell lysate, GST-SET7 / 9 as methylase, purified in E. coli, and demethylase His-LSD1 purified in E. coli, in vitro demethylation experiment. Was performed. Prior to demethylation, in vitro kinase experiments using PKCα were used to obtain phosphorylated LSD1. The reaction detected the methylation of p65 after SDS-PAGE using an antibody that recognizes p65 K314 / 315 methylation. (D) Immunoblot experiments were performed using the indicated antibodies after extracting only the nuclear protein by treating LMG for 2 hours with BMDM of wild type and Lsd1 SA / SA mice pretreated with MG132 for 4 hours. (E) Raw264.7 cells were transfected with wild-type (WT), SA, and KA mutants carrying the LSD1 flag tag, and further treated with LPS for 2 hours after MG132 treatment for 4 hours. This protein extract was pulled down using Ni 2+ -NTA bead. Ubiquitination of p65 was detected through the p65 antibody. (F) 4 hours of MG132 followed by immunoprecipitation using p65 antibody in Raw264.7 cells further treated with LPS for 2 hours. Ubiquitination of p65 was detected via FK2 antibody. (G) Scheme of the demethylation of p65 mediated by LSD1 phosphorylation leads to stabilization of p65.
도 5는 PKCα-LSD1 인산화 축이 지속적인 염증반응을 조절한다는 것을 보여준다 (A) 야생형과 Lsd1SA/SA 마우스의 BMDM에 표기된 시간에 따라 LPS를 처리하여, Mcp-1, Il-6, Cebpd의 mRNA를 quantitative RT-PCR을 통하여 검출하였다. (B) Go6976을 야생형 마우스의 BMDM에 6시간 동안 선 처리한 이후, 표기된 시간에 따라 LPS를 처리하여, Mcp-1, Il-6, Cebpd의 mRNA를 quantitative RT-PCR을 통하여 검출하였다. (C) BMDM에서 LPS를 표기된 시간에 따라 처리하고 핵단백질만 추출하여 p65와 LSD1의 endogenous 결합상태를 확인 (D) 야생형과 Lsd1SA/SA 마우스의 BMDM에 표기된 시간대로 LPS를 처리하고, 표기된 항체를 사용하여 LSD1 인산화 의존 표적 프로모터에서의 ChIP 실험을 수행. (E) BMDM에서 표기된 항체를 사용하여 LSD1 인산화 의존적인 표적 프로모터에서 ChIP 실험 진행. 6시간 동안 Go6976을 선처리한 다음, 세포 수집 전에 지정된 시간동안 LPS를 처리하였다. 데이터는 평균± 표준편차로 표현되었다; n=3, *p<0.05, **p<0.01, ***p<0.001 (Two-way ANOVA) (A, B, D, E). (F) 과도한 LPS가 지속적인 염증 반응 동안 핵에서 p65 안정화를 촉진하는 시기와 방법에 대한 개략도.Figure 5 shows that the PKCα-LSD1 phosphorylation axis modulates a sustained inflammatory response (A) mRNAs of Mcp-1, Il-6, Cebpd by treatment of LPS according to the time indicated in BMDM of wild type and Lsd1 SA / SA mice Was detected via quantitative RT-PCR. (B) Go6976 was pretreated with BMDM in wild-type mice for 6 hours, followed by LPS treatment according to the indicated time, and mRNAs of Mcp-1, Il-6 and Cebpd were detected via quantitative RT-PCR. (C) LPS was treated according to the indicated time in BMDM, and the nucleoprotein was extracted to confirm the endogenous binding state of p65 and LSD1. (D) LPS was treated at the time zone indicated in BMDM of wild type and Lsd1 SA / SA mice. Perform ChIP experiments at LSD1 phosphorylation dependent target promoters. (E) ChIP experiments run on LSD1 phosphorylation dependent target promoters using the antibodies indicated in BMDM. Go6976 was pretreated for 6 hours and then LPS treated for the designated time prior to cell collection. Data are expressed as mean ± standard deviation; n = 3, * p <0.05, ** p <0.01, *** p <0.001 (Two-way ANOVA) (A, B, D, E). (F) Schematic diagram of when and how excessive LPS promotes p65 stabilization in the nucleus during sustained inflammatory responses.
도 6은 핵 내에서 p65의 지속적인 발현과 그에 따른 염증반응의 활성화가 PKCα-LSD1-NFκB 신호전달을 통해 이루어진다는 것을 보여준다. (A) 야생형과 Lsd1SA/SA 마우스의 BMDM에 표기된 시간에 따라 LPS를 처리하고 핵단백질을 추출하여 지정된 항체를 사용하여 면역블랏이 수행되었다. (B) 면역형광분석 실험의 대표 이미지. 면역형광분석 실험은 Lsd1-/- MEF 세포에 HA tag이 달린 WT, SA, KA 돌연변이 형태를 트랜스펙션한 후, 지정된 시간동안 LPS를 처리하고 수행되었다. HA (녹색); p65 (빨강); DAPI (파랑)., 스케일바, 20μm. (C, D) BMDM (C)과 Raw264.7 (D) 세포의 핵단백질에서 지정된 항체를 사용한 면역블랏 실험이 수행되었다. Go6976 혹은 GSK-LSD1이 6시간 동안 전 처리되고 세포 수집 전에 지정된 시간 동안 LPS가 처리되었다. (E) Raw264.7 세포의 핵단백질에서 지정된 항체를 사용하여 면역블랏 실험이 수행되었다. Go6976과 GSK-LSD1이 6시간 동안 전 처리 되고 LPS를 2시간 동안 추가 처리하였다. 이때, 세포 수집 4시간 전에 MG132가 처리되었다.6 shows that sustained expression of p65 in the nucleus and hence activation of the inflammatory response is via PKCα-LSD1-NFκB signaling. (A) Immunoblots were performed using LPS-treated and nucleoproteins with designated antibodies according to the time indicated in BMDM of wild-type and Lsd1 SA / SA mice. (B) Representative images of immunofluorescence assays. Immunofluorescence experiments were performed by transfecting WT, SA, and KA mutant forms with HA tags on Lsd1 − / − MEF cells, followed by treatment with LPS for a designated time. HA (green); p65 (red); DAPI (blue)., Scale bar, 20 μm. Immunoblotting experiments were performed using antibodies designated in the nuclear proteins of (C, D) BMDM (C) and Raw264.7 (D) cells. Go6976 or GSK-LSD1 was pretreated for 6 hours and LPS was treated for a specified time before cell collection. (E) Immunoblotting experiments were performed using antibodies designated in the nucleoprotein of Raw264.7 cells. Go6976 and GSK-LSD1 were pretreated for 6 hours and LPS was further treated for 2 hours. At this time, MG132 was treated 4 hours before cell collection.
도 7은 PKCα나 LSD1의 활성을 마우스에서 억제하는 것이 패혈증에 의한 사망률을 감소시킨다는 것을 보여준다 (A) 야생형마우스(각 그룹당 3마리)의 폐조직에서 면역블랏 실험. 마우스에 LPS 복강주사(몸무게 1kg 당 10mg 주사, 주사 후 6시간 이후에 실험하였다) 1시간 전에 Go6976((CAS 136194-77-9), 선별적 PKC 억제제, 몸무게 1kg당 1mg 주사) 혹은 GSK-LSD1(몸무게 1kg당 1mg주사)을 복강으로 주사. (B) 야생형(파란선), Lsd1SA/SA(빨간선) 마우스는 CLP 수술(각 그룹당 20마리)을 받았다. 동물의 생존율은 CLP 수술 이후 144시간 동안 매 6시간 단위로 모니터링 되었다. (C, D) CLP 수술 후에 12시간, 50시간에 각각 정맥주사를 통하여, 몸무게 1kg당 1mg의 Go6976을 주사(녹색선, 각각 20마리) (C) 또는 GSK-LSD1을 주사(보라선, 각각 20마리) 하였다. CLP 수술 이후 144시간 동안 매 6시간 단위로 생존율이 모니터링되었다. **p<0.01 (log-rank test) (B-D) (E) CLP 수술 이후 폐조직의 H&E 대표 사진. 야생형과 Lsd1SA/SA 마우스. 혹은 야생형 마우스에 Go6976, GSK-LSD1 또는 vehicle을 몸무게 1kg당 1mg으로 각각 수술 이후 12시간, 50시간에 정맥 주사하였다(그룹당 6마리씩). 마우스는 CLP 수술 이후 72시간째 안락사시켰다. 스케일바, 200μm. (F, G) CLP 수술 이후 72시간째, 혈중 사이토카인(MCP-1, IL-6, TNF-α)의 농도. 야생형과 Lsd1SA/SA 마우스 (F), 혹은 야생형 마우스에 Go6976, GSK-LSD1 또는 vehicle을 몸무게 1kg당 1mg으로 각각 수술 이후 12시간, 50시간에 정맥 주사하였다 (G). (H, I) 패혈증 마커인 ALT, LDH, BUN이 CLP 수술 이후 72시간째 측정되었다. 야생형과 Lsd1SA/SA 마우스 (H), 혹은 야생형 마우스에 Go6976, GSK-LSD1 또는 vehicle을 몸무게 1kg당 1mg으로 각각 수술 이후 12시간, 50시간에 정맥 주사하였다 (I). 데이터는 평균±표준편차로 표현되었다; n=5, *p<0.05, **p<0.01, ***p<0.001 (Two-way ANOVA) (F, H). 데이터는 평균±표준편차로 표현되었다; n=5, *p<0.05, **p<0.01 (unpaired two-tailed Student’s t-test) (G, I). (J) PKCα 혹은 LSD1의 활성을 막는 것이 p65의 단백질 안정성을 감소시키고 급성전신 염증에 대한 저항성을 유도하여 야생형에 비해 Lsd1SA/SA 마우스에서 패혈증에 의한 생존율을 증가시킨다는 것을 보여주는 모식도.7 shows that inhibition of PKCα or LSD1 activity in mice reduces mortality from sepsis (A) Immunoblot experiments in lung tissue of wild type mice (3 in each group). Mice were injected with LPS intraperitoneal (10 mg per kg body weight, tested 6 hours after injection) 1 hour prior to Go6976 ((CAS 136194-77-9), selective PKC inhibitor, 1 mg per kg body weight) or GSK-LSD1 (1mg per kg of body weight) is injected into the abdominal cavity. (B) Wild-type (blue line), Lsd1 SA / SA (red line) mice underwent CLP surgery (20 in each group). Survival of the animals was monitored every 6 hours for 144 hours after CLP surgery. (C, D) 1 mg of Go6976 per kg of body weight (green lines, 20 animals each) (C) or GSK-LSD1 (in purple line, respectively) via intravenous injection at 12 and 50 hours after CLP surgery, respectively. 20 animals). Survival was monitored every 6 hours for 144 hours after CLP surgery. ** p <0.01 (log-rank test) (BD) (E) Representative picture of H & E in lung tissue after CLP surgery. Wild type and Lsd1 SA / SA mice. Alternatively, wild type mice were injected intravenously with Go6976, GSK-LSD1 or vehicle at 1 mg / kg of body weight 12 hours and 50 hours after surgery (6 per group), respectively. Mice were euthanized 72 hours after CLP surgery. Scale bar, 200 μm. (F, G) Concentrations of cytokines (MCP-1, IL-6, TNF-α) in blood 72 hours after CLP surgery. Wild type and Lsd1 SA / SA mice (F) or wild type mice were injected intravenously with Go6976, GSK-LSD1 or vehicle at 1 mg / kg of body weight 12 hours and 50 hours after surgery (G), respectively. (H, I) Sepsis markers ALT, LDH, BUN were measured 72 hours after CLP surgery. Wild type and Lsd1 SA / SA mice (H) or wild type mice were intravenously injected with Go6976, GSK-LSD1 or vehicle at 1 mg / kg of body weight 12 hours and 50 hours after surgery (I), respectively. Data are expressed as mean ± standard deviation; n = 5, * p <0.05, ** p <0.01, *** p <0.001 (Two-way ANOVA) (F, H). Data are expressed as mean ± standard deviation; n = 5, * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test) (G, I). (J) Schematic showing that blocking PKCα or LSD1 activity decreases protein stability of p65 and induces resistance to acute systemic inflammation, thereby increasing the survival rate of sepsis in Lsd1 SA / SA mice compared to wild type.
본원은 과도한 염증 자극에 따른 염증 반응의 활성화 및 증폭에서 PKCα->LSD1->NF-κB으로 이어지는 새로운 신호 전달 축이 중요하다는 발견에 근거한 것이다. 구체적으로 LSD1(lysine specific histone demethylase 1)이 염증 반응의 중요한 후성 인자로서, 과도한 염증성 자극에 반응하여 핵으로 이동한 PKCα (Protein Kinase C α)에 의해 인산화되어 NF-κB의 p65를 탈메틸화시켜 안정화를 증대시켜, 염증 반응을 활성화하는 것을 규명하였다. LSD1에 의한 탈메틸화가 p65 단백질을 안정화시키게 되고 NFKB의 활성을 지속시켜 염증반응이 증폭된다. 따라서 일 구현예에서 도 5 및 6 등의 실험결과 및 도 7J에 도식적으로 기재한 바와 같이 PKCα 또는 이에 의한 LSD1의 탈메틸화 활성을 억제하여 NF-κB를 구성하는 p65의 단백질 안정성을 감소시키면 급성전신 염증에 대한 저항성을 유도하여 생존율을 증가시킬 수 있다. The present application is based on the discovery that a new signal transduction axis leading to PKCα-> LSD1-> NF-κB is important in the activation and amplification of inflammatory responses following excessive inflammatory stimuli. Specifically, LSD1 (lysine specific histone demethylase 1) is an important epigenetic factor of the inflammatory response, which is phosphorylated by PKCα (Protein Kinase C α), which has moved to the nucleus in response to excessive inflammatory stimuli, to demethylate p65 of NF-κB. By activating the inflammatory response. Demethylation by LSD1 stabilizes the p65 protein and sustains NFKB activity, amplifying the inflammatory response. Therefore, in one embodiment, as shown in FIG. 5 and FIG. 6, and as shown schematically in FIG. 7J, when the protein stability of p65 constituting NF-κB is reduced by inhibiting the demethylation activity of PKCα or LSD1 thereby, acute systemic It can increase resistance by inducing resistance to inflammation.
이에 한 양태에서 본원은, 본원에서 규명된, 염증반응 유발에서 중요한 역할을 하는 PCKa->LSD1->NF-κB 경로를 표적으로 하는 염증반응 억제제의 스크리닝방법에 관한 것이다. In one aspect thereof, the present invention relates to a method for screening an inflammatory response inhibitor targeting the PCKa-> LSD1-> NF-κB pathway, which plays an important role in inducing an inflammatory response as disclosed herein.
본원에 따른 방법은 PCKa, LSD1 및 NF-κB을 발현하는 세포를 제공하는 단계; 상기 세포에 NF-κB 매개된 염증반응을 유발할 수 있는 자극을 처리하는 단계로, 상기 처리에 의해 상기 세포에서 PCKα->LSD1-> NF-κB 경로에 의한 염증반응이 유발, 촉발 또는 시작되고, 상기 세포에 상기 경로를 억제, 또는 상기 경로에 의한 염증반응을 억제할 것으로 기대되는 시험물질을 처리하는 단계; 및 상기 처리 결과, 상기 시험물질로 처리되지 않은 대조군과 비교하여 상기 시험물질로 처리된 세포에서 상기 경로가 억제된 경우, 또는 상기 경로에 의한 염증반응이 억제된 경우, 상기 시험물질을 염증반응 억제 후보물질로 선별하는 단계를 포함한다. The method according to the present invention comprises the steps of providing a cell expressing PCKa, LSD1 and NF-κB; Treating a stimulus capable of inducing an NF-κB mediated inflammatory response in the cell, wherein the treatment causes, triggers, or initiates an inflammatory response by the PCKα-> LSD1-> NF-κB pathway in the cell, Treating the cell with a test substance that is expected to inhibit the pathway or inhibit the inflammatory response caused by the pathway; And inhibiting the test substance when the pathway is inhibited or when the inflammatory response by the pathway is inhibited in cells treated with the test substance as compared with the control group not treated with the test substance. Screening for candidates.
프로테인 카이나제 C 알파(PKCα)에 의한 LSD1의 조절은 명암주기 리듬 조절에서 알려져 있고, NF-κB는 염증 인자로서 알려져 있으나, 염증반응 조절 기전에서 PCKa->LSD1->NF-κB 경로는 본원에서 처음으로 규명된 것이다. PKCα는 PKCα, PKCβ1/β2 및 PKCγ의 활성제인 phorbol 12-myristate 13-acetate (PMA)를 마우스에 처리하면, 표피에서 염증성 사이토카인의 발현이 증폭되고 동시에 급성 염증 반응이 유도되는 것이 보고되었다(Silvan et. al., Inflamm. Res. 1996; 45: 289292). 또한 PKC 시그날링이 염증 반응의 활성화에 결정적인 역할을 하지만 (Langlet et al., Eur. J. Immunol. 2010; 40: 505515), PKC의 기질과 PKC에 의한 염증 반응 활성화와 관련된 표적 유전자에 대한 분자 메커니즘이 아직 명확하게 밝혀지지 않았다. 본원에서는 PKCα의 직접적인 기질이 LSD1이며 LSD1을 인산화하고 p65는 인산화하지 않음을 규명하였다(도 1 등 참조). The regulation of LSD1 by protein kinase C alpha (PKCα) is known in light-cycle rhythm regulation, and NF-κB is known as an inflammatory factor, but the PCKa-> LSD1-> NF-κB pathway is described herein. Was first identified in. PKCα has been reported to amplify the expression of inflammatory cytokines in the epidermis and induce an acute inflammatory response in mice treated with phorbol 12-myristate 13-acetate (PMA), which are activators of PKCα, PKCβ1 / β2 and PKCγ. et. al., Inflamm. Res. 1996; 45: 289292). PKC signaling also plays a critical role in the activation of the inflammatory response (Langlet et al., Eur. J. Immunol. 2010; 40: 505515), but the molecule for the target gene associated with the substrate of PKC and activation of the inflammatory response by PKC. The mechanism is not yet clear. It was found herein that the direct substrate of PKCα is LSD1, which phosphorylates LSD1 and does not phosphorylate (see FIG. 1, etc.).
리신 특이적 탈메틸화효소 1(LSD1, AOF2 또는 BHC110 이라고도 함)은 FAD 의존성 아민 산화 효소 반응을 통해 히스톤 탈메틸화효소로서 작용한다(Metzger et al., Nature. 2005; 437: 436-439). 그 외 LSD1은 SET7/9에 의해 메틸화된 비히스톤단백질의 리신기를 탈메틸화한다. 염증반응에서 LSD1과 NF-κB와의 연관성에 대해서는 알려진바 없으며, 본원에서는 LSD1는 후술하는 바와 같이 NF-κB을 구성하는 p65와 결합하여 이를 탈메틸화함을 밝혔다. 탈메틸화는 p65을 안정화시켜 결국 NF-κB 매개된 염증반응에 관여하는 전사인자의 활성을 조절하여 염증반응을 증폭하는 것을 규명하였다(도 4 등 참조).Lysine specific demethylase 1 (also known as LSD1, AOF2 or BHC110) acts as a histone demethylase via a FAD dependent amine oxidase reaction (Metzger et al., Nature. 2005; 437: 436-439). The other LSD1 demethylates the lysine group of the nonhistone protein methylated by SET7 / 9. There is no known association between LSD1 and NF-κB in the inflammatory response, and LSD1 binds to p65 constituting NF-κB and demethylates it, as described below. Demethylation was found to stabilize p65 and eventually amplify the inflammatory response by regulating the activity of transcription factors involved in NF-κB mediated inflammatory responses (see FIG. 4, etc.).
