WO2019208171A1 - Indoor unit for air conditioner - Google Patents

Indoor unit for air conditioner Download PDF

Info

Publication number
WO2019208171A1
WO2019208171A1 PCT/JP2019/015126 JP2019015126W WO2019208171A1 WO 2019208171 A1 WO2019208171 A1 WO 2019208171A1 JP 2019015126 W JP2019015126 W JP 2019015126W WO 2019208171 A1 WO2019208171 A1 WO 2019208171A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
indoor unit
propeller fan
housing
Prior art date
Application number
PCT/JP2019/015126
Other languages
French (fr)
Japanese (ja)
Inventor
長澤 敦氏
嘉浩 小見山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2020516184A priority Critical patent/JP7042334B2/en
Publication of WO2019208171A1 publication Critical patent/WO2019208171A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • Embodiment of this invention is related with the indoor unit of an air conditioner.
  • a so-called four-way ceiling cassette type in which a square suction port is provided at the center of the lower surface of a housing and a long and narrow outlet is provided on the four sides of the square suction port.
  • a turbo fan and a substantially rectangular heat exchanger surrounding the periphery of the turbo fan are installed at the center. The turbo fan sucks room air from the central suction port, adjusts the temperature of the sucked air through a heat exchanger, and blows this conditioned air into the room from the air outlet.
  • the indoor unit When the indoor unit is configured to suck air from the side of the housing and blow it out downward using a propeller fan, a large air volume and low noise indoor unit can be expected, but on the surface of the heat exchanger
  • a sufficient separation distance In order to prevent the condensed water generated from falling from the outlet on the lower surface of the housing, a sufficient separation distance must be ensured between the heat exchanger and the outlet, and the diameter of the outlet must be reduced. I must. Therefore, even if a propeller fan that can take a large angle and air volume is employed, a fan having a large diameter cannot be provided, and there is a problem that the air volume cannot be improved.
  • An object of the present invention is to provide an indoor unit of an air conditioner that can be used.
  • An indoor unit of an air conditioner includes a housing fixed to a ceiling, a suction port that is opened on an outer peripheral side surface of the housing and sucks air from the periphery, and a center of a lower surface of the housing
  • a blower outlet that blows air downward
  • a heat exchanger that is provided inside the housing and has an annular shape in a bottom view, and is surrounded by the heat exchanger and corresponds to the blower outlet
  • a propeller fan that extends in the vertical direction and blows out the air sucked from the suction port from the air outlet, and dew condensation water generated in the heat exchanger is provided below the heat exchanger.
  • the heat exchanger is subjected to a surface treatment so that a contact angle of water on the surface thereof is 50 ° or less, and a horizontal separation distance between the heat exchanger and the propeller fan is set.
  • L and the propeller fa The diameter is D, it was arranged with the propeller fan and 0.05 ⁇ L / D ⁇ 0.19 in relation is the heat exchanger as true.
  • Explanatory drawing which shows the air volume and the flight distance of condensed water.
  • the graph which shows the relationship between the contact angle of a heat exchanger, and the flight distance of condensed water.
  • FIG. 1 The code
  • the air conditioner includes an outdoor unit (not shown) installed outside and an indoor unit 1 installed indoors.
  • the outdoor unit and the indoor unit 1 are connected via a refrigerant pipe that circulates the refrigerant.
  • a refrigerating cycle is comprised by circulating a refrigerant
  • the indoor unit 1 of the air conditioner of the present embodiment is used to harmonize the air in an indoor space inside a building.
  • This indoor space is a closed space surrounded by the floor 2, the wall 3, and the ceiling 4.
  • the ceiling 4 is provided with the indoor unit 1 of the present embodiment.
  • the indoor unit 1 includes a casing 5 that is circular in a bottom view, a suction port 6 that is opened on the outer peripheral side surface of the casing 5 and sucks air K from the surroundings, and a casing 5 at the center of the lower surface of the air outlet 5 and blows out the air K downward, at the position corresponding to the air outlet 7 and the heat exchanger 8 that is provided inside the housing 5 and has an annular shape when viewed from the bottom.
  • a propeller fan 9 provided, a fan motor 10 that rotates the propeller fan 9, and a drain pan 11 that is provided below the heat exchanger 8 and receives condensed water generated on the surface of the heat exchanger 8 are provided.
  • the upper surface of the housing 5 is closed by the upper surface plate 12.
  • the upper surface plate 12 of the housing 5 is fixed to a metal rod-like hanging member 17 fixed to the ceiling 4 and extending in the floor surface direction.
  • the housing 5 is suspended from the ceiling surface and provided at a position lower than the ceiling 4. If it does in this way, since the air K of the indoor space used as air-conditioning object can be taken in from the side surface and can be blown out from the blower outlet 7 of the lower surface of the housing
  • the indoor unit 1 is preferably provided in the center of the air-conditioned room.
  • the top plate 12 of the housing 5 is fixed in a state of being separated from the ceiling 4 by a predetermined distance.
  • the ceiling 4 and the top surface of the housing 5 may be fixed and installed.
  • the housing 5 has a circular shape when viewed from the bottom, but may have other shapes.
  • the housing 5 may have a polygonal shape that is a pentagon or more in a bottom view. That is, the housing 5 may be hexagonal, octagonal, or decagonal when viewed from the bottom.
  • the casing is a pentagon, it is desirable that each side has substantially the same length.
  • the indoor unit 1 is a bare type unit in which the casing 5 is arranged in a state of being bare from the ceiling 4. Furthermore, the design property can be improved because the housing 5 of the indoor unit 1 has a circular shape. Furthermore, since the casing 5 has no corners, it is possible to prevent a person under the indoor unit 1 from feeling a sense of pressure.
  • the heat exchanger 8 accommodated in the indoor unit 1 has an annular shape when viewed from the bottom as shown in FIG. 2, and has a vertically long rectangular shape when viewed from the longitudinal side in FIG. Moreover, the blower outlet 7 comprises circular shape by bottom view. In addition, in the bottom view, the center of the heat exchanger 8, the center of the propeller fan 9, and the center of the air outlet 7 coincide.
  • the diameter of the air outlet 7 is slightly larger than the diameter D of the propeller fan 9.
  • the symbol D will be described as the diameter of the air outlet 7 and the propeller fan 9.
  • the propeller fan 9 is provided at a position surrounded by the annular heat exchanger 8, that is, at a central position of the housing 5 in a bottom view. Further, the rotation shaft of the propeller fan 9 extends in the vertical direction, that is, in the upward direction. And the fan motor 10 is connected to this rotating shaft. The fan motor 10 is fixed to the upper surface plate 12 of the housing 5. When the propeller fan 9 is rotated by the fan motor 10, the air K sucked from the suction port 6 is blown downward from the air outlet 7.
  • the suction port 6 is provided over the entire circumference of the outer peripheral side surface of the housing 5.
  • the heat exchanger 8 is provided on the inner peripheral surface of the housing 5 at a position corresponding to the suction port 6.
  • the heat exchanger 8 is fixed to the upper surface plate 12 of the housing 5 using a fixing member 14.
  • the refrigerant is discharged as a high-temperature and high-pressure gas from the compressor of the outdoor unit, and flows to the heat exchanger outside the room.
  • This refrigerant is condensed by exchanging heat with outdoor air in the outdoor heat exchanger and flows into the refrigerant pipe 19 (FIG. 1) in a liquid state.
  • the liquid refrigerant flows from the refrigerant pipe 19 into the indoor heat exchanger 8 as a low-temperature gas refrigerant through an electric expansion valve that is an expansion device.
  • the indoor heat exchanger 8 the low-temperature refrigerant is evaporated and gasified by exchanging heat with the air in the air-conditioned room. At this time, the room is cooled by the low-temperature air blown from the indoor unit 1.
  • the refrigerant is discharged as a high-temperature and high-pressure gas from the compressor of the outdoor unit and flows into the refrigerant pipe 19.
  • the high-temperature gaseous refrigerant flows into the indoor heat exchanger 8.
  • the gaseous refrigerant is condensed and liquefied by heat exchange with the air in the air-conditioned room. At this time, the room is heated by high-temperature air blown out from the indoor unit 1.
  • a drain pan 11 serving as a drain receiving portion is provided at a position below the heat exchanger 8. During the cooling operation in which the heat exchanger 8 functions as an evaporator, moisture contained in the air K passing through the heat exchanger 8 is condensed on the surface of the heat exchanger 8 and adheres to the heat exchanger 8 and drops as condensed water. .
  • a drain pan 11 is provided to receive dew condensation water falling from the heat exchanger 8.
  • the drain pan 11 is a member that is substantially U-shaped in a side view in a vertical direction and that surrounds the propeller fan 9.
  • the drain pan 11 extends from a position below the heat exchanger 8 to the edge of the air outlet 7. If it does in this way, it can be set as the drain pan 11 to the edge of the blower outlet 7 with which the edge of the propeller fan 9 is adjoined. That is, the gap between the edge of the propeller fan 9 and the edge of the outlet 7 can be reduced. Therefore, it is possible to prevent the condensed water from dropping from this gap.
  • the condensed water stored in the drain pan 11 is pumped by a drain pump built in the housing 5 and drained to the outside of the indoor unit 1 through a predetermined drain pipe (not shown).
  • the drain pan 11 is integrated with the lower surface plate 13 of the housing 5.
  • the lower surface plate 13 of the housing 5 can be used as the drain pan 11
  • the number of parts of the indoor unit 1 can be reduced and the manufacturing cost can be reduced.
  • the upper surface plate 12 and the lower surface plate 13 are integrated by being fixed by screws or the like via the side surface portions.
  • the indoor unit 1 includes a guide portion 15 that protrudes inward from the upper surface plate 12 of the housing 5.
  • the guide portion 15 has a bowl shape that narrows as it goes downward.
  • the guide portion 15 is formed with a guide surface 16 that guides the air K that has passed through the heat exchanger 8 in the horizontal direction downward.
  • the guide surface 16 is a surface that is smoothly curved in a side view.
  • the air K can be smoothly guided downward along the guide surface 16.
  • a fan motor 10 is fixed to the lower end of the guide portion 15. In this way, the structural strength for supporting the fan motor 10 can be improved while improving the air blowing characteristics.
  • the surface of the heat exchanger 8 is subjected to hydrophilic treatment as a surface treatment so that the contact angle of water on the surface of the heat exchanger 8 is 50 ° or less.
  • this hydrophilic treatment the surface of the heat exchanger 8 is coated with a resin or water glass coating.
  • L be the horizontal separation distance between the inner surface (end face) of the heat exchanger 8 and the edge of the propeller fan 9 (the end of the locus formed by the tip).
  • the separation distance L is substantially the same as the separation distance in the horizontal direction between the inner surface of the heat exchanger 8 and the edge of the outlet 7.
  • the contact angle of water on the surface of the heat exchanger 8 is 50 ° or less by performing hydrophilic treatment (surface treatment).
  • hydrophilic treatment surface treatment
  • this relational expression is rewritten, 0.05D ⁇ L ⁇ 0.19D.
  • the horizontal distance L between the heat exchanger 8 and the propeller fan 9 is 40 mm to 152 mm.
  • the diameter D of the propeller fan 9 is set to 900 mm, the wind speed increases as the diameter increases, so that the horizontal separation distance L between the heat exchanger 8 and the propeller fan 9 is equal to that of the propeller fan 9.
  • the diameter D is 45 mm to 171 mm, which is larger than 800 mm.
  • the vertical dimension of the heat exchanger 8 is 300 mm, which is a general size
  • the diameter D of the propeller fan 9 is 800 mm
  • the wind speed is 1.5 m / s
  • the surface of the heat exchanger 8 is in contact with water.
  • the angle is 50 ° or less
  • the air volume by the rotation of the propeller fan 9 increases as the diameter D increases.
  • the tendency is almost the same for the propeller fan 9 and the conventional turbofan.
  • the characteristic of curve A in FIG. 7 is shown.
  • L represents the horizontal distance between the end of the turbofan and the end face of the closest heat exchanger
  • D represents the diameter of the turbofan.
  • the wind direction is changed by 360 ° from suction to blowing, but in the present embodiment, the wind direction is bent only 90 °.
  • the air outlet is provided on the side of the lower surface of the housing.
  • the heat exchanger or fan which is an internal structure, can be enlarged by the amount of dead space in this portion. That is, the fan diameter can be enlarged with the same outer size of the casing.
  • the width of the air outlet should be at least 3 cm, and the heat exchanger or fan size can be expanded by 6 cm in total.
  • this enlarged dimension corresponds to approximately 0.07 ⁇ (2L + D). Therefore, the air flow characteristic when the diameter D of the propeller fan is enlarged by this margin is a curve C in FIG.
  • the air flow characteristic when the diameter D of the propeller fan is enlarged by this margin is a curve C in FIG.
  • a slight gap is required between the heat exchanger and the turbo fan, and the gap cannot be made zero at all.
  • the horizontal separation distance between the heat exchanger 8 and the propeller fan 9 is L and the diameter of the propeller fan 9 is D, 0.05 ⁇ L / D ⁇ 0.
  • the housing 5 ⁇ / b> A is directly fixed to the ceiling 4. That is, the top plate 12A of the housing 5A is in contact with the ceiling 4. Furthermore, in the first embodiment, the fan motor 10 is fixed to the lower end of the guide portion 15 having a bowl shape provided at the center inside the housing 5, but in the second embodiment, it is simply attached in a rectangular shape. A portion 15A is provided on the upper surface plate 12, and the fan motor 10 is fixed to the mounting portion 15A. In the housing 5A, the upper surface plate 12A and the lower surface plate 13A are configured as separate members.
  • the bottom plate 13 ⁇ / b> A integrated with the drain pan 11 is connected to the base or mounting portion 15 ⁇ / b> A of the fan motor 10 via the connecting member 18.
  • the connecting member 18 is a rod-shaped member that extends radially from the base of the fan motor 10.
  • the indoor unit 1A includes the connecting member 18 that connects the fan motor 10 and the drain pan 11 to each other, so that the horizontal separation distance L between the propeller fan 9 and the drain pan 11 is kept constant.
  • the gap between the propeller fan 9 and the drain pan 11 can be made small while preventing the collision.
  • the indoor unit of the air conditioner according to the present embodiment has been described based on the first to second embodiments, the configuration applied in any one of the embodiments may be applied to other embodiments.
  • the configurations applied in each embodiment may be combined.
  • the heat exchanger 8 is annular when viewed from the bottom, but may have other shapes.
  • the heat exchanger 8 may be polygonal when viewed from the bottom.
  • the heat exchanger 8 may have a quadrangular shape so as to surround the periphery of the propeller fan 9.
  • the dimension is set such that the distance in the horizontal direction between the end of the propeller fan 9 and the end face of the heat exchanger 8 located closest to the propeller fan 9 is L.

