WO2019208441A1 - Polymer, molded body and article - Google Patents

Polymer, molded body and article Download PDF

Info

Publication number
WO2019208441A1
WO2019208441A1 PCT/JP2019/016844 JP2019016844W WO2019208441A1 WO 2019208441 A1 WO2019208441 A1 WO 2019208441A1 JP 2019016844 W JP2019016844 W JP 2019016844W WO 2019208441 A1 WO2019208441 A1 WO 2019208441A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
carbon atoms
integer
formula
Prior art date
Application number
PCT/JP2019/016844
Other languages
French (fr)
Japanese (ja)
Inventor
遼祐 一二三
宮木 伸行
育義 冨田
Original Assignee
Jsr株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, 国立大学法人東京工業大学 filed Critical Jsr株式会社
Priority to JP2020516315A priority Critical patent/JPWO2019208441A1/en
Publication of WO2019208441A1 publication Critical patent/WO2019208441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • An embodiment of the present invention relates to a polymer, a molded body, and an article.
  • Optical components such as optical lenses and optical films are used in display devices such as liquid crystal display devices, camera module lenses such as digital cameras and mobile phone cameras, and optical sensors such as image sensors.
  • an optical component has been formed using a polymer having a high refractive index as a resin component from the viewpoint of thinning and high added value.
  • an optical component such as an optical lens is used in an imaging system device such as a camera module, low birefringence is also required for high definition of images.
  • a polyether having a structure derived from a bisphenol compound such as a bisphenolfluorene derivative is known (see Patent Document 1). These polymers exhibit low birefringence because the refractive index in the main chain direction and the direction orthogonal to the main chain cancel each other due to the cardo structure of the fluorene skeleton.
  • a polymer having a rigid and bulky skeleton such as a fluorene skeleton is generally known to be inferior in moldability because of its extremely high glass transition temperature.
  • One embodiment of the present invention provides a polymer having a high refractive index and a low Abbe number and excellent in low birefringence.
  • a configuration example of the present invention is as follows.
  • R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 11 and R 12 are each independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms.
  • x and y are each independently an integer of 0 to 4. When x is 2 or more, the plurality of R 11 are the same or different. When y is 2 or more, the plurality of R 12 are the same or different.
  • a is an integer of 0 to 2.
  • R 2 is independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms.
  • b is an integer of 0 to 8. When b is 2 or more, a plurality of R 2 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • R 3 and R 4 each independently represent a halogen atom, a nitro group, a cyano group, or a monovalent organic group having 1 to 20 carbon atoms.
  • c and d are each independently an integer of 0 to 8.
  • the plurality of R 3 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • the plurality of R 4 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • e and f are each independently an integer of 0-2.
  • L is a single bond, —SO 2 — or a divalent organic group having 1 to 20 carbon atoms.
  • a polymer having a high refractive index and a low Abbe number and excellent in low birefringence can be provided. Therefore, by using the polymer, a molded article having a high refractive index and a low Abbe number and excellent in low birefringence, particularly a film and an optical lens can be obtained conveniently and cost-effectively.
  • FIG. 1 is the 1 H-NMR spectrum of polymer 3 obtained in Example 1.
  • a polymer according to an embodiment of the present invention includes a structural unit represented by formula (1) (hereinafter also referred to as “structural unit (I)”) and a formula ( 2-1) and (2-2) at least one of structural units (hereinafter, also referred to as “structural unit (II)”).
  • This polymer may have structural units other than structural unit (I) and (II).
  • the structural unit (I) is represented by the following formula (1).
  • the present polymer may have one or more structural units (I).
  • R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 11 and R 12 are each independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms.
  • x and y are each independently an integer of 0 to 4. When x is 2 or more, the plurality of R 11 are the same or different. When y is 2 or more, the plurality of R 12 are the same or different.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. And monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include: Alkyl groups such as methyl, ethyl, propyl and butyl groups; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples include alkynyl groups such as ethynyl group, propynyl group, butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include: Monovalent monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monovalent monocyclic alicyclic unsaturated hydrocarbon groups such as a cyclopentenyl group and a cyclohexenyl group; Norbornyl group, adamantyl group, tricyclo [5.2.1.0 2,6 ] decyl group, tetracyclo [4.4.0.1 2,5 .
  • 1 7,10 ] monovalent polycyclic alicyclic saturated hydrocarbon group such as dodecyl group; Norbornenyl group, tricyclo [5.2.1.0 2,6 ] decenyl group, tetracyclo [4.4.0.1 2,5 .
  • monovalent polycyclic alicyclic unsaturated hydrocarbon groups such as 1 7,10 ] dodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include: Aryl groups such as phenyl, tolyl, xylyl, naphthyl and anthryl; Examples include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, and anthrylmethyl group.
  • R 1 is preferably an aromatic hydrocarbon group, more preferably an aryl group, and still more preferably a phenyl group.
  • halogen atom in R 11 and R 12 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In these, a chlorine atom is preferable.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R 11 and R 12 include a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
  • Examples of the substituent include a halogen atom, a nitro group, a cyano group, a methoxy group, an acetyl group, a methylthio group, and a thioacetyl group.
  • R 11 and R 12 are preferably a chain hydrocarbon group, more preferably an alkyl group, and still more preferably a methyl group.
  • X and y are each independently preferably 0 and 1, more preferably 0.
  • the structural unit (I) is preferably a structural unit represented by the following formula (1 ′).
  • R 1 has the same meaning as R 1 in formula (1).
  • a monomer for deriving the structural unit (I) for example, Bis (fluorophenyl) phenylphosphine sulfide, bis (fluorophenyl) naphthylphosphine sulfide, bis (fluorophenyl) anthrylphosphine sulfide, bis (fluorophenyl) tolylphosphine sulfide, bis (fluorophenyl) methylphosphine sulfide, bis (fluorophenyl) ) Difluorinated products of phosphine sulfides such as cyclohexylphosphine sulfide; Bis (chlorophenyl) phenylphosphine sulfide, bis (chlorophenyl) naphthylphosphine sulfide, bis (chlorophenyl) anthrylphosphine sulfide, bis (chlorophenyl)
  • difluorinated compounds are preferable, and bis (fluorophenyl) phenylphosphine sulfide and bis (fluorophenyl) phenylphosphine oxide are particularly preferable.
  • the tolyl group is preferably a p-tolyl group.
  • the lower limit of the content ratio of the structural unit (I) in the present polymer is preferably 10 mol%, more preferably 30 mol%, further preferably 40 mol%, particularly preferably 45 mol%.
  • As an upper limit of the said content rate 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable.
  • the structural unit (II) is represented by at least one of the following formulas (2-1) and (2-2).
  • the present polymer may have one or more structural units (II).
  • the polymer may have two or more types of structural units (II)
  • it may have two or more types of structural units represented by the formula (2-1). 2) which may have a structural unit represented by 2) and one or more structural units represented by formula (2-1) and one or more structural units represented by formula (2-2) You may have.
  • a is an integer of 0-2.
  • R 2 is independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms.
  • b is an integer of 0 to 8. When b is 2 or more, a plurality of R 2 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • the structural unit represented by the formula (2-1) specifically means a structural unit represented by the following formulas (2-1-1) to (2-1-3).
  • the following formula (2-2) has the same meaning.
  • R 2 is independently the same meaning as R 2 in formula (2-1).
  • b1 is an integer of 0 to 4.
  • b2 is an integer from 0 to 2
  • b3 is an integer from 0 to 4.
  • b2 and b4 are each independently an integer of 0 to 2
  • b5 is an integer of 0 to 4.
  • R 3 and R 4 are each independently a halogen atom, a nitro group, a cyano group, or a monovalent organic group having 1 to 20 carbon atoms.
  • c and d are each independently an integer of 0 to 8.
  • the plurality of R 3 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • the plurality of R 4 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
  • e and f are each independently an integer of 0-2.
  • L is a single bond, —SO 2 — or a divalent organic group having 1 to 20 carbon atoms.
  • Examples of the halogen atom in R 2 , R 3 and R 4 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. In these, a chlorine atom is preferable.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R 2 , R 3 and R 4 include monovalent hydrocarbon groups having 1 to 20 carbon atoms which may have a substituent.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
  • Examples of the substituent include a halogen atom, a nitro group, a cyano group, a methoxy group, an acetyl group, a methylthio group, and a thioacetyl group.
  • a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
  • Examples of the ring structure having 4 to 20 ring members formed by bonding two or more of a plurality of R 2 , a plurality of R 3 or a plurality of R 4 groups to each other include: Cyclobutene structure, cyclopentene structure, cyclohexene structure, norbornene structure, bicyclo [2.2.2] octene structure, dibenzobicyclo [2.2.2] octene structure, etc .; benzene structure, naphthalene structure, anthracene structure, etc.
  • Hydrocarbon ring structures such as aromatic ring structures, Aliphatic heterocyclic structures such as oxacyclohexene structure, azacyclohexene structure, and thiacyclohexene structure; Aromatic heterocyclic structures such as furan structure, pyrrole structure, pyridine structure, thiophene structure, etc.
  • b, c and d are preferably 0 to 2, more preferably 0 and 1, and particularly preferably 0.
  • Examples of the divalent organic group having 1 to 20 carbon atoms represented by L include a divalent hydrocarbon group ( ⁇ ) having 1 to 20 carbon atoms, and a divalent valence between carbon and carbon of the divalent hydrocarbon group.
  • Group ( ⁇ ) having a hetero atom-containing group a group obtained by substituting a part or all of the hydrogen atoms of the group ( ⁇ ) or group ( ⁇ ) with a monovalent hetero atom or hetero atom-containing group, and the like. .
  • hetero atom constituting the monovalent or divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, —SO 2 —, a group in which two or more of these are combined, and the like. It is done.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— is preferable.
  • Examples of the monovalent hetero atom or hetero atom-containing group include a halogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, and a sulfanyl group.
  • Examples of the divalent organic group having 1 to 20 carbon atoms in L include groups represented by the following formulas (L-1) to (L-3) (hereinafter referred to as “group (L-1) to group (L— 3) ”)) and the like.
  • the lower limit of the carbon number of the divalent organic group in L is preferably 2, more preferably 3, and the upper limit is preferably 18, more preferably 16, more preferably 14, and particularly preferably 13.
  • L is preferably a single bond or a divalent organic group, more preferably a single bond or a group (L-1) to (L-3), particularly preferably a group (L-1) to a group (L-3). .
  • structural units (II) structural units represented by the following formulas (2-A) to (2-G) (hereinafter also referred to as “structural units (II-A) to (II-G)”) Etc.
  • structural units (II-A), (II-F) and (II-G) are preferred.
  • Dihydroxyphenyl compounds such as hydroquinone, resorcinol, catechol, phenylhydroquinone; 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) ) Propane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, bis (4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,4-bis [2- (4-Hydroxyphenyl) -2-propyl] benzene
  • Dihydroxyphenyl compounds such as hydroquinone, res
  • the lower limit of the content ratio of the structural unit (II) in the present polymer is preferably 10 mol%, more preferably 30 mol%, further preferably 40 mol%, particularly preferably 45 mol%.
  • As an upper limit of the said content rate 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable.
  • the content ratio of the structural unit (II) is in the above range, a polymer having a higher refractive index, a lower Abbe number, and a lower birefringence can be obtained.
  • the other structural unit is not particularly limited as long as the effects of the present invention are not impaired.
  • the present polymer may have one or more of the other structural units.
  • Examples of the monomer for deriving the other structural unit include: A compound that derives a structural unit containing a carbonate bond, thiocarbonate bond or selenocarbonate bond, such as diphenyl carbonate, diphenylthiocarbonate, diphenylselenocarbonate, phosgene, thiophosgene, selenophosgene; Dihydroxy compounds such as benzenedimethanol and cyclohexanedimethanol; Examples thereof include dihalides of dicarboxylic acids such as phthalic acid dichloride, isophthalic acid dichloride, and terephthalic acid dichloride.
  • the upper limit of the content of the other structural unit in the polymer is preferably 50 mol%, more preferably 30 mol%, still more preferably 20 mol%, 10 mol% is particularly preferred. As a minimum of the above-mentioned content rate, it is 1 mol%, for example.
  • Mw Weight average molecular weight
  • Mw of polystyrene conversion of this polymer 2,000 is preferred, 10,000 is more preferred, 30,000 is still more preferred, and 40,000 is especially preferred.
  • the upper limit of the Mw is preferably 300,000, more preferably 200,000, still more preferably 160,000, and particularly preferably 130,000.
  • the present polymer having Mw in the above range is preferable because it is excellent in mechanical properties and moldability.
  • Mw of the polymer in this specification is a value measured by gel permeation chromatography (GPC) under the conditions described in the following examples.
  • CR -Stress optical coefficient measured at a temperature 20 ° C higher than the glass transition temperature of the polymer
  • the absolute value of the stress optical coefficient (hereinafter also referred to as “CR”) measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer is 3.0 ⁇ 10 ⁇ 9 Pa ⁇ 1 or less. It is preferable.
  • CR is positive or negative, but when the refractive index in the direction parallel to the main chain of the polymer is compared with the refractive index in the direction perpendicular to the main chain, the refractive index in the direction parallel to the main chain Is large, CR is positive, and when the refractive index in the direction orthogonal to the main chain is larger, CR is negative.
  • CR is measured by the method described in Examples.
  • the lower limit of the CR is preferably ⁇ 3.0 ⁇ 10 ⁇ 9 Pa ⁇ 1, more preferably ⁇ 2.9 ⁇ 10 ⁇ 9 Pa ⁇ 1 , and even more preferably ⁇ 2.8 ⁇ 10 ⁇ 9 Pa ⁇ 1.
  • the upper limit of the CR is preferably 3.0 ⁇ 10 ⁇ 9 Pa ⁇ 1, more preferably 2.9 ⁇ 10 ⁇ 9 Pa ⁇ 1 , and even more preferably 2.8 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • a polymer having CR in the above range is a polymer excellent in low birefringence.
  • Tg Glass transition temperature
  • 100 ° C is preferred, 120 ° C is more preferred, 130 ° C is still more preferred, and 140 ° C is especially preferred.
  • the upper limit of Tg is, for example, 300 ° C.
  • the lower limit of the refractive index (nD) of the present polymer is preferably 1.60, more preferably 1.63, still more preferably 1.64, and particularly preferably 1.65.
  • the upper limit of the refractive index is, for example, 1.80.
  • the refractive index in this specification refers to the refractive index of the D line unless otherwise specified.
  • the upper limit of the Abbe number ( ⁇ D) of the polymer is preferably 25.0, more preferably 24.0, and particularly preferably 23.0.
  • the lower limit of the Abbe number is 15.0, for example, and preferably 16.0.
  • nD and ⁇ D are measured by the method described in the examples.
  • the Abbe number in this specification means the Abbe number ( ⁇ D) calculated by the following formula (A).
  • This polymer can be synthesized by a known method and is not particularly limited, but is preferably synthesized by the following method 1 or 2.
  • the method 1 includes, for example, a monomer that derives a structural unit (I) such as a dihalogenated phosphine sulfide, a monomer that induces a structural unit (II) such as a bisphenol compound, and, if necessary, the other structure.
  • a monomer that derives a structural unit (I) such as a dihalogenated phosphine sulfide
  • a monomer that induces a structural unit (II) such as a bisphenol compound
  • This is a method of synthesizing a polymer by conducting a reaction 1 such as condensation polymerization in an organic solvent in the presence of an alkali metal compound or the like for a monomer that derives a unit.
  • the reaction may be performed in the presence of an end-capping agent such as a monophenol compound such as 2-phenylphenol.
  • 1 type may be used for the said monomer, an alkali metal compound, an organic solvent, and terminal blocker, respectively, and 2 or more types may be used for them.
  • Alkali metal compound The alkali metal compound reacts with an aromatic diol compound or the like in the course of synthesis of the present polymer to form an alkali metal salt.
  • Alkali metal compounds such as lithium, sodium and potassium
  • Alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride
  • Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide
  • Alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate
  • alkali metal hydrogen carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • an alkali metal carbonate is preferable and potassium carbonate is more preferable.
  • the lower limit of the ratio of the number of moles of alkali metal atoms in the alkali metal compound to the number of moles of hydroxy groups in all compounds used in the synthesis of the present polymer is preferably 1. Is more preferable, and 1.2 is more preferable.
  • the upper limit of the ratio is preferably 3, more preferably 2, and even more preferably 1.5.
  • Organic solvent As an organic solvent used in the method 1, for example, Ether solvents such as tetrahydrofuran (THF), dioxane, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, dialkoxybenzene, trialkoxybenzene; Nitrogen-containing solvents such as N, N-dimethylacetamide (DMAc), N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone; ester solvents such as lactone solvents such as ⁇ -butyrolactone; Sulfur-containing solvents such as sulfolane, dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, diphenyl sulfone; Ketone solvents such as benzophenone; Halogen solvents such as benzophenone
  • reaction temperature in the above-mentioned method 1 50 ° C is preferred and 100 ° C is more preferred.
  • the upper limit of the reaction temperature is preferably 300 ° C, more preferably 200 ° C.
  • the lower limit of the reaction time in Method 1 is preferably 1 hour, more preferably 2 hours, and even more preferably 3 hours.
  • the upper limit of the reaction time is preferably 100 hours, more preferably 50 hours, and even more preferably 24 hours.
  • Method 2 includes, for example, a monomer that can be converted into the structural unit (I) by a functional group conversion reaction such as dihalogenated phosphine oxide, and a monomer that derives the structural unit (II) such as a bisphenol compound, If necessary, a polymer obtained by polymerizing a monomer derived from the other structural unit in an organic solvent in the presence of an alkali metal compound or the like is converted into a functional group in the organic solvent in the presence of a sulfurizing agent or the like. Etc. to synthesize the present polymer. In the case of the method 2, the reaction may be carried out using a reducing agent such as chlorosilanes.
  • the polymerization reaction in Method 2 may be performed in the same manner as Reaction 1 in Method 1.
  • Each of the monomer, alkali metal compound, organic solvent, and end-capping agent used in this reaction may be used alone or in combination of two or more.
  • the sulfurizing agent is preferably a material capable of forming a phosphine sulfide moiety by reacting with a phosphine moiety, a phosphine oxide moiety, or the like in the course of synthesis of the present polymer.
  • a sulfurizing agent for example, Simple sulfur; Alkali sulfide metals such as lithium sulfide, sodium sulfide and potassium sulfide; Phosphorous sulfide compounds such as niolin pentasulfide; Examples include 1,3,2,4-dithiadiphosphetan-2,4-disulfide compounds such as Lawson's reagent, Davy reagent, Japanese reagent, and Belleo reagent. Of these, 1,3,2,4-dithiadiphosphetane-2,4-disulfide compounds are preferred, and Lawesson's reagent is more preferred.
  • Organic solvent As the organic solvent used in the functional group conversion, for example, Halogen solvents such as methylene chloride, chloroform, chlorobenzene; Ether solvents such as THF, dioxane, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, dialkoxybenzene, trialkoxybenzene; Aromatic hydrocarbon solvents such as benzene, toluene, xylene and the like can be mentioned. Among these organic solvents, methylene chloride, chloroform, dioxane, cyclopentyl methyl ether, and toluene are preferable, and toluene is more preferable. 1 type (s) or 2 or more types can be used for this organic solvent.
  • Halogen solvents such as methylene chloride, chloroform, chlorobenzene
  • Ether solvents such as THF, dioxane, cyclopentyl methyl ether, anisole, phene
  • a phosphine oxide site or the like By using the reducing agent, a phosphine oxide site or the like can be reduced to give a phosphine site, and the subsequent sulfurization reaction can be facilitated.
  • a reducing agent include chlorosilanes such as dichlorosilane and trichlorosilane. Of these chlorosilanes, trichlorosilane is preferred.
  • One or more reducing agents can be used.
  • reaction temperature As a minimum of reaction temperature in the case of the above-mentioned functional group conversion, 0 ° C is preferred and 20 ° C is more preferred.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 180 ° C.
  • reaction time As a minimum of reaction time in the case of the above-mentioned functional group conversion, 1 hour is preferred, 2 hours are more preferred, and 3 hours are still more preferred.
  • the upper limit of the reaction time is preferably 100 hours, more preferably 50 hours, and even more preferably 30 hours.
  • the polymer can be molded into a molded body by a molding method such as a melt molding method or a solvent casting method.
  • a molding method such as a melt molding method or a solvent casting method.
  • the molding method is melt molding from the viewpoint that a molded body excellent in characteristics such as low birefringence, mechanical strength and dimensional accuracy can be easily obtained.
  • the method is preferred.
  • the melt molding method include a press molding method, an extrusion molding method, and an injection molding method. Among these, the injection molding method is preferable from the viewpoints of moldability and productivity.
  • the molding conditions in the molding process may be appropriately selected depending on the purpose of use or molding method, but the lower limit of the temperature in the injection molding method is preferably 150 ° C, more preferably 180 ° C, and even more preferably 200 ° C. As an upper limit of the said temperature, 400 degreeC is preferable, 350 degreeC is more preferable, and 330 degreeC is further more preferable. By setting the temperature at the time of injection molding within the above range, thermal decomposition and yellowing of the polymer can be effectively suppressed.
  • an optical component utilizing characteristics excellent in high refractive index, low Abbe number and low birefringence is preferable.
  • the optical component include an optical disc, an optical lens, a prism, a light diffusion plate, an optical card, an optical fiber, an optical mirror, a liquid crystal display element substrate, a light guide plate, a polarizing film, and a retardation film.
  • the optical lens according to an embodiment of the present invention preferably includes a molded body of the polymer and is formed of the molded body.
  • the optical lens can be obtained, for example, by injection-molding the polymer into a lens shape by a molding machine such as an injection molding machine or an injection compression molding machine.
  • a molding machine such as an injection molding machine or an injection compression molding machine.
  • the molding environment is a low dust environment in order to avoid contamination of foreign matters as much as possible.
  • the optical lens can be used as various lenses such as a pickup lens, an f- ⁇ lens, and a spectacle lens. Further, since the optical lens has a high refractive index and a low Abbe number, it can be particularly suitably used as a chromatic aberration correction lens. Specifically, it can be suitably used as a lens for a single lens reflex camera, a digital still camera, a video camera, a camera-equipped mobile phone, a lens-equipped film, a telescope, a binocular, a microscope, a projector, or the like.
  • the optical lens may be a convex lens or a concave lens.
  • a concave lens it can be suitably used as an optical lens system with little chromatic aberration in combination with other high Abbe number convex lenses.
  • the film according to an embodiment of the present invention preferably includes a molded body of the present polymer and is formed of the molded body.
  • the film can be obtained, for example, by forming the polymer into a film shape by melt molding or solvent casting.
  • the film is not particularly limited, but can be suitably used as an optical film. Specifically, it can be suitably used as a liquid crystal display element substrate, a light guide plate, a polarizing film, a retardation film, and the like.
  • the thickness of the film is not particularly limited and may be appropriately selected depending on the desired use.
  • the thickness is 10 ⁇ m to 2 mm, preferably 30 ⁇ m to 1 mm.
  • Mw Weight average molecular weight
  • Example 1 In a round bottom flask equipped with a stir bar and a reflux tube, the polymer of Comparative Example 1 (10.0 g, 20.0 mmol) and Lawson's reagent (6.85 g, 16.9 mmol) were weighed, and toluene (260 ml) was added thereto. ) was added and allowed to react under reflux conditions for 24 hours under an argon atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator. Thereto, chloroform (150 ml) was added to redissolve the polymer, and the precipitate was removed by filtration.
  • Example 2 The same operation as in Example 1 was carried out except that the polymer of Comparative Example 2 (2.61 g, 4.6 mmol), Lawesson's reagent (1.59 g, 3.9 mmol) and toluene (100 ml) were used. A powder of polymer 4 shown in (A4) was obtained (yield 2.22 g, yield 82.7%).
  • Tg Glass transition temperature
  • the Tg of the polymer was determined from a thermogram obtained using a DSC apparatus (“Thermo Plus DSC8230” manufactured by Rigaku). DSC measurement was performed under nitrogen at a rate of temperature increase of 20 ° C./min. Specifically, in the DSC temperature rising curve in the thermogram, the temperature corresponding to the intersection of the baseline and the tangent at the inflection point was defined as Tg. The inflection point was a temperature corresponding to a peak in a thermogram DDSC (DSC differential value) curve. In addition, the DDSC curve was referred to as appropriate for confirming the DSC baseline. Tg can be evaluated as “good” when it is 100 ° C. or more and 300 ° C. or less, and can be evaluated as “bad” when it is less than 100 ° C. or exceeds 300 ° C.
  • the refractive index (nF) of the F line (486 nm) and the refractive index (nC) of the C line (656 nm) were determined in the same manner, and the Abbe number ( ⁇ D) was calculated by the following formula (A).
  • ⁇ D (nD ⁇ 1) / (nF ⁇ nC) (A)
  • the refractive index (nD) is 1.65 or more, it can be evaluated as “good”.
  • the Abbe number ( ⁇ D) is 25.0 or less, it can be evaluated as “good”, and when it exceeds 25.0, it can be evaluated as “bad”.
  • Stress optical coefficient (CR) 10 -9 Pa -1
  • the stress optical coefficient (CR) measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer was determined by a known method (NIHON REOROJI GAKKAISHI, Vol. 24, No. 3, 129-132, 1996).
  • the film formed for evaluation of the refractive index was cut into strips, applied with several kinds of loads, heated and stretched under a temperature condition of Tg + 20 ° C., and slowly cooled with the loads applied.
  • the relationship between the stress applied to the film and the resulting birefringence (measurement wavelength 598 nm) was determined, and the proportionality coefficient was taken as CR.
  • CR For measurement of birefringence, “RETS100” manufactured by Otsuka Electronics Co., Ltd. was used.
  • the positive / negative of CR was evaluated by measuring the retardation value by overlapping the obtained stretched film and the stretched polycarbonate film (CR is positive) so that the stretch directions are parallel or perpendicular to each other.
  • CR is positive when the measured retardation value is greater when parallelly stacked than when vertically stacked, and CR is negative when vertically stacked is greater than when stacked in parallel.
  • CR can be evaluated as “good” when the absolute value (
  • the polymers obtained in Examples 1 and 2 are good in evaluation of glass transition temperature (Tg), refractive index (nD), Abbe number ( ⁇ D), and birefringence (CR). Results were obtained.
  • This polymer has a high refractive index and a low Abbe number, and is excellent in low birefringence. Therefore, according to the present polymer, a molded product having a high refractive index and a low Abbe number and excellent in low birefringence can be obtained conveniently and cost-effectively. In addition, an optical lens and a film having a high refractive index, a low Abbe number, and excellent low birefringence characteristics can be obtained.