NF-κB는 p65/RelA, p50/NF-κB1, p52, RelB 및 c-Rel의 서브유닛으로 구성된 염증 인자이다(Oeckinghaus and Ghosh, Cold Spring Harb. Perspect. Biol. 2009; 1: a000034). 이들은 이합체 형성에 중요한 N-말단 Rel homology 영역, DNA 결합 영역 및 C- 말단에 핵으로 들어갈 수 있는 서열을 공통으로 가지고 있다. p65-p50 이형접합체(heterodimer)는 가장 많이 존재하며 활성이 가장 높은 형태로 알려져 있다. 자극받지 않은 세포에서, IκB 단백질은 NF-κB 서브 유닛에 결합하여 이들을 세포질로 격리시킨다. 염증성 자극이 존재하는 경우, IκB의 인산화 의존성 프로테아좀 분해를 일으키고, NF-κB 서브유닛은 세포질에서 핵으로 이동하게 된다(Fuchs et al., Oncogene. 1999; 18: 2039-2046). 핵으로 이동한 NF-κB 서브 유닛은 DNA의 κB element에 결합하고, 염증 반응에 관여하는 표적 유전자의 발현을 활성화 시킨다. 예를 들면 CREB 결합 단백질(CBP)과 같은 coactivator의 동원은 표적 유전자의 추가 활성화에 결정적인 것으로 알려져있다. 지속적인 LPS 자극은 NF-κB에 의한 C/EBPδ의 발현을 유도하며, 유도된 C/EBPδ는 NF-κB와 함께 작용하여 사이토카인 코딩 유전자의 전사를 추가로 자극하여 C/EBPδ는 염증 반응의 증폭 역할을 하는 것으로 알려져 있다. 본원에 따른 일 구현예에서는 LPS로 유발된 PCKα->LSD1-> NF-κB 경로에서 LSD1의 인산화는 게놈 전체 수준에서 NF-κB 표적 유전자의 활성화에 필요하고(도 2 참조), LPS 처리로 인한 LSD1 인산화가 표적 유전자의 프로모터에 NF-κB p65를 프로모터로 모집하는 데 필요하며(도 3 참조), LSD1와 p65의 결합 및 이로 이한 p65 탈메틸화가 p65의 단백질 안정화를 증대시킨다는 것을 보여준다(도 4 참조). 이러한 NF-κB p65의 단백질 안정화는 결국 염증 반응을 일으킨다. NF-κB is an inflammatory factor consisting of subunits of p65 / RelA, p50 / NF-κB1, p52, RelB and c-Rel (Oeckinghaus and Ghosh, Cold Spring Harb. Perspect. Biol. 2009; 1: a000034). They have a common N-terminal Rel homology region, a DNA binding region and a sequence capable of entering the nucleus at the C-terminus, which are important for dimer formation. The p65-p50 heterodimer is the most abundant and known to have the highest activity. In unstimulated cells, IκB proteins bind to NF-κB subunits and sequester them cytoplasmically. In the presence of inflammatory stimuli, phosphorylation dependent proteasome degradation of IκB occurs, and the NF-κB subunit migrates from the cytoplasm to the nucleus (Fuchs et al., Oncogene. 1999; 18: 2039-2046). The NF-κB subunit migrated to the nucleus binds to the κB element of DNA and activates the expression of target genes involved in the inflammatory response. The recruitment of coactivators, for example CREB binding protein (CBP), is known to be critical for further activation of the target gene. Continuous LPS stimulation induces the expression of C / EBPδ by NF-κB, and the induced C / EBPδ works with NF-κB to further stimulate the transcription of cytokine coding genes so that C / EBPδ amplifies the inflammatory response. It is known to play a role. In one embodiment according to the present invention, phosphorylation of LSD1 in the LPS-induced PCKα-> LSD1-> NF-κB pathway is required for activation of NF-κB target genes at the genome-wide level (see FIG. 2) and is due to LPS treatment. LSD1 phosphorylation is required to recruit NF-κB p65 to the promoter of the target gene as a promoter (see FIG. 3), showing that the binding of LSD1 and p65 and thus p65 demethylation increases the protein stabilization of p65 (FIG. 4). Reference). This protein stabilization of NF-κB p65 eventually causes an inflammatory response.
본원에 따른 방법에 사용되는 PKCα, LSD1 및 NF-κB (p65)는 유전자 및 단백질 서열은 공지된 것으로 예를 들면 인간 단백질 서열은 LSD1 : NP_001343496.1, PKCα: NP_035231.2, NF-κB (p65) : NP_033071.1로 공지되어 있다. 단백질 서열이 알려지면, 핵산 서열은 이로부터 용이하게 도출될 수 있음은 당업자에게 자명한 것이다. PKCα, LSD1 and NF-κB (p65) used in the method according to the present invention are known genes and protein sequences, for example human protein sequence is LSD1: NP_001343496.1, PKCα: NP_035231.2, NF-κB (p65) ) Is known as NP_033071.1. Once the protein sequence is known, it will be apparent to those skilled in the art that the nucleic acid sequence can be readily derived therefrom.
본원에 따른 방법에서는 상기와 같은 기능을 갖는 한 다양한 유래, 그리고 각 유래의 단백질 서열 및 이와 실질적으로 동일한 서열을 갖는 전장 또는 단편이 사용될 수 있다. 실질적으로 동일한 이란, 단백질 및 핵산 서열 수준에 모두 적용되며, 참조 또는 기준이 되는 서열과 비교하여, 염기 또는 아미노산 잔기에 하나 이상의 치환, 결손, 또는 부가가 있을 수 있으나, 전체적으로 볼 때 기능에 차이가 없거나 기능을 나쁘게하지 않는 수준의 기능을 갖는 것을 의미한다. 상동성은 대상이 되는 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 61%의 상동성, 보다 바람직하게는 70%의 상동성, 보다 더 바람직하게는 80%의 상동성, 가장 바람직하게는 90% 이상, 특히 95% 이상의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 예를 들면 Smith and Waterman, Adv. Appl. Math. (1981) 2:482; Needleman and Wunsch, J. Mol. Bio. (1970) 48:443; Pearson and Lipman, Methods in Mol. Biol. (1988) 24: 307-31; Higgins and Sharp, Gene (1988) 73:237-44; Higgins and Sharp, CABIOS (1989) 5:151-3; Corpet et al., Nuc. Acids Res. (1988) 16:10881-90; Huang et al., Comp. Appl. BioSci. (1992) 8:155-65 및 Pearson et al., Meth. Mol. Biol. (1994) 24:307-31에 개시되어 있다. NCBI Basic Local Alignment Search Tool(BLAST)(Altschul et al., J. Mol. Biol. (1990) 215:403-10)은 NBCI 등에서 접근 가능하며, blast, blastp, blasm, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하며, 이 프로그램을 이용한 서열 상동성 비교 방법은 www.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다.In the method according to the present invention, a full-length or fragment having a variety of origins and protein sequences derived from each and a sequence substantially identical thereto may be used as long as they have such a function. Substantially the same is applied to both protein and nucleic acid sequence levels, and compared to a reference or reference sequence, there may be one or more substitutions, deletions, or additions to base or amino acid residues, but overall differences in function It means having a level of functionality that doesn't exist or that degrades functionality. Homology is at least 61% homology, more preferably 70% phase when the target sequence is aligned to the maximum correspondence and the aligned sequence is analyzed using algorithms commonly used in the art. By homology, even more preferably 80% homology, most preferably at least 90%, in particular at least 95% homology. Alignment methods for sequence comparison are known in the art. For example, Smith and Waterman, Adv. Appl. Math. (1981) 2: 482; Needleman and Wunsch, J. Mol. Bio. (1970) 48: 443; Pearson and Lipman, Methods in Mol. Biol. (1988) 24: 307-31; Higgins and Sharp, Gene (1988) 73: 237-44; Higgins and Sharp, CABIOS (1989) 5: 151-3; Corpet et al., Nuc. Acids Res. (1988) 16: 10881-90; Huang et al., Comp. Appl. BioSci. (1992) 8: 155-65 and Pearson et al., Meth. Mol. Biol. (1994) 24: 307-31. The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. (1990) 215: 403-10) is accessible from NBCI and the like, and can be used with blast, blastp, blasm, blastx, tblastn and tblastx. It can be used in conjunction with a sequence analysis program. BLSAT is accessible at www.ncbi.nlm.nih.gov/BLAST/ and a method for comparing sequence homology using this program can be found at www.ncbi.nlm.nih.gov/BLAST/blast_help.html.
일 구현예에서 PKCα, LSD1 및 NF-κB 단백질은 이를 발현하는 세포의 형태로 제공될 수 있다. 예를 들면 단백질을 발현(Transient 또는 Stable 전달이입 또는 내인성 발현)하는 포유류 세포, 예를 들면 이로 제한하는 것은 아니나, PKCα, LSD1 및 NF-κB가 발현되며, 작용할 수 있는 대표적인 세포로는 대식세포를 들 수 있다. 대식세포는 동물에서 채취한 것 또는 확립된 세포주를 사용할 수 있다. 특히 Raw 264.7 세포주 또는 BMDM(bone marrow-derived macrophage)을 사용할 수 있다. 일 구현예에서는 Raw 264.7 세포주에 상기 단백질을 발현하는 플라스미드를 공지된 방법 또는 본원의 실시예에 기재된 방법을 이용하여 전달이입하여 사용할 수 있다. In one embodiment the PKCα, LSD1 and NF-κB proteins may be provided in the form of cells expressing it. For example, mammalian cells that express proteins (transient or stable transduction or endogenous expression), such as, but not limited to, PKCα, LSD1 and NF-κB are expressed and representative cells that can act include macrophages. Can be mentioned. Macrophages may be from animal or established cell lines. In particular, Raw 264.7 cell line or bone marrow-derived macrophage (BMDM) may be used. In one embodiment, a plasmid expressing the protein in a Raw 264.7 cell line can be used by transfection using a known method or a method described in the Examples herein.
본원에 따른 상기 방법에서 자극 존재시 PKCα->LSD1->NF-κB 경로가 활성화되며, PKCα의 기질은 LSD1으로 PKCα는 LSD1을 인산화시키고, 인산화된 LSD1은 NF-κB의 p65 서브유닛을 탈메틸화시킨다. 따라서, 일 구현예에서 본원에 따른 방법에서, PKCα->LSD1->NF-κB 신호 전달 경로의 억제는 상기 PKCα에 의한 LSD1의 인산화 감소 또는 억제, 및/또는 상기 NF-κB의 p65 서브유닛의 탈메틸화의 억제, 및/또는 LSD1와 p65의 결합 억제 또는 감소로 측정될 수 있다. 또한 상기 신호전달 경로의 활성화는 염증반응을 유발하기 때문에, 상기 경로의 억제는 상기 경로에 의한 염증반응의 억제라고 할 수 있다. 이러한 경로 또는 염증반응의 억제는 상술한 바와 같은 상기 본원에서 규명된 기전을 구성하는 단백질을 발현하는 세포들을 세포배양 플레이트에 배양한 후, 여기에 시험물질을 첨가한 후, 일정 시간 후에 세포로부터, 총 단백질을 추출하여, LSD1의 인산화 정도, 또는 LSD1 탈메틸화 활성 여부, LSD1와 NF-κB p65의 결합 및 또는 LSD1에 의한 NF-κB p65 탈메틸화 정도로 확인할 수 있다. 대조군(시험물질을 처리하지 않은 경우)와 비교하여, 상기 LSD1의 인산화 감소, 상기 NF-κB의 p65 서브유닛의 탈메틸화의 억제 또는 상기 LSD1과 상기 p65 서브유닛의 결합을 NF-κB 신호에 의해 매개되는 염증 반응 후보물질로 선별할 수 있다. PKCα-> LSD1-> NF-κB pathway is activated in the method according to the present invention, the substrate of PKCα is LSD1, PKCα phosphorylates LSD1, and phosphorylated LSD1 demethylates the p65 subunit of NF-κB Let's do it. Thus, in one embodiment, in the method according to the present disclosure, inhibition of the PKCα-> LSD1-> NF-κB signaling pathway results in a decrease or inhibition of phosphorylation of LSD1 by the PKCα, and / or of the p65 subunit of the NF-κB. Inhibition of demethylation, and / or inhibition or reduction of binding of LSD1 and p65. In addition, since activation of the signaling pathway causes an inflammatory response, inhibition of the pathway may be referred to as inhibition of the inflammatory response by the pathway. Inhibition of this pathway or inflammatory response may be achieved by culturing cells expressing the proteins constituting the mechanism described above in a cell culture plate, and then adding a test substance thereto, Total protein can be extracted to determine the degree of phosphorylation of LSD1, LSD1 demethylation activity, the binding of LSD1 and NF-κB p65, or the degree of NF-κB p65 demethylation by LSD1. Compared to the control (untreated test material), reduced phosphorylation of LSD1, inhibition of demethylation of p65 subunit of NF-κB or binding of LSD1 and p65 subunit by NF-κB signal It can be selected as a mediated inflammatory response candidate.
본원에 따른 방법에서 인산화 억제 정도는 공지된 방법을 이용하여 측정될 수 있으며, 예를 들면 단백질 블랏 방법을 이용하여 확인할 수 있다. 단백질 확인을 위한 사용 가능한 항체가 있으며 전장 LSD1 뿐 아니라 인산화된 LSD1를 확인하는 항체는 시중에서 구입할 수 있다. 이러한 항체를 이용하여 LSD1의 전체 발현양 또는 인산화되지 않거나 또는 인산화된 LSD1의 양을 특이적으로 확인할 수 있으나, 이로 제한하는 것은 아니다. 대조군(시험물질을 처리하지 않은 경우)와 비교하여, LSD1 단백질의 인산화 정도를 억제한 것을 패혈증 치료제 후보물질로 선별할 수 있다. 이 경우 단백질은 검출의 편이를 위해 다양한 표식물질, 예를 들면 단백질 태그, 바이오틴, 형광물질, 아세틸화, 방사선 동위원소와 같은 것으로 공지된 방법 또는 시중의 단백질 표지 키트를 사용하여 표지될 수 있으며, 표지된 물질에 적합한 검출기기를 사용하여 검출될 수 있다. The degree of phosphorylation inhibition in the method according to the present application can be measured using a known method, for example, can be confirmed using a protein blot method. There are antibodies available for protein identification and antibodies that identify phosphorylated LSD1 as well as full-length LSD1 are commercially available. Such antibodies may be used to specifically identify the total expression level of LSD1 or the amount of LSD1 that is not or phosphorylated, but is not limited thereto. Compared with the control (untreated test material), inhibiting the degree of phosphorylation of LSD1 protein can be selected as a candidate for the treatment of sepsis. In this case, the protein may be labeled using a variety of markers such as protein tags, biotin, fluorescent materials, acetylation, radioisotopes or commercially available protein labeling kits for ease of detection, It can be detected using a detector suitable for the labeled material.
본원에 따른 방법에서 메틸화 또는 탈메틸화는 공지된 방법을 이용하여 수행될 수 있으며, 예를 메틸화된 단백질을 특이적으로 인신하는 항체의 사용을 포함하나 이로 제한하는 것은 아니며, 또한 본원 실시예를 참조할 수 있다. Methylation or demethylation in the methods according to the invention can be carried out using known methods, including, but not limited to, the use of antibodies that specifically trafficize methylated proteins, see also Examples herein. can do.
본원에 따른 방법에서 LSD1과 상기 p65 서브유닛의 결합 또는 상호작용은 당업계에 공지된 다양한 방법을 이용하여 측정될 수 있다. 예를 들면 세포내 단백질의 결합/상호작용을 확인하는 이스트투하이브리드법, 콘포칼현미경법. 공동면역침전법, 표면플라즈마공명(SPR) 및 스펙트로스코피법을 포함하나 이로 제한하는 것은 아니며, 이러한 방법에 관한 비교 및 자세한 실험법에 관한 추가의 참고문헌은 Berggard et al., (2007) "Methods for the detection and analysis of protein-protein interactions", PROTEOMICS Vol7: pp 2833-2842에 기재된 것을 참고할 수 있다.In the method according to the present invention, the binding or interaction of LSD1 and the p65 subunit can be measured using various methods known in the art. For example, the East to Hybrid method and the Confocal Microscopy method for confirming the binding / interaction of intracellular proteins. Co-immunoprecipitation, surface plasma resonance (SPR) and spectroscopy methods include, but are not limited to, further references on comparisons and detailed experimental methods on these methods. Berggard et al., (2007) "Methods for the detection and analysis of protein-protein interactions ", PROTEOMICS Vol7: pp 2833-2842.
본원에 따른 방법은 세포에 NF-κB 신호에 의해 매개되는 염증 반응을 유발하는 단계를 포함하며, 이로 인해 상술한 바와 같이 본원에 규명된 PCKα, LSD1 및 NF-κB로 구성되는 경로가 활성화된다. The method according to the present invention comprises the step of inducing an inflammatory response mediated by the NF-κB signal in the cell, thereby activating the pathway consisting of PCKα, LSD1 and NF-κB as described above.
일 구현예에서 세포에 NF-κB 신호에 의해 매개되는 염증 반응을 유발할 수 있는 다양한 자극이 본원에 사용될 수 있으며, 예를 들면 상기 NF-κB 매개된 염증반응을 유발할 수 있는 자극은 TNFα(tumor necrosis factorα), IL-1β(interleukin 1-beta), PAMP(pathogen-associated molecular pattern) 또는 박테리아 LPS(lipopolysaccharides)를 포함한다(Courtois G, Gilmore TD (2006) Mutations in the NF-kappaB signaling pathway: implications for human disease.Oncogene. 2006 Oct 30;25(51):6831-43; Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF-κB.Trends Neurosci. 2011 Jun;34(6):316-25.). In one embodiment a variety of stimuli that can elicit an inflammatory response mediated by an NF-κB signal to a cell can be used herein, for example, a stimulus that can elicit an NF-κB mediated inflammatory response is TNFα (tumor necrosis). factorα), IL-1β (interleukin 1-beta), pathogen-associated molecular pattern (PAMP) or bacterial lipopolysaccharides (LPS) (Courtois G, Gilmore TD (2006) Mutations in the NF-kappaB signaling pathway: implications for human disease.Oncogene.2006 Oct 30; 25 (51): 6831-43; Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci. 2011 Jun; 34 (6 ): 316-25.).
본원에서 염증 또는 염증 반응이란 병원균, 자극물질, 또는 손상된 세포 등과 같은 조직에 위해한 자극에 대한 조직의 복합적인 생물학적 반응으로 면역세포, 혈관 및 분자 매개자를 포함하는 보호적인 반응이다. 염증 반응은 세포 손상을 일으키는 초기 원인을 제거하고, 손상된 세포 또는 조직을 제거하며 조직 복구를 개시하는 것이다. 염증 반응은 열, 통증, 발적 및 부기 등의 증상을 동반한다. An inflammatory or inflammatory response herein is a protective response involving immune cells, blood vessels, and molecular mediators as a complex biological response of tissue to stimuli that is harmful to tissue, such as pathogens, stimulants, or damaged cells. The inflammatory response is to eliminate the initial cause of cell damage, remove damaged cells or tissues, and initiate tissue repair. Inflammatory reactions are accompanied by symptoms such as fever, pain, redness and swelling.
본원에서 NF-κB 신호에 의해 매개되는 염증 반응이란, 앞서 언급한 면역신호 자극에 의해 NF-κB 단백질이 활성화되는 경우를 의미한다. 본원에서는 특히 NF-κB를 활성화시키는 경로 중에서, 특히 LSD1에 의한 p65 서브유닛의 탈메틸화에 의한 경로이다. 염증반응이 활성화되면 분자수준에서 사이토카인의 발현 예를 들면 IL-1β, IL-6, MCP-1, TNF-α 등의 발현이 증가하며, 이를 검출하여 염증 반응이 활성화를 결정할 수 있다. The inflammatory response mediated by the NF-κB signal herein means a case where the NF-κB protein is activated by the aforementioned immune signal stimulation. In particular herein, among the pathways activating NF-κB, in particular the pathway by demethylation of the p65 subunit by LSD1. When the inflammatory response is activated, expression of cytokines at the molecular level is increased, for example, IL-1β, IL-6, MCP-1, TNF-α, and the like, thereby detecting the activation of the inflammatory response.
본원에 따른 방법에서 세포는 PCKα->LSD1->NF-κB 경로를 억제할 것으로 기대되는 시험물질로 처리된다. In the method according to the invention the cells are treated with test substances which are expected to inhibit the PCKα-> LSD1-> NF-κB pathway.
상기 경로의 억제는 상기 LSD1의 인산화 감소 및/또는 상기 NF-κB의 p65 서브유닛의 탈메틸화 및/또는 LSD1과 p65의 결합 감소 또는 억제로 측정될 수 있다. 이러한 감소 또는 억제는 시험물질로 처리되지 않은 대조군과 비교하여 억제 또는 감소를 의미하며, 당업자라면 본원에 개시된 내용 및/또는 당업계의 상식을 근거로 억제 또는 감소된 정도를 쉽게 결정할 수 있을 것이다. 억제 또는 감소를 결정함에 있어서, 염증반응의 활성화와 함께 증가되는 사이토카인의 발현량의 변화를 또한 측정할 수 있을 것이다. Inhibition of this pathway can be measured by reducing phosphorylation of LSD1 and / or demethylation of p65 subunit of NF-κB and / or reducing or inhibiting binding of LSD1 and p65. Such reduction or inhibition means inhibition or reduction compared to a control not treated with the test substance, and one of ordinary skill in the art will readily be able to determine the extent of inhibition or reduction based on the disclosure herein and / or common sense in the art. In determining inhibition or reduction, one may also measure changes in the amount of cytokine expression that increases with activation of the inflammatory response.
