WO2019207874A1 - Optical glass, optical element using same, optical system, interchangeable lens for camera, and optical device - Google Patents

Optical glass, optical element using same, optical system, interchangeable lens for camera, and optical device Download PDF

Info

Publication number
WO2019207874A1
WO2019207874A1 PCT/JP2019/002929 JP2019002929W WO2019207874A1 WO 2019207874 A1 WO2019207874 A1 WO 2019207874A1 JP 2019002929 W JP2019002929 W JP 2019002929W WO 2019207874 A1 WO2019207874 A1 WO 2019207874A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical glass
abbe number
content
glass
Prior art date
Application number
PCT/JP2019/002929
Other languages
French (fr)
Japanese (ja)
Inventor
辰典 川嶋
山本 博史
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020516032A priority Critical patent/JP7294327B2/en
Publication of WO2019207874A1 publication Critical patent/WO2019207874A1/en
Priority to JP2023094613A priority patent/JP2023116631A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, an optical element using the optical glass, an optical system, an interchangeable lens for a camera, and an optical device.
  • the present invention claims the priority of Japanese Patent Application No. 2018-082588 filed on April 23, 2018, and for the designated countries where weaving by reference of documents is permitted, the contents described in the application are as follows: Incorporated into this application by reference.
  • Patent Document 1 discloses an optical glass made of fluorophosphate glass.
  • the first aspect of the present invention is, in mass percentage, SiO 2 : 10 to 30%, B 2 O 3 : 6 to 20%, Nb 2 O 5 : 25 to 50%, K 2 O: 15 to 30%, TiO 2 : 0 to 8%, P 2 O 5 : 0 to 8%, RO (wherein R represents at least one selected from the group consisting of Ca, Sr, Ba and Zn): 0 to 4 %, Li 2 O: 0 ⁇ 10%, a ratio of TiO 2 with respect to Nb 2 O 5 (TiO 2 / Nb 2 O 5) is 0 to 0.3, the optical glass.
  • the second aspect of the present invention is an optical element using the above-described optical glass.
  • a third aspect of the present invention is an optical system including the above-described optical element.
  • 4th aspect of this invention is the interchangeable lens for cameras containing the above-mentioned optical system.
  • a fifth aspect of the present invention is an optical device including the above-described optical system.
  • FIG. 1 is a perspective view of an imaging apparatus including an optical element using the optical glass according to the present embodiment.
  • 2A and 2B are schematic views of another example of an imaging apparatus including an optical element using the optical glass according to the present embodiment, and FIG. 2A is a front view of the imaging apparatus.
  • FIG. 2B is a rear view of the imaging apparatus.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a multiphoton microscope including an optical element using the optical glass according to the present embodiment.
  • FIG. 4 is a graph plotting ⁇ 5 and ⁇ d of each example and each comparative example.
  • FIG. 5 is a graph in which ⁇ P g, F and ⁇ d of each example and each comparative example are plotted.
  • Figure 6 is a graph plotting P g, F and [nu d of Examples and Comparative Examples.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the optical glass according to the present embodiment is a SiO 2 —B 2 O 3 —Nb 2 O 5 —K 2 O-based optical glass, and has a mass percentage of SiO 2 : 10 to 30%, B 2 O 3 : 6. ⁇ 20%, Nb 2 O 5 : 25 ⁇ 50%, K 2 O: 15 ⁇ 30%, TiO 2 : 0 ⁇ 8%, P 2 O 5 : 0 ⁇ 8%, RO (wherein R is Ca And represents at least one selected from the group consisting of Sr, Ba, and Zn.): 0 to 4%, Li 2 O: 0 to 10%, and the content of TiO 2 with respect to the content of Nb 2 O 5 The ratio (TiO 2 / Nb 2 O 5 ) is 0 to 0.3.
  • the content of each component is assumed to be% by mass with respect to the total weight of the glass in terms of oxide composition.
  • oxide equivalent composition means that oxides, composite salts, etc. used as raw materials for glass constituent components are all decomposed and changed to oxides when melted, and the total mass of the oxides is 100%. It is the composition which described each component contained in glass.
  • a material for optical glass used in such an optical device a glass material having a high transmittance in the ultraviolet region or the like is desired.
  • chromatic aberration is corrected (achromaticity) by combining glass materials having different refractive indexes and dispersions. From the viewpoint of performing such achromaticity, high dispersion is achieved.
  • a glass material having a small partial dispersion ratio while having a small Abbe number is desired.
  • the optical glass having high dispersion has a problem that the relationship between the Abbe number and the partial dispersion ratio greatly deviates from the linear relationship (reference line) in the positive direction, and the positive anomalous dispersion becomes large.
  • the optical glass according to the present embodiment has high dispersion and a low partial dispersion ratio (P g, F ) with respect to the Abbe number ( ⁇ d ). Further, the optical glass according to the present embodiment has a high transmittance in a wide region including the ultraviolet light region. Furthermore, as a preferable aspect of the present embodiment, for example, 1.60 ⁇ n d ⁇ 1.80, 25 ⁇ ⁇ d ⁇ 35, and n d ⁇ ⁇ 0.04 ⁇ ⁇ d +3.00.
  • the wavelength at which the internal transmittance is 5% is ⁇ 5 ⁇ 355 nm
  • the anomalous dispersion value is ⁇ P g, F ⁇ 0.0080
  • P g, F ⁇ ⁇ 0 is an optical glass satisfying the relationship of 0030 ⁇ ⁇ d +0.6900.
  • Such an optical glass has a high internal transmittance of ultraviolet light and a low partial dispersion ratio (P g, F ) with respect to the Abbe number ( ⁇ d ), and the relationship between the Abbe number and the partial dispersion ratio is linear. It is controlled to approximate the relationship (reference line). That is, the optical glass has a small deviation of the partial dispersion ratio from the reference line in the positive direction and low positive anomalous dispersion.
  • internal transmittance of the ultraviolet region, the refractive index with respect to the Abbe number ( ⁇ d) (n d) , the partial dispersion ratio Abbe number ( ⁇ d) (P g, F) also has a unique optical glass Is possible. Since the optical glass according to the present embodiment has such characteristics, it can sufficiently satisfy the above-described requirements.
  • SiO 2 is an oxide that forms glass and can improve devitrification resistance. On the other hand, if it is contained in a large amount, the meltability tends to deteriorate and the Abbe number tends to increase. From this viewpoint, the content is 10 to 30%. Further, the upper limit of the content may be 29% or 28%. The lower limit of the content may be 12% or 15%.
  • B 2 O 3 is an oxide that forms glass, and can improve meltability. Further, the refractive index can be lowered with respect to the Abbe number. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered, and the Abbe number tends to be increased. From this viewpoint, the content is 6 to 20%. The upper limit of the content may be 19% or 18%. Further, the lower limit of the content may be 7% or 8%.
  • Nb 2 O 5 is an effective component for obtaining a desired Abbe number. Further, the refractive index can be lowered with respect to the Abbe number. On the other hand, when it is contained in a large amount, devitrification resistance and meltability are lowered, the partial dispersion ratio with respect to the Abbe number is increased, and the transmittance tends to be deteriorated. From this viewpoint, the content is 25 to 50%. Further, the upper limit of the content is preferably 49%, more preferably 48%. Further, the lower limit of the content is preferably 27%, more preferably 29%.
  • K 2 O is an effective component for obtaining a desired partial dispersion ratio with respect to the Abbe number. Further, the transmittance can be improved. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered and the Abbe number tends to be increased. From this viewpoint, the content is 15 to 30%. Further, the upper limit of the content may be 26% or 22%. Moreover, the lower limit of the content may be more than 15% and may be 15.5%.
  • TiO 2 is an optional component that can lower the refractive index relative to the Abbe number when it exceeds 0%. On the other hand, if it is contained in a large amount, the transmittance tends to deteriorate. From such a viewpoint, the content is 0 to 8%.
  • the upper limit of the content may be 6% or 4%.
  • the lower limit of the content may be over 0% or 1%.
  • the content ratio of TiO 2 to the content of Nb 2 O 5 (TiO 2 / Nb 2 O 5) is 0 to 0.3.
  • the upper limit value of the ratio may be 0.25 or 0.24.
  • the lower limit value of the ratio may be greater than 0 or 0.01.
  • P 2 O 5 is an optional component that lowers the refractive index relative to the Abbe number when it exceeds 0%.
  • the content is 0 to 8%.
  • the upper limit of the content may be 7% or 6%.
  • the lower limit of the content may be over 0% or 1%.
  • RO represents one or more selected from the group consisting of Ca, Sr, Ba, and Zn
  • R represents one or more selected from the group consisting of Ca, Sr, Ba, and Zn
  • the total content of components corresponding to RO is 0 to 4%.
  • the upper limit of the total content may be 3% or 2%.
  • the lower limit of the total content may be more than 0% or 0.3%.
  • Li 2 O is an optional component that lowers the partial dispersion ratio relative to the Abbe number and improves the transmittance when it exceeds 0%.
  • the content is 0 to 10%.
  • the upper limit of the content may be 8% or 7%.
  • the lower limit of the content may be over 0% or 1%.
  • Na 2 O is an optional component that lowers the partial dispersion ratio relative to the Abbe number and improves the transmittance when it exceeds 0%.
  • the content is 0 to 10%.
  • the upper limit of the content may be 8% or 7%.
  • the lower limit of the content may be over 0% or 1%.
  • ZrO 2 is an optional component that lowers the partial dispersion ratio relative to the Abbe number without increasing the Abbe number when it exceeds 0%.
  • the content is 0 to 12%.
  • the upper limit of the content may be 10% or 8%.
  • the lower limit of the content may be over 0%, or 1%.
  • Ta 2 O 5 is an optional component that keeps the Abbe number low when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance tends to be lowered. From this viewpoint, the content is 0 to 12%. Moreover, the upper limit of the content may be 10% or 8%. Moreover, the lower limit of the content may be over 0%, or 2%.
  • WO 3 is an optional component that keeps the Abbe number low when it exceeds 0%. On the other hand, if it is contained in a large amount, the transmittance tends to deteriorate. From such a viewpoint, the content is 0 to 5%. Further, the upper limit of the content may be 4% or 3%. Moreover, the lower limit of the content may be over 0% or 1%.
  • Sb 2 O 3 is an optional component effective for clarifying and homogenizing glass when it contains more than 0%. From such a viewpoint, the content is preferably 0 to 1%.
  • the optical glass according to the present embodiment having the above-described component composition is highly dispersed, has a high internal transmittance in a wide region including the ultraviolet region, and has a partial dispersion ratio with respect to the Abbe number ( ⁇ d ) ( Pg, F ) is low. In particular, such characteristics can be maintained even in a medium refractive index high dispersion region.
  • the preferred refractive index (n d) is in the range of 1.60 to 1.80
  • the preferred Abbe number ( ⁇ d ) is in the range of 25 to 35.
  • the refractive index (n d ) is in the range of 1.60 to 1.80
  • the Abbe number ( ⁇ d ) is such that the desired characteristics can be more satisfactorily exhibited even in the medium refractive index high dispersion region. Examples thereof include those in the range of 25 to 35 and satisfying the relationship represented by the formula (1).
  • the optical glass which concerns on this embodiment has a high ultraviolet light transmittance.
  • an optical glass having good transmittance in the ultraviolet light region and a low partial dispersion ratio with respect to the Abbe number can be obtained.
  • a preferred specific example thereof is an optical glass having a wavelength ( ⁇ 5 ) at which the internal transmittance is 5% is 355 nm or less.
  • an optical glass having an anomalous dispersion value ( ⁇ P g, F ) of 0.0080 or less can be given.
  • the anomalous dispersion value is an index of anomalous dispersion, and a specific definition will be described later.
  • the anomalous dispersion value ( ⁇ P g, F ) increases as the dispersibility of the optical glass increases, particularly in the medium refractive index high dispersion region.
  • the partial dispersion ratio (P g, F ) and the Abbe number ( ⁇ d ) satisfy the relationship represented by the following formula (2). P g, F ⁇ ⁇ 0.003 ⁇ d +0.6900 (2)