Abstract

One embodiment of the present invention pertains to a polymer, a molded body and an article, said polymer having a structural unit represented by formula (1) and at least one of structural units represented by formulae (2-1) and (2-2) [wherein: R1 represents a C1-20 hydrocarbon group; R11's and R12's independently represent a halogen atom, a nitro group, a cyano group or a C1-20 organic group; and x and y independently represent an integer of 0-4.] [wherein: a represents an integer of 0-2; R2's independently represent a halogen atom, a nitro group, a cyano group or a C1-20 organic group; and b represents an integer of 0-8.] [wherein: R3's and R4's independently represent a halogen atom, a nitro group, a cyano group or a C1-20 organic group; c and d independently represent an integer of 0-8; e and f independently represent an integer of 0-2; and L represents a single bond, -SO2- or a C1-20 organic group.]

Description

重合体、成形体及び物品Polymer, molded body and article
 本発明の一実施形態は、重合体、成形体及び物品に関する。 An embodiment of the present invention relates to a polymer, a molded body, and an article.
 光学レンズ、光学フィルム等の光学部品は、液晶表示装置等の表示装置、デジタルカメラや携帯電話用カメラ等のカメラモジュールレンズ、イメージセンサ等の光センサなどに用いられている。近年、光学部品は、薄膜化、高付加価値化等の点から、樹脂成分として屈折率の高い重合体を用いて形成されるようになっている。
 また、光学レンズ等の光学部品がカメラモジュール等の撮像系デバイスに使用される場合、画像の高精細化等のために低複屈折性も求められる。
Optical components such as optical lenses and optical films are used in display devices such as liquid crystal display devices, camera module lenses such as digital cameras and mobile phone cameras, and optical sensors such as image sensors. In recent years, an optical component has been formed using a polymer having a high refractive index as a resin component from the viewpoint of thinning and high added value.
In addition, when an optical component such as an optical lens is used in an imaging system device such as a camera module, low birefringence is also required for high definition of images.
 低複屈折性の重合体の代表例として、ビスフェノールフルオレン誘導体等のビスフェノール化合物に由来する構造を有するポリエーテル等が知られている(特許文献1参照)。これらの重合体は、フルオレン骨格のカルド構造により、主鎖方向と主鎖に直交する方向の屈折率が互いに打ち消し合うため、低複屈折性を示す。その一方で、フルオレン骨格のような剛直で嵩高い骨格を有する重合体は、ガラス転移温度が極めて高いため、一般に成形性に劣ることが知られている。 As a representative example of a low birefringence polymer, a polyether having a structure derived from a bisphenol compound such as a bisphenolfluorene derivative is known (see Patent Document 1). These polymers exhibit low birefringence because the refractive index in the main chain direction and the direction orthogonal to the main chain cancel each other due to the cardo structure of the fluorene skeleton. On the other hand, a polymer having a rigid and bulky skeleton such as a fluorene skeleton is generally known to be inferior in moldability because of its extremely high glass transition temperature.
 一方、リン系官能基を有する重合体は種々知られており、ホスフィンスルフィド部位を主鎖に含む重合体は、高耐熱材料や難燃材料等として検討されている(非特許文献1及び2参照)。しかし、これらの重合体の光学特性は全く調べられておらず、またこれらの重合体の複屈折は低くないものと考えられる。 On the other hand, various polymers having a phosphorus functional group are known, and polymers containing a phosphine sulfide moiety in the main chain have been studied as high heat resistant materials, flame retardant materials, and the like (see Non-Patent Documents 1 and 2). ). However, the optical properties of these polymers have not been investigated at all, and it is considered that the birefringence of these polymers is not low.
特開2012-224763号公報JP 2012-224863 A
 これまでのところ、高屈折率及び低アッベ数であり、低複屈折性に優れるホスフィンスルフィド部位を有する重合体は未だ知られていない。 So far, a polymer having a phosphine sulfide moiety which has a high refractive index and a low Abbe number and is excellent in low birefringence has not yet been known.
 本発明の一実施形態は、高屈折率及び低アッベ数であり、低複屈折性に優れる重合体を提供する。 One embodiment of the present invention provides a polymer having a high refractive index and a low Abbe number and excellent in low birefringence.
 本発明者は、前記課題を解決すべく鋭意検討した結果、下記構成例によれば前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved according to the following configuration example, and has completed the present invention.
A configuration example of the present invention is as follows.
 [1] 下記式(1)で表される構造単位と、下記式(2-1)及び(2-2)で表される構造単位の少なくとも1つとを有する重合体。 [1] A polymer having a structural unit represented by the following formula (1) and at least one of structural units represented by the following formulas (2-1) and (2-2).
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R1は、炭素数1~20の1価の炭化水素基である。R11及びR12はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。x及びyはそれぞれ独立して、0~4の整数である。xが2以上の場合、複数のR11は同一又は異なる。yが2以上の場合、複数のR12は同一又は異なる。]
Figure JPOXMLDOC01-appb-C000004
[In Formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R 11 and R 12 are each independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms. x and y are each independently an integer of 0 to 4. When x is 2 or more, the plurality of R 11 are the same or different. When y is 2 or more, the plurality of R 12 are the same or different. ]
Figure JPOXMLDOC01-appb-C000005
[式(2-1)中、aは、0~2の整数である。R2は独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。bは、0~8の整数である。bが2以上の場合、複数のR2は同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000005
[In the formula (2-1), a is an integer of 0 to 2. R 2 is independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms. b is an integer of 0 to 8. When b is 2 or more, a plurality of R 2 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members. ]
Figure JPOXMLDOC01-appb-C000006
[式(2-2)中、R3及びR4はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。c及びdはそれぞれ独立して、0~8の整数である。cが2以上の場合、複数のR3は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。dが2以上の場合、複数のR4は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。e及びfはそれぞれ独立して、0~2の整数である。Lは、単結合、-SO2-又は炭素数1~20の2価の有機基である。]
Figure JPOXMLDOC01-appb-C000006
[In Formula (2-2), R 3 and R 4 each independently represent a halogen atom, a nitro group, a cyano group, or a monovalent organic group having 1 to 20 carbon atoms. c and d are each independently an integer of 0 to 8. When c is 2 or more, the plurality of R 3 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members. When d is 2 or more, the plurality of R 4 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members. e and f are each independently an integer of 0-2. L is a single bond, —SO 2 — or a divalent organic group having 1 to 20 carbon atoms. ]
 [2] 重合体のガラス転移温度より20℃高い温度で測定した応力光学係数の絶対値が3.0×10-9Pa-1以下である、[1]に記載の重合体。 [2] The polymer according to [1], wherein the absolute value of the stress optical coefficient measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer is 3.0 × 10 −9 Pa −1 or less.
 [3] 前記式(1)におけるR1が、炭素数6~20の芳香族炭化水素基である、[1]又は[2]に記載の重合体。 [3] The polymer according to [1] or [2], wherein R 1 in the formula (1) is an aromatic hydrocarbon group having 6 to 20 carbon atoms.
 [4] ポリスチレン換算の重量平均分子量が2,000以上300,000以下である、[1]~[3]のいずれかに記載の重合体。 [4] The polymer according to any one of [1] to [3], which has a polystyrene-equivalent weight average molecular weight of 2,000 to 300,000.
 [5] ガラス転移温度が100℃以上300℃以下である、[1]~[4]のいずれかに記載の重合体。 [5] The polymer according to any one of [1] to [4], wherein the glass transition temperature is 100 ° C. or higher and 300 ° C. or lower.
 [6] F線(486nm)、D線(589nm)及びC線(656nm)の屈折率をそれぞれnF、nD及びnCとした時に、式(A)で得られるアッベ数(νD)が25.0以下である、[1]~[5]のいずれかに記載の重合体。
  νD=(nD-1)/(nF-nC)   (A)
 [7] D線の屈折率nDが1.60以上である、[1]~[6]のいずれかに記載の重合体。
[6] When the refractive indexes of the F-line (486 nm), D-line (589 nm), and C-line (656 nm) are nF, nD, and nC, respectively, the Abbe number (νD) obtained by the equation (A) is 25.0. The polymer according to any one of [1] to [5], which is:
νD = (nD−1) / (nF−nC) (A)
[7] The polymer according to any one of [1] to [6], wherein the refractive index nD of the D line is 1.60 or more.
 [8] [1]~[7]のいずれかに記載の重合体の成形体。
 [9] [8]に記載の成形体を含む、フィルム及び光学レンズから選ばれる物品。
[8] A molded article of the polymer according to any one of [1] to [7].
[9] An article selected from a film and an optical lens, comprising the molded article according to [8].
 本発明の一実施形態によれば、高屈折率及び低アッベ数であり、低複屈折性に優れる重合体を提供することができる。従って、該重合体を用いることで、高屈折率及び低アッベ数であり、低複屈折性に優れる成形体、特に、フィルムや光学レンズを簡便かつコスト的に有利に得ることができる。 According to one embodiment of the present invention, a polymer having a high refractive index and a low Abbe number and excellent in low birefringence can be provided. Therefore, by using the polymer, a molded article having a high refractive index and a low Abbe number and excellent in low birefringence, particularly a film and an optical lens can be obtained conveniently and cost-effectively.
図1は、実施例1で得られた重合体3の1H-NMRスペクトルである。FIG. 1 is the 1 H-NMR spectrum of polymer 3 obtained in Example 1.
≪重合体≫
 本発明の一実施形態に係る重合体(以下「本重合体」ともいう。)は、式(1)で表される構造単位(以下「構造単位(I)」ともいう。)と、式(2-1)及び(2-2)で表される構造単位の少なくとも1つ(以下「構造単位(II)」ともいう。)とを有する。
 本重合体は、構造単位(I)及び(II)以外の他の構造単位を有していてもよい。
≪Polymer≫
A polymer according to an embodiment of the present invention (hereinafter also referred to as “the present polymer”) includes a structural unit represented by formula (1) (hereinafter also referred to as “structural unit (I)”) and a formula ( 2-1) and (2-2) at least one of structural units (hereinafter, also referred to as “structural unit (II)”).
This polymer may have structural units other than structural unit (I) and (II).
[構造単位(I)]
 構造単位(I)は、下記式(1)で表される。
 本重合体は、構造単位(I)を1種又は2種以上有していてもよい。
[Structural unit (I)]
The structural unit (I) is represented by the following formula (1).
The present polymer may have one or more structural units (I).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R1は、炭素数1~20の1価の炭化水素基である。R11及びR12はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。x及びyはそれぞれ独立して、0~4の整数である。xが2以上の場合、複数のR11は同一又は異なる。yが2以上の場合、複数のR12は同一又は異なる。 In the formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R 11 and R 12 are each independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms. x and y are each independently an integer of 0 to 4. When x is 2 or more, the plurality of R 11 are the same or different. When y is 2 or more, the plurality of R 12 are the same or different.
 R1における炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. And monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms.
 炭素数1~20の1価の鎖状炭化水素基としては、例えば、
 メチル基、エチル基、プロピル基、ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基が挙げられる。
Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include:
Alkyl groups such as methyl, ethyl, propyl and butyl groups;
An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
Examples include alkynyl groups such as ethynyl group, propynyl group, butynyl group.
 炭素数3~20の1価の脂環式炭化水素基としては、例えば、
 シクロペンチル基、シクロヘキシル基等の1価の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の1価の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロ[5.2.1.02,6]デシル基、テトラシクロ[4.4.0.12,5.17,10]ドデシル基等の1価の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロ[5.2.1.02,6]デセニル基、テトラシクロ[4.4.0.12,5.17,10]ドデセニル基等の1価の多環の脂環式不飽和炭化水素基が挙げられる。
Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include:
Monovalent monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group;
Monovalent monocyclic alicyclic unsaturated hydrocarbon groups such as a cyclopentenyl group and a cyclohexenyl group;
Norbornyl group, adamantyl group, tricyclo [5.2.1.0 2,6 ] decyl group, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] monovalent polycyclic alicyclic saturated hydrocarbon group such as dodecyl group;
Norbornenyl group, tricyclo [5.2.1.0 2,6 ] decenyl group, tetracyclo [4.4.0.1 2,5 . And monovalent polycyclic alicyclic unsaturated hydrocarbon groups such as 1 7,10 ] dodecenyl group.
 炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基が挙げられる。
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include:
Aryl groups such as phenyl, tolyl, xylyl, naphthyl and anthryl;
Examples include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, and anthrylmethyl group.
 R1としては、芳香族炭化水素基が好ましく、アリール基がより好ましく、フェニル基がさらに好ましい。 R 1 is preferably an aromatic hydrocarbon group, more preferably an aryl group, and still more preferably a phenyl group.