Abstract

Provided is an indoor unit for an air conditioner with which it is possible to increase the size of a propeller fan and improve air flow while preventing any condensation water from dripping from a blowout opening. An indoor unit (1) for an air conditioner, provided with: a propeller fan (9) surrounded by a heat exchanger (8), the propeller fan (9) causing air (K) suctioned from a sideward suction opening (6) to be blown out from a downward blowout opening (7); and a drain pan (11) provided below the heat exchanger (8), the drain pan receiving condensation water produced by the heat exchanger (8). A surface treatment is performed on the heat exchanger (8) so that the water contact angle with respect to the surface of the heat exchanger (8) is equal to or less than 50°. The heat exchanger (8) and the propeller fan (9) are disposed so that the relational formula 0.05 ≤ L/D < 0.19 is satisfied, where L is the distance between the heat exchanger (8) and the propeller fan (9) in the horizontal direction, and D is the diameter of the propeller fan (9).

Description

空気調和機の室内ユニットAir conditioner indoor unit
 本発明の実施形態は、空気調和機の室内ユニットに関する。 Embodiment of this invention is related with the indoor unit of an air conditioner.
 従来、室内の天井に設置される空気調和機の室内ユニットとしては、筐体の下面中央に正方形の吸込口とその周囲の4辺に細長い吹出口が設けられている、いわゆる4方向天井カセットタイプの室内ユニットがある。このような室内ユニットの筐体内部には、その中央にターボファンおよびこのターボファンの周囲を囲む略4角形状の熱交換器が設置される。ターボファンは、中央の吸込口から室内空気を吸い込み、吸い込んだ空気を、熱交換器を通して温度調整を行い、そして、この空調空気を吹出口から室内に吹き出すようにしている。 Conventionally, as an indoor unit of an air conditioner installed on a ceiling in a room, a so-called four-way ceiling cassette type in which a square suction port is provided at the center of the lower surface of a housing and a long and narrow outlet is provided on the four sides of the square suction port. There is an indoor unit. Inside the casing of such an indoor unit, a turbo fan and a substantially rectangular heat exchanger surrounding the periphery of the turbo fan are installed at the center. The turbo fan sucks room air from the central suction port, adjusts the temperature of the sucked air through a heat exchanger, and blows this conditioned air into the room from the air outlet.
 この方式の室内ユニットにおける空気の流れは、真下から吸い込んで空気を真横方向に吹き出して熱交換器を通し、その後、導風路にて真下方向に風向を変更している。このように風向を筐体内で360°変更していることから、通風抵抗が大きく、風量を大きくできないという問題がある。そこで、特許文献1のように、送風機としてプロペラファンを用い、プロペラファンによって上方空間の空気を筐体の側面の吸込口から吸い込んで、筐体の下面の吹出口から吹き出させる室内ユニットが考えられている。 The air flow in this type of indoor unit is drawn from directly below, blown out air to the side, passes through the heat exchanger, and then changes the air direction in the direction of the air in the air guide path. As described above, since the wind direction is changed by 360 ° in the housing, there is a problem that the ventilation resistance is large and the air volume cannot be increased. Therefore, as in Patent Document 1, an indoor unit that uses a propeller fan as a blower, sucks air in the upper space from the suction port on the side surface of the housing by the propeller fan, and blows it out from the air outlet on the lower surface of the housing is considered. ing.
特許第4766169号公報Japanese Patent No. 4766169
 プロペラファンを用いて、筐体の側方から空気を吸い込み、下方に吹出すように室内ユニットを構成した場合には、大風量で低騒音の室内ユニットが期待できるが、熱交換器の表面で生じる結露水が筐体の下面の吹出口から落ちないようにするために、熱交換器と吹出口との間に充分な離間距離を確保しなければならず、吹出口の直径を小さくしなければならない。そのため、折角、風量が大きく取れるプロペラファンを採用しても、直径の大きなファンを設けることができず、風量を向上させることができないという課題がある。 When the indoor unit is configured to suck air from the side of the housing and blow it out downward using a propeller fan, a large air volume and low noise indoor unit can be expected, but on the surface of the heat exchanger In order to prevent the condensed water generated from falling from the outlet on the lower surface of the housing, a sufficient separation distance must be ensured between the heat exchanger and the outlet, and the diameter of the outlet must be reduced. I must. Therefore, even if a propeller fan that can take a large angle and air volume is employed, a fan having a large diameter cannot be provided, and there is a problem that the air volume cannot be improved.
 本発明の実施形態は、このような事情を考慮してなされたもので、吹出口から結露水が落下してしまうことを防止しつつ、プロペラファンの大型化を図り、風量を向上させることができる空気調和機の室内ユニットを提供することを目的とする。 The embodiment of the present invention is made in consideration of such circumstances, and it is possible to increase the size of the propeller fan and improve the air volume while preventing the condensed water from falling from the outlet. An object of the present invention is to provide an indoor unit of an air conditioner that can be used.
 本発明の実施形態に係る空気調和機の室内ユニットは、天井に固定される筐体と、前記筐体の外周側面に開口され、周囲から空気を吸い込む吸込口と、前記筐体の下面の中央部に開口され、空気を下向きに吹き出す吹出口と、前記筐体の内部に設けられ、底面視で環状を成す熱交換器と、前記熱交換器で囲まれ、かつ前記吹出口に対応する位置に設けられ、回転軸が垂直方向に延び、前記吸込口から吸い込まれた空気を前記吹出口から吹き出させるプロペラファンと、前記熱交換器の下方に設けられ、前記熱交換器で生じる結露水を受けるドレンパンと、を備え、前記熱交換器は、その表面の水の接触角が50°以下となるように表面処理が施され、前記熱交換器と前記プロペラファンとの水平方向の離間距離をLとし、前記プロペラファンの直径をDとしたときに、0.05≦L/D<0.19の関係式が成り立つように前記熱交換器と前記プロペラファンとを配置した。 An indoor unit of an air conditioner according to an embodiment of the present invention includes a housing fixed to a ceiling, a suction port that is opened on an outer peripheral side surface of the housing and sucks air from the periphery, and a center of a lower surface of the housing A blower outlet that blows air downward, a heat exchanger that is provided inside the housing and has an annular shape in a bottom view, and is surrounded by the heat exchanger and corresponds to the blower outlet A propeller fan that extends in the vertical direction and blows out the air sucked from the suction port from the air outlet, and dew condensation water generated in the heat exchanger is provided below the heat exchanger. The heat exchanger is subjected to a surface treatment so that a contact angle of water on the surface thereof is 50 ° or less, and a horizontal separation distance between the heat exchanger and the propeller fan is set. L and the propeller fa The diameter is D, it was arranged with the propeller fan and 0.05 ≦ L / D <0.19 in relation is the heat exchanger as true.
第1実施形態の室内ユニットが設けられた建物の内部を示す図。The figure which shows the inside of the building in which the indoor unit of 1st Embodiment was provided. 第1実施形態の室内ユニットの概略横断面図。The schematic cross-sectional view of the indoor unit of the first embodiment. 第1実施形態の室内ユニットの概略縦断面図。The schematic longitudinal cross-sectional view of the indoor unit of 1st Embodiment. 風量と結露水の飛翔距離を示す説明図。Explanatory drawing which shows the air volume and the flight distance of condensed water. 熱交換器の接触角と結露水の飛翔距離との関係を示すグラフ。The graph which shows the relationship between the contact angle of a heat exchanger, and the flight distance of condensed water. 熱交換器の接触角とL/Dとの関係を示すグラフ。The graph which shows the relationship between the contact angle of a heat exchanger, and L / D. 風量とL/Dとの関係を示すグラフ。The graph which shows the relationship between an air volume and L / D. 第2実施形態の室内ユニットの概略縦断面図。The schematic longitudinal cross-sectional view of the indoor unit of 2nd Embodiment.