본원에서 조절(modulation)이란, 특정 생물학적 기능의 활성화, 자극 또는 상향 조절, 또는 저하 또는 하향 조절, 또는 양쪽 모두를 포함하며, 인 비트로 상태에서의 조절, 인비보 상태에서의 조절, 엑스비보 상태에서의 조절을 모두 포함하는 것이다. 일 구현예에서 조절은 염증반응의 억제이다.Modulation herein includes activation of a particular biological function, stimulation or upregulation, or degradation or downregulation, or both, and regulation in an in vitro state, regulation in an in vivo state, in an ex vivo state, It includes all of the adjustments. In one embodiment the regulation is the inhibition of the inflammatory response.
본원의 방법에 사용되는 시험물질은 PCKα->LSD1->NF-κB 경로 신호전달시스템에 작용하여 LSD1의 인산화를 감소시켜, NF-κB의 p65 서브유닛의 탈메틸화를 조절 특히 억제할 것으로 기대되는 물질로, 저분자량 화합물, 고분자량 화합물, 화합물들의 혼합물(예컨대, 천연 추출물 또는 세포 또는 조직 배양물), 또는 바이오의약품(예컨대, 단백질, 항체, 펩타이드, DNA, RNA, 안티센스 올리고뉴클레오타이드, RNAi, 앱타머, RNAzyme 및 DNAzyme) 또는 당 및 지질 등을 포함하나 이로 한정하는 것은 아니다.Test agents used in the methods herein are expected to act on the PCKα-> LSD1-> NF-κB pathway signaling system to reduce phosphorylation of LSD1, thereby regulating and specifically inhibiting demethylation of the p65 subunit of NF-κB. As a substance, low molecular weight compounds, high molecular weight compounds, mixtures of compounds (eg, natural extracts or cell or tissue cultures), or biopharmaceuticals (eg, proteins, antibodies, peptides, DNA, RNA, antisense oligonucleotides, RNAi, apps) Tammers, RNAzyme and DNAzyme) or sugars and lipids, and the like.
본원에 따른 일 구현예에서는 저분자화합물이 시험물질로 사용될 수 있다. 상기 시험 물질은 합성 또는 천연 화합물의 라이브러리로부터 얻을 수 있으며 이러한 화합물의 라이브러리를 얻는 방법은 당업계에 공지되어 있다. 합성 화합물 라이브러리는 Maybridge Chemical Co.(UK), Comgenex(USA), Brandon Associates(USA), Microsource(USA) 및 Sigma-Aldrich(USA)에서 구입 가능하며, 천연 화합물의 라이브러리는 Pan Laboratories(USA) 및 MycoSearch(USA)에서 구입 가능하다. 시험 물질은 당업계에 공지된 다양한 조합 라이브러리 방법에 의해 얻을 수 있으며, 예를 들어, 생물학적 라이브러리, 공간 어드레서블 패러럴 고상 또는 액상 라이브러리(spatially addressable parallel solid phase or solution phase libraries), 디컨볼루션이 요구되는 합성 라이브러리 방법, "1-비드 1-화합물" 라이브러리 방법, 그리고 친화성 크로마토그래피 선별을 이용하는 합성 라이브러리 방법에 의해 얻을 수 있다. 분자 라이브러리의 합성 방법은, DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90, 6909, 1993; Erb et al. Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann et al., J. Med. Chem. 37, 2678, 1994; Cho et al., Science 261, 1303, 1993; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2059, 1994; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2061; Gallop et al., J. Med. Chem. 37, 1233, 1994 등에 개시되어 있다. 예를 들면 약물의 스크리닝 목적을 위해서는 화합물은 저분자량의 치료효과를 갖는 것이 사용될 수 있다. 예를 들면 중량이 400 Da, 600 Da 또는 800 Da과 같은 약 1000 Da 내외의 화합물이 사용될 수 있다. 목적에 따라 이러한 화합물은 화합물 라이브러리의 일부를 구성할 수 있으며, 라이브러리를 구성하는 화합물의 숫자도 수십개부터 수백만개까지 다양하다. 이러한 화합물 라이브러리는 펩타이드, 펩토이드 및 기타 환형 또는 선형의 올리고머성 화합물, 및 주형을 기본으로 하는 저분자 화합물, 예컨대 벤조디아제핀, 하이단토인, 바이아릴, 카보사이클 및 폴리사이클 화합물(예컨대 나프탈렌, 페노티아진, 아크리딘, 스테로이드 등), 카보하이드레이트 및 아미노산 유도체, 디하이드로피리딘, 벤즈하이드릴 및 헤테로사이클(예컨대 트리아진, 인돌, 티아졸리딘 등)을 포함하는 것일 수 있으나, 이는 단지 예시적인 것으로 이로 한정되는 것은 아니다.In one embodiment according to the present application, a low molecular weight compound may be used as a test substance. The test substance can be obtained from a library of synthetic or natural compounds and methods of obtaining libraries of such compounds are known in the art. Synthetic compound libraries are available from Maybridge Chemical Co. (UK), Comgenex (USA), Brandon Associates (USA), Microsource (USA), and Sigma-Aldrich (USA), and libraries of natural compounds are available from Pan Laboratories (USA) and Available from MycoSearch (USA). Test materials can be obtained by a variety of combinatorial library methods known in the art, for example, biological libraries, spatially addressable parallel solid phase or solution phase libraries, deconvolution Required by the synthetic library method, the "1-bead 1-compound" library method, and the synthetic library method using affinity chromatography screening. Methods of synthesizing molecular libraries are described in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90, 6909, 1993; Erb et al. Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann et al., J. Med. Chem. 37, 2678, 1994; Cho et al., Science 261, 1303, 1993; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2059, 1994; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2061; Gallop et al., J. Med. Chem. 37, 1233, 1994 and the like. For example, for the purpose of screening drugs, compounds having a low molecular weight therapeutic effect may be used. For example, compounds of about 1000 Da in weight such as 400 Da, 600 Da or 800 Da can be used. Depending on the purpose, such compounds may form part of a compound library, and the number of compounds constituting the library may vary from tens to millions. Such compound libraries include peptides, peptoids and other cyclic or linear oligomeric compounds, and low molecular compounds based on templates such as benzodiazepines, hydantoin, biaryls, carbocycles and polycycle compounds (such as naphthalene, phenoty) Azine, acridine, steroids, and the like), carbohydrate and amino acid derivatives, dihydropyridine, benzhydryl and heterocycles (such as triazine, indole, thiazolidine, etc.), but this is merely illustrative. It is not limited to this.
또한 예를 들면 바이올로직스가 스크리닝에 사용될 수 있다. 바이올로직스는 세포 또는 바이오분자를 일컫는 것으로, 바이오분자란, 단백질, 핵산, 탄수화물, 지질 또는 생체내 및 생체외에서 세포 시스템 등을 이용하여 생산된 물질을 일컫는 것이다. 바이오분자를 단독으로 또는 다른 바이오분자 또는 세포와 조합으로 제공될 수 있다. 바이오분자는 예를 들면, 폴리뉴클레오타이드, 펩타이드, 항체, 또는 기타 혈장에서 발견되는 단백질 또는 생물학적 유기물질을 포함하는 것이다.Biologics can also be used for screening, for example. Biologics refers to cells or biomolecules, and biomolecules refer to proteins, nucleic acids, carbohydrates, lipids or substances produced using cellular systems in vivo and ex vivo. Biomolecules may be provided alone or in combination with other biomolecules or cells. Biomolecules include, for example, proteins or biological organics found in polynucleotides, peptides, antibodies, or other plasma.
실험결과 시험물질과 접촉되지 않은 대조군과 비교하여 시험물질의 존재하에서 LSD1의 인산화 및/또는 NF-κB의 p65 서브유닛의 탈메틸화 및/또는 LSD1과 p65의 결합을 억제할 것으로 기대되는 물질을 후보 물질로 선별한다. 대조군과 비교 약 10% 이상, 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 80% 이상, 약 90% 이상, 또는 약 100% 이상, 또는 이 이상을 증가 또는 감소된 것을 후보물질로 선별할 수 있다.As a result, candidates are expected to inhibit phosphorylation of LSD1 and / or demethylation of p65 subunit of NF-κB and / or binding of LSD1 and p65 in the presence of the test substance as compared to the control group not in contact with the test substance. Selected by substance. At least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or about Candidates may be selected to have an increase or decrease of at least 100% or higher.
본원에 사용되는 단백질은 당업계에 공지된 방법을 사용하여 제조될 수 있다. 특히 유전자 재조합 기술을 이용하는 것이다. 예를 들면 상기 단백질을 코딩하는 상응하는 유전자를 포함하는 플라스미드를 원핵 또는 진핵세포 세포 예를 들면 곤충세포, 포유류 세포에 전달하여 과발현시킨 후 정제하여 사용할 수 있다. 상기 플라스미드는 예를 들면 본원의 예시적 구현예에서 사용한 것과 같은 동물 세포주에 트랜스팩션한 후, 발현된 단백질을 정제하여 사용할 수 있으나, 이로 제한하는 것은 아니다. 이 경우 단백질은 검출의 편이를 위해 다양한 표식물질, 예를 들면 바이오틴, 형광물질, 아세틸화, 방사선 동위원소와 같은 것으로 공지된 방법 또는 시중의 단백질 표지 키트를 사용하여 표지될 수 있으며, 표지된 물질에 적합한 검출기기를 사용하여 검출될 수 있다.Proteins as used herein can be prepared using methods known in the art. In particular, the use of genetic recombination technology. For example, the plasmid containing the corresponding gene encoding the protein may be delivered to prokaryotic or eukaryotic cells such as insect cells and mammalian cells, overexpressed and purified. The plasmid may be used, for example, after transfection into an animal cell line, such as used in the exemplary embodiments herein, to purify the expressed protein, but is not limited thereto. In this case, the protein may be labeled using a variety of markers such as biotin, fluorescent material, acetylation, radioisotopes, or commercially available protein labeling kits for ease of detection, and labeled materials. Can be detected using a detector suitable for.
또는 스크리닝 단백질을 암호화하는 DNA 또는 RNA 서열을 적당한 숙주 세포에서 발현시켜 그 세포 파쇄물을 만들거나 상기 스크리닝 단백질의 mRNA를 시험관내에서 번역한 후 당업계에 공지된 단백질 분리 방법에 의해 스크리닝 단백질을 정제할 수 있다. 통상, 세포잔여물(cell debris) 등을 제거하기 위해 상기 세포 파쇄물 또는 시험관내 번역한 결과물을 원심분리한 후, 침전, 투석, 각종 컬럼 크로마토그라피 등을 적용한다. 이온교환 크로마토그라피, 겔-퍼미에이션 크로마토그라피, HPLC, 역상-HPLC, 프렙용 SDS-PAGE, 친화성 컬럼 등은 컬럼 크로마토그라피의 예이다. 친화성 컬럼은, 예를 들어, 항-스크리닝 단백질 항체를 이용하여 만들 수 있다.Or by expressing the DNA or RNA sequence encoding the screening protein in a suitable host cell to make the cell lysate or by translating the mRNA of the screening protein in vitro and purifying the screening protein by protein isolation methods known in the art. Can be. Usually, in order to remove cell debris and the like, the cell lysate or the result of in vitro translation is centrifuged, followed by precipitation, dialysis, and various column chromatography. Ion exchange chromatography, gel-permeation chromatography, HPLC, reverse phase-HPLC, preparative SDS-PAGE, affinity columns and the like are examples of column chromatography. Affinity columns can be made, for example, using anti-screening protein antibodies.
그 외 상기 방법에 사용되는 시험물질의 종류 등은 앞서 언급한 바를 참조할 수 있다.In addition, the type of test substance used in the method may refer to the aforementioned.
본원에 따른 방법에 의해 선별된 염증반응 조절 특히 억제 물질은 염증질환의 치료제로 사용될 수 있다.Inflammatory response modulators, in particular inhibitory substances, selected by the method according to the invention can be used as therapeutic agents for inflammatory diseases.
본원에서 염증성 질환은 염증 또는 염증 반응으로 인한 다양한 증상 또는 질환을 포함하며, 예를 들면 패혈증, 알러지, 아스마, 자가면역질환, 간염, 사구체 신염, 간염, 염증성 장질환, 재관류 손상 및 이식 거부 등과 같은 다양한 증상 또는 질환을 포함한다. Inflammatory diseases herein include various symptoms or diseases caused by an inflammatory or inflammatory response, such as sepsis, allergy, asma, autoimmune diseases, hepatitis, glomerulonephritis, hepatitis, inflammatory bowel disease, reperfusion injury and transplant rejection, etc. Various symptoms or diseases.
본원에서는 특히 NF-κB를 매개로 하는 염증반응으로 인한 질환은 이로 제한하는 것은 아니지만, 패혈증, 류마티스 관절염 또는 자가면역질환을 포함한다. Diseases caused in particular by the NF-κB-mediated inflammatory response include, but are not limited to, sepsis, rheumatoid arthritis or autoimmune diseases.
본원에 따른 일 구현예에서는 본원에 따른 방법은 특히 패혈증 치료제 물질의 스크리닝에 사용된다. 또한 다른 구현예에서 본원에 따른 방법에 의해 스크리닝된 물질은 패혈증 치료제로 유용하다.In one embodiment according to the invention the method according to the invention is used in particular for the screening of sepsis therapeutic material. In another embodiment the substances screened by the method according to the invention are also useful as therapeutic agents for sepsis.
본원에서 사용된 용어 "패혈증"이란 Enterococcus spp., Staphylococcus spp., Streptococcus spp, Enterobacteriacae family, Providencia spp. 및 Pseudomonas spp. 등과 같은 박테리아 또는 기생충 감염으로 인한 전신 염증 반응으로, 심박동 증가, 저혈압, 저 또는 고체온증, 빠른호흡 및 백혈구 수의 증가 또는 감소와 같은 증상을 나타내는 질환을 일컫는 것이다. 특히 본원에 따른 일 구현예에서 Lsd1SA/SA 마우스는 패혈증을 모방하는 조건하에서 WT 생쥐에 비해 낮은 염증성 사이토카인의 생산과 함께, 더 높은 생존율을 보여주었다. 이러한 데이터를 통하여 PKCα-LSD1 신호 전달을 타겟팅하는 것이 패혈증과 같은 염증성 질환에 강력한 치료 전략이 될 수 있음을 증명하였다.As used herein, the term “septicemia” refers to Enterococcus spp., Staphylococcus spp., Streptococcus spp, Enterobacteriacae family, Providencia spp. And Pseudomonas spp. A systemic inflammatory response resulting from bacterial or parasitic infections, such as, and the like, refers to a disease exhibiting symptoms such as increased heart rate, hypotension, hypothermia, hyperthermia, rapid breathing, and an increase or decrease in white blood cell count. In particular, in one embodiment according to the present application, Lsd1 SA / SA mice showed higher survival rates with lower inflammatory cytokine production than WT mice under conditions that mimic sepsis. These data demonstrate that targeting PKCα-LSD1 signaling may be a powerful therapeutic strategy for inflammatory diseases such as sepsis.
본원에서 사용된 용어 "치료"란 질환, 또는 질환으로 인한 증상 또는 상태의 억제, 제거, 경감, 완화, 개선, 및/또는 예방을 포함하는 개념이다. As used herein, the term “treatment” is a concept that includes inhibiting, eliminating, alleviating, alleviating, ameliorating, and / or preventing a disease or condition or condition resulting from the disease.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, examples are provided to help understand the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.
실시예Example
실험방법 및 재료Experiment Method and Materials
세포 배양: Raw264.7 (KCLB), L929, MEFs 세포는 ZelShield(Minerva Biolabs GmbH) 1%, 10% FBS가 첨가된 Dulbecco’s modified Eagle’s 배지(DMEM, Welgene)에서 배양되었다. 마이코플라즈마가 없는 조건을 보장하기 위해, 일상적으로 모든 세포의 마이코플라즈마 검사를 수행하였다. Cell Culture: Raw264.7 (KCLB), L929, MEFs cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Welgene) with ZelShield (Minerva Biolabs GmbH) 1%, 10% FBS. To ensure conditions without mycoplasma, mycoplasma testing of all cells was routinely performed.
BMDM 제작: 마우스는 CO2 과흡입을 통하여 안락사시켰고, 마우스에서 대퇴골과 경골을 취득했다. 70% 에탄올과 차가운 PBS로 씻은 이후에, 골수를 대퇴골과 경골에서 분리하였다. 골수세포는 RPMI-1640 배지(Welgene, 1% ZelShield, 10% FBS 첨가)에 1X106에서 2X106/ml 농도로 배양되었다. 그 이후 Macrophage colony stimulating factor (10ng/ml, sigma)와 10% L929-conditioned 배지가 세포에 첨가되었고 7~8일간 분화되었다. BMDM Preparation: Mice were euthanized via CO 2 oversuction and mice obtained femur and tibia. After washing with 70% ethanol and cold PBS, the bone marrow was separated from the femur and tibia. Bone marrow cells were cultured in RPMI-1640 medium (Welgene, 1% ZelShield, 10% FBS) at a concentration of 1 × 10 6 to 2 × 10 6 / ml. Since then, Macrophage colony stimulating factor (10ng / ml, sigma) and 10% L929-conditioned medium were added to the cells and differentiated for 7-8 days.
항체 및 시약: Santa Cruz Biotechnology 제품: p65항체(sc-372, 면역블랏을 위해 1:1000으로 희석하여 사용, 면역형광분석을 위해 1:200으로 희석하여 사용), LaminA/C항체(sc-6215, 면역블랏을 위해 1:1000으로 희석하여 사용), GFP 항체(sc-9996, 면역블랏을 위해 1:5000으로 희석하여 사용), GST 항체(sc-459, 면역블랏을 위해 1:5000으로 희석하여 사용); Cell Signaling 제품: LSD1항체(#2139, 면역블랏을 위해 1:1000으로 희석하여 사용), PKCα항체(#2056, 면역블랏을 위해 1:1000으로 희석하여 사용); Abcam 제품: p65 항체(ab7970), LSD1 항체(ab17721), H3K9Ac 항체(ab4441), H3K9me2 항체(ab1220), H3K4me2 항체(ab32356); Novus 제품: LSD1 항체(NB-100-1762), PKCα 항체(NB-110-57356, 면역블랏을 위해 1:1000으로 희석하여 사용), C/EBPδ 항체(NB-110-85519, 면역블랏을 위해 1:1000으로 희석하여 사용); Millipore 제품: p-PKCa S657 항체(#06-822, 면역블랏을 위해 1:1000으로 희석하여 사용) p-LSD1 항체(ABE 1462, 면역블랏을 위해 1:200으로 희석하여 사용); Sigma 제품: β-actin 항체(A1978, 면역블랏을 위해 1:5000으로 희석하여 사용), Flag 항체(F3165, 면역블랏을 위해 1:5000으로 희석하여 사용), Lipopolysaccharides(LPS) from E. coli O127:B8(L3129), GSK-LSD1(SML1072); 그 외 타사 제품: HA 항체(MMS-101R, 면역블랏을 위해 1:5000으로 희석하여 사용, 면역형광분석을 위해 1:200으로 희석하여 사용, Covance 제품), Tubulin 항체(LF-PA0146A, 면역 블랏을 위해 1:1000으로 희석하여 사용, Abfrontier 제품), mono-methyl-p65(K314/315) 항체(ENH006, 면역블랏을 위해 1:500으로 희석하여 사용, Elabscience Biotechnology 제품) FK2 항체(BML-PW8810, 면역 블랏을 위해 1:1000으로 희석하여 사용, Enzo Life Sciences 제품), Go6976(13310, Cayman 제품), MG132(M-1157, A.G. Scientific 제품), TNT T7 Quick Coupled Transcription/ Translation System(L1170, Promega 제품), λ-phosphatase(P0753, NEB 제품). Antibodies and reagents: Santa Cruz Biotechnology product: p65 antibody (sc-372, diluted 1: 1000 for immunoblot, diluted 1: 200 for immunofluorescence), LaminA / C antibody (sc-6215 , Diluted 1: 1000 for immunoblot, GFP antibody (sc-9996, diluted 1: 5000 for immunoblot), GST antibody (sc-459, diluted 1: 5000 for immunoblot) Use); Cell Signaling Products: LSD1 antibody (# 2139, diluted 1: 1000 for immunoblot), PKCα antibody (# 2056, diluted 1: 1000 for immunoblot); Abcam products: p65 antibody (ab7970), LSD1 antibody (ab17721), H3K9Ac antibody (ab4441), H3K9me2 antibody (ab1220), H3K4me2 antibody (ab32356); Novus product: LSD1 antibody (NB-100-1762), PKCα antibody (NB-110-57356, diluted 1: 1000 for immunoblot), C / EBPδ antibody (NB-110-85519, for immunoblot Dilute to 1: 1000 and use); Millipore product: p-PKCa S657 antibody (# 06-822, diluted 1: 1000 for immunoblot) p-LSD1 antibody (ABE 1462, diluted 1: 200 for immunoblot); Sigma products: β-actin antibody (A1978, diluted 1: 5000 for immunoblot), Flag antibody (F3165, diluted 1: 5000 for immunoblot), Lipopolysaccharides (LPS) from E. coli O127 : B8 (L3129), GSK-LSD1 (SML1072); Other third party products: HA antibody (MMS-101R, diluted 1: 5000 for immunoblot, diluted 1: 200 for immunofluorescence, Covance product), Tubulin antibody (LF-PA0146A, immunoblot Diluted 1: 1000 for use, Abfrontier product), mono-methyl-p65 (K314 / 315) antibody (ENH006, diluted 1: 500 for immunoblot, Elabscience Biotechnology) FK2 antibody (BML-PW8810) , Diluted 1: 1000 for immunoblot, Enzo Life Sciences), Go6976 (13310, Cayman), MG132 (M-1157, AG Scientific), TNT T7 Quick Coupled Transcription / Translation System (L1170, Promega) Product), λ-phosphatase (P0753, from NEB).