  • the wavelength ( ⁇ 5 ) satisfying the relationship represented by the above formula (2) and having an internal transmittance of 5% is 355 nm or less.
  • the anomalous dispersion value ( ⁇ P g, F ) is 0.0080 or less.
  • An optical glass having these characteristics also has a high internal transmittance of ultraviolet light and a low partial dispersion ratio (P g, F ) with respect to the Abbe number ( ⁇ d ) even in a medium refractive index high dispersion region. .
  • optical glass according to the present embodiment having the above-described characteristics can be suitably used as an optical element used in an optical device or the like, for example.
  • optical elements include mirrors, lenses, prisms, filters, and the like.
  • the optical system including such an optical element include an objective lens, a condenser lens, an imaging lens, and an interchangeable lens for a camera.
  • these optical systems can be suitably used for optical devices such as imaging devices such as interchangeable lens cameras and non-lens interchangeable cameras, and microscopes such as multiphoton microscopes.
  • Such an optical device is not limited to the above-described imaging device and microscope, and includes a video camera, a teleconverter, a telescope, binoculars, monoculars, a laser rangefinder, a projector, and the like. Examples of these will be described below.
  • FIG. 1 is a perspective view of an example in which an optical device is an imaging device.
  • the imaging device 1 is a so-called digital single-lens reflex camera (lens interchangeable camera), and the photographing lens 103 (optical system) includes an optical element having the optical glass according to the present embodiment as a base material.
  • a lens barrel 102 is detachably attached to a lens mount (not shown) of the camera body 101. Then, light passing through the photographing lens 103 of the lens barrel 102 is imaged on a sensor chip (solid-state imaging device) 104 of a multichip module 106 disposed on the back side of the camera body 101.
  • the sensor chip 104 is a bare chip such as a so-called CMOS image sensor, and the multi-chip module 106 is, for example, a COG (Chip On Glass) type module in which the sensor chip 104 is mounted on the glass substrate 105 as a bare chip.
  • COG Chip On Glass
  • FIG. 2 is a schematic diagram of another example in which the optical device is an imaging device.
  • 2A is a front view of the imaging device CAM
  • FIG. 2B is a rear view of the imaging device CAM.
  • the imaging device CAM is a so-called digital still camera (lens non-exchangeable camera), and the photographing lens WL (optical system) includes an optical element having the optical glass according to the present embodiment as a base material.
  • the imaging device CAM presses a power button (not shown), the shutter (not shown) of the photographing lens WL is opened, and the light from the subject (object) is condensed by the photographing lens WL and arranged on the image plane. An image is formed on the image sensor.
  • the subject image formed on the image sensor is displayed on the liquid crystal monitor M arranged behind the image pickup device CAM. The photographer determines the composition of the subject image while looking at the liquid crystal monitor M, and then depresses the release button B1 to capture the subject image with the image sensor, and records and saves it in a memory (not shown).
  • the imaging device CAM is provided with an auxiliary light emitting unit EF that emits auxiliary light when the subject is dark, a function button B2 used for setting various conditions of the imaging device CAM, and the like.
  • FIG. 3 is a block diagram illustrating an example of the configuration of the multiphoton microscope 2.
  • the multiphoton microscope 2 includes an objective lens 206, a condensing lens 208, and an imaging lens 210. At least one of the objective lens 206, the condensing lens 208, and the imaging lens 210 includes an optical element that uses the optical glass according to the present embodiment as a base material.
  • the optical system of the multiphoton microscope 2 will be mainly described.
  • the pulse laser device 201 emits, for example, an ultrashort pulse light having a near infrared wavelength (about 1000 nm) and a pulse width in femtosecond units (for example, 100 femtoseconds).
  • the ultrashort pulse light immediately after being emitted from the pulse laser device 201 is generally linearly polarized light polarized in a predetermined direction.
  • the pulse splitting device 202 splits the ultrashort pulse light and emits it with a high repetition frequency of the ultrashort pulse light.
  • the beam adjusting unit 203 has a function of adjusting the beam diameter of the ultrashort pulse light incident from the pulse dividing device 202 according to the pupil diameter of the objective lens 206, the wavelength of the multiphoton excitation light emitted from the sample S, and the ultrashort wavelength. Function to adjust the focusing and divergence angle of ultrashort pulse light to correct axial chromatic aberration (focus difference) with the wavelength of the pulsed light, while the pulse width of ultrashort pulse light passes through the optical system In order to correct the spread due to the velocity dispersion, a pre-chirp function (group velocity dispersion compensation function) for imparting the reverse group velocity dispersion to the ultrashort pulse light is provided.
  • group velocity dispersion compensation function group velocity dispersion compensation function
  • the repetition frequency of the ultrashort pulse light emitted from the pulse laser device 201 is increased by the pulse dividing device 202, and the above-described adjustment is performed by the beam adjusting unit 203.
  • the ultrashort pulse light emitted from the beam adjusting unit 203 is reflected by the dichroic mirror 204 in the direction of the dichroic mirror 205, passes through the dichroic mirror 205, is collected by the objective lens 206, and is irradiated onto the sample S. .
  • the ultrashort pulse light may be scanned on the observation surface of the sample S by using a scanning unit (not shown).
  • the fluorescent dye in which the sample S is stained is multiphoton excited in the vicinity of the irradiated region of the sample S with the ultrashort pulse light and in the vicinity thereof. Fluorescence having a shorter wavelength than the pulsed light (hereinafter referred to as “observation light”) is emitted.
  • Observation light emitted from the sample S in the direction of the objective lens 206 is collimated by the objective lens 206 and reflected by the dichroic mirror 205 or transmitted through the dichroic mirror 205 depending on the wavelength.
  • the observation light reflected by the dichroic mirror 205 enters the fluorescence detection unit 207.
  • the fluorescence detection unit 207 includes, for example, a barrier filter, a PMT (photomultiplier tube), and the like, receives observation light reflected by the dichroic mirror 205, and outputs an electrical signal corresponding to the amount of light. . Further, the fluorescence detection unit 207 detects observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
  • the observation light that has passed through the dichroic mirror 205 is descanned by a scanning unit (not shown), passes through the dichroic mirror 204, is condensed by the condenser lens 208, and is at a position almost conjugate with the focal position of the objective lens 206. It passes through the provided pinhole 209, passes through the imaging lens 210, and enters the fluorescence detection unit 211.
  • the fluorescence detection unit 211 includes, for example, a barrier filter, a PMT, and the like, receives the observation light imaged on the light receiving surface of the fluorescence detection unit 211 by the imaging lens 210, and outputs an electric signal corresponding to the light amount. In addition, the fluorescence detection unit 211 detects the observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
  • the fluorescence detection unit 213 includes, for example, a barrier filter, a PMT, and the like, receives observation light reflected by the dichroic mirror 212, and outputs an electrical signal corresponding to the amount of light. Further, the fluorescence detection unit 213 detects observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
  • the electrical signals output from the fluorescence detection units 207, 211, and 213 are input to, for example, a computer (not shown), and the computer generates an observation image based on the input electrical signal and generates the generated observation. Images can be displayed and observation image data can be stored.
  • optical glass according to each example and each comparative example was produced by the following procedure. First, glass raw materials such as oxides, hydroxides, carbonates, phosphoric acid compounds (phosphates, orthophosphoric acids, etc.), and nitrates so as to have the chemical compositions (mass%) shown in Tables 2 to 10. Was weighed. Next, the weighed raw materials were mixed, put into a platinum crucible, melted at a temperature of 1100 to 1400 ° C. for about 1 hour, and homogenized with stirring. Then, after lowering to an appropriate temperature, each sample was obtained by casting into a mold or the like and gradually cooling.
  • glass raw materials such as oxides, hydroxides, carbonates, phosphoric acid compounds (phosphates, orthophosphoric acids, etc.), and nitrates so as to have the chemical compositions (mass%) shown in Tables 2 to 10.
  • the weighed raw materials were mixed, put into a platinum crucible, melted at a temperature of 1100 to 1400 ° C. for about
  • the partial dispersion ratio (P g, F ) is the ratio of (n g -n F ) to the main dispersion (n F -n C ).
  • n F is the refractive index of the glass for light (F-line) having a wavelength of 486.133 nm
  • n C is the refractive index of the glass for light (C-line) having a wavelength of 656.273 nm
  • ng is , The refractive index of the glass with respect to light (g-line) having a wavelength of 435.835 nm.
  • the anomalous dispersion value ( ⁇ P g, F ) is an index indicating anomalous dispersion and was calculated by the following method. First, two glass types “NSL7” and “PBM2” (both OHARA Glass Co., Ltd.) having the Abbe number ( ⁇ d ) and the partial dispersion ratio (P g, F ) shown in Table 1 were used as reference materials. .
  • the partial dispersion ratio (P g, F ) is taken on the vertical axis
  • the Abbe number ( ⁇ d ) is taken on the horizontal axis
  • a straight line connecting the two points corresponding to the above-mentioned reference material was taken as the reference line.
  • the value of each Example and each comparative example was plotted on the said graph, and the difference of the vertical axis
  • Tables 2 to 10 show the composition (mass basis), refractive index (n d ), Abbe number ( ⁇ d ), partial dispersion ratio (P g, F ), and formula (i) of each example and each comparative example.
  • wavelength ( ⁇ 5 ) at which the internal transmittance is 5%
  • anomalous dispersion value ( ⁇ P g, F ) Represents a value of P g, F + 0.0030 ⁇ ⁇ d ⁇ 0.6900 (see formula (2)).
  • equation (i) If the value of equation (i) is 0 or a negative value, the relationship of equation (1) (n d ⁇ ⁇ 0.04 ⁇ ⁇ d +3.00) is satisfied. Further, if the value of the formula (ii) is 0 or a negative value, the relationship of the formula (2) (P g, F ⁇ ⁇ 0.0030 ⁇ ⁇ d +0.6900) is satisfied.
  • FIG. 4 shows a graph plotting ⁇ 5 and ⁇ d of each example and each comparative example
  • FIG. 5 shows a graph plotting ⁇ P g, F and ⁇ d of each example and each comparative example
  • 6 shows a graph plotting P g, F and [nu d of examples and Comparative examples.
  • Formula (i) n d + 0.04 ⁇ ⁇ d ⁇ 3.00
  • Formula (ii) P g, F + 0.0030 ⁇ ⁇ d ⁇ 0.6900
  • the optical glass of each example had a high internal transmittance and a low partial dispersion ratio (P g, F ) with respect to the Abbe number ( ⁇ d ).
  • P g, F partial dispersion ratio
  • the Abbe number and the part It was confirmed that the deviation from the reference line indicating the relationship of the dispersion ratio was small and the positive anomalous dispersion was low.
  • the sample was devitrified, so that it could not be used as optical glass, the transmittance was poor, or the partial dispersion ratio was large and the positive anomalous dispersibility was high.
  • SYMBOLS 1 Imaging device, 101 ... Camera body, 102 ... Lens barrel, 103 ... Shooting lens, 104 ... Sensor chip, 105 ... Glass substrate, 106 ... Multichip module DESCRIPTION OF SYMBOLS 2 ... Multiphoton microscope, 201 ... Pulse laser apparatus, 202 ... Pulse splitting apparatus, 203 ... Beam adjustment part, 204, 205, 212 ... Dichroic mirror, 206 ... Objective lens , 207, 211, 213... Fluorescence detection unit, 208... Condensing lens, 209... Pinhole, 210.
  • EF Auxiliary light emitting unit
  • M Liquid crystal monitor
  • B1 Release button
  • B2 Function button
  • S Sample