 (第1実施形態)
 以下、本実施形態を添付図面に基づいて説明する。まず、第1実施形態の空気調和機の室内ユニットについて図1から図7を用いて説明する。図1の符号1は、空気調和機の室内ユニットである。空気調和機は、室外に設置される室外ユニット(図示略)と室内に設置される室内ユニット1とで構成される。室外ユニットと室内ユニット1とは、冷媒を循環させる冷媒配管を介して接続されている。そして、室外ユニットと室内ユニット1との間で冷媒を循環させることで冷凍サイクルが構成される。
(First embodiment)
Hereinafter, this embodiment is described based on an accompanying drawing. First, the indoor unit of the air conditioner of 1st Embodiment is demonstrated using FIGS. 1-7. The code | symbol 1 of FIG. 1 is an indoor unit of an air conditioner. The air conditioner includes an outdoor unit (not shown) installed outside and an indoor unit 1 installed indoors. The outdoor unit and the indoor unit 1 are connected via a refrigerant pipe that circulates the refrigerant. And a refrigerating cycle is comprised by circulating a refrigerant | coolant between the outdoor unit and the indoor unit 1. FIG.
 図1に示すように、本実施形態の空気調和機の室内ユニット1は、建物の内部の室内空間の空気を調和するために用いられる。この室内空間は、床2と壁3と天井4に囲まれた閉鎖された空間である。なお、天井4には、本実施形態の室内ユニット1が設けられる。 As shown in FIG. 1, the indoor unit 1 of the air conditioner of the present embodiment is used to harmonize the air in an indoor space inside a building. This indoor space is a closed space surrounded by the floor 2, the wall 3, and the ceiling 4. The ceiling 4 is provided with the indoor unit 1 of the present embodiment.
 図2および図3に示すように、室内ユニット1は、底面視で円形状を成す筐体5と、筐体5の外周側面に開口されて周囲から空気Kを吸い込む吸込口6と、筐体5の下面の中央部に開口されて空気Kを下向きに吹き出す吹出口7と、筐体5の内部に設けられて底面視で環状を成す熱交換器8と、吹出口7に対応する位置に設けられるプロペラファン9と、プロペラファン9を回転させるファンモータ10と、熱交換器8の下方に設けられて熱交換器8の表面で生じる結露水を受けるドレンパン11とを備える。筐体5の上面は、上面板12によって閉塞されている。 As shown in FIGS. 2 and 3, the indoor unit 1 includes a casing 5 that is circular in a bottom view, a suction port 6 that is opened on the outer peripheral side surface of the casing 5 and sucks air K from the surroundings, and a casing 5 at the center of the lower surface of the air outlet 5 and blows out the air K downward, at the position corresponding to the air outlet 7 and the heat exchanger 8 that is provided inside the housing 5 and has an annular shape when viewed from the bottom. A propeller fan 9 provided, a fan motor 10 that rotates the propeller fan 9, and a drain pan 11 that is provided below the heat exchanger 8 and receives condensed water generated on the surface of the heat exchanger 8 are provided. The upper surface of the housing 5 is closed by the upper surface plate 12.
 天井4に固定されて床面方向に延びた金属棒状の吊り下げ部材17に筐体5の上面板12が固定される。これにより筐体5は、天井面から吊り下げられて、天井4よりも低い位置に設けられる。このようにすれば、空調対象となる室内空間の空気Kを側面から取り込んで、筐体5の下面の吹出口7から吹き出させることができるので、室内空間の空気を効率よく循環させることができる。つまり、天井4近くに沿って流れる空気Kを、室内ユニット1から下方に向けて流すことができる。さらに、室内ユニット1から床2に到達した空気Kは、壁3に沿って流れて再び天井4に到達する。なお、室内ユニット1は、空調対象の部屋の中央部に設けられると良い。 The upper surface plate 12 of the housing 5 is fixed to a metal rod-like hanging member 17 fixed to the ceiling 4 and extending in the floor surface direction. As a result, the housing 5 is suspended from the ceiling surface and provided at a position lower than the ceiling 4. If it does in this way, since the air K of the indoor space used as air-conditioning object can be taken in from the side surface and can be blown out from the blower outlet 7 of the lower surface of the housing | casing 5, the air of indoor space can be circulated efficiently. . That is, the air K flowing along the vicinity of the ceiling 4 can flow downward from the indoor unit 1. Furthermore, the air K that has reached the floor 2 from the indoor unit 1 flows along the wall 3 and reaches the ceiling 4 again. The indoor unit 1 is preferably provided in the center of the air-conditioned room.
 なお、第1実施形態では、筐体5の上面板12が天井4から所定距離だけ離れた状態で固定されている。しかしながら、天井4が低い部屋においては、天井4と筐体5の天面(上面板12の上面)が略一致するように固定して設置しても良い。また、筐体5は、底面視で円形状を成しているが、その他の形状でも良い。例えば、筐体5が、底面視で五角形以上の多角形状であっても良い。つまり、筐体5が、底面視で六角形状、八角形状または十角形状を成しても良い。なお、筐体を五角形とした場合、各辺がほぼ同じ長さとすることが望ましい。 In the first embodiment, the top plate 12 of the housing 5 is fixed in a state of being separated from the ceiling 4 by a predetermined distance. However, in a room where the ceiling 4 is low, the ceiling 4 and the top surface of the housing 5 (upper surface of the upper surface plate 12) may be fixed and installed. In addition, the housing 5 has a circular shape when viewed from the bottom, but may have other shapes. For example, the housing 5 may have a polygonal shape that is a pentagon or more in a bottom view. That is, the housing 5 may be hexagonal, octagonal, or decagonal when viewed from the bottom. When the casing is a pentagon, it is desirable that each side has substantially the same length.
 このように、本実施形態の室内ユニット1は、筐体5が天井4から剥き出しの状態で配置される剥き出し式のユニットとなっている。さらに、室内ユニット1の筐体5が円形状を成していることで、意匠性を向上させることができる。さらに、筐体5に角部が無いことで、室内ユニット1の下方に居る人に圧迫感を感じさせないようにできる。 As described above, the indoor unit 1 according to the present embodiment is a bare type unit in which the casing 5 is arranged in a state of being bare from the ceiling 4. Furthermore, the design property can be improved because the housing 5 of the indoor unit 1 has a circular shape. Furthermore, since the casing 5 has no corners, it is possible to prevent a person under the indoor unit 1 from feeling a sense of pressure.
 室内ユニット1内に収納される熱交換器8は、図2に示すように底面視で環状を成し、図3の縦断側面視で縦長の長方形状を成している。また、吹出口7は、底面視で円形状を成す。なお、底面視において、熱交換器8の中心と、プロペラファン9の中心と、吹出口7の中心とが一致している。 The heat exchanger 8 accommodated in the indoor unit 1 has an annular shape when viewed from the bottom as shown in FIG. 2, and has a vertically long rectangular shape when viewed from the longitudinal side in FIG. Moreover, the blower outlet 7 comprises circular shape by bottom view. In addition, in the bottom view, the center of the heat exchanger 8, the center of the propeller fan 9, and the center of the air outlet 7 coincide.
 なお、吹出口7の直径は、プロペラファン9の直径Dよりもわずかに大きい寸法となっている。以下、符号Dは、吹出口7およびプロペラファン9の直径として説明する。 It should be noted that the diameter of the air outlet 7 is slightly larger than the diameter D of the propeller fan 9. Hereinafter, the symbol D will be described as the diameter of the air outlet 7 and the propeller fan 9.
 プロペラファン9は、環状を成す熱交換器8で囲まれる位置、つまり、底面視で筐体5の中央位置に設けられる。また、プロペラファン9の回転軸は、垂直方向、つまり上方向に延びる。そして、この回転軸にファンモータ10が接続される。ファンモータ10は、筐体5の上面板12に固定される。このファンモータ10によりプロペラファン9が回転されると、吸込口6から吸い込まれた空気Kが、吹出口7から下方に吹き出すようになっている。 The propeller fan 9 is provided at a position surrounded by the annular heat exchanger 8, that is, at a central position of the housing 5 in a bottom view. Further, the rotation shaft of the propeller fan 9 extends in the vertical direction, that is, in the upward direction. And the fan motor 10 is connected to this rotating shaft. The fan motor 10 is fixed to the upper surface plate 12 of the housing 5. When the propeller fan 9 is rotated by the fan motor 10, the air K sucked from the suction port 6 is blown downward from the air outlet 7.