 R11及びR12におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中では、塩素原子が好ましい。 Examples of the halogen atom in R 11 and R 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In these, a chlorine atom is preferable.
 R11及びR12における炭素数1~20の1価の有機基としては、炭素数1~20の1価の、置換基を有してもよい炭化水素基等が挙げられる。炭素数1~20の炭化水素基としては、例えば前記R1における炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。置換基としては、ハロゲン原子、ニトロ基、シアノ基、メトキシ基、アセチル基、メチルチオ基、チオアセチル基等が挙げられる。 Examples of the monovalent organic group having 1 to 20 carbon atoms in R 11 and R 12 include a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. Examples of the hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 . Examples of the substituent include a halogen atom, a nitro group, a cyano group, a methoxy group, an acetyl group, a methylthio group, and a thioacetyl group.
 R11及びR12としては、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 R 11 and R 12 are preferably a chain hydrocarbon group, more preferably an alkyl group, and still more preferably a methyl group.
 x及びyはそれぞれ独立して、0及び1が好ましく、0がより好ましい。 X and y are each independently preferably 0 and 1, more preferably 0.
 構造単位(I)は、下記式(1')で表される構造単位であることが好ましい。 The structural unit (I) is preferably a structural unit represented by the following formula (1 ′).
Figure JPOXMLDOC01-appb-C000008
[式(1')中、R1は、式(1)のR1と同義である。]
Figure JPOXMLDOC01-appb-C000008
In Expression (1 '), R 1 has the same meaning as R 1 in formula (1). ]
 構造単位(I)を誘導する単量体としては、例えば、
 ビス(フルオロフェニル)フェニルホスフィンスルフィド、ビス(フルオロフェニル)ナフチルホスフィンスルフィド、ビス(フルオロフェニル)アントリルホスフィンスルフィド、ビス(フルオロフェニル)トリルホスフィンスルフィド、ビス(フルオロフェニル)メチルホスフィンスルフィド、ビス(フルオロフェニル)シクロヘキシルホスフィンスルフィド等のホスフィンスルフィドのジフルオロ化物;
 ビス(クロロフェニル)フェニルホスフィンスルフィド、ビス(クロロフェニル)ナフチルホスフィンスルフィド、ビス(クロロフェニル)アントリルホスフィンスルフィド、ビス(クロロフェニル)トリルホスフィンスルフィド、ビス(クロロフェニル)メチルホスフィンスルフィド、ビス(クロロフェニル)シクロヘキシルホスフィンスルフィド等のホスフィンスルフィドのジクロロ化物が挙げられる。
As a monomer for deriving the structural unit (I), for example,
Bis (fluorophenyl) phenylphosphine sulfide, bis (fluorophenyl) naphthylphosphine sulfide, bis (fluorophenyl) anthrylphosphine sulfide, bis (fluorophenyl) tolylphosphine sulfide, bis (fluorophenyl) methylphosphine sulfide, bis (fluorophenyl) ) Difluorinated products of phosphine sulfides such as cyclohexylphosphine sulfide;
Bis (chlorophenyl) phenylphosphine sulfide, bis (chlorophenyl) naphthylphosphine sulfide, bis (chlorophenyl) anthrylphosphine sulfide, bis (chlorophenyl) tolylphosphine sulfide, bis (chlorophenyl) methylphosphine sulfide, bis (chlorophenyl) cyclohexylphosphine sulfide, etc. Examples include phosphine sulfide dichloroides.
 また、下記方法2で本重合体を合成する等の場合には、官能基変換反応により構造単位(I)へ変換可能な単量体として、例えば、
 ビス(フルオロフェニル)フェニルホスフィンオキシド、ビス(フルオロフェニル)ナフチルホスフィンオキシド、ビス(フルオロフェニル)アントリルホスフィンオキシド、ビス(フルオロフェニル)トリルホスフィンオキシド、ビス(フルオロフェニル)メチルホスフィンオキシド、ビス(フルオロフェニル)シクロヘキシルホスフィンオキシド等のホスフィンオキシドのジフルオロ化物;
 ビス(クロロフェニル)フェニルホスフィンオキシド、ビス(クロロフェニル)ナフチルホスフィンオキシド、ビス(クロロフェニル)アントリルホスフィンオキシド、ビス(クロロフェニル)トリルホスフィンオキシド、ビス(クロロフェニル)メチルホスフィンオキシド、ビス(クロロフェニル)シクロヘキシルホスフィンオキシド等のホスフィンオキシドのジクロロ化物を用いることができる。
In the case of synthesizing the present polymer by the following method 2, as a monomer that can be converted to the structural unit (I) by a functional group conversion reaction, for example,
Bis (fluorophenyl) phenylphosphine oxide, bis (fluorophenyl) naphthylphosphine oxide, bis (fluorophenyl) anthrylphosphine oxide, bis (fluorophenyl) tolylphosphine oxide, bis (fluorophenyl) methylphosphine oxide, bis (fluorophenyl) ) Difluorinated products of phosphine oxides such as cyclohexylphosphine oxide;
Bis (chlorophenyl) phenylphosphine oxide, bis (chlorophenyl) naphthylphosphine oxide, bis (chlorophenyl) anthrylphosphine oxide, bis (chlorophenyl) tolylphosphine oxide, bis (chlorophenyl) methylphosphine oxide, bis (chlorophenyl) cyclohexylphosphine oxide, etc. A phosphine oxide dichloro compound can be used.
 前記単量体としては、ジフルオロ化物が好ましく、ビス(フルオロフェニル)フェニルホスフィンスルフィド、ビス(フルオロフェニル)フェニルホスフィンオキシドが特に好ましい。なお、トリル基としては、p-トリル基が好ましい。 As the monomer, difluorinated compounds are preferable, and bis (fluorophenyl) phenylphosphine sulfide and bis (fluorophenyl) phenylphosphine oxide are particularly preferable. The tolyl group is preferably a p-tolyl group.
 本重合体における構造単位(I)の含有割合の下限としては、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましく、45モル%が特に好ましい。前記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。構造単位(I)の含有割合が前記範囲にあることで、高屈折率、低アッベ数及び低複屈折性により優れる重合体とすることができる。 The lower limit of the content ratio of the structural unit (I) in the present polymer is preferably 10 mol%, more preferably 30 mol%, further preferably 40 mol%, particularly preferably 45 mol%. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable. When the content ratio of the structural unit (I) is in the above range, a polymer excellent in high refractive index, low Abbe number, and low birefringence can be obtained.
[構造単位(II)]
 構造単位(II)は、下記式(2-1)及び(2-2)の少なくとも1つで表される。
 本重合体は、構造単位(II)を1種又は2種以上有していてもよい。本重合体が、2種以上の構造単位(II)を有する場合、2種以上の式(2-1)で表される構造単位を有していてもよく、2種以上の式(2-2)で表される構造単位を有していてもよく、1種以上の式(2-1)で表される構造単位と1種以上の式(2-2)で表される構造単位とを有していてもよい。
[Structural unit (II)]
The structural unit (II) is represented by at least one of the following formulas (2-1) and (2-2).
The present polymer may have one or more structural units (II). When the polymer has two or more types of structural units (II), it may have two or more types of structural units represented by the formula (2-1). 2) which may have a structural unit represented by 2) and one or more structural units represented by formula (2-1) and one or more structural units represented by formula (2-2) You may have.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(2-1)中、aは、0~2の整数である。R2は独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。bは、0~8の整数である。bが2以上の場合、複数のR2は同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。 In the formula (2-1), a is an integer of 0-2. R 2 is independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms. b is an integer of 0 to 8. When b is 2 or more, a plurality of R 2 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members.
 なお、式(2-1)で表される構造単位は、具体的には、下記式(2-1-1)~(2-1-3)で表される構造単位のことを意味する。下記式(2-2)も同様の意味である。 The structural unit represented by the formula (2-1) specifically means a structural unit represented by the following formulas (2-1-1) to (2-1-3). The following formula (2-2) has the same meaning.
Figure JPOXMLDOC01-appb-C000010
[式(2-1-1)~(2-1-3)中、R2は独立して、式(2-1)のR2と同義である。式(2-1-1)中、b1は、0~4の整数である。式(2-1-2)中、b2は、0~2の整数であり、b3は、0~4の整数である。式(2-1-3)中、b2及びb4はそれぞれ独立して、0~2の整数であり、b5は、0~4の整数である。]
Figure JPOXMLDOC01-appb-C000010
Wherein (2-1-1) ~ (2-1-3), R 2 is independently the same meaning as R 2 in formula (2-1). In formula (2-1-1), b1 is an integer of 0 to 4. In formula (2-1-2), b2 is an integer from 0 to 2, and b3 is an integer from 0 to 4. In formula (2-1-3), b2 and b4 are each independently an integer of 0 to 2, and b5 is an integer of 0 to 4. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(2-2)中、R3及びR4はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基である。c及びdはそれぞれ独立して、0~8の整数である。cが2以上の場合、複数のR3は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。dが2以上の場合、複数のR4は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい。e及びfはそれぞれ独立して、0~2の整数である。Lは、単結合、-SO2-又は炭素数1~20の2価の有機基である。 In formula (2-2), R 3 and R 4 are each independently a halogen atom, a nitro group, a cyano group, or a monovalent organic group having 1 to 20 carbon atoms. c and d are each independently an integer of 0 to 8. When c is 2 or more, the plurality of R 3 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members. When d is 2 or more, the plurality of R 4 may be the same or different, and two or more of these groups may be bonded to each other to form a ring structure having 4 to 20 ring members. e and f are each independently an integer of 0-2. L is a single bond, —SO 2 — or a divalent organic group having 1 to 20 carbon atoms.
 R2、R3及びR4におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中では、塩素原子が好ましい。 Examples of the halogen atom in R 2 , R 3 and R 4 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. In these, a chlorine atom is preferable.
 R2、R3及びR4における炭素数1~20の1価の有機基としては、炭素数1~20の1価の、置換基を有してもよい炭化水素基等が挙げられる。炭素数1~20の炭化水素基としては、例えば前記R1における炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。置換基としては、ハロゲン原子、ニトロ基、シアノ基、メトキシ基、アセチル基、メチルチオ基、チオアセチル基等が挙げられる。これらの中では、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 Examples of the monovalent organic group having 1 to 20 carbon atoms in R 2 , R 3 and R 4 include monovalent hydrocarbon groups having 1 to 20 carbon atoms which may have a substituent. Examples of the hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 . Examples of the substituent include a halogen atom, a nitro group, a cyano group, a methoxy group, an acetyl group, a methylthio group, and a thioacetyl group. Among these, a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
 複数のR2、複数のR3又は複数のR4の基のうちの2つ以上が互いに結合して形成される環員数4~20の環構造としては、例えば、
 シクロブテン構造、シクロペンテン構造、シクロヘキセン構造、ノルボルネン構造、ビシクロ[2.2.2]オクテン構造、ジベンゾビシクロ[2.2.2]オクテン構造等の脂環構造;ベンゼン構造、ナフタレン構造、アントラセン構造等の芳香環構造などの炭化水素環構造、
 オキサシクロヘキセン構造、アザシクロヘキセン構造、チアシクロヘキセン構造等の脂肪族複素環構造;
 フラン構造、ピロール構造、ピリジン構造、チオフェン構造等の芳香族複素環構造が挙げられる。
Examples of the ring structure having 4 to 20 ring members formed by bonding two or more of a plurality of R 2 , a plurality of R 3 or a plurality of R 4 groups to each other include:
Cyclobutene structure, cyclopentene structure, cyclohexene structure, norbornene structure, bicyclo [2.2.2] octene structure, dibenzobicyclo [2.2.2] octene structure, etc .; benzene structure, naphthalene structure, anthracene structure, etc. Hydrocarbon ring structures such as aromatic ring structures,
Aliphatic heterocyclic structures such as oxacyclohexene structure, azacyclohexene structure, and thiacyclohexene structure;
Aromatic heterocyclic structures such as furan structure, pyrrole structure, pyridine structure, thiophene structure, etc.
 a、e及びfとしては、0及び1が好ましく、0がより好ましい。
 b、c及びdとしては、0~2が好ましく、0及び1がより好ましく、0が特に好ましい。
As a, e, and f, 0 and 1 are preferable and 0 is more preferable.
b, c and d are preferably 0 to 2, more preferably 0 and 1, and particularly preferably 0.
 Lで表される炭素数1~20の2価の有機基としては、炭素数1~20の2価の炭化水素基(α)、この2価の炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する基(β)、前記基(α)又は基(β)が有する水素原子の一部又は全部を1価のヘテロ原子又はヘテロ原子含有基で置換した基等が挙げられる。 Examples of the divalent organic group having 1 to 20 carbon atoms represented by L include a divalent hydrocarbon group (α) having 1 to 20 carbon atoms, and a divalent valence between carbon and carbon of the divalent hydrocarbon group. Group (β) having a hetero atom-containing group, a group obtained by substituting a part or all of the hydrogen atoms of the group (α) or group (β) with a monovalent hetero atom or hetero atom-containing group, and the like. .
 前記1価及び2価のヘテロ原子含有基を構成するヘテロ原子としては、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。 Examples of the hetero atom constituting the monovalent or divalent heteroatom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
 2価のヘテロ原子含有基としては、-O-、-CO-、-S-、-CS-、-NR’-、-SO2-、これらのうちの2つ以上を組み合わせた基等が挙げられる。なお、R’は、水素原子又は1価の炭化水素基である。これらの中で、-O-が好ましい。 Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, —SO 2 —, a group in which two or more of these are combined, and the like. It is done. R ′ is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— is preferable.
 1価のヘテロ原子又はヘテロ原子含有基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。 Examples of the monovalent hetero atom or hetero atom-containing group include a halogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, and a sulfanyl group.
 Lにおける炭素数1~20の2価の有機基としては、下記式(L-1)~(L-3)で表される基(それぞれ、以下「基(L-1)~基(L-3)」ともいう。)等が挙げられる。 Examples of the divalent organic group having 1 to 20 carbon atoms in L include groups represented by the following formulas (L-1) to (L-3) (hereinafter referred to as “group (L-1) to group (L— 3) ")) and the like.
Figure JPOXMLDOC01-appb-C000012
[式(L-1)~(L-3)中、*は、式(2-2)における芳香環に結合する部位を示す。]
Figure JPOXMLDOC01-appb-C000012
[In formulas (L-1) to (L-3), * represents a site bonded to the aromatic ring in formula (2-2). ]