Abstract

Provided is an optical glass containing, on a mass basis: 10-30% of SiO2; 6-20% of B2O3; 25-50% of Nb2O5; 15-30% of K2O; 0-8% of TiO2; 0-8% of P2O5; 0-4% of RO (wherein R represents at least one selected from the group consisting of Ca, Sr, Ba and Zn); and 0-10% of Li2O. The ratio (TiO2/Nb2O5) of the TiO2 content to the Nb2O5 content is 0-0.3.

Description

光学ガラス、これを用いた光学素子、光学系、カメラ用交換レンズ、及び光学装置Optical glass, optical element using the same, optical system, interchangeable lens for camera, and optical apparatus
 本発明は、光学ガラス、これを用いた光学素子、光学系、カメラ用交換レンズ、及び光学装置に関する。本発明は2018年4月23日に出願された日本国特許の出願番号2018-082588の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to an optical glass, an optical element using the optical glass, an optical system, an interchangeable lens for a camera, and an optical device. The present invention claims the priority of Japanese Patent Application No. 2018-082588 filed on April 23, 2018, and for the designated countries where weaving by reference of documents is permitted, the contents described in the application are as follows: Incorporated into this application by reference.
 例えば、特許文献1には、フツリン酸ガラスからなる光学ガラスが開示されている。 For example, Patent Document 1 discloses an optical glass made of fluorophosphate glass.
特開2009-286670号公報JP 2009-286670 A
 本発明の第一の態様は、質量百分率で、SiO:10~30%、B:6~20%、Nb:25~50%、KO:15~30%、TiO:0~8%、P:0~8%、RO(式中、Rは、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一つを表す。):0~4%、LiO:0~10%、であり、Nbに対するTiOの比(TiO/Nb)が、0~0.3である、光学ガラスである。 The first aspect of the present invention is, in mass percentage, SiO 2 : 10 to 30%, B 2 O 3 : 6 to 20%, Nb 2 O 5 : 25 to 50%, K 2 O: 15 to 30%, TiO 2 : 0 to 8%, P 2 O 5 : 0 to 8%, RO (wherein R represents at least one selected from the group consisting of Ca, Sr, Ba and Zn): 0 to 4 %, Li 2 O: 0 ~ 10%, a ratio of TiO 2 with respect to Nb 2 O 5 (TiO 2 / Nb 2 O 5) is 0 to 0.3, the optical glass.
 本発明の第二の態様は、上述の光学ガラスを用いた光学素子である。 The second aspect of the present invention is an optical element using the above-described optical glass.
 本発明の第三の態様は、上述の光学素子を含む光学系である。 A third aspect of the present invention is an optical system including the above-described optical element.
 本発明の第四の態様は、上述の光学系を含むカメラ用交換レンズである。 4th aspect of this invention is the interchangeable lens for cameras containing the above-mentioned optical system.
 本発明の第五の態様は、上述の光学系を備える光学装置である。 A fifth aspect of the present invention is an optical device including the above-described optical system.
図1は、本実施形態に係る光学ガラスを用いた光学素子を備える撮像装置の斜視図である。FIG. 1 is a perspective view of an imaging apparatus including an optical element using the optical glass according to the present embodiment. 図2(a)、(b)は、本実施形態に係る光学ガラスを用いた光学素子を備える撮像装置の他の例の概略図であり、図2(a)は撮像装置の正面図であり、図2(b)は撮像装置の背面図である。2A and 2B are schematic views of another example of an imaging apparatus including an optical element using the optical glass according to the present embodiment, and FIG. 2A is a front view of the imaging apparatus. FIG. 2B is a rear view of the imaging apparatus. 図3は、本実施形態に係る光学ガラスを用いた光学素子を備える多光子顕微鏡の構成の例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a configuration of a multiphoton microscope including an optical element using the optical glass according to the present embodiment. 図4は、各実施例及び各比較例のλとνをプロットしたグラフである。FIG. 4 is a graph plotting λ 5 and ν d of each example and each comparative example. 図5は、各実施例及び各比較例のΔPg,Fとνをプロットしたグラフである。FIG. 5 is a graph in which ΔP g, F and ν d of each example and each comparative example are plotted. 図6は、各実施例及び各比較例のPg,Fとνをプロットしたグラフである。Figure 6 is a graph plotting P g, F and [nu d of Examples and Comparative Examples.
 以下、本発明の実施形態(以下、「本実施形態」という。)について説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
 本実施形態に係る光学ガラスは、SiO-B-Nb-KO系の光学ガラスであり、質量百分率で、SiO:10~30%、B:6~20%、Nb:25~50%、KO:15~30%、TiO:0~8%、P:0~8%、RO(式中、Rは、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一つを表す。):0~4%、LiO:0~10%、であり、Nbの含有量に対するTiOの含有量の比(TiO/Nb)が、0~0.3である。 The optical glass according to the present embodiment is a SiO 2 —B 2 O 3 —Nb 2 O 5 —K 2 O-based optical glass, and has a mass percentage of SiO 2 : 10 to 30%, B 2 O 3 : 6. ~ 20%, Nb 2 O 5 : 25 ~ 50%, K 2 O: 15 ~ 30%, TiO 2 : 0 ~ 8%, P 2 O 5 : 0 ~ 8%, RO (wherein R is Ca And represents at least one selected from the group consisting of Sr, Ba, and Zn.): 0 to 4%, Li 2 O: 0 to 10%, and the content of TiO 2 with respect to the content of Nb 2 O 5 The ratio (TiO 2 / Nb 2 O 5 ) is 0 to 0.3.
 本明細書中において、特に断りがない場合は、各成分の含有量は全て酸化物換算組成のガラス全重量に対する質量%であるものとする。ここでいう酸化物換算組成とは、ガラス構成成分の原料として使用される酸化物、複合塩等が溶融時に全て分解されて酸化物に変化すると仮定し、当該酸化物の総質量を100%として、ガラス中に含有される各成分を表記した組成である。 In this specification, unless otherwise specified, the content of each component is assumed to be% by mass with respect to the total weight of the glass in terms of oxide composition. As used herein, the oxide equivalent composition means that oxides, composite salts, etc. used as raw materials for glass constituent components are all decomposed and changed to oxides when melted, and the total mass of the oxides is 100%. It is the composition which described each component contained in glass.
 従来、蛍光顕微鏡等をはじめとする紫外光を利用した顕微鏡観察が盛んに行われている。こういった光学装置に用いる光学ガラスの材料等として、紫外光領域等において高透過率である硝材が望まれている。また、このような光学装置における光学系では、屈折率や分散が異なる硝材を組み合わせることで色収差を補正すること(色消し)が行われており、このような色消しを行う観点から、高分散(アッベ数が小さい)でありながら部分分散比の小さい硝材が望まれている。 Conventionally, microscopic observation using ultraviolet light such as a fluorescence microscope has been actively performed. As a material for optical glass used in such an optical device, a glass material having a high transmittance in the ultraviolet region or the like is desired. Moreover, in an optical system in such an optical apparatus, chromatic aberration is corrected (achromaticity) by combining glass materials having different refractive indexes and dispersions. From the viewpoint of performing such achromaticity, high dispersion is achieved. A glass material having a small partial dispersion ratio while having a small Abbe number is desired.
 しかしながら、一般的な光学ガラスの特性として、分散が高くなるにしたがいアッベ数(ν)に対する部分分散比(Pg,F)が高くなる傾向にある。そのため、高分散である光学ガラスは、アッベ数と部分分散比の関係が直線関係(基準線)から正の方向へ大きく偏差し、正の異常分散性が大きくなってしまうといった問題があった。 However, as a characteristic of general optical glass, the partial dispersion ratio (P g, F ) with respect to the Abbe number (ν d ) tends to increase as the dispersion increases. Therefore, the optical glass having high dispersion has a problem that the relationship between the Abbe number and the partial dispersion ratio greatly deviates from the linear relationship (reference line) in the positive direction, and the positive anomalous dispersion becomes large.
 この点、本実施形態に係る光学ガラスは、高分散であり、かつ、アッベ数(ν)に対する部分分散比(Pg,F)が低いものである。また、本実施形態に係る光学ガラスは、紫外光領域を含む広い領域における透過率も高い。さらには、本実施形態の好適な一態様として、例えば、1.60≦n≦1.80、25≦ν≦35、かつ、n≦-0.04×ν+3.00である中屈折率高分散領域において、内部透過率が5%となる波長がλ≦355nmであり、異常分散値がΔPg,F≦0.0080であり、かつ、Pg,F≦-0.0030×ν+0.6900の関係を満たす光学ガラスを実現可能である。 In this regard, the optical glass according to the present embodiment has high dispersion and a low partial dispersion ratio (P g, F ) with respect to the Abbe number (ν d ). Further, the optical glass according to the present embodiment has a high transmittance in a wide region including the ultraviolet light region. Furthermore, as a preferable aspect of the present embodiment, for example, 1.60 ≦ n d ≦ 1.80, 25 ≦ ν d ≦ 35, and n d ≦ −0.04 × ν d +3.00. In the medium refractive index high dispersion region, the wavelength at which the internal transmittance is 5% is λ 5 ≦ 355 nm, the anomalous dispersion value is ΔP g, F ≦ 0.0080, and P g, F ≦ −0. An optical glass satisfying the relationship of 0030 × ν d +0.6900 can be realized.
 このような光学ガラスは、紫外光の内部透過率が高く、かつ、アッベ数(ν)に対する部分分散比(Pg,F)が低いものであり、アッベ数と部分分散比の関係が直線関係(基準線)に近似するよう制御されたものである。すなわち、部分分散比の基準線からの正の方向への偏差が少なく、正の異常分散性が低い光学ガラスである。さらには、紫外光領域の内部透過率、アッベ数(ν)に対する屈折率(n)、アッベ数(ν)に対する部分分散比(Pg,F)が特異な光学ガラスとすることも可能である。本実施形態に係る光学ガラスは、かかる特性を有するため、上述した要求にも十分に応え得るものである。 Such an optical glass has a high internal transmittance of ultraviolet light and a low partial dispersion ratio (P g, F ) with respect to the Abbe number (ν d ), and the relationship between the Abbe number and the partial dispersion ratio is linear. It is controlled to approximate the relationship (reference line). That is, the optical glass has a small deviation of the partial dispersion ratio from the reference line in the positive direction and low positive anomalous dispersion. Further, internal transmittance of the ultraviolet region, the refractive index with respect to the Abbe number (ν d) (n d) , the partial dispersion ratio Abbe number (ν d) (P g, F) also has a unique optical glass Is possible. Since the optical glass according to the present embodiment has such characteristics, it can sufficiently satisfy the above-described requirements.
 以下、本実施形態に係る光学ガラスの成分組成を説明する。 Hereinafter, the component composition of the optical glass according to the present embodiment will be described.
 SiOは、ガラスを形成する酸化物であり、耐失透性を向上させることができる。その一方で、多量に含有すると熔解性を悪化させ、アッベ数を上昇させてしまう傾向にある。かかる観点から、その含有量は、10~30%である。また、含有量の上限値は、29%としてよく、28%としてもよい。また、含有量の下限値は、12%としてよく、15%としてもよい。 SiO 2 is an oxide that forms glass and can improve devitrification resistance. On the other hand, if it is contained in a large amount, the meltability tends to deteriorate and the Abbe number tends to increase. From this viewpoint, the content is 10 to 30%. Further, the upper limit of the content may be 29% or 28%. The lower limit of the content may be 12% or 15%.
 Bは、ガラスを形成する酸化物であり、熔解性を向上させることができる。また、アッベ数に対して屈折率を低下させることができる。その一方で、多量に含有すると耐失透安定性が低下してしまい、アッベ数を上昇させてしまう傾向にある。かかる観点から、その含有量は、6~20%である。また、含有量の上限値は、19%としてよく、18%としてもよい。また、含有量の下限値は、7%としてよく、8%としてもよい。 B 2 O 3 is an oxide that forms glass, and can improve meltability. Further, the refractive index can be lowered with respect to the Abbe number. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered, and the Abbe number tends to be increased. From this viewpoint, the content is 6 to 20%. The upper limit of the content may be 19% or 18%. Further, the lower limit of the content may be 7% or 8%.
 Nbは、所望のアッベ数を得るために有効な成分である。また、アッベ数に対して屈折率を低下させることができる。その一方で、多量に含有すると耐失透性や熔解性が低下し、アッベ数に対する部分分散比が上昇し、透過率が悪化する傾向にある。かかる観点から、その含有量は、25~50%である。また、含有量の上限値は、好ましくは49%であり、より好ましくは48%である。また、含有量の下限値は、好ましくは27%であり、より好ましくは29%である。 Nb 2 O 5 is an effective component for obtaining a desired Abbe number. Further, the refractive index can be lowered with respect to the Abbe number. On the other hand, when it is contained in a large amount, devitrification resistance and meltability are lowered, the partial dispersion ratio with respect to the Abbe number is increased, and the transmittance tends to be deteriorated. From this viewpoint, the content is 25 to 50%. Further, the upper limit of the content is preferably 49%, more preferably 48%. Further, the lower limit of the content is preferably 27%, more preferably 29%.