 吸込口6は、筐体5の外周側面の全周に亘って設けられる。また、熱交換器8は、筐体5の内周面であって、吸込口6に対応する位置に設けられる。なお、熱交換器8は、筐体5の上面板12に固定部材14を用いて固定される。 The suction port 6 is provided over the entire circumference of the outer peripheral side surface of the housing 5. The heat exchanger 8 is provided on the inner peripheral surface of the housing 5 at a position corresponding to the suction port 6. The heat exchanger 8 is fixed to the upper surface plate 12 of the housing 5 using a fixing member 14.
 冷房運転時において、冷媒は、室外ユニットの圧縮機から高温高圧のガス状となって吐出され、室外側の熱交換器に流れる。この冷媒は、室外側の熱交換器で室外の空気と熱交換されて凝縮され、液状となって冷媒配管19(図1)に流れる。そして、室内ユニット1において、液状の冷媒が冷媒配管19から膨張装置である電動膨張弁を介して低温のガス冷媒となって室内側の熱交換器8に流れ込む。この室内側の熱交換器8で低温の冷媒が空調対象の部屋の空気と熱交換されることで蒸発してガス化される。この際、室内は室内ユニット1から吹出される低温空気によって冷房される。 During the cooling operation, the refrigerant is discharged as a high-temperature and high-pressure gas from the compressor of the outdoor unit, and flows to the heat exchanger outside the room. This refrigerant is condensed by exchanging heat with outdoor air in the outdoor heat exchanger and flows into the refrigerant pipe 19 (FIG. 1) in a liquid state. In the indoor unit 1, the liquid refrigerant flows from the refrigerant pipe 19 into the indoor heat exchanger 8 as a low-temperature gas refrigerant through an electric expansion valve that is an expansion device. In the indoor heat exchanger 8, the low-temperature refrigerant is evaporated and gasified by exchanging heat with the air in the air-conditioned room. At this time, the room is cooled by the low-temperature air blown from the indoor unit 1.
 暖房運転時において、冷媒は、室外ユニットの圧縮機から高温高圧のガス状となって吐出され、冷媒配管19に流れる。そして、室内ユニット1において、高温のガス状の冷媒が室内側の熱交換器8に流れ込む。この室内側の熱交換器8でガス状の冷媒が空調対象の部屋の空気と熱交換されることで凝縮して液化される。この際、室内は室内ユニット1から吹出される高温空気によって暖房される。 During the heating operation, the refrigerant is discharged as a high-temperature and high-pressure gas from the compressor of the outdoor unit and flows into the refrigerant pipe 19. In the indoor unit 1, the high-temperature gaseous refrigerant flows into the indoor heat exchanger 8. In this indoor heat exchanger 8, the gaseous refrigerant is condensed and liquefied by heat exchange with the air in the air-conditioned room. At this time, the room is heated by high-temperature air blown out from the indoor unit 1.
 ドレン受け部であるドレンパン11は、熱交換器8の下方位置に設けられる。熱交換器8が蒸発器として機能する冷房運転時には、熱交換器8を通過する空気Kに含まれる水分が熱交換器8表面で結露し、結露水として熱交換器8に付着して滴り落ちる。この熱交換器8から落ちる結露水を受けるために、ドレンパン11が設けられている。 A drain pan 11 serving as a drain receiving portion is provided at a position below the heat exchanger 8. During the cooling operation in which the heat exchanger 8 functions as an evaporator, moisture contained in the air K passing through the heat exchanger 8 is condensed on the surface of the heat exchanger 8 and adheres to the heat exchanger 8 and drops as condensed water. . A drain pan 11 is provided to receive dew condensation water falling from the heat exchanger 8.
 このドレンパン11は、縦断側面視で略U字状を成し、プロペラファン9を囲むように設けられた部材である。このドレンパン11は、熱交換器8の下方位置から吹出口7の縁辺まで延びる。このようにすれば、プロペラファン9の端縁が近接される吹出口7の縁辺までドレンパン11とすることができる。つまり、プロペラファン9の端縁と吹出口7の縁辺との隙間を小さくすることができる。そのため、この隙間から結露水が落下されること防ぐことができる。なお、ドレンパン11で貯留された結露水は、筐体5内に内蔵されたドレンポンプによって揚水されて所定の排水管(図示略)を介して、室内ユニット1の外部に排水される。 The drain pan 11 is a member that is substantially U-shaped in a side view in a vertical direction and that surrounds the propeller fan 9. The drain pan 11 extends from a position below the heat exchanger 8 to the edge of the air outlet 7. If it does in this way, it can be set as the drain pan 11 to the edge of the blower outlet 7 with which the edge of the propeller fan 9 is adjoined. That is, the gap between the edge of the propeller fan 9 and the edge of the outlet 7 can be reduced. Therefore, it is possible to prevent the condensed water from dropping from this gap. The condensed water stored in the drain pan 11 is pumped by a drain pump built in the housing 5 and drained to the outside of the indoor unit 1 through a predetermined drain pipe (not shown).
 また、ドレンパン11が筐体5の下面板13と一体となっている。このようにすれば、筐体5の下面板13をドレンパン11として兼用できるので、室内ユニット1の部品点数が減り、製造コストを低減させることができる。なお、第1実施形態の筐体5は、上面板12と下面板13とが側面部を介してネジ等によって固定されて一体化されている。 Further, the drain pan 11 is integrated with the lower surface plate 13 of the housing 5. In this way, since the lower surface plate 13 of the housing 5 can be used as the drain pan 11, the number of parts of the indoor unit 1 can be reduced and the manufacturing cost can be reduced. In the housing 5 of the first embodiment, the upper surface plate 12 and the lower surface plate 13 are integrated by being fixed by screws or the like via the side surface portions.
 室内ユニット1は、筐体5の上面板12から内側に下方に突出されるガイド部15を備える。このガイド部15は、下方にゆくに従って窄まる擂り鉢形状を成す。ガイド部15には、熱交換器8を水平方向に通過した空気Kを下方に向けて案内する案内面16が形成される。案内面16は、側面視で滑らかに湾曲された面である。この案内面16に沿って空気Kをスムーズに下方に導くことができる。また、ガイド部15の下端には、ファンモータ10が固定されている。このようにすれば、送風特性を向上させつつ、ファンモータ10を支持するための構造的強度を向上させることができる。 The indoor unit 1 includes a guide portion 15 that protrudes inward from the upper surface plate 12 of the housing 5. The guide portion 15 has a bowl shape that narrows as it goes downward. The guide portion 15 is formed with a guide surface 16 that guides the air K that has passed through the heat exchanger 8 in the horizontal direction downward. The guide surface 16 is a surface that is smoothly curved in a side view. The air K can be smoothly guided downward along the guide surface 16. A fan motor 10 is fixed to the lower end of the guide portion 15. In this way, the structural strength for supporting the fan motor 10 can be improved while improving the air blowing characteristics.
 熱交換器8の表面には、熱交換器8の表面の水の接触角が50°以下となるように、表面処理としての親水性処理が施されている。この親水性処理では、熱交換器8の表面に、樹脂系または水ガラス系等のコーティングが施される。この親水性処理が施されることで、熱交換器8の表面に生じた結露水が、この表面に沿ってスムーズに下方に落下される。そのため、結露水が空気Kの流れに引っ張られて、熱交換器8から離れた位置まで飛翔されることを防止できる。その結果、プロペラファン9の直径Dを大きくして、風量を増大させることができる。 The surface of the heat exchanger 8 is subjected to hydrophilic treatment as a surface treatment so that the contact angle of water on the surface of the heat exchanger 8 is 50 ° or less. In this hydrophilic treatment, the surface of the heat exchanger 8 is coated with a resin or water glass coating. By performing this hydrophilic treatment, the condensed water generated on the surface of the heat exchanger 8 is smoothly dropped downward along the surface. Therefore, it is possible to prevent the condensed water from being pulled by the flow of the air K and flying to a position away from the heat exchanger 8. As a result, the diameter D of the propeller fan 9 can be increased to increase the air volume.