 Lにおける2価の有機基の炭素数の下限は、2が好ましく、3がより好ましく、上限は、18が好ましく、16がより好ましく、14がさらに好ましく、13が特に好ましい。 The lower limit of the carbon number of the divalent organic group in L is preferably 2, more preferably 3, and the upper limit is preferably 18, more preferably 16, more preferably 14, and particularly preferably 13.
 Lとしては、単結合及び2価の有機基が好ましく、単結合及び基(L-1)~(L-3)がより好ましく、基(L-1)~基(L-3)が特に好ましい。 L is preferably a single bond or a divalent organic group, more preferably a single bond or a group (L-1) to (L-3), particularly preferably a group (L-1) to a group (L-3). .
 構造単位(II)としては、下記式(2-A)~(2-G)で表される構造単位(それぞれ、以下「構造単位(II-A)~(II-G)」ともいう。)等が挙げられる。 As the structural unit (II), structural units represented by the following formulas (2-A) to (2-G) (hereinafter also referred to as “structural units (II-A) to (II-G)”) Etc.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 これらの中で、構造単位(II-A)、(II-F)及び(II-G)が好ましい。 Of these, structural units (II-A), (II-F) and (II-G) are preferred.
 構造単位(II)を誘導する単量体としては、例えば、
 ヒドロキノン、レゾルシノール、カテコール、フェニルヒドロキノン等のジヒドロキシフェニル化合物;
 9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,4-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン等のビスフェノール化合物が挙げられる。
As a monomer for deriving the structural unit (II), for example,
Dihydroxyphenyl compounds such as hydroquinone, resorcinol, catechol, phenylhydroquinone;
9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) ) Propane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, bis (4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,4-bis [2- (4-Hydroxyphenyl) -2-propyl] benzene, 1,3-bis [2- (4-hydroxyphenyl) -2 Propyl] bisphenol compounds of benzene.
 本重合体における構造単位(II)の含有割合の下限としては、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましく、45モル%が特に好ましい。前記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。構造単位(II)の含有割合が前記範囲にあることで、高屈折率、低アッベ数及び低複屈折性の特性により優れる重合体とすることができる。 The lower limit of the content ratio of the structural unit (II) in the present polymer is preferably 10 mol%, more preferably 30 mol%, further preferably 40 mol%, particularly preferably 45 mol%. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable. When the content ratio of the structural unit (II) is in the above range, a polymer having a higher refractive index, a lower Abbe number, and a lower birefringence can be obtained.
[他の構造単位]
 前記他の構造単位としては、本発明の効果を損なわない限り特に限定されない。
 本重合体は、前記他の構造単位を1種又は2種以上有していてもよい。
[Other structural units]
The other structural unit is not particularly limited as long as the effects of the present invention are not impaired.
The present polymer may have one or more of the other structural units.
 前記他の構造単位を誘導する単量体としては、例えば、
 ジフェニルカーボネート、ジフェニルチオカーボネート、ジフェニルセレノカーボネート、ホスゲン、チオホスゲン、セレノホスゲン等のカーボネート結合、チオカーボネート結合又はセレノカーボネート結合を含む構造単位を誘導する化合物;
 ベンゼンジメタノール、シクロヘキサンジメタノール等のジヒドロキシ化合物;
 フタル酸ジクロリド、イソフタル酸ジクロリド、テレフタル酸ジクロリド等のジカルボン酸のジハロゲン化物が挙げられる。
Examples of the monomer for deriving the other structural unit include:
A compound that derives a structural unit containing a carbonate bond, thiocarbonate bond or selenocarbonate bond, such as diphenyl carbonate, diphenylthiocarbonate, diphenylselenocarbonate, phosgene, thiophosgene, selenophosgene;
Dihydroxy compounds such as benzenedimethanol and cyclohexanedimethanol;
Examples thereof include dihalides of dicarboxylic acids such as phthalic acid dichloride, isophthalic acid dichloride, and terephthalic acid dichloride.
 本重合体が前記他の構造単位を有する場合、本重合体における前記他の構造単位の含有割合の上限としては、50モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましく、10モル%が特に好ましい。前記含有割合の下限としては、例えば1モル%である。 When the present polymer has the other structural unit, the upper limit of the content of the other structural unit in the polymer is preferably 50 mol%, more preferably 30 mol%, still more preferably 20 mol%, 10 mol% is particularly preferred. As a minimum of the above-mentioned content rate, it is 1 mol%, for example.
[重合体の物性]
・重量平均分子量(Mw)
 本重合体のポリスチレン換算の重量平均分子量(Mw)の下限としては、2,000が好ましく、10,000がより好ましく、30,000がさらに好ましく、40,000が特に好ましい。前記Mwの上限としては、300,000が好ましく、200,000がより好ましく、160,000がさらに好ましく、130,000が特に好ましい。
 Mwが前記範囲にある本重合体は、機械特性および成形性により優れるため好ましい。
 本明細書における重合体のMwは、下記実施例に記載の条件で、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
[Physical properties of polymer]
-Weight average molecular weight (Mw)
As a minimum of the weight average molecular weight (Mw) of polystyrene conversion of this polymer, 2,000 is preferred, 10,000 is more preferred, 30,000 is still more preferred, and 40,000 is especially preferred. The upper limit of the Mw is preferably 300,000, more preferably 200,000, still more preferably 160,000, and particularly preferably 130,000.
The present polymer having Mw in the above range is preferable because it is excellent in mechanical properties and moldability.
Mw of the polymer in this specification is a value measured by gel permeation chromatography (GPC) under the conditions described in the following examples.
・重合体のガラス転移温度より20℃高い温度で測定した応力光学係数(CR)
 本重合体は、該重合体のガラス転移温度より20℃高い温度で測定した応力光学係数(以下「CR」ともいう。)の絶対値が、3.0×10-9Pa-1以下であることが好ましい。
 CRは、正又は負であるが、重合体の主鎖に平行な方向の屈折率と該主鎖に直交する方向の屈折率とを比較したとき、主鎖に平行な方向の屈折率の方が大きい場合、CRは正であり、主鎖に直交する方向の屈折率の方が大きい場合、CRは負である。
 CRは、具体的には、実施例に記載の方法で測定される。
-Stress optical coefficient (CR) measured at a temperature 20 ° C higher than the glass transition temperature of the polymer
In this polymer, the absolute value of the stress optical coefficient (hereinafter also referred to as “CR”) measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer is 3.0 × 10 −9 Pa −1 or less. It is preferable.
CR is positive or negative, but when the refractive index in the direction parallel to the main chain of the polymer is compared with the refractive index in the direction perpendicular to the main chain, the refractive index in the direction parallel to the main chain Is large, CR is positive, and when the refractive index in the direction orthogonal to the main chain is larger, CR is negative.
Specifically, CR is measured by the method described in Examples.
 前記CRの下限としては、-3.0×10-9Pa-1が好ましく、-2.9×10-9Pa-1がより好ましく、-2.8×10-9Pa-1がさらに好ましい。前記CRの上限としては、3.0×10-9Pa-1が好ましく、2.9×10-9Pa-1がより好ましく、2.8×10-9Pa-1がさらに好ましい。CRが前記範囲にある重合体は、低複屈折性により優れる重合体となる。 The lower limit of the CR is preferably −3.0 × 10 −9 Pa −1, more preferably −2.9 × 10 −9 Pa −1 , and even more preferably −2.8 × 10 −9 Pa −1. . The upper limit of the CR is preferably 3.0 × 10 −9 Pa −1, more preferably 2.9 × 10 −9 Pa −1 , and even more preferably 2.8 × 10 −9 Pa −1 . A polymer having CR in the above range is a polymer excellent in low birefringence.
・ガラス転移温度(Tg)
 本重合体のTgの下限としては、100℃が好ましく、120℃がより好ましく、130℃がさらに好ましく、140℃が特に好ましい。前記Tgの上限としては、例えば300℃である。本重合体のTgが前記範囲にあることで、溶融成形をより容易に行うことができ、また、耐熱性に優れる成形体を得ることができる。
 Tgは、DSC測定装置を用いて得られたサーモグラムから算出した値であり、具体的には、実施例に記載の方法で測定される。
・ Glass transition temperature (Tg)
As a minimum of Tg of this polymer, 100 ° C is preferred, 120 ° C is more preferred, 130 ° C is still more preferred, and 140 ° C is especially preferred. The upper limit of Tg is, for example, 300 ° C. When Tg of this polymer exists in the said range, melt molding can be performed more easily and the molded object which is excellent in heat resistance can be obtained.
Tg is a value calculated from a thermogram obtained using a DSC measuring apparatus, and specifically, measured by the method described in the examples.
・屈折率(nD)
 本重合体の屈折率(nD)の下限としては、1.60が好ましく、1.63がより好ましく、1.64がさらに好ましく、1.65が特に好ましい。前記屈折率の上限としては、例えば1.80である。
 本明細書における屈折率は、特に断らない限りD線の屈折率のことをいう。
-Refractive index (nD)
The lower limit of the refractive index (nD) of the present polymer is preferably 1.60, more preferably 1.63, still more preferably 1.64, and particularly preferably 1.65. The upper limit of the refractive index is, for example, 1.80.
The refractive index in this specification refers to the refractive index of the D line unless otherwise specified.
・アッベ数(νD)
 本重合体のアッベ数(νD)の上限としては、25.0が好ましく、24.0がさらに好ましく、23.0が特に好ましい。前記アッベ数の下限としては、例えば15.0であり、16.0が好ましい。
・ Abbe number (νD)
The upper limit of the Abbe number (νD) of the polymer is preferably 25.0, more preferably 24.0, and particularly preferably 23.0. The lower limit of the Abbe number is 15.0, for example, and preferably 16.0.
 本重合体の屈折率(nD)が1.60以上、かつアッベ数(νD)が25.0以下であることで、本重合体を用いて得られる、レンズ、フィルム等の成形体の薄膜化及び高付加価値化を実現することが容易となる。
 nD及びνDは、具体的には、実施例に記載の方法で測定される。本明細書におけるアッベ数は、下記式(A)で算出されるアッベ数(νD)のことをいう。
Reduction in the thickness of molded articles such as lenses and films obtained by using the present polymer when the refractive index (nD) of the present polymer is 1.60 or more and the Abbe number (νD) is 25.0 or less. And it becomes easy to realize high added value.
Specifically, nD and νD are measured by the method described in the examples. The Abbe number in this specification means the Abbe number (νD) calculated by the following formula (A).
<重合体の合成方法>
 本重合体は、公知の方法で合成することができ特に制限されないが、下記方法1又は2で合成することが好ましい。
<Polymer synthesis method>
This polymer can be synthesized by a known method and is not particularly limited, but is preferably synthesized by the following method 1 or 2.
・方法1
 前記方法1は、例えば、二ハロゲン化ホスフィンスルフィド等の構造単位(I)を誘導する単量体、ビスフェノール化合物等の構造単位(II)を誘導する単量体、及び、必要により前記他の構造単位を誘導する単量体を、アルカリ金属化合物等の存在下、有機溶媒中で縮合重合等の反応1を行うことにより重合体を合成する方法である。該反応1の際には、例えば、2-フェニルフェノール等のモノフェノール化合物などの末端封止剤を存在させて反応を行ってもよい。
 前記単量体、アルカリ金属化合物、有機溶媒及び末端封止剤等はそれぞれ、1種を用いてもよいし、2種以上を用いてもよい。
 なお、前記単量体は、それぞれの単量体から形成される構造単位の含有割合が前記範囲となるような量で用いることが好ましい。
・ Method 1
The method 1 includes, for example, a monomer that derives a structural unit (I) such as a dihalogenated phosphine sulfide, a monomer that induces a structural unit (II) such as a bisphenol compound, and, if necessary, the other structure. This is a method of synthesizing a polymer by conducting a reaction 1 such as condensation polymerization in an organic solvent in the presence of an alkali metal compound or the like for a monomer that derives a unit. In the case of the reaction 1, for example, the reaction may be performed in the presence of an end-capping agent such as a monophenol compound such as 2-phenylphenol.
1 type may be used for the said monomer, an alkali metal compound, an organic solvent, and terminal blocker, respectively, and 2 or more types may be used for them.
In addition, it is preferable to use the said monomer in such an amount that the content rate of the structural unit formed from each monomer becomes the said range.
(アルカリ金属化合物)
 アルカリ金属化合物は、本重合体の合成の過程で、芳香族ジオール化合物等と反応してアルカリ金属塩を形成する。このようなアルカリ金属化合物としては、例えば、
 リチウム、ナトリウム、カリウム等のアルカリ金属;
 水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化アルカリ金属;
 水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属;
 炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;
 炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩が挙げられる。
 これらの中では、アルカリ金属炭酸塩が好ましく、炭酸カリウムがより好ましい。
(Alkali metal compound)
The alkali metal compound reacts with an aromatic diol compound or the like in the course of synthesis of the present polymer to form an alkali metal salt. As such an alkali metal compound, for example,
Alkali metals such as lithium, sodium and potassium;
Alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride;
Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide;
Alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate;
Examples thereof include alkali metal hydrogen carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
In these, an alkali metal carbonate is preferable and potassium carbonate is more preferable.
 アルカリ金属化合物の使用量として、本重合体の合成に用いる全化合物中のヒドロキシ基のモル数に対するアルカリ金属化合物中のアルカリ金属原子のモル数の比の下限としては、1が好ましく、1.1がより好ましく、1.2がさらに好ましい。前記比の上限としては、3が好ましく、2がより好ましく、1.5がさらに好ましい。 As the amount of the alkali metal compound used, the lower limit of the ratio of the number of moles of alkali metal atoms in the alkali metal compound to the number of moles of hydroxy groups in all compounds used in the synthesis of the present polymer is preferably 1. Is more preferable, and 1.2 is more preferable. The upper limit of the ratio is preferably 3, more preferably 2, and even more preferably 1.5.
(有機溶媒)
 前記方法1に用いる有機溶媒としては、例えば、
 テトラヒドロフラン(THF)、ジオキサン、シクロペンチルメチルエーテル、アニソール、フェネトール、ジフェニルエーテル、ジアルコキシベンゼン、トリアルコキシベンゼン等のエーテル系溶媒;