동물사육: C57BL/6J background의 Lsd1SA/SA 마우스가 만든 방법은 이미 기술 되어있다(Nam et al., Mol. Cell. 2014; 53: 791-805). 8-10주령의 야생형 및 Lsd1SA/SA 마우스를 실험에 사용하였다. 마우스는 22-23℃ 실내 온도와 빛 조건(12시간 빛: 12시간 어둠, 불은 아침 8시에 켜짐)에서 유지되었다. 음식과 물은 자유롭게 먹을 수 있도록 공급하였다. 모든 동물실험은 서울대학교 동물실험 및 이용위원회(Institutional Animal Care and Use Committee)의 승인을 받았다. Animal Breeding : A method made by Lsd1 SA / SA mice with a C57BL / 6J background has already been described (Nam et al., Mol. Cell. 2014; 53: 791-805). Wild-type and Lsd1 SA / SA mice of 8-10 weeks of age were used for the experiment. Mice were maintained at 22-23 ° C. room temperature and light conditions (12 hours light: 12 hours dark, light on at 8 am). Food and water were provided for free eating. All animal experiments were approved by the Institutional Animal Care and Use Committee.
LPS 처리: 세포를 24시간 동안 FBS가 없는 상태에서 키운 이후, LPS(1μg/ml 혹은 표기된 농도)를 표기된 시간만큼 처리하였다. 세포는 면역블랏 혹은 quantitative RT-PCR 혹은 ChIP 실험에 사용하기 위해 각각의 실험 방법에 따라 수집되고 용해되었다. LPS Treatment : After the cells were grown in the absence of FBS for 24 hours, LPS (1 μg / ml or the indicated concentration) was treated for the indicated time. Cells were collected and lysed according to each experimental method for use in immunoblot or quantitative RT-PCR or ChIP experiments.
정량 RT-PCR: 전체 RNA는 폐조직, BMDM, 혹은 Raw264.7 세포에서 TRIzol (Invitrogen 제품)을 이용하여 분리되었다. RNA는 oligo dT 프라이머와 M-MLV Reverse Transcriptase(Enzynomics 제품)을 사용하여 역전사되었다. 얻어진 cDNA는 TOPrealTM qPCR 2X PreMix(SYBR Grenn with high ROX, Enzynomics 제품)와 유전자 특이 프라이머로 PCR하였다. mRNA양은 ABI-7500으로 검출하였다. 프라이머 정보는 다음과 같다. Quantitative RT-PCR : Total RNA was isolated from lung tissue, BMDM, or Raw264.7 cells using TRIzol (Invitrogen). RNA was reverse transcribed using oligo dT primers and M-MLV Reverse Transcriptase (Enzynomics). The resulting cDNA was PCR with TOPreal qPCR 2X PreMix (SYBR Grenn with high ROX, Enzynomics) and gene specific primers. mRNA amount was detected by ABI-7500. Primer information is as follows.
mouse Mcp-1 Forward 5’-GGCTCAGCCAGATGCAGTTAAC-3’, mouse Mcp-1 Forward 5’-GGCTCAGCCAGATGCAGTTAAC-3 ’,
mouse Mcp-1 Reverse 5’-AGCCTACTCATTGGGATCATCTTG-3’, mouse Mcp-1 Reverse 5’-AGCCTACTCATTGGGATCATCTTG-3 ’,
mouse Il-6 Forward 5’-CATAAAATAGTCCTTCCTACCCCAAT-3’, mouse Il-6 Forward 5’-CATAAAATAGTCCTTCCTACCCCAAT-3 ’,
mouse Il-6 Reverse 5’-CACTCCTTCTGTGACTCCAGCTTA-3’, mouse Il-6 Reverse 5’-CACTCCTTCTGTGACTCCAGCTTA-3 ’,
mouse Il-1b Forward 5’-GATGATAACCTGCTGGTGTGTGA-3’, mouse Il-1b Forward 5’-GATGATAACCTGCTGGTGTGTGA-3 ’,
mouse Il-1b Reverse 5’-GTTGTTCATCTCGGAGCCTGTAG-3’, mouse Il-1b Reverse 5’-GTTGTTCATCTCGGAGCCTGTAG-3 ’,
mouse Cebpd Forward 5’-CTCCACGACTCCTGCCATGT-3’, mouse Cebpd Forward 5’-CTCCACGACTCCTGCCATGT-3 ’,
mouse Cebpd Reverse 5’-GAAGAGGTCGGCGAAGAGTTC-3’,mouse Cebpd Reverse 5’-GAAGAGGTCGGCGAAGAGTTC-3 ’,
mouse RelA Forward 5’-TGTGGAGATCATCGAACAGCCG-3’,mouse RelA Forward 5’-TGTGGAGATCATCGAACAGCCG-3 ’,
mouse RelA Reverse 5’-TTCCTGGTCCTGTGTAGCCATTGAT-3’.mouse RelA Reverse 5'-TTCCTGGTCCTGTGTAGCCATTGAT-3 '.
RNA-seq 분석: RNA-seq 라이브러리는 생산자의 지침에 따라 TruSeq RNA Sample prep kit v2(Illumina)를 사용하여 제작하였다. RNA-seq 라이브러리는 Illumina Hi-seq 3000/4000 SBS kit v3(MACROGEN Inc.)에서 pair-end sequencing되었다. 모든 RNA-seq 데이터는 Tophat 패키지(Kim et al., Genome Biol. 2013; 14: R36)를 사용하여 마우스 게놈(mm9)에서 매핑되었다. Differential 분석은 1X10-4의 FDR(false discovery rate) 컷오프(Kim et al., Genome Biol. 2013; 14: R36; Robinson et al., Bioinformatics. 2010; 26: 139-140)를 사용하여 EdgeR 패키지를 통해 수행되었다. DEG의 유전자 발현 값을 사용하여 계층적 클러스터링 분석을 수행했다. 특히 거리 측정값으로 1-(상관계수)가 있는 유전자에 대한 Ward의 기준을 사용했다. 클러스터 히트맵은 각 유전자에 대한 샘플에서 z 점수를 사용하여 그렸다. ChIP-seq 데이터는 Bowtie를 사용하여 마우스 게놈에 매핑되었다. p65에 대한 피크는 일치하는 입력 값 대조군을 사용하여 Homer의 findPeaks 명령으로 수행되었다. 각각 DEG에서, TSS의 10kbps 이내에 위치한 p65 피크를 조사하였다. De novo p65 피크는 Homer에서 findMotifsGenome 명령을 사용하여 수행되었다. nascent transcript의 양을 얻기 위하여 대식세포에서 LPS 처리 전후의 글로벌 런-온 시퀀싱(GRO-seq)을 사용했다. GRO-seq fastq 파일은 polyA와 어댑터 시퀀스 버리기 위해 trim_galore (https://www.bioinformatics.babraham.ac.uk/ projects/trim_galore/)를 트리밍되었다(Hah et al., Proc. Natl. Acad. Sci. USA. 2015; 112: E297-E302). 트리밍된 read 값은 -best -v 2 -m 1 옵션을 사용하여 bowtie(v1.0.0)와 매핑되었다. bowtie 파일에는 HOMER의 makeTagDirectory 기능으로 태깅되었다. 평균 프로파일은 매핑된 read값을 1X10-7으로 정규화한 후에 얻어졌다. RNA-seq analysis : RNA-seq libraries were prepared using TruSeq RNA Sample prep kit v2 (Illumina) according to the producer's instructions. RNA-seq libraries were pair-end sequencing in Illumina Hi-seq 3000/4000 SBS kit v3 (MACROGEN Inc.). All RNA-seq data was mapped in the mouse genome (mm9) using the Tophat package (Kim et al., Genome Biol. 2013; 14: R36). Differential analysis was performed using EdgeR packages with a false discovery rate (FDR) cutoff of 1 × 10 −4 (Kim et al., Genome Biol. 2013; 14: R36; Robinson et al., Bioinformatics. 2010; 26: 139-140). Was performed. Hierarchical clustering analysis was performed using gene expression values of DEG. In particular, Ward's criterion was used for genes with 1- (correlation) as the distance measure. Cluster heatmaps were drawn using the z score in the sample for each gene. ChIP-seq data was mapped to the mouse genome using Bowtie. Peaks for p65 were performed with Homer's findPeaks command using the matching input control. In each DEG, the p65 peak located within 10 kbps of TSS was examined. De novo p65 peaks were performed using the findMotifsGenome command in Homer. Global run-on sequencing (GRO-seq) was used before and after LPS treatment in macrophages to obtain the amount of nascent transcript. The GRO-seq fastq file trimmed trim_galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to discard the polyA and adapter sequences (Hah et al., Proc. Natl. Acad. Sci. USA; 2015; 112: E297-E302). The trimmed read values were mapped with bowtie (v1.0.0) using the -best -v 2 -m 1 option. The bowtie file is tagged with the makeTagDirectory feature of HOMER. The average profile was obtained after normalizing the mapped read value to 1 × 10 −7 .
ChIP 실험: 세포를 1% 포름알데히드에서 10분간 cross-link하고 차가운 PBS로 두 번 세척하였다. 세포를 1ml의 harvest buffer (0.1 M Tris-HCl [pH 9.4], 실험 전에 10 mM DTT 추가)를 넣고 스크래퍼로 긁어서 1.5ml 튜브에 넣고 30℃에서 15분간 놓아둔 이후, 6000rpm에 3분 동안 원심분리하였다. 세포의 팰렛을 차가운 PBS로 세척한 이후, buffer I (0.25% Triton X-100, 10 mM EDTA, 10 mM HEPES [pH 6.5], 및 0.5 mM EGTA)과 buffer II (200 mM NaCl, 1 mM EDTA, 10 mM HEPES [pH 6.5], 및 0.5 mM EGTA)를 차례로 넣고 세척해 준다. ChIP lysis buffer (50 mM Tris-HCl [pH 8.1], 1% SDS, 10 mM EDTA [pH 7.6], 실험 전에 protease inhibitor cocktail 추가)를 넣고 소니케이션을 통하여 크로마틴 절편을 만든다. 평균길이 250bp의 DNA 단편으로 만들어진 크로마틴 추출물을 dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl [pH 8.1], 실험 전에 protease inhibitor cocktail 추가)로 희석하고 항체를 넣어 4℃에서 밤새 면역침전시켰다. 다음날 protein A/G sepharose 비드를 40ul씩 넣어주고 2시간 동안 4℃에서 로테이션을 시켰다. 비드는 TSE I buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 및 150 mM NaCl), TSE II buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 및 500 mM NaCl), buffer III (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 10 mM Tris-HCl [pH 8.1] 및 1 mM EDTA), 세번의 TE buffer (10 mM Tris-HCl [pH 8.0], 및 1 mM EDTA) 순서로 세척되었다. 그리고, elution buffer (1% SDS, 0.1 M NaHCO3)를 사용하여 비드에서 용출시켰다. 용출된 추출물을 65℃에서 밤새 놔두어 reverse Cross -linking을 시키고 DNA는 QIA quick Gel Extraction Kit (QIAGEN)를 사용하여 정제되었다. 정제된 DNA는 quantitative RT-PCR을 통하여 분석되었다. 총 50ul의 DNA중 2μl가 PCR에 사용되었다. PCR 프라이머의 시퀀스 정보는 아래와 같다. ChIP experiment : Cells were cross- linked in 1% formaldehyde for 10 minutes and washed twice with cold PBS. The cells were placed in 1 ml of harvest buffer (0.1 M Tris-HCl [pH 9.4], added 10 mM DTT before the experiment), scraped with a scraper, placed in a 1.5 ml tube, placed at 30 ° C. for 15 minutes, and then centrifuged at 6000 rpm for 3 minutes. It was. After washing the pallet of cells with cold PBS, buffer I (0.25% Triton X-100, 10 mM EDTA, 10 mM HEPES [pH 6.5], and 0.5 mM EGTA) and buffer II (200 mM NaCl, 1 mM EDTA, 10 mM HEPES [pH 6.5], and 0.5 mM EGTA) were added sequentially and washed. Add ChIP lysis buffer (50 mM Tris-HCl [pH 8.1], 1% SDS, 10 mM EDTA [pH 7.6], add protease inhibitor cocktail before the experiment) and prepare chromatin sections via sonication. Chromatin extract made from DNA fragments of 250 bp in average length was diluted with dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl [pH 8.1], added protease inhibitor cocktail before the experiment). The antibody was added and immunoprecipitated overnight at 4 ° C. The next day, 40 μl of protein A / G sepharose beads were added and rotated at 4 ° C. for 2 hours. Beads were TSE I buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], and 150 mM NaCl), TSE II buffer (0.1% SDS, 1% Triton X- 100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], and 500 mM NaCl), buffer III (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 10 mM Tris-HCl [pH 8.1] and 1 mM EDTA), three times TE buffer (10 mM Tris-HCl [pH 8.0], and 1 mM EDTA). Elution buffer (1% SDS, 0.1 M NaHCO 3 ) was used to elute from the beads. The eluted extracts were left at 65 ° C. overnight for reverse cross-linking and DNA was purified using QIA quick Gel Extraction Kit (QIAGEN). Purified DNA was analyzed via quantitative RT-PCR. 2 μl of a total of 50 ul of DNA was used for PCR. Sequence information of the PCR primer is as follows.
mouse Mcp-1 Forward 5’-CACCCCATTACATCTCTTCCCC-3’, mouse Mcp-1 Forward 5’-CACCCCATTACATCTCTTCCCC-3 ’,
mouse Mcp-1 Reverse 5’-TGTTTCCCTCTCACTTCACTCTGTC-3’, mouse Mcp-1 Reverse 5’-TGTTTCCCTCTCACTTCACTCTGTC-3 ’,
mouse Il-6 Forward 5’-AGCTACAGACATCCCCAGTCTC-3’, mouse Il-6 Forward 5’-AGCTACAGACATCCCCAGTCTC-3 ’,
mouse Il-6 Reverse 5’-TGTGTGTCGTCTGTCATGCG-3’.mouse Il-6 Reverse 5'-TGTGTGTCGTCTGTCATGCG-3 '.
ChIP-seq 분석: ChIP-seq 라이브러리는 생산자의 지시사항에 따라 KAPA library preparation kit를 사용하여 준비하였다. ChIP-seq 라이브러리는 Illumina Hi-seq 4000 SBS kit v3 (MACROGEN Inc.)에서 싱글 엔드 시퀀싱되었다. ChIP-seq read는 Bowtie(Langmead et al., Genome Biol. 2009; 10: R25)를 사용하여 마우스 reference genome (NCBI build 37, mm9)에 align되었다. unique peak만 HOMER에 의해 peak 호출과 주석달기가 사용되었다(Heinz et al., Mol. Cell. 2010; 38: 576-589). LPS 처리 후, LSD1과 겹치는 p65 피크가 고려되었다. BedGraph 파일은 캘리포니아 대학의 Santa Cruz Genome Browser에서 생성 및 조회되었다. ChIP-seq에 p65 (SC-372)와 LSD1 (ab1772) 항체를 사용했다. ChIP-seq analysis : ChIP-seq libraries were prepared using a KAPA library preparation kit according to the manufacturer's instructions. The ChIP-seq library was single-ended sequenced in Illumina Hi-seq 4000 SBS kit v3 (MACROGEN Inc.). ChIP-seq reads were aligned to the mouse reference genome (NCBI build 37, mm9) using Bowtie (Langmead et al., Genome Biol. 2009; 10: R25). Only unique peaks were used by HOMER for peak calling and annotating (Heinz et al., Mol. Cell. 2010; 38: 576-589). After LPS treatment, the p65 peak overlapping with LSD1 was considered. The BedGraph file was created and viewed in the Santa Cruz Genome Browser at the University of California. P65 (SC-372) and LSD1 (ab1772) antibodies were used for ChIP-seq.
조직 lysate의 준비: 폐 조직은 피를 제거하기 위해, homogenize 하기 전에 차가운 PBS로 씻었다. 폐는 RIPA 버퍼 (150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl [pH 7.5], 및 2 mM EDTA [pH 8.0], 실험 전 protease inhibitor cocktail 추가)에서 homogenize 되었고 이후, 4℃, 14,000g에서 원심 분리하여, 깨끗한 상층액을 면역블랏실험에 사용하였다. Preparation of Tissue Lysate : Lung tissue was washed with cold PBS before homogenizing, to remove blood. Lungs were added to RIPA buffer (150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl [pH 7.5], and 2 mM EDTA [pH 8.0], protease inhibitor cocktail before the experiment). ), And then, centrifuged at 4 ℃, 14,000g, clean supernatant was used for immunoblot experiment.
전체 세포 lysate와 세포내 분획화(fractionation): 모든 세포는 차가운 PBS로 세척하였다. 전체세포 lysate를 만들기 위해 protease inhibitor를 넣은 RIPA 버퍼에 재현탁하고, Branson Sonifier 450을 사용하여 output 3, duty cycle은 30, 5 pulses로 소니케이션하였다. 세포질과 핵의 분리를 위해 세포는 BufferA (10 mM HEPES [pH 7.9], 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 실험전 DTT, PMSF, protease inhibitors 추가)로 용해하여 얼음에 15분간 두고 이후 0.5% NP-40을 추가하고, 120g 4℃에서 1분간 원심 분리했다. 상층액(세포질 부분)은 새로운 튜브에 옮겨졌다. 핵 부분인 펠렛은 120g 4℃에서 1분간 원심 분리했다. 상층액은 버리고 펠렛은 buffer C (20 mM HEPES [pH 7.9], 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 실험전 DTT, PMSF, protease inhibitors 추가)로 재용해한 이후 전체세포 lysate처럼 소니케이션한다. 모든 lysate를 Bradford로 정량하였고, SDS-PAGE를 통해 분석하였다. Whole cell lysate and intracellular fractionation : All cells were washed with cold PBS. Resuspend in RIPA buffer containing protease inhibitor to make whole cell lysate, and output 3, duty cycle with 30 and 5 pulses using Branson Sonifier 450. Cells were lysed with Buffer A (10 mM HEPES [pH 7.9], 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, pre-test DTT, PMSF, protease inhibitors added) and separated on ice for 15 minutes. 0.5% NP-40 was added and centrifuged for 1 minute at 120 g 4 ° C. Supernatant (cytoplasmic part) was transferred to a new tube. The pellet, which is the nucleus part, was centrifuged at 120 g 4 ° C for 1 minute. Discard the supernatant and re-dissolve the pellet in buffer C (20 mM HEPES [pH 7.9], 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, pre-test DTT, PMSF, protease inhibitors added) and then sonicate as whole cell lysate. do. All lysates were quantified by Bradford and analyzed via SDS-PAGE.