 KOは、アッベ数に対する所望の部分分散比を得るために有効な成分である。また、透過率を向上させることができる。その一方で、多量に含有すると耐失透安定性が低下し、アッベ数を上昇させてしまう傾向にある。かかる観点から、その含有量は、15~30%である。また、その含有量の上限値は、26%としてよく、22%としてもよい。また、その含有量の下限値は、15%超としてよく、15.5%としてもよい。 K 2 O is an effective component for obtaining a desired partial dispersion ratio with respect to the Abbe number. Further, the transmittance can be improved. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered and the Abbe number tends to be increased. From this viewpoint, the content is 15 to 30%. Further, the upper limit of the content may be 26% or 22%. Moreover, the lower limit of the content may be more than 15% and may be 15.5%.
 TiOは、0%超含む場合に、アッベ数に対する屈折率を低下させることができる任意成分である。その一方で、多量に含有すると透過率が悪化する傾向にある。かかる観点から、その含有量は、0~8%である。また、その含有量の上限値は、6%としてよく、4%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてもよい。 TiO 2 is an optional component that can lower the refractive index relative to the Abbe number when it exceeds 0%. On the other hand, if it is contained in a large amount, the transmittance tends to deteriorate. From such a viewpoint, the content is 0 to 8%. The upper limit of the content may be 6% or 4%. Moreover, the lower limit of the content may be over 0% or 1%.
 なお、Nbの含有量に対するTiOの含有量が多すぎると、透過率が低下する傾向にある。かかる観点から、Nbの含有量に対するTiOの含有量の比(TiO/Nb)は、0~0.3である。また、その比の上限値は、0.25としてよく、0.24としてもよい。また、その比の下限値は、0超としてよく、0.01としてもよい。 Incidentally, when the content of TiO 2 with respect to the content of Nb 2 O 5 is too large, the transmittance tends to decrease. From this viewpoint, the content ratio of TiO 2 to the content of Nb 2 O 5 (TiO 2 / Nb 2 O 5) is 0 to 0.3. Further, the upper limit value of the ratio may be 0.25 or 0.24. Further, the lower limit value of the ratio may be greater than 0 or 0.01.
 Pは、0%超含む場合に、アッベ数に対する屈折率を低下させる任意成分である。その一方で、多量に含有するとアッベ数に対する部分分散比が大きくなり、また、アッベ数が上昇してしまう傾向にある。かかる観点から、その含有量は、0~8%である。また、その含有量の上限値は、7%としてよく、6%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてもよい。 P 2 O 5 is an optional component that lowers the refractive index relative to the Abbe number when it exceeds 0%. On the other hand, when it is contained in a large amount, the partial dispersion ratio with respect to the Abbe number increases, and the Abbe number tends to increase. From such a viewpoint, the content is 0 to 8%. Moreover, the upper limit of the content may be 7% or 6%. Moreover, the lower limit of the content may be over 0% or 1%.
 RO(Rは、Ca、Sr、Ba及びZnからなる群より選ばれる1種以上を表す。)は、0%超含む場合に、アッベ数に対する部分分散比を低下させる任意成分である。その一方で、多量に含有すると耐失透安定性が低下し、アッベ数に対する屈折率が上昇してしまう傾向にある。かかる観点から、ROに該当する成分の含有量の合計は、0~4%である。また、その含有量の合計の上限値は、3%としてよく、2%としてもよい。また、その含有量の合計の下限値は、0%超としてよく、0.3%としてよい。 RO (R represents one or more selected from the group consisting of Ca, Sr, Ba, and Zn) is an optional component that lowers the partial dispersion ratio relative to the Abbe number when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered, and the refractive index with respect to the Abbe number tends to increase. From this point of view, the total content of components corresponding to RO is 0 to 4%. Further, the upper limit of the total content may be 3% or 2%. Further, the lower limit of the total content may be more than 0% or 0.3%.
 LiOは、0%超含む場合に、アッベ数に対する部分分散比を低下させ、透過率を向上させる任意成分である。その一方で、多量に含有すると耐失透安定性が低下し、アッベ数が上昇し、アッベ数に対する屈折率が上昇してしまう傾向にある。かかる観点から、その含有量は、0~10%である。また、その含有量の上限値は、8%としてよく、7%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてもよい。 Li 2 O is an optional component that lowers the partial dispersion ratio relative to the Abbe number and improves the transmittance when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance decreases, the Abbe number increases, and the refractive index with respect to the Abbe number tends to increase. From this viewpoint, the content is 0 to 10%. Further, the upper limit of the content may be 8% or 7%. Moreover, the lower limit of the content may be over 0% or 1%.
 NaOは、0%超含む場合に、アッベ数に対する部分分散比を低下させ、透過率を向上させる任意成分である。その一方で、多量に含有すると耐失透安定性が低下し、アッベ数が上昇し、アッベ数に対する屈折率が上昇してしまう傾向にある。かかる観点から、その含有量は、0~10%である。また、その含有量の上限値は、8%としてよく、7%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてもよい。 Na 2 O is an optional component that lowers the partial dispersion ratio relative to the Abbe number and improves the transmittance when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance decreases, the Abbe number increases, and the refractive index with respect to the Abbe number tends to increase. From this viewpoint, the content is 0 to 10%. Further, the upper limit of the content may be 8% or 7%. Moreover, the lower limit of the content may be over 0% or 1%.
 ZrOは、0%超含む場合に、アッベ数を上昇させずにアッベ数に対する部分分散比を低下させる任意成分である。その一方で、多量に含有すると耐失透安定性が低下し、透過率が悪化してしまう傾向にある。かかる観点から、その含有量は、0~12%である。また、その含有量の上限値は、10%としてよく、8%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてよもよい。 ZrO 2 is an optional component that lowers the partial dispersion ratio relative to the Abbe number without increasing the Abbe number when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance is lowered, and the transmittance tends to deteriorate. From this viewpoint, the content is 0 to 12%. Moreover, the upper limit of the content may be 10% or 8%. Moreover, the lower limit of the content may be over 0%, or 1%.
 Taは、0%超含む場合に、アッベ数を低く維持する任意成分である。その一方で、多量に含有すると耐失透安定性が低下してしまう傾向にある。かかる観点から、その含有量は、0~12%である。また、その含有量の上限値は、10%としてよく、8%としてもよい。また、その含有量の下限値は、0%超としてよく、2%としてもよい。 Ta 2 O 5 is an optional component that keeps the Abbe number low when it exceeds 0%. On the other hand, when it is contained in a large amount, the devitrification resistance tends to be lowered. From this viewpoint, the content is 0 to 12%. Moreover, the upper limit of the content may be 10% or 8%. Moreover, the lower limit of the content may be over 0%, or 2%.
 WOは、0%超含む場合に、アッベ数を低く維持する任意成分である。その一方で、多量に含有すると透過率が悪化してしまう傾向にある。かかる観点から、その含有量は、0~5%である。また、その含有量の上限値は、4%としてよく、3%としてもよい。また、その含有量の下限値は、0%超としてよく、1%としてもよい。 WO 3 is an optional component that keeps the Abbe number low when it exceeds 0%. On the other hand, if it is contained in a large amount, the transmittance tends to deteriorate. From such a viewpoint, the content is 0 to 5%. Further, the upper limit of the content may be 4% or 3%. Moreover, the lower limit of the content may be over 0% or 1%.
 Sbは、0%超含む場合に、ガラスの清澄や均質化のために有効な任意成分である。かかる観点から、その含有量は、好ましくは0~1%である。 Sb 2 O 3 is an optional component effective for clarifying and homogenizing glass when it contains more than 0%. From such a viewpoint, the content is preferably 0 to 1%.
 上述した各成分に限らず、本実施形態において目的とする光学ガラスの達成に支障のない範囲で、その他の任意成分を添加することもできる。 Not only each component mentioned above but other arbitrary components can also be added in the range which does not hinder achievement of the target optical glass in this embodiment.
 上述した成分組成を有する本実施形態に係る光学ガラスは、高分散であり、かつ、紫外光領域を含む広い領域において、内部透過率が高く、かつ、アッベ数(ν)に対する部分分散比(Pg,F)が低い。特に、中屈折率高分散領域であっても、かかる特性を維持できる。 The optical glass according to the present embodiment having the above-described component composition is highly dispersed, has a high internal transmittance in a wide region including the ultraviolet region, and has a partial dispersion ratio with respect to the Abbe number (ν d ) ( Pg, F ) is low. In particular, such characteristics can be maintained even in a medium refractive index high dispersion region.
 以下に、本実施形態における光学ガラスが持つ好適な特性を説明する。 Hereinafter, suitable characteristics of the optical glass in the present embodiment will be described.
 まず、本実施形態に係る光学ガラスが中屈折率高分散領域での使用に適するといった観点から、当該領域として、その好適な屈折率(n)は、1.60~1.80の範囲であり、かつ、好適なアッベ数(ν)は、25~35の範囲であるものが挙げられる。 First, from the viewpoint suitable for use in optical glass medium refractive index and high dispersion region according to the present embodiment, as the area, the preferred refractive index (n d) is in the range of 1.60 to 1.80 The preferred Abbe number (ν d ) is in the range of 25 to 35.
 次に、本実施形態に係る光学ガラスの好適な態様として、屈折率(n)とアッベ数(ν)が、下記式(1)で表される関係を満たすものが挙げられる。
≦-0.04×ν+3.00・・・(1)
Next, as a preferable aspect of the optical glass according to the present embodiment, one in which the refractive index (n d ) and the Abbe number (ν d ) satisfy the relationship represented by the following formula (1) can be given.
n d ≦ −0.04 × ν d +3.00 (1)
 上記の中でも、中屈折率高分散領域においても所望の特性を一層良好に発揮できるものとして、屈折率(n)が1.60~1.80の範囲であり、アッベ数(ν)が25~35の範囲であり、かつ、式(1)で表される関係を満たすものが挙げられる。 Among them, the refractive index (n d ) is in the range of 1.60 to 1.80, and the Abbe number (ν d ) is such that the desired characteristics can be more satisfactorily exhibited even in the medium refractive index high dispersion region. Examples thereof include those in the range of 25 to 35 and satisfying the relationship represented by the formula (1).
 そして、本実施形態に係る光学ガラスは、高い紫外光透過率を有する。例えば、紫外光の利用と色消しに供する有用性の観点から、紫外光領域においても透過率が良く、アッベ数に対する部分分散比が低い光学ガラスとすることができる。その好適な具体例として、内部透過率が5%となる波長(λ)が、355nm以下である光学ガラスが挙げられる。 And the optical glass which concerns on this embodiment has a high ultraviolet light transmittance. For example, from the viewpoint of utilization of ultraviolet light and usefulness for achromatization, an optical glass having good transmittance in the ultraviolet light region and a low partial dispersion ratio with respect to the Abbe number can be obtained. A preferred specific example thereof is an optical glass having a wavelength (λ 5 ) at which the internal transmittance is 5% is 355 nm or less.
 さらに、本実施形態の好適な具体例としては、異常分散値(ΔPg,F)が、0.0080以下である光学ガラスが挙げられる。異常分散値は、異常分散性の指標であり、具体的な定義については後述する。 Furthermore, as a preferable specific example of the present embodiment, an optical glass having an anomalous dispersion value (ΔP g, F ) of 0.0080 or less can be given. The anomalous dispersion value is an index of anomalous dispersion, and a specific definition will be described later.
 従来、とりわけ中屈折率高分散領域では、光学ガラスの分散性が大きくなるにつれて異常分散値(ΔPg,F)が大きくなるといった問題点があるところ、この点を考慮した本実施形態の好適な具体例として、部分分散比(Pg,F)とアッベ数(ν)が下記式(2)で表される関係を満たすものが挙げられる。
g,F≦-0.003ν+0.6900・・・(2)
Conventionally, there is a problem that the anomalous dispersion value (ΔP g, F ) increases as the dispersibility of the optical glass increases, particularly in the medium refractive index high dispersion region. As a specific example, the partial dispersion ratio (P g, F ) and the Abbe number (ν d ) satisfy the relationship represented by the following formula (2).