 本実施形態では、熱交換器8の内側の表面(端面)とプロペラファン9の端縁(先端のなす軌跡の端部)との水平方向の離間距離をLとする。なお、この離間距離Lは、熱交換器8の内側の表面と吹出口7の縁辺との水平方向の離間距離とほぼ同一である。 In this embodiment, let L be the horizontal separation distance between the inner surface (end face) of the heat exchanger 8 and the edge of the propeller fan 9 (the end of the locus formed by the tip). The separation distance L is substantially the same as the separation distance in the horizontal direction between the inner surface of the heat exchanger 8 and the edge of the outlet 7.
 本実施形態では、親水性処理(表面処理)が施されることで、熱交換器8の表面の水の接触角が50°以下となっている。さらに、熱交換器8とプロペラファン9との水平方向の離間距離をLとし、プロペラファン9の直径をDとしたときに、0.05≦L/D<0.19の関係式が成り立つ位置に配置されている。なお、この関係式を書き換えると、0.05D≦L<0.19Dとなる。例えば、プロペラファン9の直径Dを800mmとした場合に、熱交換器8とプロペラファン9との水平方向の離間距離Lが40mm~152mmとなる。また、プロペラファン9の直径Dを900mmとした場合には、直径が拡大した分だけ風速が増加するため、熱交換器8とプロペラファン9との水平方向の離間距離Lが、プロペラファン9の直径Dを800mmに比べて大きい、45mm~171mmとなる。 In this embodiment, the contact angle of water on the surface of the heat exchanger 8 is 50 ° or less by performing hydrophilic treatment (surface treatment). Further, when the horizontal distance between the heat exchanger 8 and the propeller fan 9 is L and the diameter of the propeller fan 9 is D, a position where the relational expression of 0.05 ≦ L / D <0.19 holds. Is arranged. When this relational expression is rewritten, 0.05D ≦ L <0.19D. For example, when the diameter D of the propeller fan 9 is 800 mm, the horizontal distance L between the heat exchanger 8 and the propeller fan 9 is 40 mm to 152 mm. Further, when the diameter D of the propeller fan 9 is set to 900 mm, the wind speed increases as the diameter increases, so that the horizontal separation distance L between the heat exchanger 8 and the propeller fan 9 is equal to that of the propeller fan 9. The diameter D is 45 mm to 171 mm, which is larger than 800 mm.
 図4および図5に示すように、熱交換器8に対して水平方向に空気Kが通過すると、その表面から結露水が飛翔される。例えば、熱交換器8の上下方向の寸法を一般的なサイズである300mmとし、プロペラファン9の直径Dを800mmとし、風速を1.5m/sとし、熱交換器8の表面の水の接触角を50°以下とした場合に、結露水の飛翔距離L’は、約40mmとなる。この結果から、熱交換器8とプロペラファン9との離間距離Lは、40mm以上あれば良いことが分かる。プロペラファン9による風速は直径に比例することから、ここで、L/D=40/800=0.05となる。図6に示すように、熱交換器8の表面の水の接触角が50°以下であるときに、L/Dの値が0.05となる。したがって、0.05D≦Lを満たしていれば、熱交換器8から飛翔した結露水がプロペラファン9にまで到達して室内に飛散することはなく、ドレンパン11上に落下して、排水処理される。 As shown in FIGS. 4 and 5, when the air K passes in the horizontal direction with respect to the heat exchanger 8, dew condensation water flies from the surface. For example, the vertical dimension of the heat exchanger 8 is 300 mm, which is a general size, the diameter D of the propeller fan 9 is 800 mm, the wind speed is 1.5 m / s, and the surface of the heat exchanger 8 is in contact with water. When the angle is 50 ° or less, the flying distance L ′ of the dew condensation water is about 40 mm. From this result, it can be seen that the separation distance L between the heat exchanger 8 and the propeller fan 9 may be 40 mm or more. Since the wind speed by the propeller fan 9 is proportional to the diameter, L / D = 40/800 = 0.05. As shown in FIG. 6, when the contact angle of water on the surface of the heat exchanger 8 is 50 ° or less, the value of L / D becomes 0.05. Therefore, if 0.05D ≦ L is satisfied, the condensed water flying from the heat exchanger 8 does not reach the propeller fan 9 and scatters in the room, falls on the drain pan 11 and is drained. The
 プロペラファン9の回転による風量は、直径Dが大きいほど大きくなる。その傾向はプロペラファン9も従来のターボファンもほぼ同等である。ここで、従来の4方向天井カセットタイプの室内ユニットにおける風量とL/Dの値の関係をパラメータにすると図7中の曲線Aの特性を示す。L/Dの値が大きくなればなるほどファン径が小さくなり、風量は低下する。なお、この場合のLは、ターボファンの端部と最も近接する熱交換器の端面との水平距離を、Dはターボファンの直径を意味している。 The air volume by the rotation of the propeller fan 9 increases as the diameter D increases. The tendency is almost the same for the propeller fan 9 and the conventional turbofan. Here, when the relationship between the air volume and the L / D value in a conventional four-way ceiling cassette type indoor unit is used as a parameter, the characteristic of curve A in FIG. 7 is shown. As the value of L / D increases, the fan diameter decreases and the air volume decreases. In this case, L represents the horizontal distance between the end of the turbofan and the end face of the closest heat exchanger, and D represents the diameter of the turbofan.
 続いて、この4方向天井カセットタイプの室内ユニットと同一外形サイズの筐体を用いて、吸込口を下面中央から側方に変更すると同時にファンをターボファンから同径Dのプロペラファン9に変更した場合を、曲線Bに示す。この比較において、同図から分かる通り、L/D=0、すなわちプロペラファン9と熱交換器8との隙間を“0”にできれば、約30%の風量アップとなる。これは、プロペラファン9の方がターボファンよりも、その特性として風量が大きくなることおよび筐体の構造により通風路における風向変更が少ないことによる。すなわち、従来の室内ユニットでは、吸込みから吹出しまで風向を360°変更しているが、本実施形態の場合、風向は90°しか曲がっていない点があげられる。但し、プロペラファン9を用いる場合には、前述の通り、結露水飛翔防止の観点から0.05≧L/Dを満たす必要がある。このため、図7中の曲線B上で0.05=L/Dの点Xを見ると、ファン風量は約111%となり、同じ筐体寸法の4方向天井カセットタイプの室内ユニットに対して風量のアップを得ることができる。 Subsequently, when using the same outer size casing as the four-way ceiling cassette type indoor unit, the suction port is changed from the center of the lower surface to the side, and at the same time the fan is changed from the turbo fan to the propeller fan 9 having the same diameter D. Is shown in curve B. In this comparison, as can be seen from the figure, if L / D = 0, that is, if the gap between the propeller fan 9 and the heat exchanger 8 can be set to “0”, the air volume is increased by about 30%. This is because the propeller fan 9 has a larger air volume as a characteristic than the turbo fan, and the change in the wind direction in the ventilation path is less due to the structure of the casing. That is, in the conventional indoor unit, the wind direction is changed by 360 ° from suction to blowing, but in the present embodiment, the wind direction is bent only 90 °. However, when the propeller fan 9 is used, it is necessary to satisfy 0.05 ≧ L / D from the viewpoint of preventing the dew condensation water flight as described above. For this reason, when the point X of 0.05 = L / D on the curve B in FIG. 7 is seen, the fan air volume is about 111%, which is the same as that of the four-way ceiling cassette type indoor unit having the same housing dimensions. You can get up.
 さらに、従来の4方向天井カセットタイプの室内ユニットでは、吹出口が筐体の下面の側方に設けられている。本実施形態の室内ユニット構造においては、吹出口7は筐体5の下面の中央に設けられるため、筐体5の下面の側方に吹出口を設ける必要がない。そこで、この部分のデッドスペース分だけ、内部の構造物である熱交換器またはファンを大きくすることができる。すなわち、同じ筐体の外形サイズでファンの直径を拡大することができる。 Furthermore, in the conventional four-way ceiling cassette type indoor unit, the air outlet is provided on the side of the lower surface of the housing. In the indoor unit structure of the present embodiment, since the air outlet 7 is provided at the center of the lower surface of the housing 5, it is not necessary to provide the air outlet on the side of the lower surface of the housing 5. Therefore, the heat exchanger or fan, which is an internal structure, can be enlarged by the amount of dead space in this portion. That is, the fan diameter can be enlarged with the same outer size of the casing.