In vitro 키나아제 실험: HEK293T 세포 lysast에서 PKCα를 면역침강하여 키나아제를 준비하였고, 기질인 GST-LSD1, GST-p65는 E. coli.에서 정제하였다. PKCα, GST-LSD1, GST-p65는 kinase assay buffer (40 mM Tris-HCl [pH 7.5], 10 mM MgCl2, 1mMDTT, 및 5μCiof[γ-32P]ATP)에 30℃ 30분간 반응하였다. 반응물에 5X sample buffer를 추가하고 10분간 끓였다. 샘플로 SDS-PAGE 실험을 진행하고, 인산화는 autoradiography를 통해 검출되었다. In vitro kinase experiment : Kinases were prepared by immunoprecipitation of PKCα in HEK293T cell lysast, and the substrates GST-LSD1 and GST-p65 were purified from E. coli. PKCα, GST-LSD1, and GST-p65 were reacted with kinase assay buffer (40 mM Tris-HCl [pH 7.5], 10 mM MgCl 2 , 1mMDTT, and 5 μCiof [γ- 32 P] ATP) for 30 minutes. 5X sample buffer was added to the reaction and boiled for 10 minutes. SDS-PAGE experiments were conducted with the samples, and phosphorylation was detected by autoradiography.
In vitro GST pull-down 실험: GST 융합 construct는 Rosetta E. coli 박테리아(Novagen)에서 발현되었다. GST binding buffer (125 mM NaCl, 20 mM Tris-HCl [pH 7.8], 10% Glycerol, 0.1% NP-40, 0.5 mM DTT 실험전 protease inhibitors 추가)에서 소니케이션하여 crude extract를 준비하였고, 13000rpm에서 30분 동안 용해물을 원심 분리하였다. 상층액만 분리하여 glutathione-Sepharose beads (GE Healthcare)를 100ul 넣어 4℃에서 밤새 로테이션하였다. p65 단백질은 생산자의 지시대로 TNT T7 Quick Coupled Transcription/Translation system (Promega, L1170)의 cold methionine을 사용하여 제작하였다. cold ATP를 사용한 in vitro 키나아제 실험이 GST pull-down 실험 전에 인산화 된 GST-LSD1을 만들기 위해 수행되었다. 인산화 된 LSD1을 동일한 양씩 두 튜브로 나누고, 둘 중 한 튜브에 1000 unit의 λ-phosphatase (NEB, P0753)를 처리하여 30℃ 30분간 반응하였다. 비드에 결합한 GST 융합 단백질은 버퍼 (150 mM NaCl, 25 mM Tris-HCl [pH 8.0], 10% Glycerol, 0.1% NP-40, and 1 mM EDTA)로 세척하고 in vitro에서 합성된 p65 단백질과 섞어 GST binding buffer에서 1시간 동안 4℃에서 로테이션하였다. 비드는 GST binding buffer로 7회 세척하였고, 샘플 버퍼를 넣고 10분간 끓인 이후 SDS-PAGE와 면역블랏으로 분석하였다. In vitro GST pull-down experiments : GST fusion constructs were expressed in Rosetta E. coli bacteria (Novagen). Crude extracts were prepared by sonication in GST binding buffer (125 mM NaCl, 20 mM Tris-HCl [pH 7.8], 10% Glycerol, 0.1% NP-40, 0.5 mM DTT added before protease inhibitors), 30 at 13000 rpm. Lysates were centrifuged for minutes. Only the supernatant was separated and 100ul of glutathione-Sepharose beads (GE Healthcare) was added and rotated overnight at 4 ° C. p65 protein was prepared using cold methionine of TNT T7 Quick Coupled Transcription / Translation system (Promega, L1170) as directed by the producer. In vitro kinase experiments with cold ATP were performed to produce phosphorylated GST-LSD1 before GST pull-down experiments. Phosphorylated LSD1 was divided into two tubes by the same amount, and one tube was treated with 1000 units of λ-phosphatase (NEB, P0753) and reacted for 30 minutes at 30 ° C. GST fusion proteins bound to beads were washed with buffer (150 mM NaCl, 25 mM Tris-HCl [pH 8.0], 10% Glycerol, 0.1% NP-40, and 1 mM EDTA) and mixed with p65 protein synthesized in vitro Rotation was performed at 4 ° C. for 1 hour in GST binding buffer. Beads were washed 7 times with GST binding buffer, and the sample buffer was boiled for 10 minutes and analyzed by SDS-PAGE and immunoblot.
In vitro 메틸화 탈메틸화 실험: In vitro 메틸화 실험 방법은 이전에 보고하였다(Kim et al., Nat. Commun. 2016; 7: 10347). Flag-p65는 Flag M2 agarose 비드(Sigma, A2220)를 사용하여 Flag-tag이 달린 p65를 발현하는 HEK293T 추출물에서 정제하였다. 4℃에서 밤새 인큐베이션한 후에, 비드에 결합한 단백질을 제거하기 위해 BC500 buffer (20 mM Tris-HCl [pH 7.9], 15% glycerol, 1 mM EDTA, 1 mM dithiothreitol, 0.2 mM PMSF, 0.05% Nonidet P40, 및 500 mM KCl)로 세척되었다. 깨끗하게 세척한 이후에, 비드는 methylation assay buffer (50 mM Tris-HCl [pH 8.5], 20 mM KCl, 10 mM MgCl2,10mMb-mercaptoethanol, 및 250 mM sucrose)로 3회 세척하였다. In vitro 메틸화 실험은 비드에 결합된 flag-p65, 비드에서 분리된 GST-SET7/9단백질 (L-Glutathione reduced로 분리되었다, Sigma G4251), SAM (Sigma, A7007)을 methylation assay buffer에 넣고 30℃에서 밤새 수행되었다. In vitro 탈메틸화 실험을 하기 전에 비드에 결함된 flag-p65에 결합한 SET7/9단백질을 완벽히 제거하기 위해 wash buffer (50 mM NaH2PO4[pH8.0], 10 mM Tris-HCl[pH8.0], 500 mM NaCl, 및 0.5% TritonX-100)로 깨끗하게 세척하고, demethylation buffer (50 mM Tris-HCl [pH 8.5], 50 mM KCl, 5 mM MgCl2, 5% glycerol, 및 0.5 mM PMSF)로 바꾸어준 후, LSD1 단백질 혹은 인산화 된 LSD1 단백질을 추가하였다. 37℃에서 밤새 반응한 이후에 2X sample buffer를 넣고 10분간 끓이고 SDS-PAGE를 달린 이후, 면역블랏으로 분석하였다. In vitro methylation demethylation experiments : In vitro methylation experiment methods have been previously reported (Kim et al., Nat. Commun. 2016; 7: 10347). Flag-p65 was purified from HEK293T extract expressing p65 with Flag-tag using Flag M2 agarose beads (Sigma, A2220). After overnight incubation at 4 ° C., BC500 buffer (20 mM Tris-HCl [pH 7.9], 15% glycerol, 1 mM EDTA, 1 mM dithiothreitol, 0.2 mM PMSF, 0.05% Nonidet P40, to remove the protein bound to the beads) And 500 mM KCl). After a clean wash, the beads were washed three times with methylation assay buffer (50 mM Tris-HCl [pH 8.5], 20 mM KCl, 10 mM MgCl 2 , 10 mM Mb-mercaptoethanol, and 250 mM sucrose). In vitro methylation experiments were performed with flag-p65 bound to beads, GST-SET7 / 9 protein isolated from beads (L-Glutathione reduced, Sigma G4251) and SAM (Sigma, A7007) in methylation assay buffer Was performed overnight. Wash buffer (50 mM NaH 2 PO 4 [pH8.0], 10 mM Tris-HCl [pH8.0] to completely remove SET7 / 9 protein bound to bead-defected flag-p65 prior to in vitro demethylation experiments ], 500 mM NaCl, and 0.5% TritonX-100) and clean with demethylation buffer (50 mM Tris-HCl [pH 8.5], 50 mM KCl, 5 mM MgCl 2 , 5% glycerol, and 0.5 mM PMSF). After the change, LSD1 protein or phosphorylated LSD1 protein was added. After reacting at 37 ° C. overnight, 2X sample buffer was added, boiled for 10 minutes, SDS-PAGE, and analyzed by immunoblot.
유비퀴틴화 실험: 세포에 Hismax-유비퀴틴과 함께 DNA 플라스미드를 트랜스펙션 했다. 트랜스펙션한지 48시간 뒤에 MG132 (5 μg/ml)를 4시간 동안 처리했다. 그 뒤 buffer A (6 M guanidium-HCl, 0.1 M Na2HPO4/NaH2PO4, 0.01 M Tris-HCl[pH8.0], 5mM 이미다졸 및 10mM β-mercaptoethanol)로 세포를 깨고, Ni2+-NTA 비드(QIAGEN)와 함께 상온에서 4시간 동안 인큐베이션 시켰다. 비드를 buffer A, buffer B (8 M urea, 0.1 M Na2PO4/NaH2PO4, 0.01M Tris-Cl[pH8.0], 및 10 mM β-mercaptoethanol), buffer C (8 M urea, 0.1 M Na2PO4/NaH2PO4, 0.01M Tris-Cl[pH6.3], 및 10 mM β-mercaptoethanol) 순으로 씻어준 뒤 비드에 붙어 있는 단백질들을 buffer D (200 mM imidazole, 0.15 M Tris-Cl [pH 6.7], 30% glycerol, 0.72 M β-mercaptoethanol, 및 5% SDS)로 추출해 냈다. 그리고 면역블랏으로 분석하였다. Ubiquitination Experiment : Cells were transfected with DNA plasmids with Hismax-ubiquitin. 48 hours after transfection, MG132 (5 μg / ml) was treated for 4 hours. Cells were then disrupted with buffer A (6 M guanidium-HCl, 0.1 M Na 2 HPO 4 / NaH 2 PO 4 , 0.01 M Tris-HCl [pH8.0], 5 mM imidazole and 10 mM β-mercaptoethanol), followed by Ni 2 at room temperature with + -NTA beads (QIAGEN) it was incubated for 4 hours. Beads were buffer A, buffer B (8 M urea, 0.1 M Na 2 PO 4 / NaH 2 PO 4 , 0.01 M Tris-Cl [pH8.0], and 10 mM β-mercaptoethanol), buffer C (8 M urea, After washing with 0.1 M Na 2 PO 4 / NaH 2 PO 4 , 0.01 M Tris-Cl [pH6.3], and 10 mM β-mercaptoethanol, the proteins attached to the beads were buffer D (200 mM imidazole, 0.15 M). Tris-Cl [pH 6.7], 30% glycerol, 0.72 M β-mercaptoethanol, and 5% SDS). And analyzed by immunoblot.
Endogenous 유비퀴틴화 분석을 위한 denatured 면역침전: Raw264.7 세포를 denaturing buffer (50 mM Tris-HCl [pH 7.5], 70 mM β-Mercaptoethanol, 및 1% SDS)에 깨고 95℃ 5분 동안 끓였다. non-denaturing lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 및 1% Triton X-100)로 희석한 이후에 p65 항체를 사용하여 면역침전시켰다. 샘플은 FK2 항체를 사용한 면역블랏으로 분석되었다.Denatured immunoprecipitation for endogenous ubiquitination assay : Raw264.7 cells were broken in denaturing buffer (50 mM Tris-HCl [pH 7.5], 70 mM β-Mercaptoethanol, and 1% SDS) and boiled for 5 minutes at 95 ° C. After dilution with non-denaturing lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, and 1% Triton X-100), immunoprecipitation was carried out using p65 antibody. Samples were analyzed by immunoblot using FK2 antibody.
면역형광 분석법: Lsd1-/- MEFs를 1% 젤라틴이 코팅된 커버 슬립에서 키웠다. 면역형광 실험을 위해서 세포를 PBS로 두 번 씻어주고, 2% 포름알데히드로 30분 동안 고정시켰다. 그리고 세포를 0.1% triton-X 100이 녹아져 있는 PBS로 2번 씻어줬다. 항체의 침투를 위하여 세포를 0.5% triton-X 100 녹아져 있는 PBS에 5분 동안 인큐베이션 시킨 뒤, 항체의 비특이적인 결합을 막기 위하여 blocking buffer (5% BSA in 0.1% PBS-T)로 블로킹시켜줬다. 일차 항체 (HA, MMS-101R Covance 제품, blocking buffer로 1:200으로 희석; anti-p65, sc-372 from Santa Cruz 제품, blocking buffer로 1:200으로 희석)를 블로킹 용액에 넣어서 세포와 인큐베이션 시켰다. 이후, 0.1% PBS-T 용액으로 8번 씻어준 뒤 이차 항체(Invitrogen, molecular probes, blocking buffer로 1:200으로 희석)와 함께 1시간 인큐베이션 시켰다. 이후 다시 0.1% PBS-T 용액으로 8회 씻어 준 뒤, 벡타쉴드(vectashield)(H-1000)로 마운팅하고, 컨포컬 현미경(Carl Zeiss, LSM700)으로 사진을 얻었다. Immunofluorescence Assay: Lsd1 − / − MEFs were grown on cover slips coated with 1% gelatin. Cells were washed twice with PBS for immunofluorescence experiments and fixed for 2 minutes with 2% formaldehyde. The cells were washed twice with PBS dissolved in 0.1% triton-X 100. Cells were incubated in 0.5% triton-X 100 dissolved PBS for 5 minutes to infiltrate the antibody and then blocked with blocking buffer (5% BSA in 0.1% PBS-T) to prevent nonspecific binding of the antibody. . Primary antibody (HA, MMS-101R Covance, diluted 1: 200 with blocking buffer; anti-p65, sc-372 from Santa Cruz, 1: 200 diluted with blocking buffer) was added to the blocking solution and incubated with the cells. . Thereafter, the mixture was washed 8 times with 0.1% PBS-T solution and incubated with secondary antibody (diluted 1: 200 with Invitrogen, molecular probes, blocking buffer) for 1 hour. After washing 8 times with 0.1% PBS-T solution again, it was mounted with a vectashield (vectashield) (H-1000), and obtained by a confocal microscope (Carl Zeiss, LSM700).
패혈증 유도: 맹장을 묶고 천공을 내는 수술(Cecal ligation and puncture, 이하 CLP)를 위해, 수컷 마우스를 작은 설치류 가스 마취기계(RC2,Vetequip, Pleasanton)를 통해 산소를 공급과 함께, 2% isoflurane(Forane, JW pharmaceutical)으로 마취시켰다. 먼저 호흡 챔버에서, 그리고 안면 마스크를 통해 마취시켰으므로 수술도중 자연스럽게 호흡할 수 있도록 하였다. CLP 유발성 패혈증은 이전에 기술된 바와 같이 수행되었다(Wang et al., Nat. Med. 2004; 10: 1216-1221). 간단히 설명하자면, 맹장과 인접한 장의 노출을 위해 2cm 중간선 절개를 배치했다. 그 다음 맹장을 3.0-실크 봉합사를 사용하여 맹장의 끝으로부터 5.00mm에 단단히 묶고 22 게이지의 바늘을 사용하여 구멍을 냈다. 그 다음 맹장을 부드럽게 짜내어 천공부위에서 소량의 대변을 밖으로 유출시키고 복강의 제 위치로 되돌려 놓았다. 개복 수술 부위를 4.0-실크 봉합사로 봉합했다. Induction of sepsis: For cecal ligation and puncture (CLP), male mice are given oxygen via a small rodent gas anesthesia machine (RC2, Vetequip, Pleasanton), 2% isoflurane (Forane). , JW pharmaceutical). Anesthesia was first anesthetized in the breathing chamber and through the facial mask to allow for natural breathing during surgery. CLP-induced sepsis was performed as previously described (Wang et al., Nat. Med. 2004; 10: 1216-1221). In short, a 2 cm midline incision was placed to expose the cecum and adjacent intestines. The cecum was then tightly bound to 5.00 mm from the end of the cecum using 3.0-silk sutures and punctured using a 22 gauge needle. The cecum was then gently squeezed out and a small amount of feces was drained out of the perforation and returned to place in the abdominal cavity. The open surgical site was closed with a 4.0-silk suture.
Hematoxylin and eosin (H&E) 염색: 마우스 폐의 조직학적 변화를 분석하기 위해 폐 샘플을 각각의 마우스에서 적출하였고, 피를 제거하기 위해 3번 PBS에 세척하고 4% 포름알데히드 용액(Junsei)에서 4℃ 20시간 동안 고정하였다. 고정을 마친 후 샘플을 에탄올시리즈로 탈수시키고, 파라핀을 내장시켰다. 4μm 두께로 절편을 만들어 슬라이드에 올려놓았다. 슬라이드를 60℃ 오븐에서 탈파라핀화하고 재수화한 이후, hematoxylin (Sigma)으로 염색하였다. 과도한 염색을 제거하기 위해 슬라이드를 산성알코올에 3번 빠르게 담갔고 eosin (Sigma)으로 대조 염색하였다. 그 후 에탄올시리즈로 세척하고 xylene에 담근 이후 마운팅하였다. 폐 조직의 폐 구조, 조직 부종 및 염증세포의 침윤을 평가하기 위해 광현미경으로 블라인드 분석하였다. Hematoxylin and eosin (H & E) staining: Lung samples were extracted from each mouse to analyze histological changes in mouse lungs, washed in PBS three times to remove blood and 4 ° C. in 4% formaldehyde solution (Junsei) Fixed for 20 hours. After fixation the samples were dehydrated with ethanol series and paraffin embedded. Sections were made 4 μm thick and placed on slides. Slides were deparaffinized and rehydrated in a 60 ° C. oven and then stained with hematoxylin (Sigma). Slides were soaked three times in acidic alcohol to remove excess staining and counterstained with eosin (Sigma). Then washed with ethanol series, soaked in xylene and mounted. Blind analysis was performed by light microscopy to evaluate lung structure, tissue edema and infiltration of inflammatory cells in lung tissue.
패혈증 마우스 혈장의 임상화학 및 사이토카인 분비 수준 측정: 신선한 혈청을 사용하여 alanine transaminase(ALT), 혈액요소질소(BUN), 및 LDH를 biochemical kits(Mybiosource)로 측정하였다. IL-6, MCP-1, 및 TNF-α의 농도를 확인하기 위해, ELISA kit(R&D Systems)을 생산자의 지시에 따라 사용하였다. 값은 ELISA 플레이트 리더(Tecan, GmbH)를 사용하여 측정하였다. Clinical Chemistry and Cytokine Secretion Level Determination in Sepsis Mouse Plasma : Alanine transaminase (ALT), blood urea nitrogen (BUN), and LDH were measured with biochemical kits (Mybiosource) using fresh serum. To check the concentrations of IL-6, MCP-1, and TNF-α, an ELISA kit (R & D Systems) was used according to the manufacturer's instructions. Values were measured using an ELISA plate reader (Tecan, GmbH).
통계분석: GraphPad Prism software를 이용하여, 그룹의 차이를 보기 위해서 Student t-test와 log rank test를, 그리고 그룹 차이와 조건 차이를 같이 보기 위해서 two-way ANOVA를 수행하여 데이터를 분석하였다. *p<0.05, **p<0.01, ***p<0.001. Statistical Analysis: Using GraphPad Prism software, data were analyzed by Student t-test and log rank test to see the difference of group, and two-way ANOVA to see the difference between group and condition. * p <0.05, ** p <0.01, *** p <0.001.