P g, F ≦ −0.003ν d +0.6900 (2)
 そして、本実施形態に係る光学ガラスの一層好適な態様としては、上記式(2)で表される関係を満たし、かつ、内部透過率が5%となる波長(λ)が、355nm以下であり、異常分散値(ΔPg,F)が、0.0080以下のものである。これらの特性を併せ持つ光学ガラスは、中屈折率高分散領域においても、紫外光の内部透過率が高く、かつ、アッベ数(ν)に対する部分分散比(Pg,F)が低いものである。 As a more preferable aspect of the optical glass according to the present embodiment, the wavelength (λ 5 ) satisfying the relationship represented by the above formula (2) and having an internal transmittance of 5% is 355 nm or less. Yes, the anomalous dispersion value (ΔP g, F ) is 0.0080 or less. An optical glass having these characteristics also has a high internal transmittance of ultraviolet light and a low partial dispersion ratio (P g, F ) with respect to the Abbe number (ν d ) even in a medium refractive index high dispersion region. .
 上述したような特性を有する本実施形態に係る光学ガラスは、例えば、光学装置等に用いられる光学素子として好適に用いることができる。このような光学素子には、ミラー、レンズ、プリズム、フィルタ等が含まれる。そして、かかる光学素子を含む光学系としては、例えば、対物レンズ、集光レンズ、結像レンズ、カメラ用交換レンズ等が挙げられる。さらに、これらの光学系は、レンズ交換式カメラ、レンズ非交換式カメラ等の撮像装置、多光子顕微鏡等の顕微鏡等の光学装置に好適に用いることができる。かかる光学装置としては、上述した撮像装置や顕微鏡に限られず、ビデオカメラ、テレコンバーター、望遠鏡、双眼鏡、単眼鏡、レーザー距離計、プロジェクタ等も含まれる。以下にこれらの一例を説明する。 The optical glass according to the present embodiment having the above-described characteristics can be suitably used as an optical element used in an optical device or the like, for example. Such optical elements include mirrors, lenses, prisms, filters, and the like. Examples of the optical system including such an optical element include an objective lens, a condenser lens, an imaging lens, and an interchangeable lens for a camera. Furthermore, these optical systems can be suitably used for optical devices such as imaging devices such as interchangeable lens cameras and non-lens interchangeable cameras, and microscopes such as multiphoton microscopes. Such an optical device is not limited to the above-described imaging device and microscope, and includes a video camera, a teleconverter, a telescope, binoculars, monoculars, a laser rangefinder, a projector, and the like. Examples of these will be described below.
<撮像装置>
 図1は、光学装置を撮像装置とした場合の一例の斜視図である。
<Imaging device>
FIG. 1 is a perspective view of an example in which an optical device is an imaging device.
 撮像装置1はいわゆるデジタル一眼レフカメラ(レンズ交換式カメラ)であり、撮影レンズ103(光学系)は本実施形態に係る光学ガラスを母材とする光学素子を備えたものである。カメラボディ101のレンズマウント(不図示)にレンズ鏡筒102が着脱自在に取り付けられる。そして、該レンズ鏡筒102の撮影レンズ103を通した光がカメラボディ101の背面側に配置されたマルチチップモジュール106のセンサチップ(固体撮像素子)104上に結像される。このセンサチップ104は、いわゆるCMOSイメージセンサー等のベアチップであり、マルチチップモジュール106は、例えば、センサチップ104がガラス基板105上にベアチップ実装されたCOG(Chip On Glass)タイプのモジュールである。 The imaging device 1 is a so-called digital single-lens reflex camera (lens interchangeable camera), and the photographing lens 103 (optical system) includes an optical element having the optical glass according to the present embodiment as a base material. A lens barrel 102 is detachably attached to a lens mount (not shown) of the camera body 101. Then, light passing through the photographing lens 103 of the lens barrel 102 is imaged on a sensor chip (solid-state imaging device) 104 of a multichip module 106 disposed on the back side of the camera body 101. The sensor chip 104 is a bare chip such as a so-called CMOS image sensor, and the multi-chip module 106 is, for example, a COG (Chip On Glass) type module in which the sensor chip 104 is mounted on the glass substrate 105 as a bare chip.
 図2は、光学装置を撮像装置とした場合の他の例の概略図である。図2(a)は撮像装置CAMの正面図を、図2(b)は撮像装置CAMの背面図を示す。 FIG. 2 is a schematic diagram of another example in which the optical device is an imaging device. 2A is a front view of the imaging device CAM, and FIG. 2B is a rear view of the imaging device CAM.
 撮像装置CAMはいわゆるデジタルスチルカメラ(レンズ非交換式カメラ)であり、撮影レンズWL(光学系)は本実施形態に係る光学ガラスを母材とする光学素子を備えたものである。 The imaging device CAM is a so-called digital still camera (lens non-exchangeable camera), and the photographing lens WL (optical system) includes an optical element having the optical glass according to the present embodiment as a base material.
 撮像装置CAMは、不図示の電源ボタンを押すと、撮影レンズWLのシャッタ(不図示)が開放されて、撮影レンズWLで被写体(物体)からの光が集光され、像面に配置された撮像素子に結像される。撮像素子に結像された被写体像は、撮像装置CAMの背後に配置された液晶モニターMに表示される。撮影者は、液晶モニターMを見ながら被写体像の構図を決めた後、レリーズボタンB1を押し下げて被写体像を撮像素子で撮像し、メモリー(不図示)に記録保存する。 When the imaging device CAM presses a power button (not shown), the shutter (not shown) of the photographing lens WL is opened, and the light from the subject (object) is condensed by the photographing lens WL and arranged on the image plane. An image is formed on the image sensor. The subject image formed on the image sensor is displayed on the liquid crystal monitor M arranged behind the image pickup device CAM. The photographer determines the composition of the subject image while looking at the liquid crystal monitor M, and then depresses the release button B1 to capture the subject image with the image sensor, and records and saves it in a memory (not shown).
 撮像装置CAMには、被写体が暗い場合に補助光を発光する補助光発光部EF、撮像装置CAMの種々の条件設定等に使用するファンクションボタンB2等が配置されている。 The imaging device CAM is provided with an auxiliary light emitting unit EF that emits auxiliary light when the subject is dark, a function button B2 used for setting various conditions of the imaging device CAM, and the like.
<多光子顕微鏡>
 図3は、多光子顕微鏡2の構成の例を示すブロック図である。
<Multiphoton microscope>
FIG. 3 is a block diagram illustrating an example of the configuration of the multiphoton microscope 2.
 多光子顕微鏡2は、対物レンズ206、集光レンズ208、結像レンズ210を備える。対物レンズ206、集光レンズ208、結像レンズ210のうち少なくとも1つは、本実施形態に係る光学ガラスを母材とする光学素子を備えたものである。以下、多光子顕微鏡2の光学系を中心に説明する。 The multiphoton microscope 2 includes an objective lens 206, a condensing lens 208, and an imaging lens 210. At least one of the objective lens 206, the condensing lens 208, and the imaging lens 210 includes an optical element that uses the optical glass according to the present embodiment as a base material. Hereinafter, the optical system of the multiphoton microscope 2 will be mainly described.
 パルスレーザ装置201は、例えば、近赤外波長(約1000nm)であって、パルス幅がフェムト秒単位の(例えば、100フェムト秒の)超短パルス光を射出する。パルスレーザ装置201から射出された直後の超短パルス光は、一般に所定の方向に偏光された直線偏光となっている。 The pulse laser device 201 emits, for example, an ultrashort pulse light having a near infrared wavelength (about 1000 nm) and a pulse width in femtosecond units (for example, 100 femtoseconds). The ultrashort pulse light immediately after being emitted from the pulse laser device 201 is generally linearly polarized light polarized in a predetermined direction.
 パルス分割装置202は、超短パルス光を分割し、超短パルス光の繰り返し周波数を高くして射出する。 The pulse splitting device 202 splits the ultrashort pulse light and emits it with a high repetition frequency of the ultrashort pulse light.
 ビーム調整部203は、パルス分割装置202から入射される超短パルス光のビーム径を、対物レンズ206の瞳径に合わせて調整する機能、試料Sから発せられる多光子励起光の波長と超短パルス光の波長との軸上の色収差(ピント差)を補正するために超短パルス光の集光及び発散角度を調整する機能、超短パルス光のパルス幅が光学系を通過する間に群速度分散により広がってしまうのを補正するために、逆の群速度分散を超短パルス光に与えるプリチャープ機能(群速度分散補償機能)等を有する。 The beam adjusting unit 203 has a function of adjusting the beam diameter of the ultrashort pulse light incident from the pulse dividing device 202 according to the pupil diameter of the objective lens 206, the wavelength of the multiphoton excitation light emitted from the sample S, and the ultrashort wavelength. Function to adjust the focusing and divergence angle of ultrashort pulse light to correct axial chromatic aberration (focus difference) with the wavelength of the pulsed light, while the pulse width of ultrashort pulse light passes through the optical system In order to correct the spread due to the velocity dispersion, a pre-chirp function (group velocity dispersion compensation function) for imparting the reverse group velocity dispersion to the ultrashort pulse light is provided.
 パルスレーザ装置201から射出された超短パルス光は、パルス分割装置202によりその繰り返し周波数が大きくされ、ビーム調整部203により上述した調整が行われる。そして、ビーム調整部203から射出された超短パルス光は、ダイクロイックミラー204によりダイクロイックミラー205の方向に反射され、ダイクロイックミラー205を通過し、対物レンズ206により集光されて試料Sに照射される。このとき、走査手段(不図示)を用いることにより、超短パルス光を試料Sの観察面上に走査させてもよい。 The repetition frequency of the ultrashort pulse light emitted from the pulse laser device 201 is increased by the pulse dividing device 202, and the above-described adjustment is performed by the beam adjusting unit 203. The ultrashort pulse light emitted from the beam adjusting unit 203 is reflected by the dichroic mirror 204 in the direction of the dichroic mirror 205, passes through the dichroic mirror 205, is collected by the objective lens 206, and is irradiated onto the sample S. . At this time, the ultrashort pulse light may be scanned on the observation surface of the sample S by using a scanning unit (not shown).
 例えば、試料Sを蛍光観察する場合には、試料Sの超短パルス光の被照射領域及びその近傍では、試料Sが染色されている蛍光色素が多光子励起され、赤外波長である超短パルス光より波長が短い蛍光(以下、「観察光」という。)が発せられる。 For example, in the case of fluorescence observation of the sample S, the fluorescent dye in which the sample S is stained is multiphoton excited in the vicinity of the irradiated region of the sample S with the ultrashort pulse light and in the vicinity thereof. Fluorescence having a shorter wavelength than the pulsed light (hereinafter referred to as “observation light”) is emitted.
 試料Sから対物レンズ206の方向に発せられた観察光は、対物レンズ206によりコリメートされ、その波長に応じて、ダイクロイックミラー205により反射されたり、あるいは、ダイクロイックミラー205を透過したりする。 Observation light emitted from the sample S in the direction of the objective lens 206 is collimated by the objective lens 206 and reflected by the dichroic mirror 205 or transmitted through the dichroic mirror 205 depending on the wavelength.
 ダイクロイックミラー205により反射された観察光は、蛍光検出部207に入射する。蛍光検出部207は、例えば、バリアフィルタ、PMT(photo multiplier tube:光電子増倍管)等により構成され、ダイクロイックミラー205により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部207は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 The observation light reflected by the dichroic mirror 205 enters the fluorescence detection unit 207. The fluorescence detection unit 207 includes, for example, a barrier filter, a PMT (photomultiplier tube), and the like, receives observation light reflected by the dichroic mirror 205, and outputs an electrical signal corresponding to the amount of light. . Further, the fluorescence detection unit 207 detects observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
 一方、ダイクロイックミラー205を透過した観察光は、走査手段(不図示)によりデスキャンされ、ダイクロイックミラー204を透過し、集光レンズ208により集光され、対物レンズ206の焦点位置とほぼ共役な位置に設けられているピンホール209を通過し、結像レンズ210を透過して、蛍光検出部211に入射する。 On the other hand, the observation light that has passed through the dichroic mirror 205 is descanned by a scanning unit (not shown), passes through the dichroic mirror 204, is condensed by the condenser lens 208, and is at a position almost conjugate with the focal position of the objective lens 206. It passes through the provided pinhole 209, passes through the imaging lens 210, and enters the fluorescence detection unit 211.