 一般に、吹出口の幅は少なくとも3cmは必要であり、左右合わせて6cm分だけ熱交換器またはファン寸法が拡大できる。なお、この拡大寸法は、概ね0.07×(2L+D)に相当する。そこで、この余裕分だけプロペラファンの直径Dを拡大した場合の風量特性が図7中の曲線Cとなる。そして、この曲線C上において、0.05=L/Dの点Yでは、従来の4方向天井カセットタイプの室内ユニットに比して約144%の風量を得ることができる。そして、同曲線CからL/D=0.19の点Zにおいて、従来の4方向天井カセットタイプの室内ユニットと同じ100%の風量となる。実際には、従来の4方向天井カセットタイプの室内ユニットのターボファンにおいても、熱交換器との間に若干の隙間は必要になるので、全く隙間を0にすることはできない。 Generally, the width of the air outlet should be at least 3 cm, and the heat exchanger or fan size can be expanded by 6 cm in total. In addition, this enlarged dimension corresponds to approximately 0.07 × (2L + D). Therefore, the air flow characteristic when the diameter D of the propeller fan is enlarged by this margin is a curve C in FIG. On the curve C, at a point Y where 0.05 = L / D, an air volume of about 144% can be obtained as compared with a conventional four-way ceiling cassette type indoor unit. And from the same curve C, at the point Z of L / D = 0.19, it becomes the same 100% air volume as the conventional four-way ceiling cassette type indoor unit. Actually, even in the conventional turbo fan of the four-way ceiling cassette type indoor unit, a slight gap is required between the heat exchanger and the turbo fan, and the gap cannot be made zero at all.
 したがって、L/D<0.19であれば、同一サイズの従来の4方向天井カセットタイプの室内ユニットよりも確実に大風量を得ることができるようになる。なお、この際、側方の吹出口の削除によって熱交換器の寸法も大きくすることができるため、空調能力の増大を図ることもできる。 Therefore, if L / D <0.19, a larger air volume can be obtained more reliably than a conventional four-way ceiling cassette type indoor unit of the same size. At this time, since the dimensions of the heat exchanger can be increased by deleting the side outlets, the air conditioning capacity can be increased.
 このような観点から、本実施形態においては、熱交換器8とプロペラファン9との水平方向の離間距離をLとし、プロペラファン9の直径をDとしたときに、0.05≦L/D<0.19の関係式が成り立つようなプロペラファン9の直径を設定している。 From this point of view, in this embodiment, when the horizontal distance between the heat exchanger 8 and the propeller fan 9 is L and the diameter of the propeller fan 9 is D, 0.05 ≦ L / D The diameter of the propeller fan 9 is set such that the relational expression of <0.19 holds.
 以上の通り、本実施形態では、熱交換器8とプロペラファン9との水平方向の離間距離をLとし、プロペラファン9の直径をDとしたときに、0.05≦L/D<0.19の関係式が成り立つように、室内ユニット1を形成することで、吹出口7から結露水が落下してしまうことを防止しつつ、プロペラファン9の大型化を図り、風量を向上させることができる。 As described above, in the present embodiment, when the horizontal separation distance between the heat exchanger 8 and the propeller fan 9 is L and the diameter of the propeller fan 9 is D, 0.05 ≦ L / D <0. By forming the indoor unit 1 so that the relational expression 19 is satisfied, it is possible to increase the size of the propeller fan 9 and improve the air volume while preventing the condensed water from falling from the outlet 7. it can.
 (第2実施形態)
 次に、第2実施形態の空気調和機の室内ユニット1Aについて図8を用いて説明する。なお、前述した実施形態に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
(Second Embodiment)
Next, the indoor unit 1A of the air conditioner of the second embodiment will be described with reference to FIG. In addition, about the component same as the component shown by embodiment mentioned above, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図8に示すように、第2実施形態では、筐体5Aが、直接天井4に固定されている。つまり、筐体5Aの上面板12Aが天井4に接触した状態となっている。さらに、第1実施形態においては、筐体5内部の中央に設けられた擂り鉢形状を成すガイド部15の下端に、ファンモータ10を固定したが、第2実施形態では、単に四角形状の取り付け部15Aを上面板12に設け、この取り付け部15Aにファンモータ10を固定している。なお、筐体5Aは、上面板12Aと下面板13Aとが別部材で構成される。そして、ドレンパン11と一体となっている下面板13Aは、連結部材18と介してファンモータ10の基部もしくは取り付け部15Aに連結されている。この連結部材18は、ファンモータ10の基部から放射状に延びる棒状の部材である。 As shown in FIG. 8, in the second embodiment, the housing 5 </ b> A is directly fixed to the ceiling 4. That is, the top plate 12A of the housing 5A is in contact with the ceiling 4. Furthermore, in the first embodiment, the fan motor 10 is fixed to the lower end of the guide portion 15 having a bowl shape provided at the center inside the housing 5, but in the second embodiment, it is simply attached in a rectangular shape. A portion 15A is provided on the upper surface plate 12, and the fan motor 10 is fixed to the mounting portion 15A. In the housing 5A, the upper surface plate 12A and the lower surface plate 13A are configured as separate members. The bottom plate 13 </ b> A integrated with the drain pan 11 is connected to the base or mounting portion 15 </ b> A of the fan motor 10 via the connecting member 18. The connecting member 18 is a rod-shaped member that extends radially from the base of the fan motor 10.
 第2実施形態では、室内ユニット1Aが、ファンモータ10とドレンパン11とを互いに連結する連結部材18を備えることで、プロペラファン9とドレンパン11との水平方向の離間距離Lを一定に保ち、互いの衝突を防止しつつ、プロペラファン9とドレンパン11との隙間を小さく形成することができる。 In the second embodiment, the indoor unit 1A includes the connecting member 18 that connects the fan motor 10 and the drain pan 11 to each other, so that the horizontal separation distance L between the propeller fan 9 and the drain pan 11 is kept constant. The gap between the propeller fan 9 and the drain pan 11 can be made small while preventing the collision.
 本実施形態に係る空気調和機の室内ユニットを第1実施形態から第2実施形態に基づいて説明したが、いずれか1の実施形態において適用された構成を他の実施形態に適用しても良いし、各実施形態において適用された構成を組み合わせても良い。 Although the indoor unit of the air conditioner according to the present embodiment has been described based on the first to second embodiments, the configuration applied in any one of the embodiments may be applied to other embodiments. The configurations applied in each embodiment may be combined.
 なお、本実施形態では、熱交換器8が底面視で環状を成すが、その他の形状でも良い。例えば、熱交換器8が底面視で多角形状であっても良い。例えば、熱交換器8が、プロペラファン9の周囲を囲むように、四角形状を成していても良い。この場合の寸法設定は、プロペラファン9の端部と、このプロペラファン9に最も近い位置にある熱交換器8の端面との水平方向の離間距離をLとする。 In the present embodiment, the heat exchanger 8 is annular when viewed from the bottom, but may have other shapes. For example, the heat exchanger 8 may be polygonal when viewed from the bottom. For example, the heat exchanger 8 may have a quadrangular shape so as to surround the periphery of the propeller fan 9. In this case, the dimension is set such that the distance in the horizontal direction between the end of the propeller fan 9 and the end face of the heat exchanger 8 located closest to the propeller fan 9 is L.
 以上説明した実施形態によれば、吹出口から結露水が落下してしまうことを防止しつつ、プロペラファンの大型化を図り、風量を向上させることができる。 According to the embodiment described above, it is possible to increase the size of the propeller fan and improve the air volume while preventing the condensed water from falling from the outlet.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 1(1A)…室内ユニット、2…床、3…壁、4…天井、5(5A)…筐体、6…吸込口、7…吹出口、8…熱交換器、9…プロペラファン、10…ファンモータ、11…ドレンパン、12(12A)…上面板、13(13A)…下面板、14…固定部材、15…ガイド部、15A…取り付け部、16…案内面、17…吊り下げ部材、18…連結部材、19…冷媒配管、D…(プロペラファンの)直径、L…離間距離、L’…飛翔距離。 DESCRIPTION OF SYMBOLS 1 (1A) ... Indoor unit, 2 ... Floor, 3 ... Wall, 4 ... Ceiling, 5 (5A) ... Housing, 6 ... Suction inlet, 7 ... Air outlet, 8 ... Heat exchanger, 9 ... Propeller fan, 10 DESCRIPTION OF SYMBOLS ... Fan motor, 11 ... Drain pan, 12 (12A) ... Upper surface plate, 13 (13A) ... Lower surface plate, 14 ... Fixing member, 15 ... Guide part, 15A ... Mounting part, 16 ... Guide surface, 17 ... Hanging member, 18: connecting member, 19: refrigerant pipe, D: diameter of propeller fan, L: separation distance, L ′: flight distance.