 N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等の含窒素系溶媒;
 γ-ブチロラクトン等のラクトン系溶媒などのエステル系溶媒;
 スルホラン、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン等の含硫黄系溶媒;
 ベンゾフェノン等のケトン系溶媒;
 塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン系溶媒;
 ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。
 これらの有機溶媒の中では、DMAc、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンが好ましく、N-メチル-2-ピロリドンがより好ましい。
(Organic solvent)
As an organic solvent used in the method 1, for example,
Ether solvents such as tetrahydrofuran (THF), dioxane, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, dialkoxybenzene, trialkoxybenzene;
Nitrogen-containing solvents such as N, N-dimethylacetamide (DMAc), N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone;
ester solvents such as lactone solvents such as γ-butyrolactone;
Sulfur-containing solvents such as sulfolane, dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, diphenyl sulfone;
Ketone solvents such as benzophenone;
Halogen solvents such as methylene chloride, chloroform, chlorobenzene;
Aromatic hydrocarbon solvents such as benzene, toluene, xylene and the like can be mentioned.
Among these organic solvents, DMAc, N, N-dimethylformamide and N-methyl-2-pyrrolidone are preferable, and N-methyl-2-pyrrolidone is more preferable.
(方法1の条件)
 前記方法1における反応温度の下限としては、50℃が好ましく、100℃がより好ましい。前記反応温度の上限としては、300℃が好ましく、200℃がより好ましい。
 前記方法1における反応時間の下限としては、1時間が好ましく、2時間がより好ましく、3時間がさらに好ましい。前記反応時間の上限としては、100時間が好ましく、50時間がより好ましく、24時間がさらに好ましい。
(Conditions for Method 1)
As a minimum of reaction temperature in the above-mentioned method 1, 50 ° C is preferred and 100 ° C is more preferred. The upper limit of the reaction temperature is preferably 300 ° C, more preferably 200 ° C.
The lower limit of the reaction time in Method 1 is preferably 1 hour, more preferably 2 hours, and even more preferably 3 hours. The upper limit of the reaction time is preferably 100 hours, more preferably 50 hours, and even more preferably 24 hours.
・方法2
 前記方法2は、例えば、二ハロゲン化ホスフィンオキシド等の官能基変換反応により構造単位(I)へ変換可能な単量体と、ビスフェノール化合物等の構造単位(II)を誘導する単量体と、必要により前記他の構造単位を誘導する単量体とを、アルカリ金属化合物等の存在下、有機溶媒中で重合反応させた重合体を、硫化剤等の存在下、有機溶媒中で官能基変換等を行うことにより本重合体を合成する方法である。
 なお、前記方法2の際には、例えばクロロシラン類等の還元剤を用いて反応を行ってもよい。
・ Method 2
Method 2 includes, for example, a monomer that can be converted into the structural unit (I) by a functional group conversion reaction such as dihalogenated phosphine oxide, and a monomer that derives the structural unit (II) such as a bisphenol compound, If necessary, a polymer obtained by polymerizing a monomer derived from the other structural unit in an organic solvent in the presence of an alkali metal compound or the like is converted into a functional group in the organic solvent in the presence of a sulfurizing agent or the like. Etc. to synthesize the present polymer.
In the case of the method 2, the reaction may be carried out using a reducing agent such as chlorosilanes.
 前記方法2における重合反応は、前記方法1における反応1と同様にして行えばよい。この反応に用いる、前記単量体、アルカリ金属化合物、有機溶媒及び末端封止剤等はそれぞれ、1種を用いてもよいし、2種以上を用いてもよい。
 なお、前記単量体は、それぞれの単量体から形成される構造単位の含有割合が前記範囲となるような量で用いることが好ましい。
The polymerization reaction in Method 2 may be performed in the same manner as Reaction 1 in Method 1. Each of the monomer, alkali metal compound, organic solvent, and end-capping agent used in this reaction may be used alone or in combination of two or more.
In addition, it is preferable to use the said monomer in such an amount that the content rate of the structural unit formed from each monomer becomes the said range.
(硫化剤)
 前記硫化剤は、本重合体の合成の過程で、ホスフィン部位やホスフィンオキシド部位等と反応してホスフィンスルフィド部位を形成することができる材料であることが好ましい。
 このような硫化剤としては、例えば、
 単体硫黄;
 硫化リチウム、硫化ナトリウム、硫化カリウム等の硫化アルカリ金属;
 五硫化ニリン等の硫化リン化合物;
 ローソン試薬、デービー試薬、ジャパニーズ試薬、ベレオー試薬などの1,3,2,4-ジチアジホスフェタン-2,4-ジスルフィド化合物が挙げられる。
 これらの中では、1,3,2,4-ジチアジホスフェタン-2,4-ジスルフィド化合物が好ましく、ローソン試薬がより好ましい。
(Sulfurizing agent)
The sulfurizing agent is preferably a material capable of forming a phosphine sulfide moiety by reacting with a phosphine moiety, a phosphine oxide moiety, or the like in the course of synthesis of the present polymer.
As such a sulfurizing agent, for example,
Simple sulfur;
Alkali sulfide metals such as lithium sulfide, sodium sulfide and potassium sulfide;
Phosphorous sulfide compounds such as niolin pentasulfide;
Examples include 1,3,2,4-dithiadiphosphetan-2,4-disulfide compounds such as Lawson's reagent, Davy reagent, Japanese reagent, and Belleo reagent.
Of these, 1,3,2,4-dithiadiphosphetane-2,4-disulfide compounds are preferred, and Lawesson's reagent is more preferred.
(有機溶媒)
 前記官能基変換の際に用いる有機溶媒としては、例えば、
 塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン系溶媒;
 THF、ジオキサン、シクロペンチルメチルエーテル、アニソール、フェネトール、ジフェニルエーテル、ジアルコキシベンゼン、トリアルコキシベンゼン等のエーテル系溶媒;
 ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。
 これらの有機溶媒の中では、塩化メチレン、クロロホルム、ジオキサン、シクロペンチルメチルエーテル、トルエンが好ましく、トルエンがより好ましい。
 該有機溶媒は、1種又は2種以上を用いることができる。
(Organic solvent)
As the organic solvent used in the functional group conversion, for example,
Halogen solvents such as methylene chloride, chloroform, chlorobenzene;
Ether solvents such as THF, dioxane, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, dialkoxybenzene, trialkoxybenzene;
Aromatic hydrocarbon solvents such as benzene, toluene, xylene and the like can be mentioned.
Among these organic solvents, methylene chloride, chloroform, dioxane, cyclopentyl methyl ether, and toluene are preferable, and toluene is more preferable.
1 type (s) or 2 or more types can be used for this organic solvent.
(還元剤)
 前記還元剤を用いることで、ホスフィンオキシド部位等を還元してホスフィン部位を与え、続く硫化反応を容易にすることができる。
 このような還元剤としては、ジクロロシラン、トリクロロシラン等のクロロシラン類などが挙げられる。これらのクロロシラン類の中では、トリクロロシランが好ましい。
 前記還元剤は、1種又は2種以上を用いることができる。
(Reducing agent)
By using the reducing agent, a phosphine oxide site or the like can be reduced to give a phosphine site, and the subsequent sulfurization reaction can be facilitated.
Examples of such a reducing agent include chlorosilanes such as dichlorosilane and trichlorosilane. Of these chlorosilanes, trichlorosilane is preferred.
One or more reducing agents can be used.
(条件)
 前記官能基変換の際の反応温度の下限としては、0℃が好ましく、20℃がより好ましい。前記反応温度の上限としては、200℃が好ましく、180℃がより好ましい。
 前記官能基変換の際の反応時間の下限としては、1時間が好ましく、2時間がより好ましく、3時間がさらに好ましい。前記反応時間の上限としては、100時間が好ましく、50時間がより好ましく、30時間がさらに好ましい。
(conditions)
As a minimum of reaction temperature in the case of the above-mentioned functional group conversion, 0 ° C is preferred and 20 ° C is more preferred. The upper limit of the reaction temperature is preferably 200 ° C., more preferably 180 ° C.
As a minimum of reaction time in the case of the above-mentioned functional group conversion, 1 hour is preferred, 2 hours are more preferred, and 3 hours are still more preferred. The upper limit of the reaction time is preferably 100 hours, more preferably 50 hours, and even more preferably 30 hours.
≪成形体≫
 本重合体は、溶融成形法、溶剤キャスト法等の成形方法により、成形して成形体とすることができる。本重合体から光学部品等の成形体を形成する場合、低複屈折性、機械強度及び寸法精度等の特性に優れる成形体を容易に得ることができる等の点から、成形方法としては溶融成形法が好ましい。
 溶融成形法としては、プレス成形法、押出成形法、射出成形法等が挙げられる。これらの中では、成形性及び生産性等の点から射出成形法が好ましい。
≪Molded body≫
The polymer can be molded into a molded body by a molding method such as a melt molding method or a solvent casting method. When forming a molded body such as an optical component from this polymer, the molding method is melt molding from the viewpoint that a molded body excellent in characteristics such as low birefringence, mechanical strength and dimensional accuracy can be easily obtained. The method is preferred.
Examples of the melt molding method include a press molding method, an extrusion molding method, and an injection molding method. Among these, the injection molding method is preferable from the viewpoints of moldability and productivity.
 成形工程における成形条件は、使用目的又は成形方法等により適宜選択すればよいが、射出成形法の際の温度の下限としては、150℃が好ましく、180℃がより好ましく、200℃がさらに好ましい。前記温度の上限としては、400℃が好ましく、350℃がより好ましく、330℃がさらに好ましい。射出成形時の温度を前記範囲とすることで、重合体の熱分解及び黄変を効果的に抑制することができる。 The molding conditions in the molding process may be appropriately selected depending on the purpose of use or molding method, but the lower limit of the temperature in the injection molding method is preferably 150 ° C, more preferably 180 ° C, and even more preferably 200 ° C. As an upper limit of the said temperature, 400 degreeC is preferable, 350 degreeC is more preferable, and 330 degreeC is further more preferable. By setting the temperature at the time of injection molding within the above range, thermal decomposition and yellowing of the polymer can be effectively suppressed.
 前記成形体の用途としては、高屈折率、低アッベ数及び低複屈折性に優れる特性を利用した光学部品が好ましい。光学部品としては、例えば、光ディスク、光学レンズ、プリズム、光拡散板、光カード、光ファイバー、光学ミラー、液晶表示素子基板、導光板、偏光フィルム、位相差フィルムが挙げられる。 As the usage of the molded article, an optical component utilizing characteristics excellent in high refractive index, low Abbe number and low birefringence is preferable. Examples of the optical component include an optical disc, an optical lens, a prism, a light diffusion plate, an optical card, an optical fiber, an optical mirror, a liquid crystal display element substrate, a light guide plate, a polarizing film, and a retardation film.
≪光学レンズ≫
 本発明の一実施形態に係る光学レンズは、本重合体の成形体を含み、該成形体からなることが好ましい。
 前記光学レンズは、例えば、本重合体を射出成形機又は射出圧縮成形機等の成形機によってレンズ形状に射出成形することで得ることができる。光学レンズを得る際には異物の混入を極力避けるため、成形環境が低ダスト環境であることが好ましい。
≪Optical lens≫
The optical lens according to an embodiment of the present invention preferably includes a molded body of the polymer and is formed of the molded body.
The optical lens can be obtained, for example, by injection-molding the polymer into a lens shape by a molding machine such as an injection molding machine or an injection compression molding machine. When obtaining an optical lens, it is preferable that the molding environment is a low dust environment in order to avoid contamination of foreign matters as much as possible.
 前記光学レンズは、ピックアップレンズ、f-θレンズ、メガネレンズ等の各種レンズとして使用することができる。また、前記光学レンズは、高屈折率及び低アッベ数であることから、色収差補正用レンズとして特に好適に使用することができる。具体的には、一眼レフカメラ、デジタルスチルカメラ、ビデオカメラ、カメラ付携帯電話、レンズ付フィルム、望遠鏡、双眼鏡、顕微鏡、プロジェクター等のレンズとして好適に使用することができる。 The optical lens can be used as various lenses such as a pickup lens, an f-θ lens, and a spectacle lens. Further, since the optical lens has a high refractive index and a low Abbe number, it can be particularly suitably used as a chromatic aberration correction lens. Specifically, it can be suitably used as a lens for a single lens reflex camera, a digital still camera, a video camera, a camera-equipped mobile phone, a lens-equipped film, a telescope, a binocular, a microscope, a projector, or the like.
 前記光学レンズは、凸レンズ及び凹レンズのいずれであってもよい。凹レンズである場合には、他の高アッベ数の凸レンズと組み合わせて色収差の少ない光学レンズ系として好適に使用することができる。 The optical lens may be a convex lens or a concave lens. In the case of a concave lens, it can be suitably used as an optical lens system with little chromatic aberration in combination with other high Abbe number convex lenses.
≪フィルム≫
 本発明の一実施形態に係るフィルムは、本重合体の成形体を含み、該成形体からなることが好ましい。
 前記フィルムは、例えば、本重合体を溶融成形又は溶剤キャスト成形することによってフィルム形状とすることで得ることができる。
≪Film≫
The film according to an embodiment of the present invention preferably includes a molded body of the present polymer and is formed of the molded body.
The film can be obtained, for example, by forming the polymer into a film shape by melt molding or solvent casting.
 前記フィルムは特に限定されないが、光学フィルムとして好適に使用することができ、具体的には、液晶表示素子基板、導光板、偏光フィルム、位相差フィルム等として好適に使用することができる。 The film is not particularly limited, but can be suitably used as an optical film. Specifically, it can be suitably used as a liquid crystal display element substrate, a light guide plate, a polarizing film, a retardation film, and the like.
 前記フィルムの厚みは特に制限されず、所望の用途に応じて適宜選択すればよいが、例えば10μm~2mm、好ましくは30μm~1mmである。 The thickness of the film is not particularly limited and may be appropriately selected depending on the desired use. For example, the thickness is 10 μm to 2 mm, preferably 30 μm to 1 mm.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。各物性値は、以下の方法により測定した。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples. Each physical property value was measured by the following method.