 蛍光検出部211は、例えば、バリアフィルタ、PMT等により構成され、結像レンズ210により蛍光検出部211の受光面において結像した観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部211は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 The fluorescence detection unit 211 includes, for example, a barrier filter, a PMT, and the like, receives the observation light imaged on the light receiving surface of the fluorescence detection unit 211 by the imaging lens 210, and outputs an electric signal corresponding to the light amount. In addition, the fluorescence detection unit 211 detects the observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
 なお、ダイクロイックミラー205を光路から外すことにより、試料Sから対物レンズ206の方向に発せられた全ての観察光を蛍光検出部211で検出するようにしてもよい。 Note that, by removing the dichroic mirror 205 from the optical path, all of the observation light emitted from the sample S in the direction of the objective lens 206 may be detected by the fluorescence detection unit 211.
 また、試料Sから対物レンズ206と逆の方向に発せられた観察光は、ダイクロイックミラー212により反射され、蛍光検出部213に入射する。蛍光検出部213は、例えば、バリアフィルタ、PMT等により構成され、ダイクロイックミラー212により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部213は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 Further, the observation light emitted from the sample S in the direction opposite to the objective lens 206 is reflected by the dichroic mirror 212 and enters the fluorescence detection unit 213. The fluorescence detection unit 213 includes, for example, a barrier filter, a PMT, and the like, receives observation light reflected by the dichroic mirror 212, and outputs an electrical signal corresponding to the amount of light. Further, the fluorescence detection unit 213 detects observation light over the observation surface of the sample S as the ultrashort pulse light is scanned on the observation surface of the sample S.
 蛍光検出部207、211、213からそれぞれ出力された電気信号は、例えば、コンピュータ(不図示)に入力され、そのコンピュータは、入力された電気信号に基づいて、観察画像を生成し、生成した観察画像を表示したり、観察画像のデータを記憶したりすることができる。 The electrical signals output from the fluorescence detection units 207, 211, and 213 are input to, for example, a computer (not shown), and the computer generates an observation image based on the input electrical signal and generates the generated observation. Images can be displayed and observation image data can be stored.
 次に、本発明の実施例及び比較例について説明する。本発明はこれら実施例に限定されるものではない。 Next, examples and comparative examples of the present invention will be described. The present invention is not limited to these examples.
<光学ガラスの作製>
 各実施例及び各比較例に係る光学ガラスは、以下の手順で作製した。まず、表2~表10に記載の化学組成(質量%)となるよう、酸化物、水酸化物、炭酸塩、リン酸化合物(リン酸塩、正リン酸等)、及び硝酸塩等のガラス原料を秤量した。次に、秤量した原料を混合して白金ルツボに投入し、1100~1400℃の温度で1時間程度熔融し、攪拌均質化した。その後、適当な温度に下げてから金型等に鋳込み、徐冷することにより、各サンプルを得た。
<Production of optical glass>
The optical glass according to each example and each comparative example was produced by the following procedure. First, glass raw materials such as oxides, hydroxides, carbonates, phosphoric acid compounds (phosphates, orthophosphoric acids, etc.), and nitrates so as to have the chemical compositions (mass%) shown in Tables 2 to 10. Was weighed. Next, the weighed raw materials were mixed, put into a platinum crucible, melted at a temperature of 1100 to 1400 ° C. for about 1 hour, and homogenized with stirring. Then, after lowering to an appropriate temperature, each sample was obtained by casting into a mold or the like and gradually cooling.
<光学ガラスの屈折率の測定>
 各サンプルの屈折率(n)は、精密屈折率測定器(TRIOPTICS社製;「Spectro Master HR」)を用いて測定した。そして、得られた実測値を用いて、アッベ数(ν)、部分分散比(Pg,F)をそれぞれ算出した。なお、計算に用いた屈折率の値は、小数点以下第7位までとした。
<Measurement of refractive index of optical glass>
The refractive index (n d ) of each sample was measured using a precise refractive index measuring instrument (manufactured by TRIOPTICS; “Spectro Master HR”). Then, the Abbe number (ν d ) and the partial dispersion ratio (P g, F ) were calculated using the obtained actual measurement values. In addition, the value of the refractive index used for the calculation was set to the seventh decimal place.
<光学ガラスの内部透過率の測定>
 各サンプルの透過率は、紫外可視近赤外分光光度計(日立ハイテクサイエンス社製;「UH4150」)を用いて測定した。厚み12mmのサンプルと厚み2mmのサンプルの透過率の差から内部透過率を算出した。なお、表中の「失透」との記載は、ガラスを製造した際に、ガラスの失透などによって測定が不可能であったこと(即ち、光学ガラスとしての使用が不可能なこと)を示す。
<Measurement of internal transmittance of optical glass>
The transmittance of each sample was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd .; “UH4150”). The internal transmittance was calculated from the difference in transmittance between the 12 mm thick sample and the 2 mm thick sample. In addition, the description of “devitrification” in the table indicates that when glass was manufactured, measurement was impossible due to devitrification of the glass (that is, it cannot be used as optical glass). Show.
<光学ガラスの分散性の評価>
 部分分散比(Pg,F)とは、主分散(n-n)に対する(n-nF)の比のことである。ここで、nは、波長486.133nmの光(F線)に対するガラスの屈折率であり、nは、波長656.273nmの光(C線)に対するガラスの屈折率であり、nは、波長435.835nmの光(g線)に対するガラスの屈折率である。
<Evaluation of dispersibility of optical glass>
The partial dispersion ratio (P g, F ) is the ratio of (n g -n F ) to the main dispersion (n F -n C ). Here, n F is the refractive index of the glass for light (F-line) having a wavelength of 486.133 nm, n C is the refractive index of the glass for light (C-line) having a wavelength of 656.273 nm, and ng is , The refractive index of the glass with respect to light (g-line) having a wavelength of 435.835 nm.
 異常分散値(ΔPg,F)とは、異常分散性を示す指標であり、以下の方法により算出した。まず、表1に示すアッベ数(ν)と部分分散比(Pg,F)を有する2硝種のガラス「NSL7」と「PBM2」(ともに株式会社オハラ硝種名)を、基準材として用いた。 The anomalous dispersion value (ΔP g, F ) is an index indicating anomalous dispersion and was calculated by the following method. First, two glass types “NSL7” and “PBM2” (both OHARA Glass Co., Ltd.) having the Abbe number (ν d ) and the partial dispersion ratio (P g, F ) shown in Table 1 were used as reference materials. .
 続いて、部分分散比(Pg,F)を縦軸に、アッベ数(ν)を横軸に取り、上述の基準材に対応する2点を結ぶ直線を基準線とした。そして、各実施例及び各比較例の値を当該グラフ上にプロットし、基準線との縦軸(部分分散比Pg,F)の差分をΔPg,Fとした。そして、部分分散比が基準線の上側にあるものを正の異常分散性、直線の下側にあるものを負の異常分散性を有するという。 Subsequently, the partial dispersion ratio (P g, F ) is taken on the vertical axis, the Abbe number (ν d ) is taken on the horizontal axis, and a straight line connecting the two points corresponding to the above-mentioned reference material was taken as the reference line. And the value of each Example and each comparative example was plotted on the said graph, and the difference of the vertical axis | shaft (partial dispersion ratio Pg, F ) with a reference line was set to (DELTA) Pg , F. When the partial dispersion ratio is above the reference line, it is said to have positive anomalous dispersion, and when it is below the straight line, it has negative anomalous dispersion.
 この異常分散値(ΔPg,F)の基準線の方程式は、Pg,F=0.641462+(-0.0016178)×νである(図6の基準線参照)。 The equation of the base line of this anomalous dispersion value (ΔP g, F ) is P g, F = 0.641462 + (− 0.0016178) × ν d (see the base line in FIG. 6).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2~10に、各実施例及び各比較例の成分組成(質量基準)、屈折率(n)、アッベ数(ν)、部分分散比(Pg,F)、式(i)としてn+0.04×ν-3.00の値(式(1)参照)、内部透過率が5%となる波長(λ)、異常分散値(ΔPg,F)、及び式(ii)としてPg,F+0.0030×ν-0.6900の値(式(2)参照)を示す。 Tables 2 to 10 show the composition (mass basis), refractive index (n d ), Abbe number (ν d ), partial dispersion ratio (P g, F ), and formula (i) of each example and each comparative example. n d + 0.04 × ν d −3.00 (see formula (1)), wavelength (λ 5 ) at which the internal transmittance is 5%, anomalous dispersion value (ΔP g, F ), and formula (ii) ) Represents a value of P g, F + 0.0030 × ν d −0.6900 (see formula (2)).
 そして、式(i)の値が0又は負の値であれば、式(1)の関係(n≦-0.04×ν+3.00)を満たすことになる。また、式(ii)の値が0又は負の値であれば、式(2)の関係(Pg,F≦-0.0030×ν+0.6900)を満たすことになる。 If the value of equation (i) is 0 or a negative value, the relationship of equation (1) (n d ≦ −0.04 × ν d +3.00) is satisfied. Further, if the value of the formula (ii) is 0 or a negative value, the relationship of the formula (2) (P g, F ≦ −0.0030 × ν d +0.6900) is satisfied.
 図4に、各実施例及び各比較例のλとνをプロットしたグラフを示し、図5に、各実施例及び各比較例のΔPg,Fとνをプロットしたグラフを示し、図6に、各実施例及び各比較例のPg,Fとνをプロットしたグラフを示す。 FIG. 4 shows a graph plotting λ 5 and ν d of each example and each comparative example, and FIG. 5 shows a graph plotting ΔP g, F and ν d of each example and each comparative example. 6 shows a graph plotting P g, F and [nu d of examples and Comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
※式(i)=n+0.04×ν-3.00
 式(ii)=Pg,F+0.0030×ν-0.6900
* Formula (i) = n d + 0.04 × ν d −3.00
Formula (ii) = P g, F + 0.0030 × ν d −0.6900
 以上より、各実施例の光学ガラスは、内部透過率が高く、かつ、アッベ数(ν)に対する部分分散比(Pg,F)が低いことが確認された。とりわけ、1.60≦n≦1.80、25≦ν≦35、であり、かつ、n≦-0.04×ν+3.00の関係を満たす領域においても、アッベ数と部分分散比の関係を示す基準線からの偏差が少なく、正の異常分散性が低いことが確認された。 From the above, it was confirmed that the optical glass of each example had a high internal transmittance and a low partial dispersion ratio (P g, F ) with respect to the Abbe number (ν d ). In particular, even in the region where 1.60 ≦ n d ≦ 1.80, 25 ≦ ν d ≦ 35, and n d ≦ −0.04 × ν d +3.00, the Abbe number and the part It was confirmed that the deviation from the reference line indicating the relationship of the dispersion ratio was small and the positive anomalous dispersion was low.
 一方、各比較例については、サンプルが失透してしまい、光学ガラスとして使用できないもの、透過率が悪いもの、あるいは、部分分散比が大きく、正の異常分散性が高いものであった。 On the other hand, in each comparative example, the sample was devitrified, so that it could not be used as optical glass, the transmittance was poor, or the partial dispersion ratio was large and the positive anomalous dispersibility was high.
1・・・撮像装置、101・・・カメラボディ、102・・・レンズ鏡筒、103・・・撮影レンズ、104・・・センサチップ、105・・・ガラス基板、106・・・マルチチップモジュール、2・・・多光子顕微鏡、201・・・パルスレーザ装置、202・・・パルス分割装置、203・・・ビーム調整部、204,205,212・・・ダイクロイックミラー、206・・・対物レンズ,207,211,213・・・蛍光検出部、208・・・集光レンズ、209・・・ピンホール、210・・・結像レンズ、CAM・・・撮像装置、WL・・・撮影レンズ、EF・・・補助光発光部、M・・・液晶モニター、B1・・・レリーズボタン、B2・・・ファンクションボタン、S・・・試料 DESCRIPTION OF SYMBOLS 1 ... Imaging device, 101 ... Camera body, 102 ... Lens barrel, 103 ... Shooting lens, 104 ... Sensor chip, 105 ... Glass substrate, 106 ... Multichip module DESCRIPTION OF SYMBOLS 2 ... Multiphoton microscope, 201 ... Pulse laser apparatus, 202 ... Pulse splitting apparatus, 203 ... Beam adjustment part, 204, 205, 212 ... Dichroic mirror, 206 ... Objective lens , 207, 211, 213... Fluorescence detection unit, 208... Condensing lens, 209... Pinhole, 210. EF: Auxiliary light emitting unit, M: Liquid crystal monitor, B1: Release button, B2: Function button, S: Sample