Claims (6)

  1.  天井に固定される筐体と、
     前記筐体の外周側面に開口され、周囲から空気を吸い込む吸込口と、
     前記筐体の下面の中央部に開口され、空気を下向きに吹き出す吹出口と、
     前記筐体の内部に設けられ、底面視で環状を成す熱交換器と、
     前記熱交換器で囲まれ、かつ前記吹出口に対応する位置に設けられ、回転軸が垂直方向に延び、前記吸込口から吸い込まれた空気を前記吹出口から吹き出させるプロペラファンと、
     前記熱交換器の下方に設けられ、前記熱交換器で生じる結露水を受けるドレンパンと、
     を備え、
     前記熱交換器は、その表面の水の接触角が50°以下となるように表面処理が施され、
     前記熱交換器と前記プロペラファンとの水平方向の離間距離をLとし、前記プロペラファンの直径をDとしたときに、0.05≦L/D<0.19の関係式が成り立つように前記熱交換器と前記プロペラファンとを配置した、
     空気調和機の室内ユニット。
    A housing fixed to the ceiling;
    A suction port that is opened on the outer peripheral side surface of the housing and sucks air from the surroundings;
    An air outlet that is opened at the center of the lower surface of the housing and blows air downward;
    A heat exchanger that is provided inside the housing and has an annular shape in a bottom view;
    A propeller fan surrounded by the heat exchanger and provided at a position corresponding to the air outlet, the rotation axis extending in the vertical direction, and blowing out air sucked from the air inlet from the air outlet;
    A drain pan provided below the heat exchanger and receiving dew condensation water generated in the heat exchanger;
    With
    The heat exchanger is surface-treated so that the contact angle of water on the surface thereof is 50 ° or less,
    When the distance in the horizontal direction between the heat exchanger and the propeller fan is L and the diameter of the propeller fan is D, the relational expression 0.05 ≦ L / D <0.19 is established. A heat exchanger and the propeller fan are arranged,
    Indoor unit of air conditioner.
  2.  前記筐体は、前記天井よりも低い位置に設けられ、底面視で円形状または五角形以上の多角形状を成す、
     請求項1に記載の空気調和機の室内ユニット。
    The housing is provided at a position lower than the ceiling, and forms a circular shape or a polygonal shape of a pentagon or more in a bottom view.
    The indoor unit of the air conditioner according to claim 1.
  3.  ファンモータと前記ドレンパンとを互いに連結する連結部材を備える、
     請求項1または請求項2に記載の空気調和機の室内ユニット。
    A connecting member that connects the fan motor and the drain pan to each other;
    The indoor unit of the air conditioner according to claim 1 or 2.
  4.  前記筐体の上面板から内側に下方に突出され、ファンモータを支持するとともに、前記熱交換器を水平方向に通過した空気を下方に向けて案内する案内面が形成されたガイド部を備える、
     請求項1から請求項3のいずれか1項に記載の空気調和機の室内ユニット。
    Protruding inwardly from the top plate of the housing, and supporting a fan motor, and provided with a guide portion formed with a guide surface for guiding the air that has passed through the heat exchanger in the horizontal direction downward.
    The indoor unit of the air conditioner according to any one of claims 1 to 3.
  5.  前記ドレンパンが前記熱交換器の下方位置から前記吹出口の縁辺まで延びる、
     請求項1から請求項4のいずれか1項に記載の空気調和機の室内ユニット。
    The drain pan extends from a lower position of the heat exchanger to an edge of the outlet;
    The indoor unit of the air conditioner according to any one of claims 1 to 4.
  6.  前記ドレンパンが前記筐体の下面板と一体化される、
     請求項1から請求項5のいずれか1項に記載の空気調和機の室内ユニット。
    The drain pan is integrated with the bottom plate of the housing;
    The indoor unit of the air conditioner according to any one of claims 1 to 5.
PCT/JP2019/015126 2018-04-26 2019-04-05 Indoor unit for air conditioner WO2019208171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516184A JP7042334B2 (en) 2018-04-26 2019-04-05 Indoor unit of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-085639 2018-04-26
JP2018085639 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208171A1 true WO2019208171A1 (en) 2019-10-31