[重量平均分子量(Mw)]
 重合体のMwは、GPC装置(東ソー(株)製の「HLC-8320型」)を使用し、下記条件で測定した。
 カラム:東ソー(株)製の「TSKgel α-M」と、東ソー(株)製の「TSKgel guardcоlumn α」とを連結したもの
 展開溶媒:N-メチル-2-ピロリドンにLiBrを10mMの濃度になるよう添加したもの
 カラム温度:40℃
 流速:1.0mL/分
 試料濃度:0.33質量%
 試料注入量:50μL
 検出器:紫外可視吸光光度計
 標準物質:単分散ポリスチレン
[Weight average molecular weight (Mw)]
The Mw of the polymer was measured using a GPC apparatus (“HLC-8320 type” manufactured by Tosoh Corporation) under the following conditions.
Column: Tosoh Co., Ltd. “TSKgel α-M” and Tosoh Co., Ltd. “TSKgel guardcylum α” linked together Developing solvent: N-methyl-2-pyrrolidone with LiBr concentration of 10 mM Column temperature: 40 ° C
Flow rate: 1.0 mL / min Sample concentration: 0.33 mass%
Sample injection volume: 50 μL
Detector: UV-Vis spectrophotometer Standard material: Monodisperse polystyrene
1H-NMR分析]
 重合体における各構造単位の含有割合を求めるために、1H-NMR分析を行った。1H-NMR分析は、核磁気共鳴装置(日本電子(株)製の「ECX400」)を使用し、測定溶媒として重クロロホルムを用いて行った。
[ 1 H-NMR analysis]
In order to determine the content ratio of each structural unit in the polymer, 1 H-NMR analysis was performed. 1 H-NMR analysis was performed using a nuclear magnetic resonance apparatus (“ECX400” manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent.
[比較例1]
 窒素導入管、Dean-Stark管及び冷却管を取り付け、攪拌子を入れた100mLの3つ口フラスコに、2,2-ビス(4-ヒドロキシフェニル)プロパン(9.13g、40.0mmol)、ビス(4-フルオロフェニル)フェニルホスフィンオキシド(13.1g、41.7mmol)及び炭酸カリウム(7.95g、57.5mmol)を量り入れ、そこに、N-メチル-2-ピロリドン(50ml)を加え、窒素雰囲気下、180℃で14時間反応させた。
 反応終了後、N-メチル-2-ピロリドン(50ml)を加えて希釈し、濾過により塩を除去した。ろ液にイオン交換樹脂(三菱化学(株)製の「ダイヤイオンRCP160M」及び「ダイヤイオンWA21J」)を適量投入し、ミックスローターで4.5時間攪拌した。イオン交換樹脂をろ過にて取り除いた後、残存する溶液をイオン交換水(2.0kg)に投入することで固体を析出させた。析出した固体を濾別し、イオン交換水(600ml)で2回、アセトン(600ml)で3回、イオン交換水(1200ml)で1回洗浄し、再度濾別して回収した。続いて、真空乾燥機を用い、減圧下120℃で24時間乾燥することで、下記式(A1)に示す重合体1を得た(収量18.5g、収率89.4%)。
[Comparative Example 1]
A nitrogen inlet tube, a Dean-Stark tube and a condenser tube were attached, and a 2-mL (4-hydroxyphenyl) propane (9.13 g, 40.0 mmol), (4-Fluorophenyl) phenylphosphine oxide (13.1 g, 41.7 mmol) and potassium carbonate (7.95 g, 57.5 mmol) were weighed into which N-methyl-2-pyrrolidone (50 ml) was added, The reaction was performed at 180 ° C. for 14 hours under a nitrogen atmosphere.
After completion of the reaction, N-methyl-2-pyrrolidone (50 ml) was added for dilution, and the salt was removed by filtration. An appropriate amount of ion exchange resins (“Diaion RCP160M” and “Diaion WA21J” manufactured by Mitsubishi Chemical Corporation) were added to the filtrate, and the mixture was stirred for 4.5 hours with a mix rotor. After removing the ion exchange resin by filtration, the remaining solution was poured into ion exchange water (2.0 kg) to precipitate a solid. The precipitated solid was separated by filtration, washed twice with ion exchange water (600 ml), three times with acetone (600 ml) and once with ion exchange water (1200 ml), and again collected by filtration. Then, the polymer 1 shown to a following formula (A1) was obtained by drying at 120 degreeC under pressure reduction using a vacuum dryer (yield 18.5g, yield 89.4%).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[比較例2]
 1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(2.90g、10.0mmol)、ビス(4-フルオロフェニル)フェニルホスフィンオキシド(3.30g、10.5mmol)、炭酸カリウム(2.01g、14.5mmol)及びN-メチル-2-ピロリドン(14ml)を用いた以外は、比較例1と同様の操作を行い、下記式(A2)に示す重合体2の粉体を得た(収量5.15g、収率88.8%)。
[Comparative Example 2]
1,1-bis (4-hydroxyphenyl) -1-phenylethane (2.90 g, 10.0 mmol), bis (4-fluorophenyl) phenylphosphine oxide (3.30 g, 10.5 mmol), potassium carbonate (2 0.01 g, 14.5 mmol) and N-methyl-2-pyrrolidone (14 ml) were used in the same manner as in Comparative Example 1 to obtain a powder of polymer 2 represented by the following formula (A2). (Yield 5.15 g, Yield 88.8%).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[実施例1]
 攪拌子と還流管を備えた丸底フラスコに、比較例1の重合体(10.0g、20.0mmol)及びローソン試薬(6.85g、16.9mmol)を量り入れ、そこに、トルエン(260ml)を加え、アルゴン雰囲気下、還流条件下で24時間反応させた。反応終了後、ロータリーエバポレーターで溶媒を除去した。そこに、クロロホルム(150ml)を加えてポリマーを再溶解させ、濾過により沈殿物を除去した。残存する溶液をアセトン(1500ml)に投入し、析出した固体を濾別した後、少量のアセトンで洗浄し、再度濾別して回収した(アセトンへの沈殿操作)。得られた固体をテトラヒドロフラン(150ml)に溶解させることで得られた溶液を用い、前記と同様のアセトンへの沈殿操作を行った。2回目のアセトンへの沈殿操作後に得られた固体を、真空乾燥機を用いて減圧下120℃で14時間乾燥することで、下記式(A3)に示す重合体3を得た(収量9.5g、収率92%)。得られた重合体の1H-NMRスペクトルを図1に示す。
[Example 1]
In a round bottom flask equipped with a stir bar and a reflux tube, the polymer of Comparative Example 1 (10.0 g, 20.0 mmol) and Lawson's reagent (6.85 g, 16.9 mmol) were weighed, and toluene (260 ml) was added thereto. ) Was added and allowed to react under reflux conditions for 24 hours under an argon atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator. Thereto, chloroform (150 ml) was added to redissolve the polymer, and the precipitate was removed by filtration. The remaining solution was poured into acetone (1500 ml), and the precipitated solid was filtered off, washed with a small amount of acetone, filtered again and collected (precipitation operation in acetone). Using the solution obtained by dissolving the obtained solid in tetrahydrofuran (150 ml), the same precipitation operation as acetone was performed. The solid obtained after the second precipitation operation in acetone was dried at 120 ° C. under reduced pressure for 14 hours using a vacuum dryer to obtain a polymer 3 represented by the following formula (A3) (yield: 9. 5 g, yield 92%). The 1 H-NMR spectrum of the obtained polymer is shown in FIG.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[実施例2]
 比較例2の重合体(2.61g、4.6mmol)、ローソン試薬(1.59g、3.9mmol)及びトルエン(100ml)を用いた以外は、実施例1と同様の操作を行い、下記式(A4)に示す重合体4の粉体を得た(収量2.22g、収率82.7%)。
[Example 2]
The same operation as in Example 1 was carried out except that the polymer of Comparative Example 2 (2.61 g, 4.6 mmol), Lawesson's reagent (1.59 g, 3.9 mmol) and toluene (100 ml) were used. A powder of polymer 4 shown in (A4) was obtained (yield 2.22 g, yield 82.7%).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<評価>
 実施例1~2及び比較例1~2で得られた重合体1~4について、下記方法に従いガラス転移温度(Tg)、屈折率(nD)、アッベ数(νD)及び該ガラス転移温度より20℃高い温度で測定した応力光学係数(CR)を評価した。評価結果を表1に示す。
<Evaluation>
For the polymers 1 to 4 obtained in Examples 1 and 2 and Comparative Examples 1 and 2, the glass transition temperature (Tg), the refractive index (nD), the Abbe number (νD) and the glass transition temperature of 20 were obtained according to the following method. The stress optical coefficient (CR) measured at a high temperature was evaluated. The evaluation results are shown in Table 1.
[ガラス転移温度(Tg)[℃]]
 重合体のTgは、DSC装置(Rigaku社製の「Thermo Plus DSC8230」)を用いて得られたサーモグラムから求めた。DSC測定は、窒素下で、昇温速度を20℃/分として行った。具体的には、サーモグラムにおけるDSCの昇温曲線において、ベースラインと変曲点における接線との交点に対応する温度をTgとした。変曲点は、サーモグラムのDDSC(DSCの微分値)曲線におけるピークに対応する温度とした。また、DSCのベースラインの確認には、適宜DDSC曲線を参照した。
 Tgは、100℃以上300℃以下である場合は「良好」と評価でき、100℃未満または300℃を超える場合は「不良」と評価できる。
[Glass transition temperature (Tg) [° C]]
The Tg of the polymer was determined from a thermogram obtained using a DSC apparatus (“Thermo Plus DSC8230” manufactured by Rigaku). DSC measurement was performed under nitrogen at a rate of temperature increase of 20 ° C./min. Specifically, in the DSC temperature rising curve in the thermogram, the temperature corresponding to the intersection of the baseline and the tangent at the inflection point was defined as Tg. The inflection point was a temperature corresponding to a peak in a thermogram DDSC (DSC differential value) curve. In addition, the DDSC curve was referred to as appropriate for confirming the DSC baseline.
Tg can be evaluated as “good” when it is 100 ° C. or more and 300 ° C. or less, and can be evaluated as “bad” when it is less than 100 ° C. or exceeds 300 ° C.
[屈折率(nD)[-]及びアッベ数(νD)[-]]
 重合体を適量の塩化メチレンに溶解させた溶液をガラス板上にキャスト成膜し、常温常圧下にて一晩乾燥させた。次いで真空乾燥機にて残存塩化メチレンを除去し、重合体のフィルムを得た。このフィルムの屈折率を、プリズムカプラ(Metricon社製の「モデル2010」)にて測定した。屈折率は、408nm、633nm、828nmの3波長にて測定し、Cauchyの式を用いてD線(589nm)の屈折率(nD)を求めた。F線(486nm)の屈折率(nF)及びC線(656nm)の屈折率(nC)についても同様にして求め、下記式(A)によってアッベ数(νD)を算出した。
  νD=(nD-1)/(nF-nC)   (A)
 屈折率(nD)は、1.65以上である場合は「良好」と評価できる。
 アッベ数(νD)は、25.0以下である場合は「良好」と評価でき、25.0を超える場合は「不良」と評価できる。
[Refractive index (nD) [−] and Abbe number (νD) [−]]
A solution obtained by dissolving the polymer in an appropriate amount of methylene chloride was cast on a glass plate, and dried overnight at room temperature and normal pressure. Next, the residual methylene chloride was removed with a vacuum dryer to obtain a polymer film. The refractive index of this film was measured with a prism coupler (“Model 2010” manufactured by Metricon). The refractive index was measured at three wavelengths of 408 nm, 633 nm, and 828 nm, and the refractive index (nD) of the D line (589 nm) was determined using the Cauchy equation. The refractive index (nF) of the F line (486 nm) and the refractive index (nC) of the C line (656 nm) were determined in the same manner, and the Abbe number (νD) was calculated by the following formula (A).
νD = (nD−1) / (nF−nC) (A)
When the refractive index (nD) is 1.65 or more, it can be evaluated as “good”.
When the Abbe number (νD) is 25.0 or less, it can be evaluated as “good”, and when it exceeds 25.0, it can be evaluated as “bad”.
[応力光学係数(CR)[10-9Pa-1]]
 重合体のガラス転移温度より20℃高い温度で測定した応力光学係数(CR)は、公知の方法(NIHON REOROJI GAKKAISHI、 Vol.24, No.3,129-132 ,1996)により求めた。前記屈折率評価用に成膜したフィルムを短冊状に切り出し、数種類の荷重をかけ、Tg+20℃の温度条件下にて加熱延伸し、荷重をかけたままゆっくりと冷却した。フィルムに加えた応力と、生じた複屈折(測定波長598nm)との関係を求め、その比例係数をCRとした。複屈折の測定には大塚電子(株)製の「RETS100」を用いた。また、CRの正負は、前記得られた延伸フィルムと、ポリカーボネートの延伸フィルム(CRが正)とを延伸方向同士が平行又は垂直になるように重ねてリタデーション値を測定することにより評価した。測定したリタデーション値が平行に重ねた方が垂直に重ねた場合より大きいとき、CRは正であり、垂直に重ねた方が平行に重ねた場合より大きいとき、CRは負である。
 CRは、絶対値(|CR|)が3.0×10-9Pa-1以下である場合は「良好」と評価でき、3.0×10-9Pa-1を超える場合は「不良」と評価できる。
[Stress optical coefficient (CR) [10 -9 Pa -1 ]]
The stress optical coefficient (CR) measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer was determined by a known method (NIHON REOROJI GAKKAISHI, Vol. 24, No. 3, 129-132, 1996). The film formed for evaluation of the refractive index was cut into strips, applied with several kinds of loads, heated and stretched under a temperature condition of Tg + 20 ° C., and slowly cooled with the loads applied. The relationship between the stress applied to the film and the resulting birefringence (measurement wavelength 598 nm) was determined, and the proportionality coefficient was taken as CR. For measurement of birefringence, “RETS100” manufactured by Otsuka Electronics Co., Ltd. was used. In addition, the positive / negative of CR was evaluated by measuring the retardation value by overlapping the obtained stretched film and the stretched polycarbonate film (CR is positive) so that the stretch directions are parallel or perpendicular to each other. CR is positive when the measured retardation value is greater when parallelly stacked than when vertically stacked, and CR is negative when vertically stacked is greater than when stacked in parallel.
CR can be evaluated as “good” when the absolute value (| CR |) is 3.0 × 10 −9 Pa −1 or less, and “bad” when it exceeds 3.0 × 10 −9 Pa −1. Can be evaluated.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1から明らかなように、実施例1~2で得られた重合体は、ガラス転移温度(Tg)、屈折率(nD)、アッベ数(νD)及び複屈折(CR)の評価において良好な結果が得られた。 As is apparent from Table 1, the polymers obtained in Examples 1 and 2 are good in evaluation of glass transition temperature (Tg), refractive index (nD), Abbe number (νD), and birefringence (CR). Results were obtained.
 本重合体は、高屈折率及び低アッベ数であり、低複屈折性に優れる。従って、本重合体によれば、高屈折率及び低アッベ数であり、低複屈折性に優れる成形体を簡便かつコスト的に有利に得ることができる。また、高屈折率、低アッベ数及び優れた低複屈折性の特性を有する光学レンズ及びフィルムを得ることもできる。 This polymer has a high refractive index and a low Abbe number, and is excellent in low birefringence. Therefore, according to the present polymer, a molded product having a high refractive index and a low Abbe number and excellent in low birefringence can be obtained conveniently and cost-effectively. In addition, an optical lens and a film having a high refractive index, a low Abbe number, and excellent low birefringence characteristics can be obtained.