Claims (12)

  1.  質量百分率で、
     SiO:10~30%、
     B:6~20%、
     Nb:25~50%、
     KO:15~30%、
     TiO:0~8%、
     P:0~8%、
     RO(式中、Rは、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一つを表す。):0~4%、
     LiO:0~10%、
    であり、
     Nbの含有量に対するTiOの含有量の比(TiO/Nb)が、0~0.3である、
    光学ガラス。
    In mass percentage,
    SiO 2 : 10 to 30%,
    B 2 O 3 : 6 to 20%,
    Nb 2 O 5 : 25 to 50%,
    K 2 O: 15-30%,
    TiO 2 : 0 to 8%,
    P 2 O 5 : 0 to 8%
    RO (wherein R represents at least one selected from the group consisting of Ca, Sr, Ba and Zn): 0 to 4%,
    Li 2 O: 0 to 10%,
    And
    The ratio of the content of TiO 2 to the content of Nb 2 O 5 (TiO 2 / Nb 2 O 5) is 0 to 0.3
    Optical glass.
  2.  質量百分率で、
     NaO:0~10%、
     ZrO:0~12%、
     Ta:0~12%、
     WO:0~5%、
     Sb:0~1%、
    である、請求項1に記載の光学ガラス。
    In mass percentage,
    Na 2 O: 0 to 10%,
    ZrO 2 : 0 to 12%,
    Ta 2 O 5 : 0 to 12%,
    WO 3 : 0-5%,
    Sb 2 O 3 : 0 to 1%
    The optical glass according to claim 1, wherein
  3.  屈折率(n)が、1.60~1.80の範囲である、
    請求項1又は2に記載の光学ガラス。
    The refractive index (n d ) is in the range of 1.60 to 1.80.
    The optical glass according to claim 1 or 2.
  4.  アッベ数(ν)が、25~35の範囲である、
    請求項1~3のいずれか一項に記載の光学ガラス。
    The Abbe number (ν d ) is in the range of 25 to 35,
    The optical glass according to any one of claims 1 to 3.
  5.  屈折率(n)とアッベ数(ν)が、下記式(1)で表される関係を満たす、
    請求項1~4のいずれか一項に記載の光学ガラス。
    ≦-0.04×ν+3.00・・・(1)
    The refractive index (n d ) and the Abbe number (ν d ) satisfy the relationship represented by the following formula (1).
    The optical glass according to any one of claims 1 to 4.
    n d ≦ −0.04 × ν d +3.00 (1)
  6.  内部透過率が5%となる波長(λ)が、355nm以下である、
    請求項1~5のいずれか一項に記載の光学ガラス。
    The wavelength (λ 5 ) at which the internal transmittance is 5% is 355 nm or less.
    The optical glass according to any one of claims 1 to 5.
  7.  異常分散値(ΔPg,F)が、0.0080以下である、
    請求項1~6のいずれか一項に記載の光学ガラス。
    The anomalous dispersion value (ΔP g, F ) is 0.0080 or less.
    The optical glass according to any one of claims 1 to 6.
  8.  部分分散比(Pg,F)とアッベ数(ν)が下記式(2)で表される関係を満たす、
    g,F≦-0.003ν+0.6900・・・(2)
    請求項1~7のいずれか一項に記載の光学ガラス。
    The partial dispersion ratio (P g, F ) and the Abbe number (ν d ) satisfy the relationship represented by the following formula (2).
    P g, F ≦ −0.003ν d +0.6900 (2)
    The optical glass according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載の光学ガラスを用いた光学素子。 An optical element using the optical glass according to any one of claims 1 to 8.
  10.  請求項9に記載の光学素子を含む光学系。 An optical system including the optical element according to claim 9.
  11.  請求項10に記載の光学系を含むカメラ用交換レンズ。 An interchangeable lens for a camera including the optical system according to claim 10.
  12.  請求項10に記載の光学系を備える光学装置。 An optical device comprising the optical system according to claim 10.
PCT/JP2019/002929 2018-04-23 2019-01-29 Optical glass, optical element using same, optical system, interchangeable lens for camera, and optical device WO2019207874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020516032A JP7294327B2 (en) 2018-04-23 2019-01-29 Optical glass, optical element, optical system, camera interchangeable lens, and optical device using the same
JP2023094613A JP2023116631A (en) 2018-04-23 2023-06-08 Optical glass, optical element using the same, optical system, interchangeable lens for camera, and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-082588 2018-04-23
JP2018082588 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019207874A1 true WO2019207874A1 (en) 2019-10-31