실시예 1 PKCα에 의한 LSD1의 인산화의 생체내 염증반응의 중요성 분석Example 1 Significance Analysis of In Vivo Inflammatory Response of LSD1 Phosphorylation by PKCα
생체 내 염증반응에 LSD1의 인산화가 중요한지 확인하기 위하여, Lsd1SA/SA 마우스에서 LPS에 의해 유발되는 염증반응이 제대로 일어나는지 여부를 확인하였다. 야생형(WT) 및 Lsd1SA/SA 마우스를 사용하여, LPS 유발 염증 및 급성 폐손상 마우스 모델로 분석하였다. 조직병리학적 검사에서 LPS가 주사된 WT 마우스는 심한 폐손상 및 폐포 손상을 보이나 Lsd1SA/SA 마우스(도 1A)에서는 반응이 현저히 약화되었음을 확인하였다. WT마우스의 경우 LPS 투여 66시간 이내에 80%가 사망했지만, 같은 기간 내에 Lsd1SA/SA 마우스는 30%만 사망했다(도 1B). 본 발명자는 Lsd1SA/SA 마우스가 LPS로 유발된 염증반응, 급성 폐손상이 잘 일어나지 않고, 그에 따라 사망률이 낮은 것을 발견하였다. WT 마우스에서 얻은 골수유래 대식세포(이하, BMDM)에서 LPS를 처리하면, PKCα와 LSD1의 인산화가 유도되는 반면, Lsd1SA/SA 마우스에서 얻은 BMDM에서는 PKCα의 인산화는 유도되나 LSD1의 인산화는 일어나지 않는 것을 확인하였다(도 1C). BMDM뿐만 아니라, LPS 유발 LSD1의 인산화는 WT 마우스의 폐 조직 lysate에서도 검출되었다. 마우스에 Go6976을 사전 주입하고 LPS를 주사하였을 때는 LSD1의 인산화가 완전히 차단되는 것도 확인하였다(도 1D).In order to determine whether phosphorylation of LSD1 is important for the inflammatory response in vivo, it was confirmed whether LPS-induced inflammatory response occurred properly in Lsd1 SA / SA mice. Wild-type (WT) and Lsd1 SA / SA mice were used to analyze LPS-induced inflammation and acute lung injury mouse models. Histopathological examination confirmed that WT mice injected with LPS showed severe lung and alveolar damage, but the response was significantly weakened in Lsd1 SA / SA mice (FIG. 1A). 80% of WT mice died within 66 hours of LPS administration, but only 30% of Lsd1 SA / SA mice died within the same time period (FIG. 1B). The inventors have found that Lsd1 SA / SA mice are less likely to develop LPS-induced inflammatory reactions, acute lung injury, and thus have low mortality. LPS treatment of bone marrow-derived macrophages (BMDM) from WT mice induced PKCα and LSD1 phosphorylation, whereas BMDM from Lsd1 SA / SA mice induced phosphorylation of PKCα but not LSD1 phosphorylation. It was confirmed (Fig. 1C). In addition to BMDM, phosphorylation of LPS-induced LSD1 was also detected in lung tissue lysate in WT mice. When mice were pre-injected with Go6976 and injected with LPS, it was also confirmed that phosphorylation of LSD1 was completely blocked (FIG. 1D).
LPS가 LSD1의 인산화를 유도하는 방법을 확인하기 위해, BMDM세포를 세포질과 핵으로 분획화하여 면역블랏 실험을 진행하였다. LPS 처리가 PKCα의 활성형태인 PKCα의 인산화를 유도하고 인산화 된 PKCα가 핵 내로 들어갔음을 발견하였다(도 1E). 또한 LPS로 유도된 PKCα의 핵으로의 이동이 LSD1과 PKCα의 핵 내 결합을 유발하였다(도 1F). 언제 인산화가 일어나는지 확인하고자 시간대별로 LPS를 처리하였고, LPS 처리 후 60분부터 LSD1의 인산화와 함께 PKCα의 인산화가 증대되는 것을 BMDM에서 관찰하였다(도 1G). PKCα와 LSD1의 인산화는 고농도(>100ng/ml)의 LPS를 처리했을 때 유발된다는 것도 확인하였다(도 1H). LSD1의 인산화과 연관된 염증반응의 분자 메커니즘을 확인하기 위해, 이후에는 높은 농도의 LPS로 실험을 진행하였다. in vivo 마우스 실험을 통하여 Lsd1SA/SA 마우스가 LPS에 의한 염증반응, 급성 폐 손상이 잘 유발되지 않으며 또한 사망률이 낮은 것을 확인하였다. 고용량의 LPS (>100ng/ml)를 60분 이상 처리하였을 시에만 인산화 된 PKCα가 핵으로 이동하여 LSD1의 인산화를 유도한다는 것도 대식세포에서 확인하였다.To confirm how LPS induces phosphorylation of LSD1, immunoblot experiments were performed by fractionating BMDM cells into cytoplasm and nucleus. LPS treatment induced phosphorylation of PKCα, the active form of PKCα, and found that phosphorylated PKCα entered the nucleus (FIG. 1E). In addition, the migration of LPS-induced PKCα into the nucleus induced LSD1 and PKCα binding in the nucleus (FIG. 1F). To determine when phosphorylation occurred, the LPS was treated at each time period, and the phosphorylation of PKCα increased with phosphorylation of LSD1 from 60 minutes after LPS treatment was observed in BMDM (FIG. 1G). It was also confirmed that phosphorylation of PKCα and LSD1 was induced when high concentrations (> 100ng / ml) of LPS were treated (FIG. 1H). To identify the molecular mechanism of the inflammatory response associated with phosphorylation of LSD1, experiments were then conducted at high concentrations of LPS. In vivo mouse experiments showed that Lsd1 SA / SA mice were not prone to LPS-induced inflammatory responses, acute lung injury, and low mortality. Phosphorylated PKCα migrates to the nucleus to induce LSD1 phosphorylation only after treatment with high doses of LPS (> 100ng / ml) for more than 60 minutes.
실시예 2 LPS 유발 LSD1의 인산화는 게놈 전체 수준에서 NF-κB 표적 유전자의 활성화에의 필요성 분석Example 2 Phosphorylation of LPS-induced LSD1 Analyzes Necessity for Activation of NF-κB Target Gene at Genome-wide Level
LPS가 유발하는 전사 모듈이 염증 반응의 신호 시작과 증폭을 위해 정교하게 조절되기 때문에(Medzhitov and Horng, 2009), 염증반응의 전사조절에서 LSD1 인산화에 의존적인 유전자 세트가 무엇인지 확인하고자 하였다. WT과 Lsd1SA/SA 마우스에서 추출한 BMDM에 LPS를 처리한 이후 RNA-시퀀싱을 수행하였다(도 2A). LPS 처리시, WT과 Lsd1SA/SA BMDM의 전체 전사량를 비교하여, 감독하지 않은 계층적 클러스터 분석(실험 방법 참조)에 의해 총 3,558개의 다르게 발현하는 유전자(이하, DEG)를 확인하였다. 이 유전자 중, WT BMDM에서 LPS 처리시 활성화되지만 Lsd1SA/SA BMDM에서는 활성화되지 않는 유전자 풀(도 2B의 cluster1)에 특히 관심이 있었다. 인산화 된 LSD1이 전사의 coactivator로 작용할 것으로 생각했기 때문이다. 다른 클러스터의 유전자와 달리 클러스터1의 유전자는 전사개시부위(이하, TSS) 주위의 p65 피크 (hyper-geometric p-value < 1e-130)가 유의적으로 많이 보였다. 이는 p65가 LPS 처리시 클러스터1에 존재하는 유전자의 발현을 유발하는 주요전사인자(이하, TF)라는 것을 의미한다(도 2B). Enrichr (http://amp.pharm.mssm.edu/Enrichr/)를 이용한 Gene ontology (GO) 분석을 통해 클러스터 1에 사이토카인 생성 및 염증 반응과 관련된 유전자가 많이 존재하는 것을 확인하였다(도 2C). 또한, De novo 모티프 분석을 통해서 p65가 클러스터1 유전자의 주요 TF임을 다시 확인하였다(도 2D). RNA-seq 데이터의 결과를 정량적 RT-PCR 분석을 통해 다시 한번 확인하였다(예: 클러스터 1의 Mcp-1, Il-6, Il-1β 및 Cebpd) (도 2E). 또한, 마우스의 폐 조직에서 추출한 mRNA를 이용하여 클러스터 1에서 LSD1 인산화 의존성 유전자의 mRNA 레벨을 확인해 본 결과, 대조군인 WT 마우스와 비교해 Lsd1SA/SA에서 유의하게 낮은 것을 마우스 개체 수준에서 확인하였다. 일관되게, WT 생쥐에 Go6976을 사전 주입하면, 폐 조직 mRNA에서 LSD1 인산화 의존성 유전자의 발현이 대조군에 비하여 낮은 것이 확인되었다(도 2G). 이 데이터는 LPS로 유발된 LSD1의 인산화가 p65와 연관된 NF-κB 표적 유전자의 활성화에 필요하다는 것을 나타낸다.Because LPS-induced transcriptional modules are precisely regulated for initiation and amplification of the inflammatory response (Medzhitov and Horng, 2009), we attempted to identify which gene sets depend on LSD1 phosphorylation in the transcriptional regulation of inflammatory responses. RNA-sequencing was performed after LPS treatment on BMDM extracted from WT and Lsd1 SA / SA mice (FIG. 2A). In LPS treatment, total transcription amounts of WT and Lsd1 SA / SA BMDM were compared to identify a total of 3,558 differently expressed genes (hereinafter referred to as DEGs) by unsupervised hierarchical cluster analysis (see experimental method). Of these genes, we were particularly interested in the gene pool (cluster1 in FIG. 2B) which is activated in LPS treatment in WT BMDM but not in Lsd1 SA / SA BMDM. It was thought that phosphorylated LSD1 would act as a coactivator of transcription. Unlike the genes of other clusters, the gene of Cluster 1 showed significantly higher p65 peak (hyper-geometric p-value <1e-130) around the transcription start site (hereinafter, TSS). This means that p65 is a major transcription factor (TF), which induces the expression of genes present in cluster 1 upon LPS treatment (FIG. 2B). Gene ontology (GO) analysis using Enrichr (http://amp.pharm.mssm.edu/Enrichr/) confirmed that many genes related to cytokine production and inflammatory responses existed in cluster 1 (FIG. 2C). . In addition, De novo motif analysis confirmed that p65 is the major TF of the cluster 1 gene (FIG. 2D). The results of the RNA-seq data were once again confirmed by quantitative RT-PCR analysis (eg Mcp-1, Il-6, Il-1β and Cebpd of Cluster 1) (FIG. 2E). In addition, as a result of confirming mRNA level of LSD1 phosphorylation dependent gene in cluster 1 by using mRNA extracted from lung tissue of mouse, it was confirmed that it was significantly lower in Lsd1 SA / SA compared to the control WT mouse at the mouse individual level. Consistently, pre-injection of Go6976 into WT mice confirmed that the expression of LSD1 phosphorylation dependent gene in lung tissue mRNA was lower than that of the control (FIG. 2G). This data indicates that phosphorylation of LSD1 induced by LPS is required for activation of the NF-κB target gene associated with p65.
실시예 3 LPS로 유도된 LSD1 인산화는 NF-kb의 p65를 표적 프로모터로의 모집에 중요함을 분석Example 3 Analysis of LSD-Induced LSD1 Phosphorylation is Important for Recruitment of NF-kb p65 to Target Promoter
p65가 인산화 된 LSD1에 의해 조절되는 주요 TF(전사인자)로 확인되었기 때문에, LSD1이 LPS에 반응하여 p65와 결합하는지 여부를 조사했다. LPS 처리시 LSD1이 핵에서 p65와 결합하는 것을 BMDM 세포에서 확인했다(도 3A). LSD1이 LPS에 반응하여 인산화 되었기 때문에, 인산화 된 LSD1이 p65에 결합할 것으로 추측했다. PKCα가 LSD1뿐만 아니라 p65를 직접 인산화 할 가능성도 있기 때문에, in vitro 키나아제 실험을 p65를 기질로 수행했다. PKCα는 p65를 인산화하지는 못하였다(도 3B). 이는 LPS-PKCα 신호 전달에서 PKCα의 직접적인 기질이 p65가 아닌 LSD1이라는 것을 의미한다. LSD1 인산화가 p65와의 결합에 중요한지 확인하기 위해, in vitro로 인산화 된 LSD1을 사용하여 GST 풀다운 분석을 수행했다. GST 풀다운 분석 전에, 인산화 된 LSD1을 얻기 위해 PKCα를 사용하는 키나아제 실험을 수행하였다. GST 풀다운 분석 결과, p65가 인산화 된 LSD1에 직접 결합하고, 포스파타아제의 처리가 LSD1과 p65 사이의 결합을 거의 완전히 제거하는 것을 밝혔다(도 3C). 이 데이터는 LPS가 유도한 PKCα에 의한 LSD1 인산화가 핵 내의 p65와의 결합에 반드시 필요하다는 것을 의미한다.Since p65 was identified as a major TF (transcription factor) regulated by phosphorylated LSD1, we investigated whether LSD1 binds to p65 in response to LPS. It was confirmed in BMDM cells that LSD1 binds to p65 in the nucleus upon LPS treatment (FIG. 3A). Since LSD1 was phosphorylated in response to LPS, it was assumed that phosphorylated LSD1 would bind to p65. In vitro kinase experiments were performed with p65 as a substrate because PKCα is likely to directly phosphorylate p65 as well as LSD1. PKCα did not phosphorylate p65 (FIG. 3B). This means that the direct substrate of PKCα in LPS-PKCα signaling is LSD1, not p65. To determine if LSD1 phosphorylation is important for binding to p65, GST pulldown analysis was performed using LSD1 phosphorylated in vitro. Prior to GST pulldown analysis, kinase experiments using PKCα were performed to obtain phosphorylated LSD1. GST pulldown analysis revealed that p65 binds directly to phosphorylated LSD1 and that treatment with phosphatase almost completely eliminates binding between LSD1 and p65 (FIG. 3C). This data indicates that LSD-induced LSD1 phosphorylation by PKCα is essential for binding to p65 in the nucleus.
mRNA-seq 분석(도 2)에서 얻은 바와 같이, Mcp-1 및 Il-6의 유전자가 LSD1 인산화 의존적으로 발현했었다. LSD1 인산화가 NF-κB 표적 프로모터에서 LSD1 및 p65의 모집(recruitment)에 영향을 주는지를 확인하기 위해, WT 및 Lsd1SA/SA BMDM 세포에서 염색질 면역 침전(ChIP) 분석을 수행했다. ChIP 분석 결과, LPS에 처리하면 WT BMDM의 Mcp-1 및 Il-6 프로모터에서 LSD1 및 p65의 모집이 유의하게 증가했지만, Lsd1SA/SA BMDM에서는 이들의 모집이 약화된 것이 보였다(도 3D). LPS 처리가 히스톤 메틸화 상태의 변화를 유도하는지 조사하기 위해, LSD1에 의해 조절 될 수 있는 히스톤 H3K4 또는 H3K9 메틸화 상태를 조사했다(Shi et al., Cell. 2004; 119: 941953). WT과 Lsd1SA/SA BMDM 세포의 Mcp-1 및 Il-6 프로모터를 ChIP 분석한 결과, 히스톤 H3K4me2 및 H3K9me2 수준이 서로 유사한 것을 확인하였다. 이는 LPS에 따른 LSD1 인산화와 관련된 표적 유전자 활성화는 히스톤의 탈메틸화와는 상관없다는 것을 나타낸다. 한편, 히스톤 H3K9 아세틸화 수준은 LPS 처리시, WT BMDM에서 Mcp-1 및 Il-6 프로모터에서 증가했지만, Lsd1SA/SA BMDM에서는 증가하지 않았다(도 3D). LPS 처리 후 Lsd1SA/SA BMDM에서 TF인 p65가 표적 프로모터에 모집되지 않기 때문에, 히스톤 H3K9 아세틸화도 증가하지 않았다고 추측된다. 또한, Raw264.7 대식 세포에서 Go6976을 처리하면 Mcp-1 및 Il-6 프로모터에 대한 히스톤 H3K9 아세틸화, LSD1 및 p65의 모집이 거의 완벽하게 차단되었다(도 3E). 이러한 데이터는 LPS 유발 LSD1의 인산화가 p65와의 결합에 중요하며 일부 NF-κB 표적 프로모터의 LSD1과 p65 모집을 LSD1의 인산화가 제어한다는 것을 나타낸다.As obtained in the mRNA-seq analysis (FIG. 2), the genes of Mcp-1 and Il-6 had LSD1 phosphorylation dependent expression. To determine if LSD1 phosphorylation affected the recruitment of LSD1 and p65 at the NF-κB target promoter, chromatin immunoprecipitation (ChIP) analysis was performed on WT and Lsd1 SA / SA BMDM cells. ChIP analysis showed that LPS1 and p65 recruitment increased significantly in the Mcp-1 and Il-6 promoters of WT BMDM when treated with LPS, but their recruitment was weakened in Lsd1 SA / SA BMDM (FIG. 3D). To investigate whether LPS treatment induced changes in histone methylation status, the histone H3K4 or H3K9 methylation status, which can be regulated by LSD1, was examined (Shi et al., Cell. 2004; 119: 941953). ChIP analysis of the Mcp-1 and Il-6 promoters of WT and Lsd1 SA / SA BMDM cells confirmed that histone H3K4me2 and H3K9me2 levels were similar. This indicates that target gene activation associated with LSD1 phosphorylation following LPS is independent of demethylation of histones. On the other hand, histone H3K9 acetylation levels increased on the Mcp-1 and Il-6 promoters in WT BMDM upon LPS treatment, but not on Lsd1 SA / SA BMDM (FIG. 3D). It is presumed that histone H3K9 acetylation did not increase because p65, the TF in Lsd1 SA / SA BMDM, was not recruited to the target promoter after LPS treatment. Furthermore, treatment of Go6976 in Raw264.7 macrophages almost completely blocked histone H3K9 acetylation, LSD1 and p65 recruitment to Mcp-1 and Il-6 promoters (FIG. 3E). These data indicate that phosphorylation of LPS-induced LSD1 is important for binding to p65, and that LSD1 and p65 recruitment of some NF-κB target promoters controls the phosphorylation of LSD1.
실시예 4 LSD1에 의한 p65의 탈메틸화는 p65 단백질 안정성 향상에 중요함을 분석Example 4 Demethylation of p65 by LSD1 is Critical for Improving p65 Protein Stability
LSD1 인산화가 LPS에 대한 반응으로 p65를 적절하게 표적 프로모터에 모집하는 데 중요하기 때문에, LSD1이 p65를 어떻게 조절하는지에 초점을 두어 연구를 진행하였다. p65는 K314/315 부위가 SET7/9 메틸화효소에 의해 메틸화되고, p65의 메틸화는 p65의 분해를 유발한다는 것이 밝혀졌었다(Yang et al., EMBO J. 2009; 28: 1055-1066). 그러나 p65 탈메틸화 및 그에 따른 p65 단백질의 안정화를 담당하는 탈메틸화효소의 정체는 알려지지 않았다. 본 발명자는 먼저 LSD1이 p65의 탈메틸화를 담당하는지 여부를 조사했다. 효소 활성이 결핍된 LSD1 K661A (KA) 돌연변이체를 이용하여 in vivo 탈메틸화 분석을 수행하기 전에, LSD1 KA 돌연변이체가 p65와의 결합에 영향이 있는지부터 먼저 확인하였다. LSD1 WT 및 LSD1 KA 돌연변이체는, LPS 처리시 p65와 유사한 결합여부를 보였으나, 인산화 결함이 있는 LSD1 S112A (SA) 돌연변이체는 p65와의 결합에 실패했다(도 4A). 그 이후, p65의 탈메틸화 분석을 수행하였고, SET7/9에 의한 p65의 메틸화가 LSD1 WT에 의해 없어지는 반면 LSD1의 SA 또는 KA 돌연변이체는 p65 메틸화를 없앨 수 없음을 발견했다(도 4B). LSD1 SA 돌연변이체는 WT과 유사한 탈메틸화 효소 활성을 가지고 있지만, p65와의 결합에는 LSD1의 인산화가 필요하기 때문에 p65를 탈메틸화하지 못했다. 또한, 본 발명자는 K314/315 부위에 p65 메틸화 특이적 항체를 사용하여, in vitro 탈메틸화분석을 수행하였고, SET7/9로 유도된 p65 메틸화가 인산화 된 LSD1에 의해 떨어진다는 것을 발견했다(도 4C). 이 데이터는 LPS에 반응하여, LSD1이 p65의 탈메틸화효소(demethylase)로 작용하고, LSD1의 인산화가 p65에 대한 결합에 중요하다는 것을 나타낸다. LSD1 인산화 상태가 p65 단백질 안정화에 영향을 주는지 명확히 하기 위해, WT 및 Lsd1SA/SA BMDM에서 핵 내의 p65 단백질 수준을 비교했다. 흥미롭게도, Lsd1SA/SA BMDM에서 LPS 처리 이후, 핵 내 p65 단백질이 검출되지 않았고, 26S 프로테아좀 억제제인 MG132를 처리하면 Lsd1SA/SA BMDM의 핵 내 p65 단백질 발현이 회복되었다 (도 4D). 또한, Lsd1SA/SA BMDM의 핵에서 MG132 처리에 의해 회복된 p65 단백질이 메틸화된 p65인 것도 확인하였다(도 4D). 이는 인산화된 LSD1이 p65에 결합할 수 있고, LSD1의 탈메틸화 효소기능을 통해 핵 내의 p65 메틸화 의존적인 단백질 분해를 막을 수 있다는 것을 의미한다. p65에 대한 유비퀴틴화 실험도 수행되었다. LSD1 SA 또는 KA 돌연변이의 세포내 도입은 핵에서 p65 유비퀴틴화를 증가시켰지만, 세포질에서는 그런 현상이 보이지 않았다(도 4E). 또한, PKCα의 활성을 차단하는 Go6976 또는 LSD1의 활성을 차단하는 GSK-LSD1의 처리는 핵에서 p65의 endogenous 유비퀴틴화를 현저하게 유도하였다(도 4F). 일련의 데이터를 통하여 본 발명자는 LSD1의 인산화 상태와 탈메틸화 활성이 모두 p65 단백질의 안정화에 중요하다는 증거를 제시하였다(도 4G).Because LSD1 phosphorylation is important for recruiting p65 to the target promoter properly in response to LPS, the study focused on how LSD1 regulates p65. It was found that p65 was methylated by the SET7 / 9 methylase by the K314 / 315 site and that methylation of p65 caused degradation of p65 (Yang et al., EMBO J. 2009; 28: 1055-1066). However, the identity of demethylases responsible for p65 demethylation and thus stabilization of p65 protein is unknown. We first investigated whether LSD1 is responsible for the demethylation of p65. Prior to in vivo demethylation analysis using the LSD1 K661A (KA) mutant lacking enzyme activity, the LSD1 KA mutant was first identified for its effect on binding to p65. LSD1 WT and LSD1 KA mutants showed similar binding to p65 upon LPS treatment, but LSD1 S112A (SA) mutants with phosphorylation defects failed to bind to p65 (FIG. 4A). Thereafter, demethylation analysis of p65 was performed and found that methylation of p65 by SET7 / 9 was eliminated by LSD1 WT while SA or KA mutants of LSD1 could not eliminate p65 methylation (FIG. 4B). The LSD1 SA mutant had demethylation enzyme activity similar to WT, but failed to demethylate p65 because binding to p65 requires phosphorylation of LSD1. We also performed in vitro demethylation assays using p65 methylated specific antibodies at the K314 / 315 site, and found that p65 methylation induced by SET7 / 9 was degraded by phosphorylated LSD1 (FIG. 4C). ). This data indicates that in response to LPS, LSD1 acts as a demethylase of p65, and phosphorylation of LSD1 is important for binding to p65. To clarify that LSD1 phosphorylation status affects p65 protein stabilization, the levels of p65 protein in the nuclei were compared in WT and Lsd1 SA / SA BMDM. Interestingly, after LPS treatment in Lsd1 SA / SA BMDM, no intranuclear p65 protein was detected, and treatment with 26S proteasome inhibitor MG132 restored the p65 protein expression in the nucleus of Lsd1 SA / SA BMDM (FIG. 4D). . It was also confirmed that the p65 protein recovered by MG132 treatment in the nucleus of Lsd1 SA / SA BMDM was methylated p65 (FIG. 4D). This means that phosphorylated LSD1 can bind to p65 and can prevent p65 methylation dependent proteolysis in the nucleus through the demethylase function of LSD1. Ubiquitination experiments were also performed for p65. Intracellular introduction of LSD1 SA or KA mutants increased p65 ubiquitination in the nucleus, but not in the cytoplasm (FIG. 4E). In addition, treatment with Go6976, which blocks the activity of PKCα, or GSK-LSD1, which blocks the activity of LSD1, significantly induced endogenous ubiquitination of p65 in the nucleus (FIG. 4F). Through a series of data we present evidence that both phosphorylation and demethylation activity of LSD1 is important for stabilization of p65 protein (FIG. 4G).