Claims (9)

  1.  式(1)で表される構造単位と、式(2-1)及び(2-2)で表される構造単位の少なくとも1つとを有する重合体:
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R1は、炭素数1~20の1価の炭化水素基であり、R11及びR12はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基であり、x及びyはそれぞれ独立して、0~4の整数であり、xが2以上の場合、複数のR11は同一又は異なり、yが2以上の場合、複数のR12は同一又は異なる;
    Figure JPOXMLDOC01-appb-C000002
     式(2-1)中、aは、0~2の整数であり、R2は独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基であり、bは、0~8の整数であり、bが2以上の場合、複数のR2は同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよい;
    Figure JPOXMLDOC01-appb-C000003
     式(2-2)中、R3及びR4はそれぞれ独立して、ハロゲン原子、ニトロ基、シアノ基又は炭素数1~20の1価の有機基であり、c及びdはそれぞれ独立して、0~8の整数であり、cが2以上の場合、複数のR3は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよく、dが2以上の場合、複数のR4は、同一又は異なり、これらの基のうちの2つ以上が互いに結合して環員数4~20の環構造を形成していてもよく、e及びfはそれぞれ独立して、0~2の整数であり、Lは、単結合、-SO2-又は炭素数1~20の2価の有機基である。
    A polymer having a structural unit represented by the formula (1) and at least one of the structural units represented by the formulas (2-1) and (2-2):
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 11 and R 12 are each independently a halogen atom, a nitro group, a cyano group or 1 to 20 carbon atoms. And x and y are each independently an integer of 0 to 4, when x is 2 or more, a plurality of R 11 are the same or different, and when y is 2 or more, a plurality of R 12 of the same or different;
    Figure JPOXMLDOC01-appb-C000002
    In formula (2-1), a is an integer of 0 to 2, R 2 is independently a halogen atom, a nitro group, a cyano group, or a monovalent organic group having 1 to 20 carbon atoms, b Is an integer of 0 to 8, and when b is 2 or more, a plurality of R 2 are the same or different, and two or more of these groups are bonded to each other to form a ring structure having 4 to 20 ring members May be;
    Figure JPOXMLDOC01-appb-C000003
    In formula (2-2), R 3 and R 4 are each independently a halogen atom, a nitro group, a cyano group or a monovalent organic group having 1 to 20 carbon atoms, and c and d are each independently , An integer of 0 to 8, and when c is 2 or more, the plurality of R 3 are the same or different and two or more of these groups are bonded to each other to form a ring structure having 4 to 20 ring members And when d is 2 or more, the plurality of R 4 are the same or different and two or more of these groups are bonded to each other to form a ring structure having 4 to 20 ring members. E and f are each independently an integer of 0 to 2, and L is a single bond, —SO 2 — or a divalent organic group having 1 to 20 carbon atoms.
  2.  重合体のガラス転移温度より20℃高い温度で測定した応力光学係数の絶対値が3.0×10-9Pa-1以下である、請求項1に記載の重合体。 The polymer according to claim 1, wherein the absolute value of the stress optical coefficient measured at a temperature 20 ° C. higher than the glass transition temperature of the polymer is 3.0 × 10 −9 Pa −1 or less.
  3.  前記式(1)におけるR1が、炭素数6~20の芳香族炭化水素基である、請求項1又は2に記載の重合体。 The polymer according to claim 1 or 2, wherein R 1 in the formula (1) is an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  4.  ポリスチレン換算の重量平均分子量が2,000以上300,000以下である、請求項1~3のいずれか一項に記載の重合体。 The polymer according to any one of claims 1 to 3, wherein the polystyrene-reduced weight average molecular weight is 2,000 or more and 300,000 or less.
  5.  ガラス転移温度が100℃以上300℃以下である、請求項1~4のいずれか一項に記載の重合体。 The polymer according to any one of claims 1 to 4, wherein the glass transition temperature is 100 ° C or higher and 300 ° C or lower.
  6.  F線、D線及びC線の屈折率をそれぞれnF、nD及びnCとした時に、式(A)で得られるアッベ数νDが25.0以下である、請求項1~5のいずれか一項に記載の重合体。
      νD=(nD-1)/(nF-nC)   (A)
    6. The Abbe number νD obtained by the formula (A) is 25.0 or less when the refractive indexes of the F-line, D-line, and C-line are nF, nD, and nC, respectively. The polymer described in 1.
    νD = (nD−1) / (nF−nC) (A)
  7.  D線の屈折率nDが1.60以上である、請求項1~6のいずれか一項に記載の重合体。 The polymer according to any one of claims 1 to 6, wherein the refractive index nD of the D line is 1.60 or more.
  8.  請求項1~7のいずれか一項に記載の重合体の成形体。 A molded article of the polymer according to any one of claims 1 to 7.
  9.  請求項8に記載の成形体を含む、フィルム及び光学レンズから選ばれる物品。 An article selected from a film and an optical lens, comprising the molded article according to claim 8.
PCT/JP2019/016844 2018-04-26 2019-04-19 Polymer, molded body and article WO2019208441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516315A JPWO2019208441A1 (en) 2018-04-26 2019-04-19 Polymers, moldings and articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084992 2018-04-26
JP2018084992 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208441A1 true WO2019208441A1 (en) 2019-10-31