Family

ID=68295322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015126 WO2019208171A1 (en) 2018-04-26 2019-04-05 Indoor unit for air conditioner

Country Status (2)

Country Link
JP (1) JP7042334B2 (en)
WO (1) WO2019208171A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212618753U (en) * 2020-07-07 2021-02-26 广东美的制冷设备有限公司 Ceiling machine and air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224760U (en) * 1975-08-13 1977-02-21
JPS5665314U (en) * 1979-10-26 1981-06-01
JPS6272510U (en) * 1985-10-25 1987-05-09
JPH1144432A (en) * 1997-07-24 1999-02-16 Hitachi Ltd Air conditioner
JP2008157547A (en) * 2006-12-25 2008-07-10 Tokyo Electric Power Co Inc:The Ceiling-mounted indoor unit
WO2008126230A1 (en) * 2007-03-30 2008-10-23 Mitsubishi Electric Corporation Ceiling cassette type air conditioner and air conditioning system
JP2009168323A (en) * 2008-01-16 2009-07-30 Daikin Ind Ltd High place installation type air conditioner
JP4766169B2 (en) * 2008-12-15 2011-09-07 ダイキン工業株式会社 Ceiling embedded air conditioning indoor unit
JP2013210144A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum fin material
JP2017155973A (en) * 2016-02-29 2017-09-07 株式会社Uacj Fin material for heat exchanger and heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224760U (en) * 1975-08-13 1977-02-21
JPS5665314U (en) * 1979-10-26 1981-06-01
JPS6272510U (en) * 1985-10-25 1987-05-09
JPH1144432A (en) * 1997-07-24 1999-02-16 Hitachi Ltd Air conditioner
JP2008157547A (en) * 2006-12-25 2008-07-10 Tokyo Electric Power Co Inc:The Ceiling-mounted indoor unit
WO2008126230A1 (en) * 2007-03-30 2008-10-23 Mitsubishi Electric Corporation Ceiling cassette type air conditioner and air conditioning system
JP2009168323A (en) * 2008-01-16 2009-07-30 Daikin Ind Ltd High place installation type air conditioner
JP4766169B2 (en) * 2008-12-15 2011-09-07 ダイキン工業株式会社 Ceiling embedded air conditioning indoor unit
JP2013210144A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum fin material
JP2017155973A (en) * 2016-02-29 2017-09-07 株式会社Uacj Fin material for heat exchanger and heat exchanger

Also Published As

Publication number Publication date
JP7042334B2 (en) 2022-03-25
JPWO2019208171A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6732037B2 (en) Indoor unit and air conditioner
CN107076430B (en) Air conditioner
US10767874B2 (en) Ceiling-embedded air conditioner
KR102249321B1 (en) Air conditioner
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
CN104101068A (en) Blade assembly and air conditioner having the same
US7171823B2 (en) Air conditioner
WO2019208171A1 (en) Indoor unit for air conditioner
US20060005559A1 (en) Air conditioner
JP5860752B2 (en) Air conditioner
EP3951281A1 (en) Air-conditioner indoor unit and method for installing air-conditioner indoor unit
KR101419941B1 (en) Ceiling type air conditioner
US20160252259A1 (en) Indoor Unit of Air Conditioner and Air Conditioner Including the Same
KR102522048B1 (en) Ceiling type air conditioner
JP2015068561A (en) Indoor unit for air conditioner
JP6323469B2 (en) Indoor unit of air conditioner
JP5558449B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP2007051790A (en) Air-conditioning indoor unit
JP6340694B2 (en) Blower
KR102149109B1 (en) Fan coil unit
JP7236536B2 (en) Air conditioner indoor unit
KR100789817B1 (en) centrifugal fan of air-conditioner
WO2023152802A1 (en) Indoor unit and air conditioning device comprising same
WO2022107209A1 (en) Indoor unit, and refrigeration cycle device
JP2005164206A (en) Indoor unit for air conditioner, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792948

Country of ref document: EP

Kind code of ref document: A1