실시예 5 PKCα-LSD1 인산화 축은 지속적인 염증반응을 조절하는 축으로 작용Example 5 PKCα-LSD1 Phosphorylation Axis Acts as an Axis for Controlling Persistent Inflammatory Responses
전사는 일련의 전사인자의 순차적 단계에 의해 조절된다. LPS 의존적 전사 모듈의 유도는 많은 TF들에 의해 조율된다(Litvak et al., Nat. Immunol. 2009; 10: 437443). NF-κB를 포함한 class I TF는 LPS 유도 2시간 이내에 염증 반응의 시작을 제어한다. C/EBPδ를 포함한 Class II TF는 2시간의 LPS 자극 후 de novo로 합성되고, 염증신호의 증폭을 위해 후속으로 염증반응관련 유전자의 활성화를 조절한다. PU.1 및 C/EBPβ를 포함한 Class III TF는 계통 특이적 전사조절인자이다. 모든 TF는 LPS로 유발된 전사반응을 조절하기 위해 서로 협력한다. RNA-seq 분석에서, 클러스터1 유전자를 이용한 de novo 모티프 분석을 통하여, 주요 TF로서 p65뿐만 아니라 PU.1 및 C/EBP를 확인하였다(도 2D). 또한, 우리는 Cebpd를 클러스터 1에서 LSD1 인산화 의존적 방식으로 유도된 유전자 중 하나로 확인했다. Class I TF와 Class II TF가 중계되는 시점인, LPS 고용량 투여 후 60분에서 LSD1의 인산화가 유도되었기 때문에(도 1), LSD1 인산화가 후속 신호 활성화 및 염증 반응의 증폭을 조절한다는 가설을 세웠다. 따라서 WT 및 Lsd1SA/SA BMDM에서 염증반응유전자의 발현을 LPS 처리의 시간경과에 따라 분석했다. 흥미롭게도, 30분까지, WT와 Lsd1SA/SA BMDM 에서 Mcp-1 및 Il-6 mRNA의 발현이 유사했지만, 60분부터 120분까지는 Mcp-1 및 IL-6 mRNA 발현이 WT와 비교하여 유의하게 Lsd1SA/SA BMDM에서 약화되었다(도 5A). 또한, Cebpd mRNA 발현은 LPS 처리 후 90분부터, WT와 비교하여 Lsd1SA/SA BMDM에서 유의하게 약화되었다(도 5A). LPS 처리 전에 WT BMDM에 Go6976의 처리한 것은 LPS가 처리된 Lsd1SA/SA BMDM과 유사한 mRNA 발현 패턴을 보였다(도 5B). 또한 LSD1이 인산화되는 시기인 LPS 처리 후 60분부터, p65가 LSD1에 결합하는 것을 확인하였다(도 5C). 이는 LSD1에 의한 p65의 향상된 단백질 안정화가 염증반응유전자의 지속적인 활성화에 중요하다는 것을 의미한다. C/EBPδ는 염증 반응 유전자의 후속 활성화를 위한 TF로서 기능하기 때문에, 우리는 프로모터 점유의 동역학을 확인하기 위해 LSD1, p65 및 C/EBPδ 항체를 사용하여 LPS 시간 과정에 걸쳐 ChIP 분석을 수행했다. LPS 처리 후 60분부터 LSD1은 WT BMDM의 Mcp-1 및 Il-6 프로모터에 모집되었지만 Lsd1SA/SA BMDM에서는 그렇지 않았다(도 5D). 표적 프로모터에 대한 p65의 모집은 LSD1 인산화가 유도되지 않은 LPS 처리 후 30분에 WT 및 Lsd1SA/SA BMDM 모두에서 검출되었다. 그러나 LPS 처리 후 60분부터는 WT BMDM에서 p65 모집이 유지되거나 증가된 반면, Lsd1SA/SA BMDM의 Mcp-1 및 Il-6 프로모터에서는 p65 모집이 유의하게 감소했다(도 5D). 이 데이터는 LSD1 인산화가 LPS 처리 후반 시점(60분 이후)의 p65 모집을 유지하는 데 중요한 역할을 한다는 것을 나타낸다. 또한 C/EBPδ는 WT BMDM에서 LPS 처리 후 120에 모집되었으며, 이는 염증 반응의 중계와 증폭을 유도한다(도 5D). 병행하여, Go6976의 처리하면, Lsd1SA/SA BMDM에서 얻은 ChIP 결과와 유사한 결과를 얻었다(도 5E). 이 데이터는 PKCα-LSD1-NF-κB 신호 캐스케이드가 염증 반응 유전자의 전사 활성화 및 후속 증폭을 하기 위해 LPS 처리 후 60분부터 작동한다는 것을 나타낸다(도 5F).Transcription is regulated by sequential steps of a series of transcription factors. Induction of LPS dependent transcription modules is coordinated by many TFs (Litvak et al., Nat. Immunol. 2009; 10: 437443). Class I TF, including NF-κB, controls the onset of the inflammatory response within 2 hours of LPS induction. Class II TF, including C / EBPδ, is synthesized de novo after 2 hours of LPS stimulation and subsequently regulates the activation of inflammatory response genes for amplification of inflammatory signals. Class III TF, including PU.1 and C / EBβ, are lineage specific transcriptional regulators. All TFs cooperate with each other to regulate LPS-induced transcriptional responses. In RNA-seq analysis, de novo motif analysis using the Cluster1 gene confirmed PU.1 and C / EBP as well as p65 as the major TF (FIG. 2D). In addition, we identified Cebpd as one of the genes induced in LSD1 phosphorylation dependent manner in cluster 1. It was hypothesized that LSD1 phosphorylation regulates subsequent signal activation and amplification of the inflammatory response, since phosphorylation of LSD1 was induced 60 minutes after high doses of LPS, at which point Class I TF and Class II TF were relayed. Therefore, expression of inflammatory genes in WT and Lsd1 SA / SA BMDM was analyzed over time of LPS treatment. Interestingly, up to 30 minutes, the expression of Mcp-1 and Il-6 mRNAs in WT and Lsd1 SA / SA BMDM were similar, but from 60 to 120 minutes Mcp-1 and IL-6 mRNA expressions were significant compared to WT. Weakened in Lsd1 SA / SA BMDM (FIG. 5A). In addition, Cebpd mRNA expression was significantly attenuated in Lsd1 SA / SA BMDM compared to WT from 90 minutes after LPS treatment (FIG. 5A). Treatment of Go6976 with WT BMDM prior to LPS treatment showed a similar mRNA expression pattern to Lsd1 SA / SA BMDM treated with LPS (FIG. 5B). In addition, it was confirmed that p65 binds to LSD1 from 60 minutes after LPS treatment, which is the time when LSD1 is phosphorylated (FIG. 5C). This means that enhanced protein stabilization of p65 by LSD1 is important for the sustained activation of inflammatory genes. Since C / EBPδ functions as a TF for subsequent activation of inflammatory response genes, we performed ChIP analysis over LPS time course using LSD1, p65 and C / EBPδ antibodies to confirm the kinetics of promoter occupancy. From 60 minutes after LPS treatment, LSD1 was recruited to the Mcp-1 and Il-6 promoters of WT BMDM but not to Lsd1 SA / SA BMDM (FIG. 5D). Recruitment of p65 to the target promoter was detected in both WT and Lsd1 SA / SA BMDM 30 minutes after LPS treatment without LSD1 phosphorylation induction. However, 60 min after LPS treatment, p65 recruitment was maintained or increased in WT BMDM, whereas p65 recruitment was significantly decreased in Mcp-1 and Il-6 promoters of Lsd1 SA / SA BMDM (FIG. 5D). This data indicates that LSD1 phosphorylation plays an important role in maintaining p65 recruitment late in LPS treatment (after 60 minutes). C / EBPδ was also recruited at 120 after LPS treatment in WT BMDM, which leads to the relaying and amplification of the inflammatory response (FIG. 5D). In parallel, treatment with Go6976 yielded similar results to the ChIP results obtained with Lsd1 SA / SA BMDM (FIG. 5E). This data shows that the PKCα-LSD1-NF-κB signal cascade operates from 60 minutes after LPS treatment for transcriptional activation and subsequent amplification of inflammatory response genes (FIG. 5F).
실시예 6 p65의 지속적인 발현 및 이로 인한 염증의 활성화는 PKCα-LSD1-NF-κB 신호 전달 캐스케이드에 의존적임을 분석Example 6 Analysis of Sustained Expression of p65 and Activation of Inflammation is Dependent on the PKCα-LSD1-NF-κB Signaling Cascade
우리는 Lsd1SA/SA BMDM에서 LPS 처리 후 60분부터 표적 프로모터의 p65의 모집이 감소한 것을 관찰했으므로, WT와 Lsd1SA/SA BMDM에서 시간 경과에 따라 핵 내 p65 단백질 endogenous 수준을 확인했다. LPS 처리 후 30분에 WT과 Lsd1SA/SA BMDM에서 동일한 p65 단백질을 검출하였고, 이는 LPS로 유도된 p65의 핵으로 이동이 Lsd1SA/SA BMDM에서 전혀 손상되지 않은 것을 의미한다(도 6A). 그러나 핵 내 p65 단백질은 Lsd1SA/SA BMDMs에서 계속 유지되지 못했으며, LPS 처리 후 120분에서 C/EBPδ의 de novo 합성도 실패했다(도 6A). 또한, 면역형광분석 결과, LSD1 WT-, SA- 또는 KA-을 넣어준 Lsd1-/- 마우스 배아 섬유 아세포(MEFs)에 LPS를 30분 처리하면 동일한 수준의 p65과 관찰된다. 그러나 LPS를 120분 처리하면, LSD1 WT을 넣어준 Lsd1-/- MEFs만 핵에서 안정화된 p65 단백질 발현을 보여주었고 LSD SA 또는 KA 돌연변이를 넣어준 Lsd1-/- MEFs를 그렇지 못했다(도 6B). 핵 내 p65 단백질 수준의 유지 및 C/EBPδ의 순차적 de novo 합성이 PKCα-LSD1 시그널링 축에 의존한다는 것을 추가로 확인하기 위해, Go6976 또는 GSK-LSD1로 처리한 핵 분획물에서 면역 블랏 분석을 수행하였다. Go6976 또는 GSK-LSD1의 처리는 WT BMDM(도 6C) 또는 Raw264.7 대식 세포(도 6D)에서 LPS 처리 후 60분에서 p65를 안정화시키는 데 실패했다. 또한, MG132의 처리는 Go6976 또는 GSK-LSD1로 인한에 핵 내에 저하된 p65 단백질 수준을 회복시켰다(도 6E). 이 데이터는 PKCα-LSD1-NF-κB 신호 전달 캐스케이드가 핵 내 p65 단백질 수준의 유지 및 C/EBPδ의 순차적 de novo 합성에 영향을 주어 지속적인 염증 반응의 연장에 중요하다는 것을 나타낸다.We have identified a nuclear endogenous p65 protein levels in accordance with Lsd1 SA / SA because observed in BMDM from 60 minutes after LPS treatment decreased the recruitment of p65 target promoters, the time elapsed from WT and Lsd1 SA / SA BMDM. The same p65 protein was detected in WT and Lsd1 SA / SA BMDM 30 minutes after LPS treatment, indicating that migration to LPS-induced p65 nuclei was not compromised at all in Lsd1 SA / SA BMDM (FIG. 6A). However, the p65 protein in the nucleus was not maintained in Lsd1 SA / SA BMDMs, and de novo synthesis of C / EBPδ also failed at 120 min after LPS treatment (FIG. 6A). In addition, the results of immunofluorescence analysis showed that Lsd1 − / − mouse embryonic fibroblasts (MEFs) to which LSD1 WT-, SA- or KA- were treated for 30 minutes and LPS1 were observed at the same level of p65. However, when processing the LPS 120 bun, LSD1 WT gave Lsd1 put - / - showed a p65 protein stabilization in the nucleus only MEFs LSD SA or semi Lsd1 put KA mutation - / - did not the MEFs (Fig. 6B). To further confirm that maintenance of p65 protein levels in the nucleus and sequential de novo synthesis of C / EBPδ is dependent on the PKCα-LSD1 signaling axis, immunoblot analysis was performed on nuclear fractions treated with Go6976 or GSK-LSD1. Treatment with Go6976 or GSK-LSD1 failed to stabilize p65 at 60 minutes after LPS treatment in WT BMDM (FIG. 6C) or Raw264.7 macrophages (FIG. 6D). In addition, treatment of MG132 restored the reduced p65 protein levels in the nucleus due to Go6976 or GSK-LSD1 (FIG. 6E). These data indicate that the PKCα-LSD1-NF-κB signaling cascade influences the maintenance of p65 protein levels in the nucleus and the sequential de novo synthesis of C / EBPδ, which is important for prolonging the inflammatory response.
실시예 7 마우스에서의 PKCα 활성 또는 LSD1 활성의 억제로 인한 패혈증 유발로 인한 사망률 감소Example 7 Reduction of Mortality from Sepsis Induction Due to Inhibition of PKCα Activity or LSD1 Activity in Mice
Go6976 또는 GSK-LSD1의 생체 내 효과를 조사하기 위해 마우스에 Go6976 또는 GSK-LSD1을 주입하고 폐 조직을 핵 분획을 한 후, 면역 블랏 분석을 수행하였다. Go6976 또는 GSK-LSD1 주사하면, LPS를 처리해도 p65가 핵 내에 안정화되지 않았고 C/EBPδ도 새로 합성하지 못했다(도 7A). LPS 유발 전신 염증이 WT 대조군보다 Lsd1SA/SA 마우스에서 훨씬 낮기 때문에(도 1A 및 1B), 더 심각한 패혈증 마우스 모델에서 이전의 연구 결과를 재확인하고자 했다. LPS 주입 및 맹장을 묶고 천공을 내는 수술(cecal ligation and puncture, 이하 CLP)은 쥐에서 사람의 패혈증을 모방하는 데 널리 사용되는 마우스 모델이다. LPS 주사는 패혈증의 초기 임상적 특징을 모방하여 전신 염증을 유도하지만, CLP 유도성 패혈증 모델은 배변이 분비되어 면역 반응을 일으키는 것으로써, 인간 패혈증과 유사한 사이토킨 프로파일을 나타내는 모델이다. 연령, 성별 및 체중이 일치하는 WT 및 Lsd1SA/SA 마우스에서 CLP 수술을 통해, 다양한 균주로 유발된 패혈증 유도했다. 흥미롭게도 WT 마우스는 CLP 수술 이후, 90시간 이내에 100%의 사망률을 보인 반면, Lsd1SA/SA 마우스는 50%가 CLP 수술 후 144시간 이상 생존해있었다(도 7B). 다음으로 PKCα 또는 LSD1 활성을 차단하면 사망률과 폐 손상이 감소할 가능성을 점검했다. Go6976, GSK-LSD1 또는 동등 부피의 용매를 CLP 수술 후 12시간 및 50시간에 두 번 주사했다. CLP 수술이후, 78시간 내에 용매만 주입 마우스는 100% 사망률을 보였으나, Go6976 주입 마우스의 40%와 GSK-LSD1 주사 마우스의 50%만이 같은 기간 동안 사망했으며, 이 마우스는 CLP 수술 이후 144시간 이상 생존했다(도 7C 및 7D). 이러한 데이터와 일관되게, 조직 병리학 적 검사를 통해, WT 마우스가 CLP 후 심각한 폐 손상 및 폐포 손상을 보이지만, 이들 반응은 Lsd1SA/SA 마우스, WT에 Go6976 또는 GSK-LSD1 주사된 마우스에서는 모두 유의하게 감소된 것을 보였다(도 7E). 패혈증에서 염증반응 유전자의 조절에 Go6976 또는 GSK-LSD1 처리가 효과가 있는지를 탐구했다. CLP에 의한 MCP-1, IL-6 및 TNF-α의 상승은 Lsd1SA/SA 마우스(도 7F), Go6976 주입 마우스 또는 GSK-LSD1 주입 마우스(도 7G)에서 유의하게 감소되었다. 패혈증 발병시 전신 염증은 간 및 신장이 주요 표적 장기가 되어, 다장기 기능부전을 일으키는 경우가 많다. CLP는 ALT(간 손상 마커), LDH(조직 손상 마커) 및 BUN(신장 손상 마커)의 혈장 수준을 유의하게 증가시켰다. 혈장 내 ALT, LDH 및 BUN의 농도는 WT 마우스(도 7H)와 비교하여 Lsd1SA/SA 마우스에서 유의하게 감소되었으며, Go6976 또는 GSK-LSD1이 주입 된 마우스의 혈장에서도 동일하게 감소되었다(도 7H). 7I). PKCα 활성 또는 그 하위 단백질인 LSD1 활성을 차단하면 핵내 p65 단백질 안정성이 감소하고, 따라서 패혈증시 급성 전신 염증이 감소하고 생존율이 증가한다는 것을 발견했다(도 7J).To investigate the in vivo effects of Go6976 or GSK-LSD1, mice were injected with Go6976 or GSK-LSD1, the lung tissue was nuclear fractionated, and immunoblot analysis was performed. When injected with Go6976 or GSK-LSD1, treatment with LPS did not stabilize p65 in the nucleus and did not newly synthesize C / EBPδ (FIG. 7A). Since LPS-induced systemic inflammation is much lower in Lsd1 SA / SA mice than in WT controls (FIGS. 1A and 1B), we sought to reaffirm previous findings in more severe sepsis mouse models. LPS infusion and surgery to bind and puncture the caecum (CLP) is a mouse model widely used to mimic human sepsis in rats. LPS injection mimics the early clinical characteristics of sepsis to induce systemic inflammation, but the CLP-induced sepsis model is a model that exhibits a cytokine profile similar to human sepsis, with a defecation secreting an immune response. Separation induced by various strains was induced through CLP surgery in WT and Lsd1 SA / SA mice of matching age, sex and weight. Interestingly, WT mice had a mortality rate of 100% within 90 hours after CLP surgery, whereas 50% of Lsd1 SA / SA mice survived 144 hours after CLP surgery (FIG. 7B). Next, the possibility of blocking PKCα or LSD1 activity reduced mortality and lung damage. Go6976, GSK-LSD1 or equivalent volume of solvent was injected twice at 12 and 50 hours after CLP surgery. Within 78 hours after CLP surgery, only solvent-injected mice had a 100% mortality, but only 40% of Go6976-injected mice and 50% of GSK-LSD1-injected mice died during the same period, which was more than 144 hours after CLP surgery. Survived (FIGS. 7C and 7D). Consistent with these data, histopathological examination revealed that WT mice showed severe lung and alveolar damage after CLP, but these responses were significantly significant in both Lsd1 SA / SA mice, mice injected with Go6976 or GSK-LSD1 in WT. It was shown to be reduced (FIG. 7E). We explored whether Go6976 or GSK-LSD1 treatment is effective in the regulation of inflammatory response genes in sepsis. Elevation of MCP-1, IL-6 and TNF-α by CLP was significantly reduced in Lsd1 SA / SA mice (FIG. 7F), Go6976 injected mice or GSK-LSD1 injected mice (FIG. 7G). Systemic inflammation in the onset of sepsis often leads to liver and kidney as the main target organs, causing multi-organ dysfunction. CLP significantly increased plasma levels of ALT (liver damage marker), LDH (tissue damage marker) and BUN (kidney damage marker). The concentrations of ALT, LDH and BUN in plasma were significantly reduced in Lsd1 SA / SA mice compared to WT mice (FIG. 7H), and also in plasma of mice injected with Go6976 or GSK-LSD1 (FIG. 7H). . 7I). Blocking PKCα activity or LSD1 activity, a sub-protein thereof, decreased the nuclear p65 protein stability, thus reducing acute systemic inflammation and increasing survival in sepsis (FIG. 7J).