Family

ID=68294969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002929 WO2019207874A1 (en) 2018-04-23 2019-01-29 Optical glass, optical element using same, optical system, interchangeable lens for camera, and optical device

Country Status (2)

Country Link
JP (2) JP7294327B2 (en)
WO (1) WO2019207874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142321A (en) * 2020-09-28 2020-12-29 成都光明光电股份有限公司 Optical glass, optical element and optical instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127450B2 (en) * 1971-12-02 1976-08-12
JPS63265840A (en) * 1987-04-23 1988-11-02 Ohara Inc Optical glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219036A (en) * 1988-02-29 1989-09-01 Hoya Corp Optical glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127450B2 (en) * 1971-12-02 1976-08-12
JPS63265840A (en) * 1987-04-23 1988-11-02 Ohara Inc Optical glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142321A (en) * 2020-09-28 2020-12-29 成都光明光电股份有限公司 Optical glass, optical element and optical instrument

Also Published As

Publication number Publication date
JP7294327B2 (en) 2023-06-20
JPWO2019207874A1 (en) 2021-05-13
JP2023116631A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
CN110650927B (en) Optical glass, optical element using same, optical system, cemented lens, interchangeable lens for camera, and optical device
JP7388505B2 (en) Optical glass, optical elements using the same, optical devices equipped with the optical elements, cemented lenses, optical systems, interchangeable lenses for cameras, and optical devices including the optical systems
US20210276914A1 (en) Optical glass, optical element, optical system, interchangeable lens, and optical device
JP2024026121A (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
JP2023116631A (en) Optical glass, optical element using the same, optical system, interchangeable lens for camera, and optical device
JP2020059641A (en) Optical glass, optical element using optical glass, optical system, interchangeable lens, optical device, and manufacturing method of optical glass
JP7410929B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
WO2020246544A1 (en) Optical glass, optical element, optical system, interchangeable lens, and optical device
JP2021011409A (en) Optical glass, optical element, optical system, interchangeable lense and optical device
JP7325253B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
WO2022102043A1 (en) Optical glass, optical element, optical system, doublet lens, interchangeable lens for camera, objective lens for microscope, and optical device
JP7024802B2 (en) Optical glass, optical elements equipped with optical glass, lens barrels, objective lenses for microscopes, optical devices
JP6985173B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses for cameras and optical devices
WO2022102044A1 (en) Optical glass, optical element, optical system, cemented lens, interchangable lens for camera, objective lens for microscope, and optical device
WO2023189051A1 (en) Optical glass, optical element, interchangeable lens for camera, objective lens for microscope, cemented lens, optical system, optical device, reflective element, and position measuring device
JP6809480B2 (en) Optical glass, optical elements and optical devices using optical glass
WO2022102045A1 (en) Optical glass, optical element, optical system, cemented lens, interchangeable lens for camera, objective lens for microscope, and optical device
JP2024056885A (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
JP2023104597A (en) Optical glass, optical element, interchangeable lens for camera, objective lens for microscope, cemented lens, optical system, and optical device
JP2020015641A (en) Optical glass, optical element using optical glass, optical system, interchangeable lens, and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792598

Country of ref document: EP

Kind code of ref document: A1