Family

ID=68294086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016844 WO2019208441A1 (en) 2018-04-26 2019-04-19 Polymer, molded body and article

Country Status (3)

Country Link
JP (1) JPWO2019208441A1 (en)
TW (1) TW201945434A (en)
WO (1) WO2019208441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070710A1 (en) * 2019-10-08 2021-04-15 Jsr株式会社 Composition, cured article, layered body, and electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371901A (en) * 1991-06-20 1992-12-24 Tokuyama Soda Co Ltd Organic glass
JPH05320181A (en) * 1991-06-19 1993-12-03 Tokuyama Soda Co Ltd Phosphorus-containing compound
JP2006521437A (en) * 2003-03-24 2006-09-21 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Process for the synthesis of thiophosphine compounds and polymerizable compositions containing them and their use for the production of ophthalmic lenses
JP2007039537A (en) * 2005-08-02 2007-02-15 Toray Ind Inc Organophosphorus compound and organophosphorus-based polymer comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320181A (en) * 1991-06-19 1993-12-03 Tokuyama Soda Co Ltd Phosphorus-containing compound
JPH04371901A (en) * 1991-06-20 1992-12-24 Tokuyama Soda Co Ltd Organic glass
JP2006521437A (en) * 2003-03-24 2006-09-21 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Process for the synthesis of thiophosphine compounds and polymerizable compositions containing them and their use for the production of ophthalmic lenses
JP2007039537A (en) * 2005-08-02 2007-02-15 Toray Ind Inc Organophosphorus compound and organophosphorus-based polymer comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALLAM, CHRISTOPHER ET AL.: "Preparation and properties of novel aromatic poly(thioethers) derived from 4, 4' -thiobisbenzenethiol", MACROMOL. CHEM. PHYS., vol. 200, 1999, pages 1854 - 1862, XP000866753, ISSN: 1521-3935, DOI: 10.1002/(SICI)1521-3935(19990801)200:8<1854::AID-MACP1854>3.3.CO;2-0 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070710A1 (en) * 2019-10-08 2021-04-15 Jsr株式会社 Composition, cured article, layered body, and electronic component

Also Published As

Publication number Publication date
JPWO2019208441A1 (en) 2021-04-30
TW201945434A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
EP2161296B1 (en) Polymerisable compound und use thereof
JP6429267B2 (en) Polymer
TW200808899A (en) Optical lens
TWI791799B (en) Polycarbonate and moldings
JP6712633B2 (en) Polycarbonate resin, molded body, optical member and lens
JP2015209511A (en) Polymer composition, polymer pellet, molded article and film
WO2021014962A1 (en) Thermoplastic resin and optical member containing same
TW201942187A (en) Polycarbonate resin and optical member containing same
WO2019208441A1 (en) Polymer, molded body and article
Zhou et al. Molecular structure and properties of sulfur‐containing high refractive index polymer optical materials
JP2014101425A (en) Cage silsesquioxane, crosslinked cage silsesquioxane, and optical element having the same
CN110894358B (en) Organic-inorganic hybrid composition, article and optical component comprising the same
JP6202004B2 (en) Polyformal resin copolymer and production method
US20230123182A1 (en) Optical polymer and lens including same
JP2018135470A (en) Polymer and optical lens
KR102306716B1 (en) Polyphosphonate polymer, lens and camera module using the same
JP2007308693A (en) High-refractive-index linear polymer and its preparation method
JP6102637B2 (en) Aromatic dihalide compound, polymer, polymer composition and molded article
US20220289912A1 (en) Polymeric material, production method therefor, and polymeric material composition
KR20200045771A (en) Polyester-based polymer and optical material comprising the same
US20230357507A1 (en) Sulfur-containing polymer, method for producing same, and sulfur-containing polymer composition
JP5804460B2 (en) Poly (arylene thioether) having a binaphthyl skeleton
TWI642723B (en) Amorphous polymer for optical material, resin composition, resin pellet and resin molded article
JP6221759B2 (en) Polymer, compound, resin composition, resin pellet and resin molded body
JP5366740B2 (en) Ether-containing cyclic structure-containing polymer, resin composition for optical material, molded product thereof, optical component and lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792219

Country of ref document: EP

Kind code of ref document: A1