염증 반응은 침입하는 병원균에 대한 주요 방어 기제이며, 병원균에 의해 유발된 질병의 발병을 막기 위해 병원균이 완벽히 제거될 때까지 유지되어야 한다. 반면에, 염증반응은 패혈증과 같이 과도한 염증의 활성화로 인한 유해한 영향도 있으므로 이을 피하기 위해, 병원체가 제거된 후에 적시에 종료되어야 한다. 그러므로 과도한 염증 반응이 어떻게 검출되고 유지되는지에 대한 분자 메커니즘을 이해하는 것이 패혈증 유발 사망률이나 장기 손상을 완화하는 데 반드시 필요하다. 이 발명에서 PKCα에 의한 LSD1 인산화가 p65의 단백질 안정성을 유지하고, 과도한 LPS 처리 후 지속적인 염증 반응을 유지하는 데 중요한 역할을 한다는 증거를 제시하였다. Lsd1SA/SA 마우스 마우스를 이용한 생체 내 연구를 통하여, 심한 염증반응에서 PKCα에 의한 LSD1 인산화의 기능을 규명하게 되었다. LSD1의 인산화가 일어나지 못하는 Lsd1SA/SA 마우스의 경우, 패혈증 쇼크에서 과도한 염증 반응 및 조직 손상을 현저하게 감소되었다. 또한 Go6976 또는 GSK-LSD1 처리는 과도한 전신성 염증 반응을 현저하게 감소시켜, PKCα 활성 및 LSD1 활성이 염증 반응의 활성화에 결정적인 것을 증명하였다. PKCα-LSD1-NF-κB 신호 전달 캐스케이드가 과도한 염증 자극에 반응하여 염증반응의 증폭과 그에 따른 패혈증을 포함한 염증성 질환의 유발에 중요한 역할을 하는 것을 확인했다.Inflammatory responses are the main defense against invading pathogens and must be maintained until the pathogens are completely cleared to prevent the development of the disease caused by the pathogen. On the other hand, the inflammatory response also has a deleterious effect due to the activation of excessive inflammation, such as sepsis, so in order to avoid this, it must be terminated in a timely manner after the pathogen is removed. Therefore, understanding the molecular mechanisms of how excessive inflammatory responses are detected and maintained is essential to mitigate sepsis-induced mortality or organ damage. In this invention, the evidence that LSD1 phosphorylation by PKCα plays an important role in maintaining the protein stability of p65 and sustained inflammatory response after excessive LPS treatment. In vivo studies using Lsd1 SA / SA mouse mice have elucidated the function of LSD1 phosphorylation by PKCα in severe inflammatory responses. Lsd1 SA / SA mice that do not undergo phosphorylation of LSD1 significantly reduced excessive inflammatory response and tissue damage in sepsis shock. Go6976 or GSK-LSD1 treatment also significantly reduced excessive systemic inflammatory responses, demonstrating that PKCα activity and LSD1 activity are critical for activation of the inflammatory response. The PKCα-LSD1-NF-κB signaling cascade was found to play an important role in amplifying the inflammatory response and inducing inflammatory diseases including sepsis in response to excessive inflammatory stimuli.
고용량의 LPS에 반응하는 LSD1 인산화 의존성 유전자에 패혈증과 연관된 유전자 및 ClassII/III TF와 관련된 유전자가 포함한다는 점은 중요하다. 클러스터 1의 IL-6과 Mcp-1 유전자는 패혈증과 관련된 것으로 잘 알려진 유전자이다(Rincon, Trends Immunol. 2012; 33: 571-577). 흥미롭게도 Cebpd-/- 마우스는 WT에 비하여 LPS 유발 급성 폐 손상이 잘 보이지 않고, 감소된 Il-6 유전자의 발현을 보이며, 이는 Lsd1SA/SA 마우스와 유사한 표현형이라고 볼 수 있다.It is important that LSD1 phosphorylation dependent genes responding to high doses of LPS include genes associated with sepsis and genes associated with Class II / III TF. The IL-6 and Mcp-1 genes of cluster 1 are well known genes associated with sepsis (Rincon, Trends Immunol. 2012; 33: 571-577). Interestingly, Cebpd − / − mice show less LPS-induced acute lung injury compared to WT and show reduced Il-6 gene expression, which is a phenotype similar to that of Lsd1 SA / SA mice.
PKCα-LSD1-NF-κB 신호 전달 캐스케이드가 작동할 때 나타나는 Cebpd mRNA의 발현 증대는, 이 신호 전달 캐스케이드가 염증 반응의 후속 증폭에 결정적이며 궁극적으로 패혈증으로 이어진다는 것을 의미한다. 본 발명을 통해, 과도한 염증성 자극과 염증 반응에 따른 후성조절간의 기능적 연결 고리를 찾아내었다. PKC 활성제인 PMA에 의해 유도된 급성 및 만성 염증이 이전에 보고되었지만, 하위의 PKC 기질과 그 표적 유전자는 밝혀지지 않았다. 본 발명을 통하여 PKCα가 과도한 염증성 자극에 따라 핵으로 들어와서 LSD1을 인산화 한다는 것을 발견했기 때문에, PKCα가 세포질과 핵을 연결하고 염증 반응의 추가 활성화를 위해 외부의 과도한 염증 자극을 인지하고 전달하는 센서로써 기능을 한다고 생각한다. 과도한 염증성 자극에 의해 LSD1이 PKCα의 기질이 되며, p65의 탈메틸화효소로서 기능하여 p65 단백질의 안정화가 증대되는 것을 발견했다. 패혈증을 유발한 Lsd1SA/SA 마우스의 표현형 분석뿐만 아니라, GSK-LSD1를 사용하여 LSD1의 활성을 억제하거나, Go6976을 사용하여 PKCα의 활성을 억제하면, CLP 수술에 의한 조직 손상이 적고 생존율이 높아진다는 것도 입증하였다. 비록 초기 단계에서 패혈증 환자에 대한 항생제 치료가 사망률을 낮추지만, 패혈성 쇼크가 일어나는 동안 과도한 염증 반응 자체를 항생제가 조절할 수는 없다. 항생제와 함께, 앞서 설명한 과도한 염증 반응을 유발하는 PKCα-LSD1-NF-κB 신호 전달 캐스케이드를 표적으로 하는 약물을 함께 사용한다면, 전신성 염증으로 진행되는 패혈증 환자의 새로운 치료제가 개발될 수 있을 것으로 생각된다. 즉, 본 발명을 통하여, 염증성 질환에서 PKCα-LSD1-NF-κB 신호 전달 축이 가능성 있는 치료 표적인 될 수 있음을 나타낸다. Increased expression of Cebpd mRNA, which appears when the PKCα-LSD1-NF-κB signaling cascade works, means that this signaling cascade is crucial for subsequent amplification of the inflammatory response and ultimately leads to sepsis. Through the present invention, a functional link between excessive inflammatory stimulation and epigenetic regulation following an inflammatory response has been found. Acute and chronic inflammation induced by PMA, a PKC activator, has been previously reported, but the underlying PKC substrate and its target genes are not known. Since the present invention has discovered that PKCα enters the nucleus and phosphorylates LSD1 upon excessive inflammatory stimuli, PKCα connects the cytoplasm to the nucleus and recognizes and transmits an external excessive inflammatory stimulus for further activation of the inflammatory response. I think it functions as. Excessive inflammatory stimuli have found that LSD1 becomes a substrate of PKCα and functions as a demethylase of p65, increasing the stabilization of the p65 protein. In addition to phenotypic analysis of sepsis-induced Lsd1 SA / SA mice, inhibition of LSD1 activity with GSK-LSD1 or PKCα activity with Go6976 results in less tissue damage and higher survival by CLP surgery. Proved. Although antibiotic treatment for sepsis patients reduces mortality at an early stage, antibiotics cannot control the excessive inflammatory response itself during septic shock. In combination with antibiotics, a drug targeting the PKCα-LSD1-NF-κB signaling cascade, which causes the excessive inflammatory response described above, could be used to develop new therapeutics for sepsis patients with systemic inflammation. . In other words, the present invention indicates that the PKCα-LSD1-NF-κB signal transduction axis can be a potential therapeutic target in inflammatory diseases.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. 이상에서 본원의 예시적인 실시예에 대하여 상세하게 설명하였지만 본원의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본원의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본원의 권리범위에 속하는 것이다.All technical terms used in the present invention, unless defined otherwise, are used in the meaning as commonly understood by those skilled in the art in the related field of the present invention. The contents of all publications described herein by reference are incorporated into the present invention. Although the exemplary embodiments of the present application have been described in detail above, the scope of the present application is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to.

Claims (5)

  1. PCKa, LSD1 및 NF-κB을 발현하는 세포를 제공하는 단계; Providing cells expressing PCKa, LSD1 and NF-κB;
    상기 세포에 NF-κB 매개된 염증반응을 유발할 수 있는 자극을 처리하는 단계로, 상기 처리에 의해 상기 세포에서 PCKα->LSD1-> NF-κB 경로에 의한 염증반응이 유발되고,Treating the cells with a stimulus capable of inducing an NF-κB mediated inflammatory response, wherein the treatment causes an inflammatory response by the PCKα-> LSD1-> NF-κB pathway in the cells,
    상기 세포에 상기 경로에 의한 염증반응을 억제할 것으로 기대되는 시험물질을 처리하는 단계; 및Treating the cell with a test substance that is expected to inhibit the inflammatory response caused by the pathway; And
    상기 처리 결과, 상기 시험물질로 처리되지 않은 대조군과 비교하여 상기 시험물질로 처리된 세포에서 상기 경로에 의한 염증반응이 억제된 경우, 상기 시험물질을 염증반응 억제 후보물질로 선별하는 단계를 포함하며,If the result of the treatment, the inflammatory response by the pathway is inhibited in the cells treated with the test substance compared to the control group not treated with the test substance, the test substance includes the step of selecting an inflammatory response inhibitor candidate ,
    상기 경로에 의한 상기 염증반응의 억제는 상기 LSD1의 인산화 감소, 상기 NF-κB의 p65 서브유닛의 탈메틸화의 억제 또는 상기 LSD1과 상기 p65 서브유닛의 결합 감소 중 하나 이상으로 측정되는 것인, NF-κB에 의해 매개되는 염증 반응 억제제 스크리닝 방법. Inhibition of the inflammatory response by this pathway may be achieved by reducing phosphorylation of LSD1, inhibition of demethylation of p65 subunit of NF-κB or binding of LSD1 and p65 subunit A method of screening an inflammatory response inhibitor mediated by NF-κB, which is measured in at least one of the decreases.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 NF-κB 매개된 염증반응을 유발할 수 있는 자극은 TNFα(tumor necrosis factorα), IL-1β(interleukin 1-beta), PAMP(pathogen-associated molecular pattern) 또는 박테리아 LPS(lipopolysaccharides)인, 방법.The stimulus that can induce an NF-κB mediated inflammatory response is tumor necrosis factorα (TNFα), interleukin 1-beta (IL-1β), pathogen-associated molecular pattern (PAMP) or bacterial lipopolysaccharides (LPS).
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 세포는 Raw 264.7 또는 BMDM(bone marrow-derived macrophage)인, 방법. The cell is Raw 264.7 or bone marrow-derived macrophage (BMDM).
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 PCKa, LSD1 및 NF-κB을 발현하는 세포 대신에, 상기 세포는 인간을 제외한 동물모델로서 제공되는 것인, 방법. Instead of cells expressing the PCKa, LSD1 and NF-κB, the cells are provided as animal models except humans.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 염증 억제제는 패혈증, 자가면역질환 또는 류마티스관절염 치료제로 사용되는 것인, 방법.The method according to any one of claims 1 to 4, wherein the inflammation inhibitor is used as a therapeutic agent for sepsis, autoimmune disease or rheumatoid arthritis.
PCT/KR2018/015605 2018-04-24 2018-12-10 METHOD FOR SCREENING INFLAMMATORY RESPONSE REGULATOR TARGETING PKCα-LSD1-NFκB PATHWAY AND USE THEREOF WO2019208897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523259A JP6906826B6 (en) 2018-04-24 2018-12-10 Inflammatory response regulator screening method that targets the PKCα-LSD1-NFκB pathway Applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180047355A KR102095104B1 (en) 2018-04-24 2018-04-24 Method of screening agents modulating inflammation by targeting PKCα-LSD1-NFκB pathway
KR10-2018-0047355 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019208897A1 true WO2019208897A1 (en) 2019-10-31

Family

ID=68295647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015605 WO2019208897A1 (en) 2018-04-24 2018-12-10 METHOD FOR SCREENING INFLAMMATORY RESPONSE REGULATOR TARGETING PKCα-LSD1-NFκB PATHWAY AND USE THEREOF

Country Status (3)

Country Link
JP (1) JP6906826B6 (en)
KR (1) KR102095104B1 (en)
WO (1) WO2019208897A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198156A (en) * 2002-12-17 2004-07-15 Sankyo Co Ltd Screening method for chronic allergic inflammation inhibitor
US20130129845A1 (en) * 2010-08-02 2013-05-23 Toshihiko Hibino Screening method for chronic inflammation inhibitors or cancer metastasis inhibitors using inhibition of binding between emmprin and s100a9 as index

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198156A (en) * 2002-12-17 2004-07-15 Sankyo Co Ltd Screening method for chronic allergic inflammation inhibitor
US20130129845A1 (en) * 2010-08-02 2013-05-23 Toshihiko Hibino Screening method for chronic inflammation inhibitors or cancer metastasis inhibitors using inhibition of binding between emmprin and s100a9 as index

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ASEHNOUNE, KARIM: "Involvement of PKC a / beta in TLR4 and TLR2 dependent activation of NF-kappa B", CELLULAR SIGNALLING, vol. 17, no. 3, 1 March 2005 (2005-03-01), pages 385 - 394, XP027819193, ISSN: 0898-6568, DOI: 10.1016/j.cellsig.2004.08.005 *
KIM DONGA: "Studies on the Epigenetic and Transcriptional Regulation of LSD1 in inflammatory Response", DOCTORAL THESIS OF SEOUL NATIONAL UNIVERSITY, 1 February 2018 (2018-02-01), pages 1 - 133, XP055647461 *
KIM, DONGHA: "PKC a-LSDI-NF-K B-signaling cascade is crucial for epigenetic control of the inflammatory response", MOLECULAR CELL, 1 February 2018 (2018-02-01), pages 398 - 411, XP055648148, ISSN: 1097-2765, DOI: 10.1016/j.molcel.2018.01.002 *
KIM, DONGHA: "PKC a-LSDI-NF-kappaB-signaling cascade is crucial for epigenetic control of the inflammatory response", MOLECULAR CELL, vol. 69, 1 February 2018 (2018-02-01), pages 398 - 411, XP055648164, ISSN: 1097-2765, DOI: 10.1016/j.molcel.2018.01.002 *
TAKADA, YASUNARI: "Identification of a p65 peptide that selectively inhibits NF-kappaB activation induced by various inflammatory stimuli and its role in down-regulation of NP-kappaB-mediated gene expression and up-regulation of apoptosis", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 15, 19 April 2004 (2004-04-19), pages 15096 - 15104, XP003001492, ISSN: 0021-9258, DOI: 10.1074/jbc.M311192200 *

Also Published As

Publication number Publication date
KR20190123534A (en) 2019-11-01
JP6906826B6 (en) 2021-08-25
JP2021501315A (en) 2021-01-14
KR102095104B1 (en) 2020-04-23
JP6906826B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
Yin et al. Lipid peroxidation‐mediated inflammation promotes cell apoptosis through activation of NF‐κB pathway in rheumatoid arthritis synovial cells
US20200392492A1 (en) Modulating Immune Responses
Banerjee et al. A peek into the complex realm of histone phosphorylation
Tanaka et al. Epigenetic regulation of the Blimp-1 gene (Prdm1) in B cells involves Bach2 and histone deacetylase 3
Calnan et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity
Li et al. The tyrosine kinase Src promotes phosphorylation of the kinase TBK1 to facilitate type I interferon production after viral infection
Srivastava et al. Replisome dynamics and their functional relevance upon DNA damage through the PCNA interactome
AU2013256468A1 (en) Modulating immune responses
Nazish et al. Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells
Li et al. Role for RIF1-interacting partner DDX1 in BLM recruitment to DNA double-strand breaks
Wang et al. PARP1 hinders histone H2B occupancy at the NFATc1 promoter to restrain osteoclast differentiation
Jagannath et al. The multiple roles of salt-inducible kinases in regulating physiology
Tu et al. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma
Zhu et al. Development of VHL-recruiting STING PROTACs that suppress innate immunity
WO2019208897A1 (en) METHOD FOR SCREENING INFLAMMATORY RESPONSE REGULATOR TARGETING PKCα-LSD1-NFκB PATHWAY AND USE THEREOF
Shi et al. MNK1-induced eIF-4E phosphorylation in myeloma cells: a pathway mediating IL-6-induced expansion and expression of genes involved in metabolic and proteotoxic responses
Bandau et al. RNA polymerase II promotes the organization of chromatin following DNA replication
Krishnathas et al. C81‐evoked inhibition of the TNFR1‐NFκB pathway during inflammatory processes for stabilization of the impaired vascular endothelial barrier for leukocytes
Zhu et al. Calcyphosine promotes the proliferation of glioma cells and serves as a potential therapeutic target
Bashore et al. Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM
Susanto et al. RAPIDASH: A tag-free enrichment of ribosome-associated proteins reveals compositional dynamics in embryonic tissues and stimulated macrophages
Amin et al. Loss of NAT10 disrupts enhancer organization via p300 mislocalization and suppresses transcription of genes necessary for metastasis progression.
Wang et al. Nuclear autophagy interactome unveils WSTF as a constitutive nuclear inhibitor of inflammation
WO2023038027A1 (en) Senolytic drug screening method and senolytic drug
WO2023063564A1 (en) Pharmaceutical composition containing pcaf inhibitor for preventing or treating vascular calcification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916394

Country of ref document: EP

Kind code of ref document